Sample records for air noise

  1. Noise Emission from Laboratory Air Blowers

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  2. Impact of noise and air pollution on pregnancy outcomes.

    PubMed

    Gehring, Ulrike; Tamburic, Lillian; Sbihi, Hind; Davies, Hugh W; Brauer, Michael

    2014-05-01

    Motorized traffic is an important source of both air pollution and community noise. While there is growing evidence for an adverse effect of ambient air pollution on reproductive health, little is known about the association between traffic noise and pregnancy outcomes. We evaluated the impact of residential noise exposure on small size for gestational age, preterm birth, term birth weight, and low birth weight at term in a population-based cohort study, for which we previously reported associations between air pollution and pregnancy outcomes. We also evaluated potential confounding of air pollution effects by noise and vice versa. Linked administrative health data sets were used to identify 68,238 singleton births (1999-2002) in Vancouver, British Columbia, Canada, with complete covariate data (sex, ethnicity, parity, birth month and year, income, and education) and maternal residential history. We estimated exposure to noise with a deterministic model (CadnaA) and exposure to air pollution using temporally adjusted land-use regression models and inverse distance weighting of stationary monitors for the entire pregnancy. Noise exposure was negatively associated with term birth weight (mean difference = -19 [95% confidence interval = -23 to -15] g per 6 dB(A)). In joint air pollution-noise models, associations between noise and term birth weight remained largely unchanged, whereas associations decreased for all air pollutants. Traffic may affect birth weight through exposure to both air pollution and noise.

  3. Truck Noise - VI A Diesel Exhaust and Air Intake Noise

    DOT National Transportation Integrated Search

    1973-07-01

    Exhaust and air intake noise is studied on five truck and bus diesel engines; the Detroit Diesel 6-71 and 8V-71, the Cummins NHC-250 and NTC-350 and the Mack ENDT-675. The noise source is isolated and its sound level measured at a distance of 50 feet...

  4. Compressed air noise reductions from using advanced air gun nozzles in research and development environments.

    PubMed

    Prieve, Kurt; Rice, Amanda; Raynor, Peter C

    2017-08-01

    The aims of this study were to evaluate sound levels produced by compressed air guns in research and development (R&D) environments, replace conventional air gun models with advanced noise-reducing air nozzles, and measure changes in sound levels to assess the effectiveness of the advanced nozzles as engineering controls for noise. Ten different R&D manufacturing areas that used compressed air guns were identified and included in the study. A-weighted sound level and Z-weighted octave band measurements were taken simultaneously using a single instrument. In each area, three sets of measurements, each lasting for 20 sec, were taken 1 m away and perpendicular to the air stream of the conventional air gun while a worker simulated typical air gun work use. Two different advanced noise-reducing air nozzles were then installed. Sound level and octave band data were collected for each of these nozzles using the same methods as for the original air guns. Both of the advanced nozzles provided sound level reductions of about 7 dBA, on average. The highest noise reductions measured were 17.2 dBA for one model and 17.7 dBA for the other. In two areas, the advanced nozzles yielded no sound level reduction, or they produced small increases in sound level. The octave band data showed strong similarities in sound level among all air gun nozzles within the 10-1,000 Hz frequency range. However, the advanced air nozzles generally had lower noise contributions in the 1,000-20,000 Hz range. The observed decreases at these higher frequencies caused the overall sound level reductions that were measured. Installing new advanced noise-reducing air nozzles can provide large sound level reductions in comparison to existing conventional nozzles, which has direct benefit for hearing conservation efforts.

  5. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.52...

  6. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.52...

  7. Noise Effects on Health in the Context of Air Pollution Exposure.

    PubMed

    Stansfeld, Stephen A

    2015-10-14

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution.

  8. Aircraft noise, air pollution, and mortality from myocardial infarction.

    PubMed

    Huss, Anke; Spoerri, Adrian; Egger, Matthias; Röösli, Martin

    2010-11-01

    Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with <45 dB(A) was 1.3 (95% confidence interval = 0.96-1.7) overall, and 1.5 (1.0-2.2) in persons who had lived at the same place for at least 15 years. None of the other endpoints (mortality from all causes, all circulatory disease, cerebrovascular disease, stroke, and lung cancer) was associated with aircraft noise. Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.

  9. Noise analysis in air-coupled PVDF ultrasonic sensors.

    PubMed

    Fiorillo, A S

    2000-01-01

    In this paper we analyze the noise generated in a piezo-polymer based sensor for low frequency ultrasound in air. The sensor includes two curved PVDF transducers for medium and short range applications. A lumped RLC equivalent circuit was derived from the measurement of the transducer's electrical admittance, in air, by taking into account both mechanical and dielectric losses, which we suppose are the major sources of noise in similar devices. The electrical model was used to study and optimize the noise performance of a 61 kHz transducer and to simulate the electrical behavior of the complete transmitter-receiver system. The validity of the overall electrical model with low noise was confirmed after verifying, with Pspice, agreement of the practical and theoretical results.

  10. Noise Effects on Health in the Context of Air Pollution Exposure

    PubMed Central

    Stansfeld, Stephen A.

    2015-01-01

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution. PMID:26473905

  11. Road traffic air and noise pollution exposure assessment - A review of tools and techniques.

    PubMed

    Khan, Jibran; Ketzel, Matthias; Kakosimos, Konstantinos; Sørensen, Mette; Jensen, Steen Solvang

    2018-09-01

    Road traffic induces air and noise pollution in urban environments having negative impacts on human health. Thus, estimating exposure to road traffic air and noise pollution (hereafter, air and noise pollution) is important in order to improve the understanding of human health outcomes in epidemiological studies. The aims of this review are (i) to summarize current practices of modelling and exposure assessment techniques for road traffic air and noise pollution (ii) to highlight the potential of existing tools and techniques for their combined exposure assessment for air and noise together with associated challenges, research gaps and priorities. The study reviews literature about air and noise pollution from urban road traffic, including other relevant characteristics such as the employed dispersion models, Geographic Information System (GIS)-based tool, spatial scale of exposure assessment, study location, sample size, type of traffic data and building geometry information. Deterministic modelling is the most frequently used assessment technique for both air and noise pollution of short-term and long-term exposure. We observed a larger variety among air pollution models as compared to the applied noise models. Correlations between air and noise pollution vary significantly (0.05-0.74) and are affected by several parameters such as traffic attributes, building attributes and meteorology etc. Buildings act as screens for the dispersion of pollution, but the reduction effect is much larger for noise than for air pollution. While, meteorology has a greater influence on air pollution levels as compared to noise, although also important for noise pollution. There is a significant potential for developing a standard tool to assess combined exposure of traffic related air and noise pollution to facilitate health related studies. GIS, due to its geographic nature, is well established and has a significant capability to simultaneously address both exposures. Copyright

  12. Air transportation noise technology overview

    NASA Technical Reports Server (NTRS)

    Maggin, B.; Chestnutt, D.

    1973-01-01

    The NASA and DOT technology program planning for quieter air transportation systems is reviewed. To put this planning in context, the nature of the noise problem and the projected nature of the air transportation fleet are identified. The technology program planning reviewed here is discussed in relation to the following areas of activity: systems analysis, community acceptance, basic research and technology, and the various classes of civil aircraft, i.e. existing and advanced transports, powered-lift transports, and general aviation.

  13. Road traffic noise, air pollution components and cardiovascular events.

    PubMed

    de Kluizenaar, Yvonne; van Lenthe, Frank J; Visschedijk, Antoon J H; Zandveld, Peter Y J; Miedema, Henk M E; Mackenbach, Johan P

    2013-01-01

    Traffic noise and air pollution have been associated with cardiovascular health effects. Until date, only a limited amount of prospective epidemiological studies is available on long-term effects of road traffic noise and combustion related air pollution. This study investigates the relationship between road traffic noise and air pollution and hospital admissions for ischemic heart disease (IHD: International Classification of Diseases (ICD9) 410-414) or cerebrovascular disease (cerebrovascular event [CVE]: ICD9 430-438). We linked baseline questionnaire data to 13 years of follow-up on hospital admissions and road traffic noise and air pollution exposure, for a large random sample (N = 18,213) of inhabitants of the Eindhoven region, Netherlands. Subjects with cardiovascular event during follow-up on average had higher road traffic noise day, evening, night level (L den) and air pollution exposure at the home. After adjustment for confounders (age, sex, body mass index, smoking, education, exercise, marital status, alcohol use, work situation, financial difficulties), increased exposure did not exert a significant increased risk of hospital admission for IHD or cerebrovascular disease. Relative risks (RRs) for a 5 (th) to 95 (th) percentile interval increase were 1.03 (0.88-1.20) for L den; 1.04 (0.90-1.21) for particulate matter (PM 10 ); 1.05 (0.91-1.20) for elemental carbon (EC); and 1.12 (096-1.32) for nitrogen dioxide (NO 2 ) in the full model. While the risk estimate seemed highest for NO 2 , for a 5 (th) to 95 (th) percentile interval increase, expressed as RRs per 1 μg/m 3 increases, hazard ratios seemed highest for EC (RR 1.04 [0.92-1.18]). In the subgroup of study participants with a history of cardiovascular disease, RR estimates seemed highest for noise exposure (1.19 [0.87-1.64] for L den); in the subgroup of elderly RR seemed highest for air pollution exposure (RR 1.24 [0.93-1.66] for NO 2 ).

  14. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  15. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  16. Spatial variation in environmental noise and air pollution in New York City.

    PubMed

    Kheirbek, Iyad; Ito, Kazuhiko; Neitzel, Richard; Kim, Jung; Johnson, Sarah; Ross, Zev; Eisl, Holger; Matte, Thomas

    2014-06-01

    Exposure to environmental noise from traffic is common in urban areas and has been linked to increased risks of adverse health effects including cardiovascular disease. Because traffic sources also produce air pollutants that increase the risk of cardiovascular morbidity, associations between traffic exposures and health outcomes may involve confounding and/or synergisms between air pollution and noise. While prior studies have characterized intraurban spatial variation in air pollution in New York City (NYC), limited data exists on the levels and spatial variation in noise levels. We measured 1-week equivalent continuous sound pressure levels (Leq) at 56 sites during the fall of 2012 across NYC locations with varying traffic intensity and building density that are routinely monitored for combustion-related air pollutants. We evaluated correlations among several noise metrics used to characterize noise exposures, including Leq during different time periods (night, day, weekday, weekend), Ldn (day-night noise), and measures of intermittent noise defined as the ratio of peak levels to median and background levels. We also examined correlations between sound pressure levels and co-located simultaneous measures of nitric oxide (NO), nitrogen dioxide (NO2), fine particulate matter (PM2.5), and black carbon (BC) as well as estimates of traffic and building density around the monitoring sites. Noise levels varied widely across the 56 monitoring sites; 1-week Leq varied by 21.6 dBA (range 59.1-80.7 dBA) with the highest levels observed during the weekday, daytime hours. Indices of average noise were well correlated with each other (r > 0.83), while indices of intermittent noise were not well correlated with average noise levels (r < 0.41). One-week Leq correlated well with NO, NO2, and EC levels (r = 0.61 to 0.68) and less so with PM2.5 levels (r = 0.45). We observed associations between 1-week noise levels and traffic intensity within 100 m of the monitoring sites (r = 0

  17. Some insights into the relationship between urban air pollution and noise levels.

    PubMed

    Kim, Ki-Hyun; Ho, Duy Xuan; Brown, Richard J C; Oh, J-M; Park, Chan Goo; Ryu, In Cheol

    2012-05-01

    The relationship between noise and air pollution was investigated in eight different districts across Seoul, Korea, between September and November 2010. The noise levels in each district were measured at both roadside and non-roadside locations. It was found that the maximum levels of noise were generally at frequencies of around 1000 Hz. The equivalent noise levels (L(eq)), over all districts, averaged 61.4 ± 7.36 dB which is slightly lower than the noise guidelines set by the World Health Organization (WHO) of 70 dB for industrial, commercial, traffic, and outdoor areas. Comparison of L(eq) levels in each district consistently indicates that noise levels are higher at roadside sites than non-roadside sites. In addition the relative dominance of noise during daytime as compared to nighttime was also apparent. Moreover, the results of an analysis relating sound levels with air pollutant levels indicate strongly that the correlation between these two parameters is the strongest at roadside sites (relative to non-roadside sites) and during nighttime (relative to daytime). The results of our data analysis point to a positive, but complex, correlation between noise levels and air pollution. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Single and Combined Effects of Air, Road, and Rail Traffic Noise on Sleep and Recuperation

    PubMed Central

    Basner, Mathias; Müller, Uwe; Elmenhorst, Eva-Maria

    2011-01-01

    Study Objective: Traffic noise disturbs sleep and may impair recuperation. There is limited information on single and combined effects of air, road, and rail traffic noise on sleep and recuperation. Design: Repeated measures. Setting: Polysomnographic laboratory study. Participants: 72 healthy subjects, mean ± standard deviation 40 ± 13 years, range 18-71 years, 32 male. Interventions: Exposure to 40, 80, or 120 rail, road, and/or air traffic noise events. Measurement and Results: Subjects were investigated for 11 consecutive nights, which included 8 noise exposure nights and one noise-free control night. Noise effects on sleep structure and continuity were subtle, even in nights with combined exposure, most likely because of habituation and an increase in arousal thresholds both within and across nights. However, cardiac arousals did not habituate across nights. Noise exposure significantly affected subjective assessments of sleep quality and recuperation, whereas objective performance was unaffected, except for a small increase in mean PVT reaction time (+4 ms, adjusted P < 0.05). Road traffic noise led to the strongest changes in sleep structure and continuity, whereas subjective assessments of sleep were worse after nights with air and rail traffic noise exposure. In contrast to daytime annoyance, cortical arousal probabilities and cardiac responses were significantly lower for air than for road and rail traffic noise (all P < 0.0001). These differences were explained by sound pressure level rise time and high frequency (> 3 kHz) noise event components. Conclusions: Road, rail, and air traffic noise differentially affect objective and subjective assessments of sleep. Differences in the degree of noise-induced sleep fragmentation between traffic modes were explained by the specific spectral and temporal composition of noise events, indicating potential targets for active and passive noise control. Field studies are needed to validate our findings in a setting

  19. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  20. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or helmet...

  1. Influence of traffic-related noise and air pollution on self-reported fatigue.

    PubMed

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people.

  2. Road traffic noise, air pollution and myocardial infarction: a prospective cohort study.

    PubMed

    Bodin, Theo; Björk, Jonas; Mattisson, Kristoffer; Bottai, Matteo; Rittner, Ralf; Gustavsson, Per; Jakobsson, Kristina; Östergren, Per-Olof; Albin, Maria

    2016-07-01

    Both road traffic noise and air pollution have been linked to cardiovascular disease. However, there are few prospective epidemiological studies available where both road traffic noise and air pollution have been analyzed simultaneously. The aim of this study was to investigate the relation between road traffic noise, air pollution and incident myocardial infarction in both current (1-year average) and medium-term (3-year average) perspective. This study was based on a stratified random sample of persons aged 18-80 years who answered a public health survey in Skåne, Sweden, in 2000 (n = 13,512). The same individuals received a repeated survey in 2005 and 2010. Diagnoses of myocardial infarction (MI) were obtained from medical records for both inpatient and outpatient specialized care. The endpoint was first MI during 2000-2010. Participants with prior myocardial infarction were excluded at baseline. Yearly average levels of noise (L DEN) and air pollution (NO x ) were estimated using geographic information system for residential address every year until censoring. The mean exposure levels for road traffic noise and air pollution in 2005 were L DEN 51 dB(A) and NO x 11 µg/m(3), respectively. After adjustment for individual confounders (age, sex, body mass index, smoking, education, alcohol consumption, civil status, year, country of birth and physical activity), a 10-dB(A) increase in current noise exposure did not increase the incidence rate ratio (IRR) for MI, 0.99 (95 % CI 0.86-1.14). Neither did a 10-μg/m(3) increase in current NO x increase the risk of MI, 1.02 (95 % CI 0.86-1.21). The IRR for MI associated with combined exposure to road traffic noise >55 dB(A) and NO x >20 µg/m(3) was 1.21 (95 % CI 0.90-1.64) compared to <55 dB(A) and <20 µg/m(3). This study did not provide evidence for an increased risk of MI due to exposure to road traffic noise or air pollution at moderate average exposure levels.

  3. Evaluation studies of noise and air pollution during festival seasons in India.

    PubMed

    Battalwar, D G; Meshram, S U; Yenkie, M K N; Puri, P J

    2012-07-01

    The present research work is based on assessment of noise levels and ambient air quality at selected locations during festival seasons in Nagpur city. The noise levels were exceeding the permissible limits almost at every location during the festival period. The huge emissions of smoke arising out bursting of firecrackers have significantly resulted into air pollution; particularly in terms of Sulphur Dioxide (SO2) and Respirable Suspended Particulate Matter (Fine Dust). The immediate effect of increasing noise levels is impairing of hearing that may cause auditory fatigue and finally lead to deafness.

  4. AIR DISTRIBUTION NOISE CONTROL IN CRITICAL AUDITORIUMS.

    ERIC Educational Resources Information Center

    HOOVER, R.M.

    THE ACHIEVEMENT OF EXTREMELY LOW AIR-CONDITIONING NOISE LEVELS REQUIRED FOR MODERN AUDITORIUMS ARE THE RESULT OF CAREFUL PLANNING AND THOROUGH DETAILING. PROBLEMS FACED AND TECHNIQUES USED IN ARRIVING AT LEVELS AS LOW AS NC-15 FOR A SINGLE SYSTEM SERVING A HALL ARE DESCRIBED. SIX CASE HISTORIES ARE EXAMINED AND THE FOLLOWING OBSERVATIONS ARE…

  5. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren.

    PubMed

    van Kempen, Elise; Fischer, Paul; Janssen, Nicole; Houthuijs, Danny; van Kamp, Irene; Stansfeld, Stephen; Cassee, Flemming

    2012-05-01

    Children living close to roads are exposed to both traffic noise and traffic-related air pollution. There are indications that both exposures affect cognitive functioning. So far, the effects of both exposures have only been investigated separately. To investigate the relationship between air pollution and transportation noise on the cognitive performance of primary schoolchildren in both the home and school setting. Data acquired within RANCH from 553 children (aged 9-11 years) from 24 primary schools were analysed using multilevel modelling with adjustment for a range of socio-economic and life-style factors. Exposure to NO(2) (which is in urban areas an indicator for traffic-related air pollution) at school was statistically significantly associated with a decrease in the memory span length measured during DMST (χ(2)=6.8, df=1, p=0.01). This remained after additional adjustment for transportation noise. Statistically significant associations were observed between road and air traffic noise exposure at school and the number of errors made during the 'arrow' (χ(2)=7.5, df=1, p=0.006) and 'switch' (χ(2)=4.8, df=1, p=0.028) conditions of the SAT. This remained after adjustment for NO(2). No effects of air pollution exposure or transportation noise exposure at home were observed. Combined exposure of air pollution and road traffic noise had a significant effect on the reaction times measured during the SRTT and the 'block' and the 'arrow' conditions of the SAT. Our results provide some support that prolonged exposure to traffic-related air pollution as well as to noise adversely affects cognitive functioning. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life.

    PubMed

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-08-06

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution.

  7. The Covariance between Air Pollution Annoyance and Noise Annoyance, and Its Relationship with Health-Related Quality of Life

    PubMed Central

    Shepherd, Daniel; Dirks, Kim; Welch, David; McBride, David; Landon, Jason

    2016-01-01

    Air pollution originating from road traffic is a known risk factor of respiratory and cardiovascular disease (both in terms of chronic and acute effects). While adverse effects on cardiovascular health have also been linked with noise (after controlling for air pollution), noise exposure has been commonly linked to sleep impairment and negative emotional reactions. Health is multi-faceted, both conceptually and operationally; Health-Related Quality of Life (HRQOL) is one of many measures capable of probing health. In this study, we examine pre-collected data from postal surveys probing HRQOL obtained from a variety of urban, suburban, and rural contexts across the North Island of New Zealand. Analyses focus on the covariance between air pollution annoyance and noise annoyances, and their independent and combined effects on HRQOL. Results indicate that the highest ratings of air pollution annoyance and noise annoyances were for residents living close to the motorway, while the lowest were for rural residents. Most of the city samples indicated no significant difference between air pollution- and noise-annoyance ratings, and of all of the correlations between air pollution- and noise-annoyance, the highest were found in the city samples. These findings suggest that annoyance is driven by exposure to environmental factors and not personality characteristics. Analysis of HRQOL indicated that air pollution annoyance predicts greater variability in the physical HRQOL domain while noise annoyance predicts greater variability in the psychological, social and environmental domains. The lack of an interaction effect between air pollution annoyance and noise annoyance suggests that air pollution and noise impact on health independently. These results echo those obtained from objective measures of health and suggest that mitigation of traffic effects should address both air and noise pollution. PMID:27509512

  8. Noise Reduction Of Air Blower Casing Using Composites

    NASA Astrophysics Data System (ADS)

    Kolla*, S.; Kumar, Y. Anil; Rajesh, S.

    Sound subjectively, what is heard by the ear; objectively, is a mecha nical disturbance from equilibrium in an elastic medium. The noise produced by a rotating component has two main components, the broadband noise and the discrete frequency noise. The broadband noise from a rotor is due to random loading forces on the blades, which are induced by the absorption of atmospheric turbulence. The discrete frequency noise is due to periodic interaction of incoming air with the blades of the rotor. At present the centrifugal blowers, in Naval defense application which is made of steel is generating a noise of 86dB, which causes mental imbalance to the people working near the blower on ship. Therefore in Naval defense applications the reduction of sound level from a source is very important and critical task. Hence the objective of this paper is to reduce the noise level produced by the metal air blower. The noise radiated by the casing of a centrifugal blower can be effectively reduced by the use of (1) Composite Materials, (2) Visco-Elastic material treatment and (3) Stiffness addition. In this paper it is proposed to carry out a study to evaluate the effectiveness of composites in reducing noise levels of the casing. Composite materials are those containing more than one bonded material, each with different struc tural properties. The advantage of composite materials is the potential for a high ratio of stiffness to weight. In order to evaluate the effectiveness of composites over metals, modal analysis (Eigen value analysis) and Static analysis was performed on both composite and metal blowers using FEA package (ANSYS). Modal analysis is performed on both metals (Alluminium and Composite) blower casing to find out the first ten natural frequencies and static analysis is performed for a pressure of 1570 Pa. This paper also describes the experimental setup of the centrifugal blower, the values of the sound levels for both metal and FRP blowers are taken at a distance of

  9. [The problems of assessment of the high noise impact on the experts of the Air Force].

    PubMed

    Zinkin, V N; Sheshegov, P M

    2012-01-01

    Air Force specialists are exposed to high intensity noise levels exceeded the maximum permissible levels. Infrasound as a productive factor in accordance with the general technical requirements (OTT) Air Force-86 is not included in the list of standardized factors. The adverse acoustic environment makes the risk of occupational (sensorineural deafness) and professionally-related diseases of the nervous and cardiovascular systems. The system of physical fitness for military service in the Air Force and serving in the Air Force with high-intensity sources of noise, the system of treatment and preventive measures for adverse effects of noise and the procedure for examination of persons with diseases caused by the influence of noise are needed to be reviewed in accordance with the existing state legislative frameworks.

  10. Cardiovascular health, traffic-related air pollution and noise: are associations mutually confounded? A systematic review.

    PubMed

    Tétreault, Louis-François; Perron, Stéphane; Smargiassi, Audrey

    2013-10-01

    This review assessed the confounding effect of one traffic-related exposure (noise or air pollutants) on the association between the other exposure and cardiovascular outcomes. A systematic review was conducted with the databases Medline and Embase. The confounding effects in studies were assessed by using change in the estimate with a 10 % cutoff point. The influence on the change in the estimate of the quality of the studies, the exposure assessment methods and the correlation between road noise and air pollutions were also assessed. Nine publications were identified. For most studies, the specified confounders produced changes in estimates <10 %. The correlation between noise and pollutants, the quality of the study and of the exposure assessment do not seem to influence the confounding effects. Results from this review suggest that confounding of cardiovascular effects by noise or air pollutants is low, though with further improvements in exposure assessment, the situation may change. More studies using pollution indicators specific to road traffic are needed to properly assess if noise and air pollution are subjected to confounding.

  11. Socioeconomic and ethnic inequalities in exposure to air and noise pollution in London.

    PubMed

    Tonne, Cathryn; Milà, Carles; Fecht, Daniela; Alvarez, Mar; Gulliver, John; Smith, James; Beevers, Sean; Ross Anderson, H; Kelly, Frank

    2018-06-01

    Transport-related air and noise pollution, exposures linked to adverse health outcomes, varies within cities potentially resulting in exposure inequalities. Relatively little is known regarding inequalities in personal exposure to air pollution or transport-related noise. Our objectives were to quantify socioeconomic and ethnic inequalities in London in 1) air pollution exposure at residence compared to personal exposure; and 2) transport-related noise at residence from different sources. We used individual-level data from the London Travel Demand Survey (n = 45,079) between 2006 and 2010. We modeled residential (CMAQ-urban) and personal (London Hybrid Exposure Model) particulate matter <2.5 μm and nitrogen dioxide (NO 2 ), road-traffic noise at residence (TRANEX) and identified those within 50 dB noise contours of railways and Heathrow airport. We analyzed relationships between household income, area-level income deprivation and ethnicity with air and noise pollution using quantile and logistic regression. We observed inverse patterns in inequalities in air pollution when estimated at residence versus personal exposure with respect to household income (categorical, 8 groups). Compared to the lowest income group (<£10,000), the highest group (>£75,000) had lower residential NO 2 (-1.3 (95% CI -2.1, -0.6) μg/m 3 in the 95th exposure quantile) but higher personal NO 2 exposure (1.9 (95% CI 1.6, 2.3) μg/m 3 in the 95th quantile), which was driven largely by transport mode and duration. Inequalities in residential exposure to NO 2 with respect to area-level deprivation were larger at lower exposure quantiles (e.g. estimate for NO 2 5.1 (95% CI 4.6, 5.5) at quantile 0.15 versus 1.9 (95% CI 1.1, 2.6) at quantile 0.95), reflecting low-deprivation, high residential NO 2 areas in the city centre. Air pollution exposure at residence consistently overestimated personal exposure; this overestimation varied with age, household income, and area-level income

  12. Exposure to traffic noise and air pollution and risk for febrile seizure: a cohort study.

    PubMed

    Hjortebjerg, Dorrit; Nybo Andersen, Anne-Marie; Ketzel, Matthias; Raaschou-Nielsen, Ole; Sørensen, Mette

    2018-03-25

    Objectives Exposure to traffic noise and air pollution is suspected to increase susceptibility to viral infections - the main triggering factor for febrile seizures. No studies have examined these two exposures in relation to febrile seizures. We aimed to investigate whether exposure to road traffic noise and air pollution are associated with risk of febrile seizures in childhood. Methods From our study base of 51 465 singletons from a national birth cohort, we identified 2175 cases with febrile seizures using a nationwide registry. Residential address history from conception to six years of age were found in national registers, and road traffic noise (L den ) and air pollution (NO 2 ) were modeled for all addresses. Analyses were done using Cox proportional hazard model with adjustment for potential confounders, including mutual exposure adjustment. Results An interquartile range (IQR) increase in childhood exposure to road traffic noise and air pollution was associated with an 11% [incidence rate ratio (IRR) 1.11, 95% confidence interval (CI) 1.04-1.19) and 5% (IRR 1.05, 95% CI 1.02-1.07) higher risk for febrile seizures, respectively, after adjustment for potential confounders. Weaker tendencies were seen for pregnancy exposure. In models with mutual exposure adjustment, the estimates were slightly lower, with IRR of 1.08 (95% CI 1.00-1.16) and 1.03 (95% CI 0.99-1.06) per IQR increase in childhood exposure to road traffic noise and air pollution, respectively. Conclusions This study suggests that residential exposure to road traffic noise and air pollution is associated with higher risk for febrile seizures.

  13. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    PubMed

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2014-08-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Critical assessment of day time traffic noise level at curbside open-air microenvironment of Kolkata City, India.

    PubMed

    Kundu Chowdhury, Anirban; Debsarkar, Anupam; Chakrabarty, Shibnath

    2015-01-01

    The objective of the research work is to assess day time traffic noise level at curbside open-air microenvironment of Kolkata city, India under heterogeneous environmental conditions. Prevailing traffic noise level in terms of A-weighted equivalent noise level (Leq) at the microenvironment was in excess of 12.6 ± 2.1 dB(A) from the day time standard of 65 dB(A) for commercial area recommended by the Central Pollution Control Board (CPCB) of India. Noise Climate and Traffic Noise Index of the microenvironment were accounted for 13 ± 1.8 dB(A) and 88.8 ± 6.1 dB(A) respectively. A correlation analysis explored that prevailing traffic noise level of the microenvironment had weak negative (-0.21; p < 0.01) and very weak positive (0.19; p < 0.01) correlation with air temperature and relative humidity. A Varimax rotated principal component analysis explored that motorized traffic volume had moderate positive loading with background noise component (L90, L95, L99) and prevailing traffic noise level had very strong positive loading with peak noise component (L1, L5, L10). Background and peak noise component cumulatively explained 80.98 % of variance in the data set. Traffic noise level at curbside open-air microenvironment of Kolkata City was higher than the standard recommended by CPCB of India. It was highly annoying also. Air temperature and relative humidity had little influence and the peak noise component had the most significant influence on the prevailing traffic noise level at curbside open-air microenvironment. Therefore, traffic noise level at the microenvironment of the city can be reduced with careful honking and driving.

  15. Noise, air pollutants and traffic: continuous measurement and correlation at a high-traffic location in New York City.

    PubMed

    Ross, Zev; Kheirbek, Iyad; Clougherty, Jane E; Ito, Kazuhiko; Matte, Thomas; Markowitz, Steven; Eisl, Holger

    2011-11-01

    Epidemiological studies have linked both noise and air pollution to common adverse health outcomes such as increased blood pressure and myocardial infarction. In urban settings, noise and air pollution share important sources, notably traffic, and several recent studies have shown spatial correlations between noise and air pollution. The temporal association between these exposures, however, has yet to be thoroughly investigated despite the importance of time series studies in air pollution epidemiology and the potential that correlations between these exposures could at least partly confound statistical associations identified in these studies. An aethelometer, for continuous elemental carbon measurement, was co-located with a continuous noise monitor near a major urban highway in New York City for six days in August 2009. Hourly elemental carbon measurements and hourly data on overall noise levels and low, medium and high frequency noise levels were collected. Hourly average concentrations of fine particles and nitrogen oxides, wind speed and direction and car, truck and bus traffic were obtained from nearby regulatory monitors. Overall temporal patterns, as well as day-night and weekday-weekend patterns, were characterized and compared for all variables. Noise levels were correlated with car, truck, and bus traffic and with air pollutants. We observed strong day-night and weekday-weekend variation in noise and air pollutants and correlations between pollutants varied by noise frequency. Medium and high frequency noise were generally more strongly correlated with traffic and traffic-related pollutants than low frequency noise and the correlation with medium and high frequency noise was generally stronger at night. Correlations with nighttime high frequency noise were particularly high for car traffic (Spearman rho=0.84), nitric oxide (0.73) and nitrogen dioxide (0.83). Wind speed and direction mediated relationships between pollutants and noise. Noise levels are

  16. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  17. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  18. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults.

    PubMed

    Tzivian, Lilian; Winkler, Angela; Dlugaj, Martha; Schikowski, Tamara; Vossoughi, Mohammad; Fuks, Kateryna; Weinmayr, Gudrun; Hoffmann, Barbara

    2015-01-01

    It has been hypothesized that air pollution and ambient noise might impact neurocognitive function. Early studies mostly investigated the associations of air pollution and ambient noise exposure with cognitive development in children. More recently, several studies investigating associations with neurocognitive function, mood disorders, and neurodegenerative disease in adult populations were published, yielding inconsistent results. The purpose of this review is to summarize the current evidence on air pollution and noise effects on mental health in adults. We included studies in adult populations (≥18 years old) published in English language in peer-reviewed journals. Fifteen articles related to long-term effects of air pollution and eight articles on long-term effects of ambient noise were extracted. Both exposures were separately shown to be associated with one or several measures of global cognitive function, verbal and nonverbal learning and memory, activities of daily living, depressive symptoms, elevated anxiety, and nuisance. No study considered both exposures simultaneously and few studies investigated progression of neurocognitive decline or psychological factors. The existing evidence generally supports associations of environmental factors with mental health, but does not suffice for an overall conclusion about the independent effect of air pollution and noise. There is a need for studies investigating simultaneously air pollution and noise exposures in association mental health, for longitudinal studies to corroborate findings from cross-sectional analyses, and for parallel toxicological and epidemiological studies to elucidate mechanisms and pathways of action. Copyright © 2014 Elsevier GmbH. All rights reserved.

  19. Annoyance due to noise and air pollution to the residents of heavily frequented streets

    NASA Technical Reports Server (NTRS)

    Wanner, H. U.; Wehrli, B.; Nemecek, J.; Turrian, V.

    1980-01-01

    The residents of different streets with varying traffic density and building density were questioned about annoyance due to traffic noise and air pollution. Results show that annoyance felt is dependent not only on the measured noise levels and/or air pollution concentrations, but that there do exist interactions between the residential quarters and annoyance. These interactions should be considered when fixing the limits and standards.

  20. On noise treatment in radio measurements of cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Apel, W. D.; Arteaga, J. C.; Asch, T.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Buitink, S.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Doll, P.; Engel, R.; Falcke, H.; Finger, M.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Lafebre, S.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.; Zensus, J. A.

    2012-01-01

    Precise measurements of the radio emission by cosmic ray air showers require an adequate treatment of noise. Unlike to usual experiments in particle physics, where noise always adds to the signal, radio noise can in principle decrease or increase the signal if it interferes by chance destructively or constructively. Consequently, noise cannot simply be subtracted from the signal, and its influence on amplitude and time measurement of radio pulses must be studied with care. First, noise has to be determined consistently with the definition of the radio signal which typically is the maximum field strength of the radio pulse. Second, the average impact of noise on radio pulse measurements at individual antennas is studied for LOPES. It is shown that a correct treatment of noise is especially important at low signal-to-noise ratios: noise can be the dominant source of uncertainty for pulse height and time measurements, and it can systematically flatten the slope of lateral distributions. The presented method can also be transferred to other experiments in radio and acoustic detection of cosmic rays and neutrinos.

  1. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  2. Spatial and temporal associations of road traffic noise and air pollution in London: Implications for epidemiological studies.

    PubMed

    Fecht, Daniela; Hansell, Anna L; Morley, David; Dajnak, David; Vienneau, Danielle; Beevers, Sean; Toledano, Mireille B; Kelly, Frank J; Anderson, H Ross; Gulliver, John

    2016-03-01

    Road traffic gives rise to noise and air pollution exposures, both of which are associated with adverse health effects especially for cardiovascular disease, but mechanisms may differ. Understanding the variability in correlations between these pollutants is essential to understand better their separate and joint effects on human health. We explored associations between modelled noise and air pollutants using different spatial units and area characteristics in London in 2003-2010. We modelled annual average exposures to road traffic noise (LAeq,24h, Lden, LAeq,16h, Lnight) for ~190,000 postcode centroids in London using the UK Calculation of Road Traffic Noise (CRTN) method. We used a dispersion model (KCLurban) to model nitrogen dioxide, nitrogen oxide, ozone, total and the traffic-only component of particulate matter ≤2.5μm and ≤10μm. We analysed noise and air pollution correlations at the postcode level (~50 people), postcodes stratified by London Boroughs (~240,000 people), neighbourhoods (Lower layer Super Output Areas) (~1600 people), 1km grid squares, air pollution tertiles, 50m, 100m and 200m in distance from major roads and by deprivation tertiles. Across all London postcodes, we observed overall moderate correlations between modelled noise and air pollution that were stable over time (Spearman's rho range: |0.34-0.55|). Correlations, however, varied considerably depending on the spatial unit: largest ranges were seen in neighbourhoods and 1km grid squares (both Spearman's rho range: |0.01-0.87|) and was less for Boroughs (Spearman's rho range: |0.21-0.78|). There was little difference in correlations between exposure tertiles, distance from road or deprivation tertiles. Associations between noise and air pollution at the relevant geographical unit of analysis need to be carefully considered in any epidemiological analysis, in particular in complex urban areas. Low correlations near roads, however, suggest that independent effects of road noise and

  3. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    PubMed

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  4. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality.

    PubMed

    Gan, Wen Qi; Davies, Hugh W; Koehoorn, Mieke; Brauer, Michael

    2012-05-01

    In metropolitan areas, road traffic is a major contributor to ambient air pollution and the dominant source of community noise. The authors investigated the independent and joint influences of community noise and traffic-related air pollution on risk of coronary heart disease (CHD) mortality in a population-based cohort study with a 5-year exposure period (January 1994-December 1998) and a 4-year follow-up period (January 1999-December 2002). Individuals who were 45-85 years of age and resided in metropolitan Vancouver, Canada, during the exposure period and did not have known CHD at baseline were included (n = 445,868). Individual exposures to community noise and traffic-related air pollutants, including black carbon, particulate matter less than or equal to 2.5 μm in aerodynamic diameter, nitrogen dioxide, and nitric oxide, were estimated at each person's residence using a noise prediction model and land-use regression models, respectively. CHD deaths were identified from the provincial death registration database. After adjustment for potential confounders, including traffic-related air pollutants or noise, elevations in noise and black carbon equal to the interquartile ranges were associated with 6% (95% confidence interval: 1, 11) and 4% (95% confidence interval: 1, 8) increases, respectively, in CHD mortality. Subjects in the highest noise decile had a 22% (95% confidence interval: 4, 43) increase in CHD mortality compared with persons in the lowest decile. These findings suggest that there are independent effects of traffic-related noise and air pollution on CHD mortality.

  5. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  6. Nocturnal air, road, and rail traffic noise and daytime cognitive performance and annoyance.

    PubMed

    Elmenhorst, Eva-Maria; Quehl, Julia; Müller, Uwe; Basner, Mathias

    2014-01-01

    Various studies indicate that at the same noise level and during the daytime, annoyance increases in the order of rail, road, and aircraft noise. The present study investigates if the same ranking can be found for annoyance to nocturnal exposure and next day cognitive performance. Annoyance ratings and performance change during combined noise exposure were also tested. In the laboratory 72 participants were exposed to air, road, or rail traffic noise and all combinations. The number of noise events and LAS,eq were kept constant. Each morning noise annoyance questionnaires and performance tasks were administered. Aircraft noise annoyance ranked first followed by railway and road noise. A possible explanation is the longer duration of aircraft noise events used in this study compared to road and railway noise events. In contrast to road and rail traffic, aircraft noise annoyance was higher after nights with combined exposure. Pooled noise exposure data showed small but significant impairments in reaction times (6 ms) compared to nights without noise. The noise sources did not have a differential impact on performance. Combined exposure to multiple traffic noise sources did not induce stronger impairments than a single noise source. This was reflected also in low workload ratings.

  7. An evaluation of strategies to control noise from air conditioning and refrigeration condensing units

    NASA Astrophysics Data System (ADS)

    Durden, G. L.; Myers, J. O.; Towers, T. A.; Dickman, D. M.

    1981-12-01

    Noise from air conditioning and refrigeration condensing units is investigated. The practical aspects of attempting to implement innovative approaches are emphasized. These included: (1) sample selection, (2) noise measurement survey, (3) implementation of aggressive abatement procedures, (4) development and use of a screening graph for determining acceptability of sound rated outdoor unitary equipment, (5) incorporation of noise control considerations, (6) exploration of an operatinal curfew, and (7) development of an incentive/information program.

  8. Associations between maternal exposure to air pollution and traffic noise and newborn's size at birth: A cohort study.

    PubMed

    Hjortebjerg, Dorrit; Andersen, Anne Marie Nybo; Ketzel, Matthias; Pedersen, Marie; Raaschou-Nielsen, Ole; Sørensen, Mette

    2016-10-01

    Maternal exposure to air pollution and traffic noise has been suggested to impair fetal growth, but studies have reported inconsistent findings. Objective To investigate associations between residential air pollution and traffic noise during pregnancy and newborn's size at birth. From a national birth cohort we identified 75,166 live-born singletons born at term with information on the children's size at birth. Residential address history from conception until birth was collected and air pollution (NO2 and NOx) and road traffic noise was modeled at all addresses. Associations between exposures and indicators of newborn's size at birth: birth weight, placental weight and head and abdominal circumference were analyzed by linear and logistic regression, and adjusted for potential confounders. In mutually adjusted models we found a 10μg/m(3) higher time-weighted mean exposure to NO2 during pregnancy to be associated with a 0.35mm smaller head circumference (95% confidence interval (CI): 95% CI: -0.57; -0.12); a 0.50mm smaller abdominal circumference (95% CI: -0.80; -0.20) and a 5.02g higher placental weight (95% CI: 2.93; 7.11). No associations were found between air pollution and birth weight. Exposure to residential road traffic noise was weakly associated with reduced head circumference, whereas none of the other newborn's size indicators were associated with noise, neither before nor after adjustment for air pollution. This study indicates that air pollution may result in a small reduction in offspring's birth head and abdominal circumference, but not birth weight, whereas traffic noise seems not to affect newborn's size at birth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Traffic-related air pollution and noise and children's blood pressure: results from the PIAMA birth cohort study.

    PubMed

    Bilenko, Natalya; van Rossem, Lenie; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; Hoek, Gerard; Houthuijs, Danny; de Jongste, Johan C; van Kempen, Elise; Koppelman, Gerard H; Meliefste, Kees; Oldenwening, Marieke; Smit, Henriette A; Wijga, Alet H; Gehring, Ulrike

    2015-01-01

    Elevation of a child's blood pressure may cause possible health risks in later life. There is evidence for adverse effects of exposure to air pollution and noise on blood pressure in adults. Little is known about these associations in children. We investigated the associations of air pollution and noise exposure with blood pressure in 12-year-olds. Blood pressure was measured at age 12 years in 1432 participants of the PIAMA birth cohort study. Annual average exposure to traffic-related air pollution [NO2, mass concentrations of particulate matter with diameters of less than 2.5 µm (PM2.5) and less than 10 µm (PM10), and PM2.5 absorbance] at the participants' home and school addresses at the time of blood pressure measurements was estimated by land-use regression models. Air pollution exposure on the days preceding blood pressure measurements was estimated from routine air monitoring data. Long-term noise exposure was assessed by linking addresses to modelled equivalent road traffic noise levels. Associations of exposures with blood pressure were analysed by linear regression. Effects are presented for an interquartile range increase in exposure. Long-term exposure to NO2 and PM2.5 absorbance were associated with increased diastolic blood pressure, in children who lived at the same address since birth [adjusted mean difference (95% confidence interval) [mmHg] 0.83 (0.06 to 1.61) and 0.75 (-0.08 to 1.58), respectively], but not with systolic blood pressure. We found no association of blood pressure with short-term air pollution or noise exposure. Long-term exposure to traffic-related air pollution may increase diastolic blood pressure in children. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  10. 77 FR 18297 - Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation Environmental Design Tool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Integrated Routing System-- NIRS].'' The FAA developed the AEDT 2a to model aircraft noise, fuel burn, and... operations schedule. These data are used to compute aircraft noise, fuel burn and emissions simultaneously... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Air Traffic Noise, Fuel Burn, and...

  11. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  12. Modeling the impact of solid noise barriers on near road air quality

    EPA Science Inventory

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutan...

  13. Associations between Traffic Noise, Particulate Air Pollution, Hypertension, and Isolated Systolic Hypertension in Adults: The KORA Study

    PubMed Central

    Wolf, Kathrin; Petz, Markus; Heinrich, Joachim; Cyrys, Josef; Peters, Annette

    2014-01-01

    Background: Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. Methods: The association between traffic noise (road and rail) and the prevalence of hypertension was assessed in two study populations with a total of 4,166 participants 25–74 years of age. Traffic noise (weighted day–night average noise level; LDN) at the facade of the dwellings was derived from noise maps. Annual average PM2.5 mass concentrations at residential addresses were estimated by land-use regression. Hypertension was assessed by blood pressure readings, self-reported doctor-diagnosed hypertension, and antihypertensive drug intake. Results: In the Greater Augsburg, Germany, study population, traffic noise and air pollution were not associated with hypertension. In the City of Augsburg population (n = 1,893), where the exposure assessment was more detailed, the adjusted odds ratio (OR) for a 10-dB(A) increase in noise was 1.16 (95% CI: 1.00, 1.35), and 1.11 (95% CI: 0.94, 1.30) after additional adjustment for PM2.5. The adjusted OR for a 1-μg/m3 increase in PM2.5 was 1.15 (95% CI: 1.02, 1.30), and 1.11 (95% CI: 0.98, 1.27) after additional adjustment for noise. For isolated systolic hypertension, the fully adjusted OR for noise was 1.43 (95% CI: 1.10, 1.86) and for PM2.5 was 1.08 (95% CI: 0.87, 1.34). Conclusions: Traffic noise and PM2.5 were both associated with a higher prevalence of hypertension. Mutually adjusted associations with hypertension were positive but no longer statistically significant. Citation: Babisch W, Wolf K, Petz M, Heinrich J, Cyrys J, Peters A. 2014. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: the KORA Study. Environ Health Perspect 122:492–498; http://dx.doi.org/10.1289/ehp.1306981 PMID:24602804

  14. Annoyance Caused by Noise and Air Pollution during Pregnancy: Associated Factors and Correlation with Outdoor NO2 and Benzene Estimations.

    PubMed

    Fernández-Somoano, Ana; Llop, Sabrina; Aguilera, Inmaculada; Tamayo-Uria, Ibon; Martínez, María Dolores; Foraster, Maria; Ballester, Ferran; Tardón, Adonina

    2015-06-18

    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources.

  15. Annoyance Caused by Noise and Air Pollution during Pregnancy: Associated Factors and Correlation with Outdoor NO2 and Benzene Estimations

    PubMed Central

    Fernández-Somoano, Ana; Llop, Sabrina; Aguilera, Inmaculada; Tamayo-Uria, Ibon; Martínez, María Dolores; Foraster, Maria; Ballester, Ferran; Tardón, Adonina

    2015-01-01

    This study aimed to describe the degree of annoyance among pregnant women in a Spanish cohort and to examine associations with proximity to traffic, NO2 and benzene exposure. We included 2457 participants from the Spanish Childhood and Environment study. Individual exposures to outdoor NO2 and benzene were estimated, temporally adjusted for pregnancy. Interviews about sociodemographic variables, noise and air pollution were carried out. Levels of annoyance were assessed using a scale from 0 (none) to 10 (strong and unbearable); a level of 8 to 10 was considered high. The reported prevalence of high annoyance levels from air pollution was 11.2% and 15.0% from noise; the two variables were moderately correlated (0.606). Significant correlations between NO2 and annoyance from air pollution (0.154) and that from noise (0.181) were observed. Annoyance owing to noise and air pollution had a low prevalence in our Spanish population compared with other European populations. Both factors were associated with proximity to traffic. In multivariate models, annoyance from air pollution was related to NO2, building age, and country of birth; annoyance from noise was only related to the first two. The health burden of these exposures can be increased by stress caused by the perception of pollution sources. PMID:26095869

  16. Air Traffic Controllers’ Long-Term Speech-in-Noise Training Effects: A Control Group Study

    PubMed Central

    Zaballos, María T.P.; Plasencia, Daniel P.; González, María L.Z.; de Miguel, Angel R.; Macías, Ángel R.

    2016-01-01

    Introduction: Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. Subjects and Methods: 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and −5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Results: Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=−5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. Discussion: ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Conclusion: Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions. PMID:27991470

  17. Air traffic controllers' long-term speech-in-noise training effects: A control group study.

    PubMed

    Zaballos, Maria T P; Plasencia, Daniel P; González, María L Z; de Miguel, Angel R; Macías, Ángel R

    2016-01-01

    Speech perception in noise relies on the capacity of the auditory system to process complex sounds using sensory and cognitive skills. The possibility that these can be trained during adulthood is of special interest in auditory disorders, where speech in noise perception becomes compromised. Air traffic controllers (ATC) are constantly exposed to radio communication, a situation that seems to produce auditory learning. The objective of this study has been to quantify this effect. 19 ATC and 19 normal hearing individuals underwent a speech in noise test with three signal to noise ratios: 5, 0 and -5 dB. Noise and speech were presented through two different loudspeakers in azimuth position. Speech tokes were presented at 65 dB SPL, while white noise files were at 60, 65 and 70 dB respectively. Air traffic controllers outperform the control group in all conditions [P<0.05 in ANOVA and Mann-Whitney U tests]. Group differences were largest in the most difficult condition, SNR=-5 dB. However, no correlation between experience and performance were found for any of the conditions tested. The reason might be that ceiling performance is achieved much faster than the minimum experience time recorded, 5 years, although intrinsic cognitive abilities cannot be disregarded. ATC demonstrated enhanced ability to hear speech in challenging listening environments. This study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions, although good cognitive qualities are likely to be a basic requirement for this training to be effective. Our results show that ATC outperform the control group in all conditions. Thus, this study provides evidence that long-term auditory training is indeed useful in achieving better speech-in-noise understanding even in adverse conditions.

  18. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study.

    PubMed

    Sørensen, Mette; Hjortebjerg, Dorrit; Eriksen, Kirsten T; Ketzel, Matthias; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2015-12-01

    Exposure to traffic noise and air pollution have both been associated with cardiovascular disease, though the mechanisms behind are not yet clear. We aimed to investigate whether the two exposures were associated with levels of cholesterol in a cross-sectional design. In 1993–1997, 39,863 participants aged 50–64 year and living in the Greater Copenhagen area were enrolled in a population-based cohort study. For each participant, non-fasting total cholesterol was determined in whole blood samples on the day of enrolment. Residential addresses 5-years preceding enrolment were identified in a national register and road traffic noise (Lden) were modeled for all addresses. For air pollution, nitrogen dioxide (NO2) was modeled at all addresses using a dispersion model and PM2.5 was modeled at all enrolment addresses using a land-use regression model. Analyses were done using linear regression with adjustment for potential confounders as well as mutual adjustment for the three exposures. Baseline residential exposure to the interquartile range of road traffic noise,NO2 and PM2.5 was associated with a 0.58 mg/dl (95% confidence interval: −0.09; 1.25), a 0.68 mg/dl (0.22; 1.16) and a 0.78 mg/dl (0.22; 1.34) higher level of total cholesterol in single pollutant models, respectively. In two pollutant models with adjustment for noise in air pollution models and vice versa, the association between air pollution and cholesterol remained for both air pollution variables (NO2: 0.72 (0.11; 1.34); PM2.5: 0.70 (0.12; 1.28) mg/dl), whereas there was no association for noise (−0.08mg/dl). In three-pollutant models (NO2, PM2.5 and road traffic noise), estimates for NO2 and PM2.5 were slightly diminished (NO2: 0.58 (−0.05; 1.22); PM2.5: 0.57 (−0.02; 1.17) mg/dl). Air pollution and possibly also road traffic noise may be associated with slightly higher levels of cholesterol, though associations for the two exposures were difficult to separate.

  19. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study)

    PubMed Central

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP. PMID:26356373

  20. Road, rail, and air transportation noise in residential and workplace neighborhoods and blood pressure (RECORD Study).

    PubMed

    Méline, Julie; Van Hulst, Andraea; Thomas, Frederique; Chaix, Basile

    2015-01-01

    Associations between road traffic noise and hypertension have been repeatedly documented, whereas associations with rail or total road, rail, and air (RRA) traffic noise have rarely been investigated. Moreover, most studies of noise in the environment have only taken into account the residential neighborhood. Finally, few studies have taken into account individual/neighborhood confounders in the relationship between noise and hypertension. We performed adjusted multilevel regression analyses using data from the 7,290 participants of the RECORD Study to investigate the associations of outdoor road, rail, air, and RRA traffic noise estimated at the place of residence, at the workplace, and in the neighborhoods around the residence and workplace with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension. Associations were documented between higher outdoor RRA and road traffic noise estimated at the workplace and a higher SBP [+1.36 mm of mercury, 95% confidence interval (CI): +0.12, +2.60 for 65-80 dB(A) vs 30-45 dB(A)] and DBP [+1.07 (95% CI: +0.28, +1.86)], after adjustment for individual/neighborhood confounders. These associations remained after adjustment for risk factors of hypertension. Associations were documented neither with rail traffic noise nor for hypertension. Associations between transportation noise at the workplace and blood pressure (BP) may be attributable to the higher levels of road traffic noise at the workplace than at the residence. To better understand why only noise estimated at the workplace was associated with BP, our future work will combine Global Positioning System (GPS) tracking, assessment of noise levels with sensors, and ambulatory monitoring of BP.

  1. Influence of urban vegetation on air pollution and noise exposure - A case study in Gothenburg, Sweden.

    PubMed

    Klingberg, Jenny; Broberg, Malin; Strandberg, Bo; Thorsson, Pontus; Pleijel, Håkan

    2017-12-01

    Air pollution levels (NO 2 , PAHs, O 3 ) were investigated, before (BLE) and after (ALE) leaf emergence, in the urban landscape of Gothenburg, Sweden. The aims were to study the 1) spatial and temporal variation in pollution levels between urban green areas, 2) effect of urban vegetation on air pollution levels at the same distance from a major emission source (traffic route), 3) improvement of urban air quality in urban parks compared to adjacent sites near traffic, 4) correlation between air pollution and noise in a park. O 3 varied little over the urban landscape. NO 2 varied strongly and was higher in situations strongly influenced by traffic. Four PAH variables were included: total PAH, total particle-bound PAH, the quantitatively important gaseous phenanthrene and the highly toxic particle-bound benzo(a)pyrene. The variation of PAHs was similar to NO 2 , but for certain PAHs the difference between highly and less polluted sites was larger than for NO 2 . At a vegetated site, NO 2 and particulate PAH levels were lower than at a non-vegetated site at a certain distance from a busy traffic route. This effect was significantly larger ALE compared to BLE for NO 2 , indicating green leaf area to be highly significant factor for air quality improvement. For particulate PAHs, the effect was similar BLE and ALE, indicating that tree bark and branches also could be an important factor in reducing air pollution. Parks represented considerably cleaner local environments (park effect), which is likely to be a consequence of both a dilution (distance effect) and deposition. Noise and air pollution (NO 2 and PAH) levels were strongly correlated. Comparison of noise levels BLE and ALE also showed that the presence of leaves significantly reduced noise levels. Our results are evidence that urban green spaces are beneficial for urban environmental quality, which is important to consider in urban planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Proximity to Traffic, Ambient Air Pollution, and Community Noise in Relation to Incident Rheumatoid Arthritis

    PubMed Central

    Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W.; Brauer, Michael

    2014-01-01

    Background: The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. Objectives: We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Methods: Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. Results: RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Conclusions: Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA. Citation: De Roos AJ, Koehoorn M, Tamburic L, Davies HW, Brauer M. 2014. Proximity to traffic, ambient air pollution, and community

  3. Years of life lost and morbidity cases attributable to transportation noise and air pollution: A comparative health risk assessment for Switzerland in 2010.

    PubMed

    Vienneau, Danielle; Perez, Laura; Schindler, Christian; Lieb, Christoph; Sommer, Heini; Probst-Hensch, Nicole; Künzli, Nino; Röösli, Martin

    2015-08-01

    There is growing evidence that chronic exposure to transportation related noise and air pollution affects human health. However, health burden to a country of these two pollutants have been rarely compared. As an input for external cost quantification, we estimated the cardiorespiratory health burden from transportation related noise and air pollution in Switzerland, incorporating the most recent findings related to the health effects of noise. Spatially resolved noise and air pollution models for the year 2010 were derived for road, rail and aircraft sources. Average day-evening-night sound level (Lden) and particulate matter (PM10) were selected as indicators, and population-weighted exposures derived by transportation source. Cause-specific exposure-response functions were derived from a meta-analysis for noise and literature review for PM10. Years of life lost (YLL) were calculated using life table methods; population attributable fraction was used for deriving attributable cases for hospitalisations, respiratory illnesses, visits to general practitioners and restricted activity days. The mean population weighted exposure above a threshold of 48dB(A) was 8.74dB(A), 1.89dB(A) and 0.37dB(A) for road, rail and aircraft noise. Corresponding mean exposure contributions were 4.4, 0.54, 0.12μg/m(3) for PM10. We estimated that in 2010 in Switzerland transportation caused 6000 and 14,000 YLL from noise and air pollution exposure, respectively. While there were a total of 8700 cardiorespiratory hospital days attributed to air pollution exposure, estimated burden due to noise alone amounted to 22,500 hospital days. YLL due to transportation related pollution in Switzerland is dominated by air pollution from road traffic, whereas consequences for morbidity and indicators of quality of life are dominated by noise. In terms of total external costs the burden of noise equals that of air pollution. Copyright © 2015 Elsevier GmbH. All rights reserved.

  4. Modeling the impact of solid noise barriers on near road air ...

    EPA Pesticide Factsheets

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier. Highlights • Developed a dispersion model a

  5. The role of traffic noise on the association between air pollution and children's lung function.

    PubMed

    Franklin, Meredith; Fruin, Scott

    2017-08-01

    Although it has been shown that traffic-related air pollution adversely affects children's lung function, few studies have examined the influence of traffic noise on this association, despite both sharing a common source. Estimates of noise exposure (L dn, dB), and freeway and non-freeway emission concentrations of oxides of nitrogen (NO x , ppb) were spatially assigned to children in Southern California who were tested for forced vital capacity (FVC, n=1345), forced expiratory volume in 1s, (FEV 1, n=1332), and asthma. The associations between traffic-related NO x and these outcomes, with and without adjustment for noise, were examined using mixed effects models. Adjustment for noise strengthened the association between NO x and reduced lung function. A 14.5mL (95% CI -40.0, 11.0mL) decrease in FVC per interquartile range (13.6 ppb) in freeway NO x was strengthened to a 34.6mL decrease after including a non-linear function of noise (95% CI -66.3, -2.78mL). Similarly, a 6.54mL decrease in FEV 1 (95% CI -28.3, 15.3mL) was strengthened to a 21.1mL decrease (95% CI -47.6, 5.51) per interquartile range in freeway NO x . Our results indicate that where possible, noise should be included in epidemiological studies of the association between traffic-related air pollution on lung function. Without taking noise into account, the detrimental effects of traffic-related pollution may be underestimated. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Okinawa study: an estimation of noise-induced hearing loss on the basis of the records of aircraft noise exposure around Kadena Air Base

    NASA Astrophysics Data System (ADS)

    Hiramatsu, K.; Matsui, T.; Ito, A.; Miyakita, T.; Osada, Y.; Yamamoto, T.

    2004-10-01

    Aircraft noise measurements were recorded at the residential areas in the vicinity of Kadena Air Base, Okinawa in 1968 and 1972 at the time of the Vietnam war. The estimated equivalent continuous A-weighted sound pressure level LAeq for 24 h was 85 dB.The time history of sound level during 24 h was estimated from the measurement conducted in 1968, and the sound level was converted into the spectrum level at the centre frequency of the critical band of temporary threshold shift (TTS) using the results of spectrum analysis of aircraft noise operated at the airfield. With the information of spectrum level and its time history, TTS was calculated as a function of time and level change. The permanent threshold shift was also calculated by means of Robinson's method and ISO's method. The results indicate the noise exposure around Kadena Air Base was hazardous to hearing and is likely to have caused hearing loss to people living in its vicinity.

  7. Ambient air pollution, traffic noise and adult asthma prevalence: a BioSHaRE approach.

    PubMed

    Cai, Yutong; Zijlema, Wilma L; Doiron, Dany; Blangiardo, Marta; Burton, Paul R; Fortier, Isabel; Gaye, Amadou; Gulliver, John; de Hoogh, Kees; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Elliott, Paul; Hansell, Anna L; Hodgson, Susan

    2017-01-01

    We investigated the effects of both ambient air pollution and traffic noise on adult asthma prevalence, using harmonised data from three European cohort studies established in 2006-2013 (HUNT3, Lifelines and UK Biobank).Residential exposures to ambient air pollution (particulate matter with aerodynamic diameter ≤10 µm (PM 10 ) and nitrogen dioxide (NO 2 )) were estimated by a pan-European Land Use Regression model for 2007. Traffic noise for 2009 was modelled at home addresses by adapting a standardised noise assessment framework (CNOSSOS-EU). A cross-sectional analysis of 646 731 participants aged ≥20 years was undertaken using DataSHIELD to pool data for individual-level analysis via a "compute to the data" approach. Multivariate logistic regression models were fitted to assess the effects of each exposure on lifetime and current asthma prevalence.PM 10 or NO 2 higher by 10 µg·m -3 was associated with 12.8% (95% CI 9.5-16.3%) and 1.9% (95% CI 1.1-2.8%) higher lifetime asthma prevalence, respectively, independent of confounders. Effects were larger in those aged ≥50 years, ever-smokers and less educated. Noise exposure was not significantly associated with asthma prevalence.This study suggests that long-term ambient PM 10 exposure is associated with asthma prevalence in western European adults. Traffic noise is not associated with asthma prevalence, but its potential to impact on asthma exacerbations needs further investigation. Copyright ©ERS 2017.

  8. USAF (United States Air Force) bioenvironmental noise data handbook. Volume 2: Index

    NASA Astrophysics Data System (ADS)

    Cole, J. N.; Peachey, N. J.

    1983-03-01

    This report is an index which identifies the individual volumes published during the 1975-1982 period by the Air Force Aerospace Medical Research Laboratory (AFAMRL) as a multi-volume report, ""USAF Bioenvironmental Noise Data Handbook'', AMRL-TR-75-50 and lists those aircraft, ground equipment and other systems reported there in.

  9. Association of Long-Term Exposure to Transportation Noise and Traffic-Related Air Pollution with the Incidence of Diabetes: A Prospective Cohort Study

    PubMed Central

    Sbihi, Hind; Tamburic, Lillian; Brauer, Michael; Frank, Lawrence D.; Davies, Hugh W

    2017-01-01

    Background: Evidence for an association between transportation noise and cardiovascular disease has increased; however, few studies have examined metabolic outcomes such as diabetes or accounted for environmental coexposures such as air pollution, greenness, or walkability. Objectives: Because diabetes prevalence is increasing and may be on the causal pathway between noise and cardiovascular disease, we examined the influence of long-term residential transportation noise exposure and traffic-related air pollution on the incidence of diabetes using a population-based cohort in British Columbia, Canada. Methods: We examined the influence of transportation noise exposure over a 5-y period (1994–1998) on incident diabetes cases in a population-based prospective cohort study (n=380,738) of metropolitan Vancouver (BC) residents who were 45–85 y old, with 4-y of follow-up (1999–2002). Annual average transportation noise (Lden), air pollution [black carbon, particulate matter with aerodynamic diameter <2.5μm (PM2.5), nitrogen oxides], greenness [Normalized Difference Vegetation Index (NDVI)], and neighborhood walkability at each participant’s residence were modeled. Incident diabetes cases were identified using administrative health records. Results: Transportation noise was associated with the incidence of diabetes [interquartile range (IQR) increase, 6.8 A-weighted decibels (dBA); OR=1.08 (95% CI: 1.05, 1.10)]. This association remained after adjustment for environmental coexposures including traffic-related air pollutants, greenness, and neighborhood walkability. After adjustment for coexposure to noise, traffic-related air pollutants were not associated with the incidence of diabetes, whereas greenness was protective. Conclusion: We found a positive association between residential transportation noise and diabetes, adding to the growing body of evidence that noise pollution exposure may be independently linked to metabolic health and should be considered when

  10. Association of Long-Term Exposure to Transportation Noise and Traffic-Related Air Pollution with the Incidence of Diabetes: A Prospective Cohort Study.

    PubMed

    Clark, Charlotte; Sbihi, Hind; Tamburic, Lillian; Brauer, Michael; Frank, Lawrence D; Davies, Hugh W

    2017-08-31

    Evidence for an association between transportation noise and cardiovascular disease has increased; however, few studies have examined metabolic outcomes such as diabetes or accounted for environmental coexposures such as air pollution, greenness, or walkability. Because diabetes prevalence is increasing and may be on the causal pathway between noise and cardiovascular disease, we examined the influence of long-term residential transportation noise exposure and traffic-related air pollution on the incidence of diabetes using a population-based cohort in British Columbia, Canada. We examined the influence of transportation noise exposure over a 5-y period (1994-1998) on incident diabetes cases in a population-based prospective cohort study (n=380,738) of metropolitan Vancouver (BC) residents who were 45-85 y old, with 4-y of follow-up (1999-2002). Annual average transportation noise (Lden), air pollution [black carbon, particulate matter with aerodynamic diameter <2.5μm (PM 2.5 ), nitrogen oxides], greenness [Normalized Difference Vegetation Index (NDVI)], and neighborhood walkability at each participant's residence were modeled. Incident diabetes cases were identified using administrative health records. Transportation noise was associated with the incidence of diabetes [interquartile range (IQR) increase, 6.8 A-weighted decibels (dBA); OR=1.08 (95% CI: 1.05, 1.10)]. This association remained after adjustment for environmental coexposures including traffic-related air pollutants, greenness, and neighborhood walkability. After adjustment for coexposure to noise, traffic-related air pollutants were not associated with the incidence of diabetes, whereas greenness was protective. We found a positive association between residential transportation noise and diabetes, adding to the growing body of evidence that noise pollution exposure may be independently linked to metabolic health and should be considered when developing public health interventions. https://doi.org/10

  11. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  12. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts.

    PubMed

    Cai, Yutong; Hansell, Anna L; Blangiardo, Marta; Burton, Paul R; de Hoogh, Kees; Doiron, Dany; Fortier, Isabel; Gulliver, John; Hveem, Kristian; Mbatchou, Stéphane; Morley, David W; Stolk, Ronald P; Zijlema, Wilma L; Elliott, Paul; Hodgson, Susan

    2017-08-01

    Blood biochemistry may provide information on associations between road traffic noise, air pollution, and cardiovascular disease risk. We evaluated this in two large European cohorts (HUNT3, Lifelines). Road traffic noise exposure was modelled for 2009 using a simplified version of the Common Noise Assessment Methods in Europe (CNOSSOS-EU). Annual ambient air pollution (PM10, NO2) at residence was estimated for 2007 using a Land Use Regression model. The statistical platform DataSHIELD was used to pool data from 144 082 participants aged ≥20 years to enable individual-level analysis. Generalized linear models were fitted to assess cross-sectional associations between pollutants and high-sensitivity C-reactive protein (hsCRP), blood lipids and for (Lifelines only) fasting blood glucose, for samples taken during recruitment in 2006-2013. Pooling both cohorts, an inter-quartile range (IQR) higher day-time noise (5.1 dB(A)) was associated with 1.1% [95% confidence interval (95% CI: 0.02-2.2%)] higher hsCRP, 0.7% (95% CI: 0.3-1.1%) higher triglycerides, and 0.5% (95% CI: 0.3-0.7%) higher high-density lipoprotein (HDL); only the association with HDL was robust to adjustment for air pollution. An IQR higher PM10 (2.0 µg/m3) or NO2 (7.4 µg/m3) was associated with higher triglycerides (1.9%, 95% CI: 1.5-2.4% and 2.2%, 95% CI: 1.6-2.7%), independent of adjustment for noise. Additionally for NO2, a significant association with hsCRP (1.9%, 95% CI: 0.5-3.3%) was seen. In Lifelines, an IQR higher noise (4.2 dB(A)) and PM10 (2.4 µg/m3) was associated with 0.2% (95% CI: 0.1-0.3%) and 0.6% (95% CI: 0.4-0.7%) higher fasting glucose respectively, with both remaining robust to adjustment for air/noise pollution. Long-term exposures to road traffic noise and ambient air pollution were associated with blood biochemistry, providing a possible link between road traffic noise/air pollution and cardio-metabolic disease risk. Published on behalf of the European Society of

  13. Long-term traffic air and noise pollution in relation to mortality and hospital readmission among myocardial infarction survivors.

    PubMed

    Tonne, Cathryn; Halonen, Jaana I; Beevers, Sean D; Dajnak, David; Gulliver, John; Kelly, Frank J; Wilkinson, Paul; Anderson, H Ross

    2016-01-01

    There is relatively little evidence of health effects of long-term exposure to traffic-related pollution in susceptible populations. We investigated whether long-term exposure to traffic air and noise pollution was associated with all-cause mortality or hospital readmission for myocardial infarction (MI) among survivors of hospital admission for MI. Patients from the Myocardial Ischaemia National Audit Project database resident in Greater London (n = 1 8,138) were followed for death or readmission for MI. High spatially-resolved annual average air pollution (11 metrics of primary traffic, regional or urban background) derived from a dispersion model (resolution 20 m × 20 m) and road traffic noise for the years 2003-2010 were used to assign exposure at residence. Hazard ratios (HR, 95% confidence interval (CI)) were estimated using Cox proportional hazards models. Most air pollutants were positively associated with all-cause mortality alone and in combination with hospital readmission. The largest associations with mortality per interquartile range (IQR) increase of pollutant were observed for non-exhaust particulate matter (PM(10)) (HR = 1.05 (95% CI 1.00, 1.10), IQR = 1.1 μg/m(3)); oxidant gases (HR = 1.05 (95% CI 1.00, 1.09), IQR = 3.2 μg/m(3)); and the coarse fraction of PM (HR = 1.05 (95% CI 1.00, 1.10), IQR = 0.9 μg/m(3)). Adjustment for traffic noise only slightly attenuated these associations. The association for a 5 dB increase in road-traffic noise with mortality was HR = 1.02 (95% CI 0.99, 1.06) independent of air pollution. These data support a relationship of primary traffic and regional/urban background air pollution with poor prognosis among MI survivors. Although imprecise, traffic noise appeared to have a modest association with prognosis independent of air pollution. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  14. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study

    PubMed Central

    Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross

    2017-01-01

    Abstract Objective To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design Retrospective population based cohort study. Setting Greater London and surrounding counties up to the M25 motorway (2317 km2), UK, from 2006 to 2010. Participants 540 365 singleton term live births. Main outcome measures Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results Average air pollutant exposures across pregnancy were 41 μg/m3 nitrogen dioxide (NO2), 73 μg/m3 nitrogen oxides (NOx), 14 μg/m3 particulate matter with aerodynamic diameter <2.5 μm (PM2.5), 23 μg/m3 particulate matter with aerodynamic diameter <10 μm (PM10), and 32 μg/m3 ozone (O3). Average daytime (LAeq,16hr) and night-time (Lnight) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO2, NOx, PM2.5, PM10, and source specific PM2.5 from traffic exhaust (PM2.5 traffic exhaust) and traffic non-exhaust (brake or tyre wear and resuspension) (PM2.5 traffic non-exhaust) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM2.5 traffic exhaust and PM2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM2.5>13.8 μg/m3during pregnancy. Conclusions The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight

  15. Associations between traffic noise, particulate air pollution, hypertension, and isolated systolic hypertension in adults: the KORA study.

    PubMed

    Babisch, Wolfgang; Wolf, Kathrin; Petz, Markus; Heinrich, Joachim; Cyrys, Josef; Peters, Annette

    2014-05-01

    Studies on the association between traffic noise and cardiovascular diseases have rarely considered air pollution as a covariate in the analyses. Isolated systolic hypertension has not yet been in the focus of epidemiological noise research. The association between traffic noise (road and rail) and the prevalence of hypertension was assessed in two study populations with a total of 4,166 participants 25-74 years of age. Traffic noise (weighted day-night average noise level; LDN) at the facade of the dwellings was derived from noise maps. Annual average PM2.5 mass concentrations at residential addresses were estimated by land-use regression. Hypertension was assessed by blood pressure readings, self-reported doctor-diagnosed hypertension, and antihypertensive drug intake. In the Greater Augsburg, Germany, study population, traffic noise and air pollution were not associated with hypertension. In the City of Augsburg population (n = 1,893), where the exposure assessment was more detailed, the adjusted odds ratio (OR) for a 10-dB(A) increase in noise was 1.16 (95% CI: 1.00, 1.35), and 1.11 (95% CI: 0.94, 1.30) after additional adjustment for PM2.5. The adjusted OR for a 1-μg/m3 increase in PM2.5 was 1.15 (95% CI: 1.02, 1.30), and 1.11 (95% CI: 0.98, 1.27) after additional adjustment for noise. For isolated systolic hypertension, the fully adjusted OR for noise was 1.43 (95% CI: 1.10, 1.86) and for PM2.5 was 1.08 (95% CI: 0.87, 1.34). Traffic noise and PM2.5 were both associated with a higher prevalence of hypertension. Mutually adjusted associations with hypertension were positive but no longer statistically significant.

  16. USAF Bioenvironmental Noise Data Handbook. Volume 167: MA-3M air conditioner

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-06-01

    The MA-3M is an electric motor-driven air conditioner designed to cool electronic equipment on aircraft during ground maintenance. This report provides measured and extrapolated data defining the bioacoustic environments produced by this unit operating at a normal rated condition. Near-field data are reported for 37 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  17. Hypertension and Exposure to Noise near Airports (HYENA): study design and noise exposure assessment.

    PubMed

    Jarup, Lars; Dudley, Marie-Louise; Babisch, Wolfgang; Houthuijs, Danny; Swart, Wim; Pershagen, Göran; Bluhm, Gösta; Katsouyanni, Klea; Velonakis, Manolis; Cadum, Ennio; Vigna-Taglianti, Federica

    2005-11-01

    An increasing number of people live near airports with considerable noise and air pollution. The Hypertension and Exposure to Noise near Airports (HYENA) project aims to assess the impact of airport-related noise exposure on blood pressure (BP) and cardiovascular disease using a cross-sectional study design. We selected 6,000 persons (45-70 years of age) who had lived at least 5 years near one of six major European airports. We used modeled aircraft noise contours, aiming to maximize exposure contrast. Automated BP instruments are used to reduce observer error. We designed a standardized questionnaire to collect data on annoyance, noise disturbance, and major confounders. Cortisol in saliva was collected in a subsample of the study population (n = 500) stratified by noise exposure level. To investigate short-term noise effects on BP and possible effects on nighttime BP dipping, we measured 24-hr BP and assessed continuous night noise in another subsample (n = 200). To ensure comparability between countries, we used common noise models to assess individual noise exposure, with a resolution of 1 dB(A). Modifiers of individual exposure, such as the orientation of living and bedroom toward roads, window-opening habits, and sound insulation, were assessed by the questionnaire. For four airports, we estimated exposure to air pollution to explore modifying effects of air pollution on cardiovascular disease. The project assesses exposure to traffic-related air pollutants, primarily using data from another project funded by the European Union (APMoSPHERE, Air Pollution Modelling for Support to Policy on Health and Environmental Risks in Europe).

  18. Modeling the impact of solid noise barriers on near road air quality

    NASA Astrophysics Data System (ADS)

    Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard

    2016-09-01

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.

  19. Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study.

    PubMed

    Forns, Joan; Dadvand, Payam; Foraster, Maria; Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-Gonzalez, Elisabet; Garcia-Esteban, Raquel; Esnaola, Mikel; Cirach, Marta; Grellier, James; Basagaña, Xavier; Querol, Xavier; Guxens, Mònica; Nieuwenhuijsen, Mark J; Sunyer, Jordi

    2016-04-01

    The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time. We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren. We evaluated children 7-11 years of age in Barcelona (Catalonia, Spain) during 2012-2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores. Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores. In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms. Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: a cross-sectional study. Environ Health Perspect

  20. Impact of Diwali celebrations on urban air and noise quality in Delhi City, India.

    PubMed

    Mandal, Papiya; Prakash, Mamta; Bassin, J K

    2012-01-01

    A study was conducted in the residential areas of Delhi, India, to assess the variation in ambient air quality and ambient noise levels during pre-Diwali month (DM), Diwali day (DD) and post-Diwali month during the period 2006 to 2008. The use of fireworks during DD showed 1.3 to 4.0 times increase in concentration of respirable particulate matter (PM(10)) and 1.6 to 2.5 times increase in concentration of total suspended particulate matter (TSP) than the concentration during DM. There was a significant increase in sulfur dioxide (SO(2)) concentration but the concentration of nitrogen dioxide (NO(2)) did not show any considerable variation. Ambient noise level were 1.2 to 1.3 times higher than normal day. The study also showed a strong correlation between PM(10) and TSP (R (2) ≥ 0.9) and SO(2) and NO(2) (R (2) ≥ 0.9) on DD. The correlation between noise level and gaseous pollutant were moderate (R (2) ≥ 0.5). The average concentration of the pollutants during DD was found higher in 2007 which could be due to adverse meteorological conditions. The statistical interpretation of data indicated that the celebration of Diwali festival affects the ambient air and noise quality. The study would provide public awareness about the health risks associated with the celebrations of Diwali festival so as to take proper precautions.

  1. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study.

    PubMed

    Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross; Toledano, Mireille B

    2017-12-05

    Objective  To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design  Retrospective population based cohort study. Setting  Greater London and surrounding counties up to the M25 motorway (2317 km 2 ), UK, from 2006 to 2010. Participants  540 365 singleton term live births. Main outcome measures  Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results  Average air pollutant exposures across pregnancy were 41 μg/m 3 nitrogen dioxide (NO 2 ), 73 μg/m 3 nitrogen oxides (NO x ), 14 μg/m 3 particulate matter with aerodynamic diameter <2.5 μm (PM 2.5 ), 23 μg/m 3 particulate matter with aerodynamic diameter <10 μm (PM 10 ), and 32 μg/m 3 ozone (O 3 ). Average daytime (L Aeq,16hr ) and night-time (L night ) road traffic A-weighted noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO 2 , NO x , PM 2.5 , PM 10 , and source specific PM 2.5 from traffic exhaust (PM 2.5 traffic exhaust ) and traffic non-exhaust (brake or tyre wear and resuspension) (PM 2.5 traffic non-exhaust ) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM 2.5 traffic exhaust and PM 2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM 2.5 >13.8 μg/m 3 during pregnancy. Conclusions  The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure

  2. Determining the behavioural dose-response relationship of marine mammals to air gun noise and source proximity.

    PubMed

    Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Scott-Hayward, Lindsay; Kniest, Eric; Slade, Robert; Paton, David; Cato, Douglas H

    2017-08-15

    The effect of various anthropogenic sources of noise (e.g. sonar, seismic surveys) on the behaviour of marine mammals is sometimes quantified as a dose-response relationship, where the probability of an animal behaviourally 'responding' (e.g. avoiding the source) increases with 'dose' (or received level of noise). To do this, however, requires a definition of a 'significant' response (avoidance), which can be difficult to quantify. There is also the potential that the animal 'avoids' not only the source of noise but also the vessel operating the source, complicating the relationship. The proximity of the source is an important variable to consider in the response, yet difficult to account for given that received level and proximity are highly correlated. This study used the behavioural response of humpback whales to noise from two different air gun arrays (20 and 140 cubic inch air gun array) to determine whether a dose-response relationship existed. To do this, a measure of avoidance of the source was developed, and the magnitude (rather than probability) of this response was tested against dose. The proximity to the source, and the vessel itself, was included within the one-analysis model. Humpback whales were more likely to avoid the air gun arrays (but not the controls) within 3 km of the source at levels over 140 re. 1 µPa 2  s -1 , meaning that both the proximity and the received level were important factors and the relationship between dose (received level) and response is not a simple one. © 2017. Published by The Company of Biologists Ltd.

  3. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  4. Proximity to traffic, ambient air pollution, and community noise in relation to incident rheumatoid arthritis.

    PubMed

    De Roos, Anneclaire J; Koehoorn, Mieke; Tamburic, Lillian; Davies, Hugh W; Brauer, Michael

    2014-10-01

    The risk of rheumatoid arthritis (RA) has been associated with living near traffic; however, there is evidence suggesting that air pollution may not be responsible for this association. Noise, another traffic-generated exposure, has not been studied as a risk factor for RA. We investigated proximity to traffic, ambient air pollution, and community noise in relation to RA in the Vancouver and Victoria regions of British Columbia, Canada. Cases and controls were identified in a cohort of adults that was assembled using health insurance registration records. Incident RA cases from 1999 through 2002 were identified by diagnostic codes in combination with prescriptions and type of physician (e.g., rheumatologist). Controls were matched to RA cases by age and sex. Environmental exposures were assigned to each member of the study population by their residential postal code(s). We estimated relative risks using conditional logistic regression, with additional adjustment for median income at the postal code. RA incidence was increased with proximity to traffic, with an odds ratio (OR) of 1.37 (95% CI: 1.11, 1.68) for residence ≤ 50 m from a highway compared with residence > 150 m away. We found no association with traffic-related exposures such as PM2.5, nitrogen oxides, or noise. Ground-level ozone, which was highest in suburban areas, was associated with an increased risk of RA (OR = 1.26; 95% CI: 1.18, 1.36 per interquartile range increase). Our study confirms a previously observed association of RA risk with proximity to traffic and suggests that neither noise levels nor traffic-related air pollutants are responsible for this relationship. Additional investigation of neighborhood and individual correlates of residence near roadways may provide new insight into risk factors for RA.

  5. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  6. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  7. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  8. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  9. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  10. Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong

    2018-05-01

    According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.

  11. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  12. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study

    PubMed Central

    Eze, Ikenna C; Foraster, Maria; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Imboden, Medea; von Eckardstein, Arnold; Schindler, Christian; Brink, Mark; Cajochen, Christian; Wunderli, Jean-Marc; Röösli, Martin; Probst-Hensch, Nicole

    2017-01-01

    Abstract Background Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. Methods We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants’ residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Results Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02–1.78 and 1.86; 95% CI: 0.96–3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Conclusions Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances. PMID:28338949

  13. Long-term exposure to transportation noise and air pollution in relation to incident diabetes in the SAPALDIA study.

    PubMed

    Eze, Ikenna C; Foraster, Maria; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Imboden, Medea; von Eckardstein, Arnold; Schindler, Christian; Brink, Mark; Cajochen, Christian; Wunderli, Jean-Marc; Röösli, Martin; Probst-Hensch, Nicole

    2017-08-01

    Epidemiological studies have inconsistently linked transportation noise and air pollution (AP) with diabetes risk. Most studies have considered single noise sources and/or AP, but none has investigated their mutually independent contributions to diabetes risk. We investigated 2631 participants of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA), without diabetes in 2002 and without change of residence between 2002 and 2011. Using questionnaire and biomarker data, incident diabetes cases were identified in 2011. Noise and AP exposures in 2001 were assigned to participants' residences (annual average road, railway or aircraft noise level during day-evening-night (Lden), total night number of noise events, intermittency ratio (temporal variation as proportion of event-based noise level over total noise level) and nitrogen dioxide (NO2) levels. We applied mixed Poisson regression to estimate the relative risk (RR) of diabetes and their 95% confidence intervals (CI) in mutually-adjusted models. Diabetes incidence was 4.2%. Median [interquartile range (IQR)] road, railway, aircraft noise and NO2 were 54 (10) dB, 32 (11) dB, 30 (12) dB and 21 (15) μg/m3, respectively. Lden road and aircraft were associated with incident diabetes (respective RR: 1.35; 95% CI: 1.02-1.78 and 1.86; 95% CI: 0.96-3.59 per IQR) independently of Lden railway and NO2 (which were not associated with diabetes risk) in mutually adjusted models. We observed stronger effects of Lden road among participants reporting poor sleep quality or sleeping with open windows. Transportation noise may be more relevant than AP in the development of diabetes, potentially acting through noise-induced sleep disturbances. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  14. Reduction of Air Pollution Levels Downwind of a Road with an Upwind Noise Barrier

    EPA Science Inventory

    We propose a dispersion model to characterize the impact of an upwind solid noise barrier next to a highway on air pollution concentrations downwind of the road. The model is based on data from wind tunnel experiments conducted by Heist et al. (2009). The model assumes that the...

  15. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  16. Traffic-Related Air Pollution, Noise at School, and Behavioral Problems in Barcelona Schoolchildren: A Cross-Sectional Study

    PubMed Central

    Forns, Joan; Dadvand, Payam; Foraster, Maria; Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-Gonzalez, Elisabet; Garcia-Esteban, Raquel; Esnaola, Mikel; Cirach, Marta; Grellier, James; Basagaña, Xavier; Querol, Xavier; Guxens, Mònica; Nieuwenhuijsen, Mark J.; Sunyer, Jordi

    2015-01-01

    Background: The available evidence of the effects of air pollution and noise on behavioral development is limited, and it overlooks exposure at schools, where children spend a considerable amount of time. Objective: We aimed to investigate the associations of exposure to traffic-related air pollutants (TRAPs) and noise at school on behavioral development of schoolchildren. Methods: We evaluated children 7–11 years of age in Barcelona (Catalonia, Spain) during 2012–2013 within the BREATHE project. Indoor and outdoor concentrations of elemental carbon (EC), black carbon (BC), and nitrogen dioxide (NO2) were measured at schools in two separate 1-week campaigns. In one campaign we also measured noise levels inside classrooms. Parents filled out the strengths and difficulties questionnaire (SDQ) to assess child behavioral development, while teachers completed the attention deficit/hyperactivity disorder criteria of the DSM-IV (ADHD-DSM-IV) list to assess specific ADHD symptomatology. Negative binomial mixed-effects models were used to estimate associations between the exposures and behavioral development scores. Results: Interquartile range (IQR) increases in indoor and outdoor EC, BC, and NO2 concentrations were positively associated with SDQ total difficulties scores (suggesting more frequent behavioral problems) in adjusted multivariate models, whereas noise was significantly associated with ADHD-DSM-IV scores. Conclusion: In our study population of 7- to 11-year-old children residing in Barcelona, exposure to TRAPs at school was associated with increased behavioral problems in schoolchildren. Noise exposure at school was associated with more ADHD symptoms. Citation: Forns J, Dadvand P, Foraster M, Alvarez-Pedrerol M, Rivas I, López-Vicente M, Suades-Gonzalez E, Garcia-Esteban R, Esnaola M, Cirach M, Grellier J, Basagaña X, Querol X, Guxens M, Nieuwenhuijsen MJ, Sunyer J. 2016. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona

  17. Long-term associations of modeled and self-reported measures of exposure to air pollution and noise at residence on prevalent hypertension and blood pressure.

    PubMed

    Pitchika, Anitha; Hampel, Regina; Wolf, Kathrin; Kraus, Ute; Cyrys, Josef; Babisch, Wolfgang; Peters, Annette; Schneider, Alexandra

    2017-09-01

    Air pollution, traffic noise and noise annoyance are suggested to be associated with hypertension and blood pressure (BP); however, the evidence remains inconsistent. Our study examined the long-term associations of modeled and self-reported measures of air pollution and traffic noise on prevalent hypertension and BP. We analyzed cross-sectional data from 2552 participants aged 31-72years from the KORA F4 (2006-2008) study conducted in the region of Augsburg, Germany. Land-use regression models were used to estimate residential long-term exposure to particulate matter <2.5μm (PM 2.5 ), soot content of PM 2.5 (PM 2.5 abs) and nitrogen dioxide (NO 2 ). Road traffic noise levels at the facade of the dwellings were estimated for the participants' residences. Participants filled-in a questionnaire on noise annoyance and heavy traffic passing their residence. Linear and logistic regression models adjusting for confounders were used to assess the association between exposure measures and hypertension and BP. An interquartile increase in annual mean PM 2.5 (1μg/m 3 ) was significantly associated with 15% higher prevalence of hypertension, without (95% CI: 2.5; 28.0%) and with (95% CI: 0.7; 30.8%) adjustment for traffic noise. Diastolic blood pressure (DBP) was associated with air pollutants and traffic noise with percent increases in mean of 0.7 (95% CI: 0.2; 1.2), 0.6 (95% CI: 0.1; 1.1) and 0.3 (95% CI: 0.0; 0.7) for an interquartile increase in PM 2.5 (1μg/m 3 ) and PM 2.5 abs (0.2∗10 -5 /m), and 5dB(A) increase in 24-hour road traffic noise, respectively. Associations of PM 2.5 abs and NO 2 with hypertension or DBP were stronger in men and diabetic individuals. No clear associations were seen with systolic BP or noise annoyance. In conclusion, self-reported measures of air pollution or noise did not perform better than the objective measures. Our findings provide further evidence for a link between air pollution, noise and cardiovascular disease and indicate a

  18. Core/Combustor Noise - Research Overview

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  19. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    PubMed

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Does low to moderate environmental exposure to noise and air pollution influence preterm delivery in medium-sized cities?

    PubMed

    Barba-Vasseur, Marie; Bernard, Nadine; Pujol, Sophie; Sagot, Paul; Riethmuller, Didier; Thiriez, Gérard; Houot, Hélène; Defrance, Jérôme; Mariet, Anne-Sophie; Luu, Vinh-Phuc; Barbier, Alice; Benzenine, Eric; Quantin, Catherine; Mauny, Frédéric

    2017-12-01

    Preterm birth (PB) is an important predictor of childhood morbidity and educational performance. Beyond the known risk factors, environmental factors, such as air pollution and noise, have been implicated in PB. In urban areas, these pollutants coexist. Very few studies have examined the effects of multi-exposure on the pregnancy duration. The objective of this study was to analyse the relationship between PB and environmental chronic multi-exposure to noise and air pollution in medium-sized cities. A case-control study was conducted among women living in the city of Besançon (121 671 inhabitants) or in the urban unit of Dijon (243 936 inhabitants) and who delivered in a university hospital between 2005 and 2009. Only singleton pregnancies without associated pathologies were considered. Four controls were matched to each case in terms of the mother's age and delivery location. Residential noise and nitrogen dioxide (NO2) exposures were calculated at the mother's address. Conditional logistic regression models were applied, and sensitivity analyses were performed. This study included 302 cases and 1204 controls. The correlation between noise and NO2 indices ranged from 0.41 to 0.59. No significant differences were found in pollutant exposure levels between cases and controls. The adjusted odds ratios ranged between 0.96 and 1.08. Sensitivity analysis conducted using different temporal and spatial exposure windows demonstrated the same results. The results are in favour of a lack of connection between preterm delivery and multi-exposure to noise and air pollution in medium-sized cities for pregnant women without underlying disease. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  1. Exposure to air pollution and noise from road traffic and risk of congenital anomalies in the Danish National Birth Cohort.

    PubMed

    Pedersen, Marie; Garne, Ester; Hansen-Nord, Nete; Hjortebjerg, Dorrit; Ketzel, Matthias; Raaschou-Nielsen, Ole; Nybo Andersen, Anne-Marie; Sørensen, Mette

    2017-11-01

    Ambient air pollution has been associated with certain congenital anomalies, but few studies rely on assessment of fine-scale variation in air quality and associations with noise from road traffic are unexplored. Among 84,218 liveborn singletons (1997-2002) from the Danish National Birth Cohort with complete covariate data and residential address history from conception until birth, we identified major congenital anomalies in 4018 children. Nitrogen dioxide (NO 2 ) and noise from road traffic (L den ) burden during fetal life was modeled. Outcome and covariate data were derived from registries, hospital records and questionnaires. Odds ratios (ORs) for eleven major anomaly groups associated with road traffic pollution during first trimester were estimated using logistic regression with generalized estimating equation (GEE) approach. Most of the associations tested did not suggest increased risks. A 10-µg/m 3 increase in NO 2 exposure during first trimester was associated with an adjusted ORs of 1.22 (95% confidence interval: 0.98-1.52) for ear, face and neck anomalies; 1.14 0.98-1.33) for urinary anomalies. A 10-dB increase in road traffic noise was also associated with these subgroups of anomalies as well as with an increased OR for orofacial cleft anomalies (1.17, 0.94-1.47). Inverse associations for several both air pollution and noise were observed for atrial septal defects (0.85, 0.68-1.04 and 0.81, 0.65-0.99, respectively). Residential road traffic exposure to noise or air pollution during pregnancy did not seem to pose a risk for development of congenital anomalies. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Revision of civil aircraft noise data for the Integrated Noise Model (INM)

    DOT National Transportation Integrated Search

    1986-09-30

    This report provides noise data for the Integrated Noise Model (INM) and is referred to as data base number nine. Air-to-ground sound level versus distance data for civil (and some military) aircraft in a form useful for airport noise contour computa...

  3. Impact of blast induced transitory vibration and air-overpressure/noise on human brain--an experimental study.

    PubMed

    Raina, A K; Baheti, M; Haldar, A; Ramulu, M; Chakraborty, A K; Sahu, P B; Bandopadhayay, C

    2004-04-01

    Human response to blast induced ground vibration and air-overpressure/noise is a major concern of current mining activity. This is because the fact that mines are fast transgressing the habitats and people are getting educated. Consequently the response of humans is changing and expectedly will increase in days to come with no viable and economic alternative to blasting--an essential component of mining. The response of humans can be purely physiological or psychological in nature or combination of both depending upon the situation and conditions of mining. Where physiological response is documented in terms of effects on ears and lungs there is a meager amount or no literature available regarding effects of blasting on the brain. Moreover, the studies on transitory phenomenon like the effects of blasting on humans are rare in comparison to the whole body vibration studies. This study was designed to address the issues as a precursor to a major initiative. The preliminary investigations conducted with the monitoring of EEG responses of humans to vibration and air-overpressure/noise due to blasting revealed that there is no major response of the brain to transitory vibrations and noise.

  4. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  5. Long-term air pollution and traffic noise exposures and cognitive function:A cross-sectional analysis of the Heinz Nixdorf Recall study.

    PubMed

    Tzivian, Lilian; Dlugaj, Martha; Winkler, Angela; Hennig, Frauke; Fuks, Kateryna; Sugiri, Dorothee; Schikowski, Tamara; Jakobs, Hermann; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Hoffmann, Barbara; Weimar, Christian

    2016-01-01

    Investigations of adverse effects of air pollution (AP) and ambient noise on cognitive functions are apparently scarce, and findings seem to be inconsistent. The aim of this study was to examine the associations of long-term exposure to AP and traffic noise with cognitive performance. At the second examination of the population-based Heinz Nixdorf Recall study (2006-2008), cognitive performance was evaluated in 4086 participants. Long-term residential exposure to size-specific particulate matter (PM) and nitrogen oxides (NOx) with land use regression, to and traffic noise (weighted 24-h (L DEN ) and nighttime (L NIGHT ) means), was assessed according to the European Union (EU) Directive 2002/49/EC. Multiple regression models were calculated for the relationship of environmental exposures with a global cognitive score (GCS) and in five cognitive subtests, using single- and two-exposure models. In fully adjusted models, several AP metrics were negatively associated with four of five subtests and with GCS. For example, an interquartile range increase in PM 2.5 was correlated with verbal fluency, labyrinth test, and immediate and delayed verbal recall. A 10 dB(A) elevation in L DEN and L NIGHT was associated with GCS. Similar but not significant associations were found for the cognitive subtests. In two-exposure models including noise and air pollution simultaneously, the associations did not change markedly for air pollution, but attenuated numerically for noise. Long-term exposures to AP and traffic noise are negatively correlated with subtests related to memory and executive functions. There appears to be little evidence for mutual confounding.

  6. The associations between traffic-related air pollution and noise with blood pressure in children: results from the GINIplus and LISAplus studies.

    PubMed

    Liu, Chuang; Fuertes, Elaine; Tiesler, Carla M T; Birk, Matthias; Babisch, Wolfgang; Bauer, Carl-Peter; Koletzko, Sibylle; von Berg, Andrea; Hoffmann, Barbara; Heinrich, Joachim

    2014-01-01

    Although traffic emits both air pollution and noise, studies jointly examining the effects of both of these exposures on blood pressure (BP) in children are scarce. We investigated associations between land-use regression modeled long-term traffic-related air pollution and BP in 2368 children aged 10 years from Germany (1454 from Munich and 914 from Wesel). We also studied this association with adjustment of long-term noise exposure (defined as day-evening-night noise indicator "Lden" and night noise indicator "Lnight") in a subgroup of 605 children from Munich inner city. In the overall analysis including 2368 children, NO2, PM2.5 mass (particles with aerodynamic diameters below 2.5μm), PM10 mass (particles with aerodynamic diameters below 10μm) and PM2.5 absorbance were not associated with BP. When restricting the analysis to the subgroup of children with noise information (N=605), a significant association between NO2 and diastolic BP was observed (-0.88 (95% confidence interval: -1.67, -0.08)). However, upon adjusting the models for noise exposure, only noise remained independently and significantly positively associated with diastolic BP. Diastolic BP increased by 0.50 (-0.03, 1.02), 0.59 (0.05, 1.13), 0.55 (0.03, 1.07), and 0.58 (0.05, 1.11)mmHg for every five decibel increase in Lden and by 0.59 (-0.05, 1.22), 0.69 (0.04, 1.33), 0.64 (0.02, 1.27), and 0.68 (0.05, 1.32)mmHg for every five decibel increase in Lnight, in different models of NO2, PM2.5 mass, PM10 mass and PM2.5 absorbance as the main exposure, respectively. In conclusion, air pollution was not consistently associated with BP with adjustment for noise, noise was independently and positively associated with BP in children. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project.

    PubMed

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A

    2012-08-15

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed.

  8. Does Traffic-related Air Pollution Explain Associations of Aircraft and Road Traffic Noise Exposure on Children's Health and Cognition? A Secondary Analysis of the United Kingdom Sample From the RANCH Project

    PubMed Central

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A.

    2012-01-01

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001–2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9–10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed. PMID:22842719

  9. Road traffic noise, air pollution and incident cardiovascular disease: A joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts.

    PubMed

    Cai, Yutong; Hodgson, Susan; Blangiardo, Marta; Gulliver, John; Morley, David; Fecht, Daniela; Vienneau, Danielle; de Hoogh, Kees; Key, Tim; Hveem, Kristian; Elliott, Paul; Hansell, Anna L

    2018-05-01

    This study aimed to investigate the effects of long-term exposure to road traffic noise and air pollution on incident cardiovascular disease (CVD) in three large cohorts: HUNT, EPIC-Oxford and UK Biobank. In pooled complete-case sample of the three cohorts from Norway and the United Kingdom (N = 355,732), 21,081 incident all CVD cases including 5259 ischemic heart disease (IHD) and 2871 cerebrovascular cases were ascertained between baseline (1993-2010) and end of follow-up (2008-2013) through medical record linkage. Annual mean 24-hour weighted road traffic noise (Lden) and air pollution (particulate matter with aerodynamic diameter ≤ 10 μm [PM10], ≤2.5 μm [PM2.5] and nitrogen dioxide [NO2]) exposure at baseline address was modelled using a simplified version of the Common Noise Assessment Methods in Europe (CNOSSOS-EU) and European-wide Land Use Regression models. Individual-level covariate data were harmonised and physically pooled across the three cohorts. Analysis was via Cox proportional hazard model with mutual adjustments for both noise and air pollution and potential confounders. No significant associations were found between annual mean Lden and incident CVD, IHD or cerebrovascular disease in the overall population except that the association with incident IHD was significant among current-smokers. In the fully adjusted models including adjustment for Lden, an interquartile range (IQR) higher PM10 (4.1 μg/m3) or PM2.5 (1.4 μg/m3) was associated with a 5.8% (95%CI: 2.5%-9.3%) and 3.7% (95%CI: 0.2%-7.4%) higher risk for all incident CVD respectively. No significant associations were found between NO2 and any of the CVD outcomes. We found suggestive evidence of a possible association between road traffic noise and incident IHD, consistent with current literature. Long-term particulate air pollution exposure, even at concentrations below current European air quality standards, was significantly associated with incident CVD. Copyright

  10. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  11. High Blood Pressure and Long-Term Exposure to Indoor Noise and Air Pollution from Road Traffic

    PubMed Central

    Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-01-01

    Background: Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people’s noise exposure indoors in bedrooms. Objectives: We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). Methods: We evaluated 1,926 cohort participants at baseline (years 2003–2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Results: Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: –0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise–SBP association was stronger and statistically significant with a threshold at 30 dB(A). Conclusion: Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less

  12. Gestational diabetes mellitus and exposure to ambient air pollution and road traffic noise: A cohort study.

    PubMed

    Pedersen, Marie; Olsen, Sjurdur F; Halldorsson, Thorhallur I; Zhang, Cuilin; Hjortebjerg, Dorrit; Ketzel, Matthias; Grandström, Charlotta; Sørensen, Mette; Damm, Peter; Langhoff-Roos, Jens; Raaschou-Nielsen, Ole

    2017-11-01

    Road traffic is a main source of air pollution and noise. Both exposures have been associated with type 2 diabetes, but associations with gestational diabetes mellitus (GDM) have been studied less. We aimed to examine single and joint associations of exposure to air pollution and road traffic noise on GDM in a prospective cohort. We identified GDM cases from self-reports and hospital records, using two different criteria, among 72,745 singleton pregnancies (1997-2002) from the Danish National Birth Cohort. We modeled nitrogen dioxide (NO 2 ) and noise from road traffic (L den ) exposure at all pregnancy addresses. According to the two diagnostic criteria: the Danish clinical guidelines, which was our main outcome, and the WHO standard during recruitment period, a total of 565 and 210 women, respectively, had GDM. For both exposures no risk was evident for the common Danish criterion of GDM. A 10-μg/m 3 increase in NO 2 exposure during first trimester was, however, associated with an increased risk of WHO-GDM (adjusted odds ratio (OR)=1.24; 95% confidence interval (CI): 1.03, 1.49). The corresponding OR associated with a 10-dB higher road traffic noise level was 1.15 (0.94 to 1.18). In mutually adjusted models the OR for NO 2 remained similar 1.22 (0.98, 1.53) whereas that for road traffic noise decreased to 1.03 (0.80, 1.32). Significant associations were also observed for exposure averaged over the 2nd and 3rd trimesters and the full pregnancy. No risk was evident for the common Danish criterion of GDM. NO 2 was associated with higher risk for GDM according to the WHO criterion, which might be due to selection bias. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The

  14. Influence of solid noise barriers on near-road and on-road air quality

    NASA Astrophysics Data System (ADS)

    Baldauf, Richard W.; Isakov, Vlad; Deshmukh, Parikshit; Venkatram, Akula; Yang, Bo; Zhang, K. Max

    2016-03-01

    Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has increased substantially in recent years. Roadside features, including solid noise barriers, have been investigated as potential methods that can be implemented in a relatively short time period to reduce air pollution exposures from nearby traffic. A field study was conducted to determine the influence of noise barriers on both on-road and downwind pollutant concentrations near a large highway in Phoenix, Arizona, USA. Concentrations of nitrogen dioxide, carbon monoxide, ultrafine particles, and black carbon were measured using a mobile platform and fixed sites along two limited-access stretches of highway that contained a section of noise barrier and a section with no noise barrier at-grade with the surrounding terrain. Results of the study showed that pollutant concentrations behind the roadside barriers were significantly lower relative to those measured in the absence of barriers. The reductions ranged from 50% within 50 m from the barrier to about 30% as far as 300 m from the barrier. Reductions in pollutant concentrations generally began within the first 50 m of the barrier edge; however, concentrations were highly variable due to vehicle activity behind the barrier and along nearby urban arterial roadways. The concentrations on the highway, upwind of the barrier, varied depending on wind direction. Overall, the on-road concentrations in front of the noise barrier were similar to those measured in the absence of the barrier, contradicting previous modeling results that suggested roadside barriers increase pollutant levels on the road. Thus, this study suggests that noise barriers do reduce potential pollutant exposures for populations downwind of the road, and do not likely increase exposures to traffic-related pollutants for vehicle passengers on the highway.

  15. Environmental Noise

    NASA Astrophysics Data System (ADS)

    Rumberg, Martin

    Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.

  16. Effects of Long-Term Speech-in-Noise Training in Air Traffic Controllers and High Frequency Suppression. A Control Group Study.

    PubMed

    Pérez Zaballos, María Teresa; Ramos de Miguel, Ángel; Pérez Plasencia, Daniel; Zaballos González, María Luisa; Ramos Macías, Ángel

    2015-12-01

    To evaluate 1) if air traffic controllers (ATC) perform better than non-air traffic controllers in an open-set speech-in-noise test because of their experience with radio communications, and 2) if high-frequency information (>8000 Hz) substantially improves speech-in-noise perception across populations. The control group comprised 28 normal-hearing subjects, and the target group comprised 48 ATCs aged between 19 and 55 years who were native Spanish speakers. The hearing -in-noise abilities of the two groups were characterized under two signal conditions: 1) speech tokens and white noise sampled at 44.1 kHz (unfiltered condition) and 2) speech tokens plus white noise, each passed through a 4th order Butterworth filter with 70 and 8000 Hz low and high cutoffs (filtered condition). These tests were performed at signal-to-noise ratios of +5, 0, and -5-dB SNR. The ATCs outperformed the control group in all conditions. The differences were statistically significant in all cases, and the largest difference was observed under the most difficult conditions (-5 dB SNR). Overall, scores were higher when high-frequency components were not suppressed for both groups, although statistically significant differences were not observed for the control group at 0 dB SNR. The results indicate that ATCs are more capable of identifying speech in noise. This may be due to the effect of their training. On the other hand, performance seems to decrease when the high frequency components of speech are removed, regardless of training.

  17. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiaming; Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202; Luo, Le, E-mail: leluo@iupui.edu

    2014-03-14

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10{sup −9} rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absencemore » of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10{sup −9}rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film.« less

  18. NASA Noise Reduction Program for Advanced Subsonic Transports

    NASA Technical Reports Server (NTRS)

    Stephens, David G.; Cazier, F. W., Jr.

    1995-01-01

    Aircraft noise is an important byproduct of the world's air transportation system. Because of growing public interest and sensitivity to noise, noise reduction technology is becoming increasingly important to the unconstrained growth and utilization of the air transportation system. Unless noise technology keeps pace with public demands, noise restrictions at the international, national and/or local levels may unduly constrain the growth and capacity of the system to serve the public. In recognition of the importance of noise technology to the future of air transportation as well as the viability and competitiveness of the aircraft that operate within the system, NASA, the FAA and the industry have developed noise reduction technology programs having application to virtually all classes of subsonic and supersonic aircraft envisioned to operate far into the 21st century. The purpose of this paper is to describe the scope and focus of the Advanced Subsonic Technology Noise Reduction program with emphasis on the advanced technologies that form the foundation of the program.

  19. Aircraft and background noise annoyance effects

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  20. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE).

    PubMed

    Fuks, Kateryna B; Weinmayr, Gudrun; Basagaña, Xavier; Gruzieva, Olena; Hampel, Regina; Oftedal, Bente; Sørensen, Mette; Wolf, Kathrin; Aamodt, Geir; Aasvang, Gunn Marit; Aguilera, Inmaculada; Becker, Thomas; Beelen, Rob; Brunekreef, Bert; Caracciolo, Barbara; Cyrys, Josef; Elosua, Roberto; Eriksen, Kirsten Thorup; Foraster, Maria; Fratiglioni, Laura; Hilding, Agneta; Houthuijs, Danny; Korek, Michal; Künzli, Nino; Marrugat, Jaume; Nieuwenhuijsen, Mark; Östenson, Claes-Göran; Penell, Johanna; Pershagen, Göran; Raaschou-Nielsen, Ole; Swart, Wim J R; Peters, Annette; Hoffmann, Barbara

    2017-04-01

    We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), >2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  1. Vibration and Noise in Magnetic Resonance Imaging of the Vocal Tract: Differences between Whole-Body and Open-Air Devices.

    PubMed

    Přibil, Jiří; Přibilová, Anna; Frollo, Ivan

    2018-04-05

    This article compares open-air and whole-body magnetic resonance imaging (MRI) equipment working with a weak magnetic field as regards the methods of its generation, spectral properties of mechanical vibration and acoustic noise produced by gradient coils during the scanning process, and the measured noise intensity. These devices are used for non-invasive MRI reconstruction of the human vocal tract during phonation with simultaneous speech recording. In this case, the vibration and noise have negative influence on quality of speech signal. Two basic measurement experiments were performed within the paper: mapping sound pressure levels in the MRI device vicinity and picking up vibration and noise signals in the MRI scanning area. Spectral characteristics of these signals are then analyzed statistically and compared visually and numerically.

  2. Aircraft Noise Reduction Subproject Overview

    NASA Technical Reports Server (NTRS)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  3. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  4. Are air pollution and traffic noise independently associated with atherosclerosis: the Heinz Nixdorf Recall Study.

    PubMed

    Kälsch, Hagen; Hennig, Frauke; Moebus, Susanne; Möhlenkamp, Stefan; Dragano, Nico; Jakobs, Hermann; Memmesheimer, Michael; Erbel, Raimund; Jöckel, Karl-Heinz; Hoffmann, Barbara

    2014-04-01

    Living close to high traffic has been linked to subclinical atherosclerosis, however it is not clear, whether fine particulate matter (PM) air pollution or noise, two important traffic-related exposures, are responsible for the association. We investigate the independent associations of long-term exposure to fine PM and road traffic noise with thoracic aortic calcification (TAC), a reliable measure of subclinical atherosclerosis. We used baseline data (2000-2003) from the German Heinz Nixdorf Recall Study, a population-based cohort of 4814 randomly selected participants. We assessed residential long-term exposure to PM with a chemistry transport model, and to road traffic noise using façade levels from noise models as weighted 24 h mean noise (Lden) and night-time noise (Lnight). Thoracic aortic calcification was quantified from non-contrast enhanced electron beam computed tomography. We used multiple linear regression to estimate associations of environmental exposures with ln(TAC+1), adjusting for each other, individual, and neighbourhood characteristics. In 4238 participants (mean age 60 years, 49.9% male), PM2.5 (aerodynamic diameter ≤2.5 µm) and Lnight are both associated with an increasing TAC-burden of 18.1% (95% CI: 6.6; 30.9%) per 2.4 µg/m(3) PM2.5 and 3.9% (95% CI 0.0; 8.0%) per 5dB(A) Lnight, respectively, in the full model and after mutual adjustment. We did not observe effect measure modification of the PM2.5 association by Lnight or vice versa. Long-term exposure to fine PM and night-time traffic noise are both independently associated with subclinical atherosclerosis and may both contribute to the association of traffic proximity with atherosclerosis.

  5. Fluidic Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kinzie, Kevin; Henderson, Brenda; Whitmire, Julia

    2004-01-01

    Chevron mixing devices are used to reduce noise from commercial separate-flow turbofan engines. Mechanical chevron serrations at the nozzle trailing edge generate axial vorticity that enhances jet plume mixing and consequently reduces far-field noise. Fluidic chevrons generated with air injected near the nozzle trailing edge create a vorticity field similar to that of the mechanical chevrons and allow more flexibility in controlling acoustic and thrust performance than a passive mechanical design. In addition, the design of such a system has the future potential for actively controlling jet noise by pulsing or otherwise optimally distributing the injected air. Scale model jet noise experiments have been performed in the NASA Langley Low Speed Aeroacoustic Wind Tunnel to investigate the fluidic chevron concept. Acoustic data from different fluidic chevron designs are shown. Varying degrees of noise reduction are achieved depending on the injection pattern and injection flow conditions. CFD results were used to select design concepts that displayed axial vorticity growth similar to that associated with mechanical chevrons and qualitatively describe the air injection flow and the impact on acoustic performance.

  6. Short term effect of air pollution, noise and heat waves on preterm births in Madrid (Spain).

    PubMed

    Arroyo, Virginia; Díaz, Julio; Ortiz, Cristina; Carmona, Rocío; Sáez, Marc; Linares, Cristina

    2016-02-01

    Preterm birth (PTB) refers to delivery before 37 weeks of gestation and represents the leading cause of early-life mortality and morbidity in developed countries. PTB can lead to serious infant health outcomes. The etiology of PTB remains uncertain, but epidemiologic studies have consistently shown elevated risks with different environmental variables as traffic-related air pollution (TRAP). The aim of the study was to evaluate with time series methodology the short-term effect of air pollutants, noise levels and ambient temperature on the number of births and preterm births occurred in Madrid City during the 2001-2009 period. A time-series analysis was performed to assess the short term impact of daily mean concentrations (µg/m(3)) of PM2.5 and PM10, O3 and NO2. Measurements of Acoustic Pollution in dB(A) analyzed were: Leqd, equivalent diurnal noise level and Leqn, equivalent nocturnal noise level. Maximum and Minimum daily temperature (°C), mean Humidity in the air (%) and Atmospheric Pressure (HPa), were included too. Linear trends, seasonality, as well as the autoregressive nature of the series itself were controlled. We added as covariate the day of the week too. Autoregressive over-dispersed Poisson regression models were performed and the environmental variables were included with short-term lags (from 0 to 7 days) in reference to the date of birth. Firstly, simple models for the total number of births and preterm births were done separately. In a second stage, a model for total births adjusted for preterm births was performed. A total of 298,705 births were analyzed. The results of the final models were expressed in relative risks (RRs) for interquartile increase. We observed evidence of a short term effect at Lag 0, for the following environmental variables analyzed, PM2.5 (RR: 1.020; 95% CI:(1.008 1.032)) and O3 (RR: 1.012; 95% CI:(1.002 1.022)) concentrations and Leqd (RR: 1.139; 95% CI:( (1.124 1.154)) for the total number of births, and besides

  7. The impact of an urban park on air pollution and noise levels in the Mediterranean city of Tel-Aviv, Israel.

    PubMed

    Cohen, Pninit; Potchter, Oded; Schnell, Izhak

    2014-12-01

    This study examines the influence of urban parks on air quality and noise in the city of Tel-Aviv, Israel, by investigation of an urban park, an urban square and a street canyon. Simultaneous monitoring of several air pollutants and noise levels were conducted. The results showed that urban parks can reduce NOx, CO and PM10 and increase O3 concentrations and that park's mitigation effect is greater at higher NOx and PM10 levels. During extreme events, mean values of 413 ppb NOx and 80 μG/m3 PM10 were measured in the street while mean values of 89 ppb NOx and 24 μG/m3 PM10 were measured in the park. Whereas summer highest O3 values of 84 ppb were measured in the street, 94 ppb were measured in the park. The benefit of the urban park in reducing NOx and PM10 concentrations is more significant than the disadvantage of increased O3 levels. Furthermore, urban parks can reduce noise by ∼5 dB(A). Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Actively generated noise liquid flowmeter.

    PubMed

    Tanisawa, S; Hirose, H; Yoshihisa, N

    1994-01-01

    A new noise flowmeter with two transducers has been tested experimentally in water. It detects the noises generated by the interaction between artificially introduced air bubbles and a built-in obstacle with a downstream transducer, and differentiates them from the external noises detected by the upstream transducer in a pipe. The system includes processing instrumentation with functions such as averaging and difference-operating for reduction of external noise effects.

  9. Computer programs for producing single-event aircraft noise data for specific engine power and meteorological conditions for use with USAF (United States Air Force) community noise model (NOISEMAP)

    NASA Astrophysics Data System (ADS)

    Mohlman, H. T.

    1983-04-01

    The Air Force community noise prediction model (NOISEMAP) is used to describe the aircraft noise exposure around airbases and thereby aid airbase planners to minimize exposure and prevent community encroachment which could limit mission effectiveness of the installation. This report documents two computer programs (OMEGA 10 and OMEGA 11) which were developed to prepare aircraft flight and ground runup noise data for input to NOISEMAP. OMEGA 10 is for flight operations and OMEGA 11 is for aircraft ground runups. All routines in each program are documented at a level useful to a programmer working with the code or a reader interested in a general overview of what happens within a specific subroutine. Both programs input normalized, reference aircraft noise data; i.e., data at a standard reference distance from the aircraft, for several fixed engine power settings, a reference airspeed and standard day meteorological conditions. Both programs operate on these normalized, reference data in accordance with user-defined, non-reference conditions to derive single-event noise data for 22 distances (200 to 25,000 feet) in a variety of physical and psycho-acoustic metrics. These outputs are in formats ready for input to NOISEMAP.

  10. Externally-blown-flap noise

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Kreim, W. J.; Olsen, W. A.

    1972-01-01

    Noise data were obtained with a large externally blown flap model. A fan-jet engine exhaust was simulated by a 1/2-scale bypass nozzle supplied by pressurized air. The nozzle was pylon mounted on a wing section having a double-slotted flap for lift augmentation. Noise radiation patterns and spectra were obtained for nozzle exhaust velocities between 400 and 1150 ft/sec. The blown flap noise data are in good agreement with previous small model results extrapolated to test conditions by Strouhal scaling. The results indicate that blown flap noise must be suppressed to meet STOL aircraft noise goals.

  11. Energy and Environment 1990: Transportation-induced noise and air pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-01-01

    Contents: public reaction to low levels of aircraft noise; airport noise insulation of homes surrounding stapleton international airport; sound insulation and thermal performance modifications: case study for three dwellings near bwi airport; single-number ratings for outdoor-indoor sound insulation; control of wheel squeal noise in rail transit cars; knowledge-based preprocessor for traffic noise prediction; barrier overlap analysis procedure; atmospheric effects on traffic noise propagation; predicting stop-and-go traffic noise with stamina 2.0; feasibility of transparent noise barriers; field testing of the effectiveness of open-graded asphalt pavement in reducing tire noise from highway vehicles; cost of noise barrier construction in the united states;more » comparisons of emissions of transit buses using methanol and diesel fuel; high-speed rail system noise assessment; energy-related, environmental, and economic benefits of florida's high-speed rail and maglev systems proposals.« less

  12. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  13. Impact of Azimuthally Controlled Fluidic Chevrons on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Norum, Thomas D.

    2008-01-01

    The impact of azimuthally controlled air injection on broadband shock noise and mixing noise for single and dual stream jets was investigated. The single stream experiments focused on noise reduction for low supersonic jet exhausts. Dual stream experiments included high subsonic core and fan conditions and supersonic fan conditions with transonic core conditions. For the dual stream experiments, air was injected into the core stream. Significant reductions in broadband shock noise were achieved in a single jet with an injection mass flow equal to 1.2% of the core mass flow. Injection near the pylon produced greater broadband shock noise reductions than injection at other locations around the nozzle periphery. Air injection into the core stream did not result in broadband shock noise reduction in dual stream jets. Fluidic injection resulted in some mixing noise reductions for both the single and dual stream jets. For subsonic fan and core conditions, the lowest noise levels were obtained when injecting on the side of the nozzle closest to the microphone axis.

  14. Exposure to Road, Railway, and Aircraft Noise and Arterial Stiffness in the SAPALDIA Study: Annual Average Noise Levels and Temporal Noise Characteristics

    PubMed Central

    Eze, Ikenna C.; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Endes, Simon; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Schindler, Christian; Schmidt-Trucksäss, Arno; Brink, Mark; Cajochen, Christian; Marc Wunderli, Jean; Röösli, Martin; Probst-Hensch, Nicole

    2017-01-01

    Background: The impact of different transportation noise sources and noise environments on arterial stiffness remains unknown. Objectives: We evaluated the association between residential outdoor exposure to annual average road, railway, and aircraft noise levels, total noise intermittency (IR), and total number of noise events (NE) and brachial-ankle pulse wave velocity (baPWV) following a cross-sectional design. Methods: We measured baPWV (meters/second) in 2,775 participants (49–81 y old) at the second follow-up (2010–2011) of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We assigned annual average road, railway, and aircraft noise levels (Ldensource), total day- and nighttime NEtime and IRtime (percent fluctuation=0%, none or constant noise; percent fluctuation=100%, high fluctuation) at the most exposed façade using 2011 Swiss noise models. We applied multivariable linear mixed regression models to analyze associations. Results: Medians [interquartile ranges (IQRs)] were baPWV=13.4 (3.1) m/s; Ldenair (57.6% exposed)=32.8 (8.0) dB; Ldenrail (44.6% exposed)=30.0 (8.1) dB; Ldenroad (99.7% exposed): 54.2 (10.6) dB; NEnight=123 (179); NEday=433 (870); IRnight=73% (27); and IRday=63.8% (40.3). We observed a 0.87% (95% CI: 0.31, 1.43%) increase in baPWV per IQR of Ldenrail, which was greater with IRnight>80% or with daytime sleepiness. We observed a nonsignificant positive association between Ldenroad and baPWV in urban areas and a negative tendency in rural areas. NEnight, but not NEday, was associated with baPWV. Associations were independent of the other noise sources and air pollution. Conclusions: Long-term exposure to railway noise, particularly in an intermittent nighttime noise environment, and to nighttime noise events, mainly related to road noise, may affect arterial stiffness, a major determinant of cardiovascular disease. Ascertaining noise exposure characteristics beyond average noise levels may

  15. DART Core/Combustor-Noise Initial Test Results

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.; Henderson, Brenda S.; Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. The new NASA DGEN Aero0propulsion Research Turbofan (DART) is a cost-efficient testbed for the study of core-noise physics and mitigation. This presentation gives a brief description of the recently completed DART core combustor-noise baseline test in the NASA GRC Aero-Acoustic Propulsion Laboratory (AAPL). Acoustic data was simultaneously acquired using the AAPL overhead microphone array in the engine aft quadrant far field, a single midfield microphone, and two semi-infinite-tube unsteady pressure sensors at the core-nozzle exit. An initial assessment shows that the data is of high quality and compares well with results from a quick 2014 feasibility test. Combustor noise components of measured total-noise signatures were educed using a two-signal source-separation method an dare found to occur in the expected frequency range. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject.

  16. Environmental stressors and cardio-metabolic disease: part I-epidemiologic evidence supporting a role for noise and air pollution and effects of mitigation strategies.

    PubMed

    Münzel, Thomas; Sørensen, Mette; Gori, Tommaso; Schmidt, Frank P; Rao, Xiaoquan; Brook, Jeffrey; Chen, Lung Chi; Brook, Robert D; Rajagopalan, Sanjay

    2017-02-21

    Traffic noise and air pollution together represent the two most important environmental risk factors in urbanized societies. The first of this two-part review discusses the epidemiologic evidence in support of the existence of an association between these risk factors with cardiovascular and metabolic disease. While independent effects of these risk factors have now clearly been shown, recent studies also suggest that the two exposures may interact with each other and with traditional risk factors such as hypertension and type 2 diabetes. From a societal and policy perspective, the health effects of both air pollution and traffic noise are observed for exposures well below the thresholds currently accepted as being safe. Current gaps in knowledge, effects of intervention and their impact on cardiovascular disease, will be discussed in the last section of this review. Increased awareness of the societal burden posed by these novel risk factors and acknowledgement in traditional risk factor guidelines may intensify the efforts required for effective legislation to reduce air pollution and noise. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions please email: journals.permissions@oup.com.

  17. Principles of Air Defense and Air Vehicle Penetration

    DTIC Science & Technology

    2000-03-01

    Range For reliable dateetien, the target signal must reach some minimum or threshold value called S . . When internal noise is the only interfer...analyze air defense and air vehicle penetration. Unique expected value models are developed with frequent numerical examples. Radar...penetrator in the presence of spurious returns from internal and external noise will be discussed. Tracking With sufficient sensor information to determine

  18. High blood pressure and long-term exposure to indoor noise and air pollution from road traffic.

    PubMed

    Foraster, Maria; Künzli, Nino; Aguilera, Inmaculada; Rivera, Marcela; Agis, David; Vila, Joan; Bouso, Laura; Deltell, Alexandre; Marrugat, Jaume; Ramos, Rafel; Sunyer, Jordi; Elosua, Roberto; Basagaña, Xavier

    2014-11-01

    Traffic noise has been associated with prevalence of hypertension, but reports are inconsistent for blood pressure (BP). To ascertain noise effects and to disentangle them from those suspected to be from traffic-related air pollution, it may be essential to estimate people's noise exposure indoors in bedrooms. We analyzed associations between long-term exposure to indoor traffic noise in bedrooms and prevalent hypertension and systolic (SBP) and diastolic (DBP) BP, considering long-term exposure to outdoor nitrogen dioxide (NO2). We evaluated 1,926 cohort participants at baseline (years 2003-2006; Girona, Spain). Outdoor annual average levels of nighttime traffic noise (Lnight) and NO2 were estimated at postal addresses with a detailed traffic noise model and a land-use regression model, respectively. Individual indoor traffic Lnight levels were derived from outdoor Lnight with application of insulations provided by reported noise-reducing factors. We assessed associations for hypertension and BP with multi-exposure logistic and linear regression models, respectively. Median levels were 27.1 dB(A) (indoor Lnight), 56.7 dB(A) (outdoor Lnight), and 26.8 μg/m3 (NO2). Spearman correlations between outdoor and indoor Lnight with NO2 were 0.75 and 0.23, respectively. Indoor Lnight was associated both with hypertension (OR = 1.06; 95% CI: 0.99, 1.13) and SBP (β = 0.72; 95% CI: 0.29, 1.15) per 5 dB(A); and NO2 was associated with hypertension (OR = 1.16; 95% CI: 0.99, 1.36), SBP (β = 1.23; 95% CI: 0.21, 2.25), and DBP (β⊇= 0.56; 95% CI: -0.03, 1.14) per 10 μg/m3. In the outdoor noise model, Lnight was associated only with hypertension and NO2 with BP only. The indoor noise-SBP association was stronger and statistically significant with a threshold at 30 dB(A). Long-term exposure to indoor traffic noise was associated with prevalent hypertension and SBP, independently of NO2. Associations were less consistent for outdoor traffic Lnight and likely affected by

  19. 14 CFR 150.23 - Noise compatibility programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (CONTINUED) AIRPORTS AIRPORT NOISE COMPATIBILITY PLANNING Development of Noise Exposure Maps and Noise... consultation with FAA regional officials, the officials of the state and of any public agencies and planning..., informal agreement from FAA on proposed new or modified flight procedures. For air carrier airports...

  20. 14 CFR 150.23 - Noise compatibility programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (CONTINUED) AIRPORTS AIRPORT NOISE COMPATIBILITY PLANNING Development of Noise Exposure Maps and Noise... consultation with FAA regional officials, the officials of the state and of any public agencies and planning..., informal agreement from FAA on proposed new or modified flight procedures. For air carrier airports...

  1. 14 CFR 150.23 - Noise compatibility programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) AIRPORTS AIRPORT NOISE COMPATIBILITY PLANNING Development of Noise Exposure Maps and Noise... consultation with FAA regional officials, the officials of the state and of any public agencies and planning..., informal agreement from FAA on proposed new or modified flight procedures. For air carrier airports...

  2. 14 CFR 150.23 - Noise compatibility programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (CONTINUED) AIRPORTS AIRPORT NOISE COMPATIBILITY PLANNING Development of Noise Exposure Maps and Noise... consultation with FAA regional officials, the officials of the state and of any public agencies and planning..., informal agreement from FAA on proposed new or modified flight procedures. For air carrier airports...

  3. 14 CFR 150.23 - Noise compatibility programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (CONTINUED) AIRPORTS AIRPORT NOISE COMPATIBILITY PLANNING Development of Noise Exposure Maps and Noise... consultation with FAA regional officials, the officials of the state and of any public agencies and planning..., informal agreement from FAA on proposed new or modified flight procedures. For air carrier airports...

  4. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  5. Thermal-Mechanical Noise Based CMUT Characterization and Sensing

    PubMed Central

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F. Levent

    2012-01-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Since the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics where a direct connection to CMUT array element terminals is not available. These measurements can be performed in air at the wafer level, suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm diameter CMUT-on-CMOS array designed for intravascular imaging in the 10-20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element method and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure. PMID:22718877

  6. Thermal-mechanical-noise-based CMUT characterization and sensing.

    PubMed

    Gurun, Gokce; Hochman, Michael; Hasler, Paul; Degertekin, F Levent

    2012-06-01

    When capacitive micromachined ultrasonic transducers (CMUTs) are monolithically integrated with custom-designed low-noise electronics, the output noise of the system can be dominated by the CMUT thermal-mechanical noise both in air and in immersion even for devices with low capacitance. Because the thermal-mechanical noise can be related to the electrical admittance of the CMUTs, this provides an effective means of device characterization. This approach yields a novel method to test the functionality and uniformity of CMUT arrays and the integrated electronics when a direct connection to CMUT array element terminals is not available. Because these measurements can be performed in air at the wafer level, the approach is suitable for batch manufacturing and testing. We demonstrate this method on the elements of an 800-μm-diameter CMUT-on-CMOS array designed for intravascular imaging in the 10 to 20 MHz range. Noise measurements in air show the expected resonance behavior and spring softening effects. Noise measurements in immersion for the same array provide useful information on both the acoustic cross talk and radiation properties of the CMUT array elements. The good agreement between a CMUT model based on finite difference and boundary element methods and the noise measurements validates the model and indicates that the output noise is indeed dominated by thermal-mechanical noise. The measurement method can be exploited to implement CMUT-based passive sensors to measure immersion medium properties, or other parameters affecting the electro-mechanics of the CMUT structure.

  7. Reconstruction of Rayleigh-Lamb dispersion spectrum based on noise obtained from an air-jet forcing.

    PubMed

    Larose, Eric; Roux, Philippe; Campillo, Michel

    2007-12-01

    The time-domain cross correlation of incoherent and random noise recorded by a series of passive sensors contains the impulse response of the medium between these sensors. By using noise generated by a can of compressed air sprayed on the surface of a plexiglass plate, we are able to reconstruct not only the time of flight but the whole wave forms between the sensors. From the reconstruction of the direct A(0) and S(0) waves, we derive the dispersion curves of the flexural waves, thus estimating the mechanical properties of the material without a conventional electromechanical source. The dense array of receivers employed here allow a precise frequency-wavenumber study of flexural waves, along with a thorough evaluation of the rate of convergence of the correlation with respect to the record length, the frequency, and the distance between the receivers. The reconstruction of the actual amplitude and attenuation of the impulse response is also addressed in this paper.

  8. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees.

    PubMed

    Dadvand, Payam; Ostro, Bart; Figueras, Francesc; Foraster, Maria; Basagaña, Xavier; Valentín, Antònia; Martinez, David; Beelen, Rob; Cirach, Marta; Hoek, Gerard; Jerrett, Michael; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2014-07-01

    Maternal residential proximity to roads has been associated with adverse pregnancy outcomes. However, there is no study investigating mediators or buffering effects of road-adjacent trees on this association. We investigated the association between mothers' residential proximity to major roads and term low birth weight (LBW), while exploring possible mediating roles of air pollution (PM(2.5), PM(2.5-10), PM(10), PM(2.5) absorbance, nitrogen dioxide, and nitrogen oxides), heat, and noise and buffering effect of road-adjacent trees on this association. This cohort study was based on 6438 singleton term births in Barcelona, Spain (2001-2005). Road proximity was measured as both continuous distance to and living within 200 m from a major road. We assessed individual exposures to air pollution, noise, and heat using, respectively, temporally adjusted land-use regression models, annual averages of 24-hour noise levels across 50 m and 250 m, and average of satellite-derived land-surface temperature in a 50-m buffer around each residential address. We used vegetation continuous fields to abstract tree coverage in a 200-m buffer around major roads. Living within 200 m of major roads was associated with a 46% increase in term LBW risk; an interquartile range increase in heat exposure with an 18% increase; and third-trimester exposure to PM(2.5), PM(2.5-10), and PM10 with 24%, 25%, and 26% increases, respectively. Air pollution and heat exposures together explained about one-third of the association between residential proximity to major roads and term LBW. Our observations on the buffering of this association by road-adjacent trees were not consistent between our 2 measures of proximity to major roads. An increased risk of term LBW associated with proximity to major roads was partly mediated by air pollution and heat exposures.

  9. Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study.

    PubMed

    Tzivian, Lilian; Dlugaj, Martha; Winkler, Angela; Weinmayr, Gudrun; Hennig, Frauke; Fuks, Kateryna B; Vossoughi, Mohammad; Schikowski, Tamara; Weimar, Christian; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Hoffmann, Barbara

    2016-09-01

    Mild cognitive impairment (MCI) describes the intermediate state between normal cognitive aging and dementia. Adverse effects of air pollution (AP) on cognitive functions have been proposed, but investigations of simultaneous exposure to noise are scarce. We analyzed the cross-sectional associations of long-term exposure to AP and traffic noise with overall MCI and amnestic (aMCI) and nonamnestic (naMCI) MCI. At the second examination of the population-based Heinz Nixdorf Recall study, cognitive assessment was completed in 4,086 participants who were 50-80 years old. Of these, 592 participants were diagnosed as having MCI (aMCI, n = 309; naMCI, n = 283) according to previously published criteria using five neuropsychological subtests. We assessed long-term residential concentrations for size-fractioned particulate matter (PM) and nitrogen oxides with land use regression, and for traffic noise [weighted 24-hr (LDEN) and night-time (LNIGHT) means]. Logistic regression models adjusted for individual risk factors were calculated to estimate the association of environmental exposures with MCI in single- and two-exposure models. Most air pollutants and traffic noise were associated with overall MCI and aMCI. For example, an interquartile range increase in PM2.5 and a 10 A-weighted decibel [dB(A)] increase in LDEN were associated with overall MCI as follows [odds ratio (95% confidence interval)]: 1.16 (1.05, 1.27) and 1.40 (1.03, 1.91), respectively, and with aMCI as follows: 1.22 (1.08, 1.38) and 1.53 (1.05, 2.24), respectively. In two-exposure models, AP and noise associations were attenuated [e.g., for aMCI, PM2.5 1.13 (0.98, 1.30) and LDEN 1.46 (1.11, 1.92)]. Long-term exposures to air pollution and traffic noise were positively associated with MCI, mainly with the amnestic subtype. Tzivian L, Dlugaj M, Winkler A, Weinmayr G, Hennig F, Fuks KB, Vossoughi M, Schikowski T, Weimar C, Erbel R, Jöckel KH, Moebus S, Hoffmann B, on behalf of the Heinz Nixdorf Recall study

  10. Long-Term Air Pollution and Traffic Noise Exposures and Mild Cognitive Impairment in Older Adults: A Cross-Sectional Analysis of the Heinz Nixdorf Recall Study

    PubMed Central

    Tzivian, Lilian; Dlugaj, Martha; Winkler, Angela; Weinmayr, Gudrun; Hennig, Frauke; Fuks, Kateryna B.; Vossoughi, Mohammad; Schikowski, Tamara; Weimar, Christian; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Hoffmann, Barbara

    2016-01-01

    Background: Mild cognitive impairment (MCI) describes the intermediate state between normal cognitive aging and dementia. Adverse effects of air pollution (AP) on cognitive functions have been proposed, but investigations of simultaneous exposure to noise are scarce. Objectives: We analyzed the cross-sectional associations of long-term exposure to AP and traffic noise with overall MCI and amnestic (aMCI) and nonamnestic (naMCI) MCI. Methods: At the second examination of the population-based Heinz Nixdorf Recall study, cognitive assessment was completed in 4,086 participants who were 50–80 years old. Of these, 592 participants were diagnosed as having MCI (aMCI, n = 309; naMCI, n = 283) according to previously published criteria using five neuropsychological subtests. We assessed long-term residential concentrations for size-fractioned particulate matter (PM) and nitrogen oxides with land use regression, and for traffic noise [weighted 24-hr (LDEN) and night-time (LNIGHT) means]. Logistic regression models adjusted for individual risk factors were calculated to estimate the association of environmental exposures with MCI in single- and two-exposure models. Results: Most air pollutants and traffic noise were associated with overall MCI and aMCI. For example, an interquartile range increase in PM2.5 and a 10 A-weighted decibel [dB(A)] increase in LDEN were associated with overall MCI as follows [odds ratio (95% confidence interval)]: 1.16 (1.05, 1.27) and 1.40 (1.03, 1.91), respectively, and with aMCI as follows: 1.22 (1.08, 1.38) and 1.53 (1.05, 2.24), respectively. In two-exposure models, AP and noise associations were attenuated [e.g., for aMCI, PM2.5 1.13 (0.98, 1.30) and LDEN 1.46 (1.11, 1.92)]. Conclusions: Long-term exposures to air pollution and traffic noise were positively associated with MCI, mainly with the amnestic subtype. Citation: Tzivian L, Dlugaj M, Winkler A, Weinmayr G, Hennig F, Fuks KB, Vossoughi M, Schikowski T, Weimar C, Erbel R, Jöckel KH

  11. Background noise in piezoresistive, electret condenser, and ceramic microphones.

    PubMed

    Zuckerwar, Allan J; Kuhn, Theodore R; Serbyn, Roman M

    2003-06-01

    Background noise studies have been extended from air condenser microphones to piezoresistive, electret condenser, and ceramic microphones. Theoretical models of the respective noise sources within each microphone are developed and are used to derive analytical expressions for the noise power spectral density for each type. Several additional noise sources for the piezoresistive and electret microphones, beyond what had previously been considered, were applied to the models and were found to contribute significantly to the total noise power spectral density. Experimental background noise measurements were taken using an upgraded acoustic isolation vessel and data acquisition system, and the results were compared to the theoretically obtained expressions. The models were found to yield power spectral densities consistent with the experimental results. The measurements reveal that the 1/f noise coefficient is strongly correlated with the diaphragm damping resistance, irrespective of the detection technology, i.e., air condenser, piezoresistive, etc. This conclusion has profound implications upon the expected 1/f noise component of micromachined (MEMS) microphones.

  12. JPL noise control program

    NASA Technical Reports Server (NTRS)

    Klascius, A. F.

    1975-01-01

    Exposures of personnel to noise pollution at the Jet Propulsion Laboratories, Pasadena, California, were investigated. As a result of the study several protective measures were taken: (1) employees exposed to noise hazards were required to wear ear-protection devices, (2) mufflers and air diversion devices were installed around the wind tunnels; and (3) all personnel that are required to wear ear protection are given annual audimeter tests.

  13. Effect of air and noise pollution on species diversity and population density of forest birds at Lalpahari, West Bengal, India.

    PubMed

    Saha, Dulal C; Padhy, Pratap K

    2011-11-15

    The Rajmahal-type quality stones for building purposes are found abundantly in Birbhum district, West Bengal, India, where stone mining and crushing have become the main industrial activity. Although crusher dust is injurious to health, demand for crushed stone is ever-increasing as a result of rapid infrastructural growth in the country. Most of the crusher units at Rampurhat are situated along the roadways adjacent to forest under Tumboni Beat of Rampurhat Range of Birbhum Forest Division. Excessive load of air pollution in this area has led to degradation of this forest. The status of the ambient air and noise level was evaluated. The effect of air and noise pollution on abundance and variability of birds in this forest have been compared to an almost non-polluted forest of the same bio-geographic zone. Both species diversity and population density of birds were found to decrease in the polluted forest, especially in the areas adjacent to crushers. For comparing the pollution status of two different forest sites and for establishing whether the density of birds have any correlation between the sites, the Student's t-test and the chi-square test were applied respectively. Most of the results proved to be significant. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. High speed jet noise research at NASA Lewis

    NASA Astrophysics Data System (ADS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-04-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  15. High speed jet noise research at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Krejsa, Eugene A.; Cooper, B. A.; Kim, C. M.; Khavaran, Abbas

    1992-01-01

    The source noise portion of the High Speed Research Program at NASA LeRC is focused on jet noise reduction. A number of jet noise reduction concepts are being investigated. These include two concepts, the Pratt & Whitney ejector suppressor nozzle and the General Electric (GE) 2D-CD mixer ejector nozzle, that rely on ejectors to entrain significant amounts of ambient air to mix with the engine exhaust to reduce the final exhaust velocity. Another concept, the GE 'Flade Nozzle' uses fan bypass air at takeoff to reduce the mixed exhaust velocity and to create a fluid shield around a mixer suppressor. Additional concepts are being investigated at Georgia Tech Research Institute and at NASA LeRC. These will be discussed in more detail in later figures. Analytical methods for jet noise prediction are also being developed. Efforts in this area include upgrades to the GE MGB jet mixing noise prediction procedure, evaluation of shock noise prediction procedures, and efforts to predict jet noise directly from the unsteady Navier-Stokes equation.

  16. Willingness to pay to avoid health risks from road-traffic-related air pollution and noise across five countries.

    PubMed

    Istamto, Tifanny; Houthuijs, Danny; Lebret, Erik

    2014-11-01

    We conducted a multi-country study to estimate the perceived economic values of traffic-related air pollution and noise health risks within the framework of a large European project. We used contingent valuation as a method to assess the willingness-to-pay (WTP) for both types of pollutants simultaneously. We asked respondents how much they would be willing to pay annually to avoid certain health risks from specific pollutants. Three sets of vignettes with different levels of information were provided prior to the WTP questions. These vignettes described qualitative general health risks, a quantitative single health risk related to a pollutant, and a quantitative scenario of combined health risks related to a pollutant. The mean WTP estimates to avoid road-traffic air pollution effects for the three vignettes were: €130 per person per year (pp/y) for general health risks, €80 pp/y for a half year shorter in life expectancy, and €330 pp/y to a 50% decrease in road-traffic air pollution. Their medians were €40 pp/y, €10 pp/y and €50 pp/y, respectively. The mean WTP estimates to avoid road-traffic noise effects for the three vignettes were: €90 pp/y for general health risks, €100 pp/y for a 13% increase in severe annoyance, and €320 pp/y for a combined-risk scenario related to an increase of a noise level from 50 dB to 65 dB. Their medians were €20 pp/y, €20 pp/y and €50 pp/y, respectively. Risk perceptions and attitudes as well as environmental and pollutant concerns significantly affected WTP estimates. The observed differences in crude WTP estimates between countries changed considerably when perception-related variables were included in the WTP regression models. For this reason, great care should be taken when performing benefit transfer from studies in one country to another. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The Flight Track Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.

  18. The effect of noise-abatement profiles on noise immissions and human annoyance underneath a subsequent climbpath

    NASA Technical Reports Server (NTRS)

    Garbell, Maurice A.

    1990-01-01

    En route noise emissions on the ground can be affected by the detailed characteristics of intended noise-abatement climb profiles and procedures to an extent of 10 or more nautical miles from the start of the takeoff roll of a large or heavy air-carrier-type aircraft. Suggestions submitted to the noise abatement officials of the airports at Frankfurt, Federal Republic of Germany, and Zurick, Switzerland, and the aircarriers Lufthansa German Airlines and SWISSAIR are explained and discussed.

  19. Environmental resources of selected areas of Hawaii: Climate, ambient air quality, and noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, D.A.; Blasing, T.J.; Easterly, C.E.

    1995-03-01

    This report has been prepared to make available and archive background scientific data and related information on climate, ambient air quality, and ambient noise levels collected during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated.more » The report presents a general description of the climate add air quality for the islands of Hawaii (henceforth referred to as Hawaii), Maui and Oahu. It also presents a literature review as baseline information on the health effects of sulfide. The scientific background data and related information is being made available for use by others in conducting future scientific research in these areas. This report describes the environmental resources present in the areas studied (i.e., the affected environment) and does not represent an assessment of environmental impacts.« less

  20. Passive interior noise reduction analysis of King Air 350 turboprop aircraft using boundary element method/finite element method (BEM/FEM)

    NASA Astrophysics Data System (ADS)

    Dandaroy, Indranil; Vondracek, Joseph; Hund, Ron; Hartley, Dayton

    2005-09-01

    The objective of this study was to develop a vibro-acoustic computational model of the Raytheon King Air 350 turboprop aircraft with an intent to reduce propfan noise in the cabin. To develop the baseline analysis, an acoustic cavity model of the aircraft interior and a structural dynamics model of the aircraft fuselage were created. The acoustic model was an indirect boundary element method representation using SYSNOISE, while the structural model was a finite-element method normal modes representation in NASTRAN and subsequently imported to SYSNOISE. In the acoustic model, the fan excitation sources were represented employing the Ffowcs Williams-Hawkings equation. The acoustic and the structural models were fully coupled in SYSNOISE and solved to yield the baseline response of acoustic pressure in the aircraft interior and vibration on the aircraft structure due to fan noise. Various vibration absorbers, tuned to fundamental blade passage tone (100 Hz) and its first harmonic (200 Hz), were applied to the structural model to study their effect on cabin noise reduction. Parametric studies were performed to optimize the number and location of these passive devices. Effects of synchrophasing and absorptive noise treatments applied to the aircraft interior were also investigated for noise reduction.

  1. Noise levels in PICU: an evaluative study.

    PubMed

    Bailey, Elizabeth; Timmons, Stephen

    2005-12-01

    High levels of noise in the hospital environment can have an impact on patients and staff increasing both recovery time and stress respectively. When our seven-bedded paediatric intensive care unit (PICU) is full, noise levels seem to increase significantly. This study measured noise levels at various times and places within a PICU using Tenma sound level meter which simulates the subjective response of a human ear. Noise levels were often excessive, exceeding international guidelines. Staff conversation was responsible for most of the noise produced; medical equipment, patient interventions, telephones, doorbell and the air shoot system were also responsible for causing high levels of noise. More can be done to reduce noise and its effects on patients and staff.

  2. Noise Monitoring Titan III D Launch Vandenberg AFB, Calif

    DTIC Science & Technology

    1975-01-01

    ent weather conditions. d. Estimated Environmental Impact : (1) The impact of any single noise event is difficult to determine when one is concerned...from average atmospheric conditions should be considered when extrapolating these data. 2. No significant environmental impact is expected to result...AD-A012 748 NOISE MONITORING TITAN III D LAUNCH VANDENBERG AIR FORCE BASE, CALIFORNIA Ronald D. Burnett Environmental Health Laboratory McClellan Air

  3. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    NASA Technical Reports Server (NTRS)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  4. An Assessment of Commuter Aircraft Noise Impact

    NASA Technical Reports Server (NTRS)

    Fidell, Sanford; Pearsons, Karl S.; Silvati, Laura; Sneddon, Matthew

    1996-01-01

    This report examines several approaches to understanding 'the commuter aircraft noise problem.' The commuter aircraft noise problem in the sense addressed in this report is the belief that some aspect(s) of community response to noise produced by commuter aircraft operations may not be fully assessed by conventional environmental noise metrics and methods. The report offers alternate perspectives and approaches for understanding this issue. The report also develops a set of diagnostic screening questions; describes commuter aircraft noise situations at several airports; and makes recommendations for increasing understanding of the practical consequences of greater heterogeneity in the air transport fleet serving larger airports.

  5. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... database entry. Utilize the current NOISEMAP computer program for air installations and the Assessment System for Aircraft Noise for military training routes and military operating areas. Guidance on...

  6. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... database entry. Utilize the current NOISEMAP computer program for air installations and the Assessment System for Aircraft Noise for military training routes and military operating areas. Guidance on...

  7. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... database entry. Utilize the current NOISEMAP computer program for air installations and the Assessment System for Aircraft Noise for military training routes and military operating areas. Guidance on...

  8. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... database entry. Utilize the current NOISEMAP computer program for air installations and the Assessment System for Aircraft Noise for military training routes and military operating areas. Guidance on...

  9. 32 CFR 989.32 - Noise.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... database entry. Utilize the current NOISEMAP computer program for air installations and the Assessment System for Aircraft Noise for military training routes and military operating areas. Guidance on...

  10. The Miniaturization of the AFIT Random Noise Radar

    DTIC Science & Technology

    2013-03-01

    RANDOM NOISE RADAR I. Introduction Recent advances in technology and signal processing techniques have opened thedoor to using an ultra-wide band random...AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED...and Computer Engineering Graduate School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training

  11. Core Noise: Overview of Upcoming LDI Combustor Test

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Fixed Wing Project. The presentation covers: the emerging importance of core noise due to turbofan design trends and its relevance to the NASA N+3 noise-reduction goal; the core noise components and the rationale for the current emphasis on combustor noise; and the current and planned research activities in the combustor-noise area. Two NASA-sponsored research programs, with particular emphasis on indirect combustor noise, "Acoustic Database for Core Noise Sources", Honeywell Aerospace (NNC11TA40T) and "Measurement and Modeling of Entropic Noise Sources in a Single-Stage Low-Pressure Turbine", U. Illinois/U. Notre Dame (NNX11AI74A) are briefly described. Recent progress in the development of CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is outlined. Combustor-design trends and the potential impacts on combustor acoustics are discussed. A NASA GRC developed nine-point lean-direct-injection (LDI) fuel injector is briefly described. The modification of an upcoming thermo-acoustic instability evaluation of the GRC injector in a combustor rig to also provide acoustic information relevant to community noise is presented. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Quiet Performance Research Theme of the Fixed Wing Project aims to develop concepts and technologies to dramatically reduce the perceived community noise attributable to aircraft with minimal impact on weight and performance.

  12. Monte Carlo simulation of a quantum noise limited Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teymurazyan, A.; Rowlands, J. A.; Thunder Bay Regional Research Institute

    2014-04-15

    Purpose: Electronic Portal Imaging Devices (EPIDs) have been widely used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Our aim is to develop a new high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) that is quantum noise limited at dose levels corresponding to a single Linac pulse. Methods: Recently a new concept of CPID for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibers aligned with the incident x-raysmore » and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required in order to overcome the readout noise for portal imaging application. In this work the authors propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index (∼1 versus 1.38 in a typical cladding layer), a much superior light collection efficiency is achieved. Results: A Monte Carlo simulation of the new design has been conducted to investigate its feasibility. Detector quantities such as quantum efficiency (QE), spatial resolution (MTF), and frequency dependent detective quantum efficiency (DQE) have been evaluated. The detector signal and the quantum noise have been compared to the readout noise. Conclusions: Our studies show that the modified new CPID has a QE and DQE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current low-QE flat-panel based EPIDs. Furthermore it was demonstrated that the new CPID does not

  13. SST Technology Follow-On Program-Phase 2, Noise Suppressor/Nozzle Development. Volume 2. Noise Technology

    DTIC Science & Technology

    1975-03-01

    Loss Relationships 199 109 37-Tube, 4.5 Area Ratio Nozzle, Premergcd Jet Turbulence Noise 200 110 37-Tube Nozzle Premerged Jet Noise Peak...were obtained with the tunnel oil and at 165 knots. The tunnel air flows through a large , rectangular bell-mouth inlet, a (low straightening grid... ratio conditions on a fourteen-track annlog tape recorder for subsecjuent analysis after test com- pletion. Basic analysis of the recorded acoustic

  14. Ambient air pollution and annoyance responses from pregnant women

    NASA Astrophysics Data System (ADS)

    Llop, Sabrina; Ballester, Ferran; Estarlich, Marisa; Esplugues, Ana; Fernández-Patier, Rosalia; Ramón, Rosa; Marco, Alfredo; Aguirre, Amelia; Sunyer, Jordi; Iñiguez, Carmen; INMA-Valencia cohort

    ObjectivesTo describe the degree of annoyance caused by air pollution and noise in pregnant women in a birth cohort; to determine the modifying factors and their relation with exposure to ambient nitrogen dioxide (NO 2). MethodsThe study population was 855 pregnant women in Valencia, Spain. Annoyance caused by air pollution and noise, and explanatory factors were obtained from 786 pregnant women through a questionnaire. NO 2 levels were determined combining measurements at 93 points within the area of study and using geostatistical techniques (kriging). ResultsIn all 7.9% of the women reported high annoyance caused by air pollution and 13.1% high annoyance caused by noise. There was a significant difference in the degree of annoyance due to both air pollution and noise depending on the area where the women lived and their working status. The degree of annoyance correlated better with measured NO 2 at the municipality level (air pollution: r=0.53; noise: r=0.44) than at the individual level (air pollution and noise: r=0.21). On multivariate analysis, being a housewife, higher NO 2 levels and high traffic density were associated with higher degrees of annoyance. ConclusionsThere was a high percentage of women who perceived medium-high annoyance due to noise and air pollution. Annoyance caused by environmental pollutants could lead to some psychological effects, which impair the quality of life, or even physiological ones, which affect prenatal development.

  15. Locating air leaks in manned spacecraft using structure-borne noise.

    PubMed

    Holland, Stephen D; Chimenti, D E; Roberts, Ron; Strei, Michael

    2007-06-01

    All manned spacecraft are vulnerable to leaks generated by micrometeorite or debris impacts. Methods for locating such leaks using leak-generated, structure-borne ultrasonic noise are discussed and demonstrated. Cross-correlations of ultrasonic noise waveforms from a leak into vacuum are used to find the location of the leak. Four methods for sensing and processing leak noise have been developed and tested and each of these can be used to reveal the leak location. The methods, based on phased-array, distributed sensor, and dual sensor approaches, utilize the propagation patterns of guided ultrasonic Lamb waves in the spacecraft skin structure to find the source or direction of the leak noise. It is shown that each method can be used to successfully locate the leak to within a few millimeters on a 0.6-m2 aluminum plate. The relative merits of the four methods are discussed.

  16. [Relationship between noise and blood pressure in an airport environment].

    PubMed

    Hammoudi, N; Aoudi, S; Tizi, M; Larbi, K; Bougherbal, R

    2013-06-01

    The authors have tried to assess the noise annoyance and its relation with the development of hypertension for the staff working at the civilian airport of Algiers. This population is constantly subject to aircraft noises. The noise, through creating stress, acts on the central nervous system and on the autonomic nervous system and is likely to cause hypertension by increasing peripheral resistance, total cholesterol, fatty acids, adrenaline, cortisol and blood glucose. A number of studies revealed that starting from 65 decibels, the noise causes hypertension for patients of more than 40 years following 5 years of exposure. An analytical study was conducted in 2000, which made the comparison between two groups of men working at Air Algérie company. There were 91 officers belonging to air crew, whose number was estimated at that time at 547, and whose average age was 49 years, compared with 111 officers of the ground crew on a total of 1200 persons and whose average age was 56 years. All those officers have received work medical consultation. Patients with suspected hypertension were systematically oriented to cardiologist. Similarly, everyone has had a biological assessment, an ophthalmologic consultation and ENT consultation as well. Hypertension was found in 9.25% of the ground crew and in 16.63% of the air crew (P<0.001). Hypertension is more common among air crew, subject to a more important noise nuisance, at a younger age and with less risk factors than the ground crew, who develops hypertension with similar prevalence to general population's but at a younger age. The air crew gives more importance to treatment due to the risk of losing their navigation license. The ENT examination was abnormal in 39% of the air crew versus 8% of the ground crew. In the light of these results, the noise seems to really interfere in the development of hypertension in airport environment. It would be more interesting to identify the number of strokes and particularly acute

  17. Pavement noise measurements in Poland

    NASA Astrophysics Data System (ADS)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  18. Aviation Noise Impacts: State of the Science.

    PubMed

    Basner, Mathias; Clark, Charlotte; Hansell, Anna; Hileman, James I; Janssen, Sabine; Shepherd, Kevin; Sparrow, Victor

    2017-01-01

    Noise is defined as "unwanted sound." Aircraft noise is one, if not the most detrimental environmental effect of aviation. It can cause community annoyance, disrupt sleep, adversely affect academic performance of children, and could increase the risk for cardiovascular disease of people living in the vicinity of airports. In some airports, noise constrains air traffic growth. This consensus paper was prepared by the Impacts of Science Group of the Committee for Aviation Environmental Protection of the International Civil Aviation Organization and summarizes the state of the science of noise effects research in the areas of noise measurement and prediction, community annoyance, children's learning, sleep disturbance, and health. It also briefly discusses civilian supersonic aircraft as a future source of aviation noise.

  19. Aviation Noise Impacts: State of the Science

    PubMed Central

    Basner, Mathias; Clark, Charlotte; Hansell, Anna; Hileman, James I.; Janssen, Sabine; Shepherd, Kevin; Sparrow, Victor

    2017-01-01

    Noise is defined as “unwanted sound.” Aircraft noise is one, if not the most detrimental environmental effect of aviation. It can cause community annoyance, disrupt sleep, adversely affect academic performance of children, and could increase the risk for cardiovascular disease of people living in the vicinity of airports. In some airports, noise constrains air traffic growth. This consensus paper was prepared by the Impacts of Science Group of the Committee for Aviation Environmental Protection of the International Civil Aviation Organization and summarizes the state of the science of noise effects research in the areas of noise measurement and prediction, community annoyance, children’s learning, sleep disturbance, and health. It also briefly discusses civilian supersonic aircraft as a future source of aviation noise. PMID:29192612

  20. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  1. Noise levels in a neonatal transport incubator in medically configured aircraft.

    PubMed

    Sittig, Steven E; Nesbitt, Jeffrey C; Krageschmidt, Dale A; Sobczak, Steven C; Johnson, Robert V

    2011-01-01

    The purpose of this study was to evaluate exposure of neonates to noise during air medical transport as few commercially available hearing protective devices exist for premature newborns during air medical transport. Sound pressure levels in an infant incubator during actual flight conditions in four common medically configured aircraft were measured. Three noise dosimeters measured time-weighted average noise exposure during flight in each aircraft. One dosimeter was placed in the infant incubator, and the remaining dosimeters recorded noise levels in various parts of the aircraft cabin. The incubator provided a 6-dBA decrease in noise exposure from that in the crew cabin. The average noise level in the incubator in all aircraft was close to 80 dB, much higher than the proposed limits of 45 dB for neonatal intensive care unit noise exposure or 60 dB during transport. Exposure of neonates to elevated noise levels during transport may be harmful, and steps should be taken to protect the hearing of this patient population. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Environmental Assessment: Improvements to Silver Flag Training Area at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2013-01-01

    moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program soils , wetlands, surface water, floodplains, vegetation, fish...magnitude, on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, smf ace water, floodplains, vegetation, fish and wildlife...range from negligible to moderate in magnitude on air quality, noise, Air Installation Compatible Use Zone program, soils , wetlands, surface water

  3. Gas turbine exhaust nozzle. [for noise reduction

    NASA Technical Reports Server (NTRS)

    Straight, D. M. (Inventor)

    1973-01-01

    An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.

  4. Noise of High Performance Aircraft at Afterburner

    DTIC Science & Technology

    2016-02-10

    Navy F18E and the Air Force F22 aircraft became available to the principal investigator. The present project is to analyze these data to identify...the end of the first year of this project (2015), we were able to clearly identify two new dominant noise components from the F22 at afterburner...F18E and F22 aircraft. Compare the noise spectra with those of laboratory hot supersonic jets. ii. Identify any new dominant noise components emitted

  5. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Ege, Russell; Burn, Melissa; Carey, Jeffrey; Bradley, Kevin

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on community noise impact and air carrier operating efficiency at any of 16 large- and medium-sized U.S. airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, or 10 decibels. NIM computes the resultant noise impact and estimates any airline operations improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the.contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternate routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  6. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Ege, Russell A.; Brown, Jerome; Bradley, Kevin; Grandi, Fabio

    1999-01-01

    To meet its objective of assisting the US aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operation might have on community noise impact and air carrier operating efficiency at any of 16 large and medium size US airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, and 10 decibels, NIM computes the resultant noise impact and estimates any airline operational improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternated routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  7. USAF Bioenvironmental Noise Data Handbook. Volume 152: C-12A in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The C-12A is a military version of the Beechcraft Super King Air 200. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported for five locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  8. Occupational noise exposure and hearing levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambasankaran, M.; Brahmachari, D.; Chadda, V.K.

    1981-07-01

    A study was made at the Bhabha Atomic Research Center to measure the hearing levels of persons working in a noise environment. Two different workplaces, central air-conditioning plant and glass blowing shops, where a number of persons were exposed to noise levels exceeding 85 dB(A) were chosen. The occupational exposure to noise was determined using a sound level meter, an octave band filter and a personal noise dose meter. The hearing levels of persons exposed to these high levels of noise and a control group not exposed to occupational noise were measured by means of a pure-tone audiometer in amore » specially-built booth. These persons, aged between 20 to 60 years, were divided into four age groups for the study. The low ambient noise levels in the booth were measured using correlation technique since such low signals cannot be detected by an ordinary sound level meter. The audiometric findings and the results of the noise level survey are discussed in this paper.« less

  9. Associations of long-term exposure to air pollution and road traffic noise with cognitive function-An analysis of effect measure modification.

    PubMed

    Tzivian, Lilian; Jokisch, Martha; Winkler, Angela; Weimar, Christian; Hennig, Frauke; Sugiri, Dorothea; Soppa, Vanessa J; Dragano, Nico; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Hoffmann, Barbara

    2017-06-01

    Adverse effects of traffic-related air pollution (AP) and noise on cognitive functions have been proposed, but little is known about their interactions and the combined effect of co-exposure. Cognitive assessment was completed by 4086 participants of the population-based Heinz Nixdorf Recall cohort study using five neuropsychological subtests and an additively calculated global cognitive score (GCS). We assessed long-term residential concentrations for size-fractioned particulate matter (PM) and nitrogen oxides with land use regression. Road traffic noise (weighted 24-h (L DEN ) and night-time (L NIGHT ) means) was assessed according to the EU directive 2002/49/EC. Linear regression models adjusted for individual-level characteristics were calculated to estimate effect modification of associations between AP and noise with cognitive function. We used multiplicative interaction terms and categories of single or double high exposure, dichotomizing the potential effect modifier at the median (AP) or at an a priori defined threshold (road traffic noise). In fully adjusted models, high noise exposure increased the association of AP with cognitive function. For example, for an interquartile range increase of PM 2.5 (IQR 1.43), association s with GCS were: estimate (β)=-0.16 [95% confidence interval: -0.33; 0.01] and β=-0.48 [-0.72; -0.23] for low and high L DEN , respectively. The association of noise with GCS was restricted to highly AP-exposed participants. We observed stronger negative associations in those participants with double exposure compared to the addition of effect estimates of each single exposure. Our study suggests that AP and road traffic noise might act synergistically on cognitive function in adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  11. Interior noise prediction methodology: ATDAC theory and validation

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-04-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  12. Noise emitted from road, rail and air traffic and their effects on sleep

    NASA Astrophysics Data System (ADS)

    Griefahn, Barbara; Marks, Anke; Robens, Sibylle

    2006-08-01

    This study compared the effects of road, rail, and aircraft noise and tested the applicability of the equivalent noise level for the evaluation of sleep disturbances. Sixteen women and 16 men (19-28 years) slept during 3 consecutive weeks in the laboratory. Eight persons slept in quiet throughout. Twenty-four persons were exposed to road, rail, or aircraft noise with weekly permuted changes. Each week consisted of a random sequence of a quiet night (32 dBA) and 3 nights with equivalent noise levels of 39, 44, and 50 dBA and maximum levels of 50-62, 56-68, and 62-74 dBA, respectively. The polysomnogram was recorded during all nights, sleep quality was assessed and performance tests were completed in the morning. Subjectively evaluated sleep quality decreased and reaction time increased gradually with noise levels, whereas most physiological variables revealed the same reactions to both the lower and considerably stronger reactions to the highest noise load. Aircraft noise, rail and road traffic noise caused similar after-effects but physiological sleep parameters were most severely affected by rail noise. The equivalent noise level seems to be a suitable predictor for subjectively evaluated sleep quality but not for physiological sleep disturbances.

  13. How to design low-noise burners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sams, G.; Jordan, J.

    1996-12-01

    Frequently, natural draft burner designs used in indirect heaters fail to meet the low noise standard of 85 to 88 dBA three feet from the flame arrestor. Noise encountered with indirect burner designs has been shown to be related to nozzle and firetube gas velocities. Testing shows that when the nozzle velocity is sufficiently greater than the firetube velocity, the low-frequency rumble that accompanies current designs ceases. Data obtained from field testing was used to construct a relationship between burner noise level and gas volume expansion ratio, burner air-to-fuel ratio, mixture flowrate, orifice velocity, burner area, and the number ofmore » burners. The noise from a burner can be predicted if the above easily calculable variables are known.« less

  14. Study of active noise control system for a commercial HVAC unit

    NASA Astrophysics Data System (ADS)

    Devineni, Naga

    Acoustic noise is a common problem in everyday life. If the appliances that are present in the work and living areas generate noise then it's a serious problem. One such appliance is the Heating, Ventilation and Air-conditioning system (HVAC) in which blower fan and compressor units are housed together. Operation of a HVAC system creates two kinds of noise. One is the noise due to the air flow and the other is the result of the compressor. Both of them exhibit different signal properties and need different strategies to control them. There has been previous efforts in designing noise control systems that can control noise from the HVAC system. These include passive methods which use sound absorption materials to attenuate noise and active methods which cancel noise by generating anti-noise. Passive methods are effective in limiting the high frequency noise, but are inefficient in controlling low frequency noise from the compressor. Compressor noise is one of the strong low frequency components that propagate through the walls, therefore there is need for deploying active signal processing methods that consider the signal properties into consideration to cancel the noise acoustically. The quasi periodic nature of the compressor noise is exploited in noise modeling which aids in implementing an adaptive linear prediction filter in estimating the anti noise [12]. In this thesis, a multi channel architecture has been studied for a specific HVAC system in order to improve noise cancellation by creating larger quiet zone. In addition to the multi-channel architecture, a real time narrow band Active Noise Control (ANC) was employed to cancel noise under practical conditions.

  15. Avoiding low frequency noise in packaged HVAC equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbing, C.E.; Blazier, W.E.Jr.

    1993-06-01

    The purpose of this article is to help those involved in the design and commissioning of packaged HVAC systems to understand the root causes of low frequency noise problems and how to avoid many of them at the design stage. In the 1980's, two things happened to dramatically change the types of noise problems encountered in typical new construction. The first was the introduction of new energy regulations that favored variable air volume (VAV) distribution systems over constant volume air distribution systems. A by-product of VAV design is that mid- and high frequency sound pressure levels produced by current airmore » terminal devices and diffusers in many applications are significantly lower than in the past. The second factor was a trend away from the use of built-up central station fan equipment in favor of packaged, floor-by-floor air handlers or rooftop units. As a result, today's HVAC system noise problems are not confined to just the roar and hiss of the past, but now include intense low frequency rumble and time modulation. Indeed, most current noise problems in modern buildings occur in the frequency range well below 250 Hz. A large fraction of these are a result of the dominant sound pressure levels in the 12 to 40 Hz region. These factors, combined with a substantial increase in the level of low frequency sound from the rest of the system, can produce a non-neutral, time modulated, rumbly sounding background noise that many people find objectionable.« less

  16. A Guide to Airborne, Impact, and Structure Borne Noise--Control in Multifamily Dwellings.

    ERIC Educational Resources Information Center

    Berendt, Raymond D.; And Others

    The control of noise on buildings is discussed extensively in this document, incorporating a broad range of criteria appropriate for isolating air borne, impact, and structure-borne noise associated with residential construction. Subject areas include--(1) noise types, sources, and transmission, (2) general principles of noise control, (3)…

  17. WHO Environmental Noise Guidelines for the European Region: A Systematic Review of Transport Noise Interventions and Their Impacts on Health.

    PubMed

    Brown, Alan Lex; van Kamp, Irene

    2017-08-03

    This paper describes a systematic review (1980-2014) of evidence on effects of transport noise interventions on human health. The sources are road traffic, railways, and air traffic. Health outcomes include sleep disturbance, annoyance, cognitive impairment of children and cardiovascular diseases. A conceptual framework to classify noise interventions and health effects was developed. Evidence was thinly spread across source types, outcomes, and intervention types. Further, diverse intervention study designs, methods of analyses, exposure levels, and changes in exposure do not allow a meta-analysis of the association between changes in noise level and health outcomes, and risk of bias in most studies was high. However, 43 individual transport noise intervention studies were examined (33 road traffic; 7 air traffic; 3 rail) as to whether the intervention was associated with a change in health outcome. Results showed that many of the interventions were associated with changes in health outcomes irrespective of the source type, the outcome or intervention type (source, path or infrastructure). For road traffic sources and the annoyance outcome, the expected effect-size can be estimated from an appropriate exposure-response function, though the change in annoyance in most studies was larger than could be expected based on noise level change.

  18. WHO Environmental Noise Guidelines for the European Region: A Systematic Review of Transport Noise Interventions and Their Impacts on Health

    PubMed Central

    van Kamp, Irene

    2017-01-01

    This paper describes a systematic review (1980–2014) of evidence on effects of transport noise interventions on human health. The sources are road traffic, railways, and air traffic. Health outcomes include sleep disturbance, annoyance, cognitive impairment of children and cardiovascular diseases. A conceptual framework to classify noise interventions and health effects was developed. Evidence was thinly spread across source types, outcomes, and intervention types. Further, diverse intervention study designs, methods of analyses, exposure levels, and changes in exposure do not allow a meta-analysis of the association between changes in noise level and health outcomes, and risk of bias in most studies was high. However, 43 individual transport noise intervention studies were examined (33 road traffic; 7 air traffic; 3 rail) as to whether the intervention was associated with a change in health outcome. Results showed that many of the interventions were associated with changes in health outcomes irrespective of the source type, the outcome or intervention type (source, path or infrastructure). For road traffic sources and the annoyance outcome, the expected effect-size can be estimated from an appropriate exposure–response function, though the change in annoyance in most studies was larger than could be expected based on noise level change. PMID:28771220

  19. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    NASA Technical Reports Server (NTRS)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  20. Implementation of noise budgets for civil airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.E.

    1982-01-01

    An increasing number of airports are faced with the need for establishing a lid on the noise from aircraft operations and for developing programs for reducing airport noise on a year-to-year basis. As an example, the California Airport Noise Standard acts to impose such programs on a number of airports in California. Any airport faced with the need to establish a quantitative reduction of noise obviously wants to achieve this reduction with the least impact on numbers of operations and reduction in air transportation services to the community. A reduction in noise and an increase in operations usually can bemore » achieved only by encouraging use of the quietest aircraft available and, further adding incentives for operating procedures that minimize noise. One approach in administering airport noise reduction is to adopt an airport noise budget. As used in this paper, the noise budget concept implies that quantitative limits on the noise environment and on the noise contributions by major airport users will be established. Having methods for enforcing compliance with the airport budget for those airport users that exceed their budget will be established. Thus, the noise budget provides airport management, and major airport users, with quantitative measures for defining noise goals, and actual progress in achieving such goals.« less

  1. Effects of environmental noise on sleep.

    PubMed

    Hume, Kenneth I; Brink, Mark; Basner, Mathias

    2012-01-01

    This paper summarizes the findings from the past 3 year's research on the effects of environmental noise on sleep and identifies key future research goals. The past 3 years have seen continued interest in both short term effects of noise on sleep (arousals, awakenings), as well as epidemiological studies focusing on long term health impacts of nocturnal noise exposure. This research corroborated findings that noise events induce arousals at relatively low exposure levels, and independent of the noise source (air, road, and rail traffic, neighbors, church bells) and the environment (home, laboratory, hospital). New epidemiological studies support already existing evidence that night-time noise is likely associated with cardiovascular disease and stroke in the elderly. These studies collectively also suggest that nocturnal noise exposure may be more relevant for the genesis of cardiovascular disease than daytime noise exposure. Relative to noise policy, new effect-oriented noise protection concepts, and rating methods based on limiting awakening reactions were introduced. The publications of WHO's ''Night Noise Guidelines for Europe'' and ''Burden of Disease from Environmental Noise'' both stress the importance of nocturnal noise exposure for health and well-being. However, studies demonstrating a causal pathway that directly link noise (at ecological levels) and disturbed sleep with cardiovascular disease and/or other long term health outcomes are still missing. These studies, as well as the quantification of the impact of emerging noise sources (e.g., high speed rail, wind turbines) have been identified as the most relevant issues that should be addressed in the field on the effects of noise on sleep in the near future.

  2. Active noise control: A tutorial for HVAC designers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelin, L.J.

    1997-08-01

    This article will identify the capabilities and limitations of ANC in its application to HVAC noise control. ANC can be used in ducted HVAC systems to cancel ductborne, low-frequency fan noise by injecting sound waves of equal amplitude and opposite phase into an air duct, as close as possible to the source of the unwanted noise. Destructive interference of the fan noise and injected noise results in sound cancellation. The noise problems that it solves are typically described as rumble, roar or throb, all of which are difficult to address using traditional noise control methods. This article will also contrastmore » the use of active against passive noise control techniques. The main differences between the two noise control measures are acoustic performance, energy consumption, and design flexibility. The article will first present the fundamentals and basic physics of ANC. The application to real HVAC systems will follow.« less

  3. [Development of new type plastics air turbine handpiece for dental use].

    PubMed

    Kusano, M

    1989-06-01

    The noise generated by the metal air turbine handpiece employed in dental practice is considerable and attended with predominant high frequency components. Therefore, investigation of the noise generation mechanism and development of a silent air turbine handpiece was only a matter of course. In addition, the metal air turbine hardpiece is comparatively heavy and its production cost is high. From this point of view as well, production of a light air turbine handpiece at low cost is also desirable. In order to overcome the objections to the metal air turbine handpiece, appropriate plastics materials were employed wherever possible. In this study, the number of revolutions, noise level, frequency analysis, start pressure and weight of newly produced plastics handpieces and metal handpieces were examined and compared. The following results were obtained: 1. The number of revolutions of single-nozzle type air turbine handpieces encased in plastics housings and fitted with metal turbine rotors was higher than that of all-metal air turbine handpieces. The noise level of the former tended to be lower. 2. The number of revolutions of multi-nozzle type air turbine handpieces encased in plastics housings and fitted with turbine rotors with plastics turbine blades was almost equal to that of similar metal handpieces, with the noise level tending to be lower. 3. In the case of handpieces fitted with turbine rotors with dynamic balance, the number of revolutions was high and the noise level was low. This indicated that dynamic balance was a factor affecting the number of revolutions and noise level. 4. Narrow band sound frequency analysis of single-nozzle type air turbine handpieces showed a sharp peak at the fundamental frequency which was the same as the number of revolutions multiplied by the number of rotor turbine blades. It is thought that the noise from air turbine handpieces was aerodynamic in origin, being generated by the periodical interruption of steady air flow by

  4. An instantaneous spatiotemporal model to predict a bicyclist's Black Carbon exposure based on mobile noise measurements

    NASA Astrophysics Data System (ADS)

    Dekoninck, Luc; Botteldooren, Dick; Int Panis, Luc

    2013-11-01

    Several studies have shown that a significant amount of daily air pollution exposure, in particular Black Carbon (BC), is inhaled during trips. Assessing this contribution to exposure remains difficult because on the one hand local air pollution maps lack spatio-temporal resolution, at the other hand direct measurement of particulate matter concentration remains expensive. This paper proposes to use in-traffic noise measurements in combination with geographical and meteorological information for predicting BC exposure during commuting trips. Mobile noise measurements are cheaper and easier to perform than mobile air pollution measurements and can easily be used in participatory sensing campaigns. The uniqueness of the proposed model lies in the choice of noise indicators that goes beyond the traditional overall A-weighted noise level used in previous work. Noise and BC exposures are both related to the traffic intensity but also to traffic speed and traffic dynamics. Inspired by theoretical knowledge on the emission of noise and BC, the low frequency engine related noise and the difference between high frequency and low frequency noise that indicates the traffic speed, are introduced in the model. In addition, it is shown that splitting BC in a local and a background component significantly improves the model. The coefficients of the proposed model are extracted from 200 commuter bicycle trips. The predicted average exposure over a single trip correlates with measurements with a Pearson coefficient of 0.78 using only four parameters: the low frequency noise level, wind speed, the difference between high and low frequency noise and a street canyon index expressing local air pollution dispersion properties.

  5. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria

    PubMed Central

    Dzhambov, Angel M; Dimitrova, Donka D

    2016-01-01

    Type 2 diabetes mellitus (T2DM) is a growing public health problem in Bulgaria. While individual and lifestyle determinants have been researched; till date there has been no study on environmental risks such as road traffic, noise, and air pollution. As a first step toward designing a large-scale population-based survey, we aimed at exploring the overall associations of prevalent T2DM with exposures to road traffic, noise, and air pollution. A total of 513 residents of Plovdiv city, Bulgaria were recruited. Individual data on self-reported doctor-diagnosed T2DM and confounding factors were linked to objective and self-rated exposure indicators. Logistic and log-link Poisson regressions were conducted. In the fully adjusted logistic models, T2DM was positively associated with exposures to Lden 71-80 dB (odds ratio (OR) = 4.49, 95% confidence interval (CI): 1.38, 14.68), fine particulate matter (PM)2.5 25.0-66.8 μg/m3 (OR = 1.32, 95% CI: 0.28, 6.24), benzo alpha pyrene 6.0-14.02 ng/m3 (OR = 1.76, 95% CI: 0.52, 5.98) and high road traffic (OR = 1.40, 95% CI: 0.48, 4.07). Lden remained a significant risk factor in the: Poisson regression model. Other covariates with consistently high multivariate effects were age, gender, body mass index, family history of T2DM, subjective sleep disturbance, and especially bedroom location. We concluded that residential noise exposure might be associated with elevated risk of prevalent T2DM. The inferences made by this research and the lessons learned from its limitations could guide the designing of a longitudinal epidemiological survey in Bulgaria. PMID:27157686

  6. [Communication and noise. Speech intelligibility of airplane pilots with and without active noise compensation].

    PubMed

    Matschke, R G

    1994-08-01

    Noise exposure measurements were performed with pilots of the German Federal Navy during flight situations. The ambient noise levels during regular flight were maintained at levels above a 90 dB A-weighted level. This noise intensity requires wearing ear protection to avoid sound-induced hearing loss. To be able to understand radio communication (ATC) in spite of a noisy environment, headphone volume must be raised above the noise of the engines. The use of ear plugs in addition to the headsets and flight helmets is only of limited value because personal ear protection affects the intelligibility of ATC. Whereas speech intelligibility of pilots with normal hearing is affected to only a smaller degree, pilots with pre-existing high-frequency hearing losses show substantial impairments of speech intelligibility that vary in proportion to the hearing deficit present. Communication abilities can be reduced drastically, which in turn can affect air traffic security. The development of active noise compensation devices (ANC) that make use of the "anti-noise" principle may be a solution to this dilemma. To evaluate the effectiveness of an ANC-system and its influence on speech intelligibility, speech audiometry was performed with a German standardized test during simulated flight conditions with helicopter pilots. Results demonstrate the helpful effect on speech understanding especially for pilots with noise-induced hearing losses. This may help to avoid pre-retirement professional disability.

  7. Do perceived job insecurity and annoyance due to air and noise pollution predict incident self-rated poor health? A prospective analysis of independent and joint associations using a German national representative cohort study

    PubMed Central

    Riedel, Natalie; Loerbroks, Adrian; Bolte, Gabriele; Li, Jian

    2017-01-01

    Background Current economic and social change has contributed to increasing job insecurity and traffic-related pollution in residential areas. Both job insecurity and exposure to noise and air pollution are known determinants of population health and can concur in peoples' lives. This may hold true particularly for socially disadvantaged subpopulations. Nevertheless, the potential independent and joint links of those exposures to health have been rarely examined so far. We aimed to contribute to the scarce body of evidence. Methods Information on perceived job insecurity and exposures to noise and air pollution as expressed by annoyance as well as on self-rated health were gathered from 2 waves of the population-based German Socio-Economic Panel (2009 and 2011, N=6544). We performed multivariable Poisson regression to examine the independent and joint risk of poor health in 2011 by perceived job insecurity and annoyance due to noise and air pollution in 2009. Results After the 2-year follow-up in 2011, 571 (8.7%) participants rated their health as poor. The risk of reporting incident poor health was increased by roughly 40% in employees reporting high versus low perceived job insecurity and annoyance due to noise and air pollution, respectively. This risk increased when both exposures were present at higher levels (risk ratio=1.95 (1.49 to 2.55)). Conclusions Work-related and environmental exposures may accumulate and have a joint health impact. Elaboration on the link between occupational and residential exposures is warranted in the light of their concurrence and their implications for health inequities. PMID:28115332

  8. Basic research in fan source noise: Inlet distortion and turbulence noise

    NASA Technical Reports Server (NTRS)

    Kantola, R. A.; Warren, R. E.

    1978-01-01

    A widely recognized problem in jet engine fan noise is the discrepancy between inflight and static tests. This discrepancy consists of blade passing frequency tones, caused by ingested turbulence that appear in the static tests but not in flight. To reduce the ingested distortions and turbulence in an anechoic chamber, a reverse cone inlet is used to guide the air into the fan. This inlet also has provisions for boundary layer suction and is used in conjunction with a turbulence control structure (TCS) to condition the air impinging on the fan. The program was very successful in reducing the ingested turbulence, to the point where reductions in the acoustic power at blade passing frequency are as high as 18 db for subsonic tip speeds. Even with this large subsonic tone suppression, the supersonic tip speed tonal content remains largely unchanged, indicating that the TCS did not appreciably attenuate the noise but effects the generation via turbulence reduction. Turbulence mapping of the inlet confirmed that the tone reductions are due to a reduction in turbulence, as the low frequency power spectra of the streamwise and transverse turbulence were reduced by up to ten times and 100 times, respectively.

  9. Noise reduction characteristics of general aviation type dual-pane windows

    NASA Technical Reports Server (NTRS)

    Grosveld, F.; Navaneethan, R.; Roskam, J.

    1980-01-01

    The noise reduction characteristics of general-aviation-type, dual-pane windows in various configurations have been experimentally investigated. The effects of inner and outer pane thickness, spacing between the panes, edge conditions, inclination of the inner pane and depressurization of the air in between the panes are presented. The space in between the two window panes is sealed airtight in all cases. Results show that increasing the mass of a 'floating' window pane does not increase the noise reduction below the fundamental resonance frequency. It is concluded that the concept of depressurization of the air between thin (1/8 in) Plexiglas panes and application of multiple-freedom edge conditions for the inner pane are promising to reduce noise levels in general aviation airplanes.

  10. The Negative Affect Hypothesis of Noise Sensitivity

    PubMed Central

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David

    2015-01-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104

  11. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2014-01-01

    This presentation reviews engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASAs long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  12. NASA Glenn's Contributions to Aircraft Engine Noise Research

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2013-01-01

    This report reviews all engine noise research conducted at the NASA Glenn Research Center over the past 70 years. This report includes a historical perspective of the Center and the facilities used to conduct the research. Major noise research programs are highlighted to show their impact on industry and on the development of aircraft noise reduction technology. Noise reduction trends are discussed, and future aircraft concepts are presented. Since the 1960s, research results show that the average perceived noise level has been reduced by about 20 decibels (dB). Studies also show that, depending on the size of the airport, the aircraft fleet mix, and the actual growth in air travel, another 15 to 17 dB reduction will be required to achieve NASA's long-term goal of providing technologies to limit objectionable noise to the boundaries of an average airport.

  13. The Effect of Intermittent Noise Stress on Ozone-Induced ...

    EPA Pesticide Factsheets

    Previous studies have established that acute exposure to air pollution increases the risk of cardiovascular dysfunction. Intrinsic factors are likely the most important determinants of how the body responds to an exposure. But data also suggests that non-environmental stressors like noise, which is a common urban public health problem, can modify and indeed worsen the response. Noise can cause obvious psychological disturbances typical of non-specific stress, but also changes that can increase the number of cardiovascular disease related mortalities. Therefore, we hypothesized that short-term exposure to noise would worsen the cardiovascular response to ozone. Male Wistar-Kyoto rats were implanted with radiotelemeters for the measurement of heart rate (HR), blood pressure (BP) and electrocardiogram (ECG) and exposed to intermittent noise (85-90 dB) for one week after which they were exposed to either ozone (0.8 ppm) or filtered air. Left ventricular functional responses to dobutamine were measured using a Millar probe as well as arrhythmic sensitivity to aconitine in a separate set of untelemetered rats 24 hours after exposure. HR and BP decreased in all telemetered animals during ozone exposure; noise caused BP and HR to increase. Baseline left ventricular pressure (LVP) was significantly higher in animals exposed to both noise and ozone when compared to no noise; furthermore those animals had the least amount of change in LVP, dP/dT max and min with increasi

  14. Advanced Noise Control Fan: A 20-Year Retrospective

    NASA Technical Reports Server (NTRS)

    Sutliff, Dan

    2016-01-01

    The ANCF test bed is used for evaluating fan noise reduction concepts, developing noise measurement technologies, and providing a database for Aero-acoustic code development. Rig Capabilities: 4 foot 16 bladed rotor @ 2500 rpm, Auxiliary air delivery system (3 lbm/sec @ 6/12 psi), Variable configuration (rotor pitch angle, stator count/position, duct length), synthetic acoustic noise generation (tone/broadband). Measurement Capabilities: 112 channels dynamic data system, Unique rotating rake mode measuremen, Farfield (variable radius), Duct wall microphones, Stator vane microphones, Two component CTA w/ traversing, ESP for static pressures.

  15. An integrated strategy for aircraft/airport noise abatement: A legal-institutional control act section 7 to the noise control act of 1972 and proposals based thereon

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    The development of the aircraft noise control structure since the Griggs case of 1962 was examined. The Noise Control Act of 1972 is described which undertook to establish the legal-institutional framework within which an adequate aircraft/airport noise abatement program might be initiated with concern for full recognition of all the beneficial and detrimental consequences of air transportation and appropriate distribution of benefits and costs.

  16. Incorporating signal-dependent noise for hyperspectral target detection

    NASA Astrophysics Data System (ADS)

    Morman, Christopher J.; Meola, Joseph

    2015-05-01

    The majority of hyperspectral target detection algorithms are developed from statistical data models employing stationary background statistics or white Gaussian noise models. Stationary background models are inaccurate as a result of two separate physical processes. First, varying background classes often exist in the imagery that possess different clutter statistics. Many algorithms can account for this variability through the use of subspaces or clustering techniques. The second physical process, which is often ignored, is a signal-dependent sensor noise term. For photon counting sensors that are often used in hyperspectral imaging systems, sensor noise increases as the measured signal level increases as a result of Poisson random processes. This work investigates the impact of this sensor noise on target detection performance. A linear noise model is developed describing sensor noise variance as a linear function of signal level. The linear noise model is then incorporated for detection of targets using data collected at Wright Patterson Air Force Base.

  17. Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2003-01-01

    By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.

  18. Use of one-third octave-band spectral data in community noise models

    DOT National Transportation Integrated Search

    2003-08-25

    Airport noise planning models typically use guidance contained in the Society of Automotive Engineers (SAE), : Airspace Information Report (AIR), SAE-1845, titled Procedure for the Calculation of Airplane Noise in the : Vicinity of Airports [1]. T...

  19. Evaluation of Noise Exposure Secondary to Wind Noise in Cyclists.

    PubMed

    Seidman, Michael D; Wertz, Anna G; Smith, Matthew M; Jacob, Steve; Ahsan, Syed F

    2017-11-01

    Objective Determine if the noise levels of wind exposure experienced by cyclists reach levels that could contribute to noise-induced hearing loss. Study Design Industrial lab research. Setting Industrial wind tunnel. Subjects and Methods A commercial-grade electric wind tunnel was used to simulate different speeds encountered by a cyclist. A single cyclist was used during the simulation for audiometric measurements. Microphones attached near the ears of the cyclist were used to measure the sound (dB sound pressure level) experienced by the cyclist. Loudness levels were measured with the head positioned at 15-degree increments from 0 degrees to 180 degrees relative to the oncoming wind at different speeds (10-60 mph). Results Wind noise ranged from 84.9 dB at 10 mph and increased proportionally with speed to a maximum of 120.3 dB at 60 mph. The maximum of 120.3 dB was measured at the downwind ear when the ear was 90 degrees away from the wind. Conclusions Wind noise experienced by a cyclist is proportional to the speed and the directionality of the wind current. Turbulent air flow patterns are observed that contribute to increased sound exposure in the downwind ear. Consideration of ear deflection equipment without compromising sound awareness for cyclists during prolonged rides is advised to avoid potential noise trauma. Future research is warranted and can include long-term studies including dosimetry measures of the sound and yearly pre- and postexposure audiograms of cyclists to detect if any hearing loss occurs with long-term cycling.

  20. Acoustic properties of supersonic helium/air jets at low Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Mclaughlin, Dennis K.; Barron, W. D.; Vaddempudi, Appa R.

    1992-01-01

    Experiments have been performed with the objective of developing a greater understanding of the physics of hot supersonic jet noise. Cold helium/air jets are used to easily and inexpensively simulate the low densities of hot air jets. The experiments are conducted at low Reynolds numbers in order to facilitate study of the large-scale turbulent structures (instability waves) that cause most of the radiated noise. Experiments have been performed on Mach 1.5 and 2.1 jets of pure air, pure helium and 10 percent helium by mass. Helium/air jets are shown to radiate more noise than pure air jets due to the increased exit velocity. Microphone spectra are usually dominated by a single spectral component at a predictable frequency. Increasing the jet's helium concentration is shown to increase the dominant frequency. The helium concentration in the test chamber is determined by calculating the speed of sound from the measured phase difference between two microphone signals. Bleeding outside air into the test chamber controls the accumulation of helium so that the hot jet simulation remains valid. The measured variation in the peak radiated noise frequency is in good agreement with the predictions of the hot jet noise theory of Tam et al.

  1. Noise in large cities in Brazil

    NASA Astrophysics Data System (ADS)

    Gerges, Samir N. Y.

    2004-05-01

    Large cities' noise is considered by the World Health Organization to be the third most hazardous pollution, preceded by air and water pollution. In urban centers, in general, and especially in developing countries such as Brazil, large populations are affected by excessive noise due mainly to traffic flow. The Brazilian Federal Government specifies noise limits, but each state can enforce its own set of noise limits, providing they are lower. The rapid economic growth, together with large migration of northern Brazilians to the developing southern urban areas in search of more lucrative jobs in construction and industrial sectors, resulted in a fast increase in activities such as vehicle and bus traffic, home construction, and development of all necessary infrastructures to support this growth. Urban noise in Brazil has been receiving the attention of national authorities only since 1990, when the Federal Government approved the first ``Program of Community Silence,'' based on ISO R 1996-1971. This paper highlights the noise situation in the five largest and most populated cities in Brazil: Sao Paulo, Rio de Janeiro, Belo Horizonte, Porto Alegre and Curitiba [Zannin et al., Appl. Acoust. 63, 351-358 (2002)].

  2. Frequency noise properties of lasers for interferometry in nanometrology.

    PubMed

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Cíp, Ondřej

    2013-02-07

    In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air.

  3. HAARP diesel engine-generator(s) noise study

    DOT National Transportation Integrated Search

    2005-01-07

    This document presents the results and corresponding analysis of an outdoor noise measurement program conducted by the John A. Volpe National Transportation Systems Centers Acoustic Facility (Volpe Center) at the United States Air Forces High F...

  4. Health consequences of aircraft noise.

    PubMed

    Kaltenbach, Martin; Maschke, Christian; Klinke, Rainer

    2008-08-01

    The ever-increasing level of air traffic means that any medical evaluation of its effects must be based on recent data. Selective literature review of epidemiological studies from 2000 to 2007 regarding the illnesses, annoyance, and learning disorders resulting from aircraft noise. In residential areas, outdoor aircraft noise-induced equivalent noise levels of 60 dB(A) in the daytime and 45 dB(A) at night are associated with an increased incidence of hypertension. There is a dose-response relationship between aircraft noise and the occurrence of arterial hypertension. The prescription frequency of blood pressure-lowering medications is associated dose-dependently with aircraft noise from a level of about 45 dB(A). Around 25% of the population are greatly annoyed by exposure to noise of 55 dB(A) during the daytime. Exposure to 50 dB(A) in the daytime (outside) is associated with relevant learning difficulties in schoolchildren. Based on recent epidemiological studies, outdoor noise limits of 60 dB(A) in the daytime and 50 dB(A) at night can be recommended on grounds of health protection. Hence, maximum values of 55 dB(A) for the day and 45 dB(A) for the night should be aimed for in order to protect the more sensitive segments of the population such as children, the elderly, and the chronically ill. These values are 5 to 10 dB(A) lower than those specified by the German federal law on aircraft noise and in the report "synopsis" commissioned by the company that runs Frankfurt airport (Fraport).

  5. Air pollution due to traffic, air quality monitoring along three sections of National Highway N-5, Pakistan.

    PubMed

    Ali, Mahboob; Athar, Makshoof

    2008-01-01

    Transportation system has contributed significantly to the development of human civilization; on the other hand it has an enormous impact on the ambient air quality in several ways. In this paper the air and noise pollution at selected sites along three sections of National Highway was monitored. Pakistan National Highway Authority has started a Highway Improvement program for rehabilitations and maintenance of National highways to improve the traffic flows, and would ultimately improve the air quality along highways. The ambient air quality and noise level was monitored at nine different locations along these sections of highways to quantify the air pollution. The duration of monitoring at individual location was 72 h. The most of the sampling points were near the urban or village population, schools or hospitals, in order to quantify the air pollution at most affected locations along these roads. A database consisting of information regarding the source of emission, local metrology and air quality may be created to assess the profile of air quality in the area.

  6. Do perceived job insecurity and annoyance due to air and noise pollution predict incident self-rated poor health? A prospective analysis of independent and joint associations using a German national representative cohort study.

    PubMed

    Riedel, Natalie; Loerbroks, Adrian; Bolte, Gabriele; Li, Jian

    2017-01-23

    Current economic and social change has contributed to increasing job insecurity and traffic-related pollution in residential areas. Both job insecurity and exposure to noise and air pollution are known determinants of population health and can concur in peoples' lives. This may hold true particularly for socially disadvantaged subpopulations. Nevertheless, the potential independent and joint links of those exposures to health have been rarely examined so far. We aimed to contribute to the scarce body of evidence. Information on perceived job insecurity and exposures to noise and air pollution as expressed by annoyance as well as on self-rated health were gathered from 2 waves of the population-based German Socio-Economic Panel (2009 and 2011, N=6544). We performed multivariable Poisson regression to examine the independent and joint risk of poor health in 2011 by perceived job insecurity and annoyance due to noise and air pollution in 2009. After the 2-year follow-up in 2011, 571 (8.7%) participants rated their health as poor. The risk of reporting incident poor health was increased by roughly 40% in employees reporting high versus low perceived job insecurity and annoyance due to noise and air pollution, respectively. This risk increased when both exposures were present at higher levels (risk ratio=1.95 (1.49 to 2.55)). Work-related and environmental exposures may accumulate and have a joint health impact. Elaboration on the link between occupational and residential exposures is warranted in the light of their concurrence and their implications for health inequities. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Methods for designing treatments to reduce interior noise of predominant sources and paths in a single engine light aircraft

    NASA Technical Reports Server (NTRS)

    Hayden, Richard E.; Remington, Paul J.; Theobald, Mark A.; Wilby, John F.

    1985-01-01

    The sources and paths by which noise enters the cabin of a small single engine aircraft were determined through a combination of flight and laboratory tests. The primary sources of noise were found to be airborne noise from the propeller and engine casing, airborne noise from the engine exhaust, structureborne noise from the engine/propeller combination and noise associated with air flow over the fuselage. For the propeller, the primary airborne paths were through the firewall, windshield and roof. For the engine, the most important airborne path was through the firewall. Exhaust noise was found to enter the cabin primarily through the panels in the vicinity of the exhaust outlet although exhaust noise entering the cabin through the firewall is a distinct possibility. A number of noise control techniques were tried, including firewall stiffening to reduce engine and propeller airborne noise, to stage isolators and engine mounting spider stiffening to reduce structure-borne noise, and wheel well covers to reduce air flow noise.

  8. Assessing effects of military aircraft noise on residential property values near airbases

    NASA Astrophysics Data System (ADS)

    Fidell, Sanford; Tabachnick, Barbara; Silvati, Laura; Cook, Brenda

    The question, 'Does military aircraft noise exposure affect residential property values in the vicinity of Air Force bases?', can be asked and answered with varying degrees of generality and tolerable errors of inference. Definitive answers are difficult to develop because the question itself may not be meaningful in some circumstances: property values are affected by many factors other than aircraft noise which can fluctuate greatly in different areas and during different time periods; credible attribution of causality for changes in property values uniquely to aircraft noise requires many costly study design measures; and prior findings suggest that if a relationship exists, it is not a large or especially strong one. Thus, evidence of a simple geographic association between aircraft noise exposure and residential property values does not provide a conclusive answer to the question. In an effort to develop more compelling evidence, the US Air Force is planning to compare historical records of sale prices of properties in areas of differential aircraft noise exposure during specific time periods with predictions of sale prices derived from a validated statistical model of residential property values.

  9. Exposure to aircraft and road traffic noise and associations with heart disease and stroke in six European countries: a cross-sectional study

    PubMed Central

    2013-01-01

    Background Although a number of studies have found an association between aircraft noise and hypertension, there is a lack of evidence on associations with other cardiovascular disease. For road traffic noise, more studies are available but the extent of possible confounding by air pollution has not been established. Methods This study used data from the Hypertension and Environmental Noise near Airports (HYENA) study. Cross-sectional associations between self-reported ‘heart disease and stroke’ and aircraft noise and road traffic noise were examined using data collected between 2004 and 2006 on 4712 participants (276 cases), who lived near airports in six European countries (UK, Germany, Netherlands, Sweden, Greece, Italy). Data were available to assess potential confounding by NO2 air pollution in a subsample of three countries (UK, Netherlands, Sweden). Results An association between night-time average aircraft noise and ‘heart disease and stroke’ was found after adjustment for socio-demographic confounders for participants who had lived in the same place for ≥ 20 years (odds ratio (OR): 1.25 (95% confidence interval (CI) 1.03, 1.51) per 10 dB (A)); this association was robust to adjustment for exposure to air pollution in the subsample. 24 hour average road traffic noise exposure was associated with ‘heart disease and stroke’ (OR: 1.19 (95% CI 1.00, 1.41), but adjustment for air pollution in the subsample suggested this may have been due to confounding by air pollution. Statistical assessment (correlations and variance inflation factor) suggested only modest collinearity between noise and NO2 exposures. Conclusions Exposure to aircraft noise over many years may increase risks of heart disease and stroke, although more studies are needed to establish how much the risks associated with road traffic noise may be explained by air pollution. PMID:24131577

  10. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  11. Frequency Noise Properties of Lasers for Interferometry in Nanometrology

    PubMed Central

    Hrabina, Jan; Lazar, Josef; Holá, Miroslava; Číp, Ondřej

    2013-01-01

    In this contribution we focus on laser frequency noise properties and their influence on the interferometric displacement measurements. A setup for measurement of laser frequency noise is proposed and tested together with simultaneous measurement of fluctuations in displacement in the Michelson interferometer. Several laser sources, including traditional He-Ne and solid-state lasers, and their noise properties are evaluated and compared. The contribution of the laser frequency noise to the displacement measurement is discussed in the context of other sources of uncertainty associated with the interferometric setup, such as, mechanics, resolution of analog-to-digital conversion, frequency bandwidth of the detection chain, and variations of the refractive index of air. PMID:23435049

  12. Impact of Fluidic Chevrons on Supersonic Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Thomas

    2007-01-01

    The impact of fluidic chevrons on broadband shock noise and mixing noise for single stream and coannular jets was investigated. Air was injected into the core flow of a bypass ratio 5 nozzle system using a core fluidic chevron nozzle. For the single stream experiments, the fan stream was operated at the wind tunnel conditions and the core stream was operated at supersonic speeds. For the dual stream experiments, the fan stream was operated at supersonic speeds and the core stream was varied between subsonic and supersonic conditions. For the single stream jet at nozzle pressure ratio (NPR) below 2.0, increasing the injection pressure of the fluidic chevron increased high frequency noise at observation angles upstream of the nozzle exit and decreased mixing noise near the peak jet noise angle. When the NPR increased to a point where broadband shock noise dominated the acoustic spectra at upstream observation angles, the fluidic chevrons significantly decreased this noise. For dual stream jets, the fluidic chevrons reduced broadband shock noise levels when the fan NPR was below 2.3, but had little or no impact on shock noise with further increases in fan pressure. For all fan stream conditions investigated, the fluidic chevron became more effective at reducing mixing noise near the peak jet noise angle as the core pressure increased.

  13. Mapping urban environmental noise: a land use regression method.

    PubMed

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  14. Lock-on range estimation in an air-to-air engagement situation

    NASA Astrophysics Data System (ADS)

    Cetin, Birkan; Kandemir, Kutlu D.

    2017-05-01

    In air-to-air missile applications, it is important to estimate the lock-on distance between the missile and the target by the help of correct radiometric approaches. However, in an air-to-air engagement, due to the dome heating after launch, signal to noise ratio (SNR) decreases and possibility of losing target becomes as a significant issue. Simulations showed that the selection of cut-on and cut-off wavelengths of midwave band pass filters which can be implemented in the optical path of the seeker is very important in order to maintain lock-on during the mission. In this aspect, the critical electro-optical parameters of an air-to-air seeker are investigated before and after the launch.

  15. USAF Bioenvironmental Noise Data Handbook, volume 154

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The E-4B is a Boeing 747 aircraft modified to serve as the national emergency/HQ Strategic Air Command Airborne Command Post. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported for 24 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, "USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application", AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  16. Shinkansen noise: Research and achievements in countermeasures for Shinkansen noise

    NASA Astrophysics Data System (ADS)

    Kikuchi, I.

    1988-01-01

    In 1982, the Tohoku and Joetsu Shinkansen lines were opened. The result is the present Shinkansen network that runs through Japan from north to south, leading to a remarkable improvement in railway services, together with the provision of new, efficient connections with conventional lines. Since the opening of the Tokaido Shinkansen, the high utility of the Shinkansen as a high speed, large volume, and safe mode of transport has been gaining a high reputation. On the other hand, social demands for environmental preservation increased in strength with the advent of the period of Japan's high economic growth. Such demands were posed in the form of complaints about air and water pollution and noise from transportation. The problems of noise and vibration from Shinkansen train operation were posed mainly in relation to railway viaducts in urban areas. The Japanese National Railways (JNR) has made all-out efforts in technical development for noise reduction, obtained many achievements, and put them into practical use one by one on the Shinkansen lines. In the early stage of studies, there were many virgin areas for JNR staff, such as measurement technology, estimation methods, and noise alleviation technology. With the start of full-scale testing at a general test center in 1975, various studies and the development of effective measures made a great step forward. In March 1985, the maximum speed on the Tohoku Shinkansen was increased to 240 km/h, enhancing the Shinkansen reputation and resulting in a considerable growth of traffic. As a matter of course, new measures for noise reduction were taken for this line. In view of the history and results of voluminous studies over many years on the Shinkansen noise problem, and also of the roles and surrounding conditions of the Shinkansen as a mode of transport, however, new tasks are being posed concerning such aspects as how to accomplish environmental preservation in the future.

  17. Quiet comfort: noise, otherness, and the mobile production of personal space.

    PubMed

    Hagood, Mack

    2011-01-01

    Marketing, news reports, and reviews of Bose QuietComfort noise-canceling headphones position them as essential gear for the mobile rational actor of the neoliberal market—the business traveler. This article concerns noise-canceling headphones’ utility as soundscaping devices, which render a sense of personal space by mediating sound. The airplane and airport are paradoxical spaces in which the pursuit of freedom impedes its own enjoyment. Rather than fight the discomforts of air travel as a systemic problem, travelers use the tactic of soundscaping to suppress the perceived presence of others. Attention to soundscaping enables the scholar to explore relationships between media, space, freedom, otherness, and selfhood in an era characterized by neoliberalism and increased mobility. Air travel is a moment in which people with diverse backgrounds, beliefs, and bodies crowd together in unusually close proximity. Noise is the sound of individualism and difference in conflict. Noise is othered sound, and like any type of othering, the perception of noise is socially constructed and situated in hierarchies of race, class, age, and gender. The normative QuietComfort user in media representations is white, male, rational, monied, and mobile; women, children, and “chatty” passengers are cast as noisemakers. Moreover, in putting on noise-canceling headphones, diverse selves put on the historically Western subjectivity that has been built into their technology, one that suppresses the noise of difference in favor of the smooth circulation of people, information, and commodities.

  18. Applying the Multiple Signal Classification Method to Silent Object Detection Using Ambient Noise

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Yokoyama, Tomoki; Hasegawa, Akio; Matsuda, Minoru

    2004-05-01

    The revolutionary concept of using ocean ambient noise positively to detect objects, called acoustic daylight imaging, has attracted much attention. The authors attempted the detection of a silent target object using ambient noise and a wide-band beam former consisting of an array of receivers. In experimental results obtained in air, using the wide-band beam former, we successfully applied the delay-sum array (DSA) method to detect a silent target object in an acoustic noise field generated by a large number of transducers. This paper reports some experimental results obtained by applying the multiple signal classification (MUSIC) method to a wide-band beam former to detect silent targets. The ocean ambient noise was simulated by transducers decentralized to many points in air. Both MUSIC and DSA detected a spherical target object in the noise field. The relative power levels near the target obtained with MUSIC were compared with those obtained by DSA. Then the effectiveness of the MUSIC method was evaluated according to the rate of increase in the maximum and minimum relative power levels.

  19. Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition Performance.

    DTIC Science & Technology

    1997-06-01

    AFRL-HE-WP-TR-1998-0012 UNITED STATES AIR FORCE RESEARCH LABORATORY EFFECTS OF SCENE MODULATION IMAGE BLUR AND NOISE UPON HUMAN TARGET...COVERED INTERIM (July 1996 - August 1996) TITLE AND SUBTITLE Effects of Scene Modulation Image Blur and Noise Upon Human Target Acquisition...dilemma in image transmission and display is that we must compromise between die conflicting constraints of dynamic range and noise . Three target

  20. USAF Bioenvironmental Noise Data Handbook. Volume 155. CH-3 in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The CH-3 is a USAF tactical combat transport helicopter. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. Data are reported for nine locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C weighted and A weighted sound levels, preferred speech interference level, perceived noise levels and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  1. Noise induced phenomena in combustion

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  2. Sound reduction of air compressors using a systematic approach

    NASA Astrophysics Data System (ADS)

    Moylan, Justin Tharp

    The noise emitted by portable electric air compressors can often be a nuisance or potentially hazardous to the operator or others nearby. Therefore, reducing the noise of these air compressors is desired. This research focuses on compressors with a reciprocating piston design as this is the most common type of pump design for portable compressors. An experimental setup was developed to measure the sound and vibration of the air compressors, including testing inside a semi-anechoic chamber. The design of a quiet air compressor was performed in four stages: 1) Teardown and benchmarking of air compressors, 2) Identification and isolation of noise sources, 3) Development of individual means to quiet noise sources, 4) Selection and testing of integrated solutions. The systematic approach and results for each of these stages will be discussed. Two redesigned solutions were developed and measured to be approximately 65% quieter than the previous unmodified compressor. An additional analysis was performed on the solutions selected by the participants involved in the selection process. This analysis involved determining which of the design criteria each participant considered most important when selecting solutions. The results from each participant were then compared to their educational background and experience and correlations were identified. The correlations discovered suggest that educational background and experience may be key determinants for the preference models developed.

  3. Propagation effects on radio range and noise in earth-space telecommunications

    NASA Technical Reports Server (NTRS)

    Flock, W. L.; Slobin, S. D.; Smith, E. K.

    1982-01-01

    Attention is given to the propagation effects on radio range and noise in earth-space telecommunications. The use of higher frequencies minimizes ionospheric effects on propagation, but tropospheric effects often increase or dominate. For paths of geostationary satellites, and beyond, the excess range delay caused by the ionosphere and plasmasphere is proportional to the total electron content along the path and inversely proportional to frequency squared. The delay due to dry air is usually of the order of a few meters while the delay due to water vapor (a few tens of centimeters) is responsible for most of the temporal variation in the range delay for clean air. For systems such as that of the Voyager spacecraft, and for attenuation values up to about 10 dB, increased sky noise degrades the received signal-to-noise ratio more than does the reduction in signal level due to attenuation.

  4. Urban Form, Air Pollution, and Health.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2017-12-01

    Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships. Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health. Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.

  5. Robust terahertz self-heterodyne system using a phase noise compensation technique.

    PubMed

    Song, Hajun; Song, Jong-In

    2015-08-10

    We propose and demonstrate a robust terahertz self-heterodyne system using a phase noise compensation technique. Conventional terahertz self-heterodyne systems suffer from degraded phase noise performance due to phase noise of the laser sources. The proposed phase noise compensation technique uses an additional photodiode and a simple electric circuit to produce phase noise identical to that observed in the terahertz signal produced by the self-heterodyne system. The phase noise is subsequently subtracted from the terahertz signal produced by the self-heterodyne system using a lock-in amplifier. While the terahertz self-heterodyne system using a phase noise compensation technique offers improved phase noise performance, it also provides a reduced phase drift against ambient temperature variations. The terahertz self-heterodyne system using a phase noise compensation technique shows a phase noise of 0.67 degree in terms of a standard deviation value even without using overall delay balance control. It also shows a phase drift of as small as approximately 10 degrees in an open-to-air measurement condition without any strict temperature control.

  6. Identification and mitigation of Advanced LIGO noise sources

    NASA Astrophysics Data System (ADS)

    Berger, Beverly K.

    2018-02-01

    In order to increase the reach of the astrophysical searches, various sources of instrumental and environmental noise must be identified and ameliorated. Here we discuss efforts to understand the origin of noise manifested as short-duration bursts (glitches) and/or range-impacting features at LIGO Hanford. Several examples found at LIGO Hanford Observatory in O1 and O2 were identified including glitches due to an air compressor, ringing phone, airplanes, and an incorrect servo setting, and a decrease in detector sensitivity due to truck traffic.

  7. Reduction of Flap Side Edge Noise - the Blowing Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Brooks, THomas F.

    2005-01-01

    A technique to reduce the noise radiating from a wing-flap side edge is being developed. As an airplane wing with an extended flap is exposed to a subsonic airflow, air is blown outward through thin rectangular chord-wise slots at various locations along the side edges and side surface of the flap to weaken and push away the vortices that originate in that region of the flap and are responsible for important noise emissions. Air is blown through the slots at up to twice the local flow velocity. The blowing is done using one or multiple slots, where a slot is located along the top, bottom or side surface of the flap along the side edge, or also along the intersection of the bottom (or top) and side surfaces.

  8. Low-frequency noise from large wind turbines.

    PubMed

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America

  9. Numerical simulation of tonal fan noise of computers and air conditioning systems

    NASA Astrophysics Data System (ADS)

    Aksenov, A. A.; Gavrilyuk, V. N.; Timushev, S. F.

    2016-07-01

    Current approaches to fan noise simulation are mainly based on the Lighthill equation and socalled aeroacoustic analogy, which are also based on the transformed Lighthill equation, such as the wellknown FW-H equation or the Kirchhoff theorem. A disadvantage of such methods leading to significant modeling errors is associated with incorrect solution of the decomposition problem, i.e., separation of acoustic and vortex (pseudosound) modes in the area of the oscillation source. In this paper, we propose a method for tonal noise simulation based on the mesh solution of the Helmholtz equation for the Fourier transform of pressure perturbation with boundary conditions in the form of the complex impedance. A noise source is placed on the surface surrounding each fan rotor. The acoustic fan power is determined by the acoustic-vortex method, which ensures more accurate decomposition and determination of the pressure pulsation amplitudes in the near field of the fan.

  10. Tinnitus and leisure noise.

    PubMed

    Williams, Warwick; Carter, Lyndal

    2017-04-01

    To study the relationship of life-time noise exposure and experience of tinnitus. Audiometric measures included otoscopy, pure tone air- and bone-conduction hearing threshold levels (HTL) and otoacoustic emissions (OAEs). Participants completed questionnaires including demographic information, past hearing health, history of participation in loud leisure activities, and attitudes to noise. A representative sample (1435) of the young (11-35 years old) Australian population. Of the sample, 63% indicated they experienced tinnitus in some form. There was no correlation of tinnitus experience with HTL or OAE amplitudes. Although median octave band HTLs for those who experienced tinnitus "all the time" were slightly higher for those who did not, neither group exhibited HTLs outside clinically-normal values. Of those who experienced tinnitus a direct correlation was found between frequency of experience of tinnitus and increasing cumulative, life-time noise exposure. Those who experienced tinnitus were more likely to report noticing deterioration in their hearing ability over time and to report difficulty hearing in quiet and/or noisy situations. Experience of tinnitus was found throughout this young population but not associated with HTLs or variation in OAE amplitudes. Males experienced 'permanent' tinnitus at significantly greater rate than females.

  11. USAF Environmental Noise Data Handbook. Volume 150: C-140 in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The C-140 is a USAF transport aircraft used for operational support. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Date are reported for seven locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  12. Qualitative criteria and thresholds for low noise asphalt mixture design

    NASA Astrophysics Data System (ADS)

    Vaitkus, A.; Andriejauskas, T.; Gražulytė, J.; Šernas, O.; Vorobjovas, V.; Kleizienė, R.

    2018-05-01

    Low noise asphalt pavements are cost efficient and cost effective alternative for road traffic noise mitigation comparing with noise barriers, façade insulation and other known noise mitigation measures. However, design of low noise asphalt mixtures strongly depends on climate and traffic peculiarities of different regions. Severe climate regions face problems related with short durability of low noise asphalt mixtures in terms of considerable negative impact of harsh climate conditions (frost-thaw, large temperature fluctuations, hydrological behaviour, etc.) and traffic (traffic loads, traffic volumes, studded tyres, etc.). Thus there is a need to find balance between mechanical and acoustical durability as well as to ensure adequate pavement skid resistance for road safety purposes. Paper presents analysis of the qualitative criteria and design parameters thresholds of low noise asphalt mixtures. Different asphalt mixture composition materials (grading, aggregate, binder, additives, etc.) and relevant asphalt layer properties (air void content, texture, evenness, degree of compaction, etc.) were investigated and assessed according their suitability for durable and effective low noise pavements. Paper concluded with the overview of requirements, qualitative criteria and thresholds for low noise asphalt mixture design for severe climate regions.

  13. Transportation noise and annoyance related to road traffic in the French RECORD study

    PubMed Central

    2013-01-01

    Road traffic and related noise is a major source of annoyance and impairment to health in urban areas. Many areas exposed to road traffic noise are also exposed to rail and air traffic noise. The resulting annoyance may depend on individual/neighborhood socio-demographic factors. Nevertheless, few studies have taken into account the confounding or modifying factors in the relationship between transportation noise and annoyance due to road traffic. In this study, we address these issues by combining Geographic Information Systems and epidemiologic methods. Street network buffers with a radius of 500 m were defined around the place of residence of the 7290 participants of the RECORD Cohort in Ile-de-France. Estimated outdoor traffic noise levels (road, rail, and air separately) were assessed at each place of residence and in each of these buffers. Higher levels of exposure to noise were documented in low educated neighborhoods. Multilevel logistic regression models documented positive associations between road traffic noise and annoyance due to road traffic, after adjusting for individual/neighborhood socioeconomic conditions. There was no evidence that the association was of different magnitude when noise was measured at the place of residence or in the residential neighborhood. However, the strength of the association between neighborhood noise exposure and annoyance increased when considering a higher percentile in the distribution of noise in each neighborhood. Road traffic noise estimated at the place of residence and road traffic noise in the residential neighborhood (75th percentile) were independently associated with annoyance, when adjusted for each other. Interactions of effects indicated that the relationship between road traffic noise exposure in the residential neighborhood and annoyance was stronger in affluent and high educated neighborhoods. Overall, our findings suggest that it is useful to take into account (i) the exposure to transportation noise

  14. Environmental impact of noise levels in and around opencast bauxite mine.

    PubMed

    Kisku, G C; Barman, S C; Kidwai, M M; Bhargava, S K

    2002-01-01

    Until recently, noise pollution has not been paid adequate attention as air, water and land pollution. In order to assess (predict) the impact of bauxite mine noise on employees health and in and around bauxite mine environment, general noise sources and equipment noise were monitored. All these noise sources were compared with prescribed standard noise levels laid down by Central Pollution Control Board (CPCB). Data has also been compared with reference site, north block hill top which is barren and virgin plateau/top covered with grass only and free from human interference. Equipment noise levels were much higher than the other zone of the mine which does not have the corresponding standards. Rock breaker recorded the highest noise level with 73.1 +/- 14.2 to 89.5 +/- 10.1 dB (A) while from ripper dozer it was least with 61.0 +/- 17.3 to 76.2 +/- 6.2 dB (A). Meteorological parameters did not have much influence upon equipment noise up to 100 feet from the source.

  15. Addressing Challenges in Studies of Behavioral Responses of Whales to Noise.

    PubMed

    Cato, Douglas H; Dunlop, Rebecca A; Noad, Michael J; McCauley, Robert D; Kniest, Eric; Paton, David; Kavanagh, Ailbhe S

    2016-01-01

    Studying the behavioral response of whales to noise presents numerous challenges. In addition to the characteristics of the noise exposure, many factors may affect the response and these must be measured and accounted for in the analysis. An adequate sample size that includes matching controls is crucial if meaningful results are to be obtained. Field work is thus complicated, logistically difficult, and expensive. This paper discusses some of the challenges and how they are being met in a large-scale multiplatform project in which humpback whales are exposed to the noise of seismic air guns.

  16. Validation of Aircraft Noise Models at Lower Levels of Exposure

    NASA Technical Reports Server (NTRS)

    Page, Juliet A.; Plotkin, Kenneth J.; Carey, Jeffrey N.; Bradley, Kevin A.

    1996-01-01

    Noise levels around airports and airbases in the United States arc computed via the FAA's Integrated Noise Model (INM) or the Air Force's NOISEMAP (NMAP) program. These models were originally developed for use in the vicinity of airports, at distances which encompass a day night average sound level in decibels (Ldn) of 65 dB or higher. There is increasing interest in aircraft noise at larger distances from the airport. including en-route noise. To evaluate the applicability of INM and NMAP at larger distances, a measurement program was conducted at a major air carrier airport with monitoring sites located in areas exposed to an Ldn of 55 dB and higher. Automated Radar Terminal System (ARTS) radar tracking data were obtained to provide actual flight parameters and positive identification of aircraft. Flight operations were grouped according to aircraft type. stage length, straight versus curved flight tracks, and arrival versus departure. Sound exposure levels (SEL) were computed at monitoring locations, using the INM, and compared with measured values. While individual overflight SEL data was characterized by a high variance, analysis performed on an energy-averaging basis indicates that INM and similar models can be applied to regions exposed to an Ldn of 55 dB with no loss of reliability.

  17. Minimum Climb to Cruise Noise Trajectories Modeled for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    1998-01-01

    The proposed U.S. High Speed Civil Transport (HSCT) will revolutionize commercial air travel by providing economical supersonic passenger service to destinations worldwide. Unlike the high-bypass turbofan engines that propel today's subsonic airliners, HSCT engines will have much higher jet exhaust speeds. Jet noise, caused by the turbulent mixing of high-speed exhaust with the surrounding air, poses a significant challenge for HSCT engine designers. To resolve this challenge, engineers have designed advanced mixer rejector nozzles that reduce HSCT jet noise to airport noise certification levels by entraining and mixing large quantities of ambient air with the engines' jet streams. Although this works well during the first several minutes of flight, far away from the airport, as the HSCT gains speed and climbs, poor ejector inlet recovery and ejector ram drag contribute to poor thrust, making it advantageous to turn off the ejector. Doing so prematurely, however, can cause unacceptable noise levels to propagate to the ground, even when the aircraft is many miles from the airport. This situation lends itself ideally to optimization, where the aircraft trajectory, throttle setting, and ejector setting can be varied (subject to practical aircraft constraints) to minimize the noise propagated to the ground. A method was developed at the NASA Lewis Research Center that employs a variation of the classic energy state approximation: a trajectory analysis technique historically used to minimize climb time or fuel burned in many aircraft problems. To minimize the noise on the ground at any given throttle setting, high aircraft altitudes are desirable; but the HSCT may either climb quickly to high altitudes using a high, noisy throttle setting or climb more slowly at a lower, quieter throttle setting. An optimizer has been programmed into NASA's existing aircraft and noise analysis codes to balance these options by dynamically choosing the best altitude-velocity path and

  18. Noise reduction algorithm with the soft thresholding based on the Shannon entropy and bone-conduction speech cross- correlation bands.

    PubMed

    Na, Sung Dae; Wei, Qun; Seong, Ki Woong; Cho, Jin Ho; Kim, Myoung Nam

    2018-01-01

    The conventional methods of speech enhancement, noise reduction, and voice activity detection are based on the suppression of noise or non-speech components of the target air-conduction signals. However, air-conduced speech is hard to differentiate from babble or white noise signals. To overcome this problem, the proposed algorithm uses the bone-conduction speech signals and soft thresholding based on the Shannon entropy principle and cross-correlation of air- and bone-conduction signals. A new algorithm for speech detection and noise reduction is proposed, which makes use of the Shannon entropy principle and cross-correlation with the bone-conduction speech signals to threshold the wavelet packet coefficients of the noisy speech. The proposed method can be get efficient result by objective quality measure that are PESQ, RMSE, Correlation, SNR. Each threshold is generated by the entropy and cross-correlation approaches in the decomposed bands using the wavelet packet decomposition. As a result, the noise is reduced by the proposed method using the MATLAB simulation. To verify the method feasibility, we compared the air- and bone-conduction speech signals and their spectra by the proposed method. As a result, high performance of the proposed method is confirmed, which makes it quite instrumental to future applications in communication devices, noisy environment, construction, and military operations.

  19. In vitro comparison of noise levels produced by different CPAP generators.

    PubMed

    Kirchner, Lieselotte; Wald, Martin; Jeitler, Valerie; Pollak, Arnold

    2012-01-01

    Minimization of noise exposure is an important aim of modern neonatal intensive care medicine. Binasal continuous positive airway pressure (CPAP) generators are among the most important sources of continuous noise in neonatal wards. The aim of this study was to find out which CPAP generator creates the least noise. In an experimental setup, two jet CPAP generators (Infant Flow® generator and MediJet®) and two conventional CPAP generators (Bubble CPAP® and Baby Flow®) were compared. Noise production was measured in decibels in an A-weighted scale [dB(A)] in a closed incubator at 2 mm lateral distance from the end of the nasal prongs. Reproduction of constant airway pressure and air leak was achieved by closure of the nasal prongs with a type of adhesive tape that is semipermeable to air. The noise levels produced by the four generators were significantly different (p < 0.001). Values measured at a continuous constant flow rate of 8 l/min averaged 83 dB(A) for the Infant Flow® generator with or without sound absorber, 72 dB(A) for the MediJet®, 62 dB(A) for the Bubble CPAP® and 55 dB(A) for the Baby Flow®. Conventional CPAP generators work more quietly than the currently available jet CPAP generators. Copyright © 2011 S. Karger AG, Basel.

  20. Can you hear me. Noise control regulations for motor vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, J.E.

    1976-06-01

    Companies should take action to ensure that their trucks and construction equipment conform to noise regulations established by the Environmental Protection Agency under authority of the 1972 Noise Control Act. Noise control regulations are applicable to all motor carriers with a gross vehicle weight rating of over 10,000 lb, regardless of the date of vehicle manufacture. The standards basically provide for five inspection steps to determine the compliance or non-compliance of a vehicle. Noise measurement tests must be carried out in a specific manner. The EPA has also issued regulations establishing noise emission standards for new medium and heavy trucksmore » over 10,000 lb gross vehicle weight rating and designed for street and highway use. The EPA is also looking into noise emissions from construction equipment; the first of these regulations sets a ceiling on noise emissions for new portable air compressors. In addition to the exterior noise-level limits prescribed by the EPA, the in-cab noise levels are federally regulated from the view-point of occupational noise-exposure criteria. Companies should train personnel in the physical properties of sound and the use of sound-measuring devices to ensure that new and existing equipment complies with the regulations.« less

  1. Stretchable Mesh for Cavity Noise Reduction

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R. (Inventor)

    2017-01-01

    A stretchable mesh material extends across the opening of a cavity of the landing gear of an aircraft when the landing gear is in the deployed position. The mesh material alters the flow of air across the opening of the landing gear cavity and significantly reduces the amount of noise produced by the wheel well at low-to-mid frequencies.

  2. Auralization Architectures for NASA?s Next Generation Aircraft Noise Prediction Program

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.; Aumann, Aric R.

    2013-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The assessment of human response to noise from future aircraft can only be afforded through laboratory testing using simulated flyover noise. Recent work by the authors demonstrated the ability to auralize predicted flyover noise for a state-of-the-art reference aircraft and a future hybrid wing body aircraft concept. This auralization used source noise predictions from NASA's Aircraft NOise Prediction Program (ANOPP) as input. The results from this process demonstrated that auralization based upon system noise predictions is consistent with, and complementary to, system noise predictions alone. To further develop and validate the auralization process, improvements to the interfaces between the synthesis capability and the system noise tools are required. This paper describes the key elements required for accurate noise synthesis and introduces auralization architectures for use with the next-generation ANOPP (ANOPP2). The architectures are built around a new auralization library and its associated Application Programming Interface (API) that utilize ANOPP2 APIs to access data required for auralization. The architectures are designed to make the process of auralizing flyover noise a common element of system noise prediction.

  3. Evaluating the performance of active noise control systems in commercial and industrial applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Depies, C.; Deneen, S.; Lowe, M.

    1995-06-01

    Active sound cancellation technology is increasingly being used to quiet commercial and industrial air-moving devices. Engineers and designers are implementing active or combination active/passive technology to control sound quality in the workplace and the acoustical environment in residential areas near industrial facilities. Sound level measurements made before and after the installation of active systems have proved that significant improvements in sound quality can be obtained even if there is little or no change in the NC/RC or dBA numbers. Noise produced by centrifugal and vane-axial fans, pumps and blowers, commonly used for ventilation and material movement in industry, are frequentlymore » dominated by high amplitude, tonal noise at low frequencies. And the low-frequency noise produced by commercial air handlers often has less tonal and more broadband characteristics, resulting in audible duct rumble noise and objectionable room spectrums. Because the A-weighting network, which is commonly used for industrial noise measurements, de-emphasizes low frequencies, its single number rating can be misleading in terms of judging the overall subjective sound quality in impacted areas and assessing the effectiveness of noise control measures. Similarly, NC values, traditionally used for commercial HVAC acoustical design criteria, can be governed by noise at any frequency and cannot accurately depict human judgment of the aural comfort level. Analyses of frequency spectrum characteristics provide the most effective means of assessing sound quality and determining mitigative measures for achieving suitable background sound levels.« less

  4. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.

  5. USAF Bioenvironmental Noise Data Handbook. Volume 156. HH-1N In-flight Crew Noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-11-01

    The HH-IN is a USAF multi-purpose utility helicopter providing support for various USAF missions. This report provides measured data defining the bioacoustic environments at flight crew locations inside this helicopter during normal flight operations. Data are reported for two locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  6. Noise in any frequency range can enhance information transmission in a sensory neuron

    NASA Astrophysics Data System (ADS)

    Levin, Jacob E.

    1997-05-01

    The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.

  7. Evaluations of indoor noise criteria systems based on human response

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.

    2005-09-01

    The goal of this research is to examine human response to background noise, and relate results to indoor noise criteria. In previous work by the authors, subjects completed perception surveys, typing tasks, and proofreading tasks under typical heating, ventilating, and air-conditioning (HVAC) noise conditions. Results were correlated with commonly used indoor noise criteria systems including noise criteria (NC), room criteria (RC) and others. The findings suggested that the types of tasks used and the length of exposure can impact the results. To examine these two issues, the authors conducted a new study in which each test subject completed 38 total hours of testing over multiple days. Subjects were exposed to several background noise exposures over 20, 40, 80, and 240 minute trials. During the trials, subjects completed a variety of performance tasks and answered questions about their perception of the noise, the thermal environment, and various other factors. Findings from this study were used to determine optimum testing conditions for on-going research examining the effects of tonal or fluctuating background noise on performance, annoyance, and spectral perception. Results are being used to evaluate the effectiveness of commonly used indoor noise criteria systems. [Work supported by INCE and ASHRAE.

  8. Application of stiffened cylinder analysis to ATP interior noise studies

    NASA Technical Reports Server (NTRS)

    Wilby, E. G.; Wilby, J. F.

    1983-01-01

    An analytical model developed to predict the interior noise of propeller driven aircraft was applied to experimental configurations for a Fairchild Swearingen Metro II fuselage exposed to simulated propeller excitation. The floor structure of the test fuselage was of unusual construction - mounted on air springs. As a consequence, the analytical model was extended to include a floor treatment transmission coefficient which could be used to describe vibration attenuation through the mounts. Good agreement was obtained between measured and predicted noise reductions when the foor treatment transmission loss was about 20 dB - a value which is consistent with the vibration attenuation provided by the mounts. The analytical model was also adapted to allow the prediction of noise reductions associated with boundary layer excitation as well as propeller and reverberant noise.

  9. 76 FR 57644 - Air Installations Compatible Use Zones

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... DEPARTMENT OF DEFENSE Office of the Secretary 32 CFR Part 256 [DoD Instruction 4165.57] Air... removes the DoD's rule concerning air installations compatible use zones. The underlying DoD Instruction...; navigation (air); noise control. PART 256--[REMOVED] 0 Accordingly, by the authority of 5 U.S.C. 301, 32 CFR...

  10. [Comfort of crew and passengers and atmospheric pressure, noise, wind speed in high-speed train of Shijiazhuang-Taiyuan passenger dedicated line].

    PubMed

    Zhai, Yi-biao; Huo, Wei; Liu, Qiao-ying; Chen, Bao-shan; Zhang, Jin-long; Shi, Lei

    2012-11-01

    To explore the crew and passengers' comfort on the Shijiazhuang-Taiyuan passenger dedicated line and physical factors, such as air pressure, noise, wind speed. Comfort investigation of all the crew (n = 244) and passengers (n = 377) on the Shijiazhuang-Taiyuan passenger dedicated line at speed of 250 km/h and 200 km/h and the detection of the air pressure, noise and wind speed were performed in 2011. Significantly higher ratio of comfortable feeling, lower ratio of seriously discomfortable feeling were observed in crew and passengers at 200 km/h compared with those at 250 km/h (P < 0.05), as well as rapid disappearance of discomfortable feeling in crew (P < 0.05) and significantly higher ratio of lightly discomfortable feeling and lower ratios of tinnitus and eardrum discomfort induced by air pressure and noise in passengers at 200 km/h. No significant difference was observed in ear discomfort induced by air pressure and noise among crew, and the duration of disappearance of discomfortable feeling among passengers between 200 km/h and 250 km/h. The noise in carriages exceeded the related standard when the high-speed train passing through the tunnels. The individuals feel more comfortable at 200 km/h than 250 km/h in this line., which may be related with rapid variation of wind speed and noise when the train passes through the tunnels with high speed.

  11. A passive noise control approach utilizing air gaps with fibrous materials in the textile industry.

    PubMed

    Monazzam-Esmaeelpour, Mohammad Reza; Hashemi, Zahra; Golmohammadi, Rostam; Zaredar, Narges

    2014-01-01

    Noise pollution is currently a major risk factor in industries in both developed and developing countries.The present study assessed noise pollution in the knitting industry in Iran in 2009 and presented a control method to reduce the rate of noise generation. The overall noise level was estimated using the network environmental noise assessment method in Sina Poud textile mill in Hamadan. Then, frequency analysis was performed at indicator target stations in the linear network. Finally, a suitable absorbent was recommended for the ceilings, walls, and aerial panels at three phases according to the results found for the sound source and destination environment. The results showed that the highest sound pressure level was 98.5 dB and the lowest was 95.1 dB. The dominant frequency for the industry was 500 Hz. The highest and lowest sound suppression was achieved by intervention at 4000 Hz equivalent to 14.6 dB and 250 Hz in the textile industry. When noise control at the source is not available or insufficient because of the wide distribution of the acoustic field in the workplace, the best option is to increase the absorptive surface of the workplace using adsorbents such as polystyrene.

  12. Deployable Engine Air Brake

    NASA Technical Reports Server (NTRS)

    2014-01-01

    On approach, next-generation aircraft are likely to have airframe noise levels that are comparable to or in excess of engine noise. ATA Engineering, Inc. (ATA) is developing a novel quiet engine air brake (EAB), a device that generates "equivalent drag" within the engine through stream thrust reduction by creating a swirling outflow in the turbofan exhaust nozzle. Two Phase II projects were conducted to mature this technology: (1) a concept development program (CDP) and (2) a system development program (SDP).

  13. The effects of aquaculture noise on hearing, growth and disease resistance of rainbow trout Oncorhynchus mykiss

    USDA-ARS?s Scientific Manuscript database

    Intensive aquaculture production often utilizes equipment (e.g., aerators, air and water pumps, harvesters, blowers, filtration systems, and maintenance machinery) that increases noise levels in fish culture tanks. Consequently, chronic exposure to elevated noise levels in tanks could negatively imp...

  14. Radio Measurements of Air Showers with LOPES

    NASA Astrophysics Data System (ADS)

    Schröder, F. G.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Fuhrmann, D.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2013-02-01

    LOPES is a digital antenna array for the radio measurement of cosmic-ray air showers at energies around 1017 eV. It is triggered by the KASCADE-Grande air-shower array at the Karlsruhe Institute of Technology (KIT), Germany. Because of an absolute amplitude calibration and a sophisticated data analysis, LOPES can test models for the radio emission to an up-to-now unachieved level, thus improving our understanding of the radio emission mechanisms. Recent REAS simulations of the air-shower radio emission come closer to the measurements than any previously tested simulations. We have determined the radio-reconstruction precision of interesting air-shower parameters by comparing LOPES reconstructions to both REAS simulations and KASCADE-Grande measurements, and present our latest results for the angular resolution, the energy and the Xmax reconstruction based on the radio measurement of about 500 air showers. Although the precision of LOPES is limited by the high level of anthropogenic noise at KIT, it opens a promising perspective for next-generation radio arrays in regions with a lower ambient noise level.

  15. A Preliminary Analysis of Noise Exposure and Medical Outcomes for Department of Defense Military Musicians.

    PubMed

    Smith, Cindy; Beamer, Sharon; Hall, Shane; Helfer, Thomas; Kluchinsky, Timothy A

    2015-01-01

    Noise exposure is a known occupational health hazard to those serving in the military. Previous military epidemiology studies have identified military occupations at risk of noise induced hearing loss (NIHL); however, musicians have not been specifically mentioned. The focus of military NIHL studies is usually on those service members of the combat arms occupations. This project was a preliminary examination of Department of Defense (DoD) active duty military musicians in regard to their noise exposure, annual hearing test rates, and hearing injury rates using available data sources. The analysis concluded that DoD military musicians are an underserved population in terms of hearing conservation efforts. Noise surveillance data extracted from the Defense Occupational and Environmental Health Readiness System-Industrial Hygiene showed that every musician similar exposure group (SEG) with noise survey data from 2009 to 2013 exceeded the occupation exposure level adopted by DoD Instruction 6055.12. However, only a small percentage of all DoD active duty military musicians (5.5% in the peak year of 2012) were assigned to a SEG that was actually surveyed. Hearing test data based on Current Procedural Terminology coding extracted from the Military Health System revealed that the percentage of musicians with annual hearing tests increased over the 5 years studied in all services except the Air Force. During 2013, the data showed that the Navy had the highest percentage of musicians with annual hearing tests at 70.9%, and the Air Force had the lowest at 11.4%. The Air Force had the highest percentage of hearing injuries of those musicians with annual hearing tests for all 5 years analyzed. Although noise surveillance and annual hearing tests are being conducted, they occur at a much lower rate than required for a population that is known to be overexposed to noise.

  16. Maximizing noise energy for noise-masking studies.

    PubMed

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  17. Quantum 1/f Noise in High Technology Applications Including Ultrasmall Structures and Devices

    DTIC Science & Technology

    1991-07-15

    chaos nature of 1/f noise in infrared detectors . 20. 0ISTRIBUTCN/AVAJLABi3LITY OF ABSTRACT j21. Ai3STR.ACT SECURITY fLASS.FiCATION (ZUN.’CASSIF!ED...of 1/f noise in infrared detectors . Approved .or .UnjtlC relSS* distribution unlimited AIR FrnPc COF SCIEMTIFIC RESEARCR (knSC) NOTICE OF T1SITTAL...in ultrasmall BJT’s was found to agree reasonably with the experiment. Finally, the fractional dimension of band- limited quantum 1/f noise was deter

  18. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  19. Preliminary measurement of the airframe noise from an F-106B delta wing aircraft at low flyover speeds. [establishment of lower limit for noise level of supersonic transport aircraft

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    To establish a realistic lower limit for the noise level of advanced supersonic transport aircraft will require knowledge concerning the amount of noise generated by the airframe itself as it moves through the air. The airframe noise level of an F-106B aircraft was determined and was compared to that predicted from an existing empirical relationship. The data were obtained from flyover and static tests conducted to determine the background noise level of the F-106B aircraft. Preliminary results indicate that the spectrum associated with airframe noise was broadband and peaked at a frequency of about 570 hertz. An existing empirical method successfully predicted the frequency where the spectrum peaked. However, the predicted OASPL value of 105 db was considerably greater than the measures value of 83 db.

  20. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  1. Measuring the levels of noise at the İstanbul Atatürk Airport and comparisons with model simulations.

    PubMed

    Sari, Deniz; Ozkurt, Nesimi; Akdag, Ali; Kutukoglu, Murat; Gurarslan, Aliye

    2014-06-01

    Airport noise and its impact on the surrounding areas are major issues in the aviation industry. The İstanbul Atatürk Airport is a major global airport with passenger numbers increasing rapidly per annum. The noise levels for day, evening and night times were modeled around the İstanbul Atatürk Airport according to the European Noise Directive using the actual data records for the year 2011. The "ECAC Doc. 29-Interim" method was used for the computation of the aircraft traffic noise. In the setting the noise model for the local airport topography was taken into consideration together with the noise source data, the airport loadings, features of aircraft and actual air traffic data. Model results were compared with long-term noise measurement values for calibration. According to calibration results, classifications of the aircraft type and flight tracks were revised. For noise model validation, the daily noise measurements at four additional locations were used during the verification period. The input data was re-edited only for these periods and the model was validated. A successful model performance was obtained in several zones around the airport. The validated noise model of the İstanbul Atatürk Airport can be now utilized both for determining the noise levels in the future and for producing new strategies which are about the land use planning, operational considerations for the air traffic management and the noise abatement procedures. Crown Copyright © 2013. All rights reserved.

  2. USAF bioenvironmental noise data handbook. Volume 157: KC-10A in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1982-09-01

    The KC-10A is a standard USAF tanker-transport aircraft with high-speed, high altitude refueling and long range transport capability. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this helicopter during normal flight operations. Data are reported for 24 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  3. Benefits and disadvantages of self-regulation of environmental noise from military training

    NASA Astrophysics Data System (ADS)

    Luz, George A.

    2002-05-01

    In a 1981 Executive decision, the Administration's Office of Management and Budget (OMB) told the Environmental Protection Agency to end funding of the Office of Noise Abatement and Control (ONAC). This decision, coupled with a specific exemption for military equipment contained in the Noise Control Act of 1972, ensured that the military departments would be self-regulating in regard to noise. This self-regulation for noise stands in contrast to the external regulation of other pollutants, such as air and water emissions. Two possible disadvantages of self-regulation are (1) reduced funding for noise management compared with funding for externally regulated pollutants, and (2) lack of an independent and external set of standards for determining acceptable limits on community noise exposure. Three possible benefits are (1) avoiding the costs of mitigating trivial violations of external standards, (2) maintaining a long-standing policy of preventing noise problems through land use planning, and (3) enabling negotiated solutions between installations and their neighboring communities. The paper ends with an examination of a negotiated solution for a community subjected to noise from the detonation of obsolete ammunition.

  4. A noise assessment and prediction system

    NASA Technical Reports Server (NTRS)

    Olsen, Robert O.; Noble, John M.

    1990-01-01

    A system has been designed to provide an assessment of noise levels that result from testing activities at Aberdeen Proving Ground, Md. The system receives meteorological data from surface stations and an upper air sounding system. The data from these systems are sent to a meteorological model, which provides forecasting conditions for up to three hours from the test time. The meteorological data are then used as input into an acoustic ray trace model which projects sound level contours onto a two-dimensional display of the surrounding area. This information is sent to the meteorological office for verification, as well as the range control office, and the environmental office. To evaluate the noise level predictions, a series of microphones are located off the reservation to receive the sound and transmit this information back to the central display unit. The computer models are modular allowing for a variety of models to be utilized and tested to achieve the best agreement with data. This technique of prediction and model validation will be used to improve the noise assessment system.

  5. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  6. Global warming and air transport : meeting the challenge of sustainable growth

    DOT National Transportation Integrated Search

    2009-04-01

    Aviation impacts community noise footprints, air quality, water quality, energy usage and availability, and the global climate. Trends show environmental impacts from aircraft noise and aviation emissions will be a critical constraint on capacity gro...

  7. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  8. Noise spectroscopy as an equilibrium analysis tool for highly sensitive electrical biosensing

    NASA Astrophysics Data System (ADS)

    Guo, Qiushi; Kong, Tao; Su, Ruigong; Zhang, Qi; Cheng, Guosheng

    2012-08-01

    We demonstrate an approach for highly sensitive bio-detection based on silicon nanowire field-effect transistors by employing low frequency noise spectroscopy analysis. The inverse of noise amplitude of the device exhibits an enhanced gate coupling effect in strong inversion regime when measured in buffer solution than that in air. The approach was further validated by the detection of cardiac troponin I of 0.23 ng/ml in fetal bovine serum, in which 2 orders of change in noise amplitude was characterized. The selectivity of the proposed approach was also assessed by the addition of 10 μg/ml bovine serum albumin solution.

  9. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cardiovascular and Metabolic Effects: A Summary

    PubMed Central

    van Kempen, Elise; Casas, Maribel; Pershagen, Göran; Foraster, Maria

    2018-01-01

    To update the current state of evidence and assess its quality, we conducted a systematic review on the effects of environmental noise exposure on the cardio-metabolic systems as input for the new WHO environmental noise guidelines for the European Region. We identified 600 references relating to studies on effects of noise from road, rail and air traffic, and wind turbines on the cardio-metabolic system, published between January 2000 and August 2015. Only 61 studies, investigating different end points, included information enabling estimation of exposure response relationships. These studies were used for meta-analyses, and assessments of the quality of evidence using the Grading of Recommendations Assessment, Development and Evaluation (GRADE). A majority of the studies concerned traffic noise and hypertension, but most were cross-sectional and suffering from a high risk of bias. The most comprehensive evidence was available for road traffic noise and Ischeamic Heart Diseases (IHD). Combining the results of 7 longitudinal studies revealed a Relative Risk (RR) of 1.08 (95% CI: 1.01–1.15) per 10 dB (LDEN) for the association between road traffic noise and the incidence of IHD. We rated the quality of this evidence as high. Only a few studies reported on the association between transportation noise and stroke, diabetes, and/or obesity. The quality of evidence for these associations was rated from moderate to very low, depending on transportation noise source and outcome. For a comprehensive assessment of the impact of noise exposure on the cardiovascular and metabolic system, we need more and better quality evidence, primarily based on longitudinal studies. PMID:29470452

  10. Combination sound and vibration isolation curb for rooftop air-handling systems

    NASA Astrophysics Data System (ADS)

    Paige, Thomas S.

    2005-09-01

    This paper introduces the new Model ESSR Sound and Vibration Isolation Curb manufactured by Kinetics Noise Control, Inc. This product was specially designed to address all of the common transmission paths associated with noise and vibration sources from roof-mounted air-handling equipment. These include: reduction of airborne fan noise in supply and return air ductwork, reduction of duct rumble and breakout noise, reduction of direct airborne sound transmission through the roof deck, and reduction of vibration and structure-borne noise transmission to the building structure. Upgrade options are available for increased seismic restraint and wind-load protection. The advantages of this new system over the conventional approach of installing separate duct silencers in the room ceiling space below the rooftop unit are discussed. Several case studies are presented with the emphasis on completed projects pertaining to classrooms and school auditorium applications. Some success has also been achieved by adding active noise control components to improve low-frequency attenuation. This is an innovative product designed for conformance with the new classroom acoustics standard ANSI S12.60.

  11. Impact of Fluidic Chevrons on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Kinzie, Kevin W.; Whitmire, Julia; Abeysinghe, Amal

    2005-01-01

    The impact of alternating fluidic core chevrons on the production of jet noise is investigated. Core nozzles for a representative 1/9th scale, bypass ratio 5 model system were manufactured with slots cut near the trailing edges to allow for air injection into the core and fan streams. The injectors followed an alternating pattern around the nozzle perimeter so that the injection alternated between injection into the core stream and injection into the fan stream. For the takeoff condition and a forward flight Mach number of 0.10, the overall sound pressure levels at the peak jet noise angle decrease with increasing injection pressure. Sound pressure levels increase for observation angles less than 110o at higher injection pressures due to increases in high frequency noise. Greater increases in high frequency noise are observed when the number of injectors increases from 8 to 12. When the forward flight Mach number is increased to 0.28, jet noise reduction (relative to the baseline) is observed at aft angles for increasing injection pressure while significant increases in jet noise are observed at forward observation angles due to substantial acoustic radiation at high frequencies. A comparison between inflow and alternating injectors shows that, for equal mass injection rates, the inflow nozzle produces greater low frequency noise reduction (relative to the baseline) than the alternating injectors at 90o and aft observation angles and a forward flight Mach number of 0.28. Preliminary computational fluid dynamic simulations indicate that the spatial decay rate of the hot potential core flow is less for the inflow nozzle than for the alternating nozzles which indicates that gentle mixing may be preferred over sever mixing when fluidic chevrons are used for jet noise reduction.

  12. Final Environmental Assessment. Physical Fitness Center Los Angeles Air Force Base

    DTIC Science & Technology

    2000-10-13

    Coast Air Quality Management District (SCAQMD). 1996. Final 1997 Air Qaulity Management Plan. November. South Coast Air Quality Management District...resources including land use, geology and soils, water resources, biological resources, air quality, noise, traffic and transportation, waste management ...3-8 3.8 Solid and Hazardous Waste Management and Disposal

  13. Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Jarvis, Suzanne P.

    2006-04-01

    We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: <3μm) as well as for focusing a laser beam (laser spot size: ˜10μm). Even for a broad range of cantilevers with lengths from 35to125μm, the sensor provides deflection noise densities of less than 11fm/√Hz in air and 16fm/√Hz in water. In particular, a cantilever with a length of 50μm gives the minimum deflection noise density of 5.7fm/√Hz in air and 7.3fm/√Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water.

  14. USAF bioenvironmental noise data handbook. Volume 148. T-37B in-flight crew noise

    NASA Astrophysics Data System (ADS)

    Hille, H. K.

    1981-11-01

    The T-37B is a USAF two-seat primary trainer aircraft. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported at one location for 19 different flight conditions and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  15. Audiometric profile of civilian pilots according to noise exposure

    PubMed Central

    Falcão, Taiana Pacheco; Luiz, Ronir Raggio; Schütz, Gabriel Eduardo; Mello, Márcia Gomide da Silva; Câmara, Volney de Magalhães

    2014-01-01

    OBJECTIVE To evaluate the audiometric profile of civilian pilots according to the noise exposure level. METHODS This observational cross-sectional study evaluated 3,130 male civilian pilots aged between 17 and 59 years. These pilots were subjected to audiometric examinations for obtaining or revalidating the functional capacity certificate in 2011. The degree of hearing loss was classified as normal, suspected noise-induced hearing loss, and no suspected hearing loss with other associated complications. Pure-tone air-conduction audiometry was performed using supra-aural headphones and acoustic stimulus of the pure-tone type, containing tone thresholds of frequencies between 250 Hz and 6,000 Hz. The independent variables were professional categories, length of service, hours of flight, and right or left ear. The dependent variable was pilots with suspected noise-induced hearing loss. The noise exposure level was considered low/medium or high, and the latter involved periods > 5,000 flight hours and > 10 years of flight service. RESULTS A total of 29.3% pilots had suspected noise-induced hearing loss, which was bilateral in 12.8% and predominant in the left ear (23.7%). The number of pilots with suspected hearing loss increased as the noise exposure level increased. CONCLUSIONS Hearing loss in civilian pilots may be associated with noise exposure during the period of service and hours of flight. PMID:25372170

  16. Noise Reduction of Aircraft Flap

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V. (Inventor); Brooks, Thomas F. (Inventor)

    2009-01-01

    A reduction in noise radiating from a side of a deployed aircraft flap is achieved by locating a slot adjacent the side of the flap, and then forcing air out through the slot with a suitable mechanism. One, two or even three or more slots are possible, where the slot is located at one;or more locations selected from a group of locations comprising a top surface of the flap, a bottom surface of the flap, an intersection of the top and side surface of the flap, an intersection of the bottom and side surfaces of the flap, and a side surface of the flap. In at least one embodiment the slot is substantially rectangular. A device for adjusting a rate of the air forced out through the slot can also be provided.

  17. Hot and cold body reference noise generators from 0 to 40 GHz

    NASA Technical Reports Server (NTRS)

    Hornbostel, D. H.

    1974-01-01

    This article describes the design, development, and analysis of exceptionally accurate radiometric noise generators from 0-40 GHz to serve as standard references. Size, weight, power, and reliability are optimized to meet the requirements of NASA air- and space-borne radiometers. The radiometric noise temperature of these noise generators is, unavoidably, calculated from measured values rather than measured directly. The absolute accuracy and stability are equal to or better than those of reliable standards available for comparison. A noise generator has been developed whose measurable properties (VSWR, line loss, thermometric temperatures) have been optimized in order to minimize the effects of the uncertainty in the calculated radiometric noise temperatures. Each measurable property is evaluated and analyzed to determine the effects of the uncertainty of the measured value. Unmeasurable properties (primarily temperature gradients) are analyzed, and reasonable precautions are designed into the noise generator to guarantee that the uncertainty of the value remains within tolerable limits.

  18. Behavioral responses of gray whales to industrial noise: feeding observations and predictive modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malme, C.I.; Wuersig, B.; Bird, J.E.

    1986-08-01

    An investigation was made of the potential effects of underwater noise from petroleum-industry activities on feeding gray whales. The investigation consisted of two components, a field study and an acoustic model study. The field study was performed near Southeast Cape, St. Lawrence Island in August, 1985, using a 100 cu. in. air gun source and playback of drillship noise. Sound-source levels and acoustic-propagation losses were measured to permit estimation of sound exposure levels at whale-sighting positions. For the air-gun source there was a 0.5 probability that the whales would stop feeding and move away from the area when the averagemore » pulse levels reached 173 dB.« less

  19. Transonic Performance Characteristics of Several Jet Noise Suppressors

    NASA Technical Reports Server (NTRS)

    Schmeer, James W.; Salters, Leland B., Jr.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the transonic performance characteristics of several noise-suppressor configurations has been conducted in the Langley 16-foot transonic tunnel. The models were tested statically and over a Mach number range from 0.70 to 1.05 at an angle of attack of 0 deg. The primary jet total-pressure ratio was varied from 1.0 (jet off) to about 4.5. The effect of secondary air flow on the performance of two of the configurations was investigated. A hydrogen peroxide turbojet-engine simulator was used to supply the hot-jet exhaust. An 8-lobe afterbody with centerbody, short shroud, and secondary air had the highest thrust-minus-drag coefficients of the six noise-suppressor configurations tested. The 12-tube and 12-lobe afterbodies had the lowest internal losses. The presence of an ejector shroud partially shields the external pressure distribution of the 8-lobe after-body from the influence of the primary jet. A ring-airfoil shroud increased the static thrust of the annular nozzle but generally decreased the thrust minus drag at transonic Mach numbers.

  20. Preliminary Measurements of the Noise Characteristics of Some Jet-Augmented-Flap Configurations

    NASA Technical Reports Server (NTRS)

    Maglieri, Domenic J.; Hubbard, Harvey H.

    1959-01-01

    Experimental noise studies were conducted on model configurations of some proposed jet-augmented flaps to determine their far-field noise characteristics. The tests were conducted using cold-air jets of circular and rectangular exits having equal areas, at pressure ratios corresponding to exit velocities slightly below choking. Results indicated that the addition of a flap to a nozzle may change both its noise radiation pattern and frequency spectrum. Large reductions in the noise radiated in the downward direction are realized when the flow from a long narrow rectangular nozzle as permitted to attach to and flow along a large flap surface. Deflecting or turning the jet flow by means of impingement on the under surfaces increases the noise radiated in all directions and especially in the downward direction for the jet-flap configurations tested. Turning of the flow from nozzles by means of a flap turns the noise pattern approximately an equal amount. The principle of using a jet-flap shield with flow attachment may have some application as a noise suppressor.

  1. Core Noise: Implications of Emerging N+3 Designs and Acoustic Technology Needs

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    prediction tools for integrated core assemblies as well as and strategies for noise reduction and control is needed in order to meet the NASA N+3 noise goals. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic.

  2. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise.

    PubMed

    Salomons, Erik M; Janssen, Sabine A

    2011-06-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  3. AICUZ (Air Installation Compatible Use Zone) report

    NASA Astrophysics Data System (ADS)

    1982-09-01

    The development and use of lands near U.S. Air Force base is of continuing concern to Air Force officials. It is recognized that the public must be protected from noise and other hazards of air base operations. At the same time it is recognized that lands near air bases often are highly attractive areas for development. Aircraft operations are likely to continue from Mather AFB for the indefinite future. Operations will include the T-37, T-43, B-52, KC-135 or replacement aircraft. The types of aircraft, flight tracks, frequency, and other characteristics will be continuously evaluated by Mather AFB to determine the effects on the AICUZ and the community. The AICUZ study was prepared to promote orderly and compatible land use around Mather AFB. Land use guidelines and noise measurement techniques are based on recent technology. Data from this study should be considered for incorporation into existing land use plans and ordinances of surrounding communities, and used as a basis for decisions on future land development requests.

  4. Chaotic sources of noise in machine acoustics

    NASA Astrophysics Data System (ADS)

    Moon, F. C., Prof.; Broschart, Dipl.-Ing. T.

    1994-05-01

    In this paper a model is posited for deterministic, random-like noise in machines with sliding rigid parts impacting linear continuous machine structures. Such problems occur in gear transmission systems. A mathematical model is proposed to explain the random-like structure-borne and air-borne noise from such systems when the input is a periodic deterministic excitation of the quasi-rigid impacting parts. An experimental study is presented which supports the model. A thin circular plate is impacted by a chaotically vibrating mass excited by a sinusoidal moving base. The results suggest that the plate vibrations might be predicted by replacing the chaotic vibrating mass with a probabilistic forcing function. Prechaotic vibrations of the impacting mass show classical period doubling phenomena.

  5. Environmental noise pollution and risk of preeclampsia.

    PubMed

    Auger, Nathalie; Duplaix, Mathilde; Bilodeau-Bertrand, Marianne; Lo, Ernest; Smargiassi, Audrey

    2018-08-01

    Environmental noise exposure is associated with a greater risk of hypertension, but the link with preeclampsia, a hypertensive disorder of pregnancy, is unclear. We sought to determine the relationship between environmental noise pollution and risk of preeclampsia during pregnancy. We analyzed a population-based cohort comprising 269,263 deliveries on the island of Montreal, Canada between 2000 and 2013. We obtained total environmental noise pollution measurements (LA eq24 , L den , L night ) from land use regression models, and assigned noise levels to each woman based on the residential postal code. We computed odds ratios (OR) and 95% confidence intervals (CI) for the association of noise with preeclampsia in mixed logistic regression models with participants as a random effect, and adjusted for air pollution, neighbourhood walkability, maternal age, parity, multiple pregnancy, comorbidity, socioeconomic deprivation, and year of delivery. We assessed whether noise exposure was more strongly associated with severe or early onset preeclampsia than mild or late onset preeclampsia. Prevalence of preeclampsia was higher for women exposed to elevated environmental noise pollution levels (LA eq24h  ≥ 65 dB(A) = 37.9 per 1000 vs. <50 dB(A) = 27.9 per 1000). Compared with 50 dB(A), an LA eq24h of 65.0 dB(A) was not significantly associated the risk of preeclampsia (OR 1.09, 95% CI 0.99-1.20). Associations were however present with severe (OR 1.29, 95% CI 1.09-1.54) and early onset (OR 1.71, 95% CI 1.20-2.43) preeclampsia, with results consistent across all noise indicators. The associations were much weaker or absent for mild and late preeclampsia. Environmental noise pollution may be a novel risk factor for pregnancy-related hypertension, particularly more severe variants of preeclampsia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Study of noise transmission through double wall aircraft windows

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1983-01-01

    Analytical and experimental procedures were used to predict the noise transmitted through double wall windows into the cabin of a twin-engine G/A aircraft. The analytical model was applied to optimize cabin noise through parametric variation of the structural and acoustic parameters. The parametric study includes mass addition, increase in plexiglass thickness, decrease in window size, increase in window cavity depth, depressurization of the space between the two window plates, replacement of the air cavity with a transparent viscoelastic material, change in stiffness of the plexiglass material, and different absorptive materials for the interior walls of the cabin. It was found that increasing the exterior plexiglass thickness and/or decreasing the total window size could achieve the proper amount of noise reduction for this aircraft. The total added weight to the aircraft is then about 25 lbs.

  7. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  8. 32 CFR 256.10 - Air installations compatible use zone noise descriptors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... available in the Office of the Assistant Secretary of Defense (Installations and Logistics)—IO, Washington... NEF, for meters of policy, noise planning and decisionmaking, areas quieter than Ldn 65 shall be considered approximately equivalent to the previously used CNR Zone 1 and to areas quieter than NEF 30. The...

  9. 32 CFR 256.10 - Air installations compatible use zone noise descriptors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... available in the Office of the Assistant Secretary of Defense (Installations and Logistics)—IO, Washington... NEF, for meters of policy, noise planning and decisionmaking, areas quieter than Ldn 65 shall be considered approximately equivalent to the previously used CNR Zone 1 and to areas quieter than NEF 30. The...

  10. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Adverse Birth Outcomes.

    PubMed

    Nieuwenhuijsen, Mark J; Ristovska, Gordana; Dadvand, Payam

    2017-10-19

    not conduct meta-analyses. Discussion: This systematic review is supported by previous systematic reviews and meta-analyses that suggested that there may be some suggestive evidence for an association between environmental noise exposure and birth outcomes, although they pointed more generally to a stronger role of occupational noise exposure, which tends to be higher and last longer. Very strict criteria for inclusion and exclusion of studies, performance of quality assessment for risk of bias, and finally applying GRADE principles for judgment of quality of evidence are the strengths of this review. We found evidence of very low quality for associations between aircraft noise and preterm birth, low birth weight and congenital anomalies, and low quality evidence for an association between road traffic noise and low birth weight, preterm birth and small for gestational age. Further high quality studies are required to establish such associations. Future studies are recommended to apply robust exposure assessment methods (e.g., modeled or measured noise levels at bedroom façade), disentangle associations for different sources of noise as well as daytime and nighttime noise, evaluate the impacts of noise evens (that stand out of the noise background), and control the analyses for confounding factors, such as socioeconomic status, lifestyle factors and other environmental factors, especially air pollution.

  11. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Adverse Birth Outcomes

    PubMed Central

    Nieuwenhuijsen, Mark J.; Ristovska, Gordana; Dadvand, Payam

    2017-01-01

    not conduct meta-analyses. Discussion: This systematic review is supported by previous systematic reviews and meta-analyses that suggested that there may be some suggestive evidence for an association between environmental noise exposure and birth outcomes, although they pointed more generally to a stronger role of occupational noise exposure, which tends to be higher and last longer. Very strict criteria for inclusion and exclusion of studies, performance of quality assessment for risk of bias, and finally applying GRADE principles for judgment of quality of evidence are the strengths of this review. Conclusions: We found evidence of very low quality for associations between aircraft noise and preterm birth, low birth weight and congenital anomalies, and low quality evidence for an association between road traffic noise and low birth weight, preterm birth and small for gestational age. Further high quality studies are required to establish such associations. Future studies are recommended to apply robust exposure assessment methods (e.g., modeled or measured noise levels at bedroom façade), disentangle associations for different sources of noise as well as daytime and nighttime noise, evaluate the impacts of noise evens (that stand out of the noise background), and control the analyses for confounding factors, such as socioeconomic status, lifestyle factors and other environmental factors, especially air pollution. PMID:29048350

  12. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  13. Consideration of environmental noise effects in transportation planning by governmental entities

    NASA Technical Reports Server (NTRS)

    Mayo, L. H.

    1975-01-01

    Environmental concerns are reviewed with respect to major transportation systems: the interstate highway system and commercial air transportation. The type of planning that was done for interstate highway systems is described, and the shift in social value emphasis that has become apparent since the interstate system was authorized is considered. Other topics discussed include the constitutional framework for the allocation of governmental power with respect to transportation systems planning, governmental assessment of the aircraft noise problem, and evaluating the social benefit of noise abatement.

  14. Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsay, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

  15. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging

    PubMed Central

    Dukic, Maja; Adams, Jonathan D.; Fantner, Georg E.

    2015-01-01

    Optical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD. In this paper, we show both theoretically and experimentally that by using small-sized piezoresistive cantilevers, the AFM imaging noise equal or lower than the OBD readout noise is feasible, at standard scanning speeds and power dissipation. We demonstrate that with both readouts we achieve a system noise of ≈0.3 Å at 20 kHz measurement bandwidth. Finally, we show that small-sized piezoresistive cantilevers are well suited for piezoresistive nanoscale imaging of biological and solid state samples in air. PMID:26574164

  16. Active Control of Wind Tunnel Noise

    NASA Technical Reports Server (NTRS)

    Hollis, Patrick (Principal Investigator)

    1991-01-01

    The need for an adaptive active control system was realized, since a wind tunnel is subjected to variations in air velocity, temperature, air turbulence, and some other factors such as nonlinearity. Among many adaptive algorithms, the Least Mean Squares (LMS) algorithm, which is the simplest one, has been used in an Active Noise Control (ANC) system by some researchers. However, Eriksson's results, Eriksson (1985), showed instability in the ANC system with an ER filter for random noise input. The Restricted Least Squares (RLS) algorithm, although computationally more complex than the LMS algorithm, has better convergence and stability properties. The ANC system in the present work was simulated by using an FIR filter with an RLS algorithm for different inputs and for a number of plant models. Simulation results for the ANC system with acoustic feedback showed better robustness when used with the RLS algorithm than with the LMS algorithm for all types of inputs. Overall attenuation in the frequency domain was better in the case of the RLS adaptive algorithm. Simulation results with a more realistic plant model and an RLS adaptive algorithm showed a slower convergence rate than the case with an acoustic plant as a delay plant. However, the attenuation properties were satisfactory for the simulated system with the modified plant. The effect of filter length on the rate of convergence and attenuation was studied. It was found that the rate of convergence decreases with increase in filter length, whereas the attenuation increases with increase in filter length. The final design of the ANC system was simulated and found to have a reasonable convergence rate and good attenuation properties for an input containing discrete frequencies and random noise.

  17. Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance.

    PubMed

    Alcoverro, Benoit; Le Pichon, Alexis

    2005-04-01

    The implementation of the infrasound network of the International Monitoring System (IMS) for the enforcement of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) increases the effort in the design of suitable noise reducer systems. In this paper we present a new design consisting of low impedance elements. The dimensioning and the optimization of this discrete mechanical system are based on numerical simulations, including a complete electroacoustical modeling and a realistic wind-noise model. The frequency response and the noise reduction obtained for a given wind speed are compared to statistical noise measurements in the [0.02-4] Hz frequency band. The effects of the constructive parameters-the length of the pipes, inner diameters, summing volume, and number of air inlets-are investigated through a parametric study. The studied system consists of 32 air inlets distributed along an overall diameter of 16 m. Its frequency response is flat up to 4 Hz. For a 2 m/s wind speed, the maximal noise reduction obtained is 15 dB between 0.5 and 4 Hz. At lower frequencies, the noise reduction is improved by the use of a system of larger diameter. The main drawback is the high-frequency limitation introduced by acoustical resonances inside the pipes.

  18. Pratt and Whitney/Boeing Engine Validation of Noise Reduction Concepts: Final Report for NASA Contract NAS3-97144, Phase 1

    NASA Technical Reports Server (NTRS)

    Mathews, Douglas; Bock, Larry A.; Bielak, Gerald W.; Dougherty, R. P.; Premo, John W.; Scharpf, Dan F.; Yu, Jia

    2014-01-01

    Major airports in the world's air transportation systems face a serious problem in providing greater capacity to meet the ever increasing demands of air travel. This problem could be relieved if airports are allowed to increase their operating time, now restricted by curfews and by relaxing present limits on takeoffs and landings. The key operational issue in extending the present curfews is noise. In response to these increasing restrictive noise regulations, NASA has launched a program to validate through engine testing, noise reduction concepts and technologies that have evolved from the Advanced Subsonic Technologies (AST) Noise Reduction Program. The goal of this AST program was to develop and validate technology that reduces engine noise and improves nacelle suppression effectiveness relative to 1992 technology. Contract NAS3-97144 titled "Engine Validation of Noise Reduction Concepts" (EVNRC) was awarded to P&W on August 12, 1997 to conduct full scale noise reduction tests in two Phases on a PW4098 engine. The following Section 1.2 provides a brief description of the overall program. The remainder of this report provides a detailed documentation of Phase I of the program.

  19. NASA's Aeroacoustic Tools and Methods for Analysis of Aircraft Noise

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Lopes, Leonard V.; Burley, Casey L.

    2015-01-01

    Aircraft community noise is a significant concern due to continued growth in air traffic, increasingly stringent environmental goals, and operational limitations imposed by airport authorities. The ability to quantify aircraft noise at the source and ultimately at observers is required to develop low noise aircraft designs and flight procedures. Predicting noise at the source, accounting for scattering and propagation through the atmosphere to the observer, and assessing the perception and impact on a community requires physics-based aeroacoustics tools. Along with the analyses for aero-performance, weights and fuel burn, these tools can provide the acoustic component for aircraft MDAO (Multidisciplinary Design Analysis and Optimization). Over the last decade significant progress has been made in advancing the aeroacoustic tools such that acoustic analyses can now be performed during the design process. One major and enabling advance has been the development of the system noise framework known as Aircraft NOise Prediction Program2 (ANOPP2). ANOPP2 is NASA's aeroacoustic toolset and is designed to facilitate the combination of acoustic approaches of varying fidelity for the analysis of noise from conventional and unconventional aircraft. The toolset includes a framework that integrates noise prediction and propagation methods into a unified system for use within general aircraft analysis software. This includes acoustic analyses, signal processing and interfaces that allow for the assessment of perception of noise on a community. ANOPP2's capability to incorporate medium fidelity shielding predictions and wind tunnel experiments into a design environment is presented. An assessment of noise from a conventional and Hybrid Wing Body (HWB) aircraft using medium fidelity scattering methods combined with noise measurements from a model-scale HWB recently placed in NASA's 14x22 wind tunnel are presented. The results are in the form of community noise metrics and

  20. Public health implications of environmental noise associated with unconventional oil and gas development.

    PubMed

    Hays, Jake; McCawley, Michael; Shonkoff, Seth B C

    2017-02-15

    Modern oil and gas development frequently occurs in close proximity to human populations and increased levels of ambient noise have been documented throughout some phases of development. Numerous studies have evaluated air and water quality degradation and human exposure pathways, but few have evaluated potential health risks and impacts from environmental noise exposure. We reviewed the scientific literature on environmental noise exposure to determine the potential concerns, if any, that noise from oil and gas development activities present to public health. Data on noise levels associated with oil and gas development are limited, but measurements can be evaluated amidst the large body of epidemiology assessing the non-auditory effects of environmental noise exposure and established public health guidelines for community noise. There are a large number of noise dependent and subjective factors that make the determination of a dose response relationship between noise and health outcomes difficult. However, the literature indicates that oil and gas activities produce noise at levels that may increase the risk of adverse health outcomes, including annoyance, sleep disturbance, and cardiovascular disease. More studies that investigate the relationships between noise exposure and human health risks from unconventional oil and gas development are warranted. Finally, policies and mitigation techniques that limit human exposure to noise from oil and gas operations should be considered to reduce health risks. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Computational Evaluation of Airframe Noise Reduction Concepts at Full Scale

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Duda, Benjamin; Hazir, Andreas; Fares, Ehab

    2016-01-01

    High-fidelity simulations focused on full-scale evaluation of new technologies for mitigating flap and landing gear noise are presented. These noise reduction concepts were selected because of their superior acoustic performance, as demonstrated during NASA wind tunnel tests of an 18%-scale, semi-span model of a Gulfstream aircraft. The full-scale, full-aircraft, time-accurate simulations were performed with the lattice Boltzmann PowerFLOW(Registered Trademark) solver for free air at a Mach number of 0.2. Three aircraft configurations (flaps deflected at 39? without and with main gear deployed, and 0? flaps with main gear extended) were used to determine the aero-acoustic performance of the concepts on component-level (individually) and system-level (concurrent applica-tion) bases. Farfield noise spectra were obtained using a Ffowcs-Williams and Hawkings acoustic analogy approach. Comparison of the predicted spectra without (baseline) and with the noise treatments applied showed that noise reduction benefits between 2-3 dB for the flap and 1.3-1.7 dB for the main landing gear are obtained. It was also found that the full extent of the benefits is being masked by the noise generated from the flap brackets and main gear cavities, which act as prominent secondary sources.

  2. Effects of noise exposure on performance of a simulated radar task.

    DOT National Transportation Integrated Search

    1979-11-01

    The present study examined the effect of noise (radar control room sounds, 80 dBA) on the ability to sustain attention to a complex monitoring task. The visual display was designed to resemble that of a highly automated air traffic control radar syst...

  3. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  4. Damping Resonant Current in a Spark-Gap Trigger Circuit to Reduce Noise

    DTIC Science & Technology

    2009-06-01

    DAMPING RESONANT CURRENT IN A SPARK- GAP TRIGGER CIRCUIT TO REDUCE NOISE E. L. Ruden Air Force Research Laboratory, Directed Energy Directorate, AFRL...REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Damping Resonant Current In A Spark- Gap Trigger Circuit To Reduce Noise 5a...thereby triggering 2 after delay 0, is 1. Each of the two rail- gaps (represented by 2) is trig- gered to close after the spark- gap (1) in the

  5. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  6. SU-G-IeP3-11: On the Utility of Pixel Variance to Characterize Noise for Image Receptors of Digital Radiography Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, C; Dave, J

    Purpose: To characterize noise for image receptors of digital radiography systems based on pixel variance. Methods: Nine calibrated digital image receptors associated with nine new portable digital radiography systems (Carestream Health, Inc., Rochester, NY) were used in this study. For each image receptor, thirteen images were acquired with RQA5 beam conditions for input detector air kerma ranging from 0 to 110 µGy, and linearized ‘For Processing’ images were extracted. Mean pixel value (MPV), standard deviation (SD) and relative noise (SD/MPV) were obtained from each image using ROI sizes varying from 2.5×2.5 to 20×20 mm{sup 2}. Variance (SD{sup 2}) was plottedmore » as a function of input detector air kerma and the coefficients of the quadratic fit were used to derive structured, quantum and electronic noise coefficients. Relative noise was also fitted as a function of input detector air kerma to identify noise sources. The fitting functions used least-squares approach. Results: The coefficient of variation values obtained using different ROI sizes was less than 1% for all the images. The structured, quantum and electronic coefficients obtained from the quadratic fit of variance (r>0.97) were 0.43±0.10, 3.95±0.27 and 2.89±0.74 (mean ± standard deviation), respectively, indicating that overall the quantum noise was the dominant noise source. However, for one system electronic noise coefficient (3.91) was greater than quantum noise coefficient (3.56) indicating electronic noise to be dominant. Using relative noise values, the power parameter of the fitting equation (|r|>0.93) showed a mean and standard deviation of 0.46±0.02. A 0.50 value for this power parameter indicates quantum noise to be the dominant noise source whereas values around 0.50 indicate presence of other noise sources. Conclusion: Characterizing noise from pixel variance assists in identifying contributions from various noise sources that, eventually, may affect image quality. This

  7. USAF Bioenvironmental Noise Data Handbook. Volume 149: C-9A in-flight crew/passenger noise

    NASA Astrophysics Data System (ADS)

    Rau, T. H.

    1982-05-01

    The C-9A is a McDonnell Douglas DC-9 series 30 commercial transport modified to perform aeromedical evacuation missions. This report provides measured data defining the bioacoustic environments at flight crew/passenger locations inside this aircraft during normal flight operations. Data are reported for 56 locations in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors.

  8. Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Mahdal, Miroslav; Kozubková, Milada

    2017-12-01

    The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.

  9. Review of Integrated Noise Model (INM) Equations and Processes

    NASA Technical Reports Server (NTRS)

    Shepherd, Kevin P. (Technical Monitor); Forsyth, David W.; Gulding, John; DiPardo, Joseph

    2003-01-01

    The FAA's Integrated Noise Model (INM) relies on the methods of the SAE AIR-1845 'Procedure for the Calculation of Airplane Noise in the Vicinity of Airports' issued in 1986. Simplifying assumptions for aerodynamics and noise calculation were made in the SAE standard and the INM based on the limited computing power commonly available then. The key objectives of this study are 1) to test some of those assumptions against Boeing source data, and 2) to automate the manufacturer's methods of data development to enable the maintenance of a consistent INM database over time. These new automated tools were used to generate INM database submissions for six airplane types :737-700 (CFM56-7 24K), 767-400ER (CF6-80C2BF), 777-300 (Trent 892), 717-200 (BR7 15), 757-300 (RR535E4B), and the 737-800 (CFM56-7 26K).

  10. Noise Source Visualization Using a Digital Voice Recorder and Low-Cost Sensors

    PubMed Central

    Cho, Yong Thung

    2018-01-01

    Accurate sound visualization of noise sources is required for optimal noise control. Typically, noise measurement systems require microphones, an analog-digital converter, cables, a data acquisition system, etc., which may not be affordable for potential users. Also, many such systems are not highly portable and may not be convenient for travel. Handheld personal electronic devices such as smartphones and digital voice recorders with relatively lower costs and higher performance have become widely available recently. Even though such devices are highly portable, directly implementing them for noise measurement may lead to erroneous results since such equipment was originally designed for voice recording. In this study, external microphones were connected to a digital voice recorder to conduct measurements and the input received was processed for noise visualization. In this way, a low cost, compact sound visualization system was designed and introduced to visualize two actual noise sources for verification with different characteristics: an enclosed loud speaker and a small air compressor. Reasonable accuracy of noise visualization for these two sources was shown over a relatively wide frequency range. This very affordable and compact sound visualization system can be used for many actual noise visualization applications in addition to educational purposes. PMID:29614038

  11. Assessment of auditory impression of the coolness and warmness of automotive HVAC noise.

    PubMed

    Nakagawa, Seiji; Hotehama, Takuya; Kamiya, Masaru

    2017-07-01

    Noise induced by a heating, ventilation and air conditioning (HVAC) system in a vehicle is an important factor that affects the comfort of the interior of a car cabin. Much effort has been devoted to reduce noise levels, however, there is a need for a new sound design that addresses the noise problem from a different point of view. In this study, focusing on the auditory impression of automotive HVAC noise concerning coolness and warmness, psychoacoustical listening tests were performed using a paired comparison technique under various conditions of room temperature. Five stimuli were synthesized by stretching the spectral envelopes of recorded automotive HVAC noise to assess the effect of the spectral centroid, and were presented to normal-hearing subjects. Results show that the spectral centroid significantly affects the auditory impression concerning coolness and warmness; a higher spectral centroid induces a cooler auditory impression regardless of the room temperature.

  12. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  13. Workshop on Jet Exhaust Noise Reduction for Tactical Aircraft - NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Henderson, Brenda S.

    2007-01-01

    Jet noise from supersonic, high performance aircraft is a significant problem for takeoff and landing operations near air bases and aircraft carriers. As newer aircraft with higher thrust and performance are introduced, the noise tends to increase due to higher jet exhaust velocities. Jet noise has been a subject of research for over 55 years. Commercial subsonic aircraft benefit from changes to the engine cycle that reduce the exhaust velocities and result in significant noise reduction. Most of the research programs over the past few decades have concentrated on commercial aircraft. Progress has been made by introducing new engines with design features that reduce the noise. NASA has recently started a new program called "Fundamental Aeronautics" where three projects (subsonic fixed wing, subsonic rotary wing, and supersonics) address aircraft noise. For the supersonics project, a primary goal is to understand the underlying physics associated with jet noise so that improved noise prediction tools and noise reduction methods can be developed for a wide range of applications. Highlights from the supersonics project are presented including prediction methods for broadband shock noise, flow measurement methods, and noise reduction methods. Realistic expectations are presented based on past history that indicates significant jet noise reduction cannot be achieved without major changes to the engine cycle. NASA s past experience shows a few EPNdB (effective perceived noise level in decibels) can be achieved using low noise design features such as chevron nozzles. Minimal thrust loss can be expected with these nozzles (< 0.5%) and they may be retrofitted on existing engines. In the long term, it is desirable to use variable cycle engines that can be optimized for lower jet noise during takeoff operations and higher thrust for operational performance. It is also suggested that noise experts be included early in the design process for engine nozzle systems to participate

  14. Noise frame duration, masking potency and whiteness of temporal noise.

    PubMed

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  15. Pure-tone audiometry outside a sound booth using earphone attentuation, integrated noise monitoring, and automation.

    PubMed

    Swanepoel, De Wet; Matthysen, Cornelia; Eikelboom, Robert H; Clark, Jackie L; Hall, James W

    2015-01-01

    Accessibility of audiometry is hindered by the cost of sound booths and shortage of hearing health personnel. This study investigated the validity of an automated mobile diagnostic audiometer with increased attenuation and real-time noise monitoring for clinical testing outside a sound booth. Attenuation characteristics and reference ambient noise levels for the computer-based audiometer (KUDUwave) was evaluated alongside the validity of environmental noise monitoring. Clinical validity was determined by comparing air- and bone-conduction thresholds obtained inside and outside the sound booth (23 subjects). Twenty-three normal-hearing subjects (age range, 20-75 years; average age 35.5) and a sub group of 11 subjects to establish test-retest reliability. Improved passive attenuation and valid environmental noise monitoring was demonstrated. Clinically, air-conduction thresholds inside and outside the sound booth, corresponded within 5 dB or less > 90% of instances (mean absolute difference 3.3 ± 3.2 SD). Bone conduction thresholds corresponded within 5 dB or less in 80% of comparisons between test environments, with a mean absolute difference of 4.6 dB (3.7 SD). Threshold differences were not statistically significant. Mean absolute test-retest differences outside the sound booth was similar to those in the booth. Diagnostic pure-tone audiometry outside a sound booth, using automated testing, improved passive attenuation, and real-time environmental noise monitoring demonstrated reliable hearing assessments.

  16. Noise in pressure transducer readings produced by variations in solar radiation

    USGS Publications Warehouse

    Cain, S. F.; Davis, G.A.; Loheide, Steven P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  17. Noise in pressure transducer readings produced by variations in solar radiation.

    PubMed

    Cain, Samuel F; Davis, Gregory A; Loheide, Steven P; Butler, James J

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  18. Effects of occupational exposure to noise and dust on blood pressure in Chinese industrial workers.

    PubMed

    Lin, Jingfeng; Wang, Hufei; Yan, Fen; Tang, Kefu; Zhu, Huang; Weng, Zuquan; Wang, Kejian

    2018-01-01

    Along with the rapid development of economy and urbanization, noise and air pollution are becoming major occupational health hazards in the process of industrial production. In this study, we collected data from 7293 industrial workers in China. The association between occupational exposure of noise and dust and blood pressure was investigated. Controlling for demographic variables, including sex, age, and length of service, a stepwise regression model with backward elimination was constructed. The results showed that both noise and dust decreased the level of systolic blood pressure (p < 0.001). This finding prompted the manufacturing industry to reduce noise and dust hazards and protect the occupational health of workers. Prospective studies in different populations are still required to verify the net contribution of noise and dust to the decrease in blood pressure.

  19. The effects of low frequency noise on mental performance and annoyance.

    PubMed

    Alimohammadi, Iraj; Sandrock, Stephan; Gohari, Mahmoud Reza

    2013-08-01

    Low frequency noise (LFN) as background noise in urban and work environments is emitted from many artificial sources such as road vehicles, aircraft, and air movement machinery including wind turbines, compressors, and ventilation or air conditioning units. In addition to objective effects, LFN could also cause noise annoyance and influence mental performance; however, there are no homogenous findings regarding this issue. The purpose of this research was to study the effects of LFN on mental performance and annoyance, as well as to consider the role of extraversion and neuroticism on the issue. This study was conducted on 90 students of Iran University of Medical Sciences (54 males and 36 females). The mean age of the students was 23.46 years (SD = 1.97). Personality traits and noise annoyance were measured by using Eysenck Personality Inventory and a 12-scale self-reported questionnaire, respectively. Stroop and Cognitrone computerized tests measured mental performance of participants each exposed to 50 and 70 dBA of LFN and silence. LFNs were produced by Cool Edit Pro 2.1 software. There was no significant difference between mental performance parameters under 50 and 70 dBA of LFN, whereas there were significant differences between most mental performance parameters in quiet and under LFN (50 and 70 dBA). This research showed that LFN, compared to silence, increased the accuracy and the test performance speed (p < 0.01). There was no association between LFN and noise annoyance (p > 0.01). Introverts conducted the tests faster than extraverts (p < 0.05). This research showed that neuroticism does not influence mental performance. It seems that LFN has increased arousal level of participants, and extraversion has a considerable impact on mental performance.

  20. Reducing environmental noise impacts: A USAREUR noise management program handbook

    NASA Astrophysics Data System (ADS)

    Feather, Timothy D.; Shekell, Ted K.

    1991-06-01

    Noise pollution is a major environmental problem faced by the U.S. Army in Europe. Noise-related complaints from German citizens can escalate into intense political issues in German communities. This in turn hampers efficient operation of military training and often times threatens the Army's mission. In order to remedy these problems, USAREUR has developed a noise management program. A successful noise management program will limit the impact of unavoidable noise on the populace. This report, a component of the noise management program, is a reference document for noise management planning. It contains guidelines and rules-of-thumb for noise management. This document contains procedures which operation and training level personnel can understand and apply in their day to day noise management planning. Noise mitigation tips are given. Basic technical information that will aid in understanding noise mitigation is provided along with noise management through land use planning. Noise management for specific components of the military community, (airfields, base operations, training areas, and housing and recreation areas) are addressed. The nature of noise generated, means of noise abatement at the source, path, and receiver (both physical and organizational/public relations methods), and a case study example are described.

  1. Noise-induced hearing loss in workers exposed to urban stressors.

    PubMed

    Caciari, Tiziana; Rosati, Maria Valeria; Casale, Teodorico; Loreti, Beatrice; Sancini, Angela; Riservato, Roberto; Nieto, Hector A; Frati, Paola; Tomei, Francesco; Tomei, Gianfranco

    2013-10-01

    The technological and industrial progress together with the intensification of vehicular traffic and the adoption of new social habits are the cause of an increasing noise pollution with possible negative effects on the auditory system. This study aims to assess the noise exposure levels and the effects on the hearing threshold in outdoor and indoor male workers of a big Italian city. The study was carried out on 357 outdoor male workers, exposed to urban noise and on a control group of 357 unexposed indoor workers. Noise levels were measured in 30 outdoor and indoor areas. The subjects underwent tonal liminal audiometry in order to determine the value of their hearing threshold. During their working activity, outdoor and indoor workers are exposed to different noise levels LEX<80 dB(A). At mid-low frequencies (250-2000 Hz), the results show significant differences in the average values of hearing threshold between the two groups in both ears and for all age classes; there are no significant differences between the two groups at higher frequencies. The outdoor noise levels measured are not usually ototoxic and the hearing loss at mid-low frequencies is not characteristic of the exposure to industrial noise. For these reasons the Authors hypothesize that the results may be due to the combined effect of the exposure to noise and to ototoxic air pollutants. The impairment of speech frequencies is disabling and involves the risk of missed forensic recognition. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Active noise control in a duct to cancel broadband noise

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  3. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  4. Proceedings of the workshop on human response to aviation noise in protected natural areas, October 28-29, 2008

    DOT National Transportation Integrated Search

    2008-10-01

    According to Section 808 of the National Parks Air Tour Management Act of 2000, any methodology : adopted by a Federal agency to assess air tour noise in any unit of the national park system shall be : based on reasonable scientific methods. Therefor...

  5. Helicopter Non-Unique Trim Strategies for Blade-Vortex Interaction (BVI) Noise Reduction

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos; Greenwood, Eric; Sim, Ben W.

    2016-01-01

    An acoustics parametric analysis of the effect of fuselage drag and pitching moment on the Blade-Vortex Interaction (BVI) noise radiated by a medium lift helicopter (S-70UH-60) in a descending flight condition was conducted. The comprehensive analysis CAMRAD II was used for the calculation of vehicle trim, wake geometry and integrated air loads on the blade. The acoustics prediction code PSU-WOPWOP was used for calculating acoustic pressure signatures for a hemispherical grid centered at the hub. This paper revisits the concept of the X-force controller for BVI noise reduction, and investigates its effectiveness on an S-70 helicopter. The analysis showed that further BVI noise reductions were achievable by controlling the fuselage pitching moment. Reductions in excess of 6 dB of the peak BVI noise radiated towards the ground were demonstrated by compounding the effect of airframe drag and pitching moment simultaneously.

  6. The behavioural response of Australian fur seals to motor boat noise.

    PubMed

    Tripovich, Joy S; Hall-Aspland, Sophie; Charrier, Isabelle; Arnould, John P Y

    2012-01-01

    Australian fur seals breed on thirteen islands located in the Bass Strait, Australia. Land access to these islands is restricted, minimising human presence but boat access is still permissible with limitations on approach distances. Thirty-two controlled noise exposure experiments were conducted on breeding Australian fur seals to determine their behavioural response to controlled in-air motor boat noise on Kanowna Island (39°10'S, 146°18'E). Our results show there were significant differences in the seals' behaviour at low (64-70 dB) versus high (75-85 dB) sound levels, with seals orientating themselves towards or physically moving away from the louder boat noise at three different sound levels. Furthermore, seals responded more aggressively with one another and were more alert when they heard louder boat noise. Australian fur seals demonstrated plasticity in their vocal responses to boat noise with calls being significantly different between the various sound intensities and barks tending to get faster as the boat noise got louder. These results suggest that Australian fur seals on Kanowna Island show behavioural disturbance to high level boat noise. Consequently, it is recommended that an appropriate level of received boat sound emissions at breeding fur seal colonies be below 74 dB and that these findings be taken into account when evaluating appropriate approach distances and speed limits for boats.

  7. The Behavioural Response of Australian Fur Seals to Motor Boat Noise

    PubMed Central

    Tripovich, Joy S.; Hall-Aspland, Sophie; Charrier, Isabelle; Arnould, John P. Y.

    2012-01-01

    Australian fur seals breed on thirteen islands located in the Bass Strait, Australia. Land access to these islands is restricted, minimising human presence but boat access is still permissible with limitations on approach distances. Thirty-two controlled noise exposure experiments were conducted on breeding Australian fur seals to determine their behavioural response to controlled in-air motor boat noise on Kanowna Island (39°10′S, 146°18′E). Our results show there were significant differences in the seals' behaviour at low (64–70 dB) versus high (75–85 dB) sound levels, with seals orientating themselves towards or physically moving away from the louder boat noise at three different sound levels. Furthermore, seals responded more aggressively with one another and were more alert when they heard louder boat noise. Australian fur seals demonstrated plasticity in their vocal responses to boat noise with calls being significantly different between the various sound intensities and barks tending to get faster as the boat noise got louder. These results suggest that Australian fur seals on Kanowna Island show behavioural disturbance to high level boat noise. Consequently, it is recommended that an appropriate level of received boat sound emissions at breeding fur seal colonies be below 74 dB and that these findings be taken into account when evaluating appropriate approach distances and speed limits for boats. PMID:22623998

  8. Noise measurement flight test: Data-analyses Aerospatiale SA-365N Dauphin 2 helicopter

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Rickely, E. J.; Daboin, S. A.; Beattie, K. R.

    1984-04-01

    This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program with the Dauphin twin-jet helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise. This report is the second in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983. The Dauphin test program involved the acquisition of detailed acoustical, position and meteorological data. This test program was designed to address a series of objectives including: (1) acquisition of acoustical data for use in assessing heliport environment impact, (2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, (4) determination of noise event duration influences on energy dose acoustical metrics, (5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and (6) documentation of noise levels acquired using international helicopter noise certification test procedures.

  9. Sounds and Noises. A Position Paper on Noise Pollution.

    ERIC Educational Resources Information Center

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  10. Containing air pollution and traffic congestion: Transport policy and the environment in Singapore

    NASA Astrophysics Data System (ADS)

    Chin, Anthony T. H.

    Land transportation remains one of the main contributors of noise and air pollution in urban areas. This is in addition to traffic congestion and accidents which result in the loss of productive activity. While there is a close relationship between traffic volumes and levels of noise and air pollution, transport authorities often assume that solving traffic congestion would reduce noise and air pollutant levels. Tight control over automobile ownership and use in Singapore has contributed in improving traffic flows, travel speeds and air quality. The adoption of internationally accepted standards on automobile emissions and gasoline have been effective in reducing air pollution from motor vehicles. Demand management measures have largely focused on controlling the source of traffic congestion, i.e. private automobile ownership and its use especially within the Central Business District during the day. This paper reviews and analyzes the effectiveness of two measures which are instrumental in controlling congestion and automobile ownership, i.e. road pricing and the vehicle quota scheme (VQS). While these measures have been successful in achieving desired objectives, it has also led to the spreading of traffic externalities to other roads in the network, loss in consumer welfare and rent seeking by automobile traders.

  11. Investigation of noise sources and propagation in external gear pumps

    NASA Astrophysics Data System (ADS)

    Opperwall, Timothy J.

    element vibro-acoustic model as well as the influence of additional models for system components to better understand the essential problems of noise generation in hydraulic systems. This model is a step forward for the field due to the coupling of an advanced internal model of pump operation coupled to a detailed vibro-acoustic model. Several experimental studies were also completed in order to advance the current science. The first study validated the pump model in terms of outlet pressure ripple prediction through comparison to experimentally measured results for the reference pump as well as prototype pumps designed for low outlet pressure ripple. The second study focused on the air-borne noise through sound pressure and intensity measurements on reference and prototype pumps at steady-state operating conditions. A third study over a wide range of operating speeds and pressures was completed to explore the impact of operating condition and system design to greater detail through measuring noise and vibration in the working fluid, the system structures, and the air. Applying the knowledge gained through experimental and simulation studies has brought new advances in the understanding of the physics of noise generation and propagation in hydraulic components and systems. The focus of the combined simulation and modeling approach is to clearly understand the different contributions from noise sources and surpasses the previous methods that focus on the outlet pressure ripple alone as a source of noise. The application of the new modeling and experimental approach allows for new advances which directly contribute to advancing the science of noise in hydraulic applications and the design of new quieter hydrostatic units and hydraulic systems.

  12. Experimental Study for Reduction of Noises and Vibrations in Hermetic Type Compressor

    NASA Astrophysics Data System (ADS)

    Sano, Kiyoshi; Kawahara, Sadao; Akazawa, Teruyuki; Ishii, Noriaki

    A brushless DC motor with a permanent magnet rotor has been adopted for a scroll compressor for domestic-use air-conditioners because of a demand for compressor high efficiency. A waveform of the driving voltage in the inverter power supply unit is chopped by the PWM signal. Its duty ratio is increased/decreased to control the DC voltage in order to provide a wide range of rotation frequencies for the compressor. The driving voltage includes the carrier frequency and its harmonic components, which produce an electro-magnetic force in the moter, resulting in high electro-magnetic noise. In the present report, the author clarifies the relationships between the noise and the waveform of driving voltage and frequency response function of the motor. A method to improve the frequency response function by changing the stator shape in order to reduce electro-magnetic noise is presented. Subsequently, the influence on electro-magnetic noise from the waveform of driving voltage is examined. Furthermore, the electro-magnetic noises during inverter driving of an induction motor are presented.

  13. The effect of relative humidity of inhaled air on acoustic parameters of voice in normal subjects.

    PubMed

    Hemler, R J; Wieneke, G H; Dejonckere, P H

    1997-09-01

    The hypothesis that relative humidity (RH) of air exerts an effect on voice has been widely accepted. The aim of this study has been to assess whether this can be demonstrated. Eight healthy subjects inhaled during ten minutes three different air conditions: dry, standard room, and humidified air. After inhalation, the subjects produced repeatedly a sustained /a/ of controlled pitch and loudness, which was analyzed for perturbation and noise-to-harmonic parameters. Perturbation measures increased after inhalation of dry air. No significant differences existed between standard and humidified air. No significant difference in the noise-to-harmonic ratio was found among the three conditions. We conclude that the human voice is very sensitive to decreases in RH of inhaled air, because even after a short provocation with dry air, a significant increase in perturbation measures was found.

  14. Multiple pure tone elimination strut assembly. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Burcham, F. W. (Inventor)

    1981-01-01

    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise.

  15. Inter-comparison between AIRS and IASI through Retrieved Parameters

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Steve

    2008-01-01

    A State-of-the-art retrieval algorithm dealing with all-weather conditions has been applied to satellite/aircraft instruments retrieving cloud/surface and atmospheric conditions. High quality retrievals have been achieved from IASI data. Surface, cloud, and atmospheric structure and variation are well captured by IASI measurements and/or retrievals. The same retrieval algorithm is also applied to AIRS for retrieval inter-comparison. Both AIRS and IASI have a similar FOV size but AIRS has a higher horizontal resolution. AIRS data can be interpolated to IASI horizontal resolution for inter-comparison at the same geophysical locations, however a temporal variation between AIRS and IASI observations need to be considered. JAIVEx has employed aircraft to obtain the atmospheric variation filling the temporal gap between two satellites. First results show that both AIRS and IASI have a very similar vertical resolving power, atmospheric conditions are well captured by both instruments, and radiances are well calibrated. AIRS data shown in retrievals (e.g., surface emissivity and moisture) have a relatively higher noise level. Since the this type of retrieval is very sensitive to its radiance quality, retrieval products inter-comparison is an effective way to identify/compare their radiance quality, in terms of a combination of spectral resolution and noise level, and to assess instrument performance. Additional validation analyses are needed to provide more-definitive conclusions.

  16. Fluid dynamic aspects of jet noise generation. [noise measurement of jet blast effects from supersonic jet flow in convergent-divergent nozzles

    NASA Technical Reports Server (NTRS)

    Barra, V.; Panunzio, S.

    1976-01-01

    Jet engine noise generation and noise propagation was investigated by studying supersonic nozzle flow of various nozzle configurations in an experimental test facility. The experimental facility was constructed to provide a coaxial axisymmetric jet flow of unheated air. In the test setup, an inner primary flow exhausted from a 7 in. exit diameter convergent--divergent nozzle at Mach 2, while a secondary flow had a 10 in. outside diameter and was sonic at the exit. The large dimensions of the jets permitted probes to be placed inside the jet core without significantly disturbing the flow. Static pressure fluctuations were measured for the flows. The nozzles were designed for shock free (balanced) flow at Mach 2. Data processing techniques and experimental procedures were developed in order to study induced disturbances at the edge of the supersonic flows, and the propagation of those disturbances throughout the flows. Equipment used (specifications are given) to record acoustic levels (far field noise) is described. Results and conclusions are presented and discussed. Diagrams of the jet flow fields are included along with photographs of the test stand.

  17. Micromechanical Devices to Reduce 1/f Noise in Magnetic Field and Electric Charge Sensors

    NASA Astrophysics Data System (ADS)

    Jaramillo, Gerardo

    1/f noise is present in every aspect of nature. Sensors and read-out electronics have the ultimate detection limit set by the noise floor of the white noise. In order to increase signal-to-noise ratio (SNR) of low frequency signals buried by high 1/f noise, the signal can be up-converted to a high frequency signal that lies in the lower white noise regime of the sensing device. Mechanical modulation can be employed to move low frequency electronic signals to higher frequency region through the use of microresonators. This thesis has two goals: (1) develop and fabricate a hybrid micromechanical-magnetoresistive magnetic field sensor; and (2) design an electrometer to measure currents collected from air streams containing ionized nano-particles. First, we designed magnetoresistive-microelectromechanical systems (MR-MEMS) hybrid devices based on the monolithic integration of magnetic thin films and silicon-on-insulator (SOI) MEMS fabrication techniques. We used MgO-based magnetic tunnel junctions (MTJ) placed on a bulk micromachined silicon MEMS device to form a hybrid sensing device. The MEMS device was used to mechanically modulate the magnetic field signal detected by the MTJ, thereby reducing the effects of 1/f noise on the MTJ's output. Two actuator designs were investigated: cantilever and electrostatic comb-drive. The second component of the thesis presents a MEMS-based electrometer for the detection of small currents from ionized particles in a particle detection system for air-quality monitoring. One method of particle detection ionizes particles and then feeds a stream of charged particles into a Faraday cup electrometer. We replaced the Faraday cup with a filtering porous mesh sensing-electrode coupled to a MEMS electrometer with a noise floor below 1 fA rms. Experiments were conducted with fA level currents produced by 10 nm diameter particles within an airflow of 1.0 L/min. The MEMS electrometer was compared and calibrated using commercial electrometers

  18. MMSE Estimator for Children’s Speech with Car and Weather Noise

    NASA Astrophysics Data System (ADS)

    Sayuthi, V.

    2018-04-01

    Previous research mentioned that most people need and use vehicles for various purposes, in this recent time and future, as a means of traveling. Many ways can be done in a vehicle, such as for enjoying entertainment, and doing work, so vehicles not just only as a means of traveling. In this study, we will examine the children’s speech from a girl in the vehicle that affected by noise disturbances from the sound source of car noise and the weather sound noise around it, in this case, the rainy weather noise. Vehicle sounds may be from car engine or car air conditioner. The minimum mean square error (MMSE) estimator is used as an attempt to obtain or detect the children’s clear speech by representing simulation research as random process signal that factored by the autocorrelation of both the child’s voice and the disturbance noise signal. This MMSE estimator can be considered as wiener filter as the clear sound are reconstructed again. We expected that the results of this study can help as the basis for development of entertainment or communication technology for passengers of vehicles in the future, particularly using MMSE estimators.

  19. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.

    PubMed

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10 11 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  20. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  1. Jet Surface Interaction Scrubbing Noise from High Aspect-Ratio Rectangular Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bozak, Richard F.

    2015-01-01

    Concepts envisioned for the future of civil air transport consist of unconventional propulsion systems in the close proximity of the airframe. Distributed propulsion system with exhaust configurations that resemble a high aspect ratio rectangular jet are among geometries of interest. Nearby solid surfaces could provide noise shielding for the purpose of reduced community noise. Interaction of high-speed jet exhaust with structure could also generate new sources of sound as a result of flow scrubbing past the structure, and or scattered noise from sharp edges. The present study provides a theoretical framework to predict the scrubbing noise component from a high aspect ratio rectangular exhaust in proximity of a solid surface. The analysis uses the Greens function (GF) to the variable density Pridmore-Brown equation in a transversely sheared mean flow. Sources of sound are defined as the auto-covariance function of second-rank velocity fluctuations in the jet plume, and are modeled using a RANS-based acoustic analogy approach. Acoustic predictions are presented in an 8:1 aspect ratio rectangular exhaust at three subsonic Mach numbers. The effect of nearby surface on the scrubbing noise component is shown on both reflected and shielded sides of the plate.

  2. Results of the flight noise measurement program using a standard and modified SH-3A helicopter

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Henderson, H. R.; Hilton, D. A.

    1973-01-01

    A field noise measurement program has been conducted using both a standard SH-3A helicopter and an SH-3A helicopter modified to reduce external noise levels. Modifications included reducing rotor speed, increasing the number of rotor blades, modifying the blade-tip shapes, and acoustically treating the engine air intakes and exhaust. The purpose of this study was to document the noise characteristics recorded on the ground of each helicopter during flyby, hover, landing, and take-off operations. Based on an analysis of the measured results, the average of the overhead, overall, ontrack noise levels was approximately 4 db lower for the modified helicopter than for the standard helicopter. The improved in-flight noise characteristics, and associated small footprint areas and time durations, were judged to be mainly due to tail-rotor noise reductions. The noise reductions were obtained at the expense of required power increases at airspeeds greater than 70 knots for the modified helicopter.

  3. Model evaluation of roadside barrier impact on near-road air pollution

    EPA Science Inventory

    Roadside noise barriers are common features along major highways in urban regions and are anticipated to have important effects on near-road air pollution – the occurrence of elevated air pollutant concentrations for several hundred meters downwind of a major roadway. A 3-dimens...

  4. The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.

    2016-01-01

    The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.

  5. The minimization of ac phase noise in interferometric systems

    NASA Astrophysics Data System (ADS)

    Filinski, I.; Gordon, R. A.

    1994-03-01

    A simple step-by-step procedure, including several novel techniques discussed in the Appendices, is given for minimizing ac phase noise in typical interferometric systems such as two-beam interferometers, holographic setups, four-wave mixers, etc. Special attention is given to index of refraction fluctuations, direct mechanical coupling, and acoustic coupling, whose importance in determining ac phase noise in interferometric systems has not been adequately treated. The minimization procedure must be carried out while continuously monitoring the phase noise which can be done very simply by using a photodiode measurement of the interferometer output. Supplementary measurements using a microphone and accelerometer will also be helpful in identifying the sources of phase noise. Emphasis is placed on new techniques or new modifications of older techniques which will not usually be familiar to most workers in optics. Thus, the necessity of eliminating the effects of index of refraction fluctuations which degrade the performance of all interferometers is pointed out as the first priority. A substantial decrease of the effects of all vibrating, rotating, or flowing masses (e.g., cooling lines) in direct contact with the optical table will also have to be carefully carried out regardless of the type of interferometric system employed. It is recommended that this be followed by a simple, inexpensive change to a novel type of interferometer discussed in Appendix A which is inherently less sensitive to mechanical vibration. Such a change will lead to a reduction of both low-frequency and high-frequency ac phase noise by more than an order of magnitude and can be carried out for all interferometers with the exception of multiple pass optical systems and high-resolution FFT spectrometers. It is pointed out that most homemade air bladder vibration isolators are used incorrectly and do not provide sufficient reduction in the contribution of floor vibrations to phase noise. Several

  6. Environmental assessment of an aircraft conversion, Montana Air National Guard, Great Falls, Montana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, G.; Policastro, A.; Krummel, J.

    1986-08-01

    It is proposed that the 120th Fighter Interceptor Group of the Montana Air National Guard convert from 18 F-106 to 18 F-16 aircraft. Associated with this conversion are building modifications, land acquisition, and facility construction. The environmental assessment determined that the primary impacts of the conversion would be positive. Noise modeling using the NOISEMAP methodology showed that the maximum noise reduction, resulting from the conversion, at any ground receptor point is about 5 dB on the L/sub dn/ scale. The noise reductions vary with the distance of a receptor point from the runways - the greater the distance, the smallermore » the noise reduction. Conversion to the F-16 prior to completion of a ''hush house'' would result in a temporary increase in noise to the southeast of the airport over a commercial and industrial area. In addition, total air pollutant emissions from aircraft operations would be reduced as a consequence of the conversion. No significant adverse impacts are predicted as a result of the conversion from F-106s to F-16s.« less

  7. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  8. Synthesis of information on the effects of noise and disturbance on major haulout concentrations of Bering Sea pinnipeds. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, S.R.; Burns, J.J.; Malme, C.I.

    1989-02-17

    The study investigated the use of terrestrial haulout sites in the eastern Bering Sea by four species of pennipeds, northern fur seal, northern sea lion, harbor seal and pacific walrus. Historical information on the use of each site was summarized. Available information on the effects of airborne and waterborne noise, and human disturbance (from stationary and moving sources) was reviewed. The authors also conducted a detailed analysis of the acoustic environment of eight haulout sites that were representative of others used by each of the four species studied. The analyses included investigations of (1) characteristics airborne and underwater ambient noise,more » (2) characteristics of industrial noise sources, including aircraft, small boats, fishing trawlers and commercial cargo traffic, and (3) sound transmission loss in air, water, and through the air-water surface. As a means to evaluate the potential vulnerability of each haulout site to noise and disturbance, a quantitative rating system (IPSI) whereby an index of sensitivity was assigned to each site.« less

  9. Noise-induced hearing loss: a recreational noise perspective.

    PubMed

    Ivory, Robert; Kane, Rebecca; Diaz, Rodney C

    2014-10-01

    This review will discuss the real-world risk factors involved in noise-induced hearing loss as a result of common and popular recreational activities prone to mid and high levels of noise exposure. Although there are currently no interventional measures available to reverse or mitigate preexisting hearing loss from noise, we discuss the vital importance of hearing loss prevention from noise exposure avoidance and reduction. Despite a seeming understanding of the effects of noise exposure from various recreational activities and devices, a large percentage of the general public who is at risk of such noise-induced hearing loss still chooses to refrain from using hearing protection instruments. While occupational exposures pose the greatest traditional risk to hearing conservation in selected workers, recreational risk factors for noise-induced hearing loss may be more insidious in overall effect given the indifferent attitude of much of the general public and particularly our youths toward hearing protection during recreational activities. Active counseling regarding the consequences of excessive noise exposure and the potential benefits to hearing from usage of hearing protection instruments is critical to providing best possible care in the hearing health professions.

  10. Impacts of Noise Barriers on Near-Road Air Quality

    EPA Science Inventory

    Numerous health studies show an increase in adverse health effects for populations near large roadways. A study was designed to assess traffic emission impacts on air quality near a heavily traveled highway. The portion of highway studied included a section of open field and a se...

  11. Noise temperature and noise figure concepts: DC to light

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1982-01-01

    The Deep Space Network is investigating the use of higher operational frequencies for improved performance. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. It is proposed to modify present noise temperature definitions for linear amplifiers so they will be valid over the range (hf/kT) 1 (hf/kT). This is important for systems operating at high frequencies and low noise temperatures, or systems requiring very accurate calibrations. The suggested definitions are such that for an ideal amplifier, T sub e = (hg/k) = T sub q and F = 1. These definitions revert to the present definition for (hf/kT) 1. Noise temperature calibrations are illustrated with a detailed example. These concepts are applied to system signal-to-noise analysis. The fundamental limit to a receiving system sensitivity is determined by the thermal noise of the source and the quantum noise limit of the receiver. The sensitivity of a receiving system consisting of an ideal linear amplifier with a 2.7 K source, degrades significantly at higher frequencies.

  12. Viscocapillary Response of Gas Bubbles Probed by Thermal Noise Atomic Force Measurement.

    PubMed

    Wang, Yuliang; Zeng, Binglin; Alem, Hadush Tedros; Zhang, Zaicheng; Charlaix, Elisabeth; Maali, Abdelhamid

    2018-01-30

    We present thermal noise measurements of a vibrating sphere close to microsized air bubbles in water with an atomic force microscope. The sphere was glued at the end of a cantilever with a resonance frequency of few kHz. The subangstrom thermal motion of the microsphere reveals an elastohydrodynamic coupling between the sphere and the air bubble. The results are in perfect agreement with a model incorporating macroscopic capillarity and fluid flow on the bubble surface with full slip boundary conditions.

  13. Airframe Noise Results from the QTD II Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elkoby, Ronen; Brusniak, Leon; Stoker, Robert W.; Khorrami, Mehdi R.; Abeysinghe, Amal; Moe, Jefferey W.

    2007-01-01

    With continued growth in air travel, sensitivity to community noise intensifies and materializes in the form of increased monitoring, regulations, and restrictions. Accordingly, realization of quieter aircraft is imperative, albeit only achievable with reduction of both engine and airframe components of total aircraft noise. Model-scale airframe noise testing has aided in this pursuit; however, the results are somewhat limited due to lack of fidelity of model hardware, particularly in simulating full-scale landing gear. Moreover, simulation of true in-flight conditions is non-trivial if not infeasible. This paper reports on an investigation of full-scale landing gear noise measured as part of the 2005 Quiet Technology Demonstrator 2 (QTD2) flight test program. Conventional Boeing 777-300ER main landing gear were tested, along with two noise reduction concepts, namely a toboggan fairing and gear alignment with the local flow, both of which were down-selected from various other noise reduction devices evaluated in model-scale testing at Virginia Tech. The full-scale toboggan fairings were designed by Goodrich Aerostructures as add-on devices allowing for complete retraction of the main gear. The baseline-conventional gear, faired gear, and aligned gear were all evaluated with the high-lift system in the retracted position and deployed at various flap settings, all at engine idle power setting. Measurements were taken with flyover community noise microphones and a large aperture acoustic phased array, yielding far-field spectra, and localized sources (beamform maps). The results were utilized to evaluate qualitatively and quantitatively the merit of each noise reduction concept. Complete similarity between model-scale and full-scale noise reduction levels was not found and requires further investigation. Far-field spectra exhibited no noise reduction for both concepts across all angles and frequencies. Phased array beamform maps show inconclusive evidence of noise

  14. Influence of Solid Noise Barriers on Near-Road and On-Road Air Quality

    EPA Science Inventory

    Public health concerns regarding adverse health effects for populations spending significant amounts of time near high traffic roadways has increased substantially in recent years. Roadside features, including solid noise barriers, have been investigated as potential methods to ...

  15. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  16. Low-Speed Fan Noise Reduction With Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Tweedt, Daniel L.; Fite, E. Brian; Envia, Edmane

    2002-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a trailing edge slot. Composite hollow rotor blades with internal flow passages were designed based on analytical codes modeling the internal flow. The hollow blade with interior guide vanes creates flow channels through which externally supplied air flows from the root of the blade to the trailing edge. The impact of the rotor wake-stator interaction on the acoustics was also predicted analytically. The Active Noise Control Fan, located at the NASA Glenn Research Center, was used as the proof- of-concept test bed. In-duct mode and farfield directivity acoustic data were acquired at blowing rates (defined as mass supplied to trailing edge blowing system divided by fan mass flow) ranging from 0.5 to 2.0 percent. The first three blade passing frequency harmonics at fan rotational speeds of 1700 to 1900 rpm were analyzed. The acoustic tone power levels (PWL) in the inlet and exhaust were reduced 11.5 and -0.1, 7.2 and 11.4, 11.8 and 19.4 PWL dB, respectively. The farfield tone power levels at the first three harmonics were reduced 5.4, 10.6, and 12.4 dB PWL. At selected conditions, two-component hotwire and stator vane unsteady surface pressures were acquired. These measurements illustrate the physics behind the noise reduction.

  17. Infrasonic wind-noise reduction by barriers and spatial filters.

    PubMed

    Hedlin, Michael A H; Raspet, Richard

    2003-09-01

    This paper reports experimental observations of wind speed and infrasonic noise reduction inside a wind barrier. The barrier is compared with "rosette" spatial filters and with a reference site that uses no noise reduction system. The barrier is investigated for use at International Monitoring System (IMS) infrasound array sites where spatially extensive noise-reducing systems cannot be used because of a shortage of suitable land. Wind speed inside a 2-m-high 50%-porous hexagonal barrier coated with a fine wire mesh is reduced from ambient levels by 90%. If the infrasound wind-noise level reductions are all plotted versus the reduced frequency given by f*L/v, where L is the characteristic size of the array or barrier, f is the frequency, and v is the wind speed, the reductions at different wind speeds are observed to collapse into a single curve for each wind-noise reduction method. The reductions are minimal below a reduced frequency of 0.3 to 1, depending on the device, then spatial averaging over the turbulence structure leads to increased reduction. Above the reduced corner frequency, the barrier reduces infrasonic noise by up to 20 to 25 dB. Below the corner frequency the barrier displays a small reduction of about 4 dB. The rosettes display no reduction below the corner frequency. One other advantage of the wind barrier over rosette spatial filters is that the signal recorded inside the barrier enters the microbarometer from free air and is not integrated, possibly out of phase, after propagation through a system of narrow pipes.

  18. Speech intelligibility in noise using throat and acoustic microphones.

    PubMed

    Acker-Mills, Barbara E; Houtsma, Adrianus J M; Ahroon, William A

    2006-01-01

    Helicopter cockpits are very noisy and this noise must be reduced for effective communication. The standard U.S. Army aviation helmet is equipped with a noise-canceling acoustic microphone, but some ambient noise still is transmitted. Throat microphones are not sensitive to air molecule vibrations and thus, transmittal of ambient noise is reduced. It is possible that throat microphones could enhance speech communication in helicopters, but speech intelligibility with the devices must first be assessed. In the current study, speech intelligibility of signals generated by an acoustic microphone, a throat microphone, and by the combined output of the two microphones was assessed using the Modified Rhyme Test (MRT). Stimulus words were recorded in a reverberant chamber with ambient broadband noise intensity at 90 and 106 dBA. Listeners completed the MRT task in the same settings, thus simulating the typical environment of a rotary-wing aircraft. Results show that speech intelligibility is significantly worse for the throat microphone (average percent correct = 55.97) than for the acoustic microphone (average percent correct = 69.70), particularly for the higher noise level. In addition, no benefit is gained by simultaneously using both microphones. A follow-up experiment evaluated different consonants using the Diagnostic Rhyme Test and replicated the MRT results. The current results show that intelligibility using throat microphones is poorer than with the use of boom microphones in noisy and in quiet environments. Therefore, throat microphones are not recommended for use in any situation where fast and accurate speech intelligibility is essential.

  19. The relationship between aircraft noise exposure and day-use visitor survey responses in backcountry areas of national parks.

    PubMed

    Rapoza, Amanda; Sudderth, Erika; Lewis, Kristin

    2015-10-01

    To evaluate the relationship between aircraft noise exposure and the quality of national park visitor experience, more than 4600 visitor surveys were collected at seven backcountry sites in four U.S. national parks simultaneously with calibrated sound level measurements. Multilevel logistic regression was used to estimate parameters describing the relationship among visitor responses, aircraft noise dose metrics, and mediator variables. For the regression models, survey responses were converted to three dichotomous variables, representing visitors who did or did not experience slightly or more, moderately or more, or very or more annoyance or interference with natural quiet from aircraft noise. Models with the most predictive power included noise dose metrics of sound exposure level, percent time aircraft were audible, and percentage energy due to helicopters and fixed-wing propeller aircraft. These models also included mediator variables: visitor ratings of the "importance of calmness, peace and tranquility," visitor group composition (adults or both adults and children), first visit to the site, previously taken an air tour, and participation in bird-watching or interpretive talks. The results complement and extend previous research conducted in frontcountry areas and will inform evaluations of air tour noise effects on visitors to national parks and remote wilderness sites.

  20. Masking potency and whiteness of noise at various noise check sizes.

    PubMed

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  1. Inter-individual Differences in the Effects of Aircraft Noise on Sleep Fragmentation.

    PubMed

    McGuire, Sarah; Müller, Uwe; Elmenhorst, Eva-Maria; Basner, Mathias

    2016-05-01

    Environmental noise exposure disturbs sleep and impairs recuperation, and may contribute to the increased risk for (cardiovascular) disease. Noise policy and regulation are usually based on average responses despite potentially large inter-individual differences in the effects of traffic noise on sleep. In this analysis, we investigated what percentage of the total variance in noise-induced awakening reactions can be explained by stable inter-individual differences. We investigated 69 healthy subjects polysomnographically (mean ± standard deviation 40 ± 13 years, range 18-68 years, 32 male) in this randomized, balanced, double-blind, repeated measures laboratory study. This study included one adaptation night, 9 nights with exposure to 40, 80, or 120 road, rail, and/or air traffic noise events (including one noise-free control night), and one recovery night. Mixed-effects models of variance controlling for reaction probability in noise-free control nights, age, sex, number of noise events, and study night showed that 40.5% of the total variance in awakening probability and 52.0% of the total variance in EEG arousal probability were explained by inter-individual differences. If the data set was restricted to nights (4 exposure nights with 80 noise events per night), 46.7% of the total variance in awakening probability and 57.9% of the total variance in EEG arousal probability were explained by inter-individual differences. The results thus demonstrate that, even in this relatively homogeneous, healthy, adult study population, a considerable amount of the variance observed in noise-induced sleep disturbance can be explained by inter-individual differences that cannot be explained by age, gender, or specific study design aspects. It will be important to identify those at higher risk for noise induced sleep disturbance. Furthermore, the custom to base noise policy and legislation on average responses should be re-assessed based on these findings. © 2016 Associated

  2. Novel Engineering and Fabrication Techniques Tested in Low-Noise- Research Fan Blades

    NASA Technical Reports Server (NTRS)

    Cunningham, Cameron C.

    2003-01-01

    A major source of fan noise in commercial turbofan engines is the interaction of the wake from the fan blades with the stationary vanes (stators) directly behind them. The Trailing Edge Blowing (TEB) project team at the NASA Glenn Research Center designed and fabricated new fan blades to study the effects of fan trailing edge blowing as a potential noise-reduction concept. The intent is to fill the rotor wake by supplying air to the rotor blade trailing edge at the proper conditions to minimize the wake deficit, and thus generate less noise. The TEB hardware is designed for the Active Noise Control Fan (ANCF) test rig in Glenn's Aeroacoustic Propulsion Laboratory. For this test, the air is fed from an external supply through the shaft of the rig. It is distributed to the base of each blade through an impeller, where it is forced into a plenum at the core of each blade. In actual engine configuration, air would most likely be bled from the compressor, but only at times when noise is an issue, such as takeoffs and landings. Glenn researchers designed and manufactured the blades in-house, using new techniques and concepts. The skins, which were designed for maximum strength in the directions of highest stress, were molded from multiple layers of carbon fiber. Considerable use was made of rapid prototyping techniques, such as laser sintering. The core was sintered from a lightweight polymer, and the retainer was CNC-machined (computer numerical control machined) from aluminum. All the components were joined with a cold-cure aerospace adhesive. These techniques and processes reduced the overall cost and allowed the new concept to be studied much sooner than would be possible using traditional fabrication methods. Since this test rig did not support the use of blade-monitoring techniques such as strain gauges, extensive bench testing was required to qualify the design. The blades were examined using a variety of methods including holography, pull tests (cyclic and

  3. A Spatial Data Infrastructure for Environmental Noise Data in Europe.

    PubMed

    Abramic, Andrej; Kotsev, Alexander; Cetl, Vlado; Kephalopoulos, Stylianos; Paviotti, Marco

    2017-07-06

    Access to high quality data is essential in order to better understand the environmental and health impact of noise in an increasingly urbanised world. This paper analyses how recent developments of spatial data infrastructures in Europe can significantly improve the utilization of data and streamline reporting on a pan-European scale. The Infrastructure for Spatial Information in the European Community (INSPIRE), and Environmental Noise Directive (END) described in this manuscript provide principles for data management that, once applied, would lead to a better understanding of the state of environmental noise. Furthermore, shared, harmonised and easily discoverable environmental spatial data, required by the INSPIRE, would also support the data collection needed for the assessment and development of strategic noise maps. Action plans designed by the EU Member States to reduce noise and mitigate related effects can be shared to the public through already established nodes of the European spatial data infrastructure. Finally, data flows regarding reporting on the state of environment and END implementation to the European level can benefit by applying a decentralised e-reporting service oriented infrastructure. This would allow reported data to be maintained, frequently updated and enable pooling of information from/to other relevant and interrelated domains such as air quality, transportation, human health, population, marine environment or biodiversity. We describe those processes and provide a use case in which noise data from two neighbouring European countries are mapped to common data specifications, defined by INSPIRE, thus ensuring interoperability and harmonisation.

  4. Road traffic noise and hypertension--accounting for the location of rooms.

    PubMed

    Babisch, Wolfgang; Wölke, Gabriele; Heinrich, Joachim; Straff, Wolfgang

    2014-08-01

    The association between the exposure to road traffic noise and the prevalence of hypertension was assessed accounting for background air pollution and the location of rooms with respect to the road. A cross-sectional study was carried out inviting all subjects aged 35-74 years for participation that lived on 7 major trunk roads in 3-4 storey terraced apartment buildings and in parallel side streets that were completely shielded from noise due to the rows of houses along the major roads. The study was performed on 1770 subjects that did not have a self-reported medical doctor diagnosis of hypertension before they moved into their current residence. Noise levels at the facade of the front and the rear side of the houses were drawn from available noise maps of the area. A large set of covariates were considered to adjust the results for confounding. Significant increases between road traffic noise and hypertension were found with respect to the 24h A-weighted average noise indicator L(DEN). The adjusted odds ratio (OR) per noise level increment of 10 dB(A) was 1.11 (95% confidence interval (CI): 1.00-1.23). Stronger significant estimates of the noise effect were found in subjects with long residence time (OR=1.20, CI=1.05-1.37), and with respect to the exposure of the living room during daytime (OR=1.24, CI=1.08-1.41) compared with the exposure of the bedroom during night-time (OR=0.91, CI=0.78-1.06). Chronic exposure to road traffic noise is associated with an increased risk of high blood pressure. Daytime noise exposure of the living room had a stronger impact on the association than night-time exposure of the bedroom. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Initial Noise Assessment of an Embedded-wing-propulsion Concept Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.

    2008-01-01

    Vehicle acoustic requirements are considered for a Cruise-Efficient Short Take-Off and Landing (CESTOL) vehicle concept using an Embedded-Wing-Propulsion (EWP) system based on a review of the literature. Successful development of such vehicles would enable more efficient use of existing airports in accommodating the anticipated growth in air traffic while at the same time reducing the noise impact on the community around the airport. A noise prediction capability for CESTOL-EWP aircraft is developed, based largely on NASA's FOOTPR code and other published methods, with new relations for high aspect ratio slot nozzles and wing shielding. The predictive model is applied to a preliminary concept developed by Boeing for NASA GRC. Significant noise reduction for such an aircraft relative to the current state-of-the-art is predicted, and technology issues are identified which should be addressed to assure that the potential of this design concept is fully achieved with minimum technical risk.

  6. Characterizing seismic noise in the 2-20 Hz band at a gravitational wave observatory

    NASA Astrophysics Data System (ADS)

    Coward, D.; Turner, J.; Blair, D.; Galybin, K.

    2005-04-01

    We present a study of seismic noise, using an array of seismic sensors, at the Australian International Gravitational Observatory. We show that despite excellent attenuation of 2-20 Hz seismic waves from the soil properties of the site, which is confirmed by a specific experiment, there are important technical issues associated with local sources of vibration originating from within the laboratory buildings. In particular, we identify vibrations from air-filtration equipment propagating throughout the site. We find significant building resonances in the 2-13 Hz band and identify seismic noise originating from regional mine blasts hundreds of kilometers distant. All these noise sources increase the performance requirements on vibration isolation in the 2-20 Hz frequency band.

  7. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    PubMed

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  8. Assessing the effects of noise abatement measures on health risks: A case study in Istanbul

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ongel, Aybike, E-mail: aybike.ongel@eng.bahcesehir.edu.tr; Sezgin, Fatih, E-mail: fatih.sezgin@ibb.gov.tr

    In recent decades, noise pollution caused by industrialization and increased motorization has become a major concern around the world because of its adverse effects on human well-being. Therefore, transportation agencies have been implementing noise abatement measures in order to reduce road traffic noise. However, limited attention is given to noise in environmental assessment of road transportation systems. This paper presents a framework for a health impact assessment model for road transportation noise emissions. The model allows noise impacts to be addressed with the health effects of air pollutant and greenhouse gas emissions from road transportation. The health damages assessed inmore » the model include annoyance, sleep disturbance, and cardiovascular disease in terms of acute myocardial infarction. The model was applied in a case study in Istanbul in order to evaluate the change in health risks from the implementation of noise abatement strategies. The noise abatement strategies evaluated include altering pavement surfaces in order to absorb noise and introducing speed limits. It was shown that significant improvements in health risks can be achieved using open graded pavement surfaces and introducing speed limits on highways. - Highlights: • Transportation noise has a significant effect on health. • Noise should be included in the environmental assessment of transportation systems. • Traffic noise abatement measures include noise reducing pavements and speed limits. • Noise abatement measures help reduce the health risks of transportation noise. • Speed limit reduction on uncongested roads is an effective way to reduce health risks.« less

  9. Reduction of noise generated by air conditioning and ventilation plants and transmitted to inhabited areas. [application of silencers

    NASA Technical Reports Server (NTRS)

    Harastaseanu, E.; Cristescu, G.; Mercea, F.

    1974-01-01

    The fans with which the conditioning and ventilation plants of weaving and spinning mills are equipped and the conditioning devices used in certain confection and knit wear departments of the textile industry generate loud noise. Solutions are presented for reducing the noise generated by the fans of ventilation and conditioning plants and transmitted to inhabited regions down to the admissible level, as well as the results obtained by experimental application of some noise reduction solutions in the conditioning plants of a spinning mill.

  10. Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status

    PubMed Central

    Maamor, Nashrah; Billings, Curtis J.

    2017-01-01

    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain’s response to complex auditory stimuli and contribute to the ability to listen in noise. PMID:27838448

  11. Acoustic resonance of outer-rotor brushless dc motor for air-conditioner fan

    NASA Astrophysics Data System (ADS)

    Lee, Hong-Joo; Chung, Shi-Uk; Hwang, Sang-Moon

    2008-04-01

    Generation of acoustic noise in electric motor is an interacting combination of mechanical and electromagnetic sources. In this paper, a brushless dc motor for air-conditioner fan is analyzed by finite element method to identify noise source, and the analysis results are verified by experiments, and sensitivity analysis is performed by design of experiments.

  12. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  13. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  14. Simulation of Thin-Film Damping and Thermal Mechanical Noise Spectra for Advanced Micromachined Microphone Structures.

    PubMed

    Hall, Neal A; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F Levent

    2008-06-01

    In many micromachined sensors the thin (2-10 μm thick) air film between a compliant diaphragm and backplate electrode plays a dominant role in shaping both the dynamic and thermal noise characteristics of the device. Silicon microphone structures used in grating-based optical-interference microphones have recently been introduced that employ backplates with minimal area to achieve low damping and low thermal noise levels. Finite-element based modeling procedures based on 2-D discretization of the governing Reynolds equation are ideally suited for studying thin-film dynamics in such structures which utilize relatively complex backplate geometries. In this paper, the dynamic properties of both the diaphragm and thin air film are studied using a modal projection procedure in a commonly used finite element software and the results are used to simulate the dynamic frequency response of the coupled structure to internally generated electrostatic actuation pressure. The model is also extended to simulate thermal mechanical noise spectra of these advanced sensing structures. In all cases simulations are compared with measured data and show excellent agreement-demonstrating 0.8 pN/√Hz and 1.8 μPa/√Hz thermal force and thermal pressure noise levels, respectively, for the 1.5 mm diameter structures under study which have a fundamental diaphragm resonance-limited bandwidth near 20 kHz.

  15. Spacecraft Leak Location Using Structure-Borne Noise

    NASA Astrophysics Data System (ADS)

    Reusser, R. S.; Chimenti, D. E.; Holland, S. D.; Roberts, R. A.

    2010-02-01

    Guided ultrasonic waves, generated by air escaping through a small hole, have been measured with an 8×8 piezoelectric phased-array detector. Rapid location of air leaks in a spacecraft skin, caused by high-speed collisions with small objects, is essential for astronaut survival. Cross correlation of all 64 elements, one pair at a time, on a diced PZT disc combined with synthetic aperture analysis determines the dominant direction of wave propagation. The leak location is triangulated by combining data from two or more detector. To optimize the frequency band selection for the most robust direction finding, noise-field measurements of a plate with integral stiffeners have been performed using laser Doppler velocimetry. We compare optical and acoustic measurements to analyze the influence of the PZT array detector and its mechanical coupling to the plate.

  16. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compendium is presented of documents on noise. The articles presented are categorized in the following sections: noise sources, noise detection and measurement, noise abatement and control, physical effects of noise, psychological and physiological effects of noise, noise regulations and standards, patents and contracts, and noise research.

  17. Effects of changed aircraft noise exposure on the use of outdoor recreational areas.

    PubMed

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-11-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway's main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied.

  18. Effects of Changed Aircraft Noise Exposure on the Use of Outdoor Recreational Areas

    PubMed Central

    Krog, Norun Hjertager; Engdahl, Bo; Tambs, Kristian

    2010-01-01

    This paper examines behavioural responses to changes in aircraft noise exposure in local outdoor recreational areas near airports. Results from a panel study conducted in conjunction with the relocation of Norway’s main airport in 1998 are presented. One recreational area was studied at each airport site. The samples (n = 1,264/1,370) were telephone interviewed about their use of the area before and after the change. Results indicate that changed aircraft noise exposure may influence individual choices to use local outdoor recreational areas, suggesting that careful considerations are needed in the planning of air routes over local outdoor recreational areas. However, considerable stability in use, and also fluctuations in use unrelated to the changes in noise conditions were found. Future studies of noise impacts should examine a broader set of coping mechanisms, like intra- and temporal displacement. Also, the role of place attachment, and the substitutability of local areas should be studied. PMID:21139867

  19. Determination and Applications of Environmental Costs at Different Sized Airports: Aircraft Noise and Engine Emissions

    NASA Technical Reports Server (NTRS)

    Lu, Cherie; Lierens, Abigail

    2003-01-01

    With the increasing trend of charging for externalities and the aim of encouraging the sustainable development of the air transport industry, there is a need to evaluate the social costs of these undesirable side effects, mainly aircraft noise and engine emissions, for different airports. The aircraft noise and engine emissions social costs are calculated in monetary terms for five different airports, ranging from hub airports to small regional airports. The number of residences within different levels of airport noise contours and the aircraft noise classifications are the main determinants for accessing aircraft noise social costs. Whist, based on the damages of different engine pollutants on the human health, vegetation, materials, aquatic ecosystem and climate, the aircraft engine emissions social costs vary from engine types to aircraft categories. The results indicate that the relationship appears to be curvilinear between environmental costs and the traffic volume of an airport. The results and methodology of environmental cost calculation could input for to the proposed European wide harmonized noise charges as well as the social cost benefit analysis of airports.

  20. Phase-Noise and Amplitude-Noise Measurement of Low-Power Signals

    NASA Technical Reports Server (NTRS)

    Rubiola, Enrico; Salik, Ertan; Yu, Nan; Maleki, Lute

    2004-01-01

    Measuring the phase fluctuation between a pair of low-power microwave signals, the signals must be amplified before detection. In such cases the phase noise of the amplifier pair is the main cause of 1/f background noise of the instrument. this article proposes a scheme that makes amplification possible while rejecting the close in 1/f (flicker) noise of the two amplifiers. Noise rejection, which relies upon the understanding of the amplifier noise mechanism does not require averaging. Therefore, our scheme can also be the detector of a closed loop noise reduction system. the first prototype, compared to a traditional saturated mixer system under the same condition, show a 24 dB noise reduction of the 1/f region.

  1. Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status.

    PubMed

    Maamor, Nashrah; Billings, Curtis J

    2017-01-01

    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain's response to complex auditory stimuli and contribute to the ability to listen in noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Calculated wind noise for an infrasonic wind noise enclosure.

    PubMed

    Abbott, JohnPaul; Raspet, Richard

    2015-07-01

    A simple calculation of the wind noise measured at the center of a large porous wind fence enclosure is developed. The calculation provides a good model of the measured wind noise, with a good agreement within ±5 dB, and is derived by combining the wind noise contributions from (a) the turbulence-turbulence and turbulence-shear interactions inside the enclosure, (b) the turbulence interactions on the surface of the enclosure, and (c) the turbulence-shear interactions outside of the enclosure. Each wind noise contribution is calculated from the appropriate measured turbulence spectra, velocity profiles, correlation lengths, and the mean velocity at the center, surface, and outside of the enclosure. The model is verified by comparisons of the measured wind noise to the calculated estimates of the differing noise contributions and their sum.

  3. [Noise hazard and hearing loss in workers in automotive component manufacturing industry in Guangzhou, China].

    PubMed

    Wang, Zhi; Liang, Jiabin; Rong, Xing; Zhou, Hao; Duan, Chuanwei; Du, Weijia; Liu, Yimin

    2015-12-01

    To investigate noise hazard and its influence on hearing loss in workers in the automotive component manufacturing industry. Noise level in the workplace of automotive component manufacturing enterprises was measured and hearing examination was performed for workers to analyze the features and exposure levels of noise in each process, as well as the influence on hearing loss in workers. In the manufacturing processes for different products in this industry, the manufacturing processes of automobile hub and suspension and steering systems had the highest degrees of noise hazard, with over-standard rates of 79.8% and 57.1%, respectively. In the different technical processes for automotive component manufacturing, punching and casting had the highest degrees of noise hazard, with over-standard rates of 65.0% and 50%, respectively. The workers engaged in the automotive air conditioning system had the highest rate of abnormal hearing ability (up to 3.1%). In the automotive component manufacturing industry, noise hazard exceeds the standard seriously. Although the rate of abnormal hearing is lower than the average value of the automobile manufacturing industry in China, this rate tends to increase gradually. Enough emphasis should be placed on the noise hazard in this industry.

  4. Community noise

    NASA Astrophysics Data System (ADS)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  5. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  6. Inter-individual Differences in the Effects of Aircraft Noise on Sleep Fragmentation

    PubMed Central

    McGuire, Sarah; Müller, Uwe; Elmenhorst, Eva-Maria; Basner, Mathias

    2016-01-01

    Study Objectives: Environmental noise exposure disturbs sleep and impairs recuperation, and may contribute to the increased risk for (cardiovascular) disease. Noise policy and regulation are usually based on average responses despite potentially large inter-individual differences in the effects of traffic noise on sleep. In this analysis, we investigated what percentage of the total variance in noise-induced awakening reactions can be explained by stable inter-individual differences. Methods: We investigated 69 healthy subjects polysomnographically (mean ± standard deviation 40 ± 13 years, range 18–68 years, 32 male) in this randomized, balanced, double-blind, repeated measures laboratory study. This study included one adaptation night, 9 nights with exposure to 40, 80, or 120 road, rail, and/or air traffic noise events (including one noise-free control night), and one recovery night. Results: Mixed-effects models of variance controlling for reaction probability in noise-free control nights, age, sex, number of noise events, and study night showed that 40.5% of the total variance in awakening probability and 52.0% of the total variance in EEG arousal probability were explained by inter-individual differences. If the data set was restricted to nights (4 exposure nights with 80 noise events per night), 46.7% of the total variance in awakening probability and 57.9% of the total variance in EEG arousal probability were explained by inter-individual differences. The results thus demonstrate that, even in this relatively homogeneous, healthy, adult study population, a considerable amount of the variance observed in noise-induced sleep disturbance can be explained by inter-individual differences that cannot be explained by age, gender, or specific study design aspects. Conclusions: It will be important to identify those at higher risk for noise induced sleep disturbance. Furthermore, the custom to base noise policy and legislation on average responses should be re

  7. Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Smith, Charles D.; Conner, David A.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  8. Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Burley, Casey L.; Smith, Charles D.

    2006-01-01

    Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.

  9. Auditory Risk of Air Rifles

    PubMed Central

    Lankford, James E.; Meinke, Deanna K.; Flamme, Gregory A.; Finan, Donald S.; Stewart, Michael; Tasko, Stephen; Murphy, William J.

    2016-01-01

    Objective To characterize the impulse noise exposure and auditory risk for air rifle users for both youth and adults. Design Acoustic characteristics were examined and the auditory risk estimates were evaluated using contemporary damage-risk criteria for unprotected adult listeners and the 120-dB peak limit and LAeq75 exposure limit suggested by the World Health Organization (1999) for children. Study sample Impulses were generated by 9 pellet air rifles and 1 BB air rifle. Results None of the air rifles generated peak levels that exceeded the 140 dB peak limit for adults and 8 (80%) exceeded the 120 dB peak SPL limit for youth. In general, for both adults and youth there is minimal auditory risk when shooting less than 100 unprotected shots with pellet air rifles. Air rifles with suppressors were less hazardous than those without suppressors and the pellet air rifles with higher velocities were generally more hazardous than those with lower velocities. Conclusion To minimize auditory risk, youth should utilize air rifles with an integrated suppressor and lower velocity ratings. Air rifle shooters are advised to wear hearing protection whenever engaging in shooting activities in order to gain self-efficacy and model appropriate hearing health behaviors necessary for recreational firearm use. PMID:26840923

  10. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  11. Background noise analysis in urban airport surroundings of Brazilian cities, Congonhas Airport, São Paulo

    PubMed Central

    Scatolini, Fabio; Alves, Cláudio Jorge Pinto

    2016-01-01

    ABSTRACT OBJECTIVE To perform a quantitative analysis of the background noise at Congonhas Airport surroundings based on large sampling and measurements with no interruption. METHODS Measuring sites were chosen from 62 and 72 DNL (day-night-level) noise contours, in urban sites compatible with residential use. Fifteen sites were monitored for at least 168 hours without interruption or seven consecutive days. Data compilation was based on cross-reference between noise measurements and air traffic control records, and results were validated by airport meteorological reports. Preliminary diagnoses were established using the standard NBR-13368. Background noise values were calculated based on the Sound Exposure Level (SEL). Statistic parameters were calculated in one-hour intervals. RESULTS Only four of the fifteen sites assessed presented aircraft operations as a clear cause for the noise annoyance. Even so, it is possible to detect background noise levels above regulation limits during periods of low airport activity or when it closes at night. CONCLUSIONS All the sites monitored showed background noise levels above regulation limits between 7:00 and 21:00. In the intervals between 6:00-6:59 and 21:00-22:59 the noise data, when analyzed with the current airport operational characteristics, still allow the development of additional mitigating measures. PMID:28099658

  12. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  13. Hearing through the noise: Biologically inspired noise reduction

    NASA Astrophysics Data System (ADS)

    Lee, Tyler Paul

    Vocal communication in the natural world demands that a listener perform a remarkably complicated task in real-time. Vocalizations mix with all other sounds in the environment as they travel to the listener, arriving as a jumbled low-dimensional signal. A listener must then use this signal to extract the structure corresponding to individual sound sources. How this computation is implemented in the brain remains poorly understood, yet an accurate description of such mechanisms would impact a variety of medical and technological applications of sound processing. In this thesis, I describe initial work on how neurons in the secondary auditory cortex of the Zebra Finch extract song from naturalistic background noise. I then build on our understanding of the function of these neurons by creating an algorithm that extracts speech from natural background noise using spectrotemporal modulations. The algorithm, implemented as an artificial neural network, can be flexibly applied to any class of signal or noise and performs better than an optimal frequency-based noise reduction algorithm for a variety of background noises and signal-to-noise ratios. One potential drawback to using spectrotemporal modulations for noise reduction, though, is that analyzing the modulations present in an ongoing sound requires a latency set by the slowest temporal modulation computed. The algorithm avoids this problem by reducing noise predictively, taking advantage of the large amount of temporal structure present in natural sounds. This predictive denoising has ties to recent work suggesting that the auditory system uses attention to focus on predicted regions of spectrotemporal space when performing auditory scene analysis.

  14. Feedback Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Schiller, Noah H.; Mabe, James H.; Ruggeri, Robert T.; Butler, G. W.

    2004-01-01

    Noise from commercial high-bypass ratio turbofan engines is generated by turbulent mixing of the hot jet exhaust, fan stream, and ambient air. Serrated aerodynamic devices, known as chevrons, along the trailing edges of a jet engine primary and secondary exhaust nozzle have been shown to reduce jet noise at takeoff and shock-cell noise at cruise conditions. Their optimum shape is a finely tuned compromise between noise-benefit and thrust-loss. The design of a full scale Variable Geometry Chevron (VGC) fan-nozzle incorporating Shape Memory Alloy (SMA) actuators is described in a companion paper. This paper describes the development and testing of a proportional-integral control system that regulates the heating of the SMA actuators to control the VGC s tip immersion. The VGC and control system were tested under representative flow conditions in Boeing s Nozzle Test Facility (NTF). Results from the NTF test which demonstrate controllable immersion of the VGC are described. The paper also describes the correlation between strains and temperatures on the chevron with a photogrammetric measurement of the chevron's tip immersion.

  15. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    NASA Astrophysics Data System (ADS)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  16. Global thermal analysis of air-air cooled motor based on thermal network

    NASA Astrophysics Data System (ADS)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  17. A Review of Noise and Vibration Control Technologies for Rotorcraft Transmissions

    NASA Technical Reports Server (NTRS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2016-01-01

    An expanded commercial use of rotorcraft can alleviate runway congestion and improve the accessibility of routine air travel. To date, commercial use has been hindered by excessive cabin noise. The primary noise source is structure-borne vibration originating from the main rotor gearbox. Despite significant advancements in gear design, the gear mesh tones generated often exceed 100 dB. This paper summarizes the findings of a literature survey of vibration control technologies that serve to attenuate this vibration near the source, before it spreads into the airframe and produces noise. The scope is thus limited to vibration control treatments and modifications of the gears, driveline, housing structures, and the strut connections to the airframe. The findings of the literature are summarized and persistent and unresolved issues are identified. An emphasis is placed on components and systems that have been demonstrated in flight vehicles. Then, a discussion is presented of emerging technologies that have the potential to make significant advancements over the state of the art.

  18. Cabin noise and weight reduction program for the Gulfstream G200

    NASA Astrophysics Data System (ADS)

    Barton, C. Kearney

    2002-11-01

    This paper describes the approach and logic involved in a cabin noise and weight reduction program for an existing aircraft that was already in service with a pre-existing insulation package. The aircraft, a Gulfstream G200, was formally an IAI Galaxy, and the program was purchased from IAI in 2001. The approach was to investigate every aspect of the aircraft that could be a factor for cabin noise. This included such items as engine mounting and balancing criteria, the hydraulic system, the pressurization and air-conditioning system, the outflow valve, the interior shell and mounting system, antennae and other hull protuberances, as well as the insulation package. Each of these items was evaluated as potential candidates for noise and weight control modifications. Although the program is still ongoing, the results to date include a 175-lb weight savings and a 5-dB reduction in the cabin average Speech Interference Level (SIL).

  19. Association of aircraft noise stress to periodontal disease in aircrew members.

    PubMed

    Haskell, B S

    1975-08-01

    A review of the literature reveals a multitude of effects that noise may contribute to periodontal disease, including cardiovascular disease, angiospasm of peripheral vessels, hypertension, and an increase in inflammatory cells with concurrent inhibition of healing. Three groups of 25 men were selected from the Pennsylvania Air National Guard for study. Group 1 consisted of F-102 jet fighter pilots; Group 2, pilots and crew of a four-engine, propeller-driven C-121 aircraft; and Group 3, enlisted men not exposed to aircraft noise, as a control. The degree of alveolar, intraceptal bone loss for each subject was measured from full-mouth radiographs of all groups. The greatest amount of bone loss occurred in crew members of propeller-driven aircraft. Jet pilots had considerably less bone loss while the average number of millimeters of bone lost per tooth revealed a difference between the three groups to the 0.01 significance level (F=24.7). The data suggests there is a degree of alveolar bone loss over a period of years associated with exposure to propeller aircraft noise and vibration, and negligible loss for jet aircraft noise.

  20. Field validation of sound mitigation models and air pollutant emission testing in support of missile motor disposal activities.

    PubMed

    McFarland, Michael J; Palmer, Glenn R; Kordich, Micheal M; Pollet, Dean A; Jensen, James A; Lindsay, Mitchell H

    2005-08-01

    The U.S. Department of Defense approved activities conducted at the Utah Test and Training Range (UTTR) include both operational readiness test firing of intercontinental ballistic missile motors as well as the destruction of obsolete or otherwise unusable intercontinental ballistic missile motors through open burn/open detonation (OB/ OD). Within the Utah Division of Air Quality, these activities have been identified as having the potential to generate unacceptable noise levels, as well as significant amounts of hazardous air pollutants. Hill Air Force Base, UT, has completed a series of field tests at the UTTR in which sound-monitoring surveillance of OB/OD activities was conducted to validate the Sound Intensity Prediction System (SIPS) model. Using results generated by the SIPS model to support the decision to detonate, the UTTR successfully disposed of missile motors having an aggregate net explosive weight (NEW) of 56,500 lbs without generating adverse noise levels within populated areas. These results suggest that, under appropriate conditions, missile motors of even larger NEW may be detonated without exceeding regulatory noise limits. In conjunction with collecting noise monitoring data, air quality data was collected to support the development of air emission factors for both static missile motor firings and OB/OD activities. Through the installation of 15 ground-based air samplers, the generation of combustion fixed gases, hazardous air pollutants, and chlorides were monitored during the 56,500-lb NEW detonation event. Comparison of field measurements to predictions generated from the U.S. Navy's energetic combustion pollutant formation model, POLU4WN, indicated that, as the detonation fireball expanded from ground zero, organic compounds as well as carbon monoxide continued to oxidize as the hot gases reacted with ambient air. Hazardous air pollutant analysis of air samplers confirmed the presence of chloromethane, benzene, toluene, 1,2-propadiene, and

  1. Health impact assessment of traffic noise in Madrid (Spain).

    PubMed

    Tobías, Aurelio; Recio, Alberto; Díaz, Julio; Linares, Cristina

    2015-02-01

    The relationship between environmental noise and health has been examined in depth. In view of the sheer number of persons exposed, attention should be focused on road traffic noise. The city of Madrid (Spain) is a densely populated metropolitan area in which 80% of all environmental noise exposure is attributed to traffic. The aim of this study was to quantify avoidable deaths resulting from reducing the impact of equivalent diurnal noise levels (LeqD) on daily cardiovascular and respiratory mortality among people aged ≥65 years in Madrid. A health impact assessment of (average 24h) LeqD and PM2.5 levels was conducted by using previously reported risk estimates of mortality rates for the period 2003-2005: For cardiovascular causes: LeqD 1.048 (1.005, 1.092) and PM2.5 1.041(1.020, 1.062) and for respiratory causes: LeqD 1.060 (1.000, 1.123) and PM2.5 1.030 (1.000, 1.062). The association found between LeqD exposure and mortality for both causes suggests an important health effect. A reduction of 1dB(A) in LeqD implies an avoidable annual mortality of 284 (31, 523) cardiovascular- and 184 (0, 190) respiratory-related deaths in the study population. The magnitude of the health impact is similar to reducing average PM2.5 levels by 10µg/m(3). Regardless of air pollution, exposure to traffic noise should be considered an important environmental factor having a significant impact on health. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  3. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  4. Study of visitor response to air tour and other aircraft noise in national parks

    DOT National Transportation Integrated Search

    2005-01-31

    This document summarizes the findings of a study that considers all known aircraft noise dose and visitor response data previously collected in the National Parks. These data consist of almost 2500 visitor interviews and simultaneous acoustical measu...

  5. Adaptive EMG noise reduction in ECG signals using noise level approximation

    NASA Astrophysics Data System (ADS)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  6. Sound Sources Identified in High-Speed Jets by Correlating Flow Density Fluctuations With Far-Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2003-01-01

    Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.

  7. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  8. Noise from turbomachinery.

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Conrad, E. W.

    1973-01-01

    This paper reviews turbomachinery noise from turbofan engines as typified by fan noise. The mechanisms and theories of fan noise are reviewed and concepts for its reduction, including acoustic suppresion are discussed. Correlations of the overall noise data from several full-scale fans tested at NASA-Lewis Research Center are presented as indicative of the current state-of-the-art. Estimates are presented to show economics versus reduced noise for two quieted experimental engines, one with subsonic and one with supersonic fan tip speed. Finally, some concepts that may have the potential to reduce fan noise are indicated.

  9. Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.

    2007-01-01

    The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.

  10. Linking Traffic Noise, Noise Annoyance and Life Satisfaction: A Case Study

    PubMed Central

    Urban, Jan; Máca, Vojtěch

    2013-01-01

    The primary purpose of this study was to explore the link between rail and road traffic noise and overall life satisfaction. While the negative relationship between residential satisfaction and traffic noise is relatively well-established, much less is known about the effect of traffic noise on overall life satisfaction. Based on results of previous studies, we propose a model that links objective noise levels, noise sensitivity, noise annoyance, residential satisfaction and life satisfaction. Since it is not clear whether a bottom-up or top-down relationship between residential satisfaction and life satisfaction holds, we specify models that incorporate both of these theoretical propositions. Empirical models are tested using structural equation modeling and data from a survey among residents of areas with high levels of road traffic noise (n1 = 354) and rail traffic noise (n2 = 228). We find that traffic noise has a negative effect on residential satisfaction, but no significant direct or indirect effects on overall life satisfaction. Noise annoyance due to road and rail traffic noise has strong negative effect on residential satisfaction rather than on overall life satisfaction. These results are very similar for the road and railway traffic contexts and regardless of whether the model assumes the top-down or bottom-up direction of the causation between life satisfaction and residential satisfaction. PMID:23652784

  11. Linking traffic noise, noise annoyance and life satisfaction: a case study.

    PubMed

    Urban, Jan; Máca, Vojtěch

    2013-05-07

    The primary purpose of this study was to explore the link between rail and road traffic noise and overall life satisfaction. While the negative relationship between residential satisfaction and traffic noise is relatively well-established, much less is known about the effect of traffic noise on overall life satisfaction. Based on results of previous studies, we propose a model that links objective noise levels, noise sensitivity, noise annoyance, residential satisfaction and life satisfaction. Since it is not clear whether a bottom-up or top-down relationship between residential satisfaction and life satisfaction holds, we specify models that incorporate both of these theoretical propositions. Empirical models are tested using structural equation modeling and data from a survey among residents of areas with high levels of road traffic noise (n1 = 354) and rail traffic noise (n2 = 228). We find that traffic noise has a negative effect on residential satisfaction, but no significant direct or indirect effects on overall life satisfaction. Noise annoyance due to road and rail traffic noise has strong negative effect on residential satisfaction rather than on overall life satisfaction. These results are very similar for the road and railway traffic contexts and regardless of whether the model assumes the top-down or bottom-up direction of the causation between life satisfaction and residential satisfaction.

  12. Alpha image reconstruction (AIR): A new iterative CT image reconstruction approach using voxel-wise alpha blending

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Christian; Sawall, Stefan; Knaup, Michael

    2014-06-15

    Purpose: Iterative image reconstruction gains more and more interest in clinical routine, as it promises to reduce image noise (and thereby patient dose), to reduce artifacts, or to improve spatial resolution. Among vendors and researchers, however, there is no consensus of how to best achieve these aims. The general approach is to incorporatea priori knowledge into iterative image reconstruction, for example, by adding additional constraints to the cost function, which penalize variations between neighboring voxels. However, this approach to regularization in general poses a resolution noise trade-off because the stronger the regularization, and thus the noise reduction, the stronger themore » loss of spatial resolution and thus loss of anatomical detail. The authors propose a method which tries to improve this trade-off. The proposed reconstruction algorithm is called alpha image reconstruction (AIR). One starts with generating basis images, which emphasize certain desired image properties, like high resolution or low noise. The AIR algorithm reconstructs voxel-specific weighting coefficients that are applied to combine the basis images. By combining the desired properties of each basis image, one can generate an image with lower noise and maintained high contrast resolution thus improving the resolution noise trade-off. Methods: All simulations and reconstructions are performed in native fan-beam geometry. A water phantom with resolution bar patterns and low contrast disks is simulated. A filtered backprojection (FBP) reconstruction with a Ram-Lak kernel is used as a reference reconstruction. The results of AIR are compared against the FBP results and against a penalized weighted least squares reconstruction which uses total variation as regularization. The simulations are based on the geometry of the Siemens Somatom Definition Flash scanner. To quantitatively assess image quality, the authors analyze line profiles through resolution patterns to define a

  13. USAF Bioenvironmental Noise Data Handbook. Volume 160: KC-10A aircraft, near and far-field noise

    NASA Astrophysics Data System (ADS)

    Powell, R. G.

    1982-09-01

    The USAF KC-10A aircraft is an advanced tanker/cargo aircraft powered by three CF6-50C2 turbofan engines. This report provides measured and extrapolated data defining the bioacoustic environments produced by this aircraft operating on a concrete runup pad for eight engine/power configurations. Near-field data are reported for one location in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference levels, perceived noise levels, and limiting times for total daily exposure of personnel with and without standard Air Force ear protectors. Far-field data measured at 15 locations are normalized to standard meteorological conditions and extrapolated from 75-8000 meters to derive sets of equal-value contours for these same seven acoustic measures as functions of angle and distance from the source. Refer to Volume 1 of this handbook, USAF Bioenvironmental Noise Data Handbook, Vol 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

  14. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  15. Optimal speckle noise reduction filter for range gated laser illuminated imaging

    NASA Astrophysics Data System (ADS)

    Dayton, David; Gonglewski, John; Lasche, James; Hassall, Arthur

    2016-09-01

    Laser illuminated imaging has a number of applications in the areas of night time air-to-ground target surveillance, ID, and pointing and tracking. Using a laser illuminator, the illumination intensity and thus the signal to noise ratio can be controlled. With the advent of high performance range gated cameras in the short-wave infra-red band, higher spatial resolution can be achieved over passive thermal night imaging cameras in the mid-wave infra-red due to the shorter wave-length. If a coherent illuminator is used the resulting imagery often suffers from speckle noise due to the scattering off of a rough target surface, which gives it a grainy "salt and pepper" appearance. The probability density function for the intensity of focal plane speckle is well understood to follow a negative exponential distribution. This can be exploited to develop a Bayesian speckle noise filter. The filter has the advantage over simple frame averaging approaches in that it preserves target features and motion while reducing speckle noise without smearing or blurring the images. The resulting filtered images have the appearance of passive imagery and so are more amenable to sensor fusion with simultaneous mid-wave infra-red thermal images for enhanced target ID. The noise filter improvement is demonstrated using examples from real world laser imaging tests on tactical targets.

  16. May tropospheric noise in satellite radar data affect decision making results?

    NASA Astrophysics Data System (ADS)

    Bloutsos, Aristeidis; Bekri, Eleni; Moschas, Fanis; Saltogianni, Vasso; Stiros, Stathis; Yannopoulos, Panayotis

    2015-04-01

    Meteorological and air pollution conditions affect the satellite positioning signals. To investigate the uncertainty introduced in these signals in various meteorological and air pollution conditions, an array of GPS/GNSS stations and another of meteorological and air pollution stations has been established. The study area is expanded next to Patraikos and Corinth Gulf (NW Peloponnisos, Greece), which is characterized by high variability sequences from hot to cold weather, low to high relative humidity and clear to cloudy or/and Sahara dusty atmosphere, as a result of the particular geographical and topographical features of the study area. The GNSS recordings from several stations with very high vertical separation (with altitude up to 1600m and with a gradient of up to 20%) are analyzed in order to control in some extend both the vertical and the horizontal variability of the atmospheric effects, as well as the noise of geodetic recordings. Then, the GPS results will be combined with meteorological and atmospheric pollution data, as well as satellite radar data, in order to evaluate the enhanced troposphere noise in satellite radar and to estimate the magnitude of uncertainty that may cause alterations to decision making results in the management of water and other natural resources. This project takes advantage of GPS stations established in wider study area in the framework of the Corinth Rift Laboratory (http://crlab.eu/) in conjunction to the air pollution and meteorological monitoring stations of the Environmental Engineering Laboratory of the Department of Civil Engineering of the University of Patras. Regarding GPS stations, the project has been partly funded by the PLATO Project of the Greek Secretariat for Research and Technology.

  17. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  18. Classical noise, quantum noise and secure communication

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Langlois, J.

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.

  19. Raman-noise-induced noise-figure limit for chi (3) parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Voss, Paul L.; Kumar, Prem

    2004-03-01

    The nonzero response time of the Kerr [chi (3)] nonlinearity determines the quantum-limited noise figure of c3 parametric amplifiers. This nonzero response time of the nonlinearity requires coupling of the parametric amplification process to a molecular-vibration phonon bath, causing the addition of excess noise through Raman gain or loss at temperatures above 0 K. The effect of this excess noise on the noise figure can be surprisingly significant. We derive analytical expressions for this quantum-limited noise figure for phase-insensitive operation of a chi (3) amplifier and show good agreement with published noise-figure measurements.

  20. Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engines

    NASA Technical Reports Server (NTRS)

    Hough, Joe W.; Weir, Donald S.

    1996-01-01

    The Fan Noise Module of ANOPP is used to predict the broadband noise and pure tones for axial flow compressors or fans. The module, based on the method developed by M. F. Heidmann, uses empirical functions to predict fan noise spectra as a function of frequency and polar directivity. Previous studies have determined the need to modify the module to better correlate measurements of fan noise from engines in the 3000- to 6000-pound thrust class. Additional measurements made by AlliedSignal have confirmed the need to revise the ANOPP fan noise method for smaller engines. This report describes the revisions to the fan noise method which have been verified with measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significant improvement in overall and spectral noise predictions.

  1. Experimental and numerical analysis on noise reduction in a multi-blade centrifugal fan

    NASA Astrophysics Data System (ADS)

    Chen, X. J.; Y Cao, T.; Su, J.; Qin, G. L.

    2013-12-01

    In this work, analysis on noise source and reduction in a multi-blade centrifugal fan used for air-conditioners was carried out by experimental and numerical methods. Firstly, an experimental system using microphone mounted on volute surface for measuring surface pressure fluctuations of volute was designed and introduced, then surface pressure fluctuations of the whole volute for a multi-blade centrifugal fan were measured by this system, and the inlet noise for this fan was also obtained. And then, based on the experimental results, the aerodynamic noise source of the studied fan was analysed. The surface pressure fluctuations of the volute showed that there were largest surface pressure fluctuations near the volute tongue, and peaks appeared at the Blade Passing Frequency (BPF). The spectra of fan inlet noise showed that the peaks also appeared at BPF, and noise levels in a wide range of frequency were also larger. Secondly, the internal flow of the fan was simulated by commercial software under the same conditions with the experiment, and then the fluid flow and acoustic power field were obtained and discussed. The contours of acoustic power level showed that the larger noise was generated at the impeller area close to the outlet of scroll and at the volute tongue, which is same as that from experiment. Based on all of the results, we can find that the vortex noise is an important part of fan noise for the studied fan, and the rotation noise also cannot be neglected. Finally, several reduction methods that are thought to be effective based on experimental and numerical results were suggested.

  2. Active noise control technique for diesel train locomotor exhaust noise abatement

    NASA Astrophysics Data System (ADS)

    Cotana, Franco; Rossi, Federico

    2002-11-01

    An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.

  3. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  4. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  5. Jet noise suppression

    NASA Astrophysics Data System (ADS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-08-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  6. Simulation of aerodynamic noise and vibration noise in hard disk drives

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao

    2018-05-01

    Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.

  7. Effects of active noise reduction on noise levels at the tympanic membrane.

    PubMed

    Wagstaff, A S; Woxen, O J; Andersen, H T

    1998-06-01

    Active noise reduction (ANR) is an electronic system that works by continuous sampling of noise inside the earshell of the headset with a small microphone. This signal is inverted in phase through the headset speaker, thus reducing noise levels by destructive interference of the acoustic field. The system provides good low-frequency noise attenuation, but aircrew differ in their subjective opinion of ANR. The present study is an attempt to provide an objective assessment of the effect of ANR on noise levels at the tympanic membrane. There were 7 subjects with normal ears who were placed in an environment of recorded noise from a BO-105 helicopter. A microphone probe was inserted to within 5 mm of the tympanic membrane of each subject's right ear. Noise levels in the ear were measured without a headset and with two different ANR headsets. Measurements were performed with and without the ANR system on, and with and without white noise through the headset communication system. The white noise was used to simulate aircraft communication noise. The two headsets tested had differing levels of passive and active attenuation. The ANR system produced a substantial low-frequency attenuation. However, noise levels in the mid frequencies increased somewhat when the ANR system was switched on. This effect was augmented when white noise in the communications system was introduced, particularly for one of the two headsets. Low-frequency noise attenuation of ANR systems is substantial, but an increased mid- and high-frequency noise level caused by the ANR may affect both communication and overall noise levels. Our data provide advice on what factors should be taken into account when ANR is evaluated for use in an aviation operational environment.

  8. Markov processes for the prediction of aircraft noise effects on sleep.

    PubMed

    Basner, Mathias; Siebert, Uwe

    2010-01-01

    Aircraft noise disturbs sleep and impairs recuperation. Authorities plan to expand Frankfurt airport. To quantitatively assess the effects of a traffic curfew (11 PM to 5 AM) at Frankfurt Airport on sleep structure. Experimental sleep study; polysomnography for 13 consecutive nights. Sleep laboratory. Subjects. 128 healthy subjects, mean age (SD) 38 (13) years, range 19 to 65, 59% female. Intervention. Exposure to aircraft noise via loudspeakers. A 6-state Markov state transition sleep model was used to simulate 3 noise scenarios with first-order Monte Carlo simulations: 1) 2005 traffic at Frankfurt Airport, 2) as simulation 1 but flights between 11 PM and 5 AM cancelled, and 3) as simulation 2, with flights between 11 PM and 5 AM from simulation 1 rescheduled to periods before 11 PM and after 5 AM. Probabilities for transitions between sleep stages were estimated with autoregressive multinomial logistic regression. Compared to a night without curfew, models indicate small improvements in sleep structure in nights with curfew, even if all traffic is rescheduled to periods before and after the curfew period. For those who go to bed before 10:30 PM or after 1 AM, this benefit is likely to be offset by the expected increase of air traffic during late evening and early morning hours. Limitations. Limited ecologic validity due to laboratory setting and subject sample. According to the decision analysis, it is unlikely that the proposed curfew at Frankfurt Airport substantially benefits sleep structure. Extensions of the model could be used to evaluate or propose alternative air traffic regulation strategies for Frankfurt Airport.

  9. A mathematical model of extremely low frequency ocean induced electromagnetic noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dautta, Manik, E-mail: manik.dautta@anyeshan.com; Faruque, Rumana Binte, E-mail: rumana.faruque@anyeshan.com; Islam, Rakibul, E-mail: rakibul.islam@anyeshan.com

    2016-07-12

    Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signalsmore » in the midst of these low-frequency interfering signals. Both the Range of Detection (R{sub d}) and the Probability of Detection (P{sub d}) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.« less

  10. Piloted Simulation Study of a Dual Thrust-Cutback Procedure for Reducing High-Speed Civil Transport Takeoff Noise Levels

    NASA Technical Reports Server (NTRS)

    Riley, Donald R.; Glaab, Louis J.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    A piloted simulation study was performed for the purpose of indicating the noise reduction benefits and piloting performance that could occur for a typical 4-engine high-Speed Civil Transport (HSCT) configuration during takeoff when a dual thrust-cutback procedure was employed with throttle operation under direct computer control. Two thrust cutbacks were employed with the first cutback performed while the vehicle was accelerating on the run-way and the second cutback performed at a distance farther downrange. Added vehicle performance improvements included the incorporation of high-lift increments into the aerodynamic database of the vehicle and the use of limited engine oversizing. Four single-stream turbine bypass engines that had no noise suppression of any kind were used with this configuration. This approach permitted establishing the additional noise suppression level that was needed to meet Federal Air Regulation Part 36 Stage 3 noise levels for subsonic commercial jet aircraft. Noise level results were calculated with the jet mixing and shock noise modules of the Aircraft Noise Prediction Program (ANOPP).

  11. Development of improved ambient computation methods in support of the National Parks Air Tour Management Act

    DOT National Transportation Integrated Search

    2008-09-01

    Approximately 85 National Park units with commercial air tours will need Air Tour : Management Plans (ATMPs). The objective of an ATMP is to prevent or mitigate : significant adverse impacts to National Park resources. Noise impacts must be : charact...

  12. Relationship between Aircraft Noise Contour Area and Noise Levels at Certification Points

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.

    2003-01-01

    The use of sound exposure level contour area reduction has been proposed as an alternative or supplemental metric of progress and success for the NASA Quiet Aircraft Technology program, which currently uses the average of predicted noise reductions at three community locations. As the program has expanded to include reductions in airframe noise as well as reduction due to optimization of operating procedures for lower noise, there is concern that the three-point methodology may not represent a fair measure of benefit to airport communities. This paper addresses several topics related to this proposal: (1) an analytical basis for a relationship between certification noise levels and noise contour areas for departure operations is developed, (2) the relationship between predicted noise contour area and the noise levels measured or predicted at the certification measurement points is examined for a wide range of commercial and business aircraft, and (3) reductions in contour area for low-noise approach scenarios are predicted and equivalent reductions in source noise are determined.

  13. A community survey of helicopter noise annoyance conducted under controlled noise exposure conditions

    NASA Technical Reports Server (NTRS)

    Fields, J. M.; Powell, C. A.

    1985-01-01

    Reactions to low numbers of helicopter noise events (less than 50 per day) were studied in a community setting. Community residents were repeatedly interviewed about daily noise annoyance reactions on days when helicopter noise exposures were, without the residents' knowledge, controlled. The effects of maximum noise level and number of noise events on helicopter noise annoyance are consistent with the principles contained in LEQ-based noise indices. The effect of the duration of noise events is also consistent with LEQ-based indices. After removing the effect of differences in noise levels (LEQ) there is not an important difference between reactions to impulsive and nonimpulsive types of helicopters. EPNL, where corrected for number of overflights, and LEQ are approximately equally successful in representing the characteristics of noise which are related to human response. The new type of design provided estimates of the parameters in a noise reaction model which would not obtained with a similar degree of precision from conventional study designs.

  14. Environmental Assessment for Airborne Laser Debris Management Vandenberg Air Force Base, California

    DTIC Science & Technology

    2008-07-01

    hazardous waste management, water resources, air quality, and biological resources. Based on the analysis of the Proposed Action and No-Action...aesthetics, hazardous materials management, soils and geology, noise, cultural resources, and environmental justice. The resources analyzed in more detail...include: health and safety, hazardous waste management, water resources, air quality, and biological resources. Environmental Effects Under the

  15. Core noise investigation of the CF6-50 turbofan engine

    NASA Technical Reports Server (NTRS)

    Doyle, V. L.; Moore, M. T.

    1980-01-01

    The contribution of the standard production annular combustor to the far-field noise signature of the CF6-50 engine was investigated. Internal source locations were studied. Transfer functions were determined for selected pairs of combustor sensors and from two internal sensors to the air field. The coherent output power was determined in the far-field measurements, and comparisons of measured overall power level were made with component and engine correlating parameters.

  16. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.

  17. Aircraft and road traffic noise and children's cognition and health: a cross-national study.

    PubMed

    Stansfeld, S A; Berglund, B; Clark, C; Lopez-Barrio, I; Fischer, P; Ohrström, E; Haines, M M; Head, J; Hygge, S; van Kamp, I; Berry, B F

    Exposure to environmental stressors can impair children's health and their cognitive development. The effects of air pollution, lead, and chemicals have been studied, but there has been less emphasis on the effects of noise. Our aim, therefore, was to assess the effect of exposure to aircraft and road traffic noise on cognitive performance and health in children. We did a cross-national, cross-sectional study in which we assessed 2844 of 3207 children aged 9-10 years who were attending 89 schools of 77 approached in the Netherlands, 27 in Spain, and 30 in the UK located in local authority areas around three major airports. We selected children by extent of exposure to external aircraft and road traffic noise at school as predicted from noise contour maps, modelling, and on-site measurements, and matched schools within countries for socioeconomic status. We measured cognitive and health outcomes with standardised tests and questionnaires administered in the classroom. We also used a questionnaire to obtain information from parents about socioeconomic status, their education, and ethnic origin. We identified linear exposure-effect associations between exposure to chronic aircraft noise and impairment of reading comprehension (p=0.0097) and recognition memory (p=0.0141), and a non-linear association with annoyance (p<0.0001) maintained after adjustment for mother's education, socioeconomic status, longstanding illness, and extent of classroom insulation against noise. Exposure to road traffic noise was linearly associated with increases in episodic memory (conceptual recall: p=0.0066; information recall: p=0.0489), but also with annoyance (p=0.0047). Neither aircraft noise nor traffic noise affected sustained attention, self-reported health, or overall mental health. Our findings indicate that a chronic environmental stressor-aircraft noise-could impair cognitive development in children, specifically reading comprehension. Schools exposed to high levels of aircraft

  18. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  19. Noise Gating Solar Images

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  20. Phase II Clinical Trials: D-methionine to Reduce Noise-Induced Hearing Loss

    DTIC Science & Technology

    2012-03-01

    loss (NIHL) and tinnitus in our troops. Hypotheses: Primary Hypothesis: Administration of oral D-methionine prior to and during weapons...reduce or prevent noise-induced tinnitus . Primary outcome to test the primary hypothesis: Pure tone air-conduction thresholds. Primary outcome to...test the secondary hypothesis: Tinnitus questionnaires. Specific Aims: 1. To determine whether administering oral D-methionine (D-met) can

  1. Human response to aviation noise : development of dose-response relationships for backcountry visitors - volume I: study methods

    DOT National Transportation Integrated Search

    2014-03-01

    The Federal Aviation Administration and National Park Service conducted joint research to better understand the effects of noise due to commercial air tour operations over units of the National Park System. To evaluate the relationship between aircra...

  2. Coherent entropy induced and acoustic noise separation in compact nozzles

    NASA Astrophysics Data System (ADS)

    Tao, Wenjie; Schuller, Thierry; Huet, Maxime; Richecoeur, Franck

    2017-04-01

    A method to separate entropy induced noise from an acoustic pressure wave in an harmonically perturbed flow through a nozzle is presented. It is tested on an original experimental setup generating simultaneously acoustic and temperature fluctuations in an air flow that is accelerated by a convergent nozzle. The setup mimics the direct and indirect noise contributions to the acoustic pressure field in a confined combustion chamber by producing synchronized acoustic and temperature fluctuations, without dealing with the complexity of the combustion process. It allows generating temperature fluctuations with amplitude up to 10 K in the frequency range from 10 to 100 Hz. The noise separation technique uses experiments with and without temperature fluctuations to determine the relative level of acoustic and entropy fluctuations in the system and to identify the nozzle response to these forcing waves. It requires multi-point measurements of acoustic pressure and temperature. The separation method is first validated with direct numerical simulations of the nonlinear Euler equations. These simulations are used to investigate the conditions for which the separation technique is valid and yield similar trends as the experiments for the investigated flow operating conditions. The separation method then gives successfully the acoustic reflection coefficient but does not recover the same entropy reflection coefficient as predicted by the compact nozzle theory due to the sensitivity of the method to signal noises in the explored experimental conditions. This methodology provides a framework for experimental investigation of direct and indirect combustion noises originating from synchronized perturbations.

  3. Long-term Self-noise Estimates of Seismic Sensors From a High-noise Vault

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Goessen, S.; Hill, P.; Rietbrock, A.

    2017-12-01

    To understand the detection capabilities of seismic stations and for reducing biases in ambient noise imaging, it is vital to assess the contribution of instrument self-noise to overall site noise. Self-noise estimates typically come from vault installations in continental interiors with very low ambient noise levels. However, this approach restricts the independent assessment of self-noise by individual end-users to assess any variations in their own instrument pools from nominal specifications given by manufacturers and from estimations given in comparative test papers. However, the calculation method should be adapted to variable installation conditions. One problem is that microseism noise can contaminate self-noise results caused by instrument misalignment errors or manufacturing limits; this effect becomes stronger where ambient noise is higher. Moreover, due to expected stochastic and time-varying sensor noise, estimates based on hand-picking small numbers of data segments may not accurately reflect true self-noise. We report on results from a self-noise test experiment of Güralp seismic instruments (3T, 3ESPC broadband seismometers, Fortis strong motion accelerometer) that were installed in the sub-surface vault of the Eskdalemuir Seismic Observatory in Scotland, UK over the period October 2016-August 2017. Due to vault's proximity to the ocean, secondary microseism noise is strong, so we efficiently compute the angle of misalignment that maximises waveform coherence with a reference sensor. Self-noise was calculated using the 3-sensor correlation technique and we compute probability density functions of self-noise to assess its spread over time. We find that not correcting for misalignments as low as 0.1° can cause self-noise to be artificially higher by up to 15 dB at frequencies of 0.1-1 Hz. Our method thus efficiently removes the effect of microseism contamination on self-noise; for example, it restores the minimum noise floor for a 360s - 50 Hz 3T to

  4. Noise reduction of pneumatic nailers of up to 8 bar working pressure, considering handling properties and service life

    NASA Astrophysics Data System (ADS)

    Damberg, W.; Floegel, K.; Sahm, A.

    1983-02-01

    A noise reduction device for pneumatic nailers was developed. Conditions of use, range of products available, market regulations and measuring methods were studied. Ease of operation, service life, functional reliability and maintenance capacity were studied. Results show that the essential noise sources of the device are the compressed air blasts of the working and relation phases and the impact of the piston on the bumper. Packages of measures implemented on a laboratory scale indicate noise reduction possibilities for nailers in the short, medium and long term. The sound level of a single shot can be reduced from 110 dB to 93 dB.

  5. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  6. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    PubMed

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Optimization of the poro-serrated trailing edges for airfoil broadband noise reduction.

    PubMed

    Chong, Tze Pei; Dubois, Elisa

    2016-08-01

    This paper reports an aeroacoustic investigation of a NACA0012 airfoil with a number of poro-serrated trailing edge devices that contain porous materials of various air flow resistances at the gaps between adjacent members of the serrated-sawtooth trailing edge. The main objective of this work is to determine whether multiple-mechanisms on the broadband noise reduction can co-exist on a poro-serrated trailing edge. When the sawtooth gaps are filled with porous material of low-flow resistivity, the vortex shedding tone at low-frequency could not be completely suppressed at high-velocity, but a reasonably good broadband noise reduction can be achieved at high-frequency. When the sawtooth gaps are filled with porous material of very high-flow resistivity, no vortex shedding tone is present, but the serration effect on the broadband noise reduction becomes less effective. An optimal choice of the flow resistivity for a poro-serrated configuration has been identified, where it can surpass the conventional serrated trailing edge of the same geometry by achieving a further 1.5 dB reduction in the broadband noise while completely suppressing the vortex shedding tone. A weakened turbulent boundary layer noise scattering at the poro-serrated trailing edge is reflected by the lower-turbulence intensity at the near wake centreline across the whole spanwise wavelength of the sawtooth.

  8. Extracting Near-Field Structures Related to Noise Production in High Speed Jet

    NASA Astrophysics Data System (ADS)

    Kan, Pinqing; Lewalle, Jacques; Syracuse University Team

    2015-11-01

    Jet noise research started with Lighthill's seminal work on aerodynamic sound in 1952. The current consensus is that jet noise has two main kinds of sources, the large turbulent structures and the fine-scale turbulence. Coherent structures and the noise they produce are the focus of this paper because they offer better odds for control and they are associated with the most energetic part of the acoustic spectrum. We develop an algorithm using cross-correlation, continuous wavelet and pattern recognition techniques to search for near-field (NF) structures associated with far-field (FF) acoustic noise at aft angles. An experimental data is analyzed which measured a cold circular jet of Mach 0.6 (Low et al. 2013). The events identified are short wave packets in the time-frequency domain, distorted by ambient perturbations. The statistics of the event properties, including intermittency, frequency and magnitude are consistent with observations from other researchers. We investigate the localization and time sequencing of the events and use ensemble average to bring out the distinct structures associated to noise production. The filtered signals including / excluding the events are compared and the results are further tested using synthetic and randomized signals. This work has been funded by Spectral Energies LLC through an Air Force Research Lab SBIR, an AFOSR Grant and Syracuse University.

  9. Noise-induced tinnitus: auditory evoked potential in symptomatic and asymptomatic patients.

    PubMed

    Santos-Filha, Valdete Alves Valentins dos; Samelli, Alessandra Giannella; Matas, Carla Gentile

    2014-07-01

    We evaluated the central auditory pathways in workers with noise-induced tinnitus with normal hearing thresholds, compared the auditory brainstem response results in groups with and without tinnitus and correlated the tinnitus location to the auditory brainstem response findings in individuals with a history of occupational noise exposure. Sixty individuals participated in the study and the following procedures were performed: anamnesis, immittance measures, pure-tone air conduction thresholds at all frequencies between 0.25-8 kHz and auditory brainstem response. The mean auditory brainstem response latencies were lower in the Control group than in the Tinnitus group, but no significant differences between the groups were observed. Qualitative analysis showed more alterations in the lower brainstem in the Tinnitus group. The strongest relationship between tinnitus location and auditory brainstem response alterations was detected in individuals with bilateral tinnitus and bilateral auditory brainstem response alterations compared with patients with unilateral alterations. Our findings suggest the occurrence of a possible dysfunction in the central auditory nervous system (brainstem) in individuals with noise-induced tinnitus and a normal hearing threshold.

  10. Hot topics in noise

    NASA Astrophysics Data System (ADS)

    Stinson, Michael R.

    2003-10-01

    Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.

  11. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  12. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  13. Optimum Boundaries of Signal-to-Noise Ratio for Adaptive Code Modulations

    DTIC Science & Technology

    2017-11-14

    1510–1521, Feb. 2015. [2]. Pursley, M. B. and Royster, T. C., “Adaptive-rate nonbinary LDPC coding for frequency - hop communications ,” IEEE...and this can cause a very narrowband noise near the center frequency during USRP signal acquisition and generation. This can cause a high BER...Final Report APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED. AIR FORCE RESEARCH LABORATORY Space Vehicles Directorate 3550 Aberdeen Ave

  14. Evaluating signal and noise spectral density of a qPlus sensor with an active feedback control

    NASA Astrophysics Data System (ADS)

    Lee, Manhee; An, Sangmin; Jhe, Wonho

    2018-05-01

    Q-control technique enables to actively change the quality factor of the probe oscillation in dynamic atomic force microscopy. The Q-control is realized by adding a self-feedback loop into the original actuation-detection system, in which a damping force with controllable damping coefficient in magnitude and sign is applied to the oscillating probe. While the applied force alters the total damping interaction and thus the overall `signal' of the probe motion, the added feedback system changes the `noise' of the motion as well. Here, we systematically investigate the signal, the noise, and the signal-to-noise ratio of the qPlus sensor under the active Q-control. We quantify the noise of the qPlus motion by measuring the noise spectral density, which is reproduced by a harmonic oscillator model including the thermal and the measurement noises. We show that the noise signal increases with the quality factor controlled, scaling as the square root of the quality factor. Because the overall signal is linearly proportional to the quality factor, the signal-to-noise ratio scales as the square root of the quality factor. The Q-controlled qPlus with a highly enhanced Q, up to 10,000 in air, leads to the minimum detectable force gradient of 0.001 N/m, which would enhance the capability of the qPlus sensor for atomic force microscopy and spectroscopy.

  15. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  16. Field-incidence noise transmission loss of general aviation aircraft double wall configurations

    NASA Astrophysics Data System (ADS)

    Grosveld, F. W.

    1984-01-01

    Theoretical formulations have been developed to describe the transmission of reverberant sound through an infinite, semi-infinite and a finite double panel structure. The model incorporates the fundamental resonance frequencies of each of the panels, the mass-air-mass resonances of the structure, the standing wave resonances in the cavity between the panels and finally the coincidence resonance regions, where the exciting sound pressure wave and flexural waves of each of the panels coincide. It is shown that phase cancellation effects of pressure waves reflected from the cavity boundaries back into the cavity allows the transmission loss of a finite double panel structure to be approximated by a finite double panel mounted in an infinite baffle having no cavity boundaries. Comparison of the theory with high quality transmission loss data yields good agreement in the mass-controlled frequency region. It is shown that the application of acoustic blankets to the double panel structure does not eliminate the mass-air-mass resonances if those occur at low frequencies. It is concluded that this frequency region of low noise transmission loss is a potential interior noise problem area for propeller driven aircraft having a double panel fuselage construction.

  17. The assessment and evaluation of low-frequency noise near the region of infrasound.

    PubMed

    Ziaran, Stanislav

    2014-01-01

    The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise) and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver's comfort. Second, a fast Fourier transform (FFT) analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong) engender greater annoyance than is predicted by an A-weighted sound pressure level.

  18. Low noise constant current source for bias dependent noise measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.

    2011-01-15

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 {mu}A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noisemore » voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.« less

  19. Hearing threshold shifts among military pilots of the Israeli Air Force.

    PubMed

    Kampel-Furman, Liyona; Joachims, Z; Bar-Cohen, H; Grossman, A; Frenkel-Nir, Y; Shapira, Y; Alon, E; Carmon, E; Gordon, B

    2018-02-01

    Military aviators are potentially at risk for developing noise-induced hearing loss. Whether ambient aircraft noise exposure causes hearing deficit beyond the changes attributed to natural ageing is debated. The aim of this research was to assess changes in hearing thresholds of Israeli Air Force (IAF) pilots over 20 years of military service and identify potential risk factors for hearing loss. A retrospective cohort analysis was conducted of pure-tone air conduction audiograms of pilots, from their recruitment at 18 years of age until the last documented medical check-up. Mean hearing thresholds were analysed in relation to age, total flight hours and aircraft platform. Comparisons were made to the hearing thresholds of air traffic controllers (ATCs) who were not exposed to the noise generated by aircraft while on duty. One hundred and sixty-three pilots were included, with flying platforms ranging from fighter jets (n=54), combat helicopters (n=27), transport helicopters (n=52) and transport aircraft (n=30). These were compared with the results from 17 ATCs. A marked notch in the frequency range of 4-6 kHz was demonstrated in the mean audiograms of all platforms pilots, progressing with ageing. Hearing threshold shifts in relation to measurements at recruitment were first noted at the age of 30 years, particularly at 4 kHz (mean shift of 2.97 dB, p=0.001). There was no statistical association between flying variables and hearing thresholds adjusted for age by logistic regression analysis. The audiometric profile of IAF pilots has a pattern compatible with noise exposure, as reflected by characteristic noise notch. However, no flight variable was associated with deterioration of hearing thresholds, and no significant difference from non-flying controls (ATCs) was seen. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Experimental investigation of outdoor propagation of finite-amplitude noise. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Webster, D. A.; Blackstock, D. T.

    1978-01-01

    The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise.

  1. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-01-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  2. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  3. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-06-20

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  4. Engineered Solutions to Reduce Occupational Noise Exposure at the NASA Glenn Research Center: A Five-Year Progress Summary (1994-1999)

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Hange, Donald W.; Mikulic, John J.

    1999-01-01

    At the NASA John H. Glenn Research Center at Lewis Field (formerly the Lewis Research Center), experimental research in aircraft and space propulsion systems is conducted in more than 100 test cells and laboratories. These facilities are supported by a central process air system that supplies high-volume, high-pressure compressed air and vacuum at various conditions that simulate altitude flight. Nearly 100,000 square feet of metalworking and specialized fabrication shops located on-site produce prototypes, models, and test hardware in support of experimental research operations. These activities, comprising numerous individual noise sources and operational scenarios, result in a varied and complex noise exposure environment, which is the responsibility of the Glenn Research Center Noise Exposure Management Program. Hearing conservation, community noise complaint response and noise control engineering services are included under the umbrella of this Program, which encompasses the Occupational Safety and Health Administration (OSHA) standard on occupational noise exposure, Sec. 29CFR 1910.95, as well as the more stringent NASA Health Standard on Hearing Conservation. Prior to 1994, in the absence of feasible engineering controls, strong emphasis had been placed on personal hearing protection as the primary mechanism for assuring compliance with Sec. 29CFR 1910.95 as well as NASA's more conservative policy, which prohibits unprotected exposure to noise levels above 85 dB(A). Center policy and prudent engineering practice required, however, that these efforts be extended to engineered noise controls in order to bring existing work areas into compliance with Sec. 29CFR 1910.95 and NASA's own policies and to ensure compliance for new installations. Coincident with the establishment in 1995 of a NASA wide multi-year commitment of funding for environmental abatement projects, the Noise Exposure Management Program was established, with its focus on engineering approaches

  5. Preliminary noise tests of the engine-over-the-wing concept. i: 30 deg - 60 deg flap position

    NASA Technical Reports Server (NTRS)

    Reshotko, M.; Olsen, W. A.; Dorsch, R. G.

    1972-01-01

    The results of preliminary acoustic tests of the engine over the wing concept are summarized. The tests were conducted with a small wing section model (32 cm chord) having two flaps set at the landing position, which is 30 and 60 deg respectively. The engine exhaust was simulated by an air jet from a convergent nozzle having a nominal diameter of 5.1 centimeters. Factors investigated for their effect on noise include nozzle location, wing shielding, flap leakage, nozzle shape, exhaust deflectors, and internally generated exhaust noise.

  6. Drone noise

    NASA Astrophysics Data System (ADS)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  7. Three-Dimensional Velocity Field De-Noising using Modal Projection

    NASA Astrophysics Data System (ADS)

    Frank, Sarah; Ameli, Siavash; Szeri, Andrew; Shadden, Shawn

    2017-11-01

    PCMRI and Doppler ultrasound are common modalities for imaging velocity fields inside the body (e.g. blood, air, etc) and PCMRI is increasingly being used for other fluid mechanics applications where optical imaging is difficult. This type of imaging is typically applied to internal flows, which are strongly influenced by domain geometry. While these technologies are evolving, it remains that measured data is noisy and boundary layers are poorly resolved. We have developed a boundary modal analysis method to de-noise 3D velocity fields such that the resulting field is divergence-free and satisfies no-slip/no-penetration boundary conditions. First, two sets of divergence-free modes are computed based on domain geometry. The first set accounts for flow through ``truncation boundaries'', and the second set of modes has no-slip/no-penetration conditions imposed on all boundaries. The modes are calculated by minimizing the velocity gradient throughout the domain while enforcing a divergence-free condition. The measured velocity field is then projected onto these modes using a least squares algorithm. This method is demonstrated on CFD simulations with artificial noise. Different degrees of noise and different numbers of modes are tested to reveal the capabilities of the approach. American Heart Association Award 17PRE33660202.

  8. Overview of en route noise prediction using a integrated noise model

    DOT National Transportation Integrated Search

    2010-04-20

    En route aircraft noise is often ignored in aircraft noise modeling because large amounts of noise attenuation due to long propagation distances between the aircraft and the receivers on the ground, reduced power in cruise flight compared to takeoff ...

  9. Fractional Ornstein-Uhlenbeck noise

    NASA Astrophysics Data System (ADS)

    Fa, Kwok Sau

    2018-06-01

    Fractional Ornstein-Uhlenbeck noise is considered and investigated. The fractional Ornstein-Uhlenbeck noise may be linked with a supercapacitor driven by the white noise, and its correlation function for the stationary state shows monotonic and oscillatory decays. In the case of the oscillatory behavior the correlation function presents behaviors similar to those of the harmonic noise (harmonic oscillator driven by the white noise). For application, the Langevin equation with the harmonic potential driven by the fractional Ornstein-Uhlenbeck noise is considered; the first two moments and mean energy are investigated.

  10. Evaluation of US and UK Models in Simulating the Impact of Barriers on Near-Road Air Quality

    EPA Science Inventory

    The possibility that roadside noise barriers can act to mitigate traffic-related air pollution exposures for people living and working near major roadways is being considered in the context of public health protection. Air pollution dispersion models that can accurately simulate ...

  11. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  12. Seismic Noise Analysis and Reduction through Utilization of Collocated Seismic and Atmospheric Sensors at the GRO Chile Seismic Network

    NASA Astrophysics Data System (ADS)

    Farrell, M. E.; Russo, R. M.

    2013-12-01

    The installation of Earthscope Transportable Array-style geophysical observatories in Chile expands open data seismic recording capabilities in the southern hemisphere by nearly 30%, and has nearly tripled the number of seismic stations providing freely-available data in southern South America. Through the use of collocated seismic and atmospheric sensors at these stations we are able to analyze how local atmospheric conditions generate seismic noise, which can degrade data in seismic frequency bands at stations in the ';roaring forties' (S latitudes). Seismic vaults that are climate-controlled and insulated from the local environment are now employed throughout the world in an attempt to isolate seismometers from as many noise sources as possible. However, this is an expensive solution that is neither practical nor possible for all seismic deployments; and also, the increasing number and scope of temporary seismic deployments has resulted in the collection and archiving of terabytes of seismic data that is affected to some degree by natural seismic noise sources such as wind and atmospheric pressure changes. Changing air pressure can result in a depression and subsequent rebound of Earth's surface - which generates low frequency noise in seismic frequency bands - and even moderate winds can apply enough force to ground-coupled structures or to the surface above the seismometers themselves, resulting in significant noise. The 10 stations of the permanent Geophysical Reporting Observatories (GRO Chile), jointly installed during 2011-12 by IRIS and the Chilean Servicio Sismológico, include instrumentation in addition to the standard three seismic components. These stations, spaced approximately 300 km apart along the length of the country, continuously record a variety of atmospheric data including infrasound, air pressure, wind speed, and wind direction. The collocated seismic and atmospheric sensors at each station allow us to analyze both datasets together, to

  13. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    NASA Astrophysics Data System (ADS)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  14. Noise Exposure Questionnaire (NEQ): A Tool for Quantifying Annual Noise Exposure

    PubMed Central

    Johnson, Tiffany A.; Cooper, Susan; Stamper, Greta C.; Chertoff, Mark

    2017-01-01

    Background Exposure to both occupational and non-occupational noise is recognized as a risk factor for noise-induced hearing loss (NIHL). Although audiologists routinely inquire regarding history of noise exposure, there are limited tools available for quantifying this history or for identifying those individuals who are at highest risk for NIHL. Identifying those at highest risk would allow hearing conservation activities to be focused on those individuals. Purpose To develop a detailed, task-based questionnaire for quantifying an individual’s annual noise exposure arising from both occupational and non-occupational sources (aim 1) and to develop a short screening tool that could be used to identify individuals at high risk of NIHL (aim 2). Research Design Review of relevant literature for questionnaire development followed by a cross-sectional descriptive and correlational investigation of the newly developed questionnaire and screening tool. Study Sample One hundred fourteen college freshmen completed the detailed questionnaire for estimating annual noise exposure (aim 1) and answered the potential screening questions (aim 2). An additional 59 adults participated in data collection where the accuracy of the screening tool was evaluated (aim 2). Data Collection and Analysis In study aim 1, all subjects completed the detailed questionnaire and the potential screening questions. Descriptive statistics were used to quantify subject participation in various noisy activities and their associated annual noise exposure estimates. In study aim 2, linear regression techniques were used to identify screening questions that could be used to predict a subject’s estimated annual noise exposure. Clinical decision theory was then used to assess the accuracy with which the screening tool predicted high and low risk of NIHL in a new group of subjects. Results Responses on the detailed questionnaire indicated that our sample of college freshmen reported high rates of

  15. Human response to aviation noise : development of dose-response relationships for backcountry visitors - volume II : results and analysis

    DOT National Transportation Integrated Search

    2014-03-01

    The Federal Aviation Administration and National Park Service conducted joint research to better understand the effects of noise due to commercial air tour operations over units of the National Park System. To evaluate the relationship between aircra...

  16. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  17. Low-frequency noise assessment metrics -- What do we know?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broner, N.

    1994-12-31

    The issue of sound quality in offices and other occupied spaces has been of continuing interest since the 1950s. Existing assessment methods do not adequately account for the low-frequency background sound (< 250 Hz) produced by operating heating, ventilating, and air-conditioning (HVAC) systems, in particular, low-frequency rumble. This paper discusses the results of ASHRAE-sponsored research in which more than 75 HVAC noise samples were collected, normalized, and categorized in terms of sound quality. The results support previous findings that a neutral curve has a slope of approximately {minus}5 decibels (dB) per octave. There is also support for the contention thatmore » the balanced noise criterion B (NCB) curves are overly conservative in the region from 63 to 500 Hz and overly permissive below 63 Hz when compared with the room criteria (RC) curves. A modified set of room sound quality (RSQ) curves -- the room sound quality (RSQ) curves -- is proposed.« less

  18. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder.

    PubMed

    Park, Woon Ju; Schauder, Kimberly B; Zhang, Ruyuan; Bennetto, Loisa; Tadin, Duje

    2017-12-14

    An emerging hypothesis postulates that internal noise is a key factor influencing perceptual abilities in autism spectrum disorder (ASD). Given fundamental and inescapable effects of noise on nearly all aspects of neural processing, this could be a critical abnormality with broad implications for perception, behavior, and cognition. However, this proposal has been challenged by both theoretical and empirical studies. A crucial question is whether and how internal noise limits perception in ASD, independently from other sources of perceptual inefficiency, such as the ability to filter out external noise. Here, we separately estimated internal noise and external noise filtering in ASD. In children and adolescents with and without ASD, we computationally modeled individuals' visual orientation discrimination in the presence of varying levels of external noise. The results revealed increased internal noise and worse external noise filtering in individuals with ASD. For both factors, we also observed high inter-individual variability in ASD, with only the internal noise estimates significantly correlating with severity of ASD symptoms. We provide evidence for reduced perceptual efficiency in ASD that is due to both increased internal noise and worse external noise filtering, while highlighting internal noise as a possible contributing factor to variability in ASD symptoms.

  19. Noise suppressor for turbo fan jet engines

    NASA Technical Reports Server (NTRS)

    Cheng, D. Y. (Inventor)

    1983-01-01

    A noise suppressor is disclosed for installation on the discharge or aft end of a turbo fan engine. Within the suppressor are fixed annular airfoils which are positioned to reduce the relative velocity between the high temperature fast moving jet exhaust and the low temperature slow moving air surrounding it. Within the suppressor nacelle is an exhaust jet nozzle which constrains the shape of the jet exhaust to a substantially uniform elongate shape irrespective of the power setting of the engine. Fixed ring airfoils within the suppressor nacelle therefore have the same salutary effects irrespective of the power setting at which the engine is operated.

  20. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    PubMed

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.