Science.gov

Sample records for air parcel model

  1. NEAR-SURFACE AIR PARCEL TRAJECTORIES - ST. LOUIS, 1975

    EPA Science Inventory

    The utility of air parcel trajectories is described for the diagnosis of mesometeorological and urban air pollution problems. A technique is described that uses the St. Louis Regional Air Monitoring System (RAMS) to provide wind measurements for the local urban scale. A computeri...

  2. Mathematical Model of Evolution of Brain Parcellation.

    PubMed

    Ferrante, Daniel D; Wei, Yi; Koulakov, Alexei A

    2016-01-01

    We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained for three species: mouse, macaque, and human. We find that the distribution of PU sizes is close to lognormal. We propose the mathematical model of evolution of brain parcellation based on iterative fragmentation and specialization. In this model, each existing PU has a probability to be split that depends on PU size only. This model suggests that the same evolutionary process may have led to brain parcellation in these three species. Within our model, region-to-region (macro) connectivity is given by the outer product form. We show that most experimental data on non-zero macaque cortex macroscopic-level connections can be explained by the outer product power-law form suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning rule for the macroconnectome that could yield the correct scaling of connection strengths between areas. We thus propose an evolutionary model that may have contributed to both brain parcellation and mesoscopic level connectivity in mammals. PMID:27378859

  3. Mathematical Model of Evolution of Brain Parcellation

    PubMed Central

    Ferrante, Daniel D.; Wei, Yi; Koulakov, Alexei A.

    2016-01-01

    We study the distribution of brain and cortical area sizes [parcellation units (PUs)] obtained for three species: mouse, macaque, and human. We find that the distribution of PU sizes is close to lognormal. We propose the mathematical model of evolution of brain parcellation based on iterative fragmentation and specialization. In this model, each existing PU has a probability to be split that depends on PU size only. This model suggests that the same evolutionary process may have led to brain parcellation in these three species. Within our model, region-to-region (macro) connectivity is given by the outer product form. We show that most experimental data on non-zero macaque cortex macroscopic-level connections can be explained by the outer product power-law form suggested by our model (62% for area V1). We propose a multiplicative Hebbian learning rule for the macroconnectome that could yield the correct scaling of connection strengths between areas. We thus propose an evolutionary model that may have contributed to both brain parcellation and mesoscopic level connectivity in mammals. PMID:27378859

  4. Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David O'C.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth

    2000-01-01

    The Cirrus Parcel Model Comparison (CPMC) is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. Furthermore, the common ground of the findings may provide guidelines for models with simpler cirrus microphysics modules. We focus on the nucleation regimes of the warm (parcel starting at -40 C and 340 hPa) and cold (-60 C and 170 hPa) cases studied in the GCSS WG2 Idealized Cirrus Model Comparison Project. Nucleation and ice crystal growth were forced through an externally imposed rate of lift and consequent adiabatic cooling. The background haze particles are assumed to be lognormally-distributed H2SO4 particles. Only the homogeneous nucleation mode is allowed to form ice crystals in the HN-ONLY runs; all nucleation modes are switched on in the ALL-MODE runs. Participants were asked to run the HN-lambda-fixed runs by setting lambda = 2 (lambda is further discussed in section 2) or tailoring the nucleation rate calculation in agreement with lambda = 2 (exp 1). The depth of parcel lift (800 m) was set to assure that parcels underwent complete transition through the nucleation regime to a stage of approximate equilibrium between ice mass growth and vapor supplied by the specified updrafts.

  5. GCSS Cirrus Parcel Model Comparison Project

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth; Einaudi, Franco (Technical Monitor)

    2000-01-01

    assumptions that can only be justified by further laboratory data. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 cm/s) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice nucleation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of ice number concentration and ice crystal diffusional growth rate, which is sensitive to the deposition coefficient when ice particles are small, partially controls the peak nucleation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the nucleated (heterogeneous) ice crystals limits the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.

  6. Evolution of chemically processed air parcels in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Schoeberl, Mark R.

    1994-01-01

    Aircraft, ground-based, and satellite measurements indicate large concentrations of ClO in the lower stratosphere in and near the polar vortex. The amount of local ozone depletion caused by these large ClO concentrations will depend on the relative rates of ozone loss and ClO recovery. ClO recovery occurs when NO(x), from HNO3 photolysis, reacts with ClO to form ClONO2. We show that air parcels with large amounts of ClO will experience a subsequent ozone depletion that depends on the solar zenith angle. When the solar zenith angle is large in the middle of winter, the recovery of the ClO concentration in the parcel is slow relative to ozone depletion. In the spring, when the solar zenith angle is smaller, the ClO recovery is much faster. After ClO recovery, the chlorine chemistry has not returned to normal. The ClO has been converted to ClONO2. ClO production from further encounters with PSCs will be limited by the heterogeneous reaction of ClONO2 with water. Large ozone depletions, of the type seen in the Antarctic, occur only if there is significant irreversible denitrification in the air parcel.

  7. Trajectories of air parcel motions in Mars' atmosphere computed using HYSPLIT.

    NASA Astrophysics Data System (ADS)

    Bruggeman, D.; Bridger, A. F. C.

    2014-12-01

    The HYSPLIT model has been adapted to compute trajectories of air and dust particle motions in the Martian atmosphere. We use winds generated by the NASA-Ames Mars General Circulation Model as input to HYSPLIT. Trajectories of air parcels emanating from the Hellas region during the MY25 dust storm will be examined in an effort to "follow the dust". Later we will examine backward trajectories to estimate the origins of surface dust at high latitudes.

  8. Air parcel trajectory dispersion near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John W.; Jensen, Eric J.; Pfister, Leonhard; Bui, Thaopaul V.

    2016-04-01

    Dispersion of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause is examined using three ensemble approaches: "RANWIND," in which different ensemble members use identical resolved wind fluctuations but different realizations of stochastic, multifractal simulations of unresolved winds; "PERTLOC," in which members use identical resolved wind fields but initial locations are perturbed 2° in latitude and longitude; and a multimodel ensemble ("MULTIMODEL") that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impacts of unresolved wind fluctuations from those of resolved variability. Dispersion rates are robust properties of trajectories near the tropical tropopause. Horizontal dispersion rates are typically ~3°/d, which is large enough to spread parcels throughout the tropics within typical tropical tropopause layer transport times (30-60 days) and underscores the importance of averaging large collections of trajectories to obtain reliable parcel source and pathway distributions. Vertical dispersion rates away from convection are ~2-3 hPa/d. Dispersion is primarily carried out by the resolved flow, and the RANWIND approach provides a plausible representation of actual trajectory dispersion rates, while PERTLOC provides a reasonable and inexpensive alternative to RANWIND. In contrast, dispersion from the MULTIMODEL calculations is important because it reflects systematic differences in resolved wind fields from different reanalysis data sets.

  9. A Multi-billion Parcel Atmospheric Trajectory Model

    NASA Astrophysics Data System (ADS)

    Cruz, C.; Clune, T. L.; Lait, L. R.; Ranawake, U.; Burns, R. W.

    2009-12-01

    We present a new parallel implementation of an atmospheric trajectory modelling framework which provides improved numerical accuracy, greater flexibility for specifying experiments, and sufficient raw performance to simultaneously simulate billions of parcel trajectories on suitable computing platforms. The application is parallelized using the Message Passing Interface (MPI) library and can scale efficiently on a wide variety of modern computing platforms. The ability to treat such large numbers of parcels is expected to enable a new generation of experiments to explore questions related to global stratosphere-troposphere exchange, age-of-air spectra, and transport of trace gases and aerosols. The modelling framework is written in C++ for easy integration with other computing technologies. It also provides a great deal of flexibility by allowing users to select from (or add to) alternative subclasses for vertical coordinates (pressure, potential temperature), integration schemes (Runge-Kutta, Euler), meteorological data sources (NCEP/NCAR Reanalsyis, MERRA), data interpolation methods (linear, log-linear, splines), and output (parcel histories, summary statistics, min/max quantities encountered). Significantly improved numerical accuracy, especially near the poles, is provided by expressing integration in terms of purely geometric constructs which avoid various complications associated with spherical coordinates near the poles. The entire package has been rigorously developed using Test-Driven Development (TDD) which both provides confidence in the implementation and should also assist other developers that wish to extend the framework. Several tests are performed to demonstrate the fourth-order Runge-Kutta integration scheme with our spherical geometric constructs. Tilted solid body rotation provides a baseline synthetic wind field for assessing model performance, and a time-varying case is used to examine the errors introduced by interpolating linearly in time

  10. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  11. The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection

    NASA Astrophysics Data System (ADS)

    Romps, David M.

    2016-03-01

    Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, which is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.

  12. Air Parcel Residence Times within Tropical Forest Canopies and Implications for Reactive Gases

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.

    2014-12-01

    The Amazon rainforest is the world's largest natural emitter of reactive trace gases. Due to its dense vegetation (leaf area index > 4), turbulence fluctuations are highly attenuated deep inside the canopy. However, strong coherent eddies that penetrate the upper portion of the canopy can be very effective in transporting gases. Sweeps and ejections act in the order of seconds and transport air parcels into or out of the canopy. The effects of coherent structures on the air parcel residence times and associated chemical processing of reactive gases remain largely unquantified in tropical forests. We combine canopy resolving Large-Eddy Simulation (LES) and field observations in the Brazilian Amazon to study residence times of air parcels in the rainforest as a function of canopy structure and height (h). Good agreement is obtained between simulated and observed turbulence statistics within and above the forest. Coherent structure properties obtained from quadrant analysis are also well reproduced. A Lagrangian particle tracking algorithm is used to quantify the distribution of residence times of air parcels "released" at different heights. Canopy residence times were determined from the particle trajectories. The resulting probability density function (PDF) strongly depended on the particle release height (z). For particles released in the upper canopy (at z/h=0.75) the most frequent residence times were in the order of 30s, with 50% of all particles ejected from the canopy after ~2 minutes. The mean residence time was close to 5 minutes, indicating a very skewed PDF. At z/h=0.25 the PDF was more evenly distributed with its median and mean in the order of ~10 minutes. Due to sweeps, both simulations had a non- negligible fraction of particles transported deep into the canopy, thus increasing greatly their residence times. As the reaction timescales of many biogenic volatile organic compounds (BVOC) are in the order of seconds to minutes, significant chemical

  13. Trajectories of air parcel motions in Mars' atmosphere computed using HYSPLIT

    NASA Astrophysics Data System (ADS)

    Bruggeman, David

    An analysis of the advection of air parcels in the Martian atmosphere during the 2001 global dust storm through the use of three-dimensional trajectories is presented. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, well-known for trajectory, dispersion, and deposition modeling, and originally developed for Earth was modified for Mars to provide forward and backward trajectories. The custom HYSPLIT for Mars uses meteorological input generated by the NASA Ames Mars General Circulation Model (MGCM). The 2001 global dust storm was the earliest on record (Ls ˜ 180°) and originated from local dust storms around the Hellas basin as the storm expanded asymmetrically to the east. Trajectories near Hellas and Claritas Fossae correspond with dust transport detected using satellite imagery. Forward trajectories at Ls = 184° from Hellas show flow to the south, transporting dust around the south polar cap, while after Ls = 188° there is an eastward shift in propagation. Air parcel trajectories intersecting the surface during the dust storm may indicate the processes involved with global dust storms contributing to dust layers in the polar regions. Backward trajectories from Claritas Fossae reveal the dust activity in this region was the result of local dust storm activity instead of the propagation of dust eastward from the Hellas region.

  14. Uncertainty and dispersion in air parcel trajectories near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John; Jensen, Eric; Pfister, Leonhard; Bui, Thoapaul

    2016-04-01

    The Tropical Tropopause Layer (TTL) is important as the gateway to the stratosphere for chemical constituents produced at the Earth's surface. As such, understanding the processes that transport air through the upper tropical troposphere is important for a number of current scientific issues such as the impact of stratospheric water vapor on the global radiative budget and the depletion of ozone by both anthropogenically- and naturally-produced halocarbons. Compared to the lower troposphere, transport in the TTL is relatively unaffected by turbulent motion. Consequently, Lagrangian particle models are thought to provide reasonable estimates of parcel pathways through the TTL. However, there are complications that make trajectory analyses difficult to interpret; uncertainty in the wind data used to drive these calculations and trajectory dispersion being among the most important. These issues are examined using ensembles of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause using three approaches: A Monte Carlo ensemble, in which different members use identical resolved wind fluctuations but different realizations of stochastic, multi-fractal simulations of unresolved winds, perturbed initial location ensembles, in which members use identical resolved wind fields but initial locations are displaced 2° in latitude and longitude, and a multi-model ensemble that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impact of unresolved wind fluctuations from that of resolved variability.

  15. The Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, D.; DeMott, P.; Cotten, R.; Jensen, E.; Sassen, K.

    2000-01-01

    The cirrus Parcel Model Comparison Project involves the systematic comparison of current models of ice crystal nucleation and growth for specified, typical, cirrus cloud environments. In Phase 1 of the project reported here, simulated cirrus cloud microphysical properties are compared for situations of "warm" (-40 C) and "cold" (-60 C) cirrus subject to updrafts of 4, 20 and 100 centimeters per second, respectively. Five models are participating in the project. These models employ explicit microphysical schemes wherein the size distribution of each class of particles (aerosols and ice crystals) is resolved into bins. Simulations are made including both homogeneous and heterogeneous ice nucleation mechanisms. A single initial aerosol population of sulfuric acid particles is prescribed for all simulations. To isolate the treatment of the homogeneous freezing (of haze drops) nucleation process, the heterogeneous nucleation mechanism is disabled for a second parallel set of simulations. Qualitative agreement is found amongst the models for the homogeneous-nucleation-only simulations, e.g., the number density of nucleated ice crystals increases with the strength of the prescribed updraft. However, non-negligible quantitative differences are found. Systematic bias exists between results of a model based on a modified classical theory approach and models using an effective freezing temperature approach to the treatment of nucleation. Each approach is constrained by critical freezing data from laboratory studies. This information is necessary, but not sufficient, to construct consistent formulae for the two approaches. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 centimeters per second) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice nucleation rate during the initial

  16. Use of Item Parceling in Structural Equation Modeling with Missing Data

    ERIC Educational Resources Information Center

    Orcan, Fatih

    2013-01-01

    Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…

  17. 76 FR 77856 - International Mail Price Change for Inbound Air Parcel Post

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... International Mail Price Change for Inbound Air Parcel Post AGENCY: Postal Regulatory Commission. ACTION: Notice...) Rates to the Competitive Products List, Notice of Establishment of Prices and Classifications Not of... seal; Attachment 2--a redacted copy of Governors' Decision No. 09-15 which establishes prices...

  18. Using Parcels to Convert Path Analysis Models into Latent Variable Models

    ERIC Educational Resources Information Center

    Coffman, Donna L.; MacCallum, Robert C.

    2005-01-01

    The biasing effects of measurement error in path analysis models can be overcome by the use of latent variable models. In cases where path analysis is used in practice, it is often possible to use parcels as indicators of a latent variable. The purpose of the current study was to compare latent variable models in which parcels were used as…

  19. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  20. Model-Based Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint

    SciTech Connect

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.

    2010-12-01

    Medium-duty vehicles are used in a broad array of fleet applications, including parcel delivery. These vehicles are excellent candidates for electric drive applications due to their transient-intensive duty cycles, operation in densely populated areas, and relatively high fuel consumption and emissions. The National Renewable Energy Laboratory (NREL) conducted a robust assessment of parcel delivery routes and completed a model-based techno-economic analysis of hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle configurations. First, NREL characterized parcel delivery vehicle usage patterns, most notably daily distance driven and drive cycle intensity. Second, drive-cycle analysis results framed the selection of drive cycles used to test a parcel delivery HEV on a chassis dynamometer. Next, measured fuel consumption results were used to validate simulated fuel consumption values derived from a dynamic model of the parcel delivery vehicle. Finally, NREL swept a matrix of 120 component size, usage, and cost combinations to assess impacts on fuel consumption and vehicle cost. The results illustrated the dependency of component sizing on drive-cycle intensity and daily distance driven and may allow parcel delivery fleets to match the most appropriate electric drive vehicle to their fleet usage profile.

  1. Why item parcels are (almost) never appropriate: two wrongs do not make a right--camouflaging misspecification with item parcels in CFA models.

    PubMed

    Marsh, Herbert W; Lüdtke, Oliver; Nagengast, Benjamin; Morin, Alexandre J S; Von Davier, Matthias

    2013-09-01

    The present investigation has a dual focus: to evaluate problematic practice in the use of item parcels and to suggest exploratory structural equation models (ESEMs) as a viable alternative to the traditional independent clusters confirmatory factor analysis (ICM-CFA) model (with no cross-loadings, subsidiary factors, or correlated uniquenesses). Typically, it is ill-advised to (a) use item parcels when ICM-CFA models do not fit the data, and (b) retain ICM-CFA models when items cross-load on multiple factors. However, the combined use of (a) and (b) is widespread and often provides such misleadingly good fit indexes that applied researchers might believe that misspecification problems are resolved--that 2 wrongs really do make a right. Taking a pragmatist perspective, in 4 studies we demonstrate with responses to the Rosenberg Self-Esteem Inventory (Rosenberg, 1965), Big Five personality factors, and simulated data that even small cross-loadings seriously distort relations among ICM-CFA constructs or even decisions on the number of factors; although obvious in item-level analyses, this is camouflaged by the use of parcels. ESEMs provide a viable alternative to ICM-CFAs and a test for the appropriateness of parcels. The use of parcels with an ICM-CFA model is most justifiable when the fit of both ICM-CFA and ESEM models is acceptable and equally good, and when substantively important interpretations are similar. However, if the ESEM model fits the data better than the ICM-CFA model, then the use of parcels with an ICM-CFA model typically is ill-advised--particularly in studies that are also interested in scale development, latent means, and measurement invariance. PMID:23834417

  2. Comparing droplet activation parameterisations against adiabatic parcel models using a novel inverse modelling framework

    NASA Astrophysics Data System (ADS)

    Partridge, Daniel; Morales, Ricardo; Stier, Philip

    2015-04-01

    Many previous studies have compared droplet activation parameterisations against adiabatic parcel models (e.g. Ghan et al., 2001). However, these have often involved comparisons for a limited number of parameter combinations based upon certain aerosol regimes. Recent studies (Morales et al., 2014) have used wider ranges when evaluating their parameterisations, however, no study has explored the full possible multi-dimensional parameter space that would be experienced by droplet activations within a global climate model (GCM). It is important to be able to efficiently highlight regions of the entire multi-dimensional parameter space in which we can expect the largest discrepancy between parameterisation and cloud parcel models in order to ascertain which regions simulated by a GCM can be expected to be a less accurate representation of the process of cloud droplet activation. This study provides a new, efficient, inverse modelling framework for comparing droplet activation parameterisations to more complex cloud parcel models. To achieve this we couple a Markov Chain Monte Carlo algorithm (Partridge et al., 2012) to two independent adiabatic cloud parcel models and four droplet activation parameterisations. This framework is computationally faster than employing a brute force Monte Carlo simulation, and allows us to transparently highlight which parameterisation provides the closest representation across all aerosol physiochemical and meteorological environments. The parameterisations are demonstrated to perform well for a large proportion of possible parameter combinations, however, for certain key parameters; most notably the vertical velocity and accumulation mode aerosol concentration, large discrepancies are highlighted. These discrepancies correspond for parameter combinations that result in very high/low simulated values of maximum supersaturation. By identifying parameter interactions or regimes within the multi-dimensional parameter space we hope to guide

  3. Externally mixed aerosol : simulation of ice nucleation in a parcel model

    NASA Astrophysics Data System (ADS)

    Anquetil-Deck, Candy; Hoose, Corinna; Conolly, Paul

    2014-05-01

    The effect of different aerosol (mineral dust, bacteria and soot) acting as immersion ice nuclei is investigated using ACPIM (AerosolCloud Precipitation Interaction Model) [1]. ACPIM is a powerful tool which can be used in two different ways. This box model can be, either, driven by experimental data (experiments carried out at the AIDA cloud chamber facility) or used as an air parcel in order to examine different ice nucleation parameterizations under specific conditions. This adiabatic air parcel model was employed for the simulation of a convective cloud. The study consists here in the investigation of how two externally mixed aerosols interact with one another. The initial study concentrates on mineral dust aerosol and biological aerosol without any background in order to fully understand the interaction between the different types of aerosol. Immersion freezing is described for the mineral dust aerosol by Niemand et al. 's parameterization [2], which was derived from laboratory studies in AIDA and is an extension of surface site density approach suggested by Connolly et al. [1]. Regarding bioaerosol, we introduce Hummel et al. 's parameterization [3] : f(in) = f(max)(1 - exp(- Ap *n(s)(T))) With an empirically fitted ice nucleation active site density n s based on AIDA measurements of Pseudomonas syringae bacteria [4]. This initial study is conducted for different proportion of each aerosol (the total number of aerosol being constant throughout all the simulation runs) at different vertical velocities. We then extented this study with different backgrounds (urban, marine, rural) in order to get a full picture. We found that there is not only a CCN competition but an IN competition as well. References : [1] Connolly, P. J., Möhler O., Field P. R., Saathoff H., Burgess, R., Choularton, T. and Gallagher, M., Atmos. Chem. Phys 9, 2805-2824 (2009). [2] Niemand, M., Möhler, O., Vogel B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., De

  4. Predictive Capabilities of a Relaxation Model for Parcel-Based Granular Flow Simulations

    NASA Astrophysics Data System (ADS)

    Radl, Stefan; Sundaresan, Sankaran

    2011-11-01

    Parcel-based methods have a great potential to reduce the computational cost of particle simulations for dense flows. Here we investigate a relaxation model, similar to that of Bhatnagar-Gross-Krook (BGK), when applied to such a parcel-based simulation method. Specifically, we have chosen the simulation methodology initially proposed by Patankar and Joseph, and combined it with the relaxation model published by O'Rourke and Snider. We show that a relaxation model is key to correctly predicting macroscopic flow features, e.g., the scattering pattern of a granular jet impinging on a flat surface, studied experimentally by Cheng et al.. Simple shear flow simulations reveal that calculation of the locally-averaged velocity is a critical ingredient to correctly predict streaming and collisional stresses. SR acknowledges the support of the Austrian Science Foundation through the Erwin-Schroedinger fellowship J-3072.

  5. Improving stable isotope-based reconstructions of Sierra Nevada paleotopography using insights from regional air parcel trajectories

    NASA Astrophysics Data System (ADS)

    Lechler, A.; Galewsky, J.

    2012-12-01

    The geodynamic evolution of the Sierra Nevada Mountains of the western US remains subject to debate due to the lack of consensus on the Cenozoic paleoelevation history of the range. The majority of recent studies attempting to quantify the surface uplift history of the Sierra Nevada rely on stable isotope paleoaltimetry methods that often implicitly assume that atmospheric flow interactions with topography can be simply modeled as a Rayleigh distillation process in which air mass trajectories ascend and rainout heavy isotopologues of water (18O and D) across topographic barriers relatively unimpeded. Accordingly, stable isotope paleoaltimetry studies commonly target leeward side paleo-meteoric water proxies to constrain paleotopography of the windward barrier. We present a modern (1979 - 2010) air parcel trajectory analysis using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model that shows that the fundamental assumptions of stable isotope paleoaltimetry are often violated in the Sierra Nevada region. Trajectory analysis indicates that westerly air masses are frequently orographically blocked by and redirected around the higher elevations (> 2.5 km) of the Sierra Nevada. As a result, trajectories reaching the Sierran lee commonly travel around, rather than over, the highest range elevations. These blocking and redirection effects are particularly pronounced for leeward sites that are distal (> 150 km) from the Sierran crest but are also evident in trajectory patterns for both windward and proximal leeward locations in the northern Sierra Nevada. In addition, trajectory patterns indicate that much of the Sierran lee receives a non-negligible proportion of annual precipitation from summer storm systems sourced in the subtropical Pacific Ocean and Gulf of California that have little to no interaction with Sierran topography. This trajectory analysis highlights the complexity of orographic precipitation patterns and processes in the Sierra

  6. Cirrus Parcel Model Comparison Project. Phase 1; The Critical Components to Simulate Cirrus Initiation Explicitly

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC; DeMott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 centimeters per second) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size- dependent solution concentration of haze particles may significantly affect the ice particle formation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of particle number concentration and ice crystal diffusional growth rate, which is particularly sensitive to the deposition coefficient when ice particles are small, modulates the peak particle formation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the heterogeneously nucleated ice crystals may limit the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.

  7. Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2014-12-01

    To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.

  8. Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum.

    PubMed

    Janssen, R J; Jylänki, P; Kessels, R P C; van Gerven, M A J

    2015-10-01

    The striatum is involved in many different aspects of behaviour, reflected by the variety of cortical areas that provide input to this structure. This input is topographically organized and is likely to result in functionally specific signals. Such specificity can be examined using functional clustering approaches. Here, we propose a Bayesian model-based functional clustering approach applied solely to resting state striatal functional MRI timecourses to identify intrinsic striatal functional modules. Data from two sets of ten participants were used to obtain parcellations and examine their robustness. This stable clustering was used to initialize a more constrained model in order to obtain individualized parcellations in 57 additional participants. Resulting cluster time courses were used to examine functional connectivity between clusters and related to the rest of the brain in a GLM analysis. We find six distinct clusters in each hemisphere, with clear inter-hemispheric correspondence and functional relevance. These clusters exhibit functional connectivity profiles that further underscore their homologous nature and are consistent with existing notions on segregation and integration in parallel cortico-basal ganglia loops. Our findings suggest that multiple territories within both the affective and motor regions can be distinguished solely using resting state functional MRI from these regions. PMID:26163800

  9. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales

    ERIC Educational Resources Information Center

    Yang, Chongming; Nay, Sandra; Hoyle, Rick H.

    2010-01-01

    Lengthy scales or testlets pose certain challenges for structural equation modeling (SEM) if all the items are included as indicators of a latent construct. Three general approaches to modeling lengthy scales in SEM (parceling, latent scoring, and shortening) have been reviewed and evaluated. A hypothetical population model is simulated containing…

  10. Overshooting thunderstorm cloud top dynamics as approximated by a linear Lagrangian parcel model with analytic exact solutions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1990-01-01

    Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.

  11. The Use of Compensated Aerological No-Lift Balloons to Determine Relatively Long-Term Dry-Air Parcel Trajectories.

    NASA Astrophysics Data System (ADS)

    Terliuc, Benjamin; Asculai, Ephraim; Doron, Eli

    1983-10-01

    A method to compensate the loss of buoyancy due to gas leakage from aerological no-lift balloons is presented. The method is implemented by means of a double vessel device that supplies a constant liquid outflow at constant temperature. It is shown that the average buoyancy loss rate dependence on temperature is almost perfectly matched by the outflow rate dependence on temperature when soya-bean oil is used. The device is simple, inexpensive and can be easily manufactured using standard laboratory equipment.A simple and safe method to carry no-lift systems to prefixed levels is also presented. It is based on a single 30 g pilot balloon provided with a gas leakage nozzle, inflated with H2 to a calibrated initial free-lift. The balloon is totally emptied at the required level, and remains suspended from the no-lift system.The whole system can be easily prepared under field conditions to be used in long travel-time studies of dry-air parcel trajectories in the atmosphere.An example of the use of the improved method over complex terrain is presented. A no-lift system provided with a 1680 MHz radiosonde transmitter, was tracked by two RD-65 radio-theodolites, to investigate the effects of the topographic structure of the Lake Kinneret (Sea of Galilee) area on the Mediterranean sea breeze summer regime. The system was tracked for at least one hour, following a trajectory with severe vertical variations. This increases our confidence in the ability to track much longer trajectories, if required.

  12. Validation of a Parcel-Based Reduced-Complexity Model for River Delta Formation (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, M.; Geleynse, N.; Passalacqua, P.; Edmonds, D. A.; Kim, W.; Voller, V. R.; Paola, C.

    2013-12-01

    Reduced-Complexity Models (RCMs) take an intuitive yet quantitative approach to represent processes with the goal of getting maximum return in emergent system-scale behavior with minimum investment in computational complexity. This approach is in contrast to reductionist models that aim at rigorously solving the governing equations of fluid flow and sediment transport. RCMs have had encouraging successes in modeling a variety of geomorphic systems, such as braided rivers, alluvial fans, and river deltas. Despite the fact that these models are not intended to resolve detailed flow structures, questions remain on how to interpret and validate the output of RCMs beyond qualitative behavior-based descriptions. Here we present a validation of the newly developed RCM for river delta formation with channel dynamics (Liang, 2013). The model uses a parcel-based 'weighted-random-walk' method that resolves the formation of river deltas at the scale of channel dynamics (e.g., avulsions and bifurcations). The main focus of this validation work is the flow routing model component. A set of synthetic test cases were designed to compare hydrodynamic results from the RCM and Delft3D, including flow in a straight channel, around a bump, and flow partitioning at a single bifurcation. Output results, such as water surface slope and flow field, are also compared to field observations collected at Wax Lake Delta. Additionally, we investigate channel avulsion cycles and flow path selection in an alluvial fan with differential styles of subsidence and compare model results to laboratory experiments, as a preliminary effort in pairing up numerical and experimental models to understand channel organization at process scale. Strengths and weaknesses of the RCM are discussed and potential candidates for model application identified.

  13. Effects of hygroscopic seeding on raindrop formation as seen from simulations using a 2000-bin spectral cloud parcel model

    NASA Astrophysics Data System (ADS)

    Segal, Y.; Khain, A.; Pinsky, M.; Rosenfeld, D.

    2004-07-01

    A 2000-bin cloud spectral parcel model is used to investigate the effect of hygroscopic seeding on warm rain formation under different thermodynamic conditions. Simulations show that utilization of commercial hygroscopic flares ("French", "South African", New AI and D383) increases raindrop production in those cloud parcels where the natural warm rain process is inefficient. The most effective flare was found to have a maximum fraction of large seeding cloud condensational nuclei (SCCN). An optimum seeding particle radius, which provides the maximum raindrop production under a given mass of the seeding reagent varies from 1.5 to 2.5 μm and slightly depends on the reagent mass, as well as on the dynamic properties of cloud parcels. The existence of the optimum size of seeding particles is important from both a business perspective and an environmental perspective. In the presence of natural, large CCN, the seeding effect decreases due to the efficient collision process initiated by them. The decrease depends on the concentration of large, natural CCN. Thus, to evaluate the effects of hygroscopic seeding one needs to know the properties of large, natural CCN in the region of seeding activity. It is shown that, when a reagent consisting of CCN of the optimum radius is used, a significant increase in the raindrop production can be achieved even when large, natural CCN are present as well. Owing to the limitations of warm rain cloud parcel models in representing the microphysical and dynamical properties of real clouds, the results presented in this study should be verified using more complicated multidimensional models with spectral microphysics.

  14. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  15. Sensitivity Study of the Vertical Velocity Variation on Cloud Droplet Nucleation Process Using an Adiabatic Parcel Model

    NASA Astrophysics Data System (ADS)

    Peng, Y.; Lohmann, U.; Leaitch, R. W.

    2003-12-01

    Eleven profiles through liquid water cloud obtained during RACE (Radiation, Aerosol and Cloud Experiment) and NARE (North Atlantic Regional Experiment) are used to study the sensitivity of cloud droplet nucleation to the vertical gust velocity. Selected cloud microphysical data, size-distributed aerosol properties and particle chemistry are applied in an adiabatic parcel model to predict the activated cloud droplet number concentrations (N) using the frequency distribution of the measured in-cloud vertical velocities and again using a vertical velocity characteristic of observations. The simulated adiabatic value of N obtained using the standard deviation of the vertical velocity distribution agrees with the observed maximum N (the cloud droplet number in an adiabetic core) to within 5%. If the parameterization derived by Lin et al. [1997] is applied to obtain the cloud-average N from the maximum N, the average N agrees with the observed cloud-average N to within 20%. The simulated N obtained using the full probability density function of the vertical gust velocities is one approach that has been used to represent the cloud average N. This is based on the assumption that the average N is controlled by all variations in the updraft and not by the mixing process [Leaitch et al. 1996]. The value of N obtained in this manner is found to be higher than the observed average N by a factor of two. We believe that this result is because low vertical velocities do not contribute effectively to the cloud droplet nucleation. If we neglect the lowest 45% of all vertical velocities, then the difference between the simulated average N and the observed mean N is reduced to within 13%. These results suggest that it is appropriate to use a characteristic vertical velocity to predict the cloud droplet number concentration in climate models as done by Lohmann et al. [1999], where the subgrid variation of vertical velocity is diagnosed from the turbulent kinetic energy. The frequency

  16. Parcellating connectivity in spatial maps

    PubMed Central

    Beck, Diane M.; Fei-Fei, Li

    2015-01-01

    A common goal in biological sciences is to model a complex web of connections using a small number of interacting units. We present a general approach for dividing up elements in a spatial map based on their connectivity properties, allowing for the discovery of local regions underlying large-scale connectivity matrices. Our method is specifically designed to respect spatial layout and identify locally-connected clusters, corresponding to plausible coherent units such as strings of adjacent DNA base pairs, subregions of the brain, animal communities, or geographic ecosystems. Instead of using approximate greedy clustering, our nonparametric Bayesian model infers a precise parcellation using collapsed Gibbs sampling. We utilize an infinite clustering prior that intrinsically incorporates spatial constraints, allowing the model to search directly in the space of spatially-coherent parcellations. After showing results on synthetic datasets, we apply our method to both functional and structural connectivity data from the human brain. We find that our parcellation is substantially more effective than previous approaches at summarizing the brain’s connectivity structure using a small number of clusters, produces better generalization to individual subject data, and reveals functional parcels related to known retinotopic maps in visual cortex. Additionally, we demonstrate the generality of our method by applying the same model to human migration data within the United States. This analysis reveals that migration behavior is generally influenced by state borders, but also identifies regional communities which cut across state lines. Our parcellation approach has a wide range of potential applications in understanding the spatial structure of complex biological networks. PMID:25737822

  17. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  18. Why the Items versus Parcels Controversy Needn’t Be One

    PubMed Central

    Little, Todd D.; Rhemtulla, Mijke; Gibson, Kimberly; Schoemann, Alexander M.

    2014-01-01

    The use of item parcels has been a matter of debate since the earliest use of factor analysis and structural equation modeling. Here, we review the arguments that have been levied both for and against the use of parcels, and discuss the relevance of these arguments in light of the building body of empirical evidence investigating their performance. We discuss the many advantages of parcels that some researchers find attractive and highlight, too, the potential problems that ill-informed use can incur. We argue that no absolute pro or con stance is warranted. Parcels are an analytic tool like any other. There are circumstances in which parceling is useful and times when parcels would not be used. We emphasize the precautions that should be taken when creating item parcels and interpreting model results based on parcels. Finally, we review and compare several proposed strategies for parcel building, and suggest directions for further research. PMID:23834418

  19. REGULATORY AIR QUALITY MODELS

    EPA Science Inventory

    Appendix W to 40CFR Part 51 (Guideline on Air Quality Models) specifies the models to be used for purposes of permitting, PSD, and SIPs. Through a formal regulatory process this modeling guidance is periodically updated to reflect current science. In the most recent action, thr...

  20. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  1. Randomized parcellation based inference.

    PubMed

    Da Mota, Benoit; Fritsch, Virgile; Varoquaux, Gaël; Banaschewski, Tobias; Barker, Gareth J; Bokde, Arun L W; Bromberg, Uli; Conrod, Patricia; Gallinat, Jürgen; Garavan, Hugh; Martinot, Jean-Luc; Nees, Frauke; Paus, Tomas; Pausova, Zdenka; Rietschel, Marcella; Smolka, Michael N; Ströhle, Andreas; Frouin, Vincent; Poline, Jean-Baptiste; Thirion, Bertrand

    2014-04-01

    Neuroimaging group analyses are used to relate inter-subject signal differences observed in brain imaging with behavioral or genetic variables and to assess risks factors of brain diseases. The lack of stability and of sensitivity of current voxel-based analysis schemes may however lead to non-reproducible results. We introduce a new approach to overcome the limitations of standard methods, in which active voxels are detected according to a consensus on several random parcellations of the brain images, while a permutation test controls the false positive risk. Both on synthetic and real data, this approach shows higher sensitivity, better accuracy and higher reproducibility than state-of-the-art methods. In a neuroimaging-genetic application, we find that it succeeds in detecting a significant association between a genetic variant next to the COMT gene and the BOLD signal in the left thalamus for a functional Magnetic Resonance Imaging contrast associated with incorrect responses of the subjects from a Stop Signal Task protocol. PMID:24262376

  2. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations.

    PubMed

    Gordon, Evan M; Laumann, Timothy O; Adeyemo, Babatunde; Huckins, Jeremy F; Kelley, William M; Petersen, Steven E

    2016-01-01

    The cortical surface is organized into a large number of cortical areas; however, these areas have not been comprehensively mapped in the human. Abrupt transitions in resting-state functional connectivity (RSFC) patterns can noninvasively identify locations of putative borders between cortical areas (RSFC-boundary mapping; Cohen et al. 2008). Here we describe a technique for using RSFC-boundary maps to define parcels that represent putative cortical areas. These parcels had highly homogenous RSFC patterns, indicating that they contained one unique RSFC signal; furthermore, the parcels were much more homogenous than a null model matched for parcel size when tested in two separate datasets. Several alternative parcellation schemes were tested this way, and no other parcellation was as homogenous as or had as large a difference compared with its null model. The boundary map-derived parcellation contained parcels that overlapped with architectonic mapping of areas 17, 2, 3, and 4. These parcels had a network structure similar to the known network structure of the brain, and their connectivity patterns were reliable across individual subjects. These observations suggest that RSFC-boundary map-derived parcels provide information about the location and extent of human cortical areas. A parcellation generated using this method is available at http://www.nil.wustl.edu/labs/petersen/Resources.html. PMID:25316338

  3. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  4. Unsupervised fetal cortical surface parcellation

    NASA Astrophysics Data System (ADS)

    Dahdouh, Sonia; Limperopoulos, Catherine

    2016-03-01

    At the core of many neuro-imaging studies, atlas-based brain parcellations are used for example to study normal brain evolution across the lifespan. These atlases rely on the assumption that the same anatomical features are present on all subjects to be studied and that these features are stable enough to allow meaningful comparisons between different brain surfaces and structures These methods, however, often fail when applied to fetal MRI data, due to the lack of consistent anatomical features present across gestation. This paper presents a novel surface-based fetal cortical parcellation framework which attempts to circumvent the lack of consistent anatomical features by proposing a brain parcellation scheme that is based solely on learned geometrical features. A mesh signature incorporating both extrinsic and intrinsic geometrical features is proposed and used in a clustering scheme to define a parcellation of the fetal brain. This parcellation is then learned using a Random Forest (RF) based learning approach and then further refined in an alpha-expansion graph-cut scheme. Based on the votes obtained by the RF inference procedure, a probability map is computed and used as a data term in the graph-cut procedure. The smoothness term is defined by learning a transition matrix based on the dihedral angles of the faces. Qualitative and quantitative results on a cohort of both healthy and high-risk fetuses are presented. Both visual and quantitative assessments show good results demonstrating a reliable method for fetal brain data and the possibility of obtaining a parcellation of the fetal cortical surfaces using only geometrical features.

  5. Efficient sensitivity computations in 3D air quality models

    NASA Astrophysics Data System (ADS)

    Kioutsioukis, Ioannis; Melas, Dimitrios; Zerefos, Christos; Ziomas, Ioannis

    2005-04-01

    The prediction of ground level ozone for air quality monitoring and assessment is simulated through an integrated system of gridded models (meteorological, photochemical), where the atmosphere is represented with a three-dimensional grid that may include thousands of grid cells. The continuity equation solved by the Photochemical Air Quality Model (PAQM) reproduces the atmospheric processes (dynamical, physical, chemical and radiative), such as moving and mixing air parcels from one grid cell to another, calculating chemical reactions, injecting new emissions. The whole modeling procedure includes several sources of uncertainty, especially in the large data sets that describe the status of the domain (boundary conditions, emissions, chemical reaction rates and several others). The robustness of the photochemical simulation is addressed in this work through the deterministic approach of sensitivity analysis. The automatic differentiation tool ADIFOR is applied on the 3D PAQM CAMx and augments its Fortran 77 code by introducing new lines of code that additionally calculate, in only one run, the gradient of the solution vector with respect to its input parameters. The applicability of the approach is evaluated through a sensitivity study of the modeled concentrations to perturbations at the boundary conditions and the emissions, for three essentially dissimilar European Metropolises of the Auto-Oil II programme (Athens, Milan, and London).

  6. 78 FR 63521 - Product Change-Parcel Select & Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select & Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service TM... Parcel Select & Parcel Return Service Contract 5 to Competitive Product List. Documents are available...

  7. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  8. The Origins of Air Parcels Uplifted in a Two Dimensional Gravity Wave in the Tropical Upper Troposphere During the NASA Stratosphere Troposphere Exchange Project (STEP)

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken

    1989-01-01

    During January and February 1987, as part of the Stratosphere-Troposphere Exchange Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent seas. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated air on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden air and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.

  9. Automatic parcellation of longitudinal cortical surfaces

    NASA Astrophysics Data System (ADS)

    Alassaf, Manal H.; Hahn, James K.

    2015-03-01

    We present a novel automatic method to parcellate the cortical surfaces of the neonatal brain longitudinal atlas at different stages of development. A labeled brain atlas of newborn at 41 weeks gestational age (GA) is used to propagate labels of anatomical regions of interest to an unlabeled spatio-temporal atlas, which provides a dynamic model of brain development at each week between 28-44 GA weeks. First, labels from the cortical volume of the labeled newborn brain are propagated to an age-matched cortical surface from the spatio-temporal atlas. Then, labels are propagated across the cortical surfaces of each week of the spatio-temporal atlas by registering successive cortical surfaces using a novel approach and an energy optimization function. This procedure incorporates local and global, spatial and temporal information when assigning the labels to each surface. The result is a complete parcellation of 17 neonatal brain surfaces of the spatio-temporal atlas with similar points per labels distributions across weeks.

  10. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  11. AIR TOXICS HUMAN EXPOSURE MODELING

    EPA Science Inventory

    This project aims to improve the scientific basis for the Environmental Protection Agency's (EPA's) assessments of human exposures to air toxics by developing improved human exposure models. The research integrates the major components of the exposure paradigm, i.e., sources, tr...

  12. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  13. Air Conditioner Compressor Performance Model

    SciTech Connect

    Lu, Ning; Xie, YuLong; Huang, Zhenyu

    2008-09-05

    During the past three years, the Western Electricity Coordinating Council (WECC) Load Modeling Task Force (LMTF) has led the effort to develop the new modeling approach. As part of this effort, the Bonneville Power Administration (BPA), Southern California Edison (SCE), and Electric Power Research Institute (EPRI) Solutions tested 27 residential air-conditioning units to assess their response to delayed voltage recovery transients. After completing these tests, different modeling approaches were proposed, among them a performance modeling approach that proved to be one of the three favored for its simplicity and ability to recreate different SVR events satisfactorily. Funded by the California Energy Commission (CEC) under its load modeling project, researchers at Pacific Northwest National Laboratory (PNNL) led the follow-on task to analyze the motor testing data to derive the parameters needed to develop a performance models for the single-phase air-conditioning (SPAC) unit. To derive the performance model, PNNL researchers first used the motor voltage and frequency ramping test data to obtain the real (P) and reactive (Q) power versus voltage (V) and frequency (f) curves. Then, curve fitting was used to develop the P-V, Q-V, P-f, and Q-f relationships for motor running and stalling states. The resulting performance model ignores the dynamic response of the air-conditioning motor. Because the inertia of the air-conditioning motor is very small (H<0.05), the motor reaches from one steady state to another in a few cycles. So, the performance model is a fair representation of the motor behaviors in both running and stalling states.

  14. 77 FR 37078 - Product Change-Parcel Select and Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select and Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service TM... Postal Regulatory Commission a Request of the United States Postal Service to Add Parcel Select &...

  15. 77 FR 28409 - Product Change-Parcel Select & Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select & Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service\\TM... Postal Regulatory Commission a Request of the United States Postal Service to Add Parcel Select &...

  16. Connectivity-Based Brain Parcellation

    PubMed Central

    Chen, Rong; JaJa, Joseph; Jin, Yu; Hong, L. Elliot; Herskovits, Edward H.

    2016-01-01

    Defining brain structures of interest is an important preliminary step in brain-connectivity analysis. Researchers interested in connectivity patterns among brain structures typically employ manually delineated volumes of interest, or regions in a readily available atlas, to limit the scope of connectivity analysis to relevant regions. However, most structural brain atlases, and manually delineated volumes of interest, do not take voxel-wise connectivity patterns into consideration, and therefore may not be ideal for anatomic connectivity analysis. We herein propose a method to parcellate the brain into regions of interest based on connectivity. We formulate connectivity-based parcellation as a graph-cut problem, which we solve approximately using a novel multi-class Hopfield network algorithm. We demonstrate the application of this approach using diffusion tensor imaging data from an ongoing study of schizophrenia. Compared to a standard anatomic atlas, the connectivity-based atlas supports better classification performance when distinguishing schizophrenic from normal subjects. Comparing connectivity patterns averaged across the normal and schizophrenic subjects, we note significant systematic differences between the two atlases. PMID:26433899

  17. Hierarchical parcel-swapping (HiPS) representation of turbulent flow and mixing

    NASA Astrophysics Data System (ADS)

    Kerstein, Alan

    2014-11-01

    An economical representation of effects of turbulence on the time-evolving structure of diffusive scalar fields is obtained by introducing a hierarchical (tree) network connecting fluid parcels, with effects of turbulent advection represented by swapping pairs of sub-trees at rates determined by turbulence time scales associated with the sub-trees. The fluid parcels reside at the base of the tree. The tree structure partitions the fluid parcels into adjacent pairs (or more generally, p-tuples). Adjacent parcels intermix at rates governed by diffusion time scales based on molecular diffusivities and parcel sizes. This simple procedure efficiently accomplishes long-standing objectives of turbulent mixing model development, such as generating physically based time histories of fluid-parcel nearest-neighbor encounters and the associated spatial structure of turbulent scalar fields. With the introduction of velocity components as well as scalars, this hierarchical parcel-swapping (HiPS) formulation becomes a self-contained flow simulation, as illustrated by its application to fully developed channel flow.

  18. 76 FR 16460 - Parcel Select Price and Classification Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Parcel Select Price and Classification Changes AGENCY: Postal Regulatory Commission. ACTION: Notice... changes affecting Parcel Select. The Postal Service seeks to implement new prices for Parcel Select for... implement new prices for Parcel Select for forwarding and return to sender. The fee would be the...

  19. Proposed sale of Parcel A2 of the Oak Ridge Reservation to the City of Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1992-09-01

    Parcel A encompasses two tracts of land owned by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR). The disposal of land was recommended by a General Services Administration 1981 land utilization survey. On June 21, 1988, 21.3 ha (52.7 acres) of land, Parcel A1, were transferred to the City of Oak Ridge. Parcel Al has since been transferred to the private sector for residential development. The City of Oak Ridge has requested acquisition of Parcel A2 for residential and industrial development. The purpose of the proposed action is to transfer Parcel A2 to the City of Oak Ridge for residential and industrial development. The need for the proposed action is for DOE to respond to the General Services Administration directive to dispose of Parcel A2 and to respond to the request by the City of Oak Ridge for its acquisition and development. The proposed sale of Parcel A2 would have no environmental impacts; however, the subsequent development by the City would affect the existing environment. It is the potential effects of the City's development of Parcel A2 that are addressed by this environmental assessment (EA). Areas of concern include land use, air quality, hydrology and water quality, wetlands and floodplains, ecological resources, and socioeconomic resources.

  20. Proposed sale of Parcel A2 of the Oak Ridge Reservation to the City of Oak Ridge, Tennessee. Environmental asssessment

    SciTech Connect

    Not Available

    1992-09-01

    Parcel A encompasses two tracts of land owned by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR). The disposal of land was recommended by a General Services Administration 1981 land utilization survey. On June 21, 1988, 21.3 ha (52.7 acres) of land, Parcel A1, were transferred to the City of Oak Ridge. Parcel Al has since been transferred to the private sector for residential development. The City of Oak Ridge has requested acquisition of Parcel A2 for residential and industrial development. The purpose of the proposed action is to transfer Parcel A2 to the City of Oak Ridge for residential and industrial development. The need for the proposed action is for DOE to respond to the General Services Administration directive to dispose of Parcel A2 and to respond to the request by the City of Oak Ridge for its acquisition and development. The proposed sale of Parcel A2 would have no environmental impacts; however, the subsequent development by the City would affect the existing environment. It is the potential effects of the City`s development of Parcel A2 that are addressed by this environmental assessment (EA). Areas of concern include land use, air quality, hydrology and water quality, wetlands and floodplains, ecological resources, and socioeconomic resources.

  1. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  2. MarsAtlas: A cortical parcellation atlas for functional mapping.

    PubMed

    Auzias, Guillaume; Coulon, Olivier; Brovelli, Andrea

    2016-04-01

    An open question in neuroimaging is how to develop anatomical brain atlases for the analysis of functional data. Here, we present a cortical parcellation model based on macroanatomical information and test its validity on visuomotor-related cortical functional networks. The parcellation model is based on a recently developed cortical parameterization method (Auzias et al., [2013]: IEEE Trans Med Imaging 32:873-887), called HIP-HOP. This method exploits a set of primary and secondary sulci to create an orthogonal coordinate system on the cortical surface. A natural parcellation scheme arises from the axes of the HIP-HOP model running along the fundus of selected sulci. The resulting parcellation scheme, called MarsAtlas, complies with dorsoventral/rostrocaudal direction fields and allows inter-subject matching. To test it for functional mapping, we analyzed a MEG dataset collected from human participants performing an arbitrary visuomotor mapping task. Single-trial high-gamma activity, HGA (60-120 Hz), was estimated using spectral analysis and beamforming techniques at cortical areas arising from a Talairach atlas (i.e., Brodmann areas) and MarsAtlas. Using both atlases, we confirmed that visuomotor associations involve an increase in HGA over the sensorimotor and fronto-parietal network, in addition to medial prefrontal areas. However, MarsAtlas provided: (1) crucial functional information along both the dorsolateral and rostrocaudal direction; (2) an increase in statistical significance. To conclude, our results suggest that the MarsAtlas is a valid anatomical atlas for functional mapping, and represents a potential anatomical framework for integration of functional data arising from multiple techniques such as MEG, intracranial EEG and fMRI. PMID:26813563

  3. Which fMRI clustering gives good brain parcellations?

    PubMed Central

    Thirion, Bertrand; Varoquaux, Gaël; Dohmatob, Elvis; Poline, Jean-Baptiste

    2014-01-01

    Analysis and interpretation of neuroimaging data often require one to divide the brain into a number of regions, or parcels, with homogeneous characteristics, be these regions defined in the brain volume or on the cortical surface. While predefined brain atlases do not adapt to the signal in the individual subject images, parcellation approaches use brain activity (e.g., found in some functional contrasts of interest) and clustering techniques to define regions with some degree of signal homogeneity. In this work, we address the question of which clustering technique is appropriate and how to optimize the corresponding model. We use two principled criteria: goodness of fit (accuracy), and reproducibility of the parcellation across bootstrap samples. We study these criteria on both simulated and two task-based functional Magnetic Resonance Imaging datasets for the Ward, spectral and k-means clustering algorithms. We show that in general Ward’s clustering performs better than alternative methods with regard to reproducibility and accuracy and that the two criteria diverge regarding the preferred models (reproducibility leading to more conservative solutions), thus deferring the practical decision to a higher level alternative, namely the choice of a trade-off between accuracy and stability. PMID:25071425

  4. The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations

    PubMed Central

    Bohland, Jason W.; Bokil, Hemant; Allen, Cara B.; Mitra, Partha P.

    2009-01-01

    Many neuroscientific reports reference discrete macro-anatomical regions of the brain which were delineated according to a brain atlas or parcellation protocol. Currently, however, no widely accepted standards exist for partitioning the cortex and subcortical structures, or for assigning labels to the resulting regions, and many procedures are being actively used. Previous attempts to reconcile neuroanatomical nomenclatures have been largely qualitative, focusing on the development of thesauri or simple semantic mappings between terms. Here we take a fundamentally different approach, discounting the names of regions and instead comparing their definitions as spatial entities in an effort to provide more precise quantitative mappings between anatomical entities as defined by different atlases. We develop an analytical framework for studying this brain atlas concordance problem, and apply these methods in a comparison of eight diverse labeling methods used by the neuroimaging community. These analyses result in conditional probabilities that enable mapping between regions across atlases, which also form the input to graph-based methods for extracting higher-order relationships between sets of regions and to procedures for assessing the global similarity between different parcellations of the same brain. At a global scale, the overall results demonstrate a considerable lack of concordance between available parcellation schemes, falling within chance levels for some atlas pairs. At a finer level, this study reveals spatial relationships between sets of defined regions that are not obviously apparent; these are of high potential interest to researchers faced with the challenge of comparing results that were based on these different anatomical models, particularly when coordinate-based data are not available. The complexity of the spatial overlap patterns revealed points to problems for attempts to reconcile anatomical parcellations and nomenclatures using strictly

  5. Assessing land-use change in Ireland using the Land-Parcel Identification System

    NASA Astrophysics Data System (ADS)

    Zimmermann, Jesko; O'Brien, Phillip; Green, Stuart; Gonzales Del Campo, Ainhoa; Jones, Michael; Stout, Jane

    2014-05-01

    Carbon dynamics linked to Land-Use and Land-Use Change (LULUC) are considered a major factor in the global Greenhouse Gas (GHG) budget. The major sources of carbon to the atmosphere are the loss of above and below ground biomass as well as the loss of soil organic carbon. Estimates have shown that in the decade between 1990 and 2000 emissions related to LULUC and forestry have been between 0.5 and 2.7 Gt C yr-1. The major sources are conversion from forestry to agriculture and grasslands to cropland; conversely land-use change from cropland to grassland can facilitate soil carbon sequestration. While the effects of different types of land-use change on the GHG budget have been well studied, assessing land-use change at a national level is subject to uncertainty. In Ireland LULUC are currently modelled using national statistical data on total land-uses as well as socio-economic data. This may lead to inaccuracies as it neither provides information on direct land-use change trajectories nor spatially explicit information such as soil properties. The aim of this study is to assess the suitability of the land-parcel identification system (LPIS) to assess overall inter-annual land-use change as well as the immediate trajectory of change reported, and to provide tools for this purpose. For the available LPIS datasets (2000 to 2012) a number of issues have been identified. (1) Duplication of parcels led to a major overestimation of the agricultural area. On average 20917.7 ±7157.6 parcels showed one or multiple duplicates, leading to an overestimation of the agricultural area by 58194.2 ±11578.4km2, (2) no continuous identification of parcels through time complicates tracking land-use change, and (3) parcel outline changes over time without indication if the changes represent real-world changes or corrections of the LPIS database. Geoinformation Systems tools have been developed to address those issues, including a tool to remove duplicate parcels and a tool that

  6. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  7. FORMAL UNCERTAINTY ANALYSIS OF A LAGRANGIAN PHOTOCHEMICAL AIR POLLUTION MODEL. (R824792)

    EPA Science Inventory

    This study applied Monte Carlo analysis with Latin
    hypercube sampling to evaluate the effects of uncertainty
    in air parcel trajectory paths, emissions, rate constants,
    deposition affinities, mixing heights, and atmospheric stability
    on predictions from a vertically...

  8. Census Parcels Cropping System Classification from Multitemporal Remote Imagery: A Proposed Universal Methodology

    PubMed Central

    García-Torres, Luis; Caballero-Novella, Juan J.; Gómez-Candón, David; Peña, José Manuel

    2015-01-01

    A procedure named CROPCLASS was developed to semi-automate census parcel crop assessment in any agricultural area using multitemporal remote images. For each area, CROPCLASS consists of a) a definition of census parcels through vector files in all of the images; b) the extraction of spectral bands (SB) and key vegetation index (VI) average values for each parcel and image; c) the conformation of a matrix data (MD) of the extracted information; d) the classification of MD decision trees (DT) and Structured Query Language (SQL) crop predictive model definition also based on preliminary land-use ground-truth work in a reduced number of parcels; and e) the implementation of predictive models to classify unidentified parcels land uses. The software named CROPCLASS-2.0 was developed to semi-automatically perform the described procedure in an economically feasible manner. The CROPCLASS methodology was validated using seven GeoEye-1 satellite images that were taken over the LaVentilla area (Southern Spain) from April to October 2010 at 3- to 4-week intervals. The studied region was visited every 3 weeks, identifying 12 crops and others land uses in 311 parcels. The DT training models for each cropping system were assessed at a 95% to 100% overall accuracy (OA) for each crop within its corresponding cropping systems. The DT training models that were used to directly identify the individual crops were assessed with 80.7% OA, with a user accuracy of approximately 80% or higher for most crops. Generally, the DT model accuracy was similar using the seven images that were taken at approximately one-month intervals or a set of three images that were taken during early spring, summer and autumn, or set of two images that were taken at about 2 to 3 months interval. The classification of the unidentified parcels for the individual crops was achieved with an OA of 79.5%. PMID:25689830

  9. 36 CFR 910.59 - Development parcel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Development parcel. 910.59 Section 910.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  10. 36 CFR 910.59 - Development parcel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Development parcel. 910.59 Section 910.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA...

  11. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  12. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  13. 7 CFR 318.13-15 - Parcel post inspection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Parcel post inspection. 318.13-15 Section 318.13-15... From Hawaii and the Territories § 318.13-15 Parcel post inspection. Inspectors are authorized to inspect, with the cooperation of the U.S. Postal Service, parcel post packages placed in the mails...

  14. 43 CFR 3110.5-1 - Parcel number description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Parcel number description. 3110.5-1... § 3110.5-1 Parcel number description. From the first day following the end of a competitive process until... lands covered by that competitive process shall be the parcel number on the List of Lands Available...

  15. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  16. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-08-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air due to the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as in the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  17. Modeling upper tropospheric and lower stratospheric water vapor anomalies

    NASA Astrophysics Data System (ADS)

    Schoeberl, M. R.; Dessler, A. E.; Wang, T.

    2013-04-01

    The domain-filling, forward trajectory calculation model developed by Schoeberl and Dessler (2011) is used to further investigate processes that produce upper tropospheric and lower stratospheric water vapor anomalies. We examine the pathways parcels take from the base of the tropical tropopause layer (TTL) to the lower stratosphere. Most parcels found in the lower stratosphere arise from East Asia, the Tropical West Pacific (TWP) and the Central/South America. The belt of TTL parcel origins is very wide compared to the final dehydration zones near the top of the TTL. This is due to the convergence of rising air as a result of the stronger diabatic heating near the tropopause relative to levels above and below. The observed water vapor anomalies - both wet and dry - correspond to regions where parcels have minimal displacement from their initialization. These minimum displacement regions include the winter TWP and the Asian and American monsoons. To better understand the stratospheric water vapor concentration we introduce the water vapor spectrum and investigate the source of the wettest and driest components of the spectrum. We find that the driest air parcels that originate below the TWP, moving upward to dehydrate in the TWP cold upper troposphere. The wettest air parcels originate at the edges of the TWP as well as the summer American and Asian monsoons. The wet air parcels are important since they skew the mean stratospheric water vapor distribution toward higher values. Both TWP cold temperatures that produce dry parcels as well as extra-TWP processes that control the wet parcels determine stratospheric water vapor.

  18. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  19. Moving from pixels to parcels: Modeling agricultural scenarios in the northern Great Plains using a hybrid raster- and vector-based approach

    NASA Astrophysics Data System (ADS)

    Sohl, T.; Wika, S.; Dornbierer, J.; Sayler, K. L.; Quenzer, R.

    2015-12-01

    Policy and economic driving forces have resulted in a higher demand for biofuel feedstocks in recent years, resulting in substantial increases in cultivated cropland in the northern Great Plains. A cellulosic-based biofuel industry could potentially further impact the region, with grassland and marginal agricultural land converted to perennial grasses or other feedstocks. Scenarios of projected land-use change are needed to enable regional stakeholders to plan for the potential consequences of expanded agricultural activity. Land-use models used to produce spatially explicit scenarios are typically raster-based and are poor at representing ownership units on which land-use change is based. This work describes a hybrid raster/vector-based modeling approach for modeling scenarios of agricultural change in the northern Great Plains. Regional scenarios of agricultural change from 2012 to 2050 were constructed, based partly on the U.S. Department of Energy's Billion Ton Update. Land-use data built from the 2012 Cropland Data Layer and the 2011 National Land Cover Database was used to establish initial conditions. Field boundaries from the U.S. Department of Agriculture's Common Land Unit dataset were used to establish ownership units. A modified version of the U.S. Geological Survey's Forecasting Scenarios of land-use (FORE-SCE) model was used to ingest vector-based field boundaries to facilitate the modeling of a farmer's choice of land use for a given year, while patch-based raster methodologies were used to represent expansion of urban/developed lands and other land use conversions. All modeled data were merged to a common raster dataset representing annual land use from 2012 to 2050. The hybrid modeling approach enabled the use of traditional, raster-based methods while integrating vector-based data to represent agricultural fields and other ownership-based units upon which land-use decisions are typically made.

  20. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  1. A Lagrangian Physical-Biological Model to Study Water Parcels Associated with Algal Blooms from Southern California Bight to Todos Santos Bay.

    NASA Astrophysics Data System (ADS)

    Vivas Téllez, I. E.; Rivas, D.

    2015-12-01

    Lagrangian ocean circulation and biological dynamics are numerically studied in Todos Santos Bay during the spring of 2007. This period is particularly interesting after an intense toxic algal bloom occurred in April 2007 in this area, which was associated with the wind-driven upwelling in the region. High resolution, numerical model simulations were carried out to study dynamical features along of the Southern California Bight (SCB), the coast of the northern Baja California (BC), and the interior of Todos Santos Bay (TSB). These simulations are used in a three-dimensional Lagrangian (particle tracking) analysis which provides information about the origin and distribution of the waters present in the Bay during the occurrence of the toxic bloom. After the selection of trajectories of particles showing coherent patterns, a Nitrate-Phytoplankton-Zooplankton-Detritus (NPZD) lower trophic model is implemented to study the influence of the environmental conditions that occur during the particle advection, solving the NPZD equations at every time-varying position of the advected particles. The model is also modified for phytoplankton growth as a function of the environmental temperature to somehow emulate the life cycle of Pseudo-nitzschia. The analysis of the trajectories shows that particles mainly come from two regions: from the north, in the southern portion of SCB and from regions west of the TSB. Knowing the regional circulation patterns and their phytoplankton dynamics can help to understand and even predict the origin and destination of the harmful algal blooms that occur in TSB and its surroundings.

  2. ECONOMICS AND PERFORMANCE MODELING (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    NRMRL's Air Pollution Prevention and Control Division's Air Pollution Technology Branch (APTB) is active in the development, refinement, and maintenance of economic and performance evaluation models that provide agency-wide support for estimating costs for air pollution preventio...

  3. Models of Inflammation: Carrageenan Air Pouch.

    PubMed

    Duarte, Djane B; Vasko, Michael R; Fehrenbacher, Jill C

    2016-01-01

    The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs. © 2016 by John Wiley & Sons, Inc. PMID:26995549

  4. Uncertainty in Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  5. Photochemical trajectory modelling studies of the 1987 Antarctic spring vortex

    NASA Technical Reports Server (NTRS)

    Austin, J.; Jones, R. L.; Mckenna, D. S.

    1988-01-01

    Simulations of Antarctic ozone photochemistry performed using a photochemical model integrated along air parcel trajectories are described. This type of model has a major advantage at high latitudes of being able to simulate correctly the complex interaction between photolysis and temperature fields, which, because of the polar night cannot be represented accurately in a zonally averaged framework. Isentropic air parcel trajectories were computed using Meteorological Office global model analyses and forecast fields from positions along the ER-2 flight paths during the Airborne Antarctic Ozone Experiment in Austral Spring 1987. A photochemical model is integrated along these trajectories using the aircraft observations to initialize constituent concentrations. The model includes additional reactions of the ClO dimer and also bromine reactions, which are thought to play a significant role in Antarctica. The model also includes heterogeneous reactions which are invoked when the air parcel passes through a polar stratospheric cloud (PSC). The existence of a PSC is determined throughout the course of the model integration from the parcel temperature and the saturated vapour pressure of water over an assumed H2O/HNO3 mixture. The air parcel temperature is used to determine the saturated vapor pressure of HNO3 over the same mixture. Mixing ratios which exceed saturation result in condensation of the excess in the model and hence lead to a reduction of the amount of gas phase NO2 available for chemical reaction.

  6. Air freight demand models: An overview

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bernstein, G. W.

    1978-01-01

    A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.

  7. Air quality modelling in a stable polar environment—Ross Island, Antarctica

    NASA Astrophysics Data System (ADS)

    Godfrey, J. J.; Clarkson, T. S.

    The CALMET meteorological model and its puff dispersion model CALPUFF have been used in a complex orographic and very stable polar environment to confirm observed plume trajectories under worst case conditions from Scott Base, Ross Island, Antarctica. CALMET has been used to predict the meteorological fields of two characteristic low dispersion days and CALPUFF to predict the pollutant footprint and trajectory for each event. Field work in 1994 used constant density balloon flights to follow the trajectories of air parcels. A commonly occurring light wind condition develops when the prevailing southerly flow is locally deflected by the mountains of Ross Island. This deflection in the wind field produces a light northeasterly flow over Scott Base, which together with a light southeast flow can be associated with the low dispersion of effluent material. The relationship between the synoptic scale southerly flow and the local northeasterly at Scott Base is clearly shown by the diagnostic model and the plume derived by CALPUFF for the Scott Base emissions. The model output is shown to be realistic by the trajectories of constant density balloons.

  8. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  9. COMPUTATIONAL MODELING ISSUES IN NEXT GENERATION AIR QUALITY MODELS

    EPA Science Inventory

    EPA's Atmospheric Research and Exposure Assessment Laboratory is leading a major effort to advance urban/regional multi-pollutant air quality modeling through development of a third-generation modeling system, Models-3. he Models-3 system is being developed within a high-performa...

  10. A new Method to Study Aerosol Source Contributions Along the Tracks of air Parcels and its Application to the Near-ground Level Aerosol Chemical Composition in Central Europe

    NASA Astrophysics Data System (ADS)

    Lammel, G.; Brüggemann, E.; Gnauk, T.; Müller, K.; Neusüss, C.; Röhrl, A.

    2002-12-01

    A novel method is presented to reveal significance and contribution of source types and characteristic formation times for individual aerosol constituents: Backward trajectory analyses are used to allocate time resolved information about residence time of air masses over different types of ground surfaces. The correlation coefficients between the concentrations of individual aerosol constituents and the residence times of air masses over certain types of ground surfaces at a certain time difference to arrival time were used to compose time profiles. The method has been applied to aerosol chemical composition data from various seasons and from rural and urban sites in Germany. For various ground types we obtain correlations between weighted (and normalized) residence times on one hand and the abundances of trace constituents known as markers for marine (Na, Cl), continental-rural (e.g. mineral dust components) and industrial sources (e.g., organic and elemental C, As, Pb) on the other hand. The occurrence of super-A~¦m particulate NO3- in central Europe is found to originate largely in the marginal seas. The time profiles indicate that the characteristic formation time of the secondary aerosol is 48-72 h, while the coarse mode particulate matter including some heavy metals was determined by emissions < 36 h back. The occurrence of particulate elemental carbon was temporally bimodal with regard to the elapsed time since emission (maxima at Δt ~ 60 h and Δt = 12-24 h), which indicates the presence of two types undergoing a selection process during aging. The factors which explained most of the variability of the aerosol chemical composition were the season and the type of ground surface in contact with the air mass during its transport. More immediate influences on the samples, such as the weather conditions during sampling and the type of site (rural or urban) were distinctly less significant.

  11. Integrated engineering modeling for air breathing rockets

    NASA Astrophysics Data System (ADS)

    Chitilappilly, Lazar T.; Subramanyam, J. D. A.

    An innovative aerodynamic-propulsion-flight integrated modeling is carried out for airbreathing rockets, the propulsion of which has primary dependence on flight conditions. The integrated modeling is highly beneficial for design and analysis of accelerating air breathing rockets characterized by continuously varying flight conditions. The details of the modeling is described; the force accounting, trajectory analysis, solving the flow in the sub-systems (air intake, primary rocket, secondary combustion chamber and secondary nozzle), matching the subsystem flow fields and determining the mode of operation. Operational features are listed of the computer software developed, air breathing integrated design and analysis engineering software. It gives all the propulsion and flight parameters from take-off of the rocket to end of flight and has been instrumental in the design of the research air breathing rocket ABR-200(I). The hundreds of flight performance analyses required for design is possible by the engineering approach adopted for solving the propulsor flow field. The software results are compared with ejector mode and connected pipe mode static tests. The overall validation of the software is achieved by flight tests; the performance predictions have matched exactly with that measured during thee first and second flights of the ABR-200(I).

  12. Shape-based multifeature brain parcellation

    NASA Astrophysics Data System (ADS)

    Nadeem, Saad; Kaufman, Arie

    2016-03-01

    We present a novel approach to parcellate - delineate the anatomical feature (folds, gyri, sulci) boundaries - the brain cortex. Our approach is based on extracting the 3D brain cortical surface mesh from magnetic resonance (MR) images, computing the shape measures (area, mean curvature, geodesic, and travel depths) for this mesh, and delineating the anatomical feature boundaries using these measures. We use angle-area preserving mapping of the cortical surface mesh to a simpler topology (disk or rectangle) to aid in the visualization and delineation of these boundaries. Contrary to commonly used generic 2D brain image atlas-based approaches, we use 3D surface mesh data extracted from a given brain MR imaging data and its specific shape measures for the parcellation. Our method does not require any non-linear registration of a given brain dataset to a generic atlas and hence, does away with the structure similarity assumption critical to the atlas-based approaches. We evaluate our approach using Mindboggle manually labeled brain datasets and achieve the following accuracies: 72.4% for gyri, 78.5% for major sulci, and 98.4% for folds. These results warrant further investigation of this approach as an alternative or as an initialization to the atlas-based approaches.

  13. Data-driven parceling and entropic inference in MEG.

    PubMed

    Lapalme, Ervig; Lina, Jean-Marc; Mattout, Jérémie

    2006-03-01

    In Amblard et al. [Amblard, C., Lapalme, E., Lina, J.M. 2004. Biomagnetic source detection by maximum entropy and graphical models. IEEE Trans. Biomed. Eng. 55 (3) 427--442], the authors introduced the maximum entropy on the mean (MEM) as a methodological framework for solving the magnetoencephalography (MEG) inverse problem. The main component of the MEM is a reference probability density that enables one to include all kind of prior information on the source intensity distribution to be estimated. This reference law also encompasses the definition of a model. We consider a distributed source model together with a clustering hypothesis that assumes functionally coherent dipoles. The reference probability distribution is defined as a prior parceling of the cortical surface. In this paper, we present a data-driven approach for parceling out the cortex into regions that are functionally coherent. Based on the recently developed multivariate source pre-localization (MSP) principle [Mattout, J., Pelegrini-Issac, M., Garnero, L., Benali, H. 2005. Multivariate source pre-localization (MSP): Use of functionally informed basis functions for better conditioning the MEG inverse problem. NeuroImage 26 (2) 356--373], the data-driven clustering (DDC) of the dipoles provides an efficient parceling of the sources as well as an estimate of parameters of the initial reference probability distribution. On MEG simulated data, the DDC is shown to further improve the MEM inverse approach, as evaluated considering two different iterative algorithms and using classical error metrics as well as ROC (receiver operating characteristic) curve analysis. The MEM solution is also compared to a LORETA-like inverse approach. The data-driven clustering allows to take most advantage of the MEM formalism. Its main trumps lie in the flexible probabilistic way of introducing priors and in the notion of spatial coherent regions of activation. The latter reduces the dimensionality of the problem. In so

  14. RESIDENTIAL AIR EXCHANGE RATES FOR USE IN INDOOR AIR AND EXPOSURE MODELING STUDIES

    EPA Science Inventory

    Data on air exchange rates are important inputs to indoor air quality models. ndoor air models, in turn, are incorporated into the structure of total human exposure models. ragmentary data on residential ventilation rates are available in various governmental reports, journal art...

  15. Subject-specific functional parcellation via prior based eigenanatomy.

    PubMed

    Dhillon, Paramveer S; Wolk, David A; Das, Sandhitsu R; Ungar, Lyle H; Gee, James C; Avants, Brian B

    2014-10-01

    We present a new framework for prior-constrained sparse decomposition of matrices derived from the neuroimaging data and apply this method to functional network analysis of a clinically relevant population. Matrix decomposition methods are powerful dimensionality reduction tools that have found widespread use in neuroimaging. However, the unconstrained nature of these totally data-driven techniques makes it difficult to interpret the results in a domain where network-specific hypotheses may exist. We propose a novel approach, Prior Based Eigenanatomy (p-Eigen), which seeks to identify a data-driven matrix decomposition but at the same time constrains the individual components by spatial anatomical priors (probabilistic ROIs). We formulate our novel solution in terms of prior-constrained ℓ1 penalized (sparse) principal component analysis. p-Eigen starts with a common functional parcellation for all the subjects and refines it with subject-specific information. This enables modeling of the inter-subject variability in the functional parcel boundaries and allows us to construct subject-specific networks with reduced sensitivity to ROI placement. We show that while still maintaining correspondence across subjects, p-Eigen extracts biologically-relevant and patient-specific functional parcels that facilitate hypothesis-driven network analysis. We construct default mode network (DMN) connectivity graphs using p-Eigen refined ROIs and use them in a classification paradigm. Our results show that the functional connectivity graphs derived from p-Eigen significantly aid classification of mild cognitive impairment (MCI) as well as the prediction of scores in a Delayed Recall memory task when compared to graph metrics derived from 1) standard registration-based seed ROI definitions, 2) totally data-driven ROIs, 3) a model based on standard demographics plus hippocampal volume as covariates, and 4) Ward Clustering based data-driven ROIs. In summary, p-Eigen incarnates a new

  16. 76 FR 11297 - New Regional Ground Service for Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... New Regional Ground Service for Parcels AGENCY: Postal Regulatory Commission. ACTION: Notice. SUMMARY... affecting Parcel Select. The changes involve a new offering identified as Regional Ground service. This... competitive product pursuant to 39 CFR 3015.2.\\1\\ The proposed changes establish a new ``Regional...

  17. 19. John and James Dobson Carpet Mills, West parcel, topographical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. John and James Dobson Carpet Mills, West parcel, topographical plan, 1986. Barton and Martin, Engineers. 'Topographical Plan for Dobson Mills.' Prepared for Rouse Urban Housing, Inc., Philadelphia, Pennsylvania, 1986. - John & James Dobson Carpet Mill (West Parcel), 4041-4055 Ridge Avenue, Philadelphia, Philadelphia County, PA

  18. 48 CFR 242.1404-1 - Parcel post eligible shipments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Parcel post eligible shipments. 242.1404-1 Section 242.1404-1 Federal Acquisition Regulations System DEFENSE ACQUISITION... Traffic and Transportation Management 242.1404-1 Parcel post eligible shipments. (b)(1) See DoD...

  19. 48 CFR 242.1404-1 - Parcel post eligible shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Parcel post eligible shipments. 242.1404-1 Section 242.1404-1 Federal Acquisition Regulations System DEFENSE ACQUISITION... Traffic and Transportation Management 242.1404-1 Parcel post eligible shipments. (b)(1) See DoD...

  20. A computationally efficient model for turbulent droplet dispersion in spray combustion

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1990-01-01

    A novel model for turbulent droplet dispersion is formulated having significantly improved computational efficiency in comparison to the conventional point source stochastic sampling methodology. In the proposed model, a computational parcel representing a group of physical particles is considered to have a normal (Gaussian) probability density function (PDF) in three-dimensional space. The mean of each PDF is determined by Lagrangian tracking of each computational parcel, either deterministically or stochastically. The variance is represented by a turbulence-induced mean squared dispersion which is based on statistical inferences from the linearized direct modeling formulation for particle/eddy interactions. Convolution of the computational parcel PDF's produces a single PDF for the physical particle distribution profile. The validity of the new model is established by comparison with the conventional stochastic sampling method, where in each parcel is represented by a delta function distribution, for non-evaporating particles injected into simple turbulent air flows.

  1. INDOOR AIR QUALITY MODELING (INDOOR ENVIRONMENT MANAGEMENT BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Indoor Environment Management Branch of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has developed an indoor air quality (IAQ) model for analyzing the impact of sources, sinks, ventilation, and air cleaners on indoor air quality. Early ...

  2. Towards a Generic Method for Building-Parcel Vector Data Adjustment by Least Squares

    NASA Astrophysics Data System (ADS)

    Méneroux, Y.; Brasebin, M.

    2015-08-01

    Being able to merge high quality and complete building models with parcel data is of a paramount importance for any application dealing with urban planning. However since parcel boundaries often stand for the legal reference frame, the whole correction will be exclusively done on building features. Then a major task is to identify spatial relationships and properties that buildings should keep through the conflation process. The purpose of this paper is to describe a method based on least squares approach to ensure that buildings fit consistently into parcels while abiding by a set of standard constraints that may concern most of urban applications. An important asset of our model is that it can be easily extended to comply with more specific constraints. In addition, results analysis also demonstrates that it provides significantly better output than a basic algorithm relying on an individual correction of features, especially regarding conservation of metrics and topological relationships between buildings. In the future, we would like to include more specific constraints to retrieve the actual positions of buildings relatively to parcel borders and we plan to assess the contribution of our algorithm on the quality of urban application outputs.

  3. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  4. VALMET-A valley air pollution model

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  5. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  6. Parcellating Cortical Functional Networks in Individuals

    PubMed Central

    Wang, Danhong; Buckner, Randy L.; Fox, Michael D.; Holt, Daphne J.; Holmes, Avram J.; Stoecklein, Sophia; Langs, Georg; Pan, Ruiqi; Qian, Tianyi; Li, Kuncheng; Baker, Justin T.; Stufflebeam, Steven M.; Wang, Kai; Wang, Xiaomin; Hong, Bo; Liu, Hesheng

    2015-01-01

    The capacity to identify the unique functional architecture of an individual’s brain is a critical step towards personalized medicine and understanding the neural basis of variations in human cognition and behavior. Here, we developed a novel cortical parcellation approach to accurately map functional organization at the individual level using resting-state fMRI. A population-based functional atlas and a map of inter-individual variability were employed to guide the iterative search for functional networks in individual subjects. Functional networks mapped by this approach were highly reproducible within subjects and effectively captured the variability across subjects, including individual differences in brain lateralization. The algorithm performed well across different subject populations and data types including task fMRI data. The approach was then validated by invasive cortical stimulation mapping in surgical patients, suggesting great potential for use in clinical applications. PMID:26551545

  7. Automated MRI parcellation of the frontal lobe

    PubMed Central

    Ranta, Marin E.; Chen, Min; Crocetti, Deana; Prince, Jerry L.; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E.; Mostofsky, Stewart H.

    2014-01-01

    Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. (2009) in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. PMID:23897577

  8. An automobile air conditioner design model

    SciTech Connect

    Kyle, D M; Mei, V C; Chen, F C

    1992-12-01

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at the Oak Ridge National Laboratory (ORNL). Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as input to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermostatic expansion valves (TXV), capillary tube, and short tube expansion devices; refrigerant mass; and evaporator pressure regulator and all interconnecting tubing. Pressure drop, heat transfer rates, and latent capacity ratio for the new plate-fin evaporator submodel are shown to agree well with laboratory data. The program can be used with a variety of refrigerants, including R-134a.

  9. On the Origin of Polar Vortex Air

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Schoeberl, M. R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The existence of the multi-year HALOE CH4 data set, together with some comparisons of forward with back trajectory calculations which we have carried out, has motivated us to reexamine the question of polar vortex descent. Three-dimensional diabatic trajectory calculations have been carried out for the seven month fall to spring period in both the northern hemisphere (NH) and southern hemisphere (SH) polar stratosphere for the years 1992-1999. These computations are compared to fixed descent computations where the parcels were fixed at their latitude-longitude locations and allowed to descend without circulating. The forward trajectory computed descent is always less than the fixed descent due to horizontal parcel motions and variations in heating rates with latitude and longitude. Although the forward calculations estimate the maximum amount of descent that can occur, they do not necessarily indicate the actual origin of springtime vortex air. This is because more equator-ward air can be entrained within the vortex during its formation. To examine the origin of the springtime vortex air, the trajectory model was run backward for seven months from spring to fall. The back trajectories show a complex distribution of parcels in which one population originates in the upper stratosphere and mesosphere and experiences considerable descent in the polar regions, while the remaining parcels originate at lower altitudes of the middle and lower stratosphere and are mixed into the polar regions during vortex formation without experiencing as much vertical transport. The amount of descent experienced by the first population shows little variability from year to year, while the computed descent and mixing of the remaining parcels show considerable interannual variability due to the varying polar meteorology. Because of this complex parcel distribution it is not meaningful to speak of a net amount of descent experienced over the entire winter period. Since the back trajectories

  10. Experiences in evaluating regional air quality models

    NASA Astrophysics Data System (ADS)

    Liu, Mei-Kao; Greenfield, Stanley M.

    Any area of the world concerned with the health and welfare of its people and the viability of its ecological system must eventually address the question of the control of air pollution. This is true in developed countries as well as countries that are undergoing a considerable degree of industrialization. The control or limitation of the emissions of a pollutant can be very costly. To avoid ineffective or unnecessary control, the nature of the problem must be fully understood and the relationship between source emissions and ambient concentrations must be established. Mathematical models, while admittedly containing large uncertainties, can be used to examine alternatives of emission restrictions for achieving safe ambient concentrations. The focus of this paper is to summarize our experiences with modeling regional air quality in the United States and Western Europe. The following modeling experiences have been used: future SO 2 and sulfate distributions and projected acidic deposition as related to coal development in the northern Great Plains in the U.S.; analysis of regional ozone and sulfate episodes in the northeastern U.S.; analysis of the regional ozone problem in western Europe in support of alternative emission control strategies; analysis of distributions of toxic chemicals in the Southeast Ohio River Valley in support of the design of a monitoring network human exposure. Collectively, these prior modeling analyses can be invaluable in examining a similar problem in other parts of the world as well, such as the Pacific rim in Asia.

  11. Air quality modeling`s brave new world

    SciTech Connect

    Appleton, E.L.

    1996-05-01

    Since 1992, EPA has been creating a new generation of software - Models-3 - that is widely regarded as the next-generation air quality modeling system. The system has a modular framework that allows users to integrate a broad variety of air quality models. In the future, users will also be able to plug in economic decision support tools. A prototype version of Models-3 already exists in the Atmospheric Modeling Division of EPA`s National Exposure Research Laboratory in Research Triangle Park. EDSS was developed as a raid prototype of Models-3 under a three-year, $7.8 million cooperative agreement with EPA. An operational version of Models-3 may be in the hands of scientists and state air quality regulators by late 1997. Developers hope the new, more user-friendly system will make it easier to run models and present information to policy makers in graphical ways that are easy to understand. In addition, Models-3 will ultimately become a so-called `comprehensive modeling system` that enables users to simulate pollutants in other media, such as water. EPA also plans to include models that simulate health effects and other pollution consequences. 6 refs.

  12. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  13. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  14. Mathematical Modeling of Photochemical Air Pollution.

    NASA Astrophysics Data System (ADS)

    McRae, Gregory John

    Air pollution is an environmental problem that is both pervasive and difficult to control. An important element of any rational control approach is a reliable means for evaluating the air quality impact of alternative abatement measures. This work presents such a capability, in the form of a mathematical description of the production and transport of photochemical oxidants within an urban airshed. The combined influences of advection, turbulent diffusion, chemical reaction, emissions and surface removal processes are all incorporated into a series of models that are based on the species continuity equations. A delineation of the essential assumptions underlying the formulation of a three-dimensional, a Lagrangian trajectory, a vertically integrated and single cell air quality model is presented. Since each model employs common components and input data the simpler forms can be used for rapid screening calculations and the more complex ones for detailed evaluations. The flow fields, needed for species transport, are constructed using inverse distance weighted polynomial interpolation techniques that map routine monitoring data onto a regular computational mesh. Variational analysis procedures are then employed to adjust the field so that mass is conserved. Initial concentration and mixing height distributions can be established with the same interpolation algorithms. Subgrid scale turbulent transport is characterized by a gradient diffusion hypothesis. Similarity solutions are used to model the surface layer fluxes. Above this layer different treatments of turbulent diffusivity are required to account for variations in atmospheric stability. Convective velocity scaling is utilized to develop eddy diffusivities for unstable conditions. The predicted mixing times are in accord with results obtained during sulfur hexafluoride (SF(,6)) tracer experiments. Conventional models are employed for neutral and stable conditions. A new formulation for gaseous deposition fluxes

  15. Urban air quality simulation with community multi-scale air quality (CMAQ) modeling system

    SciTech Connect

    Byun, D.; Young, J.; Gipson, G.; Schere, K.; Godowitch, J.

    1998-11-01

    In an effort to provide a state-of-the-science air quality modeling capability, US EPA has developed a new comprehensive and flexible Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. The authors demonstrate CMAQ simulations for a high ozone episode in the northeastern US during 12-15 July 1995 and discuss meteorological issues important for modeling of urban air quality.

  16. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  17. Air modeling of industrial area in India

    SciTech Connect

    Kumar, A.

    1996-12-31

    With privatization of power sector to fulfill power demand in India, fossil based power projects are proposed at different locations by Indian and foreign companies. As power industry occupies key role in the economic liberalization, the siting and technology for power plant are relevant in the Indian context, and modeling exercise is wanted for the design of stacks and pollution control measures. A case history is included to demonstrate the use of air quality modeling in prediction, and to delineate mitigation measures. Study has been conducted with Gaussian dispersion model to assess the incremental 24 hour maximum Ground Level Concentrations (GLCs) of SO{sub 2}, NO{sub x}, SPM due to proposed power plant. Stack and emission data, wind velocity, wind direction, temperature, mixing height, and stability classes are used as input parameters to the dispersion model. Maximum 24 hour GLCs of SO{sub 2}, NO{sub x}, and SPM are 30, 53, 2.5 {mu}g/m at 2 km east as down wind direction is from west (35%), south-southwest (25%), and west-northwest (15%). Northeast is the most affected quadrant during summer. Plume loopings are assessed from southeast to northeast directions, with maximum concentration in the east with respect to the site. First plume loop is assessed at 2 km distance, and subsequent loops are assessed with less pollutants concentration under atmospheric stability classes (B-E). High concentration of NO{sub x} has been assessed, which may cause hazardous effect like dense fog, particulate droplets, whereas SO{sub 2} concentration may cause acid raining, acid deposition to the surrounding. Proper air pollution control measures are required to minimize NO{sub x} levels.

  18. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  19. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  20. 77 FR 43561 - Proposed Eligibility Criteria for Bound Printed Matter Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... criterion for eligibility of Bound Printed Matter (BPM) parcels by adding a physical density threshold for... mailpiece density requirement for BPM parcels, with an effective date targeted for July, 2013. Less densely... adopt a new density eligibility requirement for BPM parcels, parcels will be required to meet or...

  1. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  2. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  3. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  4. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    SciTech Connect

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  5. AIR QUALITY MODELING FOR THE TWENTY-FIRST CENTURY

    EPA Science Inventory

    This presentation describes recent and evolving advances in the science of numerical air quality simulation modeling. Emphasis is placed on new developments in particulate matter modeling and atmospheric chemistry, diagnostic modeling tools, and integrated modeling systems. New...

  6. NIRATAM-NATO infrared air target model

    NASA Astrophysics Data System (ADS)

    Noah, Meg A.; Kristl, Joseph; Schroeder, John W.; Sandford, B. P.

    1991-08-01

    NIRATAM (the NATO Infrared Air Target Model) was developed by the NATO AC 243, Panel IV, Research Study Group 6 (RSG-6). RSG-6 is composed of representatives from Denmark, France, Germany, Italy, the Netherlands, the United Kingdom, the United States of America, and Canada (as an observer). NIRATAM is based on theoretical studies, field measurements, and infrared data analysis performed over many years. The model encompasses all the major signature components required to simulate the infrared signature of an aircraft and the atmosphere. The vehicle fuselage, facet, model includes radiation due to aerodynamic heating, internal heat sources, reflected sky, earth, and solar radiation. Plume combustion gas emissions are calculated for H(subscript 2)O, CO(subscript 2), CO, and other gases as well as solid particles. Lowtran 7 is used for the atmospheric transmission and radiance. The software generates graphical outputs of the target wireframe, plume flowfield, atmospheric transmission, total signature, and plume signature. Imagery data can be used for system development and evaluation. NIRATAM can be used for many applications such as measurement planning, data analysis, systems design, and aircraft development. Ontar has agreed to assist the RSG-6 by being the NIRATAM distribution center in the United States for users approved by the national representatives. Arrangements have also been made to distribute a user-friendly NIRATAM interface. This paper describes the model, presents results, makes comparisons with measured field data, and describes the availability and procedure for obtaining the software.

  7. DESIGN REQUIREMENTS FOR MULTISCALE AIR QUALITY MODELS

    EPA Science Inventory

    Society (as mandated by the clean Air Act) requires that we protect our environment and minimize human exposure to harmful air pollutants with National Ambient Air Quality Standards (NAAQS). e al:o seek to minimize the economic costs of the necessary pollution control to meet the...

  8. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    NASA Astrophysics Data System (ADS)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  9. Good manufacturing practice for modelling air pollution: Quality criteria for computer models to calculate air pollution

    NASA Astrophysics Data System (ADS)

    Dekker, C. M.; Sliggers, C. J.

    To spur on quality assurance for models that calculate air pollution, quality criteria for such models have been formulated. By satisfying these criteria the developers of these models and producers of the software packages in this field can assure and account for the quality of their products. In this way critics and users of such (computer) models can gain a clear understanding of the quality of the model. Quality criteria have been formulated for the development of mathematical models, for their programming—including user-friendliness, and for the after-sales service, which is part of the distribution of such software packages. The criteria have been introduced into national and international frameworks to obtain standardization.

  10. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain

    PubMed Central

    Tang, Xiaoying; Yoshida, Shoko; Hsu, John; Huisman, Thierry A. G. M.; Faria, Andreia V.; Oishi, Kenichi; Kutten, Kwame; Poretti, Andrea; Li, Yue; Miller, Michael I.; Mori, Susumu

    2014-01-01

    In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure. PMID:24809486

  13. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  14. Group-wise consistent cortical parcellation based on connectional profiles.

    PubMed

    Zhang, Tuo; Zhu, Dajiang; Jiang, Xi; Zhang, Shu; Kou, Zhifeng; Guo, Lei; Liu, Tianming

    2016-08-01

    For decades, seeking common, consistent and corresponding anatomical/functional regions across individual brains via cortical parcellation has been a longstanding challenging problem. In our opinion, two major barriers to solve this problem are determining meaningful cortical boundaries that segregate homogeneous regions and establishing correspondences among parcellated regions of multiple brains. To establish a corresponding system across subjects, we recently developed the Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOL) system which possesses group-wise consistent white matter fiber connection patterns across individuals and thus provides a dense map of corresponding cortical landmarks. Despite this useful property, however, the DICCCOL landmarks are still far from covering the whole cerebral cortex and do not provide clear structural/functional cortical boundaries. To address the above limitation while leveraging the advantage of DICCCOL, in this paper, we present a novel approach for group-wise consistent parcellation of the cerebral cortex via a hierarchical scheme. In each hierarchical level, DICCCOLs are used as corresponding samples to automatically determine the cluster number so that other cortical surface vertices are iteratively classified into corresponding clusters across subjects within a group-wise classification framework. Experimental results showed that this approach can achieve consistent fine-granularity cortical parcellation with intrinsically-established structural correspondences across individual brains. Besides, comparisons with resting-state and task-based fMRI datasets demonstrated that the group-wise parcellation boundaries segregate functionally homogeneous areas. PMID:27054276

  15. Modeling atmospheric ammonia and ammonium using a stochastic Lagrangian air quality model (STILT-Chem v0.7)

    NASA Astrophysics Data System (ADS)

    Wen, D.; Lin, J. C.; Zhang, L.; Vet, R.; Moran, M. D.

    2013-03-01

    A new chemistry module that simulates atmospheric ammonia (NH3) and ammonium (NH+4) was incorporated into a backward-in-time stochastic Lagrangian air quality model (STILT-Chem) that was originally developed to simulate the concentrations of a variety of gas-phase species at receptors. STILT-Chem simulates the transport of air parcels backward in time using ensembles of fictitious particles with stochastic motions, while accounting for emissions, deposition and chemical transformation forward in time along trajectories identified by the backward-in-time simulations. The incorporation of the new chemistry module allows the model to simulate not only gaseous species, but also multi-phase species involving NH3 and NH+4. The model was applied to simulate concentrations of NH3 and particulate NH+4 at six sites in the Canadian province of Ontario for a six-month period in 2006. The model-predicted concentrations of NH3 and particulate NH+4 were compared with observations, which show broad agreement between simulated concentrations and observations. Since the model is based on back trajectories, the influence of each major process such as emission, deposition and chemical conversion on the concentration of a modeled species at a receptor can be determined for every upstream location at each time step. This makes it possible to quantitatively investigate the upstream processes affecting receptor concentrations. The modeled results suggest that the concentrations of NH3 at those sites were significantly and frequently affected by Ohio, Iowa, Minnesota, Michigan, Wisconsin, southwestern Ontario and nearby areas. NH3 is mainly contributed by emission sources whereas particulate NH+4 is mainly contributed by the gas-to-aerosol chemical conversion of NH3. Dry deposition is the largest removal process for both NH3 and particulate NH+4. This study revealed the contrast between agricultural versus forest sites. Not only were emissions of NH3 higher, but removal mechanisms

  16. Evidence of Stratosphere-to-Troposphere Transport Within a Mesoscale Model and Total Ozone Mapping Spectrometer Total Ozone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stanford, John L.

    2001-01-01

    We evaluate evidence for stratospheric mass transport into, and mass remaining in, the troposphere during an intense midlatitude cyclone. Mesoscale forecast model analysis fields from the Mesoscale Analysis and Prediction System were matched with total ozone observations from the Total Ozone Measurement Spectrometer. Combined with parcel back trajectory calculations, the analyses imply that two mechanisms contributed to the mass exchange: (1) An area of dynamically induced exchange was observed on the cyclone's southern edge. Parcels originally in the stratosphere crossed the jet core and were diluted through turbulent mixing with tropospheric air; (2) Diabetic effects reduced parcel potential vorticity (PC) for trajectories traversing precipitation regions, creating a 'PV hole' signature in the center of the cyclone. Air with characteristics of ozone and water vapor found in the lower stratosphere remained in the troposphere. The strength of the latter process may be unusual. Combined with other research, these results suggest that precipitation-induced diabetic effects can significantly modify (either decreasing or increasing) parcel potential vorticity, depending on parcel trajectory configuration with respect to maximum heating regions and jet core. The diabetic heating effect on stratosphere-troposphere exchange (STE) is more important to tropopause erosion than to altering parcel trajectories. In addition, these results underline the importance of using not only PC but also chemical constituents for diagnoses of STE.

  17. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  18. Hydrodynamic modeling of semi-planing hulls with air cavities

    NASA Astrophysics Data System (ADS)

    Matveev, Konstantin I.

    2015-05-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  19. Hydrodynamic modeling of semi-planing hulls with air cavities

    NASA Astrophysics Data System (ADS)

    Matveev, Konstantin I.

    2015-09-01

    High-speed heavy loaded monohull ships can benefit from application of drag-reducing air cavities under stepped hull bottoms. The subject of this paper is the steady hydrodynamic modeling of semi-planing air-cavity hulls. The current method is based on a linearized potential-flow theory for surface flows. The mathematical model description and parametric calculation results for a selected configuration with pressurized and open air cavities are presented.

  20. Modeling human judgments of urban visual air quality

    NASA Astrophysics Data System (ADS)

    Middleton, Paulette; Stewart, Thomas R.; Dennis, Robin L.

    The overall approach to establishing a complete predictive model link between pollutant emissions and human judgments of urban visual air quality (UVAQ) is presented. The field study design and data analysis procedures developed for analyzing the human components of visual air quality assessment are outlined. The air quality simulation model which relates pollutant emissions to human judgments of visual cues which comprise visual air quality judgments is described. Measured and modeled cues are compared for five typical visual air quality days in the winter of 1981 for Denver, Colorado. The comparisons suggest that the perceptual cue model, based on dispersion and radiative transfer theory, does not adequately predict human judgments of UVAQ cues. Analysis of the limits of predictability of the human judgments and the predictive capability of the model components indicates that the greatest improvements toward achieving a predictive UVAQ model lie in a reformulation of the theoretical descriptions of visual cues.

  1. What is Air? A Standard Model for Combustion Simulations

    SciTech Connect

    Cloutman, L D

    2001-08-01

    Most combustion devices utilize air as the oxidizer. Thus, reactive flow simulations of these devices require the specification of the composition of air as part of the physicochemical input. A mixture of only oxygen and nitrogen often is used, although in reality air is a more complex mixture of somewhat variable composition. We summarize some useful parameters describing a standard model of dry air. Then we consider modifications to include water vapor for creating the desired level of humidity. The ''minor'' constituents of air, especially argon and water vapor, can affect the composition by as much as about 5 percent in the mole fractions.

  2. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  3. 77 FR 4808 - Conference on Air Quality Modeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... when we issued supplement B. We republished the Guideline in August 1996 (61 FR 41838) to adopt the CFR... AGENCY Conference on Air Quality Modeling AGENCY: U.S. Environmental Protection Agency (EPA). ACTION: Notice of conference. SUMMARY: The EPA will be hosting the Tenth Conference on Air Quality Modeling...

  4. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  5. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  6. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  7. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments. PMID:23715084

  8. Semi-automatic parcellation of the corpus striatum

    NASA Astrophysics Data System (ADS)

    Al-Hakim, Ramsey; Nain, Delphine; Levitt, James; Shenton, Martha; Tannenbaum, Allen

    2007-03-01

    The striatum is the input component of the basal ganglia from the cerebral cortex. It includes the caudate, putamen, and nucleus accumbens. Thus, the striatum is an important component in limbic frontal-subcortical circuitry and is believed to be relevant both for reward-guided behaviors and for the expression of psychosis. The dorsal striatum is composed of the caudate and putamen, both of which are further subdivided into pre- and post-commissural components. The ventral striatum (VS) is primarily composed of the nucleus accumbens. The striatum can be functionally divided into three broad regions: 1) a limbic; 2) a cognitive and 3) a sensor-motor region. The approximate corresponding anatomic subregions for these 3 functional regions are: 1) the VS; 2) the pre/post-commissural caudate and the pre-commissural putamen and 3) the post-commissural putamen. We believe assessing these subregions, separately, in disorders with limbic and cognitive impairment such as schizophrenia may yield more informative group differences in comparison with normal controls than prior parcellation strategies of the striatum such as assessing the caudate and putamen. The manual parcellation of the striatum into these subregions is currently defined using certain landmark points and geometric rules. Since identification of these areas is important to clinical research, a reliable and fast parcellation technique is required. Currently, only full manual parcellation using editing software is available; however, this technique is extremely time intensive. Previous work has shown successful application of heuristic rules into a semi-automatic platform1. We present here a semi-automatic algorithm which implements the rules currently used for manual parcellation of the striatum, but requires minimal user input and significantly reduces the time required for parcellation.

  9. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  10. REFINED PHOTOLYSIS RATES FOR ADVANCED AIR QUALITY MODELING SYSTEM

    EPA Science Inventory

    Accurate modeling of photochemistry is critical and fundamental to reducing the uncertainty in air quality model predictions. lmost all chemical reactions in the atmosphere are initiated by the photodissociation of a number of trace gases. irect measure of this photodissociation ...

  11. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  12. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  13. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  14. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  15. Improving Air-Conditioner and Heat Pump Modeling (Presentation)

    SciTech Connect

    Winkler, J.

    2012-03-01

    A new approach to modeling residential air conditioners and heat pumps allows users to model systems by specifying only the more readily-available SEER/EER/HSPF-type metrics. Manufacturer data was used to generate full sets of model inputs for over 450 heat pumps and air conditioners. A sensitivity analysis identified which inputs can be safely defaulted 'behind-the-scenes' without negatively impacting the reliability of energy simulations.

  16. United Parcel Service Evaluates Hybrid Electric Delivery Vans (Fact Sheet)

    SciTech Connect

    Not Available

    2010-02-01

    This fact sheet describes how the National Renewable Energy Laboratory's Fleet Test and Evaluation team evaluated the 12-month, in-service performance of six Class 4 hybrid electric delivery vans - fueled by regular diesel - and six comparable conventional diesel vans operated by the United Parcel Service.

  17. 27 CFR 44.197 - For export by parcel post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false For export by parcel post. 44.197 Section 44.197 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR...

  18. A multi-modal parcellation of human cerebral cortex.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M; Van Essen, David C

    2016-08-11

    Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multi-modal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease. PMID:27437579

  19. Center of parcel with mosaics. Mosaics consist of everyday throwaway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center of parcel with mosaics. Mosaics consist of everyday throwaway objects of all kinds set in concrete mortar on ground. Leaning Tower of Bottle Village in front of Rumpus Room primary façade with 12' scale (in tenths). Camera facing north. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  20. View of structures at rear of parcel with 12' scale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of structures at rear of parcel with 12' scale (in tenths). From right: edge of Round House, Pencil house, Shell House, edge of School House. Heart Shrine made from mortared car headlights at frame left. Camera facing east. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  1. 27 CFR 44.208 - For export by parcel post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false For export by parcel post. 44.208 Section 44.208 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR...

  2. 27 CFR 44.197 - For export by parcel post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... export by parcel post. Tobacco products, and cigarette papers and tubes removed from a factory or an..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and...

  3. 27 CFR 44.197 - For export by parcel post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... export by parcel post. Tobacco products, and cigarette papers and tubes removed from a factory or an..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and...

  4. 27 CFR 44.208 - For export by parcel post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and Cigarette... For export by parcel post. Where tobacco products, and cigarette papers and tubes are removed from...

  5. 27 CFR 44.197 - For export by parcel post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false For export by parcel post. 44.197 Section 44.197 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR...

  6. 27 CFR 44.208 - For export by parcel post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and Cigarette... For export by parcel post. Where tobacco products, and cigarette papers and tubes are removed from...

  7. 27 CFR 44.208 - For export by parcel post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and Cigarette... For export by parcel post. Where tobacco products, and cigarette papers and tubes are removed from...

  8. 27 CFR 44.208 - For export by parcel post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and Cigarette... For export by parcel post. Where tobacco products, and cigarette papers and tubes are removed from...

  9. 27 CFR 44.197 - For export by parcel post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... export by parcel post. Tobacco products, and cigarette papers and tubes removed from a factory or an..., DEPARTMENT OF THE TREASURY (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Removal of Shipments of Tobacco Products and...

  10. Center of parcel with picture tube wall along walkway. Leaning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center of parcel with picture tube wall along walkway. Leaning Tower of Bottle Village at frame right; oblique view of Rumpus Room, remnants of Little Hut destroyed by Northridge earthquake at frame left. Camera facing northeast. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  11. Three-dimensional Simulations of the Mean Air Transport During the 1997 Forest Fires in Kalimantan, Indonesia Using a Mesoscale Numerical Model

    NASA Astrophysics Data System (ADS)

    Roswintiarti, O.; Raman, S.

    - This paper describes the meteorological processes responsible for the mean transport of air pollutants during the ENSO-related forest fires in Kalimantan, Indonesia from 00 UTC 21 September to 00 UTC 25 September, 1997. The Fifth Generation of the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate three-dimensional winds at 6-hourly intervals. A nonhydrostatic version of the model is run using two nested grids with horizontal resolutions of 45 km and 15 km. From the simulated wind fields, the backward and forward trajectories of the air parcel are investigated using the Vis5D model.The results indicate that the large-scale subsidence over Indonesia, the southwest monsoon low-level flows (2-8 m s-1), and the shallow planetary boundary layer height (400-800 m) play a key role in the transport of air pollutants from Kalimantan to Malaysia, Singapore and Brunei.

  12. Guideline on air-quality models (revised). Supplement A

    SciTech Connect

    Not Available

    1987-07-01

    This guideline recommends air quality modeling techniques that may be applied to air-pollution-control strategy evaluations and new source reviews, including prevention of significant deterioration. It is intended for use by EPA Regional Offices in judging the adequacy of modeling analyses performed by EPA, by State and local agencies, and by industry and its consultants. It also identifies modeling techniques and data bases that EPA considers acceptable. The guideline makes specific recommendations concerning air-quality models, data bases, and general requirements for concentration estimates. This is Supplement A to the guideline. It contains: (1) addition of a specific version of the Rough Terrain Diffusion Model (RTDM) as a screening model; (2) modification of the downwash algorithm in the Industrial Source Complex (ISC) model; (3) addition of the Offshore and Coastal Dispersion (OCD) model to Appendix A; and, (4) addition of the AVACTA II model to Appendix B.

  13. Correlated model for indoor and outdoor air pollutants

    SciTech Connect

    Chen, L.; Lee, J.S.; Cheng, K.S.

    1998-12-31

    This study tries to correlate outdoor concentration of air pollutants with indoor data statistically and physically by means of on-site measurement. The authors measured concentrations of THC, NMHC, NO{sub x}, SO{sub 2} and O{sub 3} at two residential sites where were closed to a fossil industry area. An air sampling system was designed to alternately sample air from different locations, therefore they can obtain semi-simultaneously indoor and outdoor concentration of air pollutants. Four measurements were taken during a year period. The measured data were analyzed by means of statistical regression and were used to calibrate indoor decay constants in a mass balance physical model. The results of statistical regression show that indoor concentration of air pollutant is highly correlated with outdoor concentration and indoor concentration at one hour earlier rather than outdoor climate parameters such as wind speed, temperature and humidity. The results explained that outdoor concentration actually included factors of outdoor climate parameters implicitly. In physical model, they calibrated the indoor concentration decay constants in an indoor/outdoor mass conservation equation at various air exchange rates under different seasons and day/night conditions. The established statistical and physical models can be used to estimate indoor air quality from monitored or calculated outdoor data. With the proposed correlation models it becomes convenient to perform the overall indoor and outdoor air pollutants exposure and risk assessment.

  14. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  15. Modeling the exit velocity of a compressed air cannon

    NASA Astrophysics Data System (ADS)

    Rohrbach, Z. J.; Buresh, T. R.; Madsen, M. J.

    2012-01-01

    The use of compressed air cannons in an undergraduate laboratory provides a way to illustrate the connection between diverse physics concepts, such as conservation of momentum, the work-kinetic energy theorem, gas expansion, air drag, and elementary Newtonian mechanics. However, it is not clear whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that neither process accurately predicts the exit velocity of our projectile. We discuss a model based on the flow of air through the valve, which is in much better agreement with our data.

  16. The Impact of the Parcel-Level Land Architecture on Land Surface Temperature in the Phoenix Metropolitan Area

    NASA Astrophysics Data System (ADS)

    LI, X.; Ouyang, Y.; Turner, B. L., II; Harlan, S.; Brazel, A.

    2014-12-01

    The relationship between land surface temperature (LST) and characteristics of the urban land system has received increasing attention in urban heat island research, especially for desert cities. The relationship between the land composition and LST has been widely studied. Such researches generally employ medium or coarser spatial resolution remotely sensed data and primarily focuses on the effects of one land cover type on the LST. In this study, we explore the effects of land system architecture - composition and configuration of different land-cover classes - on LST in the central Arizona-Phoenix metropolitan area at a fine-scale resolution, focused on the composition and configuration of single family residential parcels. A 1 m resolution land-cover map is used to calculate landscape metrics at the parcel level, and 6.8 m resolution data from the MODIS/ASTER are employed to retrieve LST. We introduce the socio-economic factors at neighborhood level as explanatory variables to help control for potential neighborhood effects. Multiple linear regression models examine the effects of landscape configuration on LST at the parcel scale, controlling for the effects of landscape composition and neighborhood characteristics. Results show that the configuration of parcels affects LST, revealing significant variable relationships between that architecture and LST at nighttime and daytime, and the role of the neighborhood effects on the outcomes.

  17. 76 FR 17784 - Forwarding and Return Service for Parcel Select Mailpieces

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... 111 Forwarding and Return Service for Parcel Select Mailpieces AGENCY: Postal Service TM . ACTION... Parcel Select mailpieces and to eliminate the option to request discontinuance of forwarding. The Postal Service also implements a new price for Parcel Select forwards and returns; those pieces will now pay...

  18. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    NASA Astrophysics Data System (ADS)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  19. Residential air exchange rates for use in indoor air and exposure modeling studies.

    PubMed

    Pandian, M D; Ott, W R; Behar, J V

    1993-01-01

    Data on air exchange rates are important inputs to indoor air quality models. Indoor air models, in turn, are incorporated into the structure of total human exposure models. Fragmentary data on residential ventilation rates are available in various governmental reports, journal articles, and contractor reports. Most of the published papers present data on only a few homes to answer very specialized questions, and none of these publications summarize the ventilation rates of a large population of homes across the United States. Brookhaven National Laboratory (BNL) has conducted more than 4000 residential perfluorocarbon tracer (PFT) measurements and brought them together into a large data base from about 100 studies in the United States and elsewhere. This paper analyzes the BNL PFT data base to generate frequency distributions and summary statistics for different regions of the United States, different seasons, and different levels within the homes. The data analyses suggest that residential ventilation rates are similar in the northeastern and northwestern states but higher in the southwestern states. Winter and fall ventilation rates are similar, but the rates are slightly higher in spring, and much higher in summer. Multi-level residences have higher air exchange rates than single-level residences. Although the BNL data are not a representative sample of homes in the United States, these analyses give insight into the range of air exchange rates found in the United States under a great variety of conditions and are intended for use by developers of models of indoor air quality and total human exposure. PMID:8173341

  20. A Physically Based Model for Air-Lift Pumping

    NASA Astrophysics Data System (ADS)

    FrançOis, Odile; Gilmore, Tyler; Pinto, Michael J.; Gorelick, Steven M.

    1996-08-01

    A predictive, physically based model for pumping water from a well using air injection (air-lift pumping) was developed for the range of flow rates that we explored in a series of laboratory experiments. The goal was to determine the air flow rate required to pump a specific flow rate of water in a given well, designed for in-well air stripping of volatile organic compounds from an aquifer. The model was validated against original laboratory data as well as data from the literature. A laboratory air-lift system was constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its bottom at different elevations above the base of the long pipe. Experiments were conducted for different levels of submergence, with water-pumping rates ranging from 5 to 70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min (0.2-1.1 m3 STP/min). The theoretical approach adopted in the model was based on an analysis of the system as a one-dimensional two-phase flow problem. The expression for the pressure gradient includes inertial energy terms, friction, and gas expansion versus elevation. Data analysis revealed that application of the usual drift-flux model to estimate the air void fraction is not adequate for the observed flow patterns: either slug or churn flow. We propose a modified drift-flux model that accurately predicts air-lift pumping requirements for a range of conditions representative of in-well air-stripping operations.

  1. Modeling air quality over China: Results from the Panda project

    NASA Astrophysics Data System (ADS)

    Katinka Petersen, Anna; Bouarar, Idir; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Lili; Wang, Xuemei

    2015-04-01

    China faces strong air pollution problems related to rapid economic development in the past decade and increasing demand for energy. Air quality monitoring stations often report high levels of particle matter and ozone all over the country. Knowing its long-term health impacts, air pollution became then a pressing problem not only in China but also in other Asian countries. The PANDA project is a result of cooperation between scientists from Europe and China who joined their efforts for a better understanding of the processes controlling air pollution in China, improve methods for monitoring air quality and elaborate indicators in support of European and Chinese policies. A modeling system of air pollution is being setup within the PANDA project and include advanced global (MACC, EMEP) and regional (WRF-Chem, EMEP) meteorological and chemical models to analyze and monitor air quality in China. The poster describes the accomplishments obtained within the first year of the project. Model simulations for January and July 2010 are evaluated with satellite measurements (SCIAMACHY NO2 and MOPITT CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) observed at several surface stations in China. Using the WRF-Chem model, we investigate the sensitivity of the model performance to emissions (MACCity, HTAPv2), horizontal resolution (60km, 20km) and choice of initial and boundary conditions.

  2. Incorporating principal component analysis into air quality model evaluation

    EPA Science Inventory

    The efficacy of standard air quality model evaluation techniques is becoming compromised as the simulation periods continue to lengthen in response to ever increasing computing capacity. Accordingly, the purpose of this paper is to demonstrate a statistical approach called Princi...

  3. SYSTEMATIC SENSITIVITY ANALYSIS OF AIR QUALITY SIMULATION MODELS

    EPA Science Inventory

    This report reviews and assesses systematic sensitivity and uncertainty analysis methods for applications to air quality simulation models. The discussion of the candidate methods presents their basic variables, mathematical foundations, user motivations and preferences, computer...

  4. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  5. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  6. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. PMID:21651597

  7. Dispersion modeling of air pollutants in the atmosphere: a review

    NASA Astrophysics Data System (ADS)

    Leelőssy, Ádám; Molnár, Ferenc; Izsák, Ferenc; Havasi, Ágnes; Lagzi, István; Mészáros, Róbert

    2014-09-01

    Modeling of dispersion of air pollutants in the atmosphere is one of the most important and challenging scientific problems. There are several natural and anthropogenic events where passive or chemically active compounds are emitted into the atmosphere. The effect of these chemical species can have serious impacts on our environment and human health. Modeling the dispersion of air pollutants can predict this effect. Therefore, development of various model strategies is a key element for the governmental and scientific communities. We provide here a brief review on the mathematical modeling of the dispersion of air pollutants in the atmosphere. We discuss the advantages and drawbacks of several model tools and strategies, namely Gaussian, Lagrangian, Eulerian and CFD models. We especially focus on several recent advances in this multidisciplinary research field, like parallel computing using graphical processing units, or adaptive mesh refinement.

  8. APPLICATIONS OF DECISION THEORY TECHNIQUES IN AIR POLLUTION MODELING

    EPA Science Inventory

    The study applies methods of operations research to two basic areas of air pollution modeling: (1) the generation of wind fields for use in models of regional scale transport, diffusion and chemistry; and (2) the application of models in studies of optimal pollution control strat...

  9. Modelling of air pollution impacts from power stations in Kuwait

    SciTech Connect

    Al-Ajmi, D.N.; Abdal, Y. )

    1987-01-01

    Kuwait is undergoing rapid development with fast growth of both urban and industrial areas. The environmental impact of such activities is already noticeable. Conditions are therefore favorable for the use of air pollution models to supply adequate tools for effective air quality management in Kuwait. The Industrial Source Complex Long Term (ISCLT) dispersion model was developed by the U.S. Environmental Protection Agency in response to the need for comprehensive analytical techniques that can be used to evaluate the air quality impact of emissions from industrial sources. This model was used to predict the air quality impact of SO{sub 2} emissions from the Doha East and West Power Stations in Kuwait. The meteorological and emissions data and the seasonal and annual SO{sub 2} concentrations emitted from the power stations are described.

  10. Scale Issues in Air Quality Modeling

    EPA Science Inventory

    This presentation reviews past model evaluation studies investigating the impact of horizontal grid spacing on model performance. It also presents several examples of using a spectral decomposition technique to separate the forcings from processes operating on different time scal...

  11. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  12. A diagnostic model for studying daytime urban air quality trends

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.; Woodbury, G. E.

    1981-01-01

    A single cell Eulerian photochemical air quality simulation model was developed and validated for selected days of the 1976 St. Louis Regional Air Pollution Study (RAPS) data sets; parameterizations of variables in the model and validation studies using the model are discussed. Good agreement was obtained between measured and modeled concentrations of NO, CO, and NO2 for all days simulated. The maximum concentration of O3 was also predicted well. Predicted species concentrations were relatively insensitive to small variations in CO and NOx emissions and to the concentrations of species which are entrained as the mixed layer rises.

  13. Air Leakage of U.S. Homes: Model Prediction

    SciTech Connect

    Sherman, Max H.; McWilliams, Jennifer A.

    2007-01-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.

  14. INTEGRATING DISPERSION MODELING, RECEPTOR MODELING AND AIR MONITORING TO APPORTION INCINERATOR IMPACTS FOR EXPOSURE ASSESSMENT

    EPA Science Inventory

    An approach combining air quality measurements, GIS, receptor and dispersion modeling to apportion the impact of incinerator sources to individuals living in surrounding neighborhoods was presented. his technique wall applied to a Health and Clean Air Study investigating the resp...

  15. A physically based analytical spatial air temperature and humidity model

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  16. Impact of inherent meteorology uncertainty on air quality model predictions

    NASA Astrophysics Data System (ADS)

    Gilliam, Robert C.; Hogrefe, Christian; Godowitch, James M.; Napelenok, Sergey; Mathur, Rohit; Rao, S. Trivikrama

    2015-12-01

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10-20 ppb or 20-30% in areas that typically have higher pollution levels.

  17. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  18. Distinct hippocampal functional networks revealed by tractography-based parcellation.

    PubMed

    Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat

    2016-07-01

    Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory. PMID:26206251

  19. Modeling and simulation of metal-air batteries

    NASA Astrophysics Data System (ADS)

    Bevara, Vamsci Venkat

    Understanding of the transport phenomena in Li-air batteries is crucial for improving the performance and design of Li-air batteries. In this dissertation, the basic transport equations that govern the operation of Li-air batteries are derived by starting from the underlying mass and charge transport properties of the chemical species involved in the operation of the battery. Then, two approaches are presented to solve the transport equations. In the first approach, we use first-order approximations to derive a compact model for the discharge voltage of Li-air batteries with organic electrolyte. The model considers oxygen transport and volume change in the cathode, and Butler-Volmer kinetics at the anode and cathode electrodes, and is particularly useful to the fast prediction of the discharge voltage and specific capacities of Li-air batteries. In the second approach, we propose a finite-element model in which the basic transport equations are discretized over a finite space-time mesh and solved numerically to predict the battery characteristics under different discharge conditions and for different geometrical and physical parameters. Then, the transport equations are reexamined and improved to account for different pore microstructures, pore size distribution effects, and electron transport mechanisms through the discharge product. The different microstructures are simulated numerically and the performance of Li-air batteries is analyzed in each case. A novel hybrid model is introduced to explain the perceived transition from one microstructure to another.

  20. An MRI-based parcellation method for the temporal lobe.

    PubMed

    Kim, J J; Crespo-Facorro, B; Andreasen, N C; O'Leary, D S; Zhang, B; Harris, G; Magnotta, V A

    2000-04-01

    The temporal lobe has long been a focus of attention with regard to the underlying pathology of several major psychiatric illnesses. Previous postmortem and imaging studies describing regional volume reductions or perfusion defects in temporal subregions have shown inconsistent findings, which are in part due to differences in the definition of the subregions and the methodology of measurement. The development of precise reproducible parcellation systems on magnetic resonance images may help improve uniformity of results in volumetric MR studies and unravel the complex activation patterns seen in functional neuroimaging studies. The present study describes detailed guidelines for the parcellation of the temporal neocortex. It parcels the entire temporal neocortex into 16 subregions: temporal pole, heschl's gyrus, planum temporale, planum polare, superior temporal gyrus (rostral and caudal), middle temporal gyrus (rostral, intermediate, and caudal), inferior temporal gyrus (rostral, intermediate, and caudal), occipitotemporal gyrus (rostral and caudal), and parahippocampal gyrus (rostral and caudal). Based upon topographic landmarks of individual sulci, every subregion was consecutively traced on a set of serial coronal slices. In spite of the huge variability of sulcal topography, the sulcal landmarks could be identified reliably due to the simultaneous display of three orthogonal (transaxial, coronal, and sagittal) planes, triangulated gray matter isosurface, and a 3-D-rendered image. The reliability study showed that the temporal neocortex could be parceled successfully and reliably; intraclass correlation coefficient for each subregion ranged from 0.62 to 0.99. Ultimately, this method will permit us to detect subtle morphometric impairments or to find abnormal patterns of functional activation in the temporal subregions that might reflect underlying neuropathological processes in psychiatric illnesses such as schizophrenia. PMID:10725184

  1. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  2. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    NASA Technical Reports Server (NTRS)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  3. Parcellation of left parietal tool representations by functional connectivity

    PubMed Central

    Garcea, Frank E.; Z. Mahon, Bradford

    2014-01-01

    Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224

  4. Analytical model for contaminant mass removal by air sparging

    SciTech Connect

    Rabideau, A.J.; Blayden, J.M.

    1998-12-31

    An analytical model was developed to predict the removal of volatile organic compounds (VOCs) from ground water by air sparging (AS). The model treats the air sparging zone as a completely mixed reactor subject to the removal of dissolved contaminants by volatilization, advection, and first-order decay. Nonequilibrium desorption is approximated as a first-order mass transfer process. The model reproduces the tailing and rebound behavior often observed at AS sites, and would normally require the estimation of three site-specific parameters. Dimensional analysis demonstrates that predicting tailing can be interpreted in terms of kinetic desorption or diffusion of aqueous phase contaminants into discrete air channels. Related work is ongoing to test the model against field data.

  5. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  6. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  7. INDOOR AIR QUALITY MODEL VERSION 1.0 DOCUMENTATION

    EPA Science Inventory

    The report presents a multiroom model for estimating the impact of various sources on indoor air quality (IAQ). The model is written for use on IBM-PC and compatible microcomputers. It is easy to use with a menu-driven user interface. Data are entered using a fill-in-a-form inter...

  8. A PHOTOCHEMICAL BOX MODEL FOR URBAN AIR QUALITY SIMULATION

    EPA Science Inventory

    A simple 'box-approach' to air quality simulation modeling has been developed in conjunction with a newly formulated photochemical kinetic mechanism to produce an easily applied Photochemical Box Model (PBM). This approach represents an urban area as a single cell 20 km in both l...

  9. FUNDAMENTAL MASS TRANSFER MODELS FOR INDOOR AIR POLLUTION SOURCES

    EPA Science Inventory

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. hile empirical approaches based on dynamic chamber data are usef...

  10. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  11. AIR POLLUTION MODELS AS DESCRIPTORS OF CAUSE-EFFECT RELATIONSHIPS

    EPA Science Inventory

    The problem of air pollution modeling is treated beginning from a philosophical standpoint, in which a model is viewed as a universal statement and a complementary set of singular statements from which specific cause-effect relationships are deduced; proceeding to the formulation...

  12. RELMAP: A REGIONAL LAGRANGIAN MODEL OF AIR POLLUTION - USER'S GUIDE

    EPA Science Inventory

    The regional Lagrangian Model of Air Pollution (RELMAP) is a mass conserving, Lagrangian model that simulates ambient concentrations and wet and dry depositions of SO2, SO4=, and fine and coarse particulate matter over the eastern United States and southeastern Canada (default do...

  13. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  14. Assessing The Policy Relevance of Regional Air Quality Models

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    This work presents a framework for discussing the policy relevance of models, and regional air quality models in particular. We define four criteria: 1) The scientific status of the model; 2) Its ability to address primary environmental concerns; 3) The position of modeled environmental issues on the political agenda; and 4) The role of scientific input into the policy process. This framework is applied to current work simulating the transport of nitric acid in Asia with the ATMOS-N model, to past studies on air pollution transport in Europe with the EMEP model, and to future applications of the United States Environmental Protection Agency (US EPA) Models-3. The Lagrangian EMEP model provided critical input to the development of the 1994 Oslo and 1999 Gothenburg Protocols to the Convention on Long-Range Transbound- ary Air Pollution, as well as to the development of EU directives, via its role as a component of the RAINS integrated assessment model. Our work simulating reactive nitrogen in Asia follows the European example in part, with the choice of ATMOS-N, a regional Lagrangian model to calculate source-receptor relationships for the RAINS- Asia integrated assessment model. However, given differences between ATMOS-N and the EMEP model, as well as differences between the scientific and political cli- mates facing Europe ten years ago and Asia today, the role of these two models in the policy process is very different. We characterize the different aspects of policy relevance between these models using our framework, and consider how the current generation US EPA air quality model compares, in light of its Eulerian structure, dif- ferent objectives, and the policy context of the US.

  15. CFD Modeling For Urban Air Quality Studies

    SciTech Connect

    Lee, R L; Lucas, L J; Humphreys, T D; Chan, S T

    2003-10-27

    The computational fluid dynamics (CFD) approach has been increasingly applied to many atmospheric applications, including flow over buildings and complex terrain, and dispersion of hazardous releases. However there has been much less activity on the coupling of CFD with atmospheric chemistry. Most of the atmospheric chemistry applications have been focused on the modeling of chemistry on larger spatial scales, such as global or urban airshed scale. However, the increased attentions to terrorism threats have stimulated the need of much more detailed simulations involving chemical releases within urban areas. This motivated us to develop a new CFD/coupled-chemistry capability as part of our modeling effort.

  16. Spatial air pollution modelling for a West-African town.

    PubMed

    Gebreab, Sirak Zenebe; Vienneau, Danielle; Feigenwinter, Christian; Bâ, Hâmpaté; Cissé, Guéladio; Tsai, Ming-Yi

    2015-01-01

    Land use regression (LUR) modelling is a common approach used in European and Northern American epidemiological studies to assess urban and traffic related air pollution exposures. Studies applying LUR in Africa are lacking. A need exists to understand if this approach holds for an African setting, where urban features, pollutant exposures and data availability differ considerably from other continents. We developed a parsimonious regression model based on 48-hour nitrogen dioxide (NO2) concentrations measured at 40 sites in Kaédi, a medium sized West-African town, and variables generated in a geographic information system (GIS). Road variables and settlement land use characteristics were found to be important predictors of 48-hour NO2 concentration in the model. About 68% of concentration variability in the town was explained by the model. The model was internally validated by leave-one-out cross-validation and it was found to perform moderately well. Furthermore, its parameters were robust to sampling variation. We applied the model at 100 m pixels to create a map describing the broad spatial pattern of NO2 across Kaédi. In this research, we demonstrated the potential for LUR as a valid, cost-effective approach for air pollution modelling and mapping in an African town. If the methodology were to be adopted by environmental and public health authorities in these regions, it could provide a quick assessment of the local air pollution burden and potentially support air pollution policies and guidelines. PMID:26618306

  17. Mathematical model of an air-filled alpha stirling refrigerator

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  18. An inexact fuzzy-chance-constrained air quality management model.

    PubMed

    Xu, Ye; Huang, Guohe; Qin, Xiaosheng

    2010-07-01

    Regional air pollution is a major concern for almost every country because it not only directly relates to economic development, but also poses significant threats to environment and public health. In this study, an inexact fuzzy-chance-constrained air quality management model (IFAMM) was developed for regional air quality management under uncertainty. IFAMM was formulated through integrating interval linear programming (ILP) within a fuzzy-chance-constrained programming (FCCP) framework and could deal with uncertainties expressed as not only possibilistic distributions but also discrete intervals in air quality management systems. Moreover, the constraints with fuzzy variables could be satisfied at different confidence levels such that various solutions with different risk and cost considerations could be obtained. The developed model was applied to a hypothetical case of regional air quality management. Six abatement technologies and sulfur dioxide (SO2) emission trading under uncertainty were taken into consideration. The results demonstrated that IFAMM could help decision-makers generate cost-effective air quality management patterns, gain in-depth insights into effects of the uncertainties, and analyze tradeoffs between system economy and reliability. The results also implied that the trading scheme could achieve lower total abatement cost than a nontrading one. PMID:20681428

  19. Bystanders, parcelling, and an absence of trust in the grooming interactions of wild male chimpanzees

    PubMed Central

    Kaburu, Stefano S. K.; Newton-Fisher, Nicholas E.

    2016-01-01

    The evolution of cooperation remains a central issue in socio-biology with the fundamental problem of how individuals minimize the risks of being short-changed (‘cheated’) should their behavioural investment in another not be returned. Economic decisions that individuals make during interactions may depend upon the presence of potential partners nearby, which offers co operators a temptation to defect from the current partner. The parcelling model posits that donors subdivide services into parcels to force cooperation, and that this is contingent on opportunities for defection; that is, the presence of bystanders. Here we test this model and the effect of bystander presence using grooming interactions of wild chimpanzees. We found that with more bystanders, initiators gave less grooming at the beginning of the bout and were more likely to abandon a grooming bout, while bouts were less likely to be reciprocated. We also found that the groomer’s initial investment was not higher among frequent groomers or stronger reciprocators, suggesting that contrary to current assumptions, grooming decisions are not based on trust, or bonds, within dyads. Our work highlights the importance of considering immediate social context and the influence of bystanders for understanding the evolution of the behavioural strategies that produce cooperation. PMID:26856371

  20. Joint space-time geostatistical model for air quality surveillance

    NASA Astrophysics Data System (ADS)

    Russo, A.; Soares, A.; Pereira, M. J.

    2009-04-01

    Air pollution and peoples' generalized concern about air quality are, nowadays, considered to be a global problem. Although the introduction of rigid air pollution regulations has reduced pollution from industry and power stations, the growing number of cars on the road poses a new pollution problem. Considering the characteristics of the atmospheric circulation and also the residence times of certain pollutants in the atmosphere, a generalized and growing interest on air quality issues led to research intensification and publication of several articles with quite different levels of scientific depth. As most natural phenomena, air quality can be seen as a space-time process, where space-time relationships have usually quite different characteristics and levels of uncertainty. As a result, the simultaneous integration of space and time is not an easy task to perform. This problem is overcome by a variety of methodologies. The use of stochastic models and neural networks to characterize space-time dispersion of air quality is becoming a common practice. The main objective of this work is to produce an air quality model which allows forecasting critical concentration episodes of a certain pollutant by means of a hybrid approach, based on the combined use of neural network models and stochastic simulations. A stochastic simulation of the spatial component with a space-time trend model is proposed to characterize critical situations, taking into account data from the past and a space-time trend from the recent past. To identify near future critical episodes, predicted values from neural networks are used at each monitoring station. In this paper, we describe the design of a hybrid forecasting tool for ambient NO2 concentrations in Lisbon, Portugal.

  1. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. PMID:22858662

  2. Modeling of Magnetron Argon Plasma Issuing into Ambient Air

    NASA Astrophysics Data System (ADS)

    Li, Lin-Cun; Xia, Wei-Dong

    2008-01-01

    A mathematical model is presented to describe the heat transfer and fluid flow in a magnetron plasma torch, by means of a commercial computational fluid dynamics (CFD) code fluent. Specific calculations are presented for a gas-mixing system (i.e., an argon plasma discharging into an air environment), operating in a laminar mode. Numerical results show that an external axial magnetic field (AMF) may have a significant effect on the behavior of an arc plasma, i.e., the AMF will impel the plasma to retract axially and expand radially. In addition, the use of an AMF induces a strong air indraft at the torch spout, and the air mixing with the argon gas results in a marked increase in arc voltage. An increment in the amount of the oncoming argon gas restrains the quantity of the air indraft, and this should be responsible for a lower arc voltage in such an AMF torch when a larger gas inflow is used.

  3. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  4. Modeling of membrane processes for air revitalization and water recovery

    NASA Technical Reports Server (NTRS)

    Lange, Kevin E.; Foerg, Sandra L.; Dall-Bauman, Liese A.

    1992-01-01

    Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudosteady-state conditions. Results are used to define requirements for a detailed reverse-osmosis model.

  5. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  6. Modeling Air Stripping of Ammonia in an Agitated Vessel

    SciTech Connect

    Kofi, Adu-Wusu; Martino, Christopher J.; Wilmarth, William R.; Bennett, William M.; Peters, Robert s.

    2005-11-29

    A model has been developed to predict the rate of removal of ammonia (NH{sub 3}) from solution in a sparged agitated vessel. The model is first-order with respect to liquid-phase concentration of NH{sub 3}. The rate constant for the first-order equation is a function of parameters related to the vessel/impeller characteristics, the air/liquid properties as well as the process conditions. However, the vessel/impeller characteristics, the air/liquid properties, and the process conditions reduce the rate constant dependence to only three parameters, namely, the air sparge rate, the liquid volume or batch size, and the Henry's law constant of NH{sub 3} for the liquid or solution. Thus, the rate of removal is not mass-transfer limited. High air sparge rates, high temperatures, and low liquid volumes or batch sizes increase the rate of removal of NH{sub 3} from solution. The Henry's law constant effect is somewhat reflected in the temperature since Henry's law constant increases with increasing temperature. Data obtained from actual air stripping operation agree fairly well with the model predictions.

  7. Economic damages of ozone air pollution to crops using combined air quality and GIS modelling

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Nastis, S. A.; Achillas, Ch.; Kalogeropoulos, K.; Karmiris, I.; Moussiopoulos, N.; Chourdakis, E.; Banias, G.; Limperi, N.

    2010-09-01

    This study aims at presenting a combined air quality and GIS modelling methodological approach in order to estimate crop damages from photochemical air pollution, depict their spatial resolution and assess the order of magnitude regarding the corresponding economic damages. The analysis is conducted within the Greater Thessaloniki Area, Greece, a Mediterranean territory which is characterised by high levels of photochemical air pollution and considerable agricultural activity. Ozone concentration fields for 2002 and for specific emission reduction scenarios for the year 2010 were estimated with the Ozone Fine Structure model in the area under consideration. Total economic damage to crops turns out to be significant and estimated to be approximately 43 M€ for the reference year. Production of cotton presents the highest economic loss, which is over 16 M€, followed by table tomato (9 M€), rice (4.2 M€), wheat (4 M€) and oilseed rape (2.8 M€) cultivations. Losses are not spread uniformly among farmers and the major losses occur in areas with valuable ozone-sensitive crops. The results are very useful for highlighting the magnitude of the total economic impacts of photochemical air pollution to the area's agricultural sector and can potentially be used for comparison with studies worldwide. Furthermore, spatial analysis of the economic damage could be of importance for governmental authorities and decision makers since it provides an indicative insight, especially if the economic instruments such as financial incentives or state subsidies to farmers are considered.

  8. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Miller, Erik

    The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.

  9. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  10. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  11. Modeling Airborne Beryllium Concentrations From Open Air Dynamic Testing

    NASA Astrophysics Data System (ADS)

    Becker, N. M.

    2003-12-01

    A heightened awareness of airborne beryllium contamination from industrial activities was reestablished during the late 1980's and early 1990's when it became recognized that Chronic Beryllium Disease (CBD) had not been eradicated, and that the Occupational Health and Safety Administration standards for occupational air exposure to beryllium may not be sufficiently protective. This was in response to the observed CBD increase in multiple industrial settings where beryllium was manufactured and/or machined, thus producing beryllium particulates which are then available for redistribution by airborne transport. Sampling and modeling design activities were expanded at Los Alamos National Laboratory in New Mexico to evaluate potential airborne beryllium exposure to workers who might be exposed during dynamic testing activities associated with nuclear weapons Stockpile Stewardship. Herein is presented the results of multiple types of collected air measurements that were designed to characterize the production and dispersion of beryllium used in components whose performance is evaluated during high explosive detonation at open air firing sites. Data from fallout, high volume air, medium volume air, adhesive film, particle size impactor, and fine-particulate counting techniques will be presented, integrated, and applied in dispersion modeling to assess potential onsite and offsite personal exposures resulting from dynamic testing activities involving beryllium.

  12. Connectivity-based whole brain dual parcellation by group ICA reveals tract structures and decreased connectivity in schizophrenia.

    PubMed

    Wu, Lei; Calhoun, Vince D; Jung, Rex E; Caprihan, Arvind

    2015-11-01

    Mapping brain connectivity based on neuroimaging data is a promising new tool for understanding brain structure and function. In this methods paper, we demonstrate that group independent component analysis (GICA) can be used to perform a dual parcellation of the brain based on its connectivity matrix (cmICA). This dual parcellation consists of a set of spatially independent source maps, and a corresponding set of paired dual maps that define the connectivity of each source map to the brain. These dual maps are called the connectivity profiles of the source maps. Traditional analysis of connectivity matrices has been used previously for brain parcellation, but the present method provides additional information on the connectivity of these segmented regions. In this paper, the whole brain structural connectivity matrices were calculated on a 5 mm(3) voxel scale from diffusion imaging data based on the probabilistic tractography method. The effect of the choice of the number of components (30 and 100) and their stability were examined. This method generated a set of spatially independent components that are consistent with the canonical brain tracts provided by previous anatomic descriptions, with the high order model yielding finer segmentations. The corpus-callosum example shows how this method leads to a robust parcellation of a brain structure based on its connectivity properties. We applied cmICA to study structural connectivity differences between a group of schizophrenia subjects and healthy controls. The connectivity profiles at both model orders showed similar regions with reduced connectivity in schizophrenia patients. These regions included forceps major, right inferior fronto-occipital fasciculus, uncinate fasciculus, thalamic radiation, and corticospinal tract. This paper provides a novel unsupervised data-driven framework that summarizes the information in a large global connectivity matrix and tests for brain connectivity differences. It has the

  13. Co-activation based parcellation of the human frontal pole.

    PubMed

    Ray, K L; Zald, D H; Bludau, S; Riedel, M C; Bzdok, D; Yanes, J; Falcone, K E; Amunts, K; Fox, P T; Eickhoff, S B; Laird, A R

    2015-12-01

    Historically, the human frontal pole (FP) has been considered as a single architectonic area. Brodmann's area 10 is located in the frontal lobe with known contributions in the execution of various higher order cognitive processes. However, recent cytoarchitectural studies of the FP in humans have shown that this portion of cortex contains two distinct cytoarchitectonic regions. Since architectonic differences are accompanied by differential connectivity and functions, the frontal pole qualifies as a candidate region for exploratory parcellation into functionally discrete sub-regions. We investigated whether this functional heterogeneity is reflected in distinct segregations within cytoarchitectonically defined FP-areas using meta-analytic co-activation based parcellation (CBP). The CBP method examined the co-activation patterns of all voxels within the FP as reported in functional neuroimaging studies archived in the BrainMap database. Voxels within the FP were subsequently clustered into sub-regions based on the similarity of their respective meta-analytically derived co-activation maps. Performing this CBP analysis on the FP via k-means clustering produced a distinct 3-cluster parcellation for each hemisphere corresponding to previously identified cytoarchitectural differences. Post-hoc functional characterization of clusters via BrainMap metadata revealed that lateral regions of the FP mapped to memory and emotion domains, while the dorso- and ventromedial clusters were associated broadly with emotion and social cognition processes. Furthermore, the dorsomedial regions contain an emphasis on theory of mind and affective related paradigms whereas ventromedial regions couple with reward tasks. Results from this study support previous segregations of the FP and provide meta-analytic contributions to the ongoing discussion of elucidating functional architecture within human FP. PMID:26254112

  14. Scale Issues in Air Quality Modeling Policy Support

    EPA Science Inventory

    This study examines the issues relating to the use of regional photochemical air quality models for evaluating their performance in reproducing the spatio-temporal features embedded in the observations and for designing emission control strategies needed to achieve compliance wit...

  15. QUEST FOR AN ADVANCED REGIONAL AIR QUALITY MODEL

    EPA Science Inventory

    Organizations interested in advancing the science and technology of regional air quality modeling on the "grand challenge" scale have joined to form CAMRAQ. hey plan to leverage their research finds by collaborating on the development and evaluation of CMSs so ambitious in scope ...

  16. ANALYTICAL DIFFUSION MODEL FOR LONG DISTANCE TRANSPORT OF AIR POLLUTANTS

    EPA Science Inventory

    A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season, or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is de...

  17. AQMEII: A New International Initiative on Air Quality Model Evaluation

    EPA Science Inventory

    We provide a conceptual view of the process of evaluating regional-scale three-dimensional numerical photochemical air quality modeling system, based on an examination of existing approached to the evaluation of such systems as they are currently used in a variety of application....

  18. The analysis of a generic air-to-air missile simulation model

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chappell, Alan R.; Mcmanus, John W.

    1994-01-01

    A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out simulation system versus a static missile launch envelope system for air-to-air combat simulation. This paper examines the performance of a launch envelope model and a missile fly-out model. The launch envelope model bases its probability of killing the target aircraft on the target aircraft's position at the launch time of the weapon. The benefits gained from a launch envelope model are the simplicity of implementation and the minimal computational overhead required. A missile fly-out model takes into account the physical characteristics of the missile as it simulates the guidance, propulsion, and movement of the missile. The missile's probability of kill is based on the missile miss distance (or the minimum distance between the missile and the target aircraft). The problems associated with this method of modeling are a larger computational overhead, the additional complexity required to determine the missile miss distance, and the additional complexity of determining the reason(s) the missile missed the target. This paper evaluates the two methods and compares the results of running each method on a comprehensive set of test conditions.

  19. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3

  20. Using natural beta emission for detecting concealed tobacco in parcels

    NASA Astrophysics Data System (ADS)

    Myers, Jeremy; Hussein, Esam M. A.

    2007-10-01

    It is suspected that postal systems are used for the illegal shipment of tobacco products to circumvent taxation and excise payments. This paper demonstrates that beta-particle emission from the potassium-40 contained in tobacco can be used to passively detect its presence in paperboard postal parcels. The same concept can be utilized for the detection of marijuana, whose leaves are also rich in 40K. The combination of high beta activity and a low weight is a good indicator of the presence of these two contraband materials.

  1. Oblique along path toward structures at rear of parcel. Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique along path toward structures at rear of parcel. Original skinny mosaic path along edge of structures was altered (delineation can be seen in concrete) path was widened with a newer mosaic to make access to the site safer. Structures (from right) edge of Round House (with "Spring Garden"), Pencil house, Shell House, School House, wood lattice is attached to chain-link fence along north (rear) property line. These structures were all damaged by the 1994 Northridge earthquake. Camera facing northeast. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  2. Spatially constrained hierarchical parcellation of the brain with resting-state fMRI

    PubMed Central

    Blumensath, Thomas; Jbabdi, Saad; Glasser, Matthew F.; Van Essen, David C.; Ugurbil, Kamil; Behrens, Timothy E.J.; Smith, Stephen M.

    2013-01-01

    We propose a novel computational strategy to partition the cerebral cortex into disjoint, spatially contiguous and functionally homogeneous parcels. The approach exploits spatial dependency in the fluctuations observed with functional Magnetic Resonance Imaging (fMRI) during rest. Single subject parcellations are derived in a two stage procedure in which a set of (~1000 to 5000) stable seeds is grown into an initial detailed parcellation. This parcellation is then further clustered using a hierarchical approach that enforces spatial contiguity of the parcels. A major challenge is the objective evaluation and comparison of different parcellation strategies; here, we use a range of different measures. Our single subject approach allows a subject-specific parcellation of the cortex, which shows high scan-to-scan reproducibility and whose borders delineate clear changes in functional connectivity. Another important measure, on which our approach performs well, is the overlap of parcels with task fMRI derived clusters. Connectivity-derived parcellation borders are less well matched to borders derived from cortical myelination and from cytoarchitectonic atlases, but this may reflect inherent differences in the data. PMID:23523803

  3. Modeling air pollution in the Tracking and Analysis Framework (TAF)

    SciTech Connect

    Shannon, J.D.

    1998-12-31

    The Tracking and Analysis Framework (TAF) is a set of interactive computer models for integrated assessment of the Acid Rain Provisions (Title IV) of the 1990 Clean Air Act Amendments. TAF is designed to execute in minutes on a personal computer, thereby making it feasible for a researcher or policy analyst to examine quickly the effects of alternate modeling assumptions or policy scenarios. Because the development of TAF involves researchers in many different disciplines, TAF has been given a modular structure. In most cases, the modules contain reduced-form models that are based on more complete models exercised off-line. The structure of TAF as of December 1996 is shown. Both the Atmospheric Pathways Module produce estimates for regional air pollution variables.

  4. Modelling of Air Bubble Rising in Water and Polymeric Solution

    NASA Astrophysics Data System (ADS)

    Hassan, N. M. S.; Khan, M. M. K.; Rasul, M. G.; Subaschandar, N.

    2010-06-01

    This study investigates a Computational Fluid Dynamics (CFD) model for a single air bubble rising in water and xanthan gum solution. The bubble rise characteristics through the stagnant water and 0.05% xanthan gum solution in a vertical cylindrical column is modelled using the CFD code Fluent. Single air bubble rise dispersed into the continuous liquid phase has been considered and modelled for two different bubble sizes. Bubble velocity and vorticity magnitudes were captured through a surface-tracking technique i.e. Volume of Fluid (VOF) method by solving a single set of momentum equations and tracking the volume fraction of each fluid throughout the domain. The simulated results of the bubble flow contours at two different heights of the cylindrical column were validated by the experimental results and literature data. The model developed is capable of predicting the entire flow characteristics of different sizes of bubble inside the liquid column.

  5. Air pollution dispersion models for human exposure predictions in London.

    PubMed

    Beevers, Sean D; Kitwiroon, Nutthida; Williams, Martin L; Kelly, Frank J; Ross Anderson, H; Carslaw, David C

    2013-01-01

    The London household survey has shown that people travel and are exposed to air pollutants differently. This argues for human exposure to be based upon space-time-activity data and spatio-temporal air quality predictions. For the latter, we have demonstrated the role that dispersion models can play by using two complimentary models, KCLurban, which gives source apportionment information, and Community Multi-scale Air Quality Model (CMAQ)-urban, which predicts hourly air quality. The KCLurban model is in close agreement with observations of NO(X), NO(2) and particulate matter (PM)(10/2.5), having a small normalised mean bias (-6% to 4%) and a large Index of Agreement (0.71-0.88). The temporal trends of NO(X) from the CMAQ-urban model are also in reasonable agreement with observations. Spatially, NO(2) predictions show that within 10's of metres of major roads, concentrations can range from approximately 10-20 p.p.b. up to 70 p.p.b. and that for PM(10/2.5) central London roadside concentrations are approximately double the suburban background concentrations. Exposure to different PM sources is important and we predict that brake wear-related PM(10) concentrations are approximately eight times greater near major roads than at suburban background locations. Temporally, we have shown that average NO(X) concentrations close to roads can range by a factor of approximately six between the early morning minimum and morning rush hour maximum periods. These results present strong arguments for the hybrid exposure model under development at King's and, in future, for in-building models and a model for the London Underground. PMID:23443237

  6. Modeling of air pollution from the power plant ash dumps

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad M.; Balać, Nedeljko

    A simple model of air pollution from power plant ash dumps is presented, with emission rates calculated from the Bagnold formula and transport simulated by the ATDL type model. Moisture effects are accounted for by assumption that there is no pollution on rain days. Annual mean daily sedimentation rates, calculated for the area around the 'Nikola Tesla' power plants near Belgrade for 1987, show reasonably good agreement with observations.

  7. Air-water analogy and the study of hydraulic models

    NASA Technical Reports Server (NTRS)

    Supino, Giulio

    1953-01-01

    The author first sets forth some observations about the theory of models. Then he established certain general criteria for the construction of dynamically similar models in water and in air, through reference to the perfect fluid equations and to the ones pertaining to viscous flow. It is, in addition, pointed out that there are more cases in which the analogy is possible than is commonly supposed.

  8. Assessing Climate Impacts on Air Pollution from Models and Measurements

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  9. An approximate local thermodynamic nonequilibrium radiation model for air

    NASA Technical Reports Server (NTRS)

    Gally, Thomas A.; Carlson, Leland A.

    1992-01-01

    A radiatively coupled viscous shock layer analysis program which includes chemical and thermal nonequilibrium is used to calculate stagnation point flow profiles for typical aeroassisted orbital transfer vehicle conditions. Two methods of predicting local thermodynamic nonequilibrium radiation effects are used as a first and second order approximation to this phenomena. Tabulated results for both nitrogen and air freestreams are given with temperature, species, and radiation profiles for some air conditions. Two body solution results are shown for 45 and 60 degree hyperboloid bodies at 12 km/sec and 80 km altitude. The presented results constitute an advancement in the engineering modeling of radiating nonequilibrium reentry flows.

  10. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  11. Caenorhabditis elegans: a model to monitor bacterial air quality

    PubMed Central

    2011-01-01

    Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France). With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test. PMID:22099854

  12. FUNCTIONALITY OF AN INTEGRATED EMISSION PREPROCESSING SYSTEM FOR AIR QUALITY MODELING: THE MODELS-3 EMISSION PREPROCESSOR

    EPA Science Inventory

    Conventional preparation of emission inventories for air quality modeling is typically an extended process using computer routines to reformat, quality check, chemically speciate, and temporally and spatially allocate data. rocessing of emission inventories for regional modeling ...

  13. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 1: MODEL DESCRIPTION

    EPA Science Inventory

    The aerosol component of the Community Multiscale Air Quality (CMAQ) model is designed to be an efficient and economical depiction of aerosol dynamics in the atmosphere. The approach taken represents the particle size distribution as the superposition of three lognormal subdis...

  14. Urban compaction or dispersion? An air quality modelling study

    NASA Astrophysics Data System (ADS)

    Martins, Helena

    2012-07-01

    Urban sprawl is altering the landscape, with current trends pointing to further changes in land use that will, in turn, lead to changes in population, energy consumption, atmospheric emissions and air quality. Urban planners have debated on the most sustainable urban structure, with arguments in favour and against urban compaction and dispersion. However, it is clear that other areas of expertise have to be involved. Urban air quality and human exposure to atmospheric pollutants as indicators of urban sustainability can contribute to the discussion, namely through the study of the relation between urban structure and air quality. This paper addresses the issue by analysing the impacts of alternative urban growth patterns on the air quality of Porto urban region in Portugal, through a 1-year simulation with the MM5-CAMx modelling system. This region has been experiencing one of the highest European rates of urban sprawl, and at the same time presents a poor air quality. As part of the modelling system setup, a sensitivity study was conducted regarding different land use datasets and spatial distribution of emissions. Two urban development scenarios were defined, SPRAWL and COMPACT, together with their new land use and emission datasets; then meteorological and air quality simulations were performed. Results reveal that SPRAWL land use changes resulted in an average temperature increase of 0.4 °C, with local increases reaching as high as 1.5 °C. SPRAWL results also show an aggravation of PM10 annual average values and an increase in the exceedances to the daily limit value. For ozone, differences between scenarios were smaller, with SPRAWL presenting larger concentration differences than COMPACT. Finally, despite the higher concentrations found in SPRAWL, population exposure to the pollutants is higher for COMPACT because more inhabitants are found in areas of highest concentration levels.

  15. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. PMID:21458028

  16. Computational Modeling of Transport Limitations in Li-Air Batteries

    SciTech Connect

    Ryan, Emily M.; Ferris, Kim F.; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2013-02-22

    In this paper we investigate transport limitations in the electrodes of lithium-air batteries through computational modeling. We use meso-scale models to consider the effects of dendrites on the current and potential at the anode surface, and to investigate the effects of reaction and transport parameters on the formation of precipitates in the cathode. The formation of dendrites on the anode surface during cycling reduces the transport of ions and can lead to short circuits in the cell. Growth of precipitates in the cathode reduces the specific capacity of the cell due to surface passivation and pore clogging. Both of these degradation mechanisms depend on meso-scale phenomena, such as the pore-scale reactive transport in the cathode. To understand the effects of the meso-scale transport and precipitation on the performance and lifetime of Li-air batteries, meso-scale modeling is needed that is able to resolve the electrodes and their microstructures.

  17. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.

    PubMed

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children. PMID:27199650

  18. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering

    PubMed Central

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children. PMID:27199650

  19. Impacts of contaminant storage on indoor air quality: Model development

    SciTech Connect

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  20. Developing Mental Models about Air Using Inquiry-Based Instruction with Kindergartners

    ERIC Educational Resources Information Center

    Van Hook, Stephen; Huziak, Tracy; Nowak, Katherine

    2005-01-01

    This study examines the development of mental models of air by kindergarten students after completing a series of hands-on, inquiry-based science lessons. The lessons focused on two properties of air: (1) that air takes up space and (2) that it is made of particles ("balls of air"). The students were interviewed about their ideas of air and about…

  1. Impact of High Resolution Land-Use Data in Meteorology and Air Quality Modeling Systems

    EPA Science Inventory

    Accurate land use information is important in meteorology for land surface exchanges, in emission modeling for emission spatial allocation, and in air quality modeling for chemical surface fluxes. Currently, meteorology, emission, and air quality models often use outdated USGS Gl...

  2. Review of Air Exchange Rate Models for Air Pollution Exposure Assessments

    EPA Science Inventory

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings, where people spend their time. The AER, which is rate the exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pol...

  3. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  4. Fundamental mass transfer models for indoor air pollution sources

    SciTech Connect

    Tichenor, B.A.; Guo, Z.; Sparks, L.E.

    1993-01-01

    The paper discusses a simple, fundamental mass transfer model, based on Fick's Law of Diffusion, for indoor air pollution wet sorbent-based sources. (Note: Models are needed to predict emissions from indoor sources. While empirical approaches based on dynamic chamber data are useful, a more fundamental approach is needed to fully elucidate the relevant mass transfer processes). In the model, the mass transfer rate is assumed to be gas-phase limited and controlled by the boundary layer mass transfer coefficient, the saturation vapor pressure of the material being emitted, and the mass of volatile material remaining. Results of static and dynamic chamber tests, as well as test house studies, are presented.

  5. New Methods for Air Quality Model Evaluation with Satellite Data

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Harkey, M.

    2015-12-01

    Despite major advances in the ability of satellites to detect gases and aerosols in the atmosphere, there remains significant, untapped potential to apply space-based data to air quality regulatory applications. Here, we showcase research findings geared toward increasing the relevance of satellite data to support operational air quality management, focused on model evaluation. Particular emphasis is given to nitrogen dioxide (NO2) and formaldehyde (HCHO) from the Ozone Monitoring Instrument aboard the NASA Aura satellite, and evaluation of simulations from the EPA Community Multiscale Air Quality (CMAQ) model. This work is part of the NASA Air Quality Applied Sciences Team (AQAST), and is motivated by ongoing dialog with state and federal air quality management agencies. We present the response of satellite-derived NO2 to meteorological conditions, satellite-derived HCHO:NO2 ratios as an indicator of ozone production regime, and the ability of models to capture these sensitivities over the continental U.S. In the case of NO2-weather sensitivities, we find boundary layer height, wind speed, temperature, and relative humidity to be the most important variables in determining near-surface NO2 variability. CMAQ agreed with relationships observed in satellite data, as well as in ground-based data, over most regions. However, we find that the southwest U.S. is a problem area for CMAQ, where modeled NO2 responses to insolation, boundary layer height, and other variables are at odds with the observations. Our analyses utilize a software developed by our team, the Wisconsin Horizontal Interpolation Program for Satellites (WHIPS): a free, open-source program designed to make satellite-derived air quality data more usable. WHIPS interpolates level 2 satellite retrievals onto a user-defined fixed grid, in effect creating custom-gridded level 3 satellite product. Currently, WHIPS can process the following data products: OMI NO2 (NASA retrieval); OMI NO2 (KNMI retrieval); OMI

  6. Air Dispersion Modeling for Building 3026C/D Demolition

    SciTech Connect

    Ward, Richard C; Sjoreen, Andrea L; Eckerman, Keith F

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  7. The Impact of Physical Atmosphere on Air Quality and the Utility of Satellite Observations in Air Quality Models

    NASA Astrophysics Data System (ADS)

    Pour Biazar, A.; McNider, R. T.; Park, Y. H.; Doty, K.; Khan, M. N.; Dornblaser, B.

    2012-12-01

    Physical atmosphere significantly impacts air quality as it regulates production, accumulation, and transport of atmospheric pollutants. Consequently, air quality simulations are greatly influenced by the uncertainties that emanates from the simulation of physical atmosphere. Since air quality model predictions are increasingly being used in health studies, regulatory applications, and policy making, reducing such uncertainties in model simulations is of outmost importance. This paper describes some of the critical aspects of physical atmosphere affecting air quality models that can be improved by utilizing satellite observations. Retrievals of skin temperature, surface albedo, surface insolation, cloud top temperature and cloud reflectance obtained from the Geostationary Operational Environmental Satellite (GOES) by NASA/MSFC GOES Product Generation System (GPGS) have been utilized to improve the air quality simulations used in the State Implementation Plan (SIP) attainment demonstrations. Satellite observations of ground temperature are used to recover surface moisture and heat capacity and thereby improving model simulation of air temperature. Observations of clouds are utilized to improve the photochemical reaction rates within the photochemical model and also to assimilate clouds in the meteorological model. These techniques have been implemented and tested in some of the widely used air quality decision modeling systems such as MM5/WRF/CMAQ/CAMx. The results from these activities show significant improvements in air quality simulations.

  8. Mathematical modeling of a primary zinc/air battery

    SciTech Connect

    Mao, Z.; White, R.E. )

    1992-04-01

    This paper reports on the mathematical model developed by Sunu and Bennion that has been extended to include the separator, precipitation of both solid ZnO and K{sub 2}Zn(OH){sub 4}, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  9. Mathematical modeling of a primary zinc/air battery

    NASA Astrophysics Data System (ADS)

    Mao, Z.; White, R. E.

    1992-04-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  10. Mathematical modeling of a primary zinc/air battery

    NASA Technical Reports Server (NTRS)

    Mao, Z.; White, R. E.

    1992-01-01

    The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilization is predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and delivered capacity. Use of a thick separator will increase the anode material utilization, but may reduce the cell voltage.

  11. Seine estuary modelling and AirSWOT measurements validation

    NASA Astrophysics Data System (ADS)

    Chevalier, Laetitia; Lyard, Florent; Laignel, Benoit

    2013-04-01

    In the context of global climate change, knowing water fluxes and storage, from the global scale to the local scale, is a crucial issue. The future satellite SWOT (Surface Water and Ocean Topography) mission, dedicated to the surface water observation, is proposed to meet this challenge. SWOT main payload will be a Ka-band Radar Interferometer (KaRIn). To validate this new kind of measurements, preparatory airborne campaigns (called AirSWOT) are currently being designed. AirSWOT will carry an interferometer similar to Karin: Kaspar-Ka-band SWOT Phenomenology Airborne Radar. Some campaigns are planned in France in 2014. During these campaigns, the plane will fly over the Seine River basin, especially to observe its estuary, the upstream river main channel (to quantify river-aquifer exchange) and some wetlands. The present work objective is to validate the ability of AirSWOT and SWOT, using a Seine estuary hydrodynamic modelling. In this context, field measurements will be collected by different teams such as GIP (Public Interest Group) Seine Aval, the GPMR (Rouen Seaport), SHOM (Hydrographic and Oceanographic Service of the Navy), the IFREMER (French Research Institute for Sea Exploitation), Mercator-Ocean, LEGOS (Laboratory of Space Study in Geophysics and Oceanography), ADES (Data Access Groundwater) ... . These datasets will be used first to validate locally AirSWOT measurements, and then to improve a hydrodynamic simulations (using tidal boundary conditions, river and groundwater inflows ...) for AirSWOT data 2D validation. This modelling will also be used to estimate the benefit of the future SWOT mission for mid-latitude river hydrology. To do this modelling,the TUGOm barotropic model (Toulouse Unstructured Grid Ocean model 2D) is used. Preliminary simulations have been performed by first modelling and then combining to different regions: first the Seine River and its estuarine area and secondly the English Channel. These two simulations h are currently being

  12. POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY

    EPA Science Inventory

    The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...

  13. 39 CFR 320.7 - Suspension for advertisements accompanying parcels or periodicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Suspension for advertisements accompanying parcels or periodicals. 320.7 Section 320.7 Postal Service UNITED STATES POSTAL SERVICE RESTRICTIONS ON PRIVATE CARRIAGE OF LETTERS SUSPENSION OF THE PRIVATE EXPRESS STATUTES § 320.7 Suspension for advertisements accompanying parcels or periodicals. (a)...

  14. 48 CFR 242.1404 - Shipments by parcel post or other classes of mail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Shipments by parcel post or other classes of mail. 242.1404 Section 242.1404 Federal Acquisition Regulations System DEFENSE... SERVICES Traffic and Transportation Management 242.1404 Shipments by parcel post or other classes of mail....

  15. 48 CFR 242.1404 - Shipments by parcel post or other classes of mail.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Shipments by parcel post or other classes of mail. 242.1404 Section 242.1404 Federal Acquisition Regulations System DEFENSE... SERVICES Traffic and Transportation Management 242.1404 Shipments by parcel post or other classes of mail....

  16. Semi-supervised clustering for parcellating brain regions based on resting state fMRI data

    NASA Astrophysics Data System (ADS)

    Cheng, Hewei; Fan, Yong

    2014-03-01

    Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.

  17. 77 FR 28410 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY... Commission a Request of the United States Postal Service to Add Parcel Select Contract 1 to...

  18. 77 FR 42780 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY... Regulatory Commission a Request of the United States Postal Service to Add Parcel Select Contract 5...

  19. 78 FR 56248 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY... the Postal Regulatory Commission a Request of the United States Postal Service to Add Parcel...

  20. 76 FR 2930 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY... ] Commission a Request of the United States Postal Service to Add Parcel Select Contract 1 to...

  1. 77 FR 66193 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY... the Postal Regulatory Commission a Request of the United States Postal Service To Add Parcel...

  2. 77 FR 42780 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY... Regulatory Commission a Request of the United States Postal Service to Add Parcel Select Contract 4...

  3. 77 FR 42780 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY... Regulatory Commission a Request of the United States Postal Service to Add Parcel Select Contract 3...

  4. 39 CFR 320.7 - Suspension for advertisements accompanying parcels or periodicals.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... or periodicals. 320.7 Section 320.7 Postal Service UNITED STATES POSTAL SERVICE RESTRICTIONS ON... advertisements accompanying parcels or periodicals. (a) The operation of 39 U.S.C. 601(a) (1) through (6) and... with merchandise in parcels or accompanying periodicals under the following circumstances: (1)...

  5. 39 CFR 320.7 - Suspension for advertisements accompanying parcels or periodicals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... or periodicals. 320.7 Section 320.7 Postal Service UNITED STATES POSTAL SERVICE RESTRICTIONS ON... advertisements accompanying parcels or periodicals. (a) The operation of 39 U.S.C. 601(a) (1) through (6) and... with merchandise in parcels or accompanying periodicals under the following circumstances: (1)...

  6. 39 CFR 320.7 - Suspension for advertisements accompanying parcels or periodicals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... or periodicals. 320.7 Section 320.7 Postal Service UNITED STATES POSTAL SERVICE RESTRICTIONS ON... advertisements accompanying parcels or periodicals. (a) The operation of 39 U.S.C. 601(a) (1) through (6) and... with merchandise in parcels or accompanying periodicals under the following circumstances: (1)...

  7. 39 CFR 320.7 - Suspension for advertisements accompanying parcels or periodicals.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... or periodicals. 320.7 Section 320.7 Postal Service UNITED STATES POSTAL SERVICE RESTRICTIONS ON... advertisements accompanying parcels or periodicals. (a) The operation of 39 U.S.C. 601(a) (1) through (6) and... with merchandise in parcels or accompanying periodicals under the following circumstances: (1)...

  8. Anatomically Informed Metrics for Connectivity-based Cortical Parcellation from Diffusion MRI

    PubMed Central

    Tungaraza, Rosalia L.; Mehta, Sonya H.; Haynor, David R.; Grabowski, Thomas J.

    2015-01-01

    Connectivity information derived from diffusion MRI can be used to parcellate the cerebral cortex into anatomically and functionally meaningful subdivisions. Acquisition and processing parameters can significantly affect parcellation results, and there is no consensus on best practice protocols. We propose a novel approach for evaluating parcellation based on measuring the degree to which parcellation conforms to known principles of brain organization, specifically cortical field homogeneity and inter-hemispheric homology. The proposed metrics are well behaved on morphologically-generated whole-brain parcels, where they correctly identify contralateral homologies, and give higher scores to anatomically versus arbitrarily generated parcellations. The measures show that individual cortical fields have characteristic connectivity profiles that are compact and separable, and that the topological arrangement of such fields is strongly conserved between hemispheres and individuals. The proposed metrics can be used to evaluate the quality of parcellations at the subject and group levels, and to improve acquisition and data processing for connectivity-based cortical parcellation. PMID:26080389

  9. Dynamic evaluation of air quality models over European regions

    NASA Astrophysics Data System (ADS)

    Thunis, P.; Pisoni, E.; Degraeuwe, B.; Kranenburg, R.; Schaap, M.; Clappier, A.

    2015-06-01

    Chemistry-transport models are increasingly used in Europe for estimating air quality or forecasting changes in pollution levels. But with this increased use of modeling arises the need of harmonizing the methodologies to determine the quality of air quality model applications. This is complex for planning applications, i.e. when models are used to assess the impact of realistic or virtual emission scenarios. In this work, the methodology based on the calculation of potencies proposed by Thunis and Clappier (2014) to analyze the model responses to emission reductions is applied on three different domains in Europe (Po valley, Southern Poland and Flanders). This methodology is further elaborated to facilitate the inter-comparison process and bring in a single diagram the possibility of differentiating long-term from short-term effects. This methodology is designed for model users to interpret their model results but also for policy-makers to help them defining intervention priorities. The methodology is applied to both daily PM10 and 8 h daily maximum ozone.

  10. An analysis of Freedman's "image pulse" model in air.

    PubMed

    Tsakiris, J; McKerrow, P

    2000-10-01

    The "image pulse" model developed by Freedman calculates the echoes generated from convex objects in an underwater environment after insonification with a narrow-band transient signal. The model uses the source radiation and the solid angle subtended at the transducer by the scattering body to determine the echo structure. Work has been completed in adapting this model for use in an air environment using noncoincident transmitters and receivers. Experiments were conducted to measure the amplitudes of the echoes off a range of convex objects, at distances up to 1.4 m, after insonification with a Polaroid transducer. These measured amplitudes were compared to those predicted by the model, with the results for cones highlighting the limitations of the model. Spheres, however, performed significantly better, with an average error of under 5%, indicating that the model should be reasonably accurate at calculating the echoes off convex objects with a smoothly varying surface. PMID:11051488

  11. Comparison of stationary and personal air sampling with an air dispersion model for children's ambient exposure to manganese.

    PubMed

    Fulk, Florence; Haynes, Erin N; Hilbert, Timothy J; Brown, David; Petersen, Dan; Reponen, Tiina

    2016-09-01

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency's Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and -0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. PMID:27168393

  12. Beta test of models-3 with Community Multiscale Air Quality (CMAQ) model

    SciTech Connect

    LeDuc, S.

    1997-12-31

    The Models-3 framework for advanced air quality modeling, developed by the Environmental Protection Agency, Office of Research and Development (EPA/ORD), was provided to a limited number of beta test sites during the summer of 1997. Tutorial datasets and the Community Multiscale Air Quality (CMAQ) model were also provided. Valuable feedback on framework installation, performance, functionality, intuitiveness, user friendliness resulted from the beta test. This information will be used to guide framework improvements preparatory to public release in June 1998.

  13. Space-Time Fusion Under Error in Computer Model Output: An Application to Modeling Air Quality

    EPA Science Inventory

    In the last two decades a considerable amount of research effort has been devoted to modeling air quality with public health objectives. These objectives include regulatory activities such as setting standards along with assessing the relationship between exposure to air pollutan...

  14. Simulation model finned water-air-coil withoutcondensation

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of a finned water-to- air coil without condensation is presented. The model belongs to a collection of simulation models that allows eficient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is short computation time and use of input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part load operation mode, which is becoming increasingly important for energy efficient HVAC systems. The models are intended to be used for yearly energy calculation or load calculation with time steps of about 10 minutes or larger. Short-time dynamic effects, which are of interest for different aspects of control performance, are neglected. The part load behavior of the coil is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature on the water side and the air side. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part load conditions. Geometrical data for the coil are not required, The calculation of the convective heat transfer coefficients at nominal conditions is based on the ratio of the air side heat transfer coefficients multiplied by the fin eficiency and divided by the water side heat transfer coefficient. In this approach, the only geometrical information required are the cross section areas, which are needed to calculate the~uid velocities. The formulas for estimating this ratio are presented. For simplicity the model ignores condensation. The model is static and uses only explicit equations. The explicit formulation ensures short computation time and numerical stability. This allows using the model with sophisticated engineering methods such as automatic system optimization. The paper fully outlines the algorithm description and its

  15. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and

  16. AIR INGRESS ANALYSIS: PART 2 – COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2011-01-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  17. Transboundary air pollution in Asia: Model development and policy implications

    NASA Astrophysics Data System (ADS)

    Holloway, Tracey

    2001-12-01

    This work investigates transboundary air pollution in Asia through atmospheric modeling and public policy analysis. As an example of models actively shaping environmental policy, the Convention on Long-Range Transboundary Air Pollution in Europe (LRTAP) is selected as a case study. The LRTAP Convention is the only mulit- lateral air pollution agreement to date, and results from the RAINS integrated assessment model were heavily used to calculate nationally differentiated emission ceilings. Atmospheric chemistry and transport are included in RAINS through the use of transfer coefficients (or ``source-receptor relationships'') relating pollutant transfer among European nations. Following past work with ATMOS to simulate sulfur species in Asia, here ATMOS is developed to include odd-nitrogen. Fitting with the linear structure of ATMOS and the emphasis on computational efficiency, a simplified chemical scheme developed for use in the NOAA Geophysical Fluid Dynamics Laboratory Global Chemical Transport Model (GFDL GCTM) is adopted. The method solves for the interconversions between NOx, HNO3, and PAN based on five reaction rates stored in look-up tables. ATMOS is used to calculate source-receptor relationships for Asia. Significant exchange of NOy occurs among China, North and South Korea, and Japan. On an annual average basis, China contributes 18% to Japan's total nitrate deposition, 46% to North Korea, and 26% to South Korea. Nitrate deposition is an important component of acidification (along with sulfate deposition), contributing 30-50% to the acid burden over most of Japan, and more than 50% to acid deposition in southeast Asia, where biomass burning emits high levels of NOx. In evaluating the policy-relevance of results from the ATMOS model, four factors are taken into account: the uncertainty and limitations of ATMOS, the environmental concerns facing Asia, the current status of the scientific community in relation to regional air pollution in the region, and

  18. MODELING TRANSPORT BY CONVECTIVE CLOUDS FOR REGIONAL AIR POLLUTION MODELS

    EPA Science Inventory

    A model is developed to account for regional scale vertical transport of pollutants from the mixed layer to the overlying free troposphere by an ensemble of non-precipitating cumulus convective clouds. The model determines acceptable cloud classes for given atmospheric state repr...

  19. Time-based collision risk modeling for air traffic management

    NASA Astrophysics Data System (ADS)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  20. Updraft Model for Development of Autonomous Soaring Uninhabited Air Vehicles

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    Large birds and glider pilots commonly use updrafts caused by convection in the lower atmosphere to extend flight duration, increase cross-country speed, improve range, or simply to conserve energy. Uninhabited air vehicles may also have the ability to exploit updrafts to improve performance. An updraft model was developed at NASA Dryden Flight Research Center (Edwards, California) to investigate the use of convective lift for uninhabited air vehicles in desert regions. Balloon and surface measurements obtained at the National Oceanic and Atmospheric Administration Surface Radiation station (Desert Rock, Nevada) enabled the model development. The data were used to create a statistical representation of the convective velocity scale, w*, and the convective mixing-layer thickness, zi. These parameters were then used to determine updraft size, vertical velocity profile, spacing, and maximum height. This paper gives a complete description of the updraft model and its derivation. Computer code for running the model is also given in conjunction with a check case for model verification.

  1. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  2. Estimating Lightning NOx Emissions for Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Scotty, E.; Harkey, M.

    2014-12-01

    Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.

  3. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  4. ONE ATMOSPHERE MODELING FOR AIR QUALITY: BUILDING PARTNERSHIPS THAT TRANSITION RESEARCH INTO APPLICATIONS

    EPA Science Inventory

    The Community Miultiscale Air Quality (CMAQ) modeling system is a "one atmosphere" chemical transport model that simulates the transport and fate of air pollutants from urban to continental scales and from daily to annual time intervals.

  5. 78 FR 56242 - Notice of Realty Action: Competitive Sale of 28 Parcels of Public Land in Clark County, NV

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ...: 14X5232] Notice of Realty Action: Competitive Sale of 28 Parcels of Public Land in Clark County, NV AGENCY... Management (BLM) proposes to offer 28 parcels of public land totaling approximately 440.42 acres in the Las... parcels would be offered for sale pursuant to the Southern Nevada Public Land Management Act of...

  6. The influence of clean air entrainment on the droplet effective radius of warm maritime convective clouds

    SciTech Connect

    Pontikis, C.A.; Hicks, E.M.

    1993-09-01

    The influence of clear air entrainment on the droplet effective radius of cloudy air parcels is investigated theoretically and experimentally by using data collected in 16 warm maritime tropical cumuli during the Joint Hawaii Warm Rain Project (1985). The theoretical study consists of calculations of the droplet spectrum, droplet effective radius, and liquid water content performed by an entraining cloud parcel model for different entrainment-mixing scenarios. The numerical simulation results are interpreted by means of an analytic equation of the droplet effective radius expressed as a function of both the liquid water content and the droplet concentration. In the experiment study, the behavior of the effective radius is examined at all scales as a function of the liquid water content, used as a dilution degree indicator. At a given cloud level, in the abscence of secondary droplet activation, the effective radius of the droplet spectrum of small-scale parcels (10-Hz data) is roughly independent of the liquid water content and appears unaffected by entrainment. In contrast, if secondary droplet activation occurs in diluted ascending cloud parcels, a wide range of effective radius values is observed for a given liquid water content as a result of the induced variation of the droplet concentration. Further, mean cloud pass effective radii increase with increasing mean pass liquid water contents and mean pass height above cloud base. The results limit the validity of the classical cloud effective radius parameterizations used in the radiative transfer calculations in climate models and some suggestions to improve these parameterizations are presented.

  7. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  8. Modelling of operation of a lithium-air battery with ambient air and oxygen-selective membrane

    NASA Astrophysics Data System (ADS)

    Sahapatsombut, Ukrit; Cheng, Hua; Scott, Keith

    2014-03-01

    A macro-homogeneous model has been developed to evaluate the impact of replacing pure oxygen with ambient air on the performance of a rechargeable non-aqueous Li-air battery. The model exhibits a significant reduction in discharge capacity, e.g. from 1240 to 226 mAh gcarbon-1 at 0.05 mA cm-2 when using ambient air rather than pure oxygen. The model correlates the relationship between the performance and electrolyte decomposition and formation of discharge products (such as Li2O2 and Li2CO3) under ambient air conditions. The model predicts a great benefit of using an oxygen-selective membrane on increasing capacity. The results indicate a good agreement between the experimental data and the model.

  9. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  10. Modelling of dynamic targeting in the Air Operations Centre

    NASA Astrophysics Data System (ADS)

    Lo, Edward H. S.; Au, T. Andrew

    2007-12-01

    Air Operations Centres (AOCs) are high stress multitask environments for planning and executing of theatre-wide airpower. Operators have multiple responsibilities to ensure that the orchestration of air assets is coordinated to maximum effect. AOCs utilise a dynamic targeting process to immediately prosecute time-sensitive targets. For this process to work effectively, a timely decision must be made regarding the appropriate course of action before the action is enabled. A targeting solution is typically developed using a number of inter-related processes in the kill chain - the Find, Fix, Track, Target, Engage, and Assess (F2T2EA) model. The success of making a right decision about dynamic targeting is ultimately limited by the cognitive and cooperative skills of the team prosecuting the mission and their associated workload. This paper presents a model of human interaction and tasks within the dynamic targeting sequence. The complex network of tasks executed by the team can be analysed by undertaking simulation of the model to identify possible information-processing bottlenecks and overloads. The model was subjected to various tests to generate typical outcomes, operator utilisation, duration as well as rates of output in the dynamic targeting process. This capability will allow for future "what-if" evaluations of numerous concepts for team formation or task reallocation, complementing live exercises and experiments.

  11. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  12. EPA third-generation air quality modeling system: Models-3 user manual. Standard tutorial

    SciTech Connect

    1998-09-01

    Models-3 is a flexible software system designed to simplify the development and use of environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. The initial version of Models-3 contains a Community Multi-scale Air Quality (CMAQ) modeling system for urban to regional scale air quality simulation of tropospheric ozone, acid deposition, visibility, and fine particles. Models-3 and CMAQ in combination form a powerful third generation air quality modeling and assessment system that enables a user to execute air quality simulation models and visualize their results. Models-3/CMAQ also assists the model developer to assemble, test, and evaluate science process components and their impact on chemistry-transport model predictions by facilitating the interchange of science codes, transparent use of multiple computing platforms, and access of data across the network. The Models-3/CMAQ provides flexibility to change key model specifications such as grid resolution and chemistry mechanism without rewriting the code. Models-3/CMAQ is intended to serve as a community framework for continual advancement and use of environmental assessment tools. This User Manual Tutorial serves as a guide to show the steps necessary to implement an application in Models-3/CMAQ.

  13. Air pollution modifies floral scent trails

    NASA Astrophysics Data System (ADS)

    McFrederick, Quinn S.; Kathilankal, James C.; Fuentes, Jose D.

    Floral hydrocarbons provide essential signals to attract pollinators. As soon as they are emitted to the atmosphere, however, hydrocarbons are destroyed by chemical reactions involving pollutants such as ozone. It is therefore likely that increased air pollution interferes with pollinator attracting hydrocarbon signals. To test this hypothesis, a Lagrangian diffusion model was used to determine the position of air parcels away from hydrocarbon sources and to estimate the rate of chemical destruction of hydrocarbons as air parcels moved across the landscape. The hydrocarbon compounds linalool, β-myrcene, and β-ocimene were chosen because they are known to be common scents released from flowers. The suppressed ambient abundances of volatile organic compounds were determined in response to increased regional levels of ozone, hydroxyl, and nitrate radicals. The results indicate that the documented increases in air pollution concentrations, from pre-industrial to present times, can lead to reductions in volatile compound concentrations insects detect as they pollinate flowers. For highly reactive volatiles the maximum downwind distance from the source at which pollinators can detect the scents may have changed from kilometers during pre-industrial times to <200 m during the more polluted conditions of present times. The increased destruction of floral signals in polluted air masses may have important implications for both pollinators and signaling plants. When patches of flowers are further apart than the visual range of pollinators, such as in fragmented landscapes, the loss of scent signals may mean that pollinators spend more time searching for patches and less time foraging. This decrease in pollinator foraging efficiency will simultaneously decrease the pollinator's reproductive output and the amount of pollen flow in flowering plants.

  14. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  15. Parcellation of the Thalamus into Distinct Nuclei reflects EphA Expression and Function

    PubMed Central

    Lehigh, Kathryn M.; Leonard, Carrie E.; Baranoski, Jacob; Donoghue, Maria J.

    2013-01-01

    Intercellular signaling via the Eph receptor tyrosine kinases and their ligands, the ephrins, acts to shape many regions of the developing brain. One intriguing consequence of Eph signaling is the control of mixing between discrete cell populations in the developing hindbrain, contributing to the formation of segregated rhombomeres. Since the thalamus is also a parcellated structure comprised of discrete nuclei, might Eph signaling play a parallel role in cell segregation in this brain structure? Analyses of expression reveal that several Eph family members are expressed in the forming thalamus and that cells expressing particular receptors form cellular groupings as development proceeds. Specifically, expression of receptors EphA4 or EphA7 and ligand ephrin-A5 is localized to distinct thalamic domains. EphA4 and EphA7 are often coexpressed in regions of the forming thalamus, with each receptor marking discrete thalamic domains. In contrast, ephrin-A5 is expressed by a limited group of thalamic cells. Within the ventral thalamus, EphA4 is present broadly, occasionally overlapping with ephrin-A5 expression. EphA7 is more restricted in its expression and is largely nonoverlapping with ephrin-A5. In mutant mice lacking one or both receptors or ephrin-A5, the appearance of the venteroposterolateral (VPL) and venteroposteromedial (VPM) nuclear complex is altered compared to wild type mice. These in vivo results support a role for Eph family members in the definition of the thalamic nuclei. In parallel, in vitro analysis reveals a hierarchy of mixing among cells expressing ephrin-A5 with cells expressing EphA4 alone, EphA4 and EphA7 together, or EphA7 alone. Together, these data support a model in which EphA molecules promote the parcellation of discrete thalamic nuclei by limiting the extent of cell mixing. PMID:24036135

  16. Downscaling modelling system for multi-scale air quality forecasting

    NASA Astrophysics Data System (ADS)

    Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.

    2010-09-01

    Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a

  17. Evaluation of observation-fused regional air quality model results for population air pollution exposure estimation.

    PubMed

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-07-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRRs are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account for spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  18. Evaluation of Observation-Fused Regional Air Quality Model Results for Population Air Pollution Exposure Estimation

    PubMed Central

    Chen, Gang; Li, Jingyi; Ying, Qi; Sherman, Seth; Perkins, Neil; Rajeshwari, Sundaram; Mendola, Pauline

    2014-01-01

    In this study, Community Multiscale Air Quality (CMAQ) model was applied to predict ambient gaseous and particulate concentrations during 2001 to 2010 in 15 hospital referral regions (HRRs) using a 36-km horizontal resolution domain. An inverse distance weighting based method was applied to produce exposure estimates based on observation-fused regional pollutant concentration fields using the differences between observations and predictions at grid cells where air quality monitors were located. Although the raw CMAQ model is capable of producing satisfying results for O3 and PM2.5 based on EPA guidelines, using the observation data fusing technique to correct CMAQ predictions leads to significant improvement of model performance for all gaseous and particulate pollutants. Regional average concentrations were calculated using five different methods: 1) inverse distance weighting of observation data alone, 2) raw CMAQ results, 3) observation-fused CMAQ results, 4) population-averaged raw CMAQ results and 5) population-averaged fused CMAQ results. It shows that while O3 (as well as NOx) monitoring networks in the HRR regions are dense enough to provide consistent regional average exposure estimation based on monitoring data alone, PM2.5 observation sites (as well as monitors for CO, SO2, PM10 and PM2.5 components) are usually sparse and the difference between the average concentrations estimated by the inverse distance interpolated observations, raw CMAQ and fused CMAQ results can be significantly different. Population-weighted average should be used to account spatial variation in pollutant concentration and population density. Using raw CMAQ results or observations alone might lead to significant biases in health outcome analyses. PMID:24747248

  19. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 μg m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which

  20. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    PubMed

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  1. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    PubMed Central

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-01-01

    NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  2. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, R.; Chipperfield, M.; Savage, N.

    2012-12-01

    The Met Office's operational regional Air Quality Unified Model (AQUM) contains a description of atmospheric chemistry/aerosols which allows for the short-term forecast of chemical weather (e.g. high concentrations of ozone or nitrogen dioxide, which can trigger warnings of poor air quality). AQUM's performance has so far only been tested against a network of surface monitoring stations. Therefore, with recent improvements in the quality and quantity of satellite measurements, data products (e.g. tropospheric columns, vertical profiles) from several satellite instruments will be used to test the performance of the model. First comparisons between an AQUM simulation for the UK heatwave event of July 2006 and data from OMI, TES (both on AURA) and MODIS (on AQUA) have identified multiple model-satellite biases. The chemical/aerosol species investigated for this simulation include nitrogen dioxide (NO2), ozone (O3), formaldehyde (HCHO), carbon monoxide (CO) and aerosol optical depth (AOD) at 0.55 microns wavelength. NO2 spatial positive mean biases (AQUM-OMI July 2006 monthly mean tropospheric columns) over north- east England suggest model overestimation in the area's urban regions. Currently, sensitivity tests of the NOx emission datasets are investigating these biases and the model's represent of urban pollution. In the UK O3 monthly mean vertical profile comparisons (AQUM-TES), strong positive mean biases are detected in the upper troposphere/lower stratosphere. Since the AQUM does not use a stratospheric chemistry scheme, the satellite climatological vertical boundary conditions will be investigated (e.g. test the model with new boundary conditions using multiple satellite instruments or perturb existing climatologies). Comparisons of HCHO (AQUM-OMI monthly mean tropospheric columns) biases highlight strong negative biases over continental Europe and sporadic positive biases in the south-east lateral boundary conditions. Therefore, evaluation and development of

  3. Evaluation of air pollution modelling tools as environmental engineering courseware.

    PubMed

    Souto González, J A; Bello Bugallo, P M; Casares Long, J J

    2004-01-01

    The study of phenomena related to the dispersion of pollutants usually takes advantage of the use of mathematical models based on the description of the different processes involved. This educational approach is especially important in air pollution dispersion, when the processes follow a non-linear behaviour so it is difficult to understand the relationships between inputs and outputs, and in a 3D context where it becomes hard to analyze alphanumeric results. In this work, three different software tools, as computer solvers for typical air pollution dispersion phenomena, are presented. Each software tool developed to be implemented on PCs, follows approaches that represent three generations of programming languages (Fortran 77, VisualBasic and Java), applied over three different environments: MS-DOS, MS-Windows and the world wide web. The software tools were tested by students of environmental engineering (undergraduate) and chemical engineering (postgraduate), in order to evaluate the ability of these software tools to improve both theoretical and practical knowledge of the air pollution dispersion problem, and the impact of the different environment in the learning process in terms of content, ease of use and visualization of results. PMID:15193095

  4. Air assisted lamellar keratectomy for the corneal haze model

    PubMed Central

    Kim, Soohyun; Park, Young Woo; Lee, Euiri; Park, Sang Wan; Park, Sungwon; Kim, Jong Whi; Seong, Je Kyung

    2015-01-01

    To standardize the corneal haze model in the resection depth and size for efficient corneal haze development, air assisted lamellar keratectomy was performed. The ex vivo porcine corneas were categorized into four groups depending on the trephined depth: 250 µm (G1), 375 µm (G2), 500 µm (G3) and 750 µm (G4). The stroma was equally ablated at the five measurement sites in all groups. Significant differences were observed between the trephined corneal depths for resection and ablated corneal thickness in G1 (p < 0.001). No significant differences were observed between the trephined corneal depth for resection and the ablated corneal thickness in G2, G3, and G4. The resection percentage was similar in all groups after microscopic imaging of corneal sections. Air assisted lamellar keratectomy (AK) and conventional keratectomy (CK) method were applied to six beagles, after which development of corneal haze was evaluated weekly until postoperative day 28. The occurrence of corneal haze in the AK group was significantly higher than that in the CK group beginning 14 days after surgery. Alpha-smooth muscle actin expression was significantly higher in the AK group (p < 0.001) than the CK group. Air assisted lamellar keratectomy was used to achieve the desired corneal thickness after resection and produce sufficient corneal haze. PMID:25797296

  5. Connectivity-based structural and functional parcellation of the human cortex using diffusion imaging and tractography

    PubMed Central

    Cloutman, Lauren L.; Lambon Ralph, Matthew A.

    2012-01-01

    The parcellation of the cortex via its anatomical properties has been an important research endeavor for over a century. To date, however, a universally accepted parcellation scheme for the human brain still remains elusive. In the current review, we explore the use of in vivo diffusion imaging and white matter tractography as a non-invasive method for the structural and functional parcellation of the human cerebral cortex, discussing the strengths and limitations of the current approaches. Cortical parcellation via white matter connectivity is based on the premise that, as connectional anatomy determines functional organization, it should be possible to segregate functionally-distinct cortical regions by identifying similarities and differences in connectivity profiles. Recent studies have provided initial evidence in support of the efficacy of this connectional parcellation methodology. Such investigations have identified distinct cortical subregions which correlate strongly with functional regions identified via fMRI and meta-analyses. Furthermore, a strong parallel between the cortical regions defined via tractographic and more traditional cytoarchitectonic parcellation methods has been observed. However, the degree of correspondence and relative functional importance of cytoarchitectonic- versus connectivity-derived parcellations still remains unclear. Diffusion tractography remains one of the only methods capable of visualizing the structural networks of the brain in vivo. As such, it is of vital importance to continue to improve the accuracy of the methodology and to extend its potential applications in the study of cognition in neurological health and disease. PMID:22952459

  6. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    EPA Science Inventory

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  7. LINKING ETA MODEL WITH THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM: OZONE BOUNDARY CONDITIONS

    EPA Science Inventory

    A prototype surface ozone concentration forecasting model system for the Eastern U.S. has been developed. The model system is consisting of a regional meteorological and a regional air quality model. It demonstrated a strong prediction dependence on its ozone boundary conditions....

  8. A particle-grid air quality modeling approach

    SciTech Connect

    Chock, D.P.; Winkler, S.L.

    1996-12-31

    A particle-grid air quality modeling approach that can incorporate chemistry is proposed as an alternative to the conventional PDF-grid air quality modeling. The particle trajectory model can accurately describe advection of air pollutants without introducing artificial diffusion, generating negative concentrations or distorting the concentration distributions. It also accurately describes the dispersion of emissions from point sources and is capable of retaining subgrid-scale information. Inhomogeneous turbulence necessitates use of a small timestep, say, 10 s to describe vertical dispersion of particles in convective conditions. A timestep as large as 200 s can be used to simulate horizontal dispersion. A time-splitting scheme can be used to couple the horizontal and vertical dispersion in a 3D simulation, and about 2000-3000 particles per cell of size 5 km x 5 km X 50 m is sufficient to yield a highly accurate simulation of 3D dispersion. Use of an hourly-averaged concentration further reduces the demand of particle per cell to 500. The particle-grid method is applied to a system of ten reacting chemical species in a two-dimensional rotating flow field with and without diffusion. A chemistry grid within which reactions are assumed to take place can be decoupled from the grid describing the flow field. Two types of chemistry grids are used to describe the chemical reactions: a fixed coarse grid and a moving (the advection case) or stationary (the advection plus diffusion case) fine grid. Two particle-number densities are also used: 256 and 576 particles per fixed coarse grid cell. The species mass redistributed back to the particle after each reaction step is assumed to be proportional to the species mass in the particle before the reaction. The simulation results are very accurate, especially in the advection-chemistry case. Accuracy improves with the use of a fine grid.

  9. Space-Time Analysis of the Air Quality Model Evaluation International Initiative (AQMEII) Phase 1 Air Quality Simulations

    EPA Science Inventory

    This study presents an evaluation of summertime daily maximum ozone concentrations over North America (NA) and Europe (EU) using the database generated during Phase 1 of the Air Quality Model Evaluation International Initiative (AQMEII). The analysis focuses on identifying tempor...

  10. Assimilation of Satellite Data in Regional Air Quality Models

    NASA Technical Reports Server (NTRS)

    Mcnider, Richard T.; Norris, William B.; Casey, Daniel; Pleim, Jonathan E.; Roselle, Shawn J.; Lapenta, William M.

    1997-01-01

    In terms of important uncertainty in regional-scale air-pollution models, probably no other aspect ranks any higher than the current ability to specify clouds and soil moisture on the regional scale. Because clouds in models are highly parameterized, the ability of models to predict the correct spatial and radiative characteristics is highly suspect and subject to large error. The poor representation of cloud fields from point measurements at National Weather Services stations and the almost total absence of surface moisture availability observations has made assimilation of these variables difficult to impossible. Yet, the correct inclusion of clouds and surface moisture are of first-order importance in regional-scale photochemistry.

  11. Modeling and Analysis of Aluminum/Air Fuel Cell

    NASA Astrophysics Data System (ADS)

    Leon, Armando J.

    The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink(TM). The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.

  12. Dutch food bank parcels do not meet nutritional guidelines for a healthy diet.

    PubMed

    Neter, Judith E; Dijkstra, S Coosje; Visser, Marjolein; Brouwer, Ingeborg A

    2016-08-01

    Nutritional intakes of food bank recipients and consequently their health status largely rely on the availability and quality of donated food in provided food parcels. In this cross-sectional study, the nutritional quality of ninety-six individual food parcels was assessed and compared with the Dutch nutritional guidelines for a healthy diet. Furthermore, we assessed how food bank recipients use the contents of the food parcel. Therefore, 251 Dutch food bank recipients from eleven food banks throughout the Netherlands filled out a general questionnaire. The provided amounts of energy (19 849 (sd 162 615) kJ (4744 (sd 38 866) kcal)), protein (14·6 energy percentages (en%)) and SFA (12·9 en%) in a single-person food parcel for one single day were higher than the nutritional guidelines, whereas the provided amounts of fruits (97 (sd 1441) g) and fish (23 (sd 640) g) were lower. The number of days for which macronutrients, fruits, vegetables and fish were provided for a single-person food parcel ranged from 1·2 (fruits) to 11·3 (protein) d. Of the participants, only 9·5 % bought fruits and 4·6 % bought fish to supplement the food parcel, 39·4 % used all foods provided and 75·7 % were (very) satisfied with the contents of the food parcel. Our study shows that the nutritional content of food parcels provided by Dutch food banks is not in line with the nutritional guidelines. Improving the quality of the parcels is likely to positively impact the dietary intake of this vulnerable population subgroup. PMID:27229880

  13. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    NASA Technical Reports Server (NTRS)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  14. Quantifying urban street configuration for improvements in air pollution models

    NASA Astrophysics Data System (ADS)

    Eeftens, Marloes; Beekhuizen, Johan; Beelen, Rob; Wang, Meng; Vermeulen, Roel; Brunekreef, Bert; Huss, Anke; Hoek, Gerard

    2013-06-01

    In many built-up urban areas, tall buildings along narrow streets obstruct the free flow of air, resulting in higher pollution levels. Input data to account for street configuration in models are difficult to obtain for large numbers of streets. We describe an approach to calculate indicators of this "urban canyon effect" using 3-dimensional building data and evaluated whether these indicators improved spatially resolved land use regression (LUR) models.Concentrations of NO2 and NOx were available from 132 sites in the Netherlands. We calculated four indicators for canyon effects at each site: (1) the maximum aspect ratio (building height/width of the street) between buildings on opposite sides of the street, (2) the mean building angle, which is the angle between the horizontal street level and the line of sight to the top of surrounding buildings, (3) median building angle and (4) "SkyView Factor" (SVF), a measure of the total fraction of visible sky. Basic LUR models were computed for both pollutants using common predictors such as household density, land-use and nearby traffic intensity. We added each of the four canyon indicators to the basic LUR models and evaluated whether they improved the model.The calculated aspect ratio agreed well (R2 = 0.49) with aspect ratios calculated from field observations. Explained variance (R2) of the basic LUR models without canyon indicators was 80% for NO2 and 76% for NOx, and increased to 82% and 78% respectively if SVF was included. Despite this small increase in R2, contrasts in SVF (10th-90th percentile) resulted in substantial concentration differences of 5.56 μg m-3 in NO2 and 10.9 μg m-3 in NOx.We demonstrated a GIS based approach to quantify the obstruction of free air flow by buildings, applicable for large numbers of streets. Canyon indicators could be valuable to consider in air pollution models, especially in areas with low- and high-rise canyons.

  15. Dry deposition modelling of air pollutants over urban areas

    NASA Astrophysics Data System (ADS)

    Cherin, N.; Roustan, Y.; Seigneur, C.; Musson Genon, L.

    2012-04-01

    More than one-half of the world's inhabitants lives in urban areas. Consequently, the evolution of pollutants inside these urban areas are problems of great concern in air quality studies. Though the dry deposition fluxes of air pollutants, which are known to be significant in the neighborhood of sources of pollution, like urban areas, have not been modeled precisely until recently within urban areas. By reviewing the physics of the processes leading to the dry deposition of air pollutants, it is clear that atmosphere turbulence is crucial for dry deposition. Urban areas, and particularly buildings, are known to significantly impact flow fields and then by extension the dry deposition fluxes. Numerous urban schemes have been developed in the past decades to approximate the effect of the local scale urban elements on drag, heat flux and radiative budget. The most recent urban canopy models are based on quite simple geometries, but sufficiently close to represent the aerodynamic and thermal characteristics of cities. These canopy models are generally intended to parameterize aerodynamic and thermal fields, but not dry deposition. For dry deposition, the current classical "roughness" approach, uses only two representative parameters, z0 and d, namely the roughness length and the zero-plane displacement height to represent urban areas. In this work, an innovative dry deposition model based on the urban canyon concept, is proposed. It considers a single road, bordered by two facing buildings, which are treated separately. It accounts for sub-grid effects of cities, especially a better parameterization of the turbulence scheme, through the use of local mixing length and a more detailled description of the urban area and key parameters within the urban canopy. Three different flow regimes are distinguished in the urban canyon according to the height-to-width ratio: isolated roughness flow, wake interference flow and skimming flow regime. The magnitude of differences in

  16. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    PubMed Central

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-01-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined “mini-grids” of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  17. Air quality modeling in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS).

    PubMed

    Isakov, Vlad; Arunachalam, Saravanan; Batterman, Stuart; Bereznicki, Sarah; Burke, Janet; Dionisio, Kathie; Garcia, Val; Heist, David; Perry, Steve; Snyder, Michelle; Vette, Alan

    2014-09-01

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. A hybrid air quality modeling approach was used to estimate exposure to traffic-related air pollutants in support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) conducted in Detroit (Michigan, USA). Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) and Research LINE-source dispersion model for near-surface releases (RLINE) dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multi-scale Air Quality (CMAQ) and the Space-Time Ordinary Kriging (STOK) models. To capture the near-road pollutant gradients, refined "mini-grids" of model receptors were placed around participant homes. Exposure metrics for CO, NOx, PM2.5 and its components (elemental and organic carbon) were predicted at each home location for multiple time periods including daily and rush hours. The exposure metrics were evaluated for their ability to characterize the spatial and temporal variations of multiple ambient air pollutants compared to measurements across the study area. PMID:25166917

  18. Implementation of a new parcellation of the orbitofrontal cortex in the automated anatomical labeling atlas.

    PubMed

    Rolls, Edmund T; Joliot, Marc; Tzourio-Mazoyer, Nathalie

    2015-11-15

    An alternative parcellation of the orbitofrontal cortex is described for the automated anatomical labeling atlas of Tzourio-Mazoyer et al. (2002) (Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15:273-289). The new parcellation of the orbitofrontal cortex follows the description provided by Chiavaras, Petrides, and colleagues (2000, 2001). The new atlas is available as a toolbox for SPM at http://www.gin.cnrs.fr/AAL2. PMID:26241684

  19. Analysis of air pollution from swine production by using air dispersion model and GIS in Quebec.

    PubMed

    Sarr, Joachim H; Goïta, Kalifa; Desmarais, Camille

    2010-01-01

    Swine production, the second most important contributor to Quebec's agricultural revenue, faces many problems. Intensive piggeries, with up to 599 animal units, are used to raise finishing pigs for slaughter. Among the great number of gaseous species emitted to the atmospheric environment from livestock buildings and manure storage units is NH3, which is one of the most important and most offensive with respect to human health. Under appropriate meteorological and topographical conditions, gaseous contaminants can spread and cause a public nuisance--up to a 1-km radius around the farm. To mitigate these effects, the Quebec Government adopted regulations that set minimum buffer distances to be observed by any expansion of an existing or new pig farm. The objectives of this study were (i) to assess the efficiency of the current buffer distance prescriptions in Quebec in mitigating effects of air pollution from swine units and (ii) to identify potential areas for establishing pig farm operations that will not be offensive to people. The air dispersion American Meteorological Society/Environmental Protection Agency Regulatory Model (AERMOD) with receptors distributed at 1.6 km around each source was used first, followed by a spatial geographic information system (GIS) model. Results from the dispersion model showed that the highest hourly concentration with a 99.5% compliance frequency for a single farm was 3078.1 microg/m3 and exceeded the NH3 odor criterion hourly standard set by the Quebec Government at 183.4 microg/m3. Thus, for public safety, densely populated areas like housing developments must be located >1300 m from a pig farm. This distance is in the range of setback distances (723 to 1447 m) obtained by using abacuses defined in the L'Erable Regional County Municipality. That is why we can say the current rules established by the Quebec Government, if rigorously applied, can prevent odor nuisance, due to NH3 emission, from swine farms. In the spatial model

  20. Application of zonal model on indoor air sensor network design

    NASA Astrophysics Data System (ADS)

    Chen, Y. Lisa; Wen, Jin

    2007-04-01

    Growing concerns over the safety of the indoor environment have made the use of sensors ubiquitous. Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is more informed by intuition and experience rather by systematic design. To develop a sensor system design methodology, a proper indoor airflow modeling approach is needed. Various indoor airflow modeling techniques, from complicated computational fluid dynamics approaches to simplified multi-zone approaches, exist in the literature. In this study, the effects of two airflow modeling techniques, multi-zone modeling technique and zonal modeling technique, on indoor air protection sensor system design are discussed. Common building attack scenarios, using a typical CBW agent, are simulated. Both multi-zone and zonal models are used to predict airflows and contaminant dispersion. Genetic Algorithm is then applied to optimize the sensor location and quantity. Differences in the sensor system design resulting from the two airflow models are discussed for a typical office environment and a large hall environment.

  1. Evaluation of the meteorological forcing used for the Air Quality Model Evaluation International Initiative (AQMEII) air quality simulations

    NASA Astrophysics Data System (ADS)

    Vautard, Robert; Moran, Michael D.; Solazzo, Efisio; Gilliam, Robert C.; Matthias, Volker; Bianconi, Roberto; Chemel, Charles; Ferreira, Joana; Geyer, Beate; Hansen, Ayoe B.; Jericevic, Amela; Prank, Marje; Segers, Arjo; Silver, Jeremy D.; Werhahn, Johannes; Wolke, Ralf; Rao, S. T.; Galmarini, Stefano

    2012-06-01

    Accurate regional air pollution simulation relies strongly on the accuracy of the mesoscale meteorological simulation used to drive the air quality model. The framework of the Air Quality Model Evaluation International Initiative (AQMEII), which involved a large international community of modeling groups in Europe and North America, offered a unique opportunity to evaluate the skill of mesoscale meteorological models for two continents for the same period. More than 20 groups worldwide participated in AQMEII, using several meteorological and chemical transport models with different configurations. The evaluation has been performed over a full year (2006) for both continents. The focus for this particular evaluation was meteorological parameters relevant to air quality processes such as transport and mixing, chemistry, and surface fluxes. The unprecedented scale of the exercise (one year, two continents) allowed us to examine the general characteristics of meteorological models' skill and uncertainty. In particular, we found that there was a large variability between models or even model versions in predicting key parameters such as surface shortwave radiation. We also found several systematic model biases such as wind speed overestimations, particularly during stable conditions. We conclude that major challenges still remain in the simulation of meteorology, such as nighttime meteorology and cloud/radiation processes, for air quality simulation.

  2. Modeling Air Traffic Management Technologies with a Queuing Network Model of the National Airspace System

    NASA Technical Reports Server (NTRS)

    Long, Dou; Lee, David; Johnson, Jesse; Gaier, Eric; Kostiuk, Peter

    1999-01-01

    This report describes an integrated model of air traffic management (ATM) tools under development in two National Aeronautics and Space Administration (NASA) programs -Terminal Area Productivity (TAP) and Advanced Air Transport Technologies (AATT). The model is made by adjusting parameters of LMINET, a queuing network model of the National Airspace System (NAS), which the Logistics Management Institute (LMI) developed for NASA. Operating LMINET with models of various combinations of TAP and AATT will give quantitative information about the effects of the tools on operations of the NAS. The costs of delays under different scenarios are calculated. An extension of Air Carrier Investment Model (ACIM) under ASAC developed by the Institute for NASA maps the technologies' impacts on NASA operations into cross-comparable benefits estimates for technologies and sets of technologies.

  3. An optimization model for the US Air-Traffic System

    NASA Technical Reports Server (NTRS)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  4. Air quality modeling of selected aromatic and non-aromatic air toxics in the Houston urban and industrial airshed

    NASA Astrophysics Data System (ADS)

    Coarfa, Violeta Florentina

    2007-12-01

    Air toxics, also called hazardous air pollutants (HAPs), pose a serious threat to human health and the environment. Their study is important in the Houston area, where point sources, mostly located along the Ship Channel, mobile and area sources contribute to large emissions of such toxic pollutants. Previous studies carried out in this area found dangerous levels of different HAPs in the atmosphere. This thesis presents several studies that were performed for the aromatic and non-aromatic air toxics in the HGA. For these studies we developed several tools: (1) a refined chemical mechanism, which explicitly represents 18 aromatic air toxics that were lumped under two model species by the previous version, based on their reactivity with the hydroxyl radical; (2) an engineering version of an existing air toxics photochemical model that enables us to perform much faster long-term simulations compared to the original model, that leads to a 8--9 times improvement in the running time across different computing platforms; (3) a combined emission inventory based on the available emission databases. Using the developed tools, we quantified the mobile source impact on a few selected air toxics, and analyzed the temporal and spatial variation of selected aromatic and non-aromatic air toxics in a few regions within the Houston area; these regions were characterized by different emissions and environmental conditions.

  5. Future Air Traffic Growth and Schedule Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  6. Future Air Traffic Growth and Schedule Model, Supplement

    NASA Technical Reports Server (NTRS)

    Kimmel, William M. (Technical Monitor); Smith, Jeremy C.; Dollyhigh, Samuel M.

    2004-01-01

    The Future Air Traffic Growth and Schedule Model was developed as an implementation of the Fratar algorithm to project future traffic flow between airports in a system and of then scheduling the additional flights to reflect current passenger time-of-travel preferences. The methodology produces an unconstrained future schedule from a current (or baseline) schedule and the airport operations growth rates. As an example of the use of the model, future schedules are projected for 2010 and 2022 for all flights arriving at, departing from, or flying between all continental United States airports that had commercial scheduled service for May 17, 2002. Inter-continental US traffic and airports are included and the traffic is also grown with the Fratar methodology to account for their arrivals and departures to the continental US airports. Input data sets derived from the Official Airline Guide (OAG) data and FAA Terminal Area Forecast (TAF) are included in the examples of the computer code execution.

  7. Validation of two air quality models for Indian mining conditions.

    PubMed

    Chaulya, S K; Ahmad, M; Singh, R S; Bandopadhyay, L K; Bondyopadhay, C; Mondal, G C

    2003-02-01

    All major mining activity particularly opencast mining contributes to the problem of suspended particulate matter (SPM) directly or indirectly. Therefore, assessment and prediction are required to prevent and minimize the deterioration of SPM due to various opencast mining operations. Determination of emission rate of SPM for these activities and validation of air quality models are the first and foremost concern. In view of the above, the study was taken up for determination of emission rate for SPM to calculate emission rate of various opencast mining activities and validation of commonly used two air quality models for Indian mining conditions. To achieve the objectives, eight coal and three iron ore mining sites were selected to generate site specific emission data by considering type of mining, method of working, geographical location, accessibility and above all resource availability. The study covers various mining activities and locations including drilling, overburden loading and unloading, coal/mineral loading and unloading, coal handling or screening plant, exposed overburden dump, stock yard, workshop, exposed pit surface, transport road and haul road. Validation of the study was carried out through Fugitive Dust Model (FDM) and Point, Area and Line sources model (PAL2) by assigning the measured emission rate for each mining activity, meteorological data and other details of the respective mine as an input to the models. Both the models were run separately for the same set of input data for each mine to get the predicted SPM concentration at three receptor locations for each mine. The receptor locations were selected such a way that at the same places the actual filed measurement were carried out for SPM concentration. Statistical analysis was carried out to assess the performance of the models based on a set measured and predicted SPM concentration data. The value of coefficient of correlation for PAL2 and FDM was calculated to be 0.990-0.994 and 0

  8. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  9. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  10. Application of SIM-air modeling tools to assess air quality in Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Jawahar, Puja

    2012-12-01

    A prerequisite to an air quality management plan for a city is some idea of the main sources of pollution and their contributions for a city. This paper presents the results of an application of the SIM-air modeling tool in six Indian cities - Pune, Chennai, Indore, Ahmedabad, Surat, and Rajkot. Using existing and publicly available data, we put together a baseline of multi-pollutant emissions for each of the cities and then calculate concentrations, health impacts, and model alternative scenarios for 2020. The measured annual PM10 (particulate matter with aerodynamic diameter less than 10 micron meter) concentrations in μg m-3 averaged 94.7 ± 45.4 in Pune, 73.1 ± 33.7 in Chennai, 118.8 ± 44.3 in Indore, 94.0 ± 20.4 in Ahmedabad, 89.4 ± 12.1 in Surat, and 105.0 ± 25.6 in Rajkot, all exceeding the annual standard of 60 μg m-3. The PM10 inventory in tons/year for the year 2010 of 38,400 in Pune, 50,200 in Chennai, 18,600 in Indore, 31,900 in Ahmedabad, 20,000 in Surat, and 14,000 in Rajkot, is further spatially segregated into 1 km grids and includes all known sources such as transport, road dust, residential, power plants, industries (including the brick kilns), waste burning, and diesel generator sets. We use the ATMoS chemical transport model to validate the emissions inventory and estimate an annual premature mortality due to particulate pollution of 15,200 for the year 2010 for the six cities. Of the estimated 21,400 premature deaths in the six cities in 2020, we estimate that implementation of the six interventions in the transport and brick kiln sectors, can potentially save 5870 lives (27%) annually and result in an annual reduction of 16.8 million tons of carbon dioxide emissions in the six cities.

  11. PREFACE SPECIAL ISSUE ON MODEL EVALUATION: EVALUATION OF URBAN AND REGIONAL EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    The "Preface to the Special Edition on Model Evaluation: Evaluation of Urban and Regional Eulerian Air Quality Models" is a brief introduction to the papers included in a special issue of Atmospheric Environment. The Preface provides a background for the papers, which have thei...

  12. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    NASA Astrophysics Data System (ADS)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  13. Tractography-based Parcellation of the Human Middle Temporal Gyrus

    PubMed Central

    Xu, Jinping; Wang, Jiaojian; Fan, Lingzhong; Li, Hai; Zhang, Wen; Hu, Qingmao; Jiang, Tianzi

    2015-01-01

    The middle temporal gyrus (MTG) participates in a variety of functions, suggesting the existence of distinct functional subregions. In order to further delineate the functions of this brain area, we parcellated the MTG based on its distinct anatomical connectivity profiles and identified four distinct subregions, including the anterior (aMTG), middle (mMTG), posterior (pMTG), and sulcus (sMTG). Both the anatomical connectivity patterns and the resting-state functional connectivity patterns revealed distinct connectivity profiles for each subregion. The aMTG was primarily involved in the default mode network, sound recognition, and semantic retrieval. The mMTG was predominantly involved in the semantic memory and semantic control networks. The pMTG seems to be a part of the traditional sensory language area. The sMTG appears to be associated with decoding gaze direction and intelligible speech. Interestingly, the functional connectivity with Brodmann’s Area (BA) 40, BA 44, and BA 45 gradually increased from the anterior to the posterior MTG, a finding which indicated functional topographical organization as well as implying that language processing is functionally segregated in the MTG. These proposed subdivisions of the MTG and its functions contribute to understanding the complex functions of the MTG at the subregional level. PMID:26689815

  14. Calculation of Per Parcel Probability for Dud Bombs in Germany

    NASA Astrophysics Data System (ADS)

    Tavakkoli Sabour, S. M.; Agarius, J.; Sadidi, J.

    2014-10-01

    Unexploded aerial Bombs, also known as duds or unfused bombs, of the bombardments in the past wars remain explosive for decades after the war under the earth's surface threatening the civil activities especially if dredging works are involved. Interpretation of the aerial photos taken shortly after bombardments has been proven to be useful for finding the duds. Unfortunately, the reliability of this method is limited by some factors. The chance of finding a dud on an aerial photo depends strongly on the photography system, the size of the bomb and the landcover. On the other hand, exploded bombs are considerably better detectable on aerial photos and confidently represent the extent and density of a bombardment. Considering an empirical quota of unfused bombs, the expected number of duds can be calculated by the number of exploded bombs. This can help to have a better calculation of cost-risk ratio and to classify the areas for clearance. This article is about a method for calculation of a per parcel probability of dud bombs according to the distribution and density of exploded bombs. No similar work has been reported in this field by other authors.

  15. 133. PARCEL HANDLING SPACE OF POST OFFICE BUILDING, LEVEL 72.5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. PARCEL HANDLING SPACE OF POST OFFICE BUILDING, LEVEL 72.5, NORTH OF TRUCKING PASSAGE MAIL TRANSPORT AREA, VIEW TO NORTHWEST - Terminal Tower Building, Cleveland Union Terminal, 50 Public Square, Cleveland, Cuyahoga County, OH

  16. 76 FR 23749 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ... 111 Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels AGENCY: Postal... currently enhancing its operational capability to allow for the scanning of Intelligent Mail package..., payment, and reporting. Intelligent Mail package barcodes also include specific ``mail class...

  17. An approach for parcellating human cortical areas using resting-state correlations

    PubMed Central

    Wig, Gagan S.; Laumann, Timothy O.; Petersen, Steven E.

    2013-01-01

    Resting State Functional Connectivity (RSFC) reveals properties related to the brain’s underlying organization and function. Features related to RSFC signals, such as the locations where the patterns of RSFC exhibit abrupt transitions, can be used to identify putative boundaries between cortical areas (RSFC-Boundary Mapping). The locations of RSFC-based area boundaries are consistent across independent groups of subjects. RSFC-based parcellation converges with parcellation information from other modalities in many locations, including task-evoked activity and probabilistic estimates of cellular architecture, providing evidence for the ability of RSFC to parcellate brain structures into functionally meaningful units. We not only highlight a collection of these observations, but also point out several limitations and observations that mandate careful consideration in using and interpreting RSFC for the purposes of parcellating the brain’s cortical and subcortical structures. PMID:23876247

  18. DEVELOPMENT OF MESOSCALE AIR QUALITY SIMULATION MODELS. VOLUME 6. USER'S GUIDE TO MESOPAC (MESOSCALE METEOROLOGY PACKAGE)

    EPA Science Inventory

    MESOPAC is a mesoscale meteorological preprocessor program; it is designed to provide meteorological data to regional-scale air quality simulation models. Radiosonde data routinely available from National Weather Service (NWS) radiosonde ('upper air') and surface stations are use...

  19. AIR QUALITY MODELING AT NEIGHBORHOOD SCALES TO IMPROVE HUMAN EXPOSURE ASSESSMENT

    EPA Science Inventory

    Air quality modeling is an integral component of risk assessment and of subsequent development of effective and efficient management of air quality. Urban areas introduce of fresh sources of pollutants into regional background producing significant spatial variability of the co...

  20. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  1. NATIONAL AND REGIONAL AIR AND DEPOSITION MODELING OF STATIONARY AND MOBILE SOURCE EMISSIONS OF DIOXINS USING THE RELMAP MODELING SYSTEM

    EPA Science Inventory

    The purpose of this study is to estimate the atmospheric transport, fate and deposition flux of air releases of CDDs and CDFs from known sources within the continental United States using the Regional Lagrangian Model of Air Pollution (RELMAP). RELMAP is a Lagrangian air model th...

  2. Regional Air Toxics Modeling in California's San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Martien, P. T.; Tanrikulu, S.; Tran, C.; Fairley, D.; Jia, Y.; Fanai, A.; Reid, S.; Yarwood, G.; Emery, C.

    2011-12-01

    Regional toxics modeling conducted for California's San Francisco Bay Area (SFBA) estimated potential cancer risk from diesel particulate matter (DPM) and four key reactive toxic gaseous pollutants (1,3-butadiene, benzene, formaldehyde, and acetaldehyde). Concentrations of other non-cancerous gaseous toxic air contaminants, including acrolein, were also generated. In this study, meteorological fields generated from July and December periods in 2000 and emissions from 2005 provided inputs to a three-dimensional air quality model at high spatial resolution (1x1 km^2 grid), from which a baseline set of annual risk values was estimated. Simulated risk maps show highest annual average DPM concentrations and cancer risks were located near and downwind of major freeways and near the Port of Oakland, a major container port in the area. Population weighted risks, using 2000 census data, were found to be highest in highly urbanized areas adjacent to significant DPM sources. For summer, the ratio of mean measured elemental carbon to mean modeled DPM was 0.78, conforming roughly to expectations. But for winter the ratio is 1.13, suggesting other sources of elemental carbon, such as wood smoke, are important. Simulated annual estimates for benzene and 1-3, butadiene compared well to measured annual estimates. Simulated acrolein and formaldehyde significantly under-predicted observed values. Simulations repeated using projected 2015 toxic emissions predicted that potential cancer risk dropped significantly in all areas throughout the SFBA. Emissions estimates for 2015 included the State of California's recently adopted on-road truck rule. Emission estimates of DPM are projected to drop about 70% between 2005 and 2015 in the SFBA, with a commensurate reduction in potential cancer risks. However, due to projected shifts in population during this period, with urban densification close to DPM sources outpacing emission reductions, there are some areas where population-weighted risks

  3. Atmospheric Modelling for Air Quality Study over the complex Himalayas

    NASA Astrophysics Data System (ADS)

    Surapipith, Vanisa; Panday, Arnico; Mukherji, Aditi; Banmali Pradhan, Bidya; Blumer, Sandro

    2014-05-01

    An Atmospheric Modelling System has been set up at International Centre for Integrated Mountain Development (ICIMOD) for the assessment of Air Quality across the Himalaya mountain ranges. The Weather Research and Forecasting (WRF) model version 3.5 has been implemented over the regional domain, stretching across 4995 x 4455 km2 centred at Ichhyakamana , the ICIMOD newly setting-up mountain-peak station (1860 m) in central Nepal, and covering terrains from sea-level to the Everest (8848 m). Simulation is carried out for the winter time period, i.e. December 2012 to February 2013, when there was an intensive field campaign SusKat, where at least 7 super stations were collecting meteorology and chemical parameters on various sites. The very complex terrain requires a high horizontal resolution (1 × 1 km2), which is achieved by nesting the domain of interest, e.g. Kathmandu Valley, into 3 coarser ones (27, 9, 3 km resolution). Model validation is performed against the field data as well as satellite data, and the challenge of capturing the necessary atmospheric processes is discussed, before moving forward with the fully coupled chemistry module (WRF-Chem), having local and regional emission databases as input. The effort aims at finding a better understanding of the atmospheric processes and air quality impact on the mountain population, as well as the impact of the long-range transport, particularly of Black Carbon aerosol deposition, to the radiative budget over the Himalayan glaciers. The higher rate of snowcap melting, and shrinkage of permafrost as noticed by glaciologists is a concern. Better prediction will supply crucial information to form the proper mitigation and adaptation strategies for saving people lives across the Himalayas in the changing climate.

  4. UNAMAP: user's network for applied modeling of air pollution, Version 6. Model

    SciTech Connect

    Turner, D.B.; Busse, A.D.

    1986-08-01

    UNAMAP (Version 6) represents the 1986 update to the users network for applied modeling of air pollution. UNAMAP consists of an ASCII magnetic tape containing FORTRAN codes an test data for 25 air-quality simulation models (AQSM) as well as associated documentation. AQSM's and supporting programs and data are arranged in six sections: (1) Guideline (appendix A) models..(files 2 through 9); (2) Other models or processors (new models). .(files 10 through 19 and 33); (3) Other models and processors (revised)..(files 20 through 27 and 32); (4) Additional models for regulatory use (files 28 through 31); (5) Data files..(files 34 through 39); and (6) Output print files..(files 40 through 68). There are 68 files on this tape..Software Description: The system is written in FORTRAN for implementation on a UNIVAC 1100/82 using the 39R2 operating system.

  5. The balance model of oxygen enrichment of atmospheric air

    NASA Astrophysics Data System (ADS)

    Popov, Alexander

    2013-04-01

    The study of turnover of carbon and oxygen is an important line of scientific investigation. This line takes on special significance in conditions of soil degradation, which leads to the excess content of carbon dioxide and, as result, decrease of oxygen in the atmosphere. The aim of this article is a statement the balance model of oxygen enrichment of atmospheric air (ratio O/C) depending on consumption and assimilation by plants of dissolved organic matter (DOM) and the value of the oxidation-reduction potential (Eh). Basis of model was the following: green vascular plants are facultative heterotrophic organisms with symbiotic digestion and nutrition. According to the trophology viewpoint, the plant consumption of organic compounds broadens greatly a notion about the plant nutrition and ways of its regulation. In particular, beside the main known cycle of carbon: plant - litter - humus - carbon dioxide - plant, there is the second carbon cycle (turnover of organic compounds): plant - litter - humus - DOM - plant. The biogeochemical meaning of consumption of organic compounds by plants is that plants build the structural and functional blocks of biological macromolecules in their bodies. It provides receiving of a certain "energy payoff" by plants, which leads to increase of plant biomass by both an inclusion of allochthonous organic molecules in plant tissues, and positive effect of organic compounds on plant metabolic processes. One more of powerful ecological consequence of a heterotrophic nutrition of green plants is oxygen enrichment of atmospheric air. As the organic molecules in the second biological cycle of carbon are built in plants without considerable chemical change, the atmospheric air is enriched on that amount of oxygen, which would be required on oxidation of the organic molecules absorbed by plants, in result. It was accepted that: plant-soil system was climax, the plant community was grassy, initial contents of carbon in phytomass was accepted

  6. Improving Reliability of Subject-Level Resting-State fMRI Parcellation with Shrinkage Estimators

    PubMed Central

    Mejia, Amanda F.; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M.; Pekar, James J.; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A.

    2015-01-01

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to “borrow strength” in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets – a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects – we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor

  7. Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators.

    PubMed

    Mejia, Amanda F; Nebel, Mary Beth; Shou, Haochang; Crainiceanu, Ciprian M; Pekar, James J; Mostofsky, Stewart; Caffo, Brian; Lindquist, Martin A

    2015-05-15

    A recent interest in resting state functional magnetic resonance imaging (rsfMRI) lies in subdividing the human brain into anatomically and functionally distinct regions of interest. For example, brain parcellation is often a necessary step for defining the network nodes used in connectivity studies. While inference has traditionally been performed on group-level data, there is a growing interest in parcellating single subject data. However, this is difficult due to the inherent low signal-to-noise ratio of rsfMRI data, combined with typically short scan lengths. A large number of brain parcellation approaches employ clustering, which begins with a measure of similarity or distance between voxels. The goal of this work is to improve the reproducibility of single-subject parcellation using shrinkage-based estimators of such measures, allowing the noisy subject-specific estimator to "borrow strength" in a principled manner from a larger population of subjects. We present several empirical Bayes shrinkage estimators and outline methods for shrinkage when multiple scans are not available for each subject. We perform shrinkage on raw inter-voxel correlation estimates and use both raw and shrinkage estimates to produce parcellations by performing clustering on the voxels. While we employ a standard spectral clustering approach, our proposed method is agnostic to the choice of clustering method and can be used as a pre-processing step for any clustering algorithm. Using two datasets - a simulated dataset where the true parcellation is known and is subject-specific and a test-retest dataset consisting of two 7-minute resting-state fMRI scans from 20 subjects - we show that parcellations produced from shrinkage correlation estimates have higher reliability and validity than those produced from raw correlation estimates. Application to test-retest data shows that using shrinkage estimators increases the reproducibility of subject-specific parcellations of the motor cortex by

  8. Modelling of air pollution on a military airfield

    NASA Astrophysics Data System (ADS)

    Brzozowski, Krzysztof; Kotlarz, Wojciech

    The paper presents a numerical study of exhaust emission and pollutant dispersion of carbon monoxide on a military airfield. Investigations have been carried out for typical conditions of aircraft usage in the Polish Air Force Academy in Dęblin. Two different types of aircraft have been taken into account. One of them is an MI-2 helicopter, the second is a TS-11 plane. Both are used in military pilot education in Poland. Exhaust emission of CO from those aircrafts has been obtained in an experiment carried out on an engine test stand. CO concentrations have been calculated for different meteorological conditions (averaged from 5 years observations) and selected conditions of aircraft use. The finite volume method has been used to discretise the equation describing the process of pollutant dispersion. In addition, the two-cycle decomposition method has been employed to solve the set of ordinary differential equations of the first order obtained after discretisation of the advection-diffusion equation. A meteorological pre-processor, based on relationships resulting from the Monin-Obukhov theory, is used to define eddy diffusivity and the profile of air speed in the lower layer of the atmosphere. In the paper, the computer model and calculated average concentration of CO in the Dęblin airfield during typical flights are presented. The goal of the computational analysis is to predict CO pollution level in the workplace of aircraft service personnel.

  9. Numerical models for afterburning of TNT detonation products in air

    NASA Astrophysics Data System (ADS)

    Donahue, L.; Zhang, F.; Ripley, R. C.

    2013-11-01

    Afterburning occurs when fuel-rich explosive detonation products react with oxygen in the surrounding atmosphere. This energy release can further contribute to the air blast, resulting in a more severe explosion hazard particularly in confined scenarios. The primary objective of this study was to investigate the influence of the products equation of state (EOS) on the prediction of the efficiency of trinitrotoluene (TNT) afterburning and the times of arrival of reverberating shock waves in a closed chamber. A new EOS is proposed, denoted the Afterburning (AB) EOS. This EOS employs the JWL EOS in the high pressure regime, transitioning to a Variable-Gamma (VG) EOS at lower pressures. Simulations of three TNT charges suspended in a explosion chamber were performed. When compared to numerical results using existing methods, it was determined that the Afterburning EOS delays the shock arrival times giving better agreement with the experimental measurements in the early to mid time. In the late time, the Afterburning EOS roughly halved the error between the experimental measurements and results obtained using existing methods. Use of the Afterburning EOS for products with the Variable-Gamma EOS for the surrounding air further significantly improved results, both in the transient solution and the quasi-static pressure. This final combination of EOS and mixture model is recommended for future studies involving afterburning explosives, particularly those in partial and full confinement.

  10. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  11. Near Decade Long Tropospheric Air Temperature and Specific Humidity Records from AIRS for CMIP5 Model Evaluation

    NASA Astrophysics Data System (ADS)

    Tian, B.; Fetzer, E.; Kahn, B. H.; Teixeira, J.; Manning, E.; Hearty, T. J.

    2012-12-01

    The peer-reviewed analyses of multi-model outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) experiments will be the most important basis for the next Intergovernmental Panel on Climate Change (IPCC) Assessment Report (AR5). To increase the fidelity of the IPCC AR5, an Obs4MIPs project has been initiated to collect some well-established and well-documented datasets, to organize them according to the CMIP5 model output requirements, and makes them available to the science community for CMIP5 model evaluation. The NASA Atmospheric Infrared Sounder (AIRS) project has produced monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPS project. In this paper, we first describe these two AIRS datasets in terms of data description, origin, validation and caveats for model-observation comparison. We then document the climatological mean features of these two AIRS datasets and compare them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for AIRS data validation and CMIP5 model simulations for CMIP5 model evaluation. As expected, the 9-year AIRS data show several well-known climatological features of tropospheric ta and hus, such as the strong meridional and vertical gradients of tropospheric ta and hus and strong zonal gradient of tropospheric hus. AIRS data also show the strong connections between the tropospheric hus, atmospheric circulation and deep convection. In comparison to MERRA, AIRS seems to be colder in the free troposphere but warmer in the boundary layer with differences typically less than 1 K. AIRS is wetter (~10%) in the tropical boundary layer but drier (around 30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large AIRS-MERRA hus differences are mainly located in the cloudy regions, such as the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ) and the

  12. Fine-resolution model simulations of California air quality

    NASA Astrophysics Data System (ADS)

    Kim, S.; Trainer, M.; Angevine, W. M.; Lee, S.; Alvarez, R. J., II; Baidar, S.; Frost, G. J.; Hardesty, R.; Langford, A. O.; McKeen, S. A.; Oetjen, H.; Pollack, I. B.; Ryerson, T. B.; Senff, C. J.; Sinreich, R.; Volkamer, R.

    2010-12-01

    The purpose of our study is to improve the understanding of tropospheric ozone, its precursors, and their temporal changes over California. We simulate California air quality using the Weather Research and Forecasting - Chemistry (WRF-Chem) model with input from the US EPA's 2005 National Emission Inventory (NEI05) for July 2009 and spring-summer 2010. The model’s nested domain includes all of California at 4 x 4 km2 horizontal resolution. These simulation periods were chosen because of the availability of measurements from the pre-CalNex and CalNex field campaigns. The WRF-Chem simulations are evaluated with observations of ozone curtains by the TOPAZ lidar and in-situ measurements of numerous trace species collected on NOAA aircraft during these deployments. The WRF-Chem meteorological predictions are also compared with surface stations and wind profiler data. These model-measurement comparisons allow us to test the sensitivity of WRF-Chem to initial and boundary conditions, land-surface models, grid configurations, and emission inventory. Using the model evaluated with these observations, we investigate the importance of transport mechanisms and emission changes on tropospheric ozone levels above California.

  13. Brain parcellation choice affects disease-related topology differences increasingly from global to local network levels.

    PubMed

    Lord, Anton; Ehrlich, Stefan; Borchardt, Viola; Geisler, Daniel; Seidel, Maria; Huber, Stefanie; Murr, Julia; Walter, Martin

    2016-03-30

    Network-based analyses of deviant brain function have become extremely popular in psychiatric neuroimaging. Underpinning brain network analyses is the selection of appropriate regions of interest (ROIs). Although ROI selection is fundamental in network analysis, its impact on detecting disease effects remains unclear. We investigated the impact of parcellation choice when comparing results from different studies. We investigated the effects of anatomical (AAL) and literature-based (Dosenbach) parcellation schemes on comparability of group differences in 35 female patients with anorexia nervosa and 35 age- and sex-matched healthy controls. Global and local network properties, including network-based statistics (NBS), were assessed on resting state functional magnetic resonance imaging data obtained at 3T. Parcellation schemes were comparably consistent on global network properties, while NBS and local metrics differed in location, but not metric type. Location of local metric alterations varied for AAL (parietal and cingulate cortices) versus Dosenbach (insula, thalamus) parcellation approaches. However, consistency was observed for the occipital cortex. Patient-specific global network properties can be robustly observed using different parcellation schemes, while graph metrics characterizing impairments of individual nodes vary considerably. Therefore, the impact of parcellation choice on specific group differences varies depending on the level of network organization. PMID:27000302

  14. Group-wise parcellation of the cortex through multi-scale spectral clustering.

    PubMed

    Parisot, Sarah; Arslan, Salim; Passerat-Palmbach, Jonathan; Wells, William M; Rueckert, Daniel

    2016-08-01

    The delineation of functionally and structurally distinct regions as well as their connectivity can provide key knowledge towards understanding the brain's behaviour and function. Cytoarchitecture has long been the gold standard for such parcellation tasks, but has poor scalability and cannot be mapped in vivo. Functional and diffusion magnetic resonance imaging allow in vivo mapping of brain's connectivity and the parcellation of the brain based on local connectivity information. Several methods have been developed for single subject connectivity driven parcellation, but very few have tackled the task of group-wise parcellation, which is essential for uncovering group specific behaviours. In this paper, we propose a group-wise connectivity-driven parcellation method based on spectral clustering that captures local connectivity information at multiple scales and directly enforces correspondences between subjects. The method is applied to diffusion Magnetic Resonance Imaging driven parcellation on two independent groups of 50 subjects from the Human Connectome Project. Promising quantitative and qualitative results in terms of information loss, modality comparisons, group consistency and inter-group similarities demonstrate the potential of the method. PMID:27192437

  15. Air Pollution Exposure Model for Individuals (EMI) in Health Studies

    EPA Science Inventory

    In health studies, traffic-related air pollution is associated with adverse respiratory effects. Due to cost and participant burden of personal measurements, health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect ...

  16. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  17. Modelling an infrared Man Portable Air Defence System

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Brian, Butters; Roy, Walmsley

    2010-09-01

    The global proliferation of shoulder launched IR Man Portable Air Defence Systems (ManPADS) has resulted in the existence of a serious threat to both civilian and military aircraft from terrorist attack. Some of the older generations of ManPADS can be defeated with modern countermeasures but even the most sophisticated protection still has vulnerabilities to the latest family of ManPADS. This paper describes the work undertaken by the authors to model a second generation ManPAD, based on the Russian SA-14, and assess the vulnerabilities of aircraft both with and without flare countermeasures from these systems. The conclusions are the results of over 11,000 simulated firings against targets of varying aspects, velocities and altitudes.

  18. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  19. RESOLVING NEIGHBORHOOD-SCALE AIR TOXICS MODELING: A CASE STUDY IN WILMINGTON, CALIFORNIA

    EPA Science Inventory

    Air quality modeling is useful for characterizing exposures to air pollutants. While models typically provide results on regional scales, there is a need for refined modeling approaches capable of resolving concentrations on the scale of tens of meters, across modeling domains 1...

  20. Microcomputer pollution model for civilian airports and Air Force Bases. Model application and background

    SciTech Connect

    Segal, H.M.

    1988-08-01

    This is one of three reports describing the Emissions and Dispersion Modeling System (EDMS). All reports use the same main title--A MICROCOMPUTER MODEL FOR CIVILIAN AIRPORTS AND AIR FORCE BASES--but different subtitles. The subtitles are: (1) USER'S GUIDE - ISSUE 2 (FAA-EE-88-3/ESL-TR-88-54); (2) MODEL DESCRIPTION (FAA-EE-88-4/ESL-TR-88-53); (S) MODEL APPLICATION AND BACKGROUND (FAA-EE-88-5/ESL-TR-88-55). The first and second reports above describe the EDMS model and provide instructions for its use. This is the third report. IT consists of an accumulation of five key documents describing the development and use of the EDMS model. This report is prepared in accordance with discussions with the EPA and requirements outlined in the March 27, 1980 Federal Register for submitting air-quality models to the EPA. Contents: Model Development and Use - Its Chronology and Reports; Monitoring Concorde EMissions; The Influence of Aircraft Operations on Air Quality at Airports; Simplex A - A simplified Atmospheric Dispersion Model for Airport Use -(User's Guide); Microcomputer Graphics in Atmospheric Dispersion Modeling; Pollution from Motor Vehicles and Aircraft at Stapleton International Airport (Abbreviated Report).

  1. POPULATION-BASED EXPOSURE AND DOSE MODELING FOR AIR POLLUTANTS

    EPA Science Inventory

    This task will address EPA's need to better understand the variability in personal exposure to air pollutants for the purpose of assessing what populations are at risk for adverse health outcomes due to air pollutant exposures. To improve our understanding of exposures to air po...

  2. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    EPA Science Inventory

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  3. Central California coastal air-quality model validation study: Data analysis and model evaluation

    SciTech Connect

    Dabberdt, W.F.; Johnson, W.B.; Brodzinsky, R.; Ruff, R.E.

    1984-08-01

    The objectives of the study were: to obtain a comprehensive experimental data base of overwater and inland dispersion along the central California coast; to evaluate air-quality models presently being used by MMS for determining air-quality impacts from offshore emission sources; to evaluate various schemes for determining atmospheric stability and methods of determining atmospheric stability and methods of determining dispersion parameters (sigma-y and sigma-z) overwater; and to provide data needed for an overwater dispersion model presently under development by MMS.

  4. Modelling air quality in street canyons: a review

    NASA Astrophysics Data System (ADS)

    Vardoulakis, Sotiris; Fisher, Bernard E. A.; Pericleous, Koulis; Gonzalez-Flesca, Norbert

    High pollution levels have been often observed in urban street canyons due to the increased traffic emissions and reduced natural ventilation. Microscale dispersion models with different levels of complexity may be used to assess urban air quality and support decision-making for pollution control strategies and traffic planning. Mathematical models calculate pollutant concentrations by solving either analytically a simplified set of parametric equations or numerically a set of differential equations that describe in detail wind flow and pollutant dispersion. Street canyon models, which might also include simplified photochemistry and particle deposition-resuspension algorithms, are often nested within larger-scale urban dispersion codes. Reduced-scale physical models in wind tunnels may also be used for investigating atmospheric processes within urban canyons and validating mathematical models. A range of monitoring techniques is used to measure pollutant concentrations in urban streets. Point measurement methods (continuous monitoring, passive and active pre-concentration sampling, grab sampling) are available for gaseous pollutants. A number of sampling techniques (mainly based on filtration and impaction) can be used to obtain mass concentration, size distribution and chemical composition of particles. A combination of different sampling/monitoring techniques is often adopted in experimental studies. Relatively simple mathematical models have usually been used in association with field measurements to obtain and interpret time series of pollutant concentrations at a limited number of receptor locations in street canyons. On the other hand, advanced numerical codes have often been applied in combination with wind tunnel and/or field data to simulate small-scale dispersion within the urban canopy.

  5. Modeling the air-soil transport pathway of perfluorooctanoic acid in the mid-Ohio Valley using linked air dispersion and vadose zone models

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.

    2012-05-01

    As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.

  6. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  7. Microwave landing system modeling with application to air traffic control

    NASA Technical Reports Server (NTRS)

    Poulose, M. M.

    1991-01-01

    Compared to the current instrument landing system, the microwave landing system (MLS), which is in the advanced stage of implementation, can potentially provide significant fuel and time savings as well as more flexibility in approach and landing functions. However, the expanded coverage and increased accuracy requirements of the MLS make it more susceptible to the features of the site in which it is located. An analytical approach is presented for evaluating the multipath effects of scatterers that are commonly found in airport environments. The approach combines a multiplane model with a ray-tracing technique and a formulation for estimating the electromagnetic fields caused by the antenna array in the presence of scatterers. The model is applied to several airport scenarios. The reduced computational burden enables the scattering effects on MLS position information to be evaluated in near real time. Evaluation in near real time would permit the incorporation of the modeling scheme into air traffic control automation; it would adaptively delineate zones of reduced accuracy within the MLS coverage volume, and help establish safe approach and takeoff trajectories in the presence of uneven terrain and other scatterers.

  8. Parcel-scale urban coastal flood prediction: Identifying critical data and forcing requirements

    NASA Astrophysics Data System (ADS)

    Gallien, T.; Sanders, B. F.

    2012-12-01

    Coastal flooding represents a significant socio-economic and humanitarian threat to urbanized lowlands throughout the world. In California, sea levels are projected to rise 1-1.4 meters in the next century. Numerous coastal communities are currently at risk of flooding during high tides or large wave events and a significant body of evidence suggests climate change will exacerbate flooding in these low lying, and often highly populated, areas. Flood prediction in urbanized embayments pose a number of challenges including water level characterization, appropriate representation of both weir-like (i.e. wall) overflow and wave runup/overtopping volumes and the need for highly accurate local data and site knowledge. In addition, a paucity of high quality validation data fundamentally obstructs predictive flood modeling efforts. Here, a Southern California coastal community which benefits from two unique flood event validation data sets is modeled in context of current and future sea level scenarios. The uncalibrated hydrodynamic model resolves critical urban infrastructure and includes essential dynamic processes such as tidal amplification, weir-like overflow and spatially distributed wave overtopping volumes. Results identify data and forcing requirements that are essential to accurate parcel-scale (individual home or street) flood prediction in defended urban terrain.

  9. Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Szalay, Alex

    2016-03-01

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.

  10. Trajectory modeling of emissions from lower stratospheric aircraft

    NASA Astrophysics Data System (ADS)

    Sparling, Lynn C.; Schoeberl, Mark R.; Douglass, Anne R.; Weaver, Clark J.; Newman, Paul A.; Lait, Leslie R.

    1995-01-01

    A series of isentropic trajectory calculations has been performed for emissions by stratospheric aircraft moving across the northern midlatitude oceanic flight corridors. Emission of exhaust is simulated by the daily initialization of air parcels along a flight path on the 500 K isentropic surface. Parcels are tracked during the first three weeks of each January from 1980 to 1994 in order to determine the interannual variability in the spatial distribution of the exhaust and the likelihood of exposure to cold temperatures. Few parcels emitted along these flight paths at this time of year were found to have experienced nitric acid trihydrate (NAT) formation temperatures, except for the particularly cold Januarys 1986, 1987, and 1992. We also find that large zonal fluctuations in the distribution of the emissions are typical for this time of year and are strongly dependent on flight path. An extended 6-month (January-June) run in which parcels were released daily along the New York-London route shows that emissions in the flight corridor increase at a time-averaged rate which is nearly twice the rate at which the zonal average increases. In addition, local fluctuations of pollutant density can be several times higher than the zonal average and can persist for several weeks. A study of seasonal variability also shows a rapid buildup of emissions during the summer months. These elevated emission levels must be considered in the interpretation of environmental impact assessments based on two-dimensional transport models.

  11. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  12. Modelling pesticide volatilization after soil application using the mechanistic model Volt'Air

    NASA Astrophysics Data System (ADS)

    Bedos, Carole; Génermont, Sophie; Le Cadre, Edith; Garcia, Lucas; Barriuso, Enrique; Cellier, Pierre

    Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH 3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to K h. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make

  13. CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY

    EPA Science Inventory

    Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...

  14. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Chipperfield, Martyn; Savage, Nick

    2014-05-01

    In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is

  15. Dynamic Model of the BIO-Plex Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.

  16. Development and Evaluation of Land-Use Regression Models Using Modeled Air Quality Concentrations

    EPA Science Inventory

    Abstract Land-use regression (LUR) models have emerged as a preferred methodology for estimating individual exposure to ambient air pollution in epidemiologic studies in absence of subject-specific measurements. Although there is a growing literature focused on LUR evaluation, fu...

  17. APPLICATION OF FINE SCALE AIR TOXICS MODELING WITH CMAQ TO HAPEM5

    EPA Science Inventory

    This paper provides a preliminary demonstration of the EPA neighborhood scale modeling paradigm for air toxics by linking concentration from the Community Multiscale Air Quality (CMAQ) modeling system to the fifth version of the Hazardous Pollutant Exposure Model (HAPEM5). For t...

  18. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  19. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R (2) of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  20. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  1. Framland parcels extraction from high-resolution remote sensing images based on the two-stage image classification

    NASA Astrophysics Data System (ADS)

    Liu, Guoying; Song, Xu; Lv, Jing

    2015-12-01

    It is difficult and boring for people to artificially extract farmland parcels from high resolution remote sensing images. Therefore, automatic methods are in the urgent need to release image interpreters from such a work as well as achieve accurate results. In the past years, although many researchers have made attempts to solve this problem by using different techniques and also produced some good results, they still cannot meet the demand of practical applications. In this paper, a farmland extraction method is proposed based on a new technique of two-stage image classification. The first stage aims at producing a map of farmland area by using the supervised iterative conditional mode (ICM), where a novel mixture posterior is proposed based on the tree-structured interpretation of certain complex landscapes, e.g., farmland and building area, and the Markov random field model (MRF) is also used to make use of spatial information between neighboring pixels. The second stage extracts the farmland parcels by using the Meanshift algorithm (MS) based on the hybrid of the original image and the texture image produced by the local binary pattern (LBP) method. We applied our method to a piece of aerial image in the urban area of Taizhou, China. The results show that the proposed method has an ability to produce more accurate results than the MS method.

  2. FVCOM model estimate of the location of Air France 447

    NASA Astrophysics Data System (ADS)

    Chen, Changsheng; Limeburner, Richard; Gao, Guoping; Xu, Qichun; Qi, Jianhua; Xue, Pengfei; Lai, Zhigang; Lin, Huichan; Beardsley, Robert; Owens, Breck; Carlson, Barry

    2012-06-01

    On June 1, 2009, Air France AF447 disappeared in the Equatorial Atlantic Ocean en route from Rio de Janeiro, Brazil, to Paris, France. On June 6-19, 2009, bodies and debris from the aircraft were recovered floating in the equatorial ocean. This paper describes efforts on using the global-local nested finite volume community ocean model (FVCOM) to model reversely the tracks of bodies and debris back to the time of the crash and to help searchers locate the cockpit voice and flight data recorders and learn why this tragic accident occurred. To validate the reliability and reality of FVCOM, eight surface drifters were deployed by the French Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile (BEA) near the last known position in early June 2010 for a period of 3 weeks. These drifter data were used to optimize the spatial and temporal correlation scales of the adaptive sampling data assimilation method of FVCOM. Applying an optimized FVCOM system to assimilate all available drifter- and float-tracking-derived currents in May-June 2009 under three different wind conditions, we reproduced the June 2009 current fields in the area near the LKP and used these fields to reversely track bodies and debris from locations where they were found to the time when the crash occurred. Possible locations for the crashed plane were suggested based on our model results and were made available to the French investigators and the Woods Hole Oceanographic Institution REMUS autonomous underwater vehicle Operations Group who successfully located the aircraft debris field in April 2011 on the seafloor at a depth of 3,900 m.

  3. Modelling future impacts of air pollution using the multi-scale UK Integrated Assessment Model (UKIAM).

    PubMed

    Oxley, Tim; Dore, Anthony J; ApSimon, Helen; Hall, Jane; Kryza, Maciej

    2013-11-01

    Integrated assessment modelling has evolved to support policy development in relation to air pollutants and greenhouse gases by providing integrated simulation tools able to produce quick and realistic representations of emission scenarios and their environmental impacts without the need to re-run complex atmospheric dispersion models. The UK Integrated Assessment Model (UKIAM) has been developed to investigate strategies for reducing UK emissions by bringing together information on projected UK emissions of SO2, NOx, NH3, PM10 and PM2.5, atmospheric dispersion, criteria for protection of ecosystems, urban air quality and human health, and data on potential abatement measures to reduce emissions, which may subsequently be linked to associated analyses of costs and benefits. We describe the multi-scale model structure ranging from continental to roadside, UK emission sources, atmospheric dispersion of emissions, implementation of abatement measures, integration with European-scale modelling, and environmental impacts. The model generates outputs from a national perspective which are used to evaluate alternative strategies in relation to emissions, deposition patterns, air quality metrics and ecosystem critical load exceedance. We present a selection of scenarios in relation to the 2020 Business-As-Usual projections and identify potential further reductions beyond those currently being planned. PMID:24096039

  4. Interfacing air pathway models with other media models for impact assessment

    SciTech Connect

    Drake, R.L.

    1980-10-01

    The assessment of the impacts/effects of a coal conversion industry on human health, ecological systems, property and aesthetics requires knowledge about effluent and fugitive emissions, dispersion of pollutants in abiotic media, chemical and physical transformations of pollutants during transport, and pollutant fate passing through biotic pathways. Some of the environmental impacts that result from coal conversion facility effluents are subtle, acute, subacute or chronic effects in humans and other ecosystem members, acute or chronic damage of materials and property, odors, impaired atmospheric visibility, and impacts on local, regional and global weather and climate. This great variety of impacts and effects places great demands on the abiotic and biotic numerical simulators (modelers) in terms of time and space scales, transformation rates, and system structure. This paper primarily addresses the demands placed on the atmospheric analyst. The paper considers the important air pathway processes, the interfacing of air pathway models with other media models, and the classes of air pathway models currently available. In addition, a strong plea is made for interaction and communication between all modeling groups to promote efficient construction of intermedia models that truly interface across pathway boundaries.

  5. Lagrangian photochemical modeling studies of the 1987 Antarctic spring vortex. II - Seasonal trends in ozone

    NASA Technical Reports Server (NTRS)

    Austin, J.; Jones, R. L.; Mckenna, D. S.; Buckland, A. T.; Anderson, J. G.; Fahey, D. W.; Farmer, C. B.; Heidt, L. E.; Proffitt, M. H.; Vedder, J. F.

    1989-01-01

    A photochemical model consisting of 40 species and 107 reactions is integrated along 80-day air parcel trajectories calculated in the lower stratosphere for the springtime Antarctic. For the trajectory starting at 58 deg S, which may be regarded as outside the circumpolar vortex, only a small change in O3 occurs in the model. In contrast, for the air parcel starting in the vortex at 74 deg S, the O3 concentration is reduced by 93 percent during the 80 days from the beginning of August to late October. The model results for several species are compared with measurements from the Airborne Antarctic Ozone Experiment and, in general, good agreement is obtained. In the model, the dentrification of the air parcels in polar stratospheric clouds increases the amount of chlorine present in active form. Heterogeneous reactions maintain high active chlorine which destroys O3 via the formation of the ClO dimer. Results of calculations with reduced concentrations of inorganic chlorine show considerably reduced O3 destruction rates and compare favorably with the behavior of total O3 since the late 1970s. The remaining major uncertainties in the photochemical aspects of the Antarctic ozone hole are highlighted.

  6. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  7. Air Quality Modeling in Support of the Near-road EXposures and effects of Urban air pollutants Study (NEXUS)

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. The Near-road Exposures to Urban air pollutant Study (NEXUS) design includes determining if children in Detroit, MI with asthma living ...

  8. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  9. Hierarchical Information-Based Clustering for Connectivity-Based Cortex Parcellation

    PubMed Central

    Gorbach, Nico S.; Schütte, Christoph; Melzer, Corina; Goldau, Mathias; Sujazow, Olivia; Jitsev, Jenia; Douglas, Tania; Tittgemeyer, Marc

    2011-01-01

    One of the most promising avenues for compiling connectivity data originates from the notion that individual brain regions maintain individual connectivity profiles; the functional repertoire of a cortical area (“the functional fingerprint”) is closely related to its anatomical connections (“the connectional fingerprint”) and, hence, a segregated cortical area may be characterized by a highly coherent connectivity pattern. Diffusion tractography can be used to identify borders between such cortical areas. Each cortical area is defined based upon a unique probabilistic tractogram and such a tractogram is representative of a group of tractograms, thereby forming the cortical area. The underlying methodology is called connectivity-based cortex parcellation and requires clustering or grouping of similar diffusion tractograms. Despite the relative success of this technique in producing anatomically sensible results, existing clustering techniques in the context of connectivity-based parcellation typically depend on several non-trivial assumptions. In this paper, we embody an unsupervised hierarchical information-based framework to clustering probabilistic tractograms that avoids many drawbacks offered by previous methods. Cortex parcellation of the inferior frontal gyrus together with the precentral gyrus demonstrates a proof of concept of the proposed method: The automatic parcellation reveals cortical subunits consistent with cytoarchitectonic maps and previous studies including connectivity-based parcellation. Further insight into the hierarchically modular architecture of cortical subunits is given by revealing coarser cortical structures that differentiate between primary as well as premotoric areas and those associated with pre-frontal areas. PMID:21977015

  10. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature

    PubMed Central

    DESTRIEUX, Christophe; FISCHL, Bruce; DALE, Anders; HALGREN, Eric

    2010-01-01

    Precise localization of sulco-gyral structures of the human cerebral cortex is important for the interpretation of morpho-functional data, but requires anatomical expertise and is time consuming because of the brain s geometric complexity. Software developed to automatically identify sulco-gyral structures has improved substantially as a result of techniques providing topologically-correct reconstructions permitting inflated views of the human brain. Here we describe a complete parcellation of the cortical surface using standard internationally-accepted nomenclature and criteria. This parcellation is available in the FreeSurfer package. First, a computer-assisted hand parcellation classified each vertex as sulcal or gyral, and these were then subparcellated into 74 labels per hemisphere. Twelve datasets were used to develop rules and algorithms (reported here) that produced labels consistent with anatomical rules as well as automated computational parcellation. The final parcellation was used to build an atlas for automatically labeling the whole cerebral cortex. This atlas was used to label an additional 12 datasets, which were found to have good concordance with manual labels. This paper presents a precisely-defined method for automatically labeling the cortical surface in standard terminology. PMID:20547229

  11. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.

    PubMed

    Destrieux, Christophe; Fischl, Bruce; Dale, Anders; Halgren, Eric

    2010-10-15

    Precise localization of sulco-gyral structures of the human cerebral cortex is important for the interpretation of morpho-functional data, but requires anatomical expertise and is time consuming because of the brain's geometric complexity. Software developed to automatically identify sulco-gyral structures has improved substantially as a result of techniques providing topologically correct reconstructions permitting inflated views of the human brain. Here we describe a complete parcellation of the cortical surface using standard internationally accepted nomenclature and criteria. This parcellation is available in the FreeSurfer package. First, a computer-assisted hand parcellation classified each vertex as sulcal or gyral, and these were then subparcellated into 74 labels per hemisphere. Twelve datasets were used to develop rules and algorithms (reported here) that produced labels consistent with anatomical rules as well as automated computational parcellation. The final parcellation was used to build an atlas for automatically labeling the whole cerebral cortex. This atlas was used to label an additional 12 datasets, which were found to have good concordance with manual labels. This paper presents a precisely defined method for automatically labeling the cortical surface in standard terminology. PMID:20547229

  12. 75 FR 4070 - Science Advisory Board Staff Office; Notification of a Public Meeting of the Air Quality Modeling...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-26

    ... AGENCY Science Advisory Board Staff Office; Notification of a Public Meeting of the Air Quality Modeling... public meeting of the Air Quality Modeling Subcommittee (AQMS) of the Advisory Council on Clean Air... air quality modeling results for scenarios with and without EPA's regulatory programs...

  13. Node Detection Using High-Dimensional Fuzzy Parcellation Applied to the Insular Cortex

    PubMed Central

    Vercelli, Ugo; Diano, Matteo; Costa, Tommaso; Nani, Andrea; Duca, Sergio; Geminiani, Giuliano; Vercelli, Alessandro; Cauda, Franco

    2016-01-01

    Several functional connectivity approaches require the definition of a set of regions of interest (ROIs) that act as network nodes. Different methods have been developed to define these nodes and to derive their functional and effective connections, most of which are rather complex. Here we aim to propose a relatively simple “one-step” border detection and ROI estimation procedure employing the fuzzy c-mean clustering algorithm. To test this procedure and to explore insular connectivity beyond the two/three-region model currently proposed in the literature, we parcellated the insular cortex of 20 healthy right-handed volunteers scanned in a resting state. By employing a high-dimensional functional connectivity-based clustering process, we confirmed the two patterns of connectivity previously described. This method revealed a complex pattern of functional connectivity where the two previously detected insular clusters are subdivided into several other networks, some of which are not commonly associated with the insular cortex, such as the default mode network and parts of the dorsal attentional network. Furthermore, the detection of nodes was reliable, as demonstrated by the confirmative analysis performed on a replication group of subjects. PMID:26881093

  14. Node Detection Using High-Dimensional Fuzzy Parcellation Applied to the Insular Cortex.

    PubMed

    Vercelli, Ugo; Diano, Matteo; Costa, Tommaso; Nani, Andrea; Duca, Sergio; Geminiani, Giuliano; Vercelli, Alessandro; Cauda, Franco

    2016-01-01

    Several functional connectivity approaches require the definition of a set of regions of interest (ROIs) that act as network nodes. Different methods have been developed to define these nodes and to derive their functional and effective connections, most of which are rather complex. Here we aim to propose a relatively simple "one-step" border detection and ROI estimation procedure employing the fuzzy c-mean clustering algorithm. To test this procedure and to explore insular connectivity beyond the two/three-region model currently proposed in the literature, we parcellated the insular cortex of 20 healthy right-handed volunteers scanned in a resting state. By employing a high-dimensional functional connectivity-based clustering process, we confirmed the two patterns of connectivity previously described. This method revealed a complex pattern of functional connectivity where the two previously detected insular clusters are subdivided into several other networks, some of which are not commonly associated with the insular cortex, such as the default mode network and parts of the dorsal attentional network. Furthermore, the detection of nodes was reliable, as demonstrated by the confirmative analysis performed on a replication group of subjects. PMID:26881093

  15. Existing air sparging model and literature review for the development of an air sparging optimization decision tool

    SciTech Connect

    1995-08-01

    The objectives of this Report are two-fold: (1) to provide overviews of the state-of-the-art and state-of-the-practice with respect to air sparging technology, air sparging models and related or augmentation technologies (e.g., soil vapor extraction); and (2) to provide the basis for the development of the conceptual Decision Tool. The Project Team conducted an exhaustive review of available literature. The complete listing of the documents, numbering several hundred and reviewed as a part of this task, is included in Appendix A. Even with the large amount of material written regarding the development and application of air sparging, there still are significant gaps in the technical community`s understanding of the remediation technology. The results of the literature review are provided in Section 2. In Section 3, an overview of seventeen conceptual, theoretical, mathematical and empirical models is presented. Detailed descriptions of each of the models reviewed is provided in Appendix B. Included in Appendix D is a copy of the questionnaire used to compile information about the models. The remaining sections of the document reflect the analysis and synthesis of the information gleaned during the literature and model reviews. The results of these efforts provide the basis for development of the decision tree and conceptual decision tool for determining applicability and optimization of air sparging. The preliminary decision tree and accompanying information provided in Section 6 describe a three-tiered approach for determining air sparging applicability: comparison with established scenarios; calculation of conceptual design parameters; and the conducting of pilot-scale studies to confirm applicability. The final two sections of this document provide listings of the key success factors which will be used for evaluating the utility of the Decision Tool and descriptions of potential applications for Decision Tool use.

  16. Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation

    NASA Astrophysics Data System (ADS)

    Savage, N. H.; Agnew, P.; Davis, L. S.; Ordóñez, C.; Thorpe, R.; Johnson, C. E.; O'Connor, F. M.; Dalvi, M.

    2013-03-01

    The on-line air quality model AQUM (Air Quality in the Unified Model) is a limited-area forecast configuration of the Met Office Unified Model which uses the UKCA (UK Chemistry and Aerosols) sub-model. AQUM has been developed with two aims: as an operational system to deliver regional air quality forecasts and as a modelling system to conduct air quality studies to inform policy decisions on emissions controls. This paper presents a description of the model and the methods used to evaluate the performance of the forecast system against the automated UK surface network of air quality monitors. Results are presented of evaluation studies conducted for a year-long period of operational forecast trials and several past cases of poor air quality episodes. The results demonstrate that AQUM tends to over-predict ozone (~8 μg m-3 mean bias for the year-long forecast), but has a good level of responsiveness to elevated ozone episode conditions - a characteristic which is essential for forecasting poor air quality episodes. AQUM is shown to have a negative bias for PM10, while for PM2.5 the negative bias is much smaller in magnitude. An analysis of speciated PM2.5 data during an episode of elevated particulate matter (PM) suggests that the PM bias occurs mainly in the coarse component. The sensitivity of model predictions to lateral boundary conditions (LBCs) has been assessed by using LBCs from two different global reanalyses and by comparing the standard, single-nested configuration with a configuration having an intermediate European nest. We conclude that, even with a much larger regional domain, the LBCs remain an important source of model error for relatively long-lived pollutants such as ozone. To place the model performance in context we compare AQUM ozone forecasts with those of another forecasting system, the MACC (Monitoring Atmospheric Composition and Climate) ensemble, for a 5-month period. An analysis of the variation of model skill with forecast lead time is

  17. User manual for the EPA third-generation air quality modeling system (Models-3 version 3.0). Appendices

    SciTech Connect

    1999-06-01

    Models-3 is a flexible third generation software modeling system designed to simplify the development and use of the environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. This version of Models-3 contains a Community Multiscale Air Quality (CMAQ) system for urban to regional scale air quality simulation of tropospheric ozone, acid deposition, visibility and fine particulate. Models-3 and CMAQ in combination form a powerful third generation air quality modeling and assessment system. Third generation models treat multiple pollutants simultaneously up to continental scales and incorporate feedback between chemical and meteorological components.

  18. User manual for the EPA third-generation air quality modeling system (Models-3 version 3.0)

    SciTech Connect

    1999-06-01

    Models-3 is a flexible third generation software modeling system designed to simplify the development and use of the environmental assessment and other decision support tools. It is designed for applications ranging from regulatory and policy analysis to understanding the complex interactions of atmospheric chemistry and physics. This version of Models-3 contains a Community Multiscale Air Quality (CMAQ) system for urban to regional scale air quality simulation of tropospheric ozone, acid deposition, visibility and fine particulate. Models-3 and CMAQ in combination form a powerful third generation air quality modeling and assessment system. Third generation models treat multiple pollutants simultaneously up to continental scales and incorporate feedback between chemical and meteorological components.

  19. Smart tetroons for Lagrangian air-mass tracking during ACE 1

    NASA Astrophysics Data System (ADS)

    Businger, Steven; Johnson, Randy; Katzfey, Jack; Siems, Steven; Wang, Qing

    1999-05-01

    A series of "smart" tetroons was released from shipboard during the recent ACE 1 field experiment designed to monitor changes in the sulfur budget in a remote marine boundary layer (MBL) south of Tasmania, Australia. The smart tetroons were designed at NOAA Air Resources Laboratory Field Research Division to provide air parcel tracking information. The adjective smart here refers here to the fact that the buoyancy of the tetroons automatically adjusts through the action of a pump and valves when the tetroon travels vertically outside a range of pressures set prior to tetroon release. The smart tetroon design provides GPS location, barometric pressure, temperature, relative humidity, and tetroon status data via a transponder to the NCAR C-130 research aircraft flying in the vicinity of the tetroons. In this paper we will describe (1) the design and capability of the smart tetroons and their performance during the two Lagrangian experiments conducted during ACE 1, (2) the synoptic context of the Lagrangians, including the origin of the air parcels being tracked, and (3) the results of trajectory predictions derived from the National Center for Environmental Prediction (NCEP) Global Spectral Model (GSM) and Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) Division of Atmospheric Research (DAR) limited-area model.

  20. Dynamic Evaluation of a Regional Air Quality Model: Assessing the Emissions-Induced Weekly Ozone Cycle

    EPA Science Inventory

    Air quality models are used to predict changes in pollutant concentrations resulting from envisioned emission control policies. Recognizing the need to assess the credibility of air quality models in a policy-relevant context, we perform a dynamic evaluation of the community Mult...

  1. SIMULATION OF AEROSOL DYNAMICS: A COMPARATIVE REVIEW OF ALGORITHMS USED IN AIR QUALITY MODELS

    EPA Science Inventory

    A comparative review of algorithms currently used in air quality models to simulate aerosol dynamics is presented. This review addresses coagulation, condensational growth, nucleation, and gas/particle mass transfer. Two major approaches are used in air quality models to repres...

  2. Dynamic Evaluation of Long-Term Air Quality Model Simulations Over the Northeastern U.S.

    EPA Science Inventory

    Dynamic model evaluation assesses a modeling system's ability to reproduce changes in air quality induced by changes in meteorology and/or emissions. In this paper, we illustrate various approaches to dynamic mode evaluation utilizing 18 years of air quality simulations perform...

  3. PROTOTYPING AND IMPLEMENTATION OF MULTISCALE AIR QUALITY MODELS FOR HIGH PERFORMANCE COMPUTING

    EPA Science Inventory

    Important missions of the U.S. EPA are to enhance understanding of the global environmental system and to develop tools to help environmental policy decision making. hree-dimensional air quality models used by EPA are examples of such tools. lthough current air quality models are...

  4. Air Quality Model Evaluation International Initiative (AQMEII) - Utrecht, Netherlands The May 8, 2012

    EPA Science Inventory

    The 4th workshop of the Air Quality Model Evaluation International Initiative (AQMEII) was held on May 8 in Utrecht, The Netherlands, in conjunction with the NATO/SPS International Technical Meeting on Air Pollution Modeling and Its Application. AQMEII was launched in 2009 as a l...

  5. DESCRIPTION OF UNAMAP (USER'S NETWORK FOR APPLIED MODELING OF AIR POLLUTION) (VERSION 6)

    EPA Science Inventory

    UNAMAP (VERSION 6) represents the 1986 update to the User's Network for Applied Modeling of Air Pollution. UNAMAP consists of an ASCII magnetic tape containing FORTRAN codes and test data for 25 air quality simulation models as well as associated documentation. The tape and docum...

  6. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  7. EMERGING AIR QUALITY MODELING TECHNOLOGY FOR HIGH PERFORMANCE COMPUTING AND COMMUNICATION ENVIRONMENTS

    EPA Science Inventory

    To demonstrate applications of the HPCC technologies in air quality models, we organized the Specialty Evening Session 1, "Emerging Air Quality Modeling Technologies for High Performance Computing and Communication Environment" as a part of the Twenty First NATO/CCMS Internationa...

  8. Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.

  9. The AQMEII Two-Continent Regional Air Quality Model Evaluation Study: Fueling Ideas with Unprecedented Data

    EPA Science Inventory

    Although strong collaborations in the air pollution field have existed among the North American (NA) and European (EU) countries over the past five decades, regional-scale air quality model developments and model performance evaluations have been carried out independently unlike ...

  10. CASE STUDIES IN THE APPLICATION OF AIR QUALITY MODELING IN ENVIRONMENTAL DECISION MAKING: SUMMARY AND RECOMMENDATIONS

    EPA Science Inventory

    Eleven case studies of the application of air quality models were undertaken in order to examine the problems encountered when trying to use these models in making environmental policy decisions. The case studies of air pollution control decisions describe the decision process, t...

  11. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  12. Aircraft/Air Traffic Management Functional Analysis Model. Version 2.0; User's Guide

    NASA Technical Reports Server (NTRS)

    Etheridge, Melvin; Plugge, Joana; Retina, Nusrat

    1998-01-01

    The Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 (FAM 2.0), is a discrete event simulation model designed to support analysis of alternative concepts in air traffic management and control. FAM 2.0 was developed by the Logistics Management Institute (LMI) a National Aeronautics and Space Administration (NASA) contract. This document provides a guide for using the model in analysis. Those interested in making enhancements or modification to the model should consult the companion document, Aircraft/Air Traffic Management Functional Analysis Model, Version 2.0 Technical Description.

  13. MODELING POPULATION EXPOSURES TO OUTDOOR SOURCES OF HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    Accurate assessment of human exposures is an important part of environmental health effects research. However, most air pollution epidemiology studies rely upon imperfect surrogates of personal exposures, such as information based on available central-site outdoor concentration ...

  14. Parcellation of Infant Surface Atlas Using Developmental Trajectories of Multidimensional Cortical Attributes

    PubMed Central

    Li, Gang; Wang, Li; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2016-01-01

    Cortical surface atlases, equipped with anatomically and functionally defined parcellations, are of fundamental importance in neuroimaging studies. Typically, parcellations of surface atlases are derived based on the sulcal-gyral landmarks, which are extremely variable across individuals and poorly matched with microstructural and functional boundaries. Cortical developmental trajectories in infants reflect underlying changes of microstructures, which essentially determines the molecular organization and functional principles of the cortex, thus allowing better definition of developmentally, microstructurally, and functionally distinct regions, compared to conventional sulcal-gyral landmarks. Accordingly, a parcellation of infant cortical surface atlas was proposed, based on the developmental trajectories of cortical thickness in infants, revealing regional patterning of cortical growth. However, cortical anatomy is jointly characterized by biologically-distinct, multidimensional cortical attributes, i.e., cortical thickness, surface area, and local gyrification, each with its distinct genetic underpinning, cellular mechanism, and developmental trajectories. To date, the parcellations based on the development of surface area and local gyrification is still missing. To bridge this critical gap, for the first time, we parcellate an infant cortical surface atlas into distinct regions based solely on developmental trajectories of surface area and local gyrification, respectively. For each cortical attribute, we first nonlinearly fuse the subject-specific similarity matrices of vertices' developmental trajectories of all subjects into a single matrix, which helps better capture common and complementary information of the population than the conventional method of simple averaging of all subjects' matrices. Then, we perform spectral clustering based on this fused matrix. We have applied our method to parcellate an infant surface atlas using the developmental trajectories

  15. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  16. Assessment and prediction of air quality using fuzzy logic and autoregressive models

    NASA Astrophysics Data System (ADS)

    Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.

    2012-12-01

    In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.

  17. An air dispersion model for the city of Toronto, Ontario, Canada.

    PubMed

    Sylvestre-Williams, Barbara; Mehrvar, Mehrab

    2012-01-01

    Air quality is a major concern for the public; therefore, the reliability of accurate models in predicting the air quality is of a major interest. In this study, a Gaussian air dispersion model, known as the Air dispersion model for Road Sources in Urban areaS (ARSUS), was developed to predict the ground level concentrations for a contaminant of interest. It was demonstrated that this model could be used successfully in place of or in conjunction with ambient air monitoring stations in determining the local Air Quality Index (AQI). The ARSUS model was validated against the US EPA ISC3 model before it was used to conduct two studies in this investigation. These two studies simulated weekday morning rush-hour tailpipe emissions of CO and predicted ground level concentrations. The first study used the ARSUS model to predict ground level concentrations of CO from the tailpipe emissions for roads and highways located in the vicinity of the Toronto West ambient air monitoring station. The second study involved an expansion of the domain to predict ground level concentrations of CO from tailpipe emissions from highways in the City of Toronto, Ontario, Canada. The predicted concentrations were then compared to the data collected from the Toronto West ambient air monitoring station. The results of the ARSUS model indicated that the air quality in the immediate vicinity of roads or highways is highly impacted by the tailpipe emissions. Higher concentrations were observed for the areas adjacent to the road and highway sources. The tailpipe emissions of CO from highways had a higher contribution to the local air quality. The predicted ground level concentrations from the ARSUS model under-predicted when compared to the observed data from the monitoring station; however, despite this, the predictive model is viable. PMID:22506705

  18. Development of a Micro-scale Air Monitoring and Modeling System for a Urban District Air Quality Management

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Heon; Woo, Jung-Hun; Ryoo, Rina; Jung, Bujeon; Seo, Jun Seong; Kim, Jae-Jin; Boem Lim, Sang; Kim, Hyungseok

    2010-05-01

    As the city is urbanized, its landscape is getting more complex due to the construction of high-rise buildings. The smaller scale wind-field in an urban district may change frequently due to the complex terrain, the diverse landuse, and high-rise buildings. It also leads to dynamic changes of air pollution in that area. The conventional urban scale air quality management system, however, is too coarse to effectively manage such a small area. In this study, we set up a micro-scale air quality management testbed near Konkuk University, Seoul, Korea. A ubiquities sensor monitoring network, high resolution emission database, and CFD-based air quality modeling system were developed, and then applied to the testbed. A sensor data management system using wireless technology and multi-modal scientific visualization module were combined in support of the management system. The sensor based monitoring system shows reasonably good performance for wind speed, temperature, and carbon dioxide from inter-comparison study against conventional large format analyzers. The sensor data have been successfully collected using a wireless sensor data collection network during a 6months operation period from July, 2009. The fire pollution event simulation using the CFD model reveals the effect of high rise buildings in the testbed.

  19. Uncertainty characterization and quantification in air pollution models. Application to the ADMS-Urban model.

    NASA Astrophysics Data System (ADS)

    Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.

    2009-04-01

    Evaluation of human exposure to atmospheric pollution usually requires the knowledge of pollutants concentrations in ambient air. In the framework of PAISA project, which studies the influence of socio-economical status on relationships between air pollution and short term health effects, the concentrations of gas and particle pollutants are computed over Strasbourg with the ADMS-Urban model. As for any modeling result, simulated concentrations come with uncertainties which have to be characterized and quantified. There are several sources of uncertainties related to input data and parameters, i.e. fields used to execute the model like meteorological fields, boundary conditions and emissions, related to the model formulation because of incomplete or inaccurate treatment of dynamical and chemical processes, and inherent to the stochastic behavior of atmosphere and human activities [1]. Our aim is here to assess the uncertainties of the simulated concentrations with respect to input data and model parameters. In this scope the first step consisted in bringing out the input data and model parameters that contribute most effectively to space and time variability of predicted concentrations. Concentrations of several pollutants were simulated for two months in winter 2004 and two months in summer 2004 over five areas of Strasbourg. The sensitivity analysis shows the dominating influence of boundary conditions and emissions. Among model parameters, the roughness and Monin-Obukhov lengths appear to have non neglectable local effects. Dry deposition is also an important dynamic process. The second step of the characterization and quantification of uncertainties consists in attributing a probability distribution to each input data and model parameter and in propagating the joint distribution of all data and parameters into the model so as to associate a probability distribution to the modeled concentrations. Several analytical and numerical methods exist to perform an

  20. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features

  1. Regional air quality in the four corners studys region: modeling approach

    SciTech Connect

    Nochumson, D.

    1982-01-01

    A two-dimensional Eulerian air pollutant transport model was used in an air quality study of the Four Corners region conducted for the National Commission on Air Quality. The regional modeling methodology and some sample results from the regional air quality analysis are presented. One major advantage of the regional transport model that was employed is that its solution involves the calculation of transfer coefficients that relate emissions to ambient concentrations and deposition and which can be used repeatedly to evaluate alternative scenarios and regulatory policies which represent different emission source configurations. The regional transport model was used in the calculation of the concentration and deposition of SO/sub 2/, SO/sub 4/, and primary fine particulates; and these estimates were used as inputs to regional atmospheric visibility and mass budget calculations. Previous studies have shown that the methods used in the regional air quality analysis give good agreement when comparing observed and estimated values.

  2. Developments in EPA`s air dispersion modeling for hazardous/toxic releases

    SciTech Connect

    Touma, J.S.

    1995-12-31

    Title 3 of the 1990 Clean Air Act Amendments (CAAA) lists many chemicals as hazardous air pollutants and requires establishing regulations to prevent their accidental release, and to minimize the consequence, if any such releases occur. With the large number of potential release scenarios that are associated with these chemicals, there is a need for a systematic approach for applying air dispersion models to estimate impact. Because some chemicals may form dense gas clouds upon release, and dispersion models that can simulate these releases are complex, EPA has paid attention to the development of modeling tools and guidance on the use of models that can address these types of releases.

  3. On the accuracy of the rate coefficients used in plasma fluid models for breakdown in air

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Raja, Laxminarayan L.

    2016-07-01

    The electrical breakdown of air depends on the balance between creation and loss of charged particles. In fluid models, datasets of the rate coefficients used are obtained either from fits to experimental data or by solutions of the Boltzmann equation. Here, we study the accuracy of the commonly used models for ionization and attachment frequencies and their impact on the prediction of the breakdown threshold for air. We show that large errors can occur depending on the model and propose the most accurate dataset available for modeling of air breakdown phenomena.

  4. GraSP: Geodesic Graph-based Segmentation With Shape Priors for the Functional Parcellation of the Cortex

    PubMed Central

    Honnorat, N.; Eavani, H.; Satterthwaite, T. D.; Gur, R. E.; Gur, R. C.; Davatzikos, C.

    2014-01-01

    Resting-state functional MRI is a powerful technique for mapping the functional organization of the human brain. However, for many types of connectivity analysis, high-resolution voxelwise analyses are computationally infeasible and dimensionality reduction is typically used to limit the number of network nodes. Most commonly, network nodes are defined using standard anatomic atlases that do not align well with functional neuroanatomy or regions of interest covering a small portion of the cortex. Data-driven parcellation methods seek to overcome such limitations, but existing approaches are highly dependent on initialization procedures and produce spatially fragmented parcels or overly isotropic parcels that are unlikely to be biologically grounded. In this paper, we propose a novel graph-based parcellation method that relies on a discrete Markov Random Field framework. The spatial connectedness of the parcels is explicitly enforced by shape priors. The shape of the parcels is adapted to underlying data through the use of functional geodesic distances. Our method is initialization-free and rapidly segments the cortex in a single optimization. The performance of the method was assessed using a large developmental cohort of more than 850 subjects. Compared to two prevalent parcellation methods, our approach provides superior reproducibility for a similar data fit. Furthermore, compared to other methods, it avoids incoherent parcels. Finally, the method’s utility is demonstrated through its ability to detect strong brain developmental effects that are only weakly observed using other methods. PMID:25462796

  5. 25 CFR 166.303 - Can more than one parcel of Indian land be combined into one permit?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can more than one parcel of Indian land be combined into one permit? 166.303 Section 166.303 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.303 Can more than one parcel of...

  6. E-ɛ modelling of turbulent air flow downwind of a model forest edge

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Black, T. A.; Novak, M. D.

    1996-01-01

    A two-dimensional E-ɛ model, which included the effects of plant-atmosphere interaction, was used to simulate air flow downwind of forest edges for the purpose of predicting the microclimate in forest openings. A suitable set of wall functions was selected to consider the aerodynamic effects of the ground in the opening. The model with discretization and parameter schemes was validated using a set of data from a wind-tunnel experiment. The simulated wind speed and turbulence kinetic energy closely agreed with the measured values. After validation, the model was used to predict eddy diffusivity in the lee of the forest edge. The modelled spatial distribution of the eddy diffusivity agreed in general with that calculated using wind-tunnel measurements. The usefulness and limitations of the E-ɛ model are discussed.

  7. Modeling subcanopy incoming longwave radiation to seasonal snow using air and tree trunk temperatures

    NASA Astrophysics Data System (ADS)

    Webster, Clare; Rutter, Nick; Zahner, Franziska; Jonas, Tobias

    2016-02-01

    Data collected at three Swiss alpine forested sites over a combined 11 year period were used to evaluate the role of air temperature in modeling subcanopy incoming longwave radiation to the snow surface. Simulated subcanopy incoming longwave radiation is traditionally partitioned into that from the sky and that from the canopy, i.e., a two-part model. Initial uncertainties in predicting longwave radiation using the two-part model resulted from vertical differences in measured air temperature. Above-canopy (35 m) air temperatures were higher than those within (10 m) and below (2 m) canopy throughout four snow seasons (December-April), demonstrating how the forest canopy can act as a cold sink for air. Lowest model root-mean-square error (RMSE) was using above-canopy air temperature. Further investigation of modeling subcanopy longwave radiation using above-canopy air temperature showed underestimations, particularly during periods of high insolation. In order to explicitly account for canopy temperatures in modeling longwave radiation, the two-part model was improved by incorporating a measured trunk view component and trunk temperature. Trunk temperature measurements were up to 25°C higher than locally measured air temperatures. This three-part model reduced the RMSE by up to 7.7 W m-2 from the two-part air temperature model at all sensor positions across the 2014 snowmelt season and performed particularly well during periods of high insolation when errors from the two-part model were up to 40 W m-2. A parameterization predicting tree trunk temperatures using measured air temperature and incoming shortwave radiation demonstrate a simple method that can be applied to provide input to the three-part model across midlatitude coniferous forests.

  8. Geospatial Modeling of Asthma Population in Relation to Air Pollution

    NASA Technical Reports Server (NTRS)

    Kethireddy, Swatantra R.; Tchounwou, Paul B.; Young, John H.; Luvall, Jeffrey C.; Alhamdan, Mohammad

    2013-01-01

    Current observations indicate that asthma is growing every year in the United States, specific reasons for this are not well understood. This study stems from an ongoing research effort to investigate the spatio-temporal behavior of asthma and its relatedness to air pollution. The association between environmental variables such as air quality and asthma related health issues over Mississippi State are investigated using Geographic Information Systems (GIS) tools and applications. Health data concerning asthma obtained from Mississippi State Department of Health (MSDH) for 9-year period of 2003-2011, and data of air pollutant concentrations (PM2.5) collected from USEPA web resources, and are analyzed geospatially to establish the impacts of air quality on human health specifically related to asthma. Disease mapping using geospatial techniques provides valuable insights into the spatial nature, variability, and association of asthma to air pollution. Asthma patient hospitalization data of Mississippi has been analyzed and mapped using quantitative Choropleth techniques in ArcGIS. Patients have been geocoded to their respective zip codes. Potential air pollutant sources of Interstate highways, Industries, and other land use data have been integrated in common geospatial platform to understand their adverse contribution on human health. Existing hospitals and emergency clinics are being injected into analysis to further understand their proximity and easy access to patient locations. At the current level of analysis and understanding, spatial distribution of Asthma is observed in the populations of Zip code regions in gulf coast, along the interstates of south, and in counties of Northeast Mississippi. It is also found that asthma is prevalent in most of the urban population. This GIS based project would be useful to make health risk assessment and provide information support to the administrators and decision makers for establishing satellite clinics in future.

  9. Comment on "Improved ray tracing air mass numbers model"

    NASA Astrophysics Data System (ADS)

    van der Werf, Siebren Y.

    2008-01-01

    Air mass numbers have traditionally been obtained by techniques that use height as the integration variable. This introduces an inherent singularity at the horizon, and ad hoc solutions have been invented to cope with it. A survey of the possible options including integration by height, zenith angle, and horizontal distance or path length is presented. Ray tracing by path length is shown to avoid singularities both at the horizon and in the zenith. A fourth-order Runge-Kutta numerical integration scheme is presented, which treats refraction and air mass as path integrals. The latter may optionally be split out into separate contributions of the atmosphere's constituents.

  10. Modeling air quality in main cities of Peninsular Malaysia by using a generalized Pareto model.

    PubMed

    Masseran, Nurulkamal; Razali, Ahmad Mahir; Ibrahim, Kamarulzaman; Latif, Mohd Talib

    2016-01-01

    The air pollution index (API) is an important figure used for measuring the quality of air in the environment. The API is determined based on the highest average value of individual indices for all the variables which include sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (O3), and suspended particulate matter (PM10) at a particular hour. API values that exceed the limit of 100 units indicate an unhealthy status for the exposed environment. This study investigates the risk of occurrences of API values greater than 100 units for eight urban areas in Peninsular Malaysia for the period of January 2004 to December 2014. An extreme value model, known as the generalized Pareto distribution (GPD), has been fitted to the API values found. Based on the fitted model, return period for describing the occurrences of API exceeding 100 in the different cities has been computed as the indicator of risk. The results obtained indicated that most of the urban areas considered have a very small risk of occurrence of the unhealthy events, except for Kuala Lumpur, Malacca, and Klang. However, among these three cities, it is found that Klang has the highest risk. Based on all the results obtained, the air quality standard in urban areas of Peninsular Malaysia falls within healthy limits to human beings. PMID:26718946

  11. A site-specific screening comparison of modeled and monitored air dispersion and deposition for perfluorooctanoate.

    PubMed

    Barton, Catherine A; Zarzecki, Charles J; Russell, Mark H

    2010-04-01

    This work assessed the usefulness of a current air quality model (American Meteorological Society/Environmental Protection Agency Regulatory Model [AERMOD]) for predicting air concentrations and deposition of perfluorooctanoate (PFO) near a manufacturing facility. Air quality models play an important role in providing information for verifying permitting conditions and for exposure assessment purposes. It is important to ensure traditional modeling approaches are applicable to perfluorinated compounds, which are known to have unusual properties. Measured field data were compared with modeling predictions to show that AERMOD adequately located the maximum air concentration in the study area, provided representative or conservative air concentration estimates, and demonstrated bias and scatter not significantly different than that reported for other compounds. Surface soil/grass concentrations resulting from modeled deposition flux also showed acceptable bias and scatter compared with measured concentrations of PFO in soil/grass samples. Errors in predictions of air concentrations or deposition may be best explained by meteorological input uncertainty and conservatism in the PRIME algorithm used to account for building downwash. In general, AERMOD was found to be a useful screening tool for modeling the dispersion and deposition of PFO in air near a manufacturing facility. PMID:20437775

  12. Catchment-scale hydrologic implications of parcel-level stormwater management (Ohio USA)

    NASA Astrophysics Data System (ADS)

    Shuster, William; Rhea, Lee

    2013-04-01

    SummaryThe effectiveness of stormwater management strategies is a key issue affecting decision making on urban water resources management, and so proper monitoring and analysis of pilot studies must be addressed before drawing conclusions. We performed a pilot study in the suburban Shepherd Creek watershed located in Cincinnati, Ohio to evaluate the practicality of voluntary incentives for stormwater quantity reduction on privately owned suburban properties. Stream discharge and precipitation were monitored 3 years before and after implementation of the stormwater management treatments. To implement stormwater control measures, we elicited the participation of citizen landowners with two successive reverse-auctions. Auctions were held in spring 2007, and 2008, resulting in the installation of 85 rain gardens and 174 rain barrels. We demonstrated an analytic process of increasing model flexibility to determine hydrologic effectiveness of stormwater management at the sub-catchment level. A significant albeit small proportion of total variance was explained by both the effects of study period (˜69%) and treatment-vs.-control (˜7%). Precipitation-discharge relationships were synthesized in estimated unit hydrographs, which were decomposed and components tested for influence of treatments. Analysis of unit hydrograph parameters showed a weakened correlation between precipitation and discharge, and support the output from the initial model that parcel-level green infrastructure added detention capacity to treatment basins. We conclude that retrofit management of stormwater runoff quantity with green infrastructure in a small suburban catchment can be successfully initiated with novel economic incentive programs, and that these measures can impart a small, but statistically significant decrease in otherwise uncontrolled runoff volume. Given consistent monitoring data and analysis, water resource managers can use our approach as a way to estimate actual effectiveness of

  13. MODELING THE IMPACT OF AIR POLLUTION ON GLOBAL CLIMATE CHANGE

    EPA Science Inventory

    Tropospheric ozone (O3) and aerosols have major effects on climate and are the two air pollutants of most concern in the developed world. O3 is a major greenhouse gas (GHG) and light-absorbing aerosols such as black carbon (BC) also contribute to global warm...

  14. VALIDATION OF THE EKMA MODEL USING HISTORICAL AIR QUALITY DATA

    EPA Science Inventory

    Historical air quality and emissions trend data for the Los Angeles region were used to check the EKMA isopleth method of relating ozone concentration changes to precursor emission changes. Trends in ozone and ozone precursors (NMHC and NOx) were estimated from data for the perio...

  15. Linking Air Quality and Watershed Models for Environmental Assessments: Analysis of the Effects of Model-Specific Precipitation Estimates on Calculated Water Flux

    EPA Science Inventory

    Directly linking air quality and watershed models could provide an effective method for estimating spatially-explicit inputs of atmospheric contaminants to watershed biogeochemical models. However, to adequately link air and watershed models for wet deposition estimates, each mod...

  16. Archaeological Survey of 56 Preselected Parcels on the AridLands Ecology Reserve

    SciTech Connect

    J. J. Sharpe.

    1999-04-22

    An archaeological survey of 56 preselected parcels on the Fitzner-Eberhardt Arid Lands Ecology (ALE) Reserve was undertaken in support of compensatory mitigation for the construction of the Environmental Restoration Disposal Facility (ERDF) cells 3 and 4 on the Hanford Site. This report presents the findings of the archaeological survey.

  17. A hierarchical method for whole-brain connectivity-based parcellation.

    PubMed

    Moreno-Dominguez, David; Anwander, Alfred; Knösche, Thomas R

    2014-10-01

    In modern neuroscience there is general agreement that brain function relies on networks and that connectivity is therefore of paramount importance for brain function. Accordingly, the delineation of functional brain areas on the basis of diffusion magnetic resonance imaging (dMRI) and tractography may lead to highly relevant brain maps. Existing methods typically aim to find a predefined number of areas and/or are limited to small regions of grey matter. However, it is in general not likely that a single parcellation dividing the brain into a finite number of areas is an adequate representation of the function-anatomical organization of the brain. In this work, we propose hierarchical clustering as a solution to overcome these limitations and achieve whole-brain parcellation. We demonstrate that this method encodes the information of the underlying structure at all granularity levels in a hierarchical tree or dendrogram. We develop an optimal tree building and processing pipeline that reduces the complexity of the tree with minimal information loss. We show how these trees can be used to compare the similarity structure of different subjects or recordings and how to extract parcellations from them. Our novel approach yields a more exhaustive representation of the real underlying structure and successfully tackles the challenge of whole-brain parcellation. PMID:24740833

  18. 15 CFR 740.12 - Gift parcels and humanitarian donations (GFT).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... equipment for the handicapped); receive-only radio equipment for reception of commercial/civil AM/FM and short wave publicly available frequency bands, and batteries for such equipment; clothing; personal... radio; or members and employees of the Supreme Court (Tribuno Supremo Nacional). (B) No gift parcel...

  19. 15 CFR 740.12 - Gift parcels and humanitarian donations (GFT).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... equipment for the handicapped); receive-only radio equipment for reception of commercial/civil AM/FM and short wave publicly available frequency bands, and batteries for such equipment; clothing; personal... radio; or members and employees of the Supreme Court (Tribuno Supremo Nacional). (B) No gift parcel...

  20. 15 CFR 740.12 - Gift parcels and humanitarian donations (GFT).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 2 2013-01-01 2013-01-01 false Gift parcels and humanitarian donations (GFT). 740.12 Section 740.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS LICENSE EXCEPTIONS § 740.12...

  1. 15 CFR 740.12 - Gift parcels and humanitarian donations (GFT).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 2 2011-01-01 2011-01-01 false Gift parcels and humanitarian donations (GFT). 740.12 Section 740.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS LICENSE EXCEPTIONS § 740.12...

  2. 76 FR 59504 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... 111 Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels AGENCY: Postal... implementation of this final rule by requiring an Intelligent Mail package barcode (IMpb) for all commercial... the Federal Register (75 FR 56922- 56923), announcing plans to provide interim IMpb...

  3. 76 FR 14284 - Domestic Shipping Services Product Launch of Parcel Select Regional Ground

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    .... When either the Intelligent Mail package barcode or a Confirmation Services barcode is used, Parcel... part of a concatenated Intelligent Mail package barcode (IMpb) or a Confirmation Services GS-128... barcode included as part of a concatenated Intelligent Mail package barcode. 2. A Confirmation Services...

  4. 78 FR 65392 - Product Change-Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-31

    ... Change--Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice... INFORMATION CONTACT: Elizabeth A. Reed, 202-268-3179. ] SUPPLEMENTARY INFORMATION: The United States Postal... Return Service Contract 5 to Competitive Product List. Documents are available at www.prc.gov ,...

  5. 78 FR 26406 - Product Change-Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... Change--Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice... Classification Schedule's Competitive Products List. DATES: Effective date: May 6, 2013. FOR FURTHER INFORMATION CONTACT: Elizabeth A. Reed, 202-268-3179. SUPPLEMENTARY INFORMATION: The United States Postal...

  6. 15 CFR 740.12 - Gift parcels and humanitarian donations (GFT).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Gift parcels and humanitarian donations (GFT). 740.12 Section 740.12 Commerce and Foreign Trade Regulations Relating to Commerce and Foreign Trade (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS LICENSE EXCEPTIONS § 740.12...

  7. 76 FR 13000 - Transfer of Commercial First-Class Mail Parcels to Competitive Product List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... From the Federal Register Online via the Government Publishing Office POSTAL SERVICE Transfer of Commercial First-Class Mail Parcels to Competitive Product List AGENCY: Postal Service.\\TM\\ ACTION: Notice. SUMMARY: The Postal Service hereby provides notice that it has filed a request with the Postal...

  8. 9 CFR 325.2 - Parcel post and ferries deemed carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Parcel post and ferries deemed carriers. 325.2 Section 325.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... to transportation by ferry of any products loaded on a truck or other vehicle, or otherwise moved...

  9. 9 CFR 325.2 - Parcel post and ferries deemed carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Parcel post and ferries deemed carriers. 325.2 Section 325.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... to transportation by ferry of any products loaded on a truck or other vehicle, or otherwise moved...

  10. 9 CFR 325.2 - Parcel post and ferries deemed carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Parcel post and ferries deemed carriers. 325.2 Section 325.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... to transportation by ferry of any products loaded on a truck or other vehicle, or otherwise moved...

  11. 9 CFR 325.2 - Parcel post and ferries deemed carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Parcel post and ferries deemed carriers. 325.2 Section 325.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... to transportation by ferry of any products loaded on a truck or other vehicle, or otherwise moved...

  12. 9 CFR 325.2 - Parcel post and ferries deemed carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Parcel post and ferries deemed carriers. 325.2 Section 325.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... to transportation by ferry of any products loaded on a truck or other vehicle, or otherwise moved...

  13. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  14. Local-scale variability in regional air quality modelling: Implications on temporal distribution of emissions

    NASA Astrophysics Data System (ADS)

    Bergemann, Christoph; Meyer-Arnek, Julian

    2010-05-01

    In the field of air quality modeling, the comparison of model results with ground-based measurements is essential for validation purposes. The usefulness of these measurements for regional air quality modeling is however limited by the extremely local nature of station measurements. This is especially true for short-lived species like NO2, which is of high importance for public health. Nevertheless station observations are the only continuously available source of data on ground level air quality besides model results. Uncertainties in air quality models mainly arise from the lack of precise knowledge of the spatial and temporal distribution of pollutants. Most emission inventories provide aggregated values for long periods of time and yield no information on the temporal (diurnal) distribution of emissions. By applying ground-based measurements, our study yields optimized diurnal variations of anthropogenic emissions for different urban regions of Germany. In the course of the study the variability of air pollution on the urban scale (the model's subgrid scale) is also addressed. The study applies the newly established POLYPHEMUS/DLR model at a moderate resolution. In the framework of the GMES project "PROMOTE", this model system operationally analyzes and forecasts air quality in Bavaria, Germany. The model employs the latest version of the EMEP emission register in combination with high-resolution emission data provided by Bavarian authorities.

  15. ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    A dispersion model was used to analyze measurements made during a field study conducted by the U.S. EPA in July and August 2006, to estimate the impact of highway emissions on air quality at distances of tens of meters from an eight-lane highway. The air quality measurements con...

  16. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  17. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  18. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  19. 40 CFR Appendix W to Part 51 - Guideline on Air Quality Models

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... clear from the needs expressed by the States and EPA Regional Offices, by many industries and trade... 51—Guideline on Air Quality Models Preface a. Industry and control agencies have long expressed a....0Bibliography 12.0References Appendix A to Appendix W of 40 CFR Part 51—Summaries of Preferred Air...

  20. FUNDAMENTAL MASS TRANSFER MODEL FOR INDOOR AIR EMISSION FROM SURFACE COATINGS

    EPA Science Inventory

    The paper, discusses the work of researchers at the U.S. EPA's Air and Energy Engineering Research Laboratory (Indoor Air Branch) who are evaluating mass transfer models based on fundamental principles to determine their effectiveness in predicting emissions from indoor architect...

  1. FINAL EVALUATION OF URBAN-SCALE PHOTOCHEMICAL AIR QUALITY SIMULATION MODELS

    EPA Science Inventory

    The research study discussed here is a continuation of previous work whose goal was to determine the accuracy of several selected urban photochemical air quality simulation models using data from the Regional Air Pollution Study in St. Louis. This work reports on the testing of t...

  2. BUILDING AN ENVIRONMENTAL TRAINING MODEL, MAPCORE - A TRAINING EXERCISE FOR AIR POLLUTION CONTROL.

    ERIC Educational Resources Information Center

    SIEGEL, GILBERT B.; SULLIVAN, DONALD M.

    NEW AIR POLLUTION CONTROL PROGRAMS HAVE RESULTED FROM THE "CLEAN AIR ACT" PASSED BY CONGRESS IN DECEMBER 1963. THE UNIVERSITY OF SOUTHERN CALIFORNIA DEVELOPED A TRAINING MODEL, CALLED "MAPCORE," WHICH PROVIDES A SEMISTRUCTURED ENVIRONMENT, IS PRACTICAL AND REALISTIC IN APPROACH, PROVIDES OPPORTUNITY FOR HIGH CREATIVITY, PROVIDES AN…

  3. (AMD) ANALYSIS OF AIR QUALITY DATA NEAR ROADWAYS USING A DISPERSION MODEL

    EPA Science Inventory

    We used a dispersion model to analyze measurements made during a field study conducted by the U.S. EPA in July-August 2006, to estimate the impact of traffic emissions on air quality at distances of tens of meters from an 8 lane highway located in Raleigh, North Carolina. The air...

  4. Hydrogen cyanide in ambient air near a gold heap leach field: Measured vs. modeled concentrations

    NASA Astrophysics Data System (ADS)

    Orloff, Kenneth G.; Kaplan, Brian; Kowalski, Peter

    To extract gold from low-grade ores, a solution of sodium cyanide is trickled over pads of crushed ore. During this operation, small quantities of hydrogen cyanide gas may escape to the ambient air. To assess these emissions, we collected air samples at monitoring stations located on opposite sides of a gold heap leach field at distances ranging from 1100 to 1500 ft from the center of the field. Hydrogen cyanide was detected in 6 of 18 ambient air samples at concentrations ranging from 0.26 to 1.86 parts per billion (ppb). Ambient air samples collected at residential properties located within 2600 ft of the leach field did not contain detectable concentrations of cyanide (detection level of 0.2 ppb). We used site-specific data and two steady-state air dispersion models, ISCST3 and AERMOD, to predict ambient air concentrations of cyanide at the sampling points. The ISCST3 model over-predicted the measured 8-h concentrations of hydrogen cyanide by a factor of 2.4, on average, and the AERMOD model under-predicted the air concentrations of hydrogen cyanide by a factor of 0.76, on average. The major sources of uncertainty in the model predictions were the complex terrain of the area and the uncertainty in the emission rates of cyanide from the leach field. The measured and predicted concentrations of cyanide in the air samples were not at levels that would pose a human health hazard for acute or chronic exposures.

  5. AIR QUALITY MODELING AT COARSE-TO-FINE SCALES IN URBAN AREAS

    EPA Science Inventory

    Urban air toxics control strategies are moving towards a community based modeling approach, with an emphasis on assessing those areas that experience high air toxic concentration levels, the so-called "hot spots". This approach will require information that accurately maps and...

  6. Path Forward for the Air Quality Model Evaluation International Initiative (AQMEII)

    EPA Science Inventory

    This article lays out the objectives for Phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII). The inhalation of air pollutants such as ozone and fine particles has been linked to adverse impacts on human health, and the atmospheric deposition of pollutan...

  7. REGIONAL AIR QUALITY AND ACID DEPOSITION MODELING AND THE ROLE FOR VISUALIZATION

    EPA Science Inventory

    The U.S Environmental Protection Agency (EPA) uses air quality and deposition models to advance the scientific understanding of basic physical and chemical processes related to air pollution, and to assess the effectiveness of alternative emissions control strategies. his paper p...

  8. THE MAXIMUM LIKELIHOOD APPROACH TO PROBABILISTIC MODELING OF AIR QUALITY DATA

    EPA Science Inventory

    Software using maximum likelihood estimation to fit six probabilistic models is discussed. The software is designed as a tool for the air pollution researcher to determine what assumptions are valid in the statistical analysis of air pollution data for the purpose of standard set...

  9. Implementation of a WRF-CMAQ Air Quality Modeling System in Bogotá, Colombia

    NASA Astrophysics Data System (ADS)

    Nedbor-Gross, R.; Henderson, B. H.; Pachon, J. E.; Davis, J. R.; Baublitz, C. B.; Rincón, A.

    2014-12-01

    Due to a continuous economic growth Bogotá, Colombia has experienced air pollution issues in recent years. The local environmental authority has implemented several strategies to curb air pollution that have resulted in the decrease of PM10 concentrations since 2010. However, more activities are necessary in order to meet international air quality standards in the city. The University of Florida Air Quality and Climate group is collaborating with the Universidad de La Salle to prioritize regulatory strategies for Bogotá using air pollution simulations. To simulate pollution, we developed a modeling platform that combines the Weather Research and Forecasting Model (WRF), local emissions, and the Community Multi-scale Air Quality model (CMAQ). This platform is the first of its kind to be implemented in the megacity of Bogota, Colombia. The presentation will discuss development and evaluation of the air quality modeling system, highlight initial results characterizing photochemical conditions in Bogotá, and characterize air pollution under proposed regulatory strategies. The WRF model has been configured and applied to Bogotá, which resides in a tropical climate with complex mountainous topography. Developing the configuration included incorporation of local topography and land-use data, a physics sensitivity analysis, review, and systematic evaluation. The threshold, however, was set based on synthesis of model performance under less mountainous conditions. We will evaluate the impact that differences in autocorrelation contribute to the non-ideal performance. Air pollution predictions are currently under way. CMAQ has been configured with WRF meteorology, global boundary conditions from GEOS-Chem, and a locally produced emission inventory. Preliminary results from simulations show promising performance of CMAQ in Bogota. Anticipated results include a systematic performance evaluation of ozone and PM10, characterization of photochemical sensitivity, and air

  10. The Oak Ridge Heat Pump Models: I. A Steady-State Computer Design Model of Air-to-Air Heat Pumps

    SciTech Connect

    Fischer, S.K. Rice, C.K.

    1999-12-10

    The ORNL Heat Pump Design Model is a FORTRAN-IV computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The Heat Pump Design Model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. This report provides thorough documentation of how to use and/or modify the model. This is a revision of an earlier report containing miscellaneous corrections and information on availability and distribution of the model--including an interactive version.

  11. AIR DISPERSION MODELING AT THE WASTE ISOLATION PILOT PLANT

    SciTech Connect

    Rucker, D.F.

    2000-08-01

    One concern at the Waste Isolation Pilot Plant (WIPP) is the amount of alpha-emitting radionuclides or hazardous chemicals that can become airborne at the facility and reach the Exclusive Use Area boundary as the result of a release from the Waste Handling Building (WHB) or from the underground during waste emplacement operations. The WIPP Safety Analysis Report (SAR), WIPP RCRA Permit, and WIPP Emergency Preparedness Hazards Assessments include air dispersion calculations to address this issue. Meteorological conditions at the WIPP facility will dictate direction, speed, and dilution of a contaminant plume of respirable material due to chronic releases or during an accident. Due to the paucity of meteorological information at the WIPP site prior to September 1996, the Department of Energy (DOE) reports had to rely largely on unqualified climatic data from the site and neighboring Carlsbad, which is situated approximately 40 km (26 miles) to the west of the site. This report examines the validity of the DOE air dispersion calculations using new meteorological data measured and collected at the WIPP site since September 1996. The air dispersion calculations in this report include both chronic and acute releases. Chronic release calculations were conducted with the EPA-approved code, CAP88PC and the calculations showed that in order for a violation of 40 CFR61 (NESHAPS) to occur, approximately 15 mCi/yr of 239Pu would have to be released from the exhaust stack or from the WHB. This is an extremely high value. Hence, it is unlikely that NESHAPS would be violated. A site-specific air dispersion coefficient was evaluated for comparison with that used in acute dose calculations. The calculations presented in Section 3.2 and 3.3 show that one could expect a slightly less dispersive plume (larger air dispersion coefficient) given greater confidence in the meteorological data, i.e. 95% worst case meteorological conditions. Calculations show that dispersion will decrease

  12. Use of air quality modeling results as exposure estimates in health studies

    NASA Astrophysics Data System (ADS)

    Holmes, H. A.; Ivey, C.; Friberg, M.; Zhai, X.; Balachandran, S.; Hu, Y.; Russell, A. G.; Mulholland, J. A.; Tolbert, P. E.; Sarnat, S. E.

    2013-12-01

    Air pollutant measurements from regulatory monitoring networks are commonly utilized in combination with spatial averaging techniques to develop air quality metrics for use in epidemiologic studies. While these data provide useful indicators for air pollution in a region, their temporal and spatial information are limited. The growing availability of spatially resolved health data sets (i.e., resident and county level patient records) provides an opportunity to develop and apply corresponding spatially resolved air quality metrics as enhanced exposure estimates when investigating the impact of air pollution on health outcomes. Additionally, the measured species concentrations from monitoring networks cannot directly identify specific emission sources or characterize pollutant mixtures. However, these observations in combination with chemical transport models (e.g., CMAQ) and source apportionment methods (e.g., CMB and PMF) can be used to characterize pollutant mixtures, sources and species impacting both individual locations and wider areas. Extensive analysis using a combination of air quality modeling approaches and observations may be beneficial for health studies whose goal is to assess the health impacts of pollutant mixtures, in both spatially resolved and time-series health analyses. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE) unique methods have been developed to effectively analyze air pollution and air quality modeling data to better understand how emission sources combine to impact air quality and to provide air quality metrics for use in health assessments. This presentation will discuss the air quality modeling techniques being utilized in SCAPE investigations that are aimed at providing enhanced exposure metrics for use in spatially resolved (state of Georgia) and time-series epidemiologic analyses (St. Louis and Atlanta). To generate spatially resolved daily air quality estimates of species concentrations and source

  13. Improved Products for Assimilation and Model Validation from the Atmospheric Infrared Sounder (AIRS) on Aqua

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) on the EOS Aqua Spacecraft was launched on May 4, 2002. AIRS acquires hyperspectral infrared radiances in the 3.7-15.4 micrometer spectral region with spectral resolution of better than 1200. Key channels from the AIRS Level 1B calibrated radiance product are currently assimilated into operational weather forecasts at NCEP and other international agencies. Additional Level 2 products for assimilation include the AIRS cloud cleared radiances and the geophysical retrieved temperature and water vapor profiles. The AIRS products are also used to validate climate model vertical and horizontal biases and transport of water vapor and key trace gases including Carbon Dioxide and Ozone. The wide variety of products available from the AIRS make it well suited to study processes affecting the interaction of these products.

  14. Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System

    NASA Astrophysics Data System (ADS)

    Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.

    2004-12-01

    China is the world's most populous country with a fast growing economy that surges in energy comsumption. It has become the second largest energy consumer after the United States although the per capita level is much lower than those found in developed or developing countries. Air pollution has become one of the most important problems of megacities such as Beijing and Shanghai and has serious impacts on public health, causes urban and regional haze. The Models-3/CMAQ modeling application that has been conducted to simulate multi-pollutants in China is presented. The modeling domains cover East Asia (36-kmx36-km) including Japan, South Korea, Korea DPR, Indonesia, Thailand, India and Mongolia, East China (12-kmx12-km) and Beijing/Tianjing, Shanghai (4-kmx4-km). For this study, the Asian emission inventory based on the emission estimates of the year 2000 that supported the NASA TRACE-P program is used. However, the TRACE-P emission inventory was developed for a different purpose such as global modeling. TRACE-P emission inventory may not be practical in urban area. There is no China national emission inventory available. Therefore, TRACE-P emission inventory is used on the East Asia and East China domains. The 8 districts of Beijing and Shanghai local emissions inventory are used to replace TRACE-P in 4-km domains. The meteorological data for the Models-3/CMAQ run are extracted from MM5. The model simulation is performed during the period January 1-20 and July 1-20, 2001 that presented the winter and summer time for China areas. The preliminary model results are shown O3 concentrations are in the range of 80 -120 ppb in the urban area. Lower urban O3 concentrations are shown in Beijing areas, possibly due to underestimation of urban man-made VOC emissions in the TRACE-P inventory and local inventory. High PM2.5 (70ug/m3 in summer and 150ug/m3 in winter) were simulated over metropolitan & downwind areas with significant secondary constituents. More comprehensive

  15. Characterization of ambient air pollution for stochastic health models

    SciTech Connect

    Batterman, S.A.

    1981-08-01

    This research is an analysis of various measures of ambient air pollution useful in cross-sectional epidemiological investigations and rick assessments. The Chestnut Ridge area health effects investigation, which includes a cross-sectional study of respiratory symptoms in young children, is used as a case study. Four large coal-fired electric generating power plants are the dominant pollution sources in this area of western Pennsylvania. The air pollution data base includes four years of sulfur dioxide and five years of total suspended particulate concentrations at seventeen monitors. Some 70 different characterizations of pollution are constructed and tested. These include pollutant concentrations at various percentiles and averaging times, exceedence measures which show the amount of time a specified threshold concentration is exceeded, and several dosage measures which transform non-linear dose-response relationships onto pollutant concentrations.

  16. Indoor Air Quality (IAQ) model for windows, risk (version 1.0) (for microcomputers). Model-Simulation

    SciTech Connect

    1995-07-01

    A computer model, called RISK, for calculating individual exposure to indoor air pollutants from sources is presented. The model is designed to calculate exposure due to individual, as opposed to population, activities patterns and source use. The model also provides the capability to calculate risk due to the calculated exposure. RISK is the third in a series of indoor air quality (IAQ) models developed by the Indoor Environment Management Branch of U.S. EPA`s National Risk Management Research Laboratory. The model uses data on source emissions, room-to-room air flows, air exchange with the outdoors, and indoor sinks to predict concentration-time profiles for all rooms. The concentration-time profiles are then combined with individual activity patterns to estimate exposure. Risk is calculated using a risk calculation using a risk calculation framework developed by Naugle and Pierson (1991). The model allows analysis of the effects of air cleaners located in either/or both the central air circulating system or individual rooms on IAQ and exposure. The model allows simulation of a wide range of sources including long term steady state sources, on/off sources, and decaying sources. Several sources are allowed in each room. The model allows the analysis of the effects of sinks and sink re-emissions on IAQ. The results of test house experiments are compared with model predictions. The agreement between predicted concentration-time profiles and the test house data is good.

  17. Constant Entropy Properties for an Approximate Model of Equilibrium Air

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick; Hodge, Marion E.

    1961-01-01

    Approximate analytic solutions for properties of equilibrium air up to 15,000 K have been programmed for machine computation. Temperature, compressibility, enthalpy, specific heats, and speed of sound are tabulated as constant entropy functions of temperature. The reciprocal of acoustic impedance and its integral with respect to pressure are also given for the purpose of evaluating the Riemann constants for one-dimensional, isentropic flow.

  18. NEIGHBORHOOD SCALE MODELING OF PM 2.5 AND AIR TOXICS CONCENTRATION DISTRIBUTIONS TO DRIVE HUMAN EXPOSURE MODELS

    EPA Science Inventory

    Air quality (AQ) simulation models provide a basis for implementing the National Ambient Air Quality Standards (NAAQS) and are a tool for performing risk-based assessments and for developing environmental management strategies. Fine particulate matter (PM 2.5), its constituent...

  19. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  20. MODELS-3 COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODEL AEROSOL COMPONENT 2. MODEL EVALUATION

    EPA Science Inventory

    Ambient air concentrations of particulate matter (atmospheric suspensions of solid of liquid materials, i.e., aerosols) continue to be a major concern for the U.S. Environmental Protection Agency (EPA). High particulate matter (PM) concentrations are associated not only with adv...