Sample records for air parcel trajectories

  1. NEAR-SURFACE AIR PARCEL TRAJECTORIES - ST. LOUIS, 1975

    EPA Science Inventory

    The utility of air parcel trajectories is described for the diagnosis of mesometeorological and urban air pollution problems. A technique is described that uses the St. Louis Regional Air Monitoring System (RAMS) to provide wind measurements for the local urban scale. A computeri...

  2. Trajectories of thermospheric air parcels flowing over Alaska, reconstructed from ground-based wind measurements

    NASA Astrophysics Data System (ADS)

    Dhadly, Manbharat; Conde, Mark

    2017-06-01

    It is widely presumed that the convective stability and enormous kinematic viscosity of Earth's upper thermosphere hinders development of both horizontal and vertical wind shears and other gradients. Any strong local structure (over scale sizes of several hundreds of kilometers) that might somehow form would be expected to dissipate rapidly. Air flow in such an atmosphere should be relatively simple, and transport effects only slowly disperse and mix air masses. However, our observations show that wind fields in Earth's thermosphere have much more local-scale structure than usually predicated by current modeling techniques, at least at auroral latitudes; they complicate air parcel trajectories enormously, relative to typical expectations. For tracing air parcels, we used wind measurements of an all-sky Scanning Doppler Fabry-Perot interferometer and reconstructed time-resolved two-dimensional maps of the horizontal vector wind field to infer forward and backward air parcel trajectories over time. This is the first comprehensive study to visualize the complex motions of thermospheric air parcels carried through the actual observed local-scale structures in the high-latitude winds. Results show that thermospheric air parcel transport is a very difficult observational problem, because the trajectories followed are very sensitive to the detailed features of the driving wind field. To reconstruct the actual motion of a given air parcel requires wind measurements everywhere along the trajectory followed, with spatial resolutions of 100 km or less, and temporal resolutions of a few minutes or better. Understanding such transport is important, for example, in predicting the global-scale impacts of aurorally generated composition perturbations.

  3. Uncertainty and dispersion in air parcel trajectories near the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Bergman, John; Jensen, Eric; Pfister, Leonhard; Bui, Thoapaul

    2016-04-01

    The Tropical Tropopause Layer (TTL) is important as the gateway to the stratosphere for chemical constituents produced at the Earth's surface. As such, understanding the processes that transport air through the upper tropical troposphere is important for a number of current scientific issues such as the impact of stratospheric water vapor on the global radiative budget and the depletion of ozone by both anthropogenically- and naturally-produced halocarbons. Compared to the lower troposphere, transport in the TTL is relatively unaffected by turbulent motion. Consequently, Lagrangian particle models are thought to provide reasonable estimates of parcel pathways through the TTL. However, there are complications that make trajectory analyses difficult to interpret; uncertainty in the wind data used to drive these calculations and trajectory dispersion being among the most important. These issues are examined using ensembles of backward air parcel trajectories that are initially tightly grouped near the tropical tropopause using three approaches: A Monte Carlo ensemble, in which different members use identical resolved wind fluctuations but different realizations of stochastic, multi-fractal simulations of unresolved winds, perturbed initial location ensembles, in which members use identical resolved wind fields but initial locations are displaced 2° in latitude and longitude, and a multi-model ensemble that uses identical initial conditions but different resolved wind fields and/or trajectory formulations. Comparisons among the approaches distinguish, to some degree, physical dispersion from that due to data uncertainty and the impact of unresolved wind fluctuations from that of resolved variability.

  4. Influence of air parcel trajectories on CO2 and CH4 concentrations in the northern plateau of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pérez, Isidro A.; Sánchez, M. Luisa; García, M. Ángeles; Pardo, Nuria

    2018-01-01

    This study presents a simpler procedure for grouping air parcel back trajectories than others previously applied. Two-day air parcel back trajectories reaching an unpolluted site in the centre of the northern plateau of the Iberian Peninsula were calculated over a three-year period using the METEX model. A procedure based on the kernel density calculation was applied to the direction of each trajectory centroid to determine groups of trajectories. This method is much faster than the cluster procedure when it comes to retaining the directional details of groups. Seasonal analysis of six groups of trajectories revealed that the Atlantic origin prevailed against displacement from northern Europe. Moreover, Mediterranean and particularly African trajectories were infrequent, probably due to the rough peninsular orography in these directions. The location of air trajectories reaching the study site was described using a surface classification below the air parcels with improved spatial resolution compared to previous analyses. Local contribution was very marked, particularly in summer. Mean trajectories were calculated for each group together with meteorological features and CO2 and CH4 concentrations. Groups may be identified by their mean temperature, wind speed, elevation and distance values. However, only two groups should be considered when analysing the two trace gases, one for trajectories from the Atlantic Ocean and the second for trajectories from the continent. Contrasts of about 4 ppm for CO2 in summer and 0.023 ppm for CH4 in winter were observed, revealing that air trajectories from the Atlantic Ocean were cleaner than those arriving from the continent. These differences were attributed to higher air stagnation over land.

  5. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  6. Air-Parcel Residence Times Within Forest Canopies

    NASA Astrophysics Data System (ADS)

    Gerken, Tobias; Chamecki, Marcelo; Fuentes, Jose D.

    2017-10-01

    We present a theoretical model, based on a simple model of turbulent diffusion and first-order chemical kinetics, to determine air-parcel residence times and the out-of-canopy export of reactive gases emitted within forest canopies under neutral conditions. Theoretical predictions of the air-parcel residence time are compared to values derived from large-eddy simulation for a range of canopy architectures and turbulence levels under neutral stratification. Median air-parcel residence times range from a few sec in the upper canopy to approximately 30 min near the ground and the distribution of residence times is skewed towards longer times in the lower canopy. While the predicted probability density functions from the theoretical model and large-eddy simulation are in good agreement with each other, the theoretical model requires only information on canopy height and eddy diffusivities inside the canopy. The eddy-diffusivity model developed additionally requires the friction velocity at canopy top and a parametrized profile of the standard deviation of vertical velocity. The theoretical model of air-parcel residence times is extended to include first-order chemical reactions over a range of of Damköhler numbers ( Da) characteristic of plant-emitted hydrocarbons. The resulting out-of-canopy export fractions range from near 1 for Da =10^{-3} to less than 0.3 at Da = 10. These results highlight the necessity for dense and tall forests to include the impacts of air-parcel residence times when calculating the out-of-canopy export fraction for reactive trace gases.

  7. Air Parcel Residence Times within Tropical Forest Canopies and Implications for Reactive Gases

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.

    2014-12-01

    The Amazon rainforest is the world's largest natural emitter of reactive trace gases. Due to its dense vegetation (leaf area index > 4), turbulence fluctuations are highly attenuated deep inside the canopy. However, strong coherent eddies that penetrate the upper portion of the canopy can be very effective in transporting gases. Sweeps and ejections act in the order of seconds and transport air parcels into or out of the canopy. The effects of coherent structures on the air parcel residence times and associated chemical processing of reactive gases remain largely unquantified in tropical forests. We combine canopy resolving Large-Eddy Simulation (LES) and field observations in the Brazilian Amazon to study residence times of air parcels in the rainforest as a function of canopy structure and height (h). Good agreement is obtained between simulated and observed turbulence statistics within and above the forest. Coherent structure properties obtained from quadrant analysis are also well reproduced. A Lagrangian particle tracking algorithm is used to quantify the distribution of residence times of air parcels "released" at different heights. Canopy residence times were determined from the particle trajectories. The resulting probability density function (PDF) strongly depended on the particle release height (z). For particles released in the upper canopy (at z/h=0.75) the most frequent residence times were in the order of 30s, with 50% of all particles ejected from the canopy after ~2 minutes. The mean residence time was close to 5 minutes, indicating a very skewed PDF. At z/h=0.25 the PDF was more evenly distributed with its median and mean in the order of ~10 minutes. Due to sweeps, both simulations had a non- negligible fraction of particles transported deep into the canopy, thus increasing greatly their residence times. As the reaction timescales of many biogenic volatile organic compounds (BVOC) are in the order of seconds to minutes, significant chemical

  8. 76 FR 77856 - International Mail Price Change for Inbound Air Parcel Post

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... POSTAL REGULATORY COMMISSION [Docket No. CP2012-3; Order No. 1033] International Mail Price Change..., Notice of Establishment of Prices and Classifications Not of General Applicability for Inbound Air Parcel... Governors' Decision No. 09-15 which establishes prices and classifications for Inbound Air Parcel Post at...

  9. Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories

    USGS Publications Warehouse

    Friedman, I.; Harris, J.M.; Smith, G.I.; Johnson, C.A.

    2002-01-01

    Isentropic trajectories, calculated using the NOAA/Climate Monitoring and Diagnostics Laboratory's isentropic transport model, were used to determine air-parcel origins and the influence of air mass trajectories on the isotopic composition of precipitation events that occurred between October 1991 and September 1993 at Cedar City, Utah, and Winnemucca, Nevada. Examination of trajectories that trace the position of air parcels backward in time for 10 days indicated five distinct regions of water vapor origin: (1) Gulf of Alaska and North Pacific, (2) central Pacific, (3) tropical Pacific, (4) Gulf of Mexico, and (5) continental land mass. Deuterium (??D) and oxygen-18 (??18O) analyses were made of precipitation representing 99% of all Cedar City events. Similar analyses were made on precipitation representing 66% of the precipitation falling at Winnemucca during the same period. The average isotopic composition of precipitation derived from each water vapor source was determined. More than half of the precipitation that fell at both sites during the study period originated in the tropical Pacific and traveled northeast to the Great Basin; only a small proportion traversed the Sierra Nevada. The isotopic composition of precipitation is determined by air-mass origin and its track to the collection station, mechanism of droplet formation, reequilibration within clouds, and evaporation during its passage from cloud to ground. The Rayleigh distillation model can explain the changes in isotopic composition of precipitation as an air mass is cooled pseudo-adiabatically during uplift. However, the complicated processes that take place in the rapidly convecting environment of cumulonimbus and other clouds that are common in the Great Basin, especially in summer, require modification of this model because raindrops that form in the lower portion of those clouds undergo isotopic change as they are elevated to upper levels of the clouds from where they eventually drop to the

  10. Evolution of chemically processed air parcels in the lower stratosphere

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Schoeberl, Mark R.

    1994-01-01

    Aircraft, ground-based, and satellite measurements indicate large concentrations of ClO in the lower stratosphere in and near the polar vortex. The amount of local ozone depletion caused by these large ClO concentrations will depend on the relative rates of ozone loss and ClO recovery. ClO recovery occurs when NO(x), from HNO3 photolysis, reacts with ClO to form ClONO2. We show that air parcels with large amounts of ClO will experience a subsequent ozone depletion that depends on the solar zenith angle. When the solar zenith angle is large in the middle of winter, the recovery of the ClO concentration in the parcel is slow relative to ozone depletion. In the spring, when the solar zenith angle is smaller, the ClO recovery is much faster. After ClO recovery, the chlorine chemistry has not returned to normal. The ClO has been converted to ClONO2. ClO production from further encounters with PSCs will be limited by the heterogeneous reaction of ClONO2 with water. Large ozone depletions, of the type seen in the Antarctic, occur only if there is significant irreversible denitrification in the air parcel.

  11. Defining Tropospheric Chemistry As A Heterogeneous Ensemble Of Reactive Air Parcels

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Zhu, X.; Flynn, C.; Mao, J.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Shindell, D. T.; Murray, L. T.

    2016-12-01

    Two major challenges in model-measurement comparisons have been: Which measurements are the most important to match? At what level do models need to simulate the variegated fine structures observed in trace gases and aerosols? This talk presents a novel approach for evaluating high-resolution global chemistry models (1/2 to 1 deg) that is integral to NASA's Atmospheric Tomography (ATom) mission. The approach seeks to develop a chemical climatology for tropospheric regions rather than just event-based testing of specific observations. It enables chemistry-climate models to be readily compared and more severely tested with observations. It uses the reactivity of air parcels (e.g., loss of methane, production and loss of ozone) to weight each parcel in terms of its importance in controlling the two most important chemically reactive greenhouse gases. It looks at the entire statistical distribution of air parcels in terms of a chemical phase space for those species that control the reactivity (e.g., O3, H2O, CH4, CO, NOx, HNO3, HNO4, PAN, CH3NO3, HCHO, HOOH, CH3OOH, C2H6, C3H6O, and other VOCs when present in sufficiently large abundances). It builds statistics of chemically extreme air parcels such as pollution layers to determine if a model failure to match such cases affects the overall reactivity of the region. This approach was designed for the ATom in situ measurements using the DC-8 to slice through the middle of the Pacific and Atlantic Ocean basins each season. The ATom payload will measure the above key trace gases and many other gases and aerosols in every designated air parcel (i.e., 10-sec averages). The first ATom measurements will not be available until mid-2017 and this presentation shows how this climatology looks when sampled with different models. Six global chemistry models have simulated one day in August (no particular year), and we sample all six showing how the 2D probability density plots highlight different regions when weighted by chemical

  12. Potential sources of the air masses leading to warm and cold anomalies in Moscow in summer

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2017-11-01

    For summer (June-July-August) days in 1949-2016, using the NOAA trajectory model HYSPLIT_4, the 5-day backward trajectories of the air parcels (elementary air particles) were calculated. Using the daily surface air temperatures (SAT) in summer in Moscow in 1949-2016 and the results of the backward trajectories modeling by PSCF (potential source contribution function) and CWT (concentration weighted trajectories) methods the regions where the air masses most probably hit to before its arrive into the Moscow region at the days of 20%, 10%, 5% and 2% of the strongest positive and negative anomalies of SAT in summer in Moscow. For composites of days with SAT in summer in Moscow above 90th and below the 10th percentile of the distribution function of the SAT, the field of the anomaly of atmospheric pressure at sea level relative to 1981-2010 climatology and the field of average SAT in Eurasia north of 30° N are calculated. The peculiarities of the fields associated with the strong positive and negative anomalies of SAT in summer seasons in Moscow are identified. The fields of potential sources of air parcels, mean air temperature on the path of the movement of air parcels and the average height of the backward trajectory for days with strong anomalies of SAT in summer in Moscow are compared. Possible atmospheric circulation drivers of the highest and lowest anomalies of SAT in winter in Moscow are found out.

  13. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  14. Thunderstorm-environment interactions determined with three-dimensional trajectories

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1980-01-01

    Diagnostically determined three dimensional trajectories were used to reveal some of the scale interaction processes that occur between convective storms and their environment. Data from NASA's fourth Atmospheric Variability Experiment are analyzed. Two intense squall lines and numerous reports of severe weather occurred during the period. Convective storm systems with good temporal and spatial continuity are shown to be related to the development and movement of short wave circulation systems aloft that propagate eastward within a zonal mid tropospheric wind pattern. These short wave systems are found to produce the potential instability and dynamic triggering needed for thunderstorm formation. The environmental flow patterns, relative to convective storm systems, are shown to produce large upward air parcel movements in excess of 50 mb/3h in the immediate vicinity of the storms. The air undergoing strong lifting originates as potentially unstable low level air traveling into the storm environment from southern and southwestern directions. The thermo and hydrodynamical processes that lead to changes in atmospheric structure before, during, and after convective storm formation are described using total time derivatives of pressure or net vertical displacement, potential temperature, and vector wind calculated by following air parcels.

  15. Relationships between convective storms and their environment in AVE IV determined from a three-dimensional subsynoptic-scale, trajectory model

    NASA Technical Reports Server (NTRS)

    Wilson, G. S.

    1977-01-01

    The paper describes interrelationships between synoptic-scale and convective-scale systems obtained by following individual air parcels as they traveled within the convective storm environment of AVE IV. (NASA's fourth Atmospheric Variability Experiment, AVE IV, was a 36-hour study in April 1975 of the atmospheric variability and structure in regions of convective storms.) A three-dimensional trajectory model was used to calculate parcel paths, and manually digitized radar was employed to locate convective activity of various intensities and to determine those trajectories that traversed the storm environment. Spatial and temporal interrelationships are demonstrated by reference to selected time periods of AVE IV which contain the development and movement of the squall line in which the Neosho tornado was created.

  16. Application of ensemble back trajectory and factor analysis methods to aerosol data from Fort Meade, MD: Implications for sources

    NASA Astrophysics Data System (ADS)

    Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.

    2001-12-01

    As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html

  17. FORMAL UNCERTAINTY ANALYSIS OF A LAGRANGIAN PHOTOCHEMICAL AIR POLLUTION MODEL. (R824792)

    EPA Science Inventory

    This study applied Monte Carlo analysis with Latin
    hypercube sampling to evaluate the effects of uncertainty
    in air parcel trajectory paths, emissions, rate constants,
    deposition affinities, mixing heights, and atmospheric stability
    on predictions from a vertically...

  18. PEM-West trajectory climatology and photochemical model sensitivity study prepared using retrospective meteorological data

    NASA Technical Reports Server (NTRS)

    Merrill, John T.; Rodriguez, Jose M.

    1991-01-01

    Trajectory and photochemical model calculations based on retrospective meteorological data for the operations areas of the NASA Pacific Exploratory Mission (PEM)-West mission are summarized. The trajectory climatology discussed here is intended to provide guidance for flight planning and initial data interpretation during the field phase of the expedition by indicating the most probable path air parcels are likely to take to reach various points in the area. The photochemical model calculations which are discussed indicate the sensitivity of the chemical environment to various initial chemical concentrations and to conditions along the trajectory. In the post-expedition analysis these calculations will be used to provide a climatological context for the meteorological conditions which are encountered in the field.

  19. To Parcel or Not To Parcel: Exploring the Question, Weighing the Merits.

    ERIC Educational Resources Information Center

    Little, Todd D.; Cunningham, William A.; Shahar, Golan; Widaman, Keith F.

    2002-01-01

    Studied the evidence for the practice of using parcels of item as manifest variables in structural equation modeling procedures. Findings suggest that the unconsidered use of parcels is never warranted, but the considered use of parcels cannot be dismissed out of hand. Describes a number of parceling techniques and their strengths and weaknesses.…

  20. 78 FR 63521 - Product Change-Parcel Select & Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... POSTAL SERVICE Product Change--Parcel Select & Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request... Request of the United States Postal Service to Add Parcel Select & Parcel Return Service Contract 5 to...

  1. 77 FR 28409 - Product Change-Parcel Select & Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... POSTAL SERVICE Product Change--Parcel Select & Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request... States Postal Service to Add Parcel Select & Parcel Return Service Contract 3 to Competitive Product List...

  2. Trajectory Hunting: A Case Study of Rapid Chlorine Activation in December 1992 as Seen by UARS

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriguez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.; Livesey, N. J.

    2000-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the Atmospheric and Environmental Research, Inc. (AER) photochemical box model. As a case study, we investigate rapid chlorine activation in the Arctic lower stratosphere on December 29, 1992 associated with a polar stratospheric cloud (PSC) event. Eleven air parcels that have been sampled several times along five-day trajectories at the 465 K (approx. 46 hPa), 520 K (approx. 31 hPa), and 585 K (approx. 22 hPa) levels were investigated. For the first time, the latest versions of the Cryogenic Limb Array Etalon Spectrometer (CLAES, version 9) and Microwave Limb Sounder (MLS, version 5) data sets are analyzed, and their consistency is assessed. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the conclusion that for the December 24-29, 1992 episode: (1) the individual CLAES ClONO2 and MLS ClO measurements are self-consistent within their uncertainties; and (2) most of the time, UARS measurements of ClO, ClONO2, HNO3, and aerosol extinction at 780 cm(exp -1) agree within the range of their uncertainties with the model calculations. It appears that the HNO3 and aerosol extinction measurements for four parcels at 520 K look more supportive for the nitric acid trihydrate (NAT) scheme, However, the uncertainties in the individual UARS measurements and UK Meteorological Office temperature do not allow a definite discrimination between the NAT and supercooled ternary solution (STS) PSC schemes for this chlorine activation episode in December 1992.

  3. Trajectory Hunting: A Case Study of Rapid Chlorine Activation in December 1992 as Seen by UARS

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Santee, M. L.; Rodriquez, J. M.; Ko, M. K. W.; Mergenthaler, J. M.; Kumer, J. B.; Tabazadeh, A.; Livesey

    2000-01-01

    Trajectory hunting (i.e., a technique to find air parcels sampled at least twice over the course of a few days) is applied to analyze Upper Atmosphere Research Satellite (UARS) measurements in conjunction with the Atmospheric and Environmental Research, Inc. (AER) photochemical box model. As a case study, we investigate rapid chlorine activation in the Arctic lower stratosphere on December 29, 1992 associated with a polar stratospheric cloud (PSC) event. Eleven air parcels that have been sampled several times along 5-day trajectories at the 465 K (approx. 46 hPa), 520 K (approx. 31 hPa), and 585 K (approx. 22 hPa) levels were investigated. For the first time, the latest versions of the Cryogenic Limb Array Etalon Spectrometer (CLAES, version 9) and Microwave Limb Sounder (MLS, version 5) data sets are analyzed, and their consistency is assessed. A detailed sensitivity study with the AER photochemical box model along these trajectories leads to the conclusion that for the December 24-29, 1992 episode (1) the individual CLAES version 9 ClONO2 and MLS version 5 ClO measurements are self-consistent within their uncertainties; and (2) most of the time, UARS measurements of ClO, ClONO2, HNO3, and aerosol extinction at 780 cm (exp -1) agree within the range of their uncertainties with the model calculations. It appears that the HNO3 and aerosol extinction measurements for four parcels at 520 K look more supportive for the nitric acid trihydrate (NAT) scheme. However, the uncertainties in the individual UARS measurements and U.K. Meteorological Office temperature do not allow a definite discrimination between the NAT and supercooled ternary solution (STS) PSC schemes for this chlorine activation episode in December 1992.

  4. 77 FR 37078 - Product Change-Parcel Select and Parcel Return Service Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-20

    ... POSTAL SERVICE Product Change--Parcel Select and Parcel Return Service Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a... Postal Service to Add Parcel Select & Parcel Return Service Contract 4 to Competitive Product List...

  5. Parcellation in Left Lateral Parietal Cortex Is Similar in Adults and Children

    PubMed Central

    Nelson, Steven M.; Cohen, Alexander L.; Power, Jonathan D.; Coalson, Rebecca S.; Miezin, Francis M.; Vogel, Alecia C.; Dubis, Joseph W.; Church, Jessica A.; Petersen, Steven E.; Schlaggar, Bradley L.

    2012-01-01

    A key question in developmental neuroscience involves understanding how and when the cerebral cortex is partitioned into distinct functional areas. The present study used functional connectivity MRI mapping and graph theory to identify putative cortical areas and generate a parcellation scheme of left lateral parietal cortex (LLPC) in 7 to 10-year-old children and adults. Results indicated that a majority of putative LLPC areas could be matched across groups (mean distance between matched areas across age: 3.15 mm). Furthermore, the boundaries of children's putative LLPC areas respected the boundaries generated from the adults' parcellation scheme for a majority of children's areas (13/15). Consistent with prior research, matched LLPC areas showed age-related differences in functional connectivity strength with other brain regions. These results suggest that LLPC cortical parcellation and functional connectivity mature along different developmental trajectories, with adult-like boundaries between LLPC areas established in school-age children prior to adult-like functional connectivity. PMID:21810781

  6. Phase 1 Environmental Baseline Survey, The Landings at Nellis Housing Area, Parcel H, Nellis Air Force Base, Nevada

    DTIC Science & Technology

    2011-06-01

    Pulido, Environmental Restoration Program Manger, Nellis AFB, Henry Rodriguez , Toxics Program Manger, Nellis AFB, John Roe, Water Quality Program...TESTING February 14, 2011 Hunt Building Company Inc. Mr. John Leidolf 4401 N Mesa El Paso, TX 79902 Re: Clearance Letter for Parcel H, 1 & 2...Prepared for: Mr. John Leidolf Hunt Building Company, LTD. 4401 N. Mesa St. El Paso, TX 79912 Project: Nellis Air Force Base Salmon Street

  7. The Stochastic Parcel Model: A deterministic parameterization of stochastically entraining convection

    DOE PAGES

    Romps, David M.

    2016-03-01

    Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less

  8. Supervised Learning Applied to Air Traffic Trajectory Classification

    NASA Technical Reports Server (NTRS)

    Bosson, Christabelle S.; Nikoleris, Tasos

    2018-01-01

    Given the recent increase of interest in introducing new vehicle types and missions into the National Airspace System, a transition towards a more autonomous air traffic control system is required in order to enable and handle increased density and complexity. This paper presents an exploratory effort of the needed autonomous capabilities by exploring supervised learning techniques in the context of aircraft trajectories. In particular, it focuses on the application of machine learning algorithms and neural network models to a runway recognition trajectory-classification study. It investigates the applicability and effectiveness of various classifiers using datasets containing trajectory records for a month of air traffic. A feature importance and sensitivity analysis are conducted to challenge the chosen time-based datasets and the ten selected features. The study demonstrates that classification accuracy levels of 90% and above can be reached in less than 40 seconds of training for most machine learning classifiers when one track data point, described by the ten selected features at a particular time step, per trajectory is used as input. It also shows that neural network models can achieve similar accuracy levels but at higher training time costs.

  9. Comparison of stratospheric air parcel trajectories calculated from SSU and LIMS satellite data. [Stratospheric Sounding Unit/Limb Infrared Monitor of Stratosphere

    NASA Technical Reports Server (NTRS)

    Austin, J.

    1986-01-01

    Midstratospheric trajectories for February and March 1979 are calculated using geopotential analyses derived from limb infrared monitor of the stratosphere data. These trajectories are compared with the corresponding results using stratospheric sounding unit data. The trajectories are quasi-isentropic in that a radiation scheme is used to simply cross-isentrope flow. The results show that in disturbed conditions, quantitative agreement the trajectories, that is, within 25 great circle degrees (GCD) (one GCD about 110 km) may be valid for only 3 or 4 days, whereas during quiescent periods, quantitative agreement may last up to 10 days. By comparing trajectories calculated with different data some insight can be gained as to errors due to vertical resolution and horizontal resolution (due to infrequent sampling) in the analyzed geopotential height fields. For the disturbed trajectories described in this paper the horizontal resolution of the data was more important than vertical resolution; however, for the quiescent trajectories, which could be calculated accurately for a longer duration because of the absence of appreciable transients, the vertical resolution of the data was found to be more important than the horizontal resolution. It is speculated that these characteristics are also applicable to trajectories calculated during disturbed and quiescent periods in general. A review of some recently published trajectories shows that the qualitative conclusions of such works remains unaffected when the calculations are repeated using different data.

  10. Effects of modeling errors on trajectory predictions in air traffic control automation

    NASA Technical Reports Server (NTRS)

    Jackson, Michael R. C.; Zhao, Yiyuan; Slattery, Rhonda

    1996-01-01

    Air traffic control automation synthesizes aircraft trajectories for the generation of advisories. Trajectory computation employs models of aircraft performances and weather conditions. In contrast, actual trajectories are flown in real aircraft under actual conditions. Since synthetic trajectories are used in landing scheduling and conflict probing, it is very important to understand the differences between computed trajectories and actual trajectories. This paper examines the effects of aircraft modeling errors on the accuracy of trajectory predictions in air traffic control automation. Three-dimensional point-mass aircraft equations of motion are assumed to be able to generate actual aircraft flight paths. Modeling errors are described as uncertain parameters or uncertain input functions. Pilot or autopilot feedback actions are expressed as equality constraints to satisfy control objectives. A typical trajectory is defined by a series of flight segments with different control objectives for each flight segment and conditions that define segment transitions. A constrained linearization approach is used to analyze trajectory differences caused by various modeling errors by developing a linear time varying system that describes the trajectory errors, with expressions to transfer the trajectory errors across moving segment transitions. A numerical example is presented for a complete commercial aircraft descent trajectory consisting of several flight segments.

  11. Trajectory Specification for High-Capacity Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2004-01-01

    In the current air traffic management system, the fundamental limitation on airspace capacity is the cognitive ability of human air traffic controllers to maintain safe separation with high reliability. The doubling or tripling of airspace capacity that will be needed over the next couple of decades will require that tactical separation be at least partially automated. Standardized conflict-free four-dimensional trajectory assignment will be needed to accomplish that objective. A trajectory specification format based on the Extensible Markup Language is proposed for that purpose. This format can be used to downlink a trajectory request, which can then be checked on the ground for conflicts and approved or modified, if necessary, then uplinked as the assigned trajectory. The horizontal path is specified as a series of geodetic waypoints connected by great circles, and the great-circle segments are connected by turns of specified radius. Vertical profiles for climb and descent are specified as low-order polynomial functions of along-track position, which is itself specified as a function of time. Flight technical error tolerances in the along-track, cross-track, and vertical axes define a bounding space around the reference trajectory, and conformance will guarantee the required separation for a period of time known as the conflict time horizon. An important safety benefit of this regimen is that the traffic will be able to fly free of conflicts for at least several minutes even if all ground systems and the entire communication infrastructure fail. Periodic updates in the along-track axis will adjust for errors in the predicted along-track winds.

  12. Cortex Parcellation Associated Whole White Matter Parcellation in Individual Subjects.

    PubMed

    Schiffler, Patrick; Tenberge, Jan-Gerd; Wiendl, Heinz; Meuth, Sven G

    2017-01-01

    The investigation of specific white matter areas is a growing field in neurological research and is typically achieved through the use of atlases. However, the definition of anatomically based regions remains challenging for the white matter and thus hinders region-specific analysis in individual subjects. In this article, we focus on creating a whole white matter parcellation method for individual subjects where these areas can be associated to cortex regions. This is done by combining cortex parcellation and fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers according to their origin, we populate a candidate image. We then derive the white matter parcellation by classifying each white matter voxel according to the distribution of labels in the corresponding voxel from the candidate image. The parcellation of the white matter with the presented method is highly reliable and is not as dependent on registration as with white matter atlases. This method allows for the parcellation of the whole white matter into individual cortex region associated areas and, therefore, associates white matter alterations to cortex regions. In addition, we compare the results from the presented method to existing atlases. The areas generated by the presented method are not as sharply defined as the areas in most existing atlases; however, they are computed directly in the DWI space of the subject and, therefore, do not suffer from distortion caused by registration. The presented approach might be a promising tool for clinical and basic research to investigate modalities or system specific micro structural alterations of white matter areas in a quantitative manner.

  13. Cortex Parcellation Associated Whole White Matter Parcellation in Individual Subjects

    PubMed Central

    Schiffler, Patrick; Tenberge, Jan-Gerd; Wiendl, Heinz; Meuth, Sven G.

    2017-01-01

    The investigation of specific white matter areas is a growing field in neurological research and is typically achieved through the use of atlases. However, the definition of anatomically based regions remains challenging for the white matter and thus hinders region-specific analysis in individual subjects. In this article, we focus on creating a whole white matter parcellation method for individual subjects where these areas can be associated to cortex regions. This is done by combining cortex parcellation and fiber tracking data. By tracking fibers out of each cortex region and labeling the fibers according to their origin, we populate a candidate image. We then derive the white matter parcellation by classifying each white matter voxel according to the distribution of labels in the corresponding voxel from the candidate image. The parcellation of the white matter with the presented method is highly reliable and is not as dependent on registration as with white matter atlases. This method allows for the parcellation of the whole white matter into individual cortex region associated areas and, therefore, associates white matter alterations to cortex regions. In addition, we compare the results from the presented method to existing atlases. The areas generated by the presented method are not as sharply defined as the areas in most existing atlases; however, they are computed directly in the DWI space of the subject and, therefore, do not suffer from distortion caused by registration. The presented approach might be a promising tool for clinical and basic research to investigate modalities or system specific micro structural alterations of white matter areas in a quantitative manner. PMID:28729829

  14. Effects of parceling on model selection: Parcel-allocation variability in model ranking.

    PubMed

    Sterba, Sonya K; Rights, Jason D

    2017-03-01

    Research interest often lies in comparing structural model specifications implying different relationships among latent factors. In this context parceling is commonly accepted, assuming the item-level measurement structure is well known and, conservatively, assuming items are unidimensional in the population. Under these assumptions, researchers compare competing structural models, each specified using the same parcel-level measurement model. However, little is known about consequences of parceling for model selection in this context-including whether and when model ranking could vary across alternative item-to-parcel allocations within-sample. This article first provides a theoretical framework that predicts the occurrence of parcel-allocation variability (PAV) in model selection index values and its consequences for PAV in ranking of competing structural models. These predictions are then investigated via simulation. We show that conditions known to manifest PAV in absolute fit of a single model may or may not manifest PAV in model ranking. Thus, one cannot assume that low PAV in absolute fit implies a lack of PAV in ranking, and vice versa. PAV in ranking is shown to occur under a variety of conditions, including large samples. To provide an empirically supported strategy for selecting a model when PAV in ranking exists, we draw on relationships between structural model rankings in parcel- versus item-solutions. This strategy employs the across-allocation modal ranking. We developed software tools for implementing this strategy in practice, and illustrate them with an example. Even if a researcher has substantive reason to prefer one particular allocation, investigating PAV in ranking within-sample still provides an informative sensitivity analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  15. Studying precipitation recycling over the Tibetan Plateau using evaporation-tagging and back-trajectory analysis

    NASA Astrophysics Data System (ADS)

    Gao, Y.

    2017-12-01

    Regional precipitation recycling (i.e., the contribution of local evaporation to local precipitation) is an important component of water cycle over the Tibetan Plateau (TP). Two methods were used to investigate regional precipitation recycling: 1) tracking of tagged atmospheric water parcels originating from evaporation in a source region (i.e., E-tagging), and 2) back-trajectory approach to track the evaporative sources contributed to precipitation in a specific region. These two methods were applied to Weather Research and Forecasting (WRF) regional climate simulations to quantify the precipitation recycling ratio in the TP for three selected years: climatologically normal, dry and wet year. The simulation region is characterized by high average elevation above 4000 m and complex terrain. The back-trajectory approach is also calculated over three sub-regions over the TP: namely western, northeastern and southeastern TP, and the E-tagging approach could provide recycling-ratio distributions over the whole TP. Three aspects are investigated to characterize the precipitation recycling: annual mean, seasonal variations and spatial distributions. Averaged over the TP, the precipitation recycling ratio estimated by the E-tagging approach is higher than that from the back-trajectory method. The back-trajectory approach uses a precipitation threshold as total precipitation in five days divided by a random number, and this number was set to 500 as a tread off between equilibrium and computational efficiency. Lower recycling ratio derived from the back-trajectory approach is related to the precipitation threshold used. The E-tagging, however, tracks every air parcel of evaporation regardless of the precipitation amount. There is no obvious seasonal variation in the recycling ratio using both methods. The E-tagging approach shows high recycling ratios in the center TP, indicating stronger land-atmospheric interactions than elsewhere.

  16. Parcel Delivery in AN Urban Environment Using Unmanned Aerial Systems: a Vision Paper

    NASA Astrophysics Data System (ADS)

    Anbaroğlu, B.

    2017-11-01

    This vision paper addresses the challenges and explores the avenue of solutions regarding the use of Unmanned Aerial Systems (UAS) for transporting parcels in urban areas. We have already witnessed companies' delivering parcels using UAS in rural areas, but the challenge of utilizing them for an urban environment is eminent. Nevertheless, the increasing research on the various aspects of UAS, including their battery life, resistance to harsh weather conditions and sensing its environment foresee their common usage in the logistics industry, especially in an urban environment. In addition, the increasing trend on 3D city modelling offer new directions regarding realistic as well as light 3D city models that are easy to modify and distribute. Utilizing UAS for transporting parcels in an urban environment would be a disruptive technological achievement as our roads will be less congested which would lead to less air pollution as well as wasted money and time. In addition, parcels could potentially be delivered much faster. This paper argues, with the support of the state-of-the-art research, that UASs will be used for transporting parcels in an urban environment in the coming decades.

  17. Megacity and Air Pollution in the Eastern Mediterranean: Istanbul Case Study

    NASA Astrophysics Data System (ADS)

    Unal, Alper; Kindap, Tayfun; Im, Ulas; Markakis, Kostas; Mihalopoulos, Nikos; Gerasopoulos, Evangelos; Kocak, Mustafa; Mangir, Nizamettin; Kubilay, Nilgun; Kanakidou, Maria

    2010-05-01

    Turkey, with a population of 75 million, is located at the confluence of Europe and Asia. Istanbul is at the hearth of Turkey's fast economic growth. The city has an annual growth of 3.7% and, according to a study conducted by OECD, is ranked 12th among 45 OECD metro-regions. Istanbul generates 27% of Turkey's Gross Domestic Product (GDP); 40% of tax revenues; and 38% of total industrial output (OECD, 2008). As a result, Istanbul is facing a variety of challenging environmental problems affecting more than 15 million people. Observations show that the number of days exceeding the 24-hour limit value of 50 μgm-3 reached 157 in 2008, with a significant increase from previous years. The city is also a hot spot of pollutant emissions for the surrounding Eastern Mediterranean area. As part of the CityZEN project, in order to quantify the contribution of this megacity as a source of air pollution in the Eastern Mediterranean, a climatological trajectory analysis using a regional climate model output (RegCM3) and a high resolution regional modeling study were performed using the Models-3 WRF meteorological and CMAQ air quality models. Trajectory approach was used to identify the effects of Istanbul emissions on other cities in regional scale. A 30-year (1961-1990) period RegCM3 simulations were used to get a meaningful evaluation. The trajectories were computed according to a method described by Pettersen (1956) as a forward trajectory approach in a 27-km grid resolution. An air parcel was released once every 6h and a total of 42,368 air parcels (trajectories) were released during these 30 years. Long-term meteorological observations in Istanbul show northeasterly and southwesterly prevailing winds over the city. According to these prevailing winds, the distributions of trajectories were mainly observed from the north and south directions of the city. In order to run an air quality model, anthropogenic emission inventory was compiled from a number of different sources

  18. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lammert, M. P.; Burton, J.; Sindler, P.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These fourmore » cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.« less

  19. The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    NASA Technical Reports Server (NTRS)

    Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.

    2013-01-01

    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.

  20. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  1. Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena, California

    NASA Technical Reports Server (NTRS)

    Parrish, D. D.; Hahn, C. J.; Williams, E. J.; Norton, R. B.; Fehsenfeld, F. C.; Singh, H. B.; Shetter, J. D.; Gandrud, B. W.; Ridley, B. A.

    1992-01-01

    Measurements were made of a suite of photochemically active trace species (including light hydrocarbons, ozone, peroxyacetyl nitrate, HNO3, NO3(-), NO(x), and NO(y)) in marine air collected during a 10-day period in April and May 1985 at Point Arena (California), a coastal inflow site. It was found that the mixing ratios of the alkanes, ozone, peroxyacetyl nitrate, and HNO3 correlated with variations in the origins of calculated air parcel trajectories and with variations in the ratios of the light alkanes. The highest levels of alkanes and the photochemical products were found in parcels that had been rapidly transported across the North Pacific Ocean from near the 600-mbar level above the east Asian coast. It is suggested that production over the continents, transport to the marine areas, and parallel removal processes account for much of the observed correlation.

  2. Evidence of Stratosphere-to-Troposphere Transport Within a Mesoscale Model and Total Ozone Mapping Spectrometer Total Ozone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stanford, John L.

    2001-01-01

    We evaluate evidence for stratospheric mass transport into, and mass remaining in, the troposphere during an intense midlatitude cyclone. Mesoscale forecast model analysis fields from the Mesoscale Analysis and Prediction System were matched with total ozone observations from the Total Ozone Measurement Spectrometer. Combined with parcel back trajectory calculations, the analyses imply that two mechanisms contributed to the mass exchange: (1) An area of dynamically induced exchange was observed on the cyclone's southern edge. Parcels originally in the stratosphere crossed the jet core and were diluted through turbulent mixing with tropospheric air; (2) Diabetic effects reduced parcel potential vorticity (PC) for trajectories traversing precipitation regions, creating a 'PV hole' signature in the center of the cyclone. Air with characteristics of ozone and water vapor found in the lower stratosphere remained in the troposphere. The strength of the latter process may be unusual. Combined with other research, these results suggest that precipitation-induced diabetic effects can significantly modify (either decreasing or increasing) parcel potential vorticity, depending on parcel trajectory configuration with respect to maximum heating regions and jet core. The diabetic heating effect on stratosphere-troposphere exchange (STE) is more important to tropopause erosion than to altering parcel trajectories. In addition, these results underline the importance of using not only PC but also chemical constituents for diagnoses of STE.

  3. The Atmospheric Tomography Mission (ATom): Comparing the Chemical Climatology of Reactive Species and Air Parcels from Measurements and Global Models

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Flynn, C.; Wennberg, P. O.; Kim, M. J.; Ryerson, T. B.; Hanisco, T. F.; Diskin, G. S.; Daube, B. C.; Commane, R.; McKain, K.; Apel, E. C.; Blake, N. J.; Blake, D. R.; Elkins, J. W.; Hall, S.; Steenrod, S.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Murray, L. T.; Mao, J.; Shindell, D. T.; Wofsy, S. C.

    2017-12-01

    The NASA Atmospheric Tomography Mission (ATom) is building a photochemical climatology of the remote troposphere based on objective sampling and profiling transects over the Pacific and Atlantic Oceans. These statistics provide direct tests of chemistry-climate models. The choice of species focuses on those controlling primary reactivity (a.k.a. oxidative state) of the troposphere, specifically chemical tendencies of O3 and CH4. These key species include, inter alia, O3, CH4, CO, C2H6, other alkanes, alkenes, aromatics, NOx, HNO3, HO2NO2, PAN, other organic nitrates, H2O, HCHO, H2O2, CH3OOH. Three of the four ATom deployments are now complete, and data from the first two (ATom-1 & -2) have been released as of this talk (see espoarchive.nasa.gov/archive/browse/atom). The statistical distributions of key species are presented as 1D and 2D probability densities (PDs) and we focus here on the tropical and mid-latitude regions of the Pacific during ATom-1 (Aug) and -2 (Feb). PDs are computed from ATom observations and 6 global chemistry models over the tropospheric depth (0-12 km) and longitudinal extent of the observations. All data are weighted to achieve equal mass-weighting by latitude regimes to account for spatial sampling biases. The models are used to calculate the reactivity in each ATom air parcel. Reweighting parcels with loss of CH4 or production of O3, for example, allows us to identify which air parcels are most influential, including assessment of the importance of fine pollution layers in the most remote troposphere. Another photochemical climatology developed from ATom, and used to test models, includes the effect of clouds on photolysis rates. The PDs and reactivity-weighted PDs reveal important seasonal differences and similarities between the two campaigns and also show which species may be most important in controlling reactivities. They clearly identify some very specific failings in the modeled climatologies and help us evaluate the chemical

  4. Assessment and Mapping of Forest Parcel Sizes

    Treesearch

    Brett J. Butler; Susan L. King

    2005-01-01

    A method for analyzing and mapping forest parcel sizes in the Northeastern United States is presented. A decision tree model was created that predicts forest parcel size from spatially explicit predictor variables: population density, State, percentage forest land cover, and road density. The model correctly predicted parcel size for 60 percent of the observations in a...

  5. Evidence of Stratosphere-to-Troposphere Transport Within a Mesoscale Model and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stanford, John L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    We present evidence for stratospheric mass transport into, and remaining in, the troposphere in an intense midlatitude cyclone. Mesoscale forecast model analysis fields from the Mesoscale Analysis and Prediction System (MAPS) were compared with total ozone observations from the Total Ozone Measurement Spectrometer (TOMS). Coupled with parcel back-trajectory calculations, the analyses suggest two mechanisms contributed to the mass exchange: (1) A region of dynamical ly-induced exchange occurred on the cyclone's southern edge. Parcels originally in the stratosphere crossed the jet core and experienced dilution by turbulent mixing with tropospheric air. (2) Diabatic effects reduced parcel potential vorticity (PV) for trajectories traversing precipitation regions, resulting in a "PV-hole" signature in the cyclone center. Air with lower-stratospheric values of ozone and water vapor was left in the troposphere. The strength of the latter process may be atypical. These results, combined with other research, suggest that precipitation-induced diabatic effects can significantly modify, (either decreasing or increasing) parcel potential vorticity, depending on parcel trajectory configuration with respect to jet core and maximum heating regions. In addition, these results underscore the importance of using not only PV but also chemical constituents for diagnoses of stratosphere-troposphere exchange (STE).

  6. Parcels versus pixels: modeling agricultural land use across broad geographic regions using parcel-based field boundaries

    USGS Publications Warehouse

    Sohl, Terry L.; Dornbierer, Jordan; Wika, Steve; Sayler, Kristi L.; Quenzer, Robert

    2017-01-01

    Land use and land cover (LULC) change occurs at a local level within contiguous ownership and management units (parcels), yet LULC models primarily use pixel-based spatial frameworks. The few parcel-based models being used overwhelmingly focus on small geographic areas, limiting the ability to assess LULC change impacts at regional to national scales. We developed a modified version of the Forecasting Scenarios of land use change model to project parcel-based agricultural change across a large region in the United States Great Plains. A scenario representing an agricultural biofuel scenario was modeled from 2012 to 2030, using real parcel boundaries based on contiguous ownership and land management units. The resulting LULC projection provides a vastly improved representation of landscape pattern over existing pixel-based models, while simultaneously providing an unprecedented combination of thematic detail and broad geographic extent. The conceptual approach is practical and scalable, with potential use for national-scale projections.

  7. Functional parcellation using time courses of instantaneous connectivity.

    PubMed

    van Oort, Erik S B; Mennes, Maarten; Navarro Schröder, Tobias; Kumar, Vinod J; Zaragoza Jimenez, Nestor I; Grodd, Wolfgang; Doeller, Christian F; Beckmann, Christian F

    2018-04-15

    Functional neuroimaging studies have led to understanding the brain as a collection of spatially segregated functional networks. It is thought that each of these networks is in turn composed of a set of distinct sub-regions that together support each network's function. Considering the sub-regions to be an essential part of the brain's functional architecture, several strategies have been put forward that aim at identifying the functional sub-units of the brain by means of functional parcellations. Current parcellation strategies typically employ a bottom-up strategy, creating a parcellation by clustering smaller units. We propose a novel top-down parcellation strategy, using time courses of instantaneous connectivity to subdivide an initial region of interest into sub-regions. We use split-half reproducibility to choose the optimal number of sub-regions. We apply our Instantaneous Connectivity Parcellation (ICP) strategy on high-quality resting-state FMRI data, and demonstrate the ability to generate parcellations for thalamus, entorhinal cortex, motor cortex, and subcortex including brainstem and striatum. We evaluate the subdivisions against available cytoarchitecture maps to show that our parcellation strategy recovers biologically valid subdivisions that adhere to known cytoarchitectural features. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. ATPP: A Pipeline for Automatic Tractography-Based Brain Parcellation

    PubMed Central

    Li, Hai; Fan, Lingzhong; Zhuo, Junjie; Wang, Jiaojian; Zhang, Yu; Yang, Zhengyi; Jiang, Tianzi

    2017-01-01

    There is a longstanding effort to parcellate brain into areas based on micro-structural, macro-structural, or connectional features, forming various brain atlases. Among them, connectivity-based parcellation gains much emphasis, especially with the considerable progress of multimodal magnetic resonance imaging in the past two decades. The Brainnetome Atlas published recently is such an atlas that follows the framework of connectivity-based parcellation. However, in the construction of the atlas, the deluge of high resolution multimodal MRI data and time-consuming computation poses challenges and there is still short of publically available tools dedicated to parcellation. In this paper, we present an integrated open source pipeline (https://www.nitrc.org/projects/atpp), named Automatic Tractography-based Parcellation Pipeline (ATPP) to realize the framework of parcellation with automatic processing and massive parallel computing. ATPP is developed to have a powerful and flexible command line version, taking multiple regions of interest as input, as well as a user-friendly graphical user interface version for parcellating single region of interest. We demonstrate the two versions by parcellating two brain regions, left precentral gyrus and middle frontal gyrus, on two independent datasets. In addition, ATPP has been successfully utilized and fully validated in a variety of brain regions and the human Brainnetome Atlas, showing the capacity to greatly facilitate brain parcellation. PMID:28611620

  9. 43 CFR 3110.5-1 - Parcel number description.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Parcel number description. 3110.5-1... § 3110.5-1 Parcel number description. From the first day following the end of a competitive process until... lands covered by that competitive process shall be the parcel number on the List of Lands Available for...

  10. Regional Influences of Marcellus Shale Natural Gas Activity: Back-trajectory Analysis of Baltimore/Washington Ethane Concentrations

    NASA Astrophysics Data System (ADS)

    Vinciguerra, T.; Chittams, A.; Dadzie, J.; Deskins, T.; Goncalves, V.; M'Bagui Matsanga, C.; Zakaria, R.; Ehrman, S.; Dickerson, R. R.

    2015-12-01

    Over the past several years, the combined utilization of hydraulic fracturing and horizontal drilling has led to a rapid increase in natural gas production, especially from the Marcellus Shale. To explore the impact of this activity downwind on regions with no natural gas production, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) Model was used to generate 48-hour back-trajectories for summer, daytime hours from the years 2007-2014 in the Baltimore, MD and Washington, D.C. areas where hourly ethane measurements are available from Photochemical Assessment Monitoring Stations (PAMS). For each of the years investigated, unconventional well counts were obtained for counties in the surrounding states of Pennsylvania, Ohio, West Virginia, and Virginia, and counties exceeding a threshold of 0.05 wells/km2 were designated as counties with a high density of wells. The back-trajectories for each year were separated into two groups: those which passed through counties containing a high density of wells, and those which did not. Back-trajectories passing through high-density counties were further screened by applying a height criterion where trajectories beyond 10% above the mixing layer were excluded. Preliminary results indicate that air parcels with back-trajectories passing within the boundary layer of counties with a high density of unconventional natural gas wells correspond to significantly greater concentrations of observed ethane at these downwind monitors.

  11. Exploring the relationship between parcelization metrics and natural resource managers' perceptions of forest land parcelization intensity

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder

    2016-01-01

    A major challenge associated with forest land parcelization, defined as the subdivision of forest land holdings into smaller ownership parcels, is that little information exists on how to measure its severity and judge its impacts across forest landscapes. To address this information gap, an on-line survey presented field-based public natural resource managers in the...

  12. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  13. Management by Trajectory: Trajectory Management Study Report

    NASA Technical Reports Server (NTRS)

    Leiden, Kenneth; Atkins, Stephen; Fernandes, Alicia D.; Kaler, Curt; Bell, Alan; Kilbourne, Todd; Evans, Mark

    2017-01-01

    In order to realize the full potential of the Next Generation Air Transportation System (NextGen), improved management along planned trajectories between air navigation service providers (ANSPs) and system users (e.g., pilots and airline dispatchers) is needed. Future automation improvements and increased data communications between aircraft and ground automation would make the concept of Management by Trajectory (MBT) possible.

  14. 76 FR 16460 - Parcel Select Price and Classification Changes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... POSTAL REGULATORY COMMISSION [Docket No. CP2011-64; Order No. 698] Parcel Select Price and... a recently-filed Postal Service notice of rate and classification changes affecting Parcel Select. The Postal Service seeks to implement new prices for Parcel Select for forwarding and return to sender...

  15. An enhanced PM 2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations

    NASA Astrophysics Data System (ADS)

    Cobourn, W. Geoffrey

    2010-08-01

    An enhanced PM 2.5 air quality forecast model based on nonlinear regression (NLR) and back-trajectory concentrations has been developed for use in the Louisville, Kentucky metropolitan area. The PM 2.5 air quality forecast model is designed for use in the warm season, from May through September, when PM 2.5 air quality is more likely to be critical for human health. The enhanced PM 2.5 model consists of a basic NLR model, developed for use with an automated air quality forecast system, and an additional parameter based on upwind PM 2.5 concentration, called PM24. The PM24 parameter is designed to be determined manually, by synthesizing backward air trajectory and regional air quality information to compute 24-h back-trajectory concentrations. The PM24 parameter may be used by air quality forecasters to adjust the forecast provided by the automated forecast system. In this study of the 2007 and 2008 forecast seasons, the enhanced model performed well using forecasted meteorological data and PM24 as input. The enhanced PM 2.5 model was compared with three alternative models, including the basic NLR model, the basic NLR model with a persistence parameter added, and the NLR model with persistence and PM24. The two models that included PM24 were of comparable accuracy. The two models incorporating back-trajectory concentrations had lower mean absolute errors and higher rates of detecting unhealthy PM2.5 concentrations compared to the other models.

  16. 76 FR 17784 - Forwarding and Return Service for Parcel Select Mailpieces

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-31

    ... POSTAL SERVICE 39 CFR Part 111 Forwarding and Return Service for Parcel Select Mailpieces AGENCY....2.3.6 to eliminate the free local forwarding of Parcel Select[supreg] mailpieces and to eliminate... Parcel Select forwards and returns; those pieces will now pay the applicable Parcel Select barcoded...

  17. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallo, Jean-Baptiste

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulicmore » hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles

  18. 7 CFR 1955.140 - Sale in parcels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Programs property, may be offered for sale as a whole or subdivided into parcels as determined by the State... 7 Agriculture 14 2011-01-01 2011-01-01 false Sale in parcels. 1955.140 Section 1955.140...) PROGRAM REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.140 Sale...

  19. 7 CFR 1955.140 - Sale in parcels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Programs property, may be offered for sale as a whole or subdivided into parcels as determined by the State... 7 Agriculture 14 2013-01-01 2013-01-01 false Sale in parcels. 1955.140 Section 1955.140...) PROGRAM REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.140 Sale...

  20. 7 CFR 1955.140 - Sale in parcels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Programs property, may be offered for sale as a whole or subdivided into parcels as determined by the State... 7 Agriculture 14 2012-01-01 2012-01-01 false Sale in parcels. 1955.140 Section 1955.140...) PROGRAM REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.140 Sale...

  1. 7 CFR 1955.140 - Sale in parcels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Programs property, may be offered for sale as a whole or subdivided into parcels as determined by the State... 7 Agriculture 14 2014-01-01 2014-01-01 false Sale in parcels. 1955.140 Section 1955.140...) PROGRAM REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.140 Sale...

  2. Trajectory Specification for Automation of Terminal Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.

    2016-01-01

    "Trajectory specification" is the explicit bounding and control of aircraft tra- jectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft nav- igation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) sys- tem or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on arrival spacing in the terminal area and presents ATC algorithms and software for achieving a specified delay of runway arrival time.

  3. Investigation of the trajectories and length of combustible gas jet flames in a sweeping air stream

    NASA Astrophysics Data System (ADS)

    Polezhaev, Yu. V.; Mostinskii, I. L.; Lamden, D. I.; Stonik, O. G.

    2011-05-01

    The trajectories of round gas jets and jet flames introduced into a sweeping air stream are studied. The influence of various initial conditions and of the physical properties of gases on the trajectory is considered. Experimental verification of the available approximation relations for the trajectories of flames in a wide range of the values of the blowing ratio has been carried out. It is shown that the newly obtained experimental approximation of the trajectory shape differs from the existing ones by about 20%. At small values of the blowing ratio (smaller than ~4.5) the flame trajectories cease to depend on it.

  4. Stakeholders' Perceptions of Parcelization in Wisconsin's Northwoods

    Treesearch

    Mark G. Rickenbach; Paul H. Gobster

    2003-01-01

    Parcelization, the process by which relatively large forest ownerships become subdivided into smaller ones, is often related to changes in ownership and can bring changes to the use of the land. Landowners, resource professionals, and others interested in Wisconsin's Northwoods were asked their views on parcelization in a series of stakeholder forums. We analyzed...

  5. Potential sources of precipitation in Lake Baikal basin

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Mokhov, I. I.

    2017-11-01

    Based on the data of long-term measurements at 23 meteorological stations in the Russian part of the Lake Baikal basin the probabilities of daily precipitation with different intensity and their contribution to the total precipitation are estimated. Using the trajectory model HYSPLIT_4 for each meteorological station for the period 1948-2016 the 10-day backward trajectories of air parcels, the height of these trajectories and distribution of specific humidity along the trajectories are calculated. The average field of power of potential sources of daily precipitation (less than 10 mm) for all meteorological stations in the Russian part of the Lake Baikal basin was obtained using the CWT (concentration weighted trajectory) method. The areas have been identified from which within 10 days water vapor can be transported to the Lake Baikal basin, as well as regions of the most and least powerful potential sources. The fields of the mean height of air parcels trajectories and the mean specific humidity along the trajectories are compared with the field of mean power of potential sources.

  6. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling.

    PubMed

    Shie, Ruei-Hao; Chan, Chang-Chuan

    2013-10-15

    The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography-mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Erzberger, Heinz

    2017-01-01

    Trajectory Specification is the explicit bounding and control of aircraft trajectories such that the position at any point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. Assuming conformance, Trajectory Specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure; hence it can help to achieve the high level of safety and reliability needed for ATC automation. It can also reduce the reliance on tactical backup systems during normal operation. This paper applies it to the terminal area around a major airport and presents algorithms and software for detecting and resolving conflicts. A representative set of pairwise conflicts was generated, and a fast-time simulation was run on them. All conflicts were successfully resolved in real time, demonstrating the computational feasibility of the concept.

  8. Trajectory Specification for Terminal Air Traffic: Pairwise Conflict Detection and Resolution

    NASA Technical Reports Server (NTRS)

    Paielli, Russ; Erzberger, Heinz

    2017-01-01

    Trajectory specification is the explicit bounding and control of aircraft trajectories such that the position at each point in time is constrained to a precisely defined volume of space. The bounding space is defined by cross-track, along-track, and vertical tolerances relative to a reference trajectory that specifies position as a function of time. The tolerances are dynamic and will be based on the aircraft navigation capabilities and the current traffic situation. A standard language will be developed to represent these specifications and to communicate them by datalink. Assuming conformance, trajectory specification can guarantee safe separation for an arbitrary period of time even in the event of an air traffic control (ATC) system or datalink failure, hence it can help to achieve the high level of safety and reliability needed for ATC automation. As a more proactive form of ATC, it can also maximize airspace capacity and reduce the reliance on tactical backup systems during normal operation. It applies to both enroute airspace and the terminal area around airports, but this paper focuses on the terminal area and presents algorithms and software for spacing arrivals and deconflicting both arrivals and departures.

  9. A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high resolution simulation of Hurricane Bonnie (1998)

    NASA Technical Reports Server (NTRS)

    Cram, Thomas A.; Persing, John; Montgomery, Michael T.; Braun, Scott A.

    2006-01-01

    The transport and mixing characteristics of a large sample of air parcels within a mature and vertically sheared hurricane vortex is examined. Data from a high-resolution (2 km grid spacing) numerical simulation of "real-case" Hurricane Bonnie (1998) is used to calculate Lagrangian trajectories of air parcels in various subdomains of the hurricane (namely, the eye, eyewall, and near-environment) to study the degree of interaction (transport and mixing) between these subdomains. It is found that 1) there is transport and mixing from the low-level eye to the eyewall that carries high- Be air which can enhance the efficiency of the hurricane heat engine; 2) a portion of the low-level inflow of the hurricane bypasses the eyewall to enter the eye, that both replaces the mass of the low-level eye and lingers for a sufficient time (order 1 hour) to acquire enhanced entropy characteristics through interaction with the ocean beneath the eye; 3) air in the mid- to upper-level eye is exchanged with the eyewall such that more than half the air of the eye is exchanged in five hours in this case of a sheared hurricane; and 4) that one-fifth of the mass in the eyewall at a height of 5 km has an origin in the mid- to upper-level environment where thet(sub e) is much less than in the eyewall, which ventilates the ensemble average eyewall theta(sub e) by about 1 K. Implications of these findings to the problem of hurricane intensity forecasting are discussed.

  10. Optimization design and dynamic analysis on the drive mechanisms of flapping-wing air vehicles based on flapping trajectories

    NASA Astrophysics Data System (ADS)

    Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan

    2017-10-01

    The optimization designs and dynamic analysis on the driving mechanism of flapping-wing air vehicles on base of flapping trajectory patterns is carried out in this study. Three different driving mechanisms which are spatial double crank-rocker, plane five-bar and gear-double slider, are systematically optimized and analysed by using the Mat lab and Adams software. After a series debugging on the parameter, the comparatively ideal flapping trajectories are obtained by the simulation of Adams. Present results indicate that different drive mechanisms output different flapping trajectories and have their unique characteristic. The spatial double crank-rocker mechanism can only output the arc flapping trajectory and it has the advantages of small volume, high flexibility and efficient space utilization. Both planar five-bar mechanism and gear-double slider mechanism can output the oval, figure of eight and double eight flapping trajectories. Nevertheless, the gear-double slider mechanism has the advantage of convenient parameter setting and better performance in output double eight flapping trajectory. This study can provide theoretical basis and helpful reference for the design of the drive mechanisms of flapping-wing air vehicles with different output flapping trajectories.

  11. Organochlorine pesticides in the ambient air of Chiapas, Mexico.

    PubMed

    Alegria, Henry; Bidleman, Terry F; Figueroa, Miguel Salvador

    2006-04-01

    Organochlorine (OC) pesticides were measured in the ambient air of Chiapas, Mexico during 2000-2001. Concentrations of some OC pesticides (DDTs, chlordanes, toxaphene) were elevated compared with levels in the Great Lakes region, while those of other pesticides were not (hexachlorocyclohexanes, dieldrin). While this suggests southern Mexico as a source region for the former group of chemicals, comparably high levels have also been reported in parts of the southern United States, where their suspected sources are soil emissions (DDTs, toxaphene) and termiticide usage (chlordane). Ratios of p,p'-DDT/p,p'-DDE and trans-chlordane/cis-chlordane/trans-nonachlor (TC/CC/TN) in Chiapas suggest a mixture of fresh and weathered sources, while congener profiles of toxaphene suggest emission of old residues from soils. This is supported by air parcel back trajectory analysis, which indicated that air masses over Chiapas at the time of sampling had previously passed over areas of continuing or recent use of some OC pesticides as well as areas of past use.

  12. Trajectory Assessment and Modification Tools for Next Generation Air Traffic Management Operations

    NASA Technical Reports Server (NTRS)

    Brasil, Connie; Lee, Paul; Mainini, Matthew; Lee, Homola; Lee, Hwasoo; Prevot, Thomas; Smith, Nancy

    2011-01-01

    This paper reviews three Next Generation Air Transportation System (NextGen) based high fidelity air traffic control human-in-the-loop (HITL) simulations, with a focus on the expected requirement of enhanced automated trajectory assessment and modification tools to support future air traffic flow management (ATFM) planning positions. The simulations were conducted at the National Aeronautics and Space Administration (NASA) Ames Research Centers Airspace Operations Laboratory (AOL) in 2009 and 2010. The test airspace for all three simulations assumed the mid-term NextGenEn-Route high altitude environment utilizing high altitude sectors from the Kansas City and Memphis Air Route Traffic Control Centers. Trajectory assessment, modification and coordination decision support tools were developed at the AOL in order to perform future ATFM tasks. Overall tool usage results and user acceptability ratings were collected across three areas of NextGen operatoins to evaluate the tools. In addition to the usefulness and usability feedback, feasibility issues, benefits, and future requirements were also addressed. Overall, the tool sets were rated very useful and usable, and many elements of the tools received high scores and were used frequently and successfully. Tool utilization results in all three HITLs showed both user and system benefits including better airspace throughput, reduced controller workload, and highly effective communication protocols in both full Data Comm and mixed-equipage environments.

  13. The Trajectory Synthesizer Generalized Profile Interface

    NASA Technical Reports Server (NTRS)

    Lee, Alan G.; Bouyssounouse, Xavier; Murphy, James R.

    2010-01-01

    The Trajectory Synthesizer is a software program that generates aircraft predictions for Air Traffic Management decision support tools. The Trajectory Synthesizer being used by researchers at NASA Ames Research Center was restricted in the number of trajectory types that could be generated. This limitation was not sufficient to support the rapidly changing Air Traffic Management research requirements. The Generalized Profile Interface was developed to address this issue. It provides a flexible approach to describe the constraints applied to trajectory generation and may provide a method for interoperability between trajectory generators. It also supports the request and generation of new types of trajectory profiles not possible with the previous interface to the Trajectory Synthesizer. Other enhancements allow the Trajectory Synthesizer to meet the current and future needs of Air Traffic Management research.

  14. Source of moist air for the Asian summer monsoon lower stratosphere

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Fu, R.; Wang, T.

    2015-12-01

    The Asian monsoon region is the most prominent moist center of lower stratospheric (LS) water vapor during boreal summer. However, the origin of such moist air is still unclear. Using Aura Microwave Limb Sounder (MLS) satellite observations and a domain-filling forward trajectory model, we show that moist air originates mostly from the western Asian Monsoon region where dehydration temperatures are warmer than those on the eastside of the Asian monsoon region. On seasonal scale, a shift of convective and dehydration center from the eastern to western monsoon region from early to late summer may contribute to the increase of LS water vapor over the Asian monsoon region. An increasing convection over the west side of the monsoon region can significantly moisten the LS. Air detrained from convection ascends with enhanced large-scale rising motion and dehydrate mostly within this region under warmer temperature, thus anomalously higher water vapor concentration. After final dehydration, water vapor anomalies show an upper-eastward propagation across the Asian monsoon region. This is primarily due to that air parcels tend to arise across the tropopause layer over the western region (eastern Iranian Plateau and northwestern India) after final dehydration as simulated by the trajectory model. This work highlights the importance of transport pathway shift, induced by the convective regime shift, on both seasonal and intraseasonal variations of water vapor in the Asian monsoon LS.

  15. 76 FR 23749 - Intelligent Mail Package Barcode (IMpb) Implementation for Commercial Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-28

    ...The Postal Service is proposing to revise Mailing Standards of the United States Postal Service, Domestic Mail Manual (DMM[supreg]) to require the use of a unique tracking barcode on all commercial parcels, except Standard Mail[supreg] parcels, claiming presort and destination entry pricing by January 2012; and to encourage use of unique tracking barcodes by providing free Delivery Confirmation[supreg] service on all commercial parcels except Standard Mail parcels.

  16. Use of Item Parceling in Structural Equation Modeling with Missing Data

    ERIC Educational Resources Information Center

    Orcan, Fatih

    2013-01-01

    Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…

  17. Why item parcels are (almost) never appropriate: two wrongs do not make a right--camouflaging misspecification with item parcels in CFA models.

    PubMed

    Marsh, Herbert W; Lüdtke, Oliver; Nagengast, Benjamin; Morin, Alexandre J S; Von Davier, Matthias

    2013-09-01

    The present investigation has a dual focus: to evaluate problematic practice in the use of item parcels and to suggest exploratory structural equation models (ESEMs) as a viable alternative to the traditional independent clusters confirmatory factor analysis (ICM-CFA) model (with no cross-loadings, subsidiary factors, or correlated uniquenesses). Typically, it is ill-advised to (a) use item parcels when ICM-CFA models do not fit the data, and (b) retain ICM-CFA models when items cross-load on multiple factors. However, the combined use of (a) and (b) is widespread and often provides such misleadingly good fit indexes that applied researchers might believe that misspecification problems are resolved--that 2 wrongs really do make a right. Taking a pragmatist perspective, in 4 studies we demonstrate with responses to the Rosenberg Self-Esteem Inventory (Rosenberg, 1965), Big Five personality factors, and simulated data that even small cross-loadings seriously distort relations among ICM-CFA constructs or even decisions on the number of factors; although obvious in item-level analyses, this is camouflaged by the use of parcels. ESEMs provide a viable alternative to ICM-CFAs and a test for the appropriateness of parcels. The use of parcels with an ICM-CFA model is most justifiable when the fit of both ICM-CFA and ESEM models is acceptable and equally good, and when substantively important interpretations are similar. However, if the ESEM model fits the data better than the ICM-CFA model, then the use of parcels with an ICM-CFA model typically is ill-advised--particularly in studies that are also interested in scale development, latent means, and measurement invariance.

  18. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  19. A framework for farmland parcels extraction based on image classification

    NASA Astrophysics Data System (ADS)

    Liu, Guoying; Ge, Wenying; Song, Xu; Zhao, Hongdan

    2018-03-01

    It is very important for the government to build an accurate national basic cultivated land database. In this work, farmland parcels extraction is one of the basic steps. However, during the past years, people had to spend much time on determining an area is a farmland parcel or not, since they were bounded to understand remote sensing images only from the mere visual interpretation. In order to overcome this problem, in this study, a method was proposed to extract farmland parcels by means of image classification. In the proposed method, farmland areas and ridge areas of the classification map are semantically processed independently and the results are fused together to form the final results of farmland parcels. Experiments on high spatial remote sensing images have shown the effectiveness of the proposed method.

  20. Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David O'C.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth

    2000-01-01

    The Cirrus Parcel Model Comparison (CPMC) is a project of the GEWEX Cloud System Study Working Group on Cirrus Cloud Systems (GCSS WG2). The primary goal of this project is to identify cirrus model sensitivities to the state of our knowledge of nucleation and microphysics. Furthermore, the common ground of the findings may provide guidelines for models with simpler cirrus microphysics modules. We focus on the nucleation regimes of the warm (parcel starting at -40 C and 340 hPa) and cold (-60 C and 170 hPa) cases studied in the GCSS WG2 Idealized Cirrus Model Comparison Project. Nucleation and ice crystal growth were forced through an externally imposed rate of lift and consequent adiabatic cooling. The background haze particles are assumed to be lognormally-distributed H2SO4 particles. Only the homogeneous nucleation mode is allowed to form ice crystals in the HN-ONLY runs; all nucleation modes are switched on in the ALL-MODE runs. Participants were asked to run the HN-lambda-fixed runs by setting lambda = 2 (lambda is further discussed in section 2) or tailoring the nucleation rate calculation in agreement with lambda = 2 (exp 1). The depth of parcel lift (800 m) was set to assure that parcels underwent complete transition through the nucleation regime to a stage of approximate equilibrium between ice mass growth and vapor supplied by the specified updrafts.

  1. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, April M; Omitaomu, Olufemi A; Kotikot, Susan

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  2. Variability in Parameter Estimates and Model Fit across Repeated Allocations of Items to Parcels

    ERIC Educational Resources Information Center

    Sterba, Sonya K.; MacCallum, Robert C.

    2010-01-01

    Different random or purposive allocations of items to parcels within a single sample are thought not to alter structural parameter estimates as long as items are unidimensional and congeneric. If, additionally, numbers of items per parcel and parcels per factor are held fixed across allocations, different allocations of items to parcels within a…

  3. 78 FR 56248 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-12

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request with the Postal... States Postal Service to Add Parcel Select Contract 7 to Competitive Product List. Documents are...

  4. Dutch food bank parcels do not meet nutritional guidelines for a healthy diet.

    PubMed

    Neter, Judith E; Dijkstra, S Coosje; Visser, Marjolein; Brouwer, Ingeborg A

    2016-08-01

    Nutritional intakes of food bank recipients and consequently their health status largely rely on the availability and quality of donated food in provided food parcels. In this cross-sectional study, the nutritional quality of ninety-six individual food parcels was assessed and compared with the Dutch nutritional guidelines for a healthy diet. Furthermore, we assessed how food bank recipients use the contents of the food parcel. Therefore, 251 Dutch food bank recipients from eleven food banks throughout the Netherlands filled out a general questionnaire. The provided amounts of energy (19 849 (sd 162 615) kJ (4744 (sd 38 866) kcal)), protein (14·6 energy percentages (en%)) and SFA (12·9 en%) in a single-person food parcel for one single day were higher than the nutritional guidelines, whereas the provided amounts of fruits (97 (sd 1441) g) and fish (23 (sd 640) g) were lower. The number of days for which macronutrients, fruits, vegetables and fish were provided for a single-person food parcel ranged from 1·2 (fruits) to 11·3 (protein) d. Of the participants, only 9·5 % bought fruits and 4·6 % bought fish to supplement the food parcel, 39·4 % used all foods provided and 75·7 % were (very) satisfied with the contents of the food parcel. Our study shows that the nutritional content of food parcels provided by Dutch food banks is not in line with the nutritional guidelines. Improving the quality of the parcels is likely to positively impact the dietary intake of this vulnerable population subgroup.

  5. 76 FR 2930 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: Postal Service notice of filing of a request with the Postal Regulatory... Add Parcel Select Contract 1 to Competitive Product List. Documents are available at http://www.prc...

  6. 77 FR 66193 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-02

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request with the Postal... Postal Service To Add Parcel Select Contract 6 to Competitive Product List. Documents are available at...

  7. 77 FR 42780 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request with the Postal... Postal Service to Add Parcel Select Contract 3 to Competitive Product List. Documents are available at...

  8. 77 FR 42780 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request with the Postal... Postal Service to Add Parcel Select Contract 4 to Competitive Product List. Documents are available at...

  9. 77 FR 42780 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service TM . ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request with the Postal... Postal Service to Add Parcel Select Contract 5 to Competitive Product List. Documents are available at...

  10. 76 FR 14284 - Domestic Shipping Services Product Launch of Parcel Select Regional Ground

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-16

    ... POSTAL SERVICE 39 CFR Part 111 Domestic Shipping Services Product Launch of Parcel Select Regional... competitive shipping option, Parcel Select Regional Ground \\TM\\ service. DATES: Effective Date: April 17, 2011... classification changes outlined by USPS[supreg] on the introduction of Parcel Select Regional Ground service...

  11. Lagrangian photochemical modeling studies of the 1987 Antarctic spring vortex. II - Seasonal trends in ozone

    NASA Technical Reports Server (NTRS)

    Austin, J.; Jones, R. L.; Mckenna, D. S.; Buckland, A. T.; Anderson, J. G.; Fahey, D. W.; Farmer, C. B.; Heidt, L. E.; Proffitt, M. H.; Vedder, J. F.

    1989-01-01

    A photochemical model consisting of 40 species and 107 reactions is integrated along 80-day air parcel trajectories calculated in the lower stratosphere for the springtime Antarctic. For the trajectory starting at 58 deg S, which may be regarded as outside the circumpolar vortex, only a small change in O3 occurs in the model. In contrast, for the air parcel starting in the vortex at 74 deg S, the O3 concentration is reduced by 93 percent during the 80 days from the beginning of August to late October. The model results for several species are compared with measurements from the Airborne Antarctic Ozone Experiment and, in general, good agreement is obtained. In the model, the dentrification of the air parcels in polar stratospheric clouds increases the amount of chlorine present in active form. Heterogeneous reactions maintain high active chlorine which destroys O3 via the formation of the ClO dimer. Results of calculations with reduced concentrations of inorganic chlorine show considerably reduced O3 destruction rates and compare favorably with the behavior of total O3 since the late 1970s. The remaining major uncertainties in the photochemical aspects of the Antarctic ozone hole are highlighted.

  12. Distributed Traffic Complexity Management by Preserving Trajectory Flexibility

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Vivona, Robert A.; Garcia-Chico, Jose-Luis; Wing, David J.

    2007-01-01

    In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which groundbased service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. This paper presents preliminary research investigating a distributed trajectory-oriented approach to manage traffic complexity, based on preserving trajectory flexibility. The underlying hypotheses are that preserving trajectory flexibility autonomously by aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by collaboratively minimizing trajectory constraints without jeopardizing the intended air traffic management objectives. This paper presents an analytical framework in which flexibility is defined in terms of robustness and adaptability to disturbances and preliminary metrics are proposed that can be used to preserve trajectory flexibility. The hypothesized impacts are illustrated through analyzing a trajectory solution space in a simple scenario with only speed as a degree of freedom, and in constraint situations involving meeting multiple times of arrival and resolving conflicts.

  13. Earthquake Hazard Class Mapping by Parcel in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Pancha, A.; Pullammanappallil, S.; Louie, J. N.; Hellmer, W. K.

    2011-12-01

    Clark County, Nevada completed the very first effort in the United States to map earthquake hazard class systematically through an entire urban area. The map is used in development and disaster response planning, in addition to its direct use for building code implementation and enforcement. The County contracted with the Nevada System of Higher Education to classify about 500 square miles including urban Las Vegas Valley, and exurban areas considered for future development. The Parcel Map includes over 10,000 surface-wave array measurements accomplished over three years using Optim's SeisOpt° ReMi measurement and processing techniques adapted for large scale data. These array measurements classify individual parcels on the NEHRP hazard scale. Parallel "blind" tests were conducted at 93 randomly selected sites. The rms difference between the Vs30 values yielded by the blind data and analyses and the Parcel Map analyses is 4.92%. Only six of the blind-test sites showed a difference with a magnitude greater than 10%. We describe a "C+" Class for sites with Class B average velocities but soft surface soil. The measured Parcel Map shows a clearly definable C+ to C boundary on the west side of the Valley. The C to D boundary is much more complex. Using the parcel map in computing shaking in the Valley for scenario earthquakes is crucial for obtaining realistic predictions of ground motions.

  14. Lagrangian Transport Calculations Using UARS Data. Part I: Passive Tracers

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Lahoz, W. A.; Harwood, R. S.; Zurek, R. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A; Swinbank, R.; Waters, J. W.

    1994-01-01

    The transport of passive tracers observed by UARS has been simulated using computed trajectories of thousands of air parcels initialized on a three-dimensional stratospheric grid. These trajectories are calculated in isentropic coordinates using horizontal winds provided by the United Kingdom Meteorological Office data assimilation system and vertical (cross-isentropic) velocities computed using a fast radiation code.

  15. Aerosol concentration measurements and correlations with air mass trajectories at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Micheletti, M. I.; Louedec, K.; Freire, M.; Vitale, P.; Piacentini, R. D.

    2017-06-01

    Aerosols play an important role in radiative transfer processes involved in different fields of study. In particular, their influence is crucial in the attenuation of light at astronomical and astrophysical observatories, and has to be taken into account in light transfer models employed to reconstruct the signals. The Andean Argentinean region is increasingly being considered as a good candidate to host such facilities, as well as the ones for solar-energy resources, and an adequate knowledge of aerosols characteristics there is needed, but it is not always possible due to the vast area involved and the scarce atmospheric data at ground. The aim of this work is to find correlations between aerosol data and particle trajectories that can give an insight into the origin and behaviour of aerosols in this zone and can be employed in situations in which one does not have local aerosol measurements. For this purpose, an aerosol spectrometer and dust monitor (Grimm 1.109) was installed at the Pierre Auger Observatory of ultra-high-energy cosmic rays, to record aerosol concentrations in different size intervals, at surface level. These measurements are analysed and correlated with air mass trajectories obtained from HYSPLIT (NOAA) model calculations. High aerosol concentrations are registered predominantly when air masses have travelled mostly over continental areas, mainly from the NE direction, while low aerosol concentrations are found in correspondence with air masses coming from the Pacific Ocean, from the NW direction. Different size distribution patterns were found for the aerosols depending on their origin: marine or continental. This work shows for the first time the size distribution of aerosols registered at the Pierre Auger Observatory. The correlations found between mass and particle concentrations (total and for different size ranges) and HYSPLIT air mass trajectories, confirm that the latter can be employed as a useful tool to infer the sources, evolution

  16. On The Cloud Processing of Aerosol Particles: An Entraining Air Parcel Model With Two-dimensional Spectral Cloud Microphysics and A New Formulation of The Collection Kernel

    NASA Astrophysics Data System (ADS)

    Bott, Andreas; Kerkweg, Astrid; Wurzler, Sabine

    A study has been made of the modification of aerosol spectra due to cloud pro- cesses and the impact of the modified aerosols on the microphysical structure of future clouds. For this purpose an entraining air parcel model with two-dimensional spectral cloud microphysics has been used. In order to treat collision/coalescence processes in the two-dimensional microphysical module, a new realistic and continuous formu- lation of the collection kernel has been developed. Based on experimental data, the kernel covers the entire investigated size range of aerosols, cloud and rain drops, that is the kernel combines all important coalescence processes such as the collision of cloud drops as well as the impaction scavenging of small aerosols by big raindrops. Since chemical reactions in the gas phase and in cloud drops have an important impact on the physico-chemical properties of aerosol particles, the parcel model has been extended by a chemical module describing gas phase and aqueous phase chemical reactions. However, it will be shown that in the numerical case studies presented in this paper the modification of aerosols by chemical reactions has a minor influence on the microphysical structure of future clouds. The major process yielding in a second cloud event an enhanced formation of rain is the production of large aerosol particles by collision/coalescence processes in the first cloud.

  17. Using Social Media Derived Information to Reduce Ambiguity in Parcel Data

    NASA Astrophysics Data System (ADS)

    Sims, K.; Thakur, G.

    2017-12-01

    High-resolution spatiotemporal analyses often rely on the integration and harmonization of many unique data sources. Harmonized data can be especially useful in mobility/transportation planning, site selection/development planning, urban resiliency, sustainability, utility planning, and population modeling. However, even the most complete harmonized data sources can still possess gaps in their content, hindering their utility. For example, CoreLogic's ParcelPoint dataset is a nationwide collection of parcel points and polygons from nearly every U.S. county's local authority. While certain local land use parcel descriptions transfer easily to a national dataset, some do not, in part because of data ambiguity or regionality. This research will explore incorporating Points of Interest (POI) data derived from social media in order to reduce land use ambiguity in parcel data. Facebook, specifically, allows owners of businesses and institutions to create personalized pages with attributes like Name, Address, Location Type, Hours of Operation, Check-In counts, and designated latitude and longitude coordinates. These metadata can offer alternative land use descriptions and insights when it is otherwise not available, or when the land use associated with a parcel is not definitive. More importantly, this additional POI layer can allow for better representations of the places around us by providing a popularity and temporal aspect to the usual stagnant land use dataset. Furthermore, those responsible for emergency preparedness and response would benefit immensely from a more dynamic land use mapping opportunity. With that said, there are known limitations of social media data due to its volunteered nature. In order to recognize if the potential exists to overcome these limitations and use social-media-derived data to supplement national land use data, diverse study areas will be selected across the U.S. to yield a varied collection of POIs. Their Location Type will then be

  18. Semi-supervised clustering for parcellating brain regions based on resting state fMRI data

    NASA Astrophysics Data System (ADS)

    Cheng, Hewei; Fan, Yong

    2014-03-01

    Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.

  19. Lagrangian process attribution of isotopic variations in near-surface water vapour in a 30-year regional climate simulation over Europe

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Meyer, Miro; Wernli, Heini

    2018-02-01

    Stable water isotopes are naturally available tracers of moisture in the atmosphere. Due to isotopic fractionation, they record information about condensation and evaporation processes during the transport of air parcels, and therefore present a valuable means for studying the global water cycle. However, the meteorological processes driving isotopic variations are complex and not very well understood so far, in particular on short (hourly to daily) timescales. This study presents a Lagrangian method for attributing the isotopic composition of air parcels to meteorological processes, which provides new insight into the isotopic history of air parcels. It is based on the temporal evolution of the isotope ratios, the humidity, the temperature, and the location of the air parcels. Here these values are extracted along 7-day backward trajectories started every 6 hours from near the surface in a 30-year regional climate simulation over Europe with the isotope-enabled version of the model of the Consortium for Small-Scale Modelling (COSMOiso). The COSMOiso simulation has a horizontal resolution of 0.25° and is driven at the lateral boundaries by a T106 global climate simulation with the isotope-enabled version of the European Centre Hamburg model (ECHAMwiso). Both simulations are validated against measurements from the Global Network of Isotopes in Precipitation (GNIP), which shows that nesting COSMOiso within ECHAMwiso improves the representation of δ2H and deuterium excess in monthly accumulated precipitation. The method considers all isotopic changes that occur inside the COSMOiso model domain, which, on average, correspond to more than half of the mean and variability in both δ2H and deuterium excess at the air parcels' arrival points. Along every trajectory, the variations in the isotope values are quantitatively decomposed into eight process categories (evaporation from the ocean, evapotranspiration from land, mixing with moister air, mixing with drier air

  20. 39 CFR 320.7 - Suspension for advertisements accompanying parcels or periodicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Suspension for advertisements accompanying parcels or periodicals. 320.7 Section 320.7 Postal Service UNITED STATES POSTAL SERVICE RESTRICTIONS ON PRIVATE CARRIAGE OF LETTERS SUSPENSION OF THE PRIVATE EXPRESS STATUTES § 320.7 Suspension for advertisements accompanying parcels or periodicals. (a) Th...

  1. Separating the Air Quality Impact of a Major Highway and Nearby Sources by Nonparametric Trajectory Analysis

    EPA Science Inventory

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur di...

  2. Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.

    PubMed

    Dornas, João V; Braun, Jochen

    2018-01-15

    Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Parcellation of the human orbitofrontal cortex based on gray matter volume covariance.

    PubMed

    Liu, Huaigui; Qin, Wen; Qi, Haotian; Jiang, Tianzi; Yu, Chunshui

    2015-02-01

    The human orbitofrontal cortex (OFC) is an enigmatic brain region that cannot be parcellated reliably using diffusional and functional magnetic resonance imaging (fMRI) because there is signal dropout that results from an inherent defect in imaging techniques. We hypothesise that the OFC can be reliably parcellated into subregions based on gray matter volume (GMV) covariance patterns that are derived from artefact-free structural images. A total of 321 healthy young subjects were examined by high-resolution structural MRI. The OFC was parcellated into subregions-based GMV covariance patterns; and then sex and laterality differences in GMV covariance pattern of each OFC subregion were compared. The human OFC was parcellated into the anterior (OFCa), medial (OFCm), posterior (OFCp), intermediate (OFCi), and lateral (OFCl) subregions. This parcellation scheme was validated by the same analyses of the left OFC and the bilateral OFCs in male and female subjects. Both visual observation and quantitative comparisons indicated a unique GMV covariance pattern for each OFC subregion. These OFC subregions mainly covaried with the prefrontal and temporal cortices, cingulate cortex and amygdala. In addition, GMV correlations of most OFC subregions were similar across sex and laterality except for significant laterality difference in the OFCl. The right OFCl had stronger GMV correlation with the right inferior frontal cortex. Using high-resolution structural images, we established a reliable parcellation scheme for the human OFC, which may provide an in vivo guide for subregion-level studies of this region and improve our understanding of the human OFC at subregional levels. © 2014 Wiley Periodicals, Inc.

  4. [Winter wheat area estimation with MODIS-NDVI time series based on parcel].

    PubMed

    Li, Le; Zhang, Jin-shui; Zhu, Wen-quan; Hu, Tan-gao; Hou, Dong

    2011-05-01

    Several attributes of MODIS (moderate resolution imaging spectrometer) data, especially the short temporal intervals and the global coverage, provide an extremely efficient way to map cropland and monitor its seasonal change. However, the reliability of their measurement results is challenged because of the limited spatial resolution. The parcel data has clear geo-location and obvious boundary information of cropland. Also, the spectral differences and the complexity of mixed pixels are weak in parcels. All of these make that area estimation based on parcels presents more advantage than on pixels. In the present study, winter wheat area estimation based on MODIS-NDVI time series has been performed with the support of cultivated land parcel in Tongzhou, Beijing. In order to extract the regional winter wheat acreage, multiple regression methods were used to simulate the stable regression relationship between MODIS-NDVI time series data and TM samples in parcels. Through this way, the consistency of the extraction results from MODIS and TM can stably reach up to 96% when the amount of samples accounts for 15% of the whole area. The results shows that the use of parcel data can effectively improve the error in recognition results in MODIS-NDVI based multi-series data caused by the low spatial resolution. Therefore, with combination of moderate and low resolution data, the winter wheat area estimation became available in large-scale region which lacks completed medium resolution images or has images covered with clouds. Meanwhile, it carried out the preliminary experiments for other crop area estimation.

  5. An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks

    PubMed Central

    Salehi, Mehraveh; Karbasi, Amin; Shen, Xilin; Scheinost, Dustin; Constable, R. Todd

    2018-01-01

    Recent work with functional connectivity data has led to significant progress in understanding the functional organization of the brain. While the majority of the literature has focused on group-level parcellation approaches, there is ample evidence that the brain varies in both structure and function across individuals. In this work, we introduce a parcellation technique that incorporates delineation of functional networks both at the individual- and group-level. The proposed technique deploys the notion of “submodularity” to jointly parcellate the cerebral cortex while establishing an inclusive correspondence between the individualized functional networks. Using this parcellation technique, we successfully established a cross-validated predictive model that predicts individuals’ sex, solely based on the parcellation schemes (i.e. the node-to-network assignment vectors). The sex prediction finding illustrates that individualized parcellation of functional networks can reveal subgroups in a population and suggests that the use of a global network parcellation may overlook fundamental differences in network organization. This is a particularly important point to consider in studies comparing patients versus controls or even patient subgroups. Network organization may differ between individuals and global configurations should not be assumed. This approach to the individualized study of functional organization in the brain has many implications for both neuroscience and clinical applications. PMID:28882628

  6. There goes the sea ice: following Arctic sea ice parcels and their properties.

    NASA Astrophysics Data System (ADS)

    Tschudi, M. A.; Tooth, M.; Meier, W.; Stewart, S.

    2017-12-01

    Arctic sea ice distribution has changed considerably over the last couple of decades. Sea ice extent record minimums have been observed in recent years, the distribution of ice age now heavily favors younger ice, and sea ice is likely thinning. This new state of the Arctic sea ice cover has several impacts, including effects on marine life, feedback on the warming of the ocean and atmosphere, and on the future evolution of the ice pack. The shift in the state of the ice cover, from a pack dominated by older ice, to the current state of a pack with mostly young ice, impacts specific properties of the ice pack, and consequently the pack's response to the changing Arctic climate. For example, younger ice typically contains more numerous melt ponds during the melt season, resulting in a lower albedo. First-year ice is typically thinner and more fragile than multi-year ice, making it more susceptible to dynamic and thermodynamic forcing. To investigate the response of the ice pack to climate forcing during summertime melt, we have developed a database that tracks individual Arctic sea ice parcels along with associated properties as these parcels advect during the summer. Our database tracks parcels in the Beaufort Sea, from 1985 - present, along with variables such as ice surface temperature, albedo, ice concentration, and convergence. We are using this database to deduce how these thousands of tracked parcels fare during summer melt, i.e. what fraction of the parcels advect through the Beaufort, and what fraction melts out? The tracked variables describe the thermodynamic and dynamic forcing on these parcels during their journey. This database will also be made available to all interested investigators, after it is published in the near future. The attached image shows the ice surface temperature of all parcels (right) that advected through the Beaufort Sea region (left) in 2014.

  7. Evolutionary stability of egg trading and parceling in simultaneous hermaphrodites: the chalk bass revisited.

    PubMed

    Crowley, Philip H; Hart, Mary K

    2007-06-07

    Several species of simultaneously hermaphroditic seabasses living on coral reefs mate by alternating male and female roles with a partner. This is known as egg trading, one of the classic and most widely cited examples of social reciprocity among animals. Some of the egg-trading seabass species, including the chalk bass, Serranus tortugarum, switch mating roles repeatedly, having subdivided their clutch of eggs into parcels offered to the partner for fertilization. Here we attempt to understand these dynamics as a pair of evolutionary games, modifying some previous approaches to better reflect the biological system. We find that the trading of egg clutches is evolutionarily stable via byproduct mutualism and resistant to invasion by rare individuals that take the male role exclusively. We note why and how parceling may reflect sexual conflict between individuals in the mating pair. We estimate evolutionarily stable parcel numbers and show how they depend on parameter values. Typically, two or more sequential parcel numbers are evolutionarily stable, though the lowest of these yields the highest fitness. Assuming that parcel numbers are adjusted to local conditions, we predict that parcel numbers in nature are inversely related both to mating group density (except at low density) and predation risk.

  8. A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication

    NASA Technical Reports Server (NTRS)

    McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe

    2010-01-01

    An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route

  9. An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks.

    PubMed

    Salehi, Mehraveh; Karbasi, Amin; Shen, Xilin; Scheinost, Dustin; Constable, R Todd

    2018-04-15

    Recent work with functional connectivity data has led to significant progress in understanding the functional organization of the brain. While the majority of the literature has focused on group-level parcellation approaches, there is ample evidence that the brain varies in both structure and function across individuals. In this work, we introduce a parcellation technique that incorporates delineation of functional networks both at the individual- and group-level. The proposed technique deploys the notion of "submodularity" to jointly parcellate the cerebral cortex while establishing an inclusive correspondence between the individualized functional networks. Using this parcellation technique, we successfully established a cross-validated predictive model that predicts individuals' sex, solely based on the parcellation schemes (i.e. the node-to-network assignment vectors). The sex prediction finding illustrates that individualized parcellation of functional networks can reveal subgroups in a population and suggests that the use of a global network parcellation may overlook fundamental differences in network organization. This is a particularly important point to consider in studies comparing patients versus controls or even patient subgroups. Network organization may differ between individuals and global configurations should not be assumed. This approach to the individualized study of functional organization in the brain has many implications for both neuroscience and clinical applications. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. UAV Trajectory Modeling Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Xue, Min

    2017-01-01

    Large amount of small Unmanned Aerial Vehicles (sUAVs) are projected to operate in the near future. Potential sUAV applications include, but not limited to, search and rescue, inspection and surveillance, aerial photography and video, precision agriculture, and parcel delivery. sUAVs are expected to operate in the uncontrolled Class G airspace, which is at or below 500 feet above ground level (AGL), where many static and dynamic constraints exist, such as ground properties and terrains, restricted areas, various winds, manned helicopters, and conflict avoidance among sUAVs. How to enable safe, efficient, and massive sUAV operations at the low altitude airspace remains a great challenge. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative works on establishing infrastructure and developing policies, requirement, and rules to enable safe and efficient sUAVs' operations. To achieve this goal, it is important to gain insights of future UTM traffic operations through simulations, where the accurate trajectory model plays an extremely important role. On the other hand, like what happens in current aviation development, trajectory modeling should also serve as the foundation for any advanced concepts and tools in UTM. Accurate models of sUAV dynamics and control systems are very important considering the requirement of the meter level precision in UTM operations. The vehicle dynamics are relatively easy to derive and model, however, vehicle control systems remain unknown as they are usually kept by manufactures as a part of intellectual properties. That brings challenges to trajectory modeling for sUAVs. How to model the vehicle's trajectories with unknown control system? This work proposes to use a neural network to model a vehicle's trajectory. The neural network is first trained to learn the vehicle's responses at numerous conditions. Once being fully trained, given current vehicle states, winds, and desired future trajectory, the neural

  11. Accounting for Parcel-Allocation Variability in Practice: Combining Sources of Uncertainty and Choosing the Number of Allocations.

    PubMed

    Sterba, Sonya K; Rights, Jason D

    2016-01-01

    Item parceling remains widely used under conditions that can lead to parcel-allocation variability in results. Hence, researchers may be interested in quantifying and accounting for parcel-allocation variability within sample. To do so in practice, three key issues need to be addressed. First, how can we combine sources of uncertainty arising from sampling variability and parcel-allocation variability when drawing inferences about parameters in structural equation models? Second, on what basis can we choose the number of repeated item-to-parcel allocations within sample? Third, how can we diagnose and report proportions of total variability per estimate arising due to parcel-allocation variability versus sampling variability? This article addresses these three methodological issues. Developments are illustrated using simulated and empirical examples, and software for implementing them is provided.

  12. An Efficient Universal Trajectory Language

    NASA Technical Reports Server (NTRS)

    Hagen, George E.; Guerreiro, Nelson M.; Maddalon, Jeffrey M.; Butler, Ricky W.

    2017-01-01

    The Efficient Universal Trajectory Language (EUTL) is a language for specifying and representing trajectories for Air Traffic Management (ATM) concepts such as Trajectory-Based Operations (TBO). In these concepts, the communication of a trajectory between an aircraft and ground automation is fundamental. Historically, this trajectory exchange has not been done, leading to trajectory definitions that have been centered around particular application domains and, therefore, are not well suited for TBO applications. The EUTL trajectory language has been defined in the Prototype Verification System (PVS) formal specification language, which provides an operational semantics for the EUTL language. The hope is that EUTL will provide a foundation for mathematically verified algorithms that manipulate trajectories. Additionally, the EUTL language provides well-defined methods to unambiguously determine position and velocity information between the reported trajectory points. In this paper, we present the EUTL trajectory language in mathematical detail.

  13. A Distributed Trajectory-Oriented Approach to Managing Traffic Complexity

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Wing, David J.; Vivona, Robert; Garcia-Chico, Jose-Luis

    2007-01-01

    In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground-based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. While its architecture becomes more distributed, the goal of the Air Traffic Management (ATM) system remains to achieve objectives such as maintaining safety and efficiency. It is, therefore, critical to design appropriate control elements to ensure that aircraft and groundbased actions result in achieving these objectives without unduly restricting user-preferred trajectories. This paper presents a trajectory-oriented approach containing two such elements. One is a trajectory flexibility preservation function, by which aircraft plan their trajectories to preserve flexibility to accommodate unforeseen events. And the other is a trajectory constraint minimization function by which ground-based agents, in collaboration with air-based agents, impose just-enough restrictions on trajectories to achieve ATM objectives, such as separation assurance and flow management. The underlying hypothesis is that preserving trajectory flexibility of each individual aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by minimizing constraints without jeopardizing the intended ATM objectives. The paper presents conceptually how the two functions operate in a distributed control architecture that includes self separation. The paper illustrates the concept through hypothetical scenarios involving conflict resolution and flow management. It presents a functional analysis of the interaction and information flow between the functions. It also presents an analytical framework for defining metrics and developing methods to preserve trajectory flexibility and

  14. Three-dimensional Simulations of the Mean Air Transport During the 1997 Forest Fires in Kalimantan, Indonesia Using a Mesoscale Numerical Model

    NASA Astrophysics Data System (ADS)

    Roswintiarti, O.; Raman, S.

    - This paper describes the meteorological processes responsible for the mean transport of air pollutants during the ENSO-related forest fires in Kalimantan, Indonesia from 00 UTC 21 September to 00 UTC 25 September, 1997. The Fifth Generation of the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate three-dimensional winds at 6-hourly intervals. A nonhydrostatic version of the model is run using two nested grids with horizontal resolutions of 45 km and 15 km. From the simulated wind fields, the backward and forward trajectories of the air parcel are investigated using the Vis5D model.The results indicate that the large-scale subsidence over Indonesia, the southwest monsoon low-level flows (2-8 m s-1), and the shallow planetary boundary layer height (400-800 m) play a key role in the transport of air pollutants from Kalimantan to Malaysia, Singapore and Brunei.

  15. 7 CFR 1955.140 - Sale in parcels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., inventory for small business enterprises, buildings, facilities, and similar items may be permitted if a... Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS-COOPERATIVE... REGULATIONS (CONTINUED) PROPERTY MANAGEMENT Disposal of Inventory Property General § 1955.140 Sale in parcels...

  16. Parcellating an Individual Subject's Cortical and Subcortical Brain Structures Using Snowball Sampling of Resting-State Correlations

    PubMed Central

    Wig, Gagan S.; Laumann, Timothy O.; Cohen, Alexander L.; Power, Jonathan D.; Nelson, Steven M.; Glasser, Matthew F.; Miezin, Francis M.; Snyder, Abraham Z.; Schlaggar, Bradley L.; Petersen, Steven E.

    2014-01-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability—reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. PMID:23476025

  17. Complexity Science Applications to Dynamic Trajectory Management: Research Strategies

    NASA Technical Reports Server (NTRS)

    Sawhill, Bruce; Herriot, James; Holmes, Bruce J.; Alexandrov, Natalia

    2009-01-01

    The promise of the Next Generation Air Transportation System (NextGen) is strongly tied to the concept of trajectory-based operations in the national airspace system. Existing efforts to develop trajectory management concepts are largely focused on individual trajectories, optimized independently, then de-conflicted among each other, and individually re-optimized, as possible. The benefits in capacity, fuel, and time are valuable, though perhaps could be greater through alternative strategies. The concept of agent-based trajectories offers a strategy for automation of simultaneous multiple trajectory management. The anticipated result of the strategy would be dynamic management of multiple trajectories with interacting and interdependent outcomes that satisfy multiple, conflicting constraints. These constraints would include the business case for operators, the capacity case for the Air Navigation Service Provider (ANSP), and the environmental case for noise and emissions. The benefits in capacity, fuel, and time might be improved over those possible under individual trajectory management approaches. The proposed approach relies on computational agent-based modeling (ABM), combinatorial mathematics, as well as application of "traffic physics" concepts to the challenge, and modeling and simulation capabilities. The proposed strategy could support transforming air traffic control from managing individual aircraft behaviors to managing systemic behavior of air traffic in the NAS. A system built on the approach could provide the ability to know when regions of airspace approach being "full," that is, having non-viable local solution space for optimizing trajectories in advance.

  18. Creating drag and lift curves from soccer trajectories

    NASA Astrophysics Data System (ADS)

    Goff, John Eric; Kelley, John; Hobson, Chad M.; Seo, Kazuya; Asai, Takeshi; Choppin, S. B.

    2017-07-01

    Trajectory analysis is an alternative to using wind tunnels to measure a soccer ball’s aerodynamic properties. It has advantages over wind tunnel testing such as being more representative of game play. However, previous work has not presented a method that produces complete, speed-dependent drag and lift coefficients. Four high-speed cameras in stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer trajectories. Those trajectories span a range of launch speeds from 9.3 to 29.9 m s-1. That range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results from trajectory analysis were combined to give speed-dependent drag and lift coefficient curves for the entire range of speeds found in the 29 trajectories. The average root mean square error between the measured and modelled trajectory was 0.028 m horizontally and 0.034 m vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients respectively.

  19. Brain parcellation choice affects disease-related topology differences increasingly from global to local network levels.

    PubMed

    Lord, Anton; Ehrlich, Stefan; Borchardt, Viola; Geisler, Daniel; Seidel, Maria; Huber, Stefanie; Murr, Julia; Walter, Martin

    2016-03-30

    Network-based analyses of deviant brain function have become extremely popular in psychiatric neuroimaging. Underpinning brain network analyses is the selection of appropriate regions of interest (ROIs). Although ROI selection is fundamental in network analysis, its impact on detecting disease effects remains unclear. We investigated the impact of parcellation choice when comparing results from different studies. We investigated the effects of anatomical (AAL) and literature-based (Dosenbach) parcellation schemes on comparability of group differences in 35 female patients with anorexia nervosa and 35 age- and sex-matched healthy controls. Global and local network properties, including network-based statistics (NBS), were assessed on resting state functional magnetic resonance imaging data obtained at 3T. Parcellation schemes were comparably consistent on global network properties, while NBS and local metrics differed in location, but not metric type. Location of local metric alterations varied for AAL (parietal and cingulate cortices) versus Dosenbach (insula, thalamus) parcellation approaches. However, consistency was observed for the occipital cortex. Patient-specific global network properties can be robustly observed using different parcellation schemes, while graph metrics characterizing impairments of individual nodes vary considerably. Therefore, the impact of parcellation choice on specific group differences varies depending on the level of network organization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    PubMed

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. © The Author 2013. Published by Oxford University Press.

  1. Environmental Baseline Survey Parcel E2, F, and I, Military Housing Areas Nellis Air Force Base, Nevada. Phase 1

    DTIC Science & Technology

    2011-09-01

    SEP 2011 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Final Phase I Environmental Baseline Survey Parcel E2, F, and I...lead-based paint LUST leaking underground storage tank M.D.M. Mount Diablo Meridian MFH military family housing MHPI Military Housing...northwest OWS oil/water separator PADS PCB Activity Database PCB polychorinated biphenyl PCR Physical Condition Report PDF portable

  2. Phase 1 Environmental Baseline Survey Parcels E2, F, and I, Military Housing Areas, Nellis Air Force Base, Nevada

    DTIC Science & Technology

    2011-09-01

    21 SEP 2011 2. REPORT TYPE N/A 3. DATES COVERED 4. TITLE AND SUBTITLE Final Phase I Environmental Baseline Survey Parcels E2, F, and I...leaking underground storage tank M.D.M. Mount Diablo Meridian MFH military family housing MHPI Military Housing Privatization Initiative MSL...water separator PADS PCB Activity Database PCB polychorinated biphenyl PCR Physical Condition Report PDF portable document format PPV

  3. Management by Trajectory

    NASA Image and Video Library

    2018-05-05

    This video provides an overview of the Management by Trajectory (MBT) concept of operations developed as part on a NASA Research Announcement (NRA) sponsored by NASA’s Aviation Operations and Safety Program (AOSP). Possible changes in roles and responsibilities among various agents in the air traffic system are identified, and the concept’s potential impact on system safety in a way that brings the National Airspace System (NAS) closer to a full Trajectory-Based Operations (TBO) environment is described.

  4. A Study of Shuttlecock's Trajectory in Badminton.

    PubMed

    Chen, Lung-Ming; Pan, Yi-Hsiang; Chen, Yung-Jen

    2009-01-01

    The main purpose of this study was to construct and validate a motion equation for the flight of the badminton and to find the relationship between the air resistance force and a shuttlecock's speed. This research method was based on motion laws of aerodynamics. It applied aerodynamic theories to construct motion equation of a shuttlecock's flying trajectory under the effects of gravitational force and air resistance force. The result showed that the motion equation of a shuttlecock's flight trajectory could be constructed by determining the terminal velocity. The predicted shuttlecock trajectory fitted the measured data fairly well. The results also revealed that the drag force was proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory. Finally, this study suggested that we could use a scientific approach to measure a shuttlecock's velocity objectively when testing the quality of shuttlecocks. And could be used to replace the traditional subjective method of the Badminton World Federation based on players' striking shuttlecocks, as well as applying research findings to improve professional knowledge of badminton player training. Key pointsThe motion equation of a shuttlecock's flying trajectory could be constructed by determining the terminal velocity in aerodynamics.Air drag force is proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory.

  5. Challenges in characterizing a parcelized forest landscape: why metric, scale and threshold matter

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder; Kayla Block-Torgerson; Steven J. Taff

    2013-01-01

    Several metrics have been cited in the literature as being useful characterizations of forest land parcelization. Yet no agreed-upon standard measure exists which creates difficulties in identifying where parcelization is occurring as well as comparing the magnitude of its occurrence across different studies and geographic regions. We evaluated three existing (average...

  6. Evaluation of aerosol sources at European high altitude background sites with trajectory statistical methods

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Artíñano, B.; Pio, C. A.; Afonso, J.; Puxbaum, H.; Legrand, M.; Hammer, S.; Kaiser, A.

    2009-04-01

    back-trajectories have been grouped into clusters, each one representing a characteristic meteorological scenario. Some common features have been detected for the clusters obtained in the three monitoring sites. A clear seasonal pattern has been observed with marked fast westerly and northerly Atlantic flows during the winter, to low speed air circulation flows in summertime. The transition period between the occurrence of the longest trajectories in winter and the shortest ones in summer has been characterised by the advection of moderate flows from the north-eastern and eastern European mainland areas. Meteorological scenarios represented by trajectories coming from the Mediterranean basin and North-African regions, have also occurred during the summer months. Then, Redistribution Concentration Fields (RCF, Stohl, 1996) have been computed for each single station and for SIL and PDD together with the aim to obtain more reliable information on PM10 sources, for the whole sampling period and also for the summer and winter seasons. With this methodology, it is possible to obtain spatial distributions of concentrations for specific tracers of PM sources. High concentration values of the element C obtained over a geographical region means that, on average, air parcels passing over that region result in high concentrations of the element C at the receptor site. The main results obtained with this analysis, suggests that current carbonaceous aerosol concentrations in central Europe are likely to be influenced significantly during the winter and autumn months by long-range transport of PM from the north-eastern and eastern regions of Europe. Emissions produced by fossil-fuel and biomass burning processes in these areas, are probably the main sources contributing to the transported aerosol. In contrast, in summer there is a higher contribution of the emissions from local and regional sources on the OC and EC levels at these background sites (Germany, Poland and the Baltic

  7. ADAPTATION OF THE ADVANCED STATISTICAL TRAJECTORY REGIONAL AIR POLLUTION (ASTRAP) MODEL TO THE EPA VAX COMPUTER - MODIFICATIONS AND TESTING

    EPA Science Inventory

    The Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model simulates long-term transport and deposition of oxides of and nitrogen. t is a potential screening tool for assessing long-term effects on regional visibility from sulfur emission sources. owever, a rigorou...

  8. Photochemical ozone budget during the BIBLE A and B campaigns

    NASA Astrophysics Data System (ADS)

    Ko, Malcolm; Hu, Wenjie; Rodríguez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro

    2003-02-01

    Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.

  9. Photochemical ozone budget during the BIBLE A and B campaigns

    NASA Astrophysics Data System (ADS)

    Ko, Malcolm; Hu, Wenjie; RodríGuez, José M.; Kondo, Yutaka; Koike, Makoto; Kita, Kazuyuki; Kawakami, Shuji; Blake, Donald; Liu, Shaw; Ogawa, Toshihiro

    2002-02-01

    Using the measured concentrations of NO, O3, H2O, CO, CH4, and NMHCs along the flight tracks, a photochemical box model is used to calculate the concentrations of the Ox radicals, the HOx radicals, and the nitrogen species at the sampling points. The calculations make use of the measurements from radiometers to scale clear sky photolysis rates to account for cloud cover and ground albedo at the sampling time/point. The concentrations of the nitrogen species in each of the sampled air parcels are computed assuming they are in instantaneous equilibrium with the measured NO and O3. The diurnally varying species concentrations are next calculated using the box model and used to estimate the diurnally averaged production and removal rates of ozone for the sampled air parcels. Clear sky photolysis rates are used in the diurnal calculations. The campaign also provided measured concentration of NOy. The observed NO/NOy ratio is usually larger than the model calculated equilibrium value. There are several possible explanations. It could be a result of recent injection of NO into the air parcel, recent removal of HNO3 from the parcel, recent rapid transport of an air parcel from another location, or a combination of all processes. Our analyses suggest that the local production rate of O3 can be used as another indicator of recent NO injection. However, more direct studies using air trajectory analyses and other collaborative evidences are needed to ascertain the roles played by individual process.

  10. Parcelization and land use: A case study in the New York City Watershed

    Treesearch

    Jennifer A. Caron; Rene H. Germain; Nathaniel M. Anderson

    2012-01-01

    Over 75% of the New York City Watershed is forested, and the majority of the land is owned by family forest owners. Ownership fragmentation and development may impact both the working forested landscape and water quality. We surveyed the owners of intact and subdivided family forest parcels across various parcel sizes to gauge their awareness of forest management...

  11. Separating the air quality impact of a major highway and nearby sources by nonparametric trajectory analysis.

    PubMed

    Henry, Ronald C; Vette, Alan; Norris, Gary; Vedantham, Ram; Kimbrough, Sue; Shores, Richard C

    2011-12-15

    Nonparametric Trajectory Analysis (NTA), a receptor-oriented model, was used to assess the impact of local sources of air pollution at monitoring sites located adjacent to highway I-15 in Las Vegas, NV. Measurements of black carbon, carbon monoxide, nitrogen oxides, and sulfur dioxide concentrations were collected from December 2008 to December 2009. The purpose of the study was to determine the impact of the highway at three downwind monitoring stations using an upwind station to measure background concentrations. NTA was used to precisely determine the contribution of the highway to the average concentrations measured at the monitoring stations accounting for the spatially heterogeneous contributions of other local urban sources. NTA uses short time average concentrations, 5 min in this case, and constructed local back-trajectories from similarly short time average wind speed and direction to locate and quantify contributions from local source regions. Averaged over an entire year, the decrease of concentrations with distance from the highway was found to be consistent with previous studies. For this study, the NTA model is shown to be a reliable approach to quantify the impact of the highway on local air quality in an urban area with other local sources.

  12. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  13. Hydrologic evaluation and water-supply considerations for five Paiute Indian land parcels, Millard, Sevier, and Iron counties, southwestern Utah

    USGS Publications Warehouse

    Price, Don; Stephens, D.W.; Conroy, L.S.

    1989-01-01

    The hydrologic resources in and adjacent to five parcels of land held in trust for the Paiute Indian Tribe of Utah were evaluated. The land, located in southwestern Utah, is generally arid and has had only limited use for grazing. The parcels are located near the towns of Cove Fort, Joseph, Koosharem, and Kanarraville. On the basis of available geohydrologic and hydrologic data, water of suitable quality is locally available in the areas of all parcels for domestic, stock, recreation, and limited irrigation use. Developing this water for use on the parcels would potentially involve obtaining water rights, drilling wells, and constructing diversion structures. Surface water apparently is the most favorable source of supply available for the Joseph parcel, and groundwater apparently is the most favorable source of supply available for the other parcels. (USGS)

  14. Observational estimation of the 'cold trap' dehydration in the tropical tropopause layer: The water vapor match

    NASA Astrophysics Data System (ADS)

    Inai, Y.; Hasebe, F.; Fujiwara, M.; Shiotani, M.; Nishi, N.; Ogino, S.; Voemel, H.

    2008-12-01

    Stratospheric water vapor is controlled by the degree of dehydration the air parcels experienced on their entry into the stratosphere. The dehydration takes place in the tropical tropopause layer (TTL) over the western Pacific, where the air parcels are exposed to the lowest temperature during horizontal advection (cold trap hypothesis (Holton and Gettelman, 2001; Hatsushika and Yamazaki, 2003)). While, simplified treatment of the dehydration processes combined with trajectories reproduce water vapor variations reasonably well (Fueglistaler et al., 2005), extreme super saturation has been often observed in the TTL (Peter et al., 2006). Thus observational data are needed to quantify the efficiency of dehydration. We have been conducting the project Soundings of Ozone and Water in the Equatorial Region (SOWER) using chilled-mirror hygrometers in the western Pacific. Hasebe et al. (2007) suggested that the water content in the observed air parcels on many occasions was about twice as much as that expected from the minimum saturation mixing ratio during horizontal advection prior to sonde observation. To make this argument more quantitative, however, it is necessary to estimate the changed amount of water vapor by repeated observation of the same air parcel, the water vapor match. The match pairs are sought from the SOWER campaign network observations with the use of isentropic trajectories. For those pairs identified, extensive screening procedures are performed to verify the representativeness of the air parcel and to check possible water injection by deep convection. The match pairs are rejected when the sonde-observed temperature does not agree with spatio-temporary interpolated temperature of the ECMWF analysis field within a reasonable range, or the ozone mixing ratio is not conserved between the paired observations. Among those survived, we sought the cases which showed statistically significant dehydration. We estimated the ratios of the water mixing ratio

  15. Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex.

    PubMed

    Arslan, Salim; Ktena, Sofia Ira; Makropoulos, Antonios; Robinson, Emma C; Rueckert, Daniel; Parisot, Sarah

    2018-04-15

    The macro-connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform a specific cognitive task. It embodies the notion of representing and understanding all connections within the brain as a network, while the subdivision of the brain into interacting functional units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Although brain atlases obtained from cytoarchitecture or anatomy have long been used for this task, connectivity-driven methods have arisen only recently, aiming to delineate more homogeneous and functionally coherent regions. This study provides a systematic comparison between anatomical, connectivity-driven and random parcellation methods proposed in the thriving field of brain parcellation. Using resting-state functional MRI data from the Human Connectome Project and a plethora of quantitative evaluation techniques investigated in the literature, we evaluate 10 subject-level and 24 groupwise parcellation methods at different resolutions. We assess the accuracy of parcellations from four different aspects: (1) reproducibility across different acquisitions and groups, (2) fidelity to the underlying connectivity data, (3) agreement with fMRI task activation, myelin maps, and cytoarchitectural areas, and (4) network analysis. This extensive evaluation of different parcellations generated at the subject and group level highlights the strengths and shortcomings of the various methods and aims to provide a guideline for the choice of parcellation technique and resolution according to the task at hand. The results obtained in this study suggest that there is no optimal method able to address all the challenges faced in this endeavour simultaneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Final Environmental Assessment for Temporary Aircraft Relocation to Maxwell Air Force Base 187th Fighter Wing Montgomery Regional Airport Montgomery, Alabama

    DTIC Science & Technology

    2012-06-01

    Compatible Use Zone AIRFA American Indian Religious Freedom Act ALANG Alabama Air National Guard ANG Air National Guard ALNHP Alabama Natural Heritage...2012 1-3 1.3 LOCATION AND MISSION OF THE 187 FW AT MONTGOMERY REGIONAL AIRPORT The 187 FW of the Alabama Air National Guard ( ALANG ) is collocated...Army National Guard west of the primary parcel. South of Runway 10/28 is another 7-acre parcel for the Munitions Storage Area. ALANG also possesses

  17. Externally mixed aerosol : simulation of ice nucleation in a parcel model

    NASA Astrophysics Data System (ADS)

    Anquetil-Deck, Candy; Hoose, Corinna; Conolly, Paul

    2014-05-01

    The effect of different aerosol (mineral dust, bacteria and soot) acting as immersion ice nuclei is investigated using ACPIM (AerosolCloud Precipitation Interaction Model) [1]. ACPIM is a powerful tool which can be used in two different ways. This box model can be, either, driven by experimental data (experiments carried out at the AIDA cloud chamber facility) or used as an air parcel in order to examine different ice nucleation parameterizations under specific conditions. This adiabatic air parcel model was employed for the simulation of a convective cloud. The study consists here in the investigation of how two externally mixed aerosols interact with one another. The initial study concentrates on mineral dust aerosol and biological aerosol without any background in order to fully understand the interaction between the different types of aerosol. Immersion freezing is described for the mineral dust aerosol by Niemand et al. 's parameterization [2], which was derived from laboratory studies in AIDA and is an extension of surface site density approach suggested by Connolly et al. [1]. Regarding bioaerosol, we introduce Hummel et al. 's parameterization [3] : f(in) = f(max)(1 - exp(- Ap *n(s)(T))) With an empirically fitted ice nucleation active site density n s based on AIDA measurements of Pseudomonas syringae bacteria [4]. This initial study is conducted for different proportion of each aerosol (the total number of aerosol being constant throughout all the simulation runs) at different vertical velocities. We then extented this study with different backgrounds (urban, marine, rural) in order to get a full picture. We found that there is not only a CCN competition but an IN competition as well. References : [1] Connolly, P. J., Möhler O., Field P. R., Saathoff H., Burgess, R., Choularton, T. and Gallagher, M., Atmos. Chem. Phys 9, 2805-2824 (2009). [2] Niemand, M., Möhler, O., Vogel B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., De

  18. Emerson Parcel of Dutch Slough Tidal Marsh Restoration Project

    EPA Pesticide Factsheets

    Information about the SFBWQP Emerson Parcel of Dutch Slough Tidal Marsh Restoration Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  19. Land use planning and surface heat island formation: A parcel-based radiation flux approach

    NASA Astrophysics Data System (ADS)

    Stone, Brian; Norman, John M.

    This article presents a study of residential parcel design and surface heat island formation in a major metropolitan region of the southeastern United States. Through the integration of high-resolution multispectral data (10 m) with property tax records for over 100,000 single-family residential parcels in the Atlanta, Georgia, metropolitan region, the influence of the size and material composition of residential land use on an indicator of surface heat island formation is reported. In contrast to previous work on the urban heat island, this study derives a parcel-based indicator of surface warming to permit the impact of land use planning regulations governing the density and design of development on the excess surface flux of heat energy to be measured. The results of this study suggest that the contribution of individual land parcels to regional surface heat island formation could be reduced by approximately 40% through the adoption of specific land use planning policies, such as zoning and subdivision regulations, and with no modifications to the size or albedo of the residential structure.

  20. 7 CFR 318.13-15 - Parcel post inspection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SERVICE, DEPARTMENT OF AGRICULTURE STATE OF HAWAII AND TERRITORIES QUARANTINE NOTICES Regulated Articles From Hawaii and the Territories § 318.13-15 Parcel post inspection. Inspectors are authorized to... Hawaii, Puerto Rico, Guam, the Commonwealth of the Northern Mariana Islands, or the U.S. Virgin Islands...

  1. Trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Mease, Kenneth D.; Vanburen, Mark A.

    1989-01-01

    The first step in the approach to developing guidance laws for a horizontal take-off, air breathing single-stage-to-orbit vehicle is to characterize the minimum-fuel ascent trajectories. The capability to generate constrained, minimum fuel ascent trajectories for a single-stage-to-orbit vehicle was developed. A key component of this capability is the general purpose trajectory optimization program OTIS. The pre-production version, OTIS 0.96 was installed and run on a Convex C-1. A propulsion model was developed covering the entire flight envelope of a single-stage-to-orbit vehicle. Three separate propulsion modes, corresponding to an after burning turbojet, a ramjet and a scramjet, are used in the air breathing propulsion phase. The Generic Hypersonic Aerodynamic Model Example aerodynamic model of a hypersonic air breathing single-stage-to-orbit vehicle was obtained and implemented. Preliminary results pertaining to the effects of variations in acceleration constraints, available thrust level and fuel specific impulse on the shape of the minimum-fuel ascent trajectories were obtained. The results show that, if the air breathing engines are sized for acceleration to orbital velocity, it is the acceleration constraint rather than the dynamic pressure constraint that is active during ascent.

  2. The Cirrus Parcel Model Comparison Project. Phase 1

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, D.; DeMott, P.; Cotten, R.; Jensen, E.; Sassen, K.

    2000-01-01

    nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of ice number concentration and ice crystal diffusional growth rate, partially controls the peak nucleation rate achieved in an air parcel and the duration of the active nucleation time period.

  3. Distinct hippocampal functional networks revealed by tractography-based parcellation.

    PubMed

    Adnan, Areeba; Barnett, Alexander; Moayedi, Massieh; McCormick, Cornelia; Cohn, Melanie; McAndrews, Mary Pat

    2016-07-01

    Recent research suggests the anterior and posterior hippocampus form part of two distinct functional neural networks. Here we investigate the structural underpinnings of this functional connectivity difference using diffusion-weighted imaging-based parcellation. Using this technique, we substantiated that the hippocampus can be parcellated into distinct anterior and posterior segments. These structurally defined segments did indeed show different patterns of resting state functional connectivity, in that the anterior segment showed greater connectivity with temporal and orbitofrontal cortex, whereas the posterior segment was more highly connected to medial and lateral parietal cortex. Furthermore, we showed that the posterior hippocampal connectivity to memory processing regions, including the dorsolateral prefrontal cortex, parahippocampal, inferior temporal and fusiform gyri and the precuneus, predicted interindividual relational memory performance. These findings provide important support for the integration of structural and functional connectivity in understanding the brain networks underlying episodic memory.

  4. Cortical parcellation based on structural connectivity: A case for generative models.

    PubMed

    Tittgemeyer, Marc; Rigoux, Lionel; Knösche, Thomas R

    2018-06-01

    One of the major challenges in systems neuroscience is to identify brain networks and unravel their significance for brain function -this has led to the concept of the 'connectome'. Connectomes are currently extensively studied in large-scale international efforts at multiple scales, and follow different definitions with respect to their connections as well as their elements. Perhaps the most promising avenue for defining the elements of connectomes originates from the notion that individual brain areas maintain distinct (long-range) connection profiles. These connectivity patterns determine the areas' functional properties and also allow for their anatomical delineation and mapping. This rationale has motivated the concept of connectivity-based cortex parcellation. In the past ten years, non-invasive mapping of human brain connectivity has led to immense advances in the development of parcellation techniques and their applications. Unfortunately, many of these approaches primarily aim for confirmation of well-known, existing architectonic maps and, to that end, unsuitably incorporate prior knowledge and frequently build on circular argumentation. Often, current approaches also tend to disregard the specific apertures of connectivity measurements, as well as the anatomical specificities of cortical areas, such as spatial compactness, regional heterogeneity, inter-subject variability, the multi-scaling nature of connectivity information, and potential hierarchical organisation. From a methodological perspective, however, a useful framework that regards all of these aspects in an unbiased way is technically demanding. In this commentary, we first outline the concept of connectivity-based cortex parcellation and discuss its prospects and limitations in particular with respect to structural connectivity. To improve reliability and efficiency, we then strongly advocate for connectivity-based cortex parcellation as a modelling approach; that is, an approximation of the

  5. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  6. A dataset of multiresolution functional brain parcellations in an elderly population with no or mild cognitive impairment.

    PubMed

    Tam, Angela; Dansereau, Christian; Badhwar, AmanPreet; Orban, Pierre; Belleville, Sylvie; Chertkow, Howard; Dagher, Alain; Hanganu, Alexandru; Monchi, Oury; Rosa-Neto, Pedro; Shmuel, Amir; Breitner, John; Bellec, Pierre

    2016-12-01

    We present group eight resolutions of brain parcellations for clusters generated from resting-state functional magnetic resonance images for 99 cognitively normal elderly persons and 129 patients with mild cognitive impairment, pooled from four independent datasets. This dataset was generated as part of the following study: Common Effects of Amnestic Mild Cognitive Impairment on Resting-State Connectivity Across Four Independent Studies (Tam et al., 2015) [1]. The brain parcellations have been registered to both symmetric and asymmetric MNI brain templates and generated using a method called bootstrap analysis of stable clusters (BASC) (Bellec et al., 2010) [2]. We present two variants of these parcellations. One variant contains bihemisphereic parcels (4, 6, 12, 22, 33, 65, 111, and 208 total parcels across eight resolutions). The second variant contains spatially connected regions of interest (ROIs) that span only one hemisphere (10, 17, 30, 51, 77, 199, and 322 total ROIs across eight resolutions). We also present maps illustrating functional connectivity differences between patients and controls for four regions of interest (striatum, dorsal prefrontal cortex, middle temporal lobe, and medial frontal cortex). The brain parcels and associated statistical maps have been publicly released as 3D volumes, available in .mnc and .nii file formats on figshare and on Neurovault. Finally, the code used to generate this dataset is available on Github.

  7. The covariance of air quality conditions in six cities in Southern Germany - The role of meteorology.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2017-01-01

    This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM 10 , O 3 , SO 2 , NO 2 and CO) to the total air stress. As it was deduced from ASI components, PM 10 from combustion sources and photochemically produced tropospheric O 3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM 10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM 10 . Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM 10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. 48 CFR 242.1404-1 - Parcel post eligible shipments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Parcel post eligible shipments. 242.1404-1 Section 242.1404-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT SERVICES...

  9. Control and trajectory design of a highly flexible air vehicle with a distributed sensing architecture

    NASA Astrophysics Data System (ADS)

    Pachikara, Abraham James

    Next generational aircraft are becoming very flexible due to efforts to reduce weight and increase aerodynamic efficiency. As a result, flight control systems and trajectories that were designed with traditional rigid body assumptions may no longer become valid. When an aircraft becomes more flexible, the shape of the aircraft can deform significantly due to the aeroservoelastic dynamics. No longer are few sensors located at the CG and elsewhere will be enough to maximize performance. Instead, a full suite of sensors will be needed all throughout the aircraft to accurately measure the complete aerodynamic distribution and dynamics. First, a parametric study will be conducted to understand how flexibility impacts both the open-loop and closed-loop dynamics of a generic micro air vehicle (MAV). Once the impact of flexibility on the MAV's aeroservoelastic dynamics is well understood, an aeroservoelastic flight controller will be designed that leverages a "Fly-By-Feel" sensor architecture. A sensor architecture will be developed that uses several sensors to estimate the MAV's full aerodynamic and inertial distribution along with inertial sensors at the CG. A modal filtering approach will be used for the relevant sensor management and to extract useful modal characteristics from the sensor data. Once that is done, a controller will be designed for maneuver tracking. Once a flight controller has been designed, a set of representative motion primitives for the MAV can be developed that model how the aircraft moves for trajectory generation. Then trajectories can be developed for the flexible vehicle. Analysis will then be conducted to understand how flexibility impacts the creation of trajectories and MAV performance metrics.

  10. Parcellation of left parietal tool representations by functional connectivity

    PubMed Central

    Garcea, Frank E.; Z. Mahon, Bradford

    2014-01-01

    Manipulating a tool according to its function requires the integration of visual, conceptual, and motor information, a process subserved in part by left parietal cortex. How these different types of information are integrated and how their integration is reflected in neural responses in the parietal lobule remains an open question. Here, participants viewed images of tools and animals during functional magnetic resonance imaging (fMRI). K-means clustering over time series data was used to parcellate left parietal cortex into subregions based on functional connectivity to a whole brain network of regions involved in tool processing. One cluster, in the inferior parietal cortex, expressed privileged functional connectivity to the left ventral premotor cortex. A second cluster, in the vicinity of the anterior intraparietal sulcus, expressed privileged functional connectivity with the left medial fusiform gyrus. A third cluster in the superior parietal lobe expressed privileged functional connectivity with dorsal occipital cortex. Control analyses using Monte Carlo style permutation tests demonstrated that the clustering solutions were outside the range of what would be observed based on chance ‘lumpiness’ in random data, or mere anatomical proximity. Finally, hierarchical clustering analyses were used to formally relate the resulting parcellation scheme of left parietal tool representations to previous work that has parcellated the left parietal lobule on purely anatomical grounds. These findings demonstrate significant heterogeneity in the functional organization of manipulable object representations in left parietal cortex, and outline a framework that generates novel predictions about the causes of some forms of upper limb apraxia. PMID:24892224

  11. Origins of fine aerosol mass in the Baltimore-Washington corridor: implications from observation, factor analysis, and ensemble air parcel back trajectories

    NASA Astrophysics Data System (ADS)

    Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Henry, Ronald C.

    Chemically speciated fine particulate matter (PM 2.5) and trace gases (including NH 3, HNO 3, CO, SO 2, NO y) have been sampled at Fort Meade (FME: 39.10°N, 76.74°W; elevation 46 m MSL), Maryland, since July 1999. FME is suburban, located in the middle of the Baltimore-Washington corridor, and generally downwind of the highly industrialized Midwest. The PM 2.5 at FME is expected to be of both local and regional sources. Measurements over a 2-year period include eight seasonally representative months. The PM 2.5 shows an annual mean of 13 μg m -3 and primarily consists of sulfate, nitrate, ammonium, and carbonaceous material. Day-to-day and seasonal variations in the PM 2.5 chemical composition reflect changes of contribution from various sources. UNMIX, an innovative receptor model, is used to retrieve potential sources of the PM 2.5. A six-factor model, including regional sulfate, local sulfate, wood smoke, copper/iron processing industry, mobile, and secondary nitrate, is constructed and compared with reported source emission profiles. The six factors are studied further using an ensemble back trajectory method to identify possible source locations. Sources of local sulfate, mobile, and secondary nitrate are more localized around the receptor than those of other factors. Regional sulfate and wood smoke are more regional and associated with westerly and southerly transport, respectively. This study suggests that the local contribution to PM 2.5 mass can vary from <30% in summer to >60% in winter.

  12. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.

    PubMed

    Kim, Jae-Hun; Lee, Jong-Min; Jo, Hang Joon; Kim, Sook Hui; Lee, Jung Hee; Kim, Sung Tae; Seo, Sang Won; Cox, Robert W; Na, Duk L; Kim, Sun I; Saad, Ziad S

    2010-02-01

    Noninvasive parcellation of the human cerebral cortex is an important goal for understanding and examining brain functions. Recently, the patterns of anatomical connections using diffusion tensor imaging (DTI) have been used to parcellate brain regions. Here, we present a noninvasive parcellation approach that uses "functional fingerprints" obtained by correlation measures on resting state functional magnetic resonance imaging (fMRI) data to parcellate brain regions. In other terms, brain regions are parcellated based on the similarity of their connection--as reflected by correlation during resting state--to the whole brain. The proposed method was used to parcellate the medial frontal cortex (MFC) into supplementary motor areas (SMA) and pre-SMA subregions. In agreement with anatomical landmark-based parcellation, we find that functional fingerprint clustering of the MFC results in anterior and posterior clusters. The probabilistic maps from 12 subjects showed that the anterior cluster is mainly located rostral to the vertical commissure anterior (VCA) line, whereas the posterior cluster is mainly located caudal to VCA line, suggesting the homologues of pre-SMA and SMA. The functional connections from the putative pre-SMA cluster were connected to brain regions which are responsible for complex/cognitive motor control, whereas those from the putative SMA cluster were connected to brain regions which are related to the simple motor control. These findings demonstrate the feasibility of the functional connectivity-based parcellation of the human cerebral cortex using resting state fMRI. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  13. Airborne Trajectory Management (ABTM): A Blueprint for Greater Autonomy in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Cotton, William B.; Wing, David

    2017-01-01

    The aviation users of the National Airspace System (NAS) - the airlines, General Aviation (GA), the military and, most recently, operators of Unmanned Aircraft Systems (UAS) - are constrained in their operations by the design of the current paradigm for air traffic control (ATC). Some of these constraints include ATC preferred routes, departure fix restrictions and airspace ground delay programs. As a result, most flights cannot operate on their most efficient business trajectories and a great many flights are delayed even getting into the air, which imposes a significant challenge to maintaining efficient flight and network operations. Rather than accepting ever more sophisticated scheduling solutions to accommodate the existing constraints in the airspace, a series of increasingly capable airborne technologies, integrated with planned improvements in the ground system through the Federal Aviation Administration (FAA) Next Generation Air Traffic Management System (NextGen) programs, could produce much greater operational flexibility for flight path optimization by the aviation system users. These capabilities, described in research coming out of NASA's Aeronautics Research Mission Directorate, can maintain or improve operational safety while taking advantage of air and ground NextGen technologies in novel ways. The underlying premise is that the nation's physical airspace is still abundant and underused, and that the delays and inefficient flight operations resulting from artificial structure in airspace use and procedural constraints on those operations may not be necessary for safe and efficient flight. This article is not an indictment of today's NAS or the people who run it. Indeed, it is an exceptional achievement that Air Traffic Management (ATM) - the complex human/machine conglomeration of communications, navigation and surveillance equipment and the rules and procedures for controlling traffic in the airspace - has both the capacity and enables the degree

  14. Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony

    2017-01-01

    The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.

  15. The use of ARL trajectories for the evaluation of precipitation chemistry data

    Treesearch

    John M. Miller; James N. Galloway; Gene E. Likens

    1976-01-01

    One of the major problems in interpreting precipitation chemistry data is determining the possible source areas of the materials found in the precipitation. To investigate this problem, the trajectory program developed at Air Resources Laboratories (NOAA) was used to compute five-day backward air trajectories from Ithaca, New York.

  16. 76 FR 11297 - New Regional Ground Service for Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... POSTAL REGULATORY COMMISSION [Docket No. CP2011-60; Order No. 679] New Regional Ground Service for... changes involve a new offering identified as Regional Ground service. This notice informs the public of... 3015.2.\\1\\ The proposed changes establish a new ``Regional Ground'' price category within the Parcel...

  17. Robustness of Representative Signals Relative to Data Loss Using Atlas-Based Parcellations.

    PubMed

    Gajdoš, Martin; Výtvarová, Eva; Fousek, Jan; Lamoš, Martin; Mikl, Michal

    2018-04-24

    Parcellation-based approaches are an important part of functional magnetic resonance imaging data analysis. They are a necessary processing step for sorting data in structurally or functionally homogenous regions. Real functional magnetic resonance imaging datasets usually do not cover the atlas template completely; they are often spatially constrained due to the physical limitations of MR sequence settings, the inter-individual variability in brain shape, etc. When using a parcellation template, many regions are not completely covered by actual data. This paper addresses the issue of the area coverage required in real data in order to reliably estimate the representative signal and the influence of this kind of data loss on network analysis metrics. We demonstrate this issue on four datasets using four different widely used parcellation templates. We used two erosion approaches to simulate data loss on the whole-brain level and the ROI-specific level. Our results show that changes in ROI coverage have a systematic influence on network measures. Based on the results of our analysis, we recommend controlling the ROI coverage and retaining at least 60% of the area in order to ensure at least 80% of explained variance of the original signal.

  18. Towards a Formal Semantics of Flight Plans and Trajectories

    NASA Technical Reports Server (NTRS)

    Hagen, George E.; Butler, Ricky W.

    2014-01-01

    In the National Airspace System, ight plans are often used only as a planning tool by air trac controllers and aircraft operators. These plans are implicitly translated into trajectories by the pilot or by the ight management system, and subsequently own by the aircraft. This translation process inevitably introduces di erences between the plan and the trajectory. However, given the current intended usage, exact correspondence between the plan and the trajectory is not needed. To achieve greater capacity and eciency, future air trac management concepts are being designed around the use of trajectories where predictability is extremely important. In this paper, a mathematical relationship between ight plans and trajectories is explored with the goal of making feasible, highly accurate predictions of future positions and velocities of aircraft. The goal here is to describe, in mathematically precise detail, a formal language of trajectories, whereby all receivers of the trajectory information will be able to arrive at precisely the same trajectory predication and to do this without having aircraft broadcast a large amount of data. Although even a four-dimensional ight plan is simple in structure, this paper will show that it is inherently ambiguous and will explore these issues in detail. In e ect, we propose that a rigorous semantics for ight plans can be developed and this will serve as an important stepping stone towards trajectory-based operations in the National Airspace System.

  19. A whole brain atlas with sub-parcellation of cortical gyri using resting fMRI

    NASA Astrophysics Data System (ADS)

    Joshi, Anand A.; Choi, Soyoung; Sonkar, Gaurav; Chong, Minqi; Gonzalez-Martinez, Jorge; Nair, Dileep; Shattuck, David W.; Damasio, Hanna; Leahy, Richard M.

    2017-02-01

    The new hybrid-BCI-DNI atlas is a high-resolution MPRAGE, single-subject atlas, constructed using both anatomical and functional information to guide the parcellation of the cerebral cortex. Anatomical labeling was performed manually on coronal single-slice images guided by sulcal and gyral landmarks to generate the original (non-hybrid) BCI-DNI atlas. Functional sub-parcellations of the gyral ROIs were then generated from 40 minimally preprocessed resting fMRI datasets from the HCP database. Gyral ROIs were transferred from the BCI-DNI atlas to the 40 subjects using the HCP grayordinate space as a reference. For each subject, each gyral ROI was subdivided using the fMRI data by applying spectral clustering to a similarity matrix computed from the fMRI time-series correlations between each vertex pair. The sub-parcellations were then transferred back to the original cortical mesh to create the subparcellated hBCI-DNI atlas with a total of 67 cortical regions per hemisphere. To assess the stability of the gyral subdivisons, a separate set of 60 HCP datasets were processed as follows: 1) coregistration of the structural scans to the hBCI-DNI atlas; 2) coregistration of the anatomical BCI-DNI atlas without functional subdivisions, followed by sub-parcellation of each subject's resting fMRI data as described above. We then computed consistency between the anatomically-driven delineation of each gyral subdivision and that obtained per subject using individual fMRI data. The gyral sub-parcellations generated by atlas-based registration show variable but generally good overlap of the confidence intervals with the resting fMRI-based subdivisions. These consistency measures will provide a quantitative measure of reliability of each subdivision to users of the atlas.

  20. Cerebellar Functional Parcellation Using Sparse Dictionary Learning Clustering.

    PubMed

    Wang, Changqing; Kipping, Judy; Bao, Chenglong; Ji, Hui; Qiu, Anqi

    2016-01-01

    The human cerebellum has recently been discovered to contribute to cognition and emotion beyond the planning and execution of movement, suggesting its functional heterogeneity. We aimed to identify the functional parcellation of the cerebellum using information from resting-state functional magnetic resonance imaging (rs-fMRI). For this, we introduced a new data-driven decomposition-based functional parcellation algorithm, called Sparse Dictionary Learning Clustering (SDLC). SDLC integrates dictionary learning, sparse representation of rs-fMRI, and k-means clustering into one optimization problem. The dictionary is comprised of an over-complete set of time course signals, with which a sparse representation of rs-fMRI signals can be constructed. Cerebellar functional regions were then identified using k-means clustering based on the sparse representation of rs-fMRI signals. We solved SDLC using a multi-block hybrid proximal alternating method that guarantees strong convergence. We evaluated the reliability of SDLC and benchmarked its classification accuracy against other clustering techniques using simulated data. We then demonstrated that SDLC can identify biologically reasonable functional regions of the cerebellum as estimated by their cerebello-cortical functional connectivity. We further provided new insights into the cerebello-cortical functional organization in children.

  1. Lake States natural resource managers' perspectives on forest land parcelization and its implications for public land management

    Treesearch

    Michael A. Kilgore; Stephanie A. Snyder

    2016-01-01

    Field-based public natural resource managers in the Lake States (MI, MN, WI) were surveyed for theirperspectives on various aspects of private forest land parcelization. This includes their perceptions ofrecent changes in parcelization activity, drivers and impacts, mitigation strategies, and ability to influenceparcelization. Their perspectives on the implications...

  2. Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain

    PubMed Central

    Tang, Xiaoying; Yoshida, Shoko; Hsu, John; Huisman, Thierry A. G. M.; Faria, Andreia V.; Oishi, Kenichi; Kutten, Kwame; Poretti, Andrea; Li, Yue; Miller, Michael I.; Mori, Susumu

    2014-01-01

    In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure. PMID:24809486

  3. Influence of grid resolution, parcel size and drag models on bubbling fluidized bed simulation

    DOE PAGES

    Lu, Liqiang; Konan, Arthur; Benyahia, Sofiane

    2017-06-02

    Here in this paper, a bubbling fluidized bed is simulated with different numerical parameters, such as grid resolution and parcel size. We examined also the effect of using two homogeneous drag correlations and a heterogeneous drag based on the energy minimization method. A fast and reliable bubble detection algorithm was developed based on the connected component labeling. The radial and axial solids volume fraction profiles are compared with experiment data and previous simulation results. These results show a significant influence of drag models on bubble size and voidage distributions and a much less dependence on numerical parameters. With a heterogeneousmore » drag model that accounts for sub-scale structures, the void fraction in the bubbling fluidized bed can be well captured with coarse grid and large computation parcels. Refining the CFD grid and reducing the parcel size can improve the simulation results but with a large increase in computation cost.« less

  4. Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Lee, Paul U.

    2011-01-01

    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.

  5. Titan Explorer Entry, Descent and Landing Trajectory Design

    NASA Technical Reports Server (NTRS)

    Fisher, Jody L.; Lindberg, Robert E.; Lockwood, Mary Kae

    2006-01-01

    The Titan Explorer mission concept includes an orbiter, entry probe and inflatable airship designed to take remote and in-situ measurements of Titan's atmosphere. A modified entry, descent and landing trajectory at Titan that incorporates mid-air airship inflation (under a parachute) and separation is developed and examined for Titan Explorer. The feasibility of mid-air inflation and deployment of an airship under a parachute is determined by implementing and validating an airship buoyancy and inflation model in the trajectory simulation program, Program to Optimize Simulated Trajectories II (POST2). A nominal POST2 trajectory simulation case study is generated which examines different descent scenarios by varying airship inflation duration, orientation, and separation. The buoyancy model incorporation into POST2 is new to the software and may be used in future trajectory simulations. Each case from the nominal POST2 trajectory case study simulates a successful separation between the parachute and airship systems with sufficient velocity change as to alter their paths to avoid collision throughout their descent. The airship and heatshield also separate acceptably with a minimum distance of separation from the parachute system of 1.5 km. This analysis shows the feasibility of airship inflation on a parachute for different orientations, airship separation at various inflation times, and preparation for level-flight at Titan.

  6. Complexity Management Using Metrics for Trajectory Flexibility Preservation and Constraint Minimization

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Shen, Ni; Wing, David J.

    2011-01-01

    The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.

  7. Back-trajectory modelling and DNA-based species-specific detection methods allow tracking of fungal spore transport in air masses.

    PubMed

    Grinn-Gofroń, Agnieszka; Sadyś, Magdalena; Kaczmarek, Joanna; Bednarz, Aleksandra; Pawłowska, Sylwia; Jedryczka, Malgorzata

    2016-11-15

    Recent advances in molecular detection of living organisms facilitate the introduction of novel methods to studies of the transport of fungal spores over large distances. Monitoring the migration of airborne fungi using microscope based spore identification is limited when different species produce very similar spores. In our study, DNA-based monitoring with the use of species-specific probes allowed us to track the aerial movements of two important fungal pathogens of oilseed rape (Brassica napus L.), i.e., Leptosphaeria maculans and Leptosphaeria biglobosa, which have identical spore shape and size. The fungi were identified using dual-labelled fluorescent probes that were targeted to a β-tubulin gene fragment of either Leptosphaeria species. Spore identification by Real-Time PCR techniques capable of detecting minute amounts of DNA of selected fungal species was combined with back-trajectory analysis, allowing the tracking of past movements of air masses using the Hybrid Single Particle Lagrangian Integrated Trajectory model. Over a study period spanning the previous decade (2006-2015) we investigated two specific events relating to the long distance transport of Leptosphaeria spp. spores to Szczecin in North-West Poland. Based on the above mentioned methods and the results obtained with the additional spore sampler located in nearby Szczecin, and operating at the ground level in an oilseed rape field, we have demonstrated that on both occasions the L. biglobosa spores originated from the Jutland Peninsula. This is the first successful attempt to combine analysis of back-trajectories of air masses with DNA-based identification of economically important pathogens of oilseed rape in Europe. In our studies, the timing of L. biglobosa ascospore dispersal in the air was unlikely to result in the infection of winter oilseed rape grown as a crop plant. However, the fungus could infect other host plants, such as vegetable brassicas, cruciferous weeds, spring rapeseed

  8. 133. PARCEL HANDLING SPACE OF POST OFFICE BUILDING, LEVEL 72.5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    133. PARCEL HANDLING SPACE OF POST OFFICE BUILDING, LEVEL 72.5, NORTH OF TRUCKING PASSAGE MAIL TRANSPORT AREA, VIEW TO NORTHWEST - Terminal Tower Building, Cleveland Union Terminal, 50 Public Square, Cleveland, Cuyahoga County, OH

  9. 77 FR 28410 - Product Change-Parcel Select Negotiated Service Agreement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-14

    ... POSTAL SERVICE Product Change--Parcel Select Negotiated Service Agreement AGENCY: Postal Service\\TM\\. ACTION: Notice. SUMMARY: The Postal Service gives notice of filing a request with the Postal... Select Contract 1 to Competitive Product List. Documents are available at www.prc.gov , Docket Nos...

  10. Statistical Decoupling of a Lagrangian Fluid Parcel in Newtonian Cosmology

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Szalay, Alex

    2016-03-01

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.

  11. GCSS Cirrus Parcel Model Comparison Project

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC.; DeMott, Paul J.; Cotton, Richard; Jensen, Eric; Sassen, Kenneth; Einaudi, Franco (Technical Monitor)

    2000-01-01

    assumptions that can only be justified by further laboratory data. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 cm/s) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice nucleation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of ice number concentration and ice crystal diffusional growth rate, which is sensitive to the deposition coefficient when ice particles are small, partially controls the peak nucleation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the nucleated (heterogeneous) ice crystals limits the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.

  12. Mineral dust: observations of emission events and modeling of transport to the upper troposphere

    NASA Astrophysics Data System (ADS)

    Peter, T.; Wiacek, A.; Taddeo, M.

    2009-04-01

    The present study explores differences between mineral dust emission events in West African and Asian (Taklimakan) deserts, focusing on the availability of bare mineral dust ice nuclei for interactions with cirrus clouds without previous processing or washout by liquid water clouds. One-week trajectory calculations with high-resolution ECMWF fields are used to track transported (Lagrangian) relative humidities with respect to liquid water and ice, allowing to estimate the formation of liquid, mixed-phase and ice clouds. Transport trajectories can reasonably be assumed to carry dust with them throughout the year, except for the months of December-February, which are quiescent with respect to dust emission in both regions. Practically none of the simulated air parcels reach regions where homogeneous nucleation can take place (T < -35°C) along trajectories that have not experienced water saturation first, i.e. it is very unlikely that mineral dust particles could be a serious competitor for homogeneous nucleation during the formation of high, cold cirrus clouds. For the temperature region between -35°C < T < 0°C, i.e. in air parcels exhibiting necessary conditions for warmer ice clouds at lower altitudes, a small but significant number of air parcels are found to follow trajectories where RHw < 100% and RHi > 100% are simultaneously maintained. However, the potential for such low ice clouds originating from the Taklimakan desert is greater than that of the Sahara by a factor of 4-6. The implication is that although the Sahara is by far the biggest source of dust in the world, the much smaller Taklimakan desert in China's Tarim Basin may be of greater importance as a source of ice nuclei affecting cirrus cloud formation. This is likely the result of several meteorological factors, including the complex regional topography combined with the higher altitude of Taklimakan dust emissions and, on the synoptic scale, the higher altitude of potential temperature levels in

  13. Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue

    2017-07-01

    simulations revealed some difficulties with the representation of subgrid-scale wind fluctuations in MPTRAC, as the spread of air parcels simulated with different analyses was not consistent. However, although case studies suggest that the accuracy of trajectory calculations is influenced by meteorological complexity, diffusion generally does not contribute significantly to transport deviations in our analysis. Overall, evaluation results are satisfactory and compare well to earlier studies using superpressure balloon observations.

  14. 25 CFR 166.303 - Can more than one parcel of Indian land be combined into one permit?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Can more than one parcel of Indian land be combined into one permit? 166.303 Section 166.303 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR LAND AND WATER GRAZING PERMITS Land and Operations Management § 166.303 Can more than one parcel of Indian...

  15. Center of parcel with picture tube wall along walkway. Leaning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center of parcel with picture tube wall along walkway. Leaning Tower of Bottle Village at frame right; oblique view of Rumpus Room, remnants of Little Hut destroyed by Northridge earthquake at frame left. Camera facing northeast. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  16. Hydropedological Assessments of Parcel-Level Infiltration in an Arid Urban Ecosystem

    EPA Science Inventory

    Soil morphology and correspondent hydrologic data can contribute to qualifying and quantifying urban soil suitability and capacity to cycle stormwater runoff. We put particular emphasis on the possibility that residential parcels may manage their own stormwater on pervious yard ...

  17. Evaluation of Cross-Protocol Stability of a Fully Automated Brain Multi-Atlas Parcellation Tool.

    PubMed

    Liang, Zifei; He, Xiaohai; Ceritoglu, Can; Tang, Xiaoying; Li, Yue; Kutten, Kwame S; Oishi, Kenichi; Miller, Michael I; Mori, Susumu; Faria, Andreia V

    2015-01-01

    Brain parcellation tools based on multiple-atlas algorithms have recently emerged as a promising method with which to accurately define brain structures. When dealing with data from various sources, it is crucial that these tools are robust for many different imaging protocols. In this study, we tested the robustness of a multiple-atlas, likelihood fusion algorithm using Alzheimer's Disease Neuroimaging Initiative (ADNI) data with six different protocols, comprising three manufacturers and two magnetic field strengths. The entire brain was parceled into five different levels of granularity. In each level, which defines a set of brain structures, ranging from eight to 286 regions, we evaluated the variability of brain volumes related to the protocol, age, and diagnosis (healthy or Alzheimer's disease). Our results indicated that, with proper pre-processing steps, the impact of different protocols is minor compared to biological effects, such as age and pathology. A precise knowledge of the sources of data variation enables sufficient statistical power and ensures the reliability of an anatomical analysis when using this automated brain parcellation tool on datasets from various imaging protocols, such as clinical databases.

  18. 77 FR 70895 - New Marking Standards for Parcels Containing Hazardous Materials

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-28

    ... exception of certain infectious substances, certain patient specimens and certain radioactive materials as... the Postal Service intends to provide appropriate labeling, marking, and packaging material. Response... POSTAL SERVICE 39 CFR Part 111 New Marking Standards for Parcels Containing Hazardous Materials...

  19. Initial Concept of Operations for Full Management by Trajectory

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia D.; Atkins, Steve; Leiden, Ken; Kaler, Curt; Evans, Mark; Bell, Alan; Kilbourne, Todd; Jackson, Michael

    2017-01-01

    This document describes Management by Trajectory (MBT), a concept for future air traffic management (ATM) in which flights are assigned four-dimensional trajectories (4DTs) through a negotiation process between the Federal Aviation Administration (FAA) and flight operators that respects the flight operator's goals while complying with National Airspace System (NAS) constraints.

  20. Conflict-free trajectory planning for air traffic control automation

    NASA Technical Reports Server (NTRS)

    Slattery, Rhonda; Green, Steve

    1994-01-01

    As the traffic demand continues to grow within the National Airspace System (NAS), the need for long-range planning (30 minutes plus) of arrival traffic increases greatly. Research into air traffic control (ATC) automation at ARC has led to the development of the Center-TRACON Automation System (CTAS). CTAS determines optimum landing schedules for arrival traffic and assists controllers in meeting those schedules safely and efficiently. One crucial element in the development of CTAS is the capability to perform long-range (20 minutes) and short-range (5 minutes) conflict prediction and resolution once landing schedules are determined. The determination of conflict-free trajectories within the Center airspace is particularly difficult because of large variations in speed and altitude. The paper describes the current design and implementation of the conflict prediction and resolution tools used to generate CTAS advisories in Center airspace. Conflict criteria (separation requirements) are defined and the process of separation prediction is described. The major portion of the paper will describe the current implementation of CTAS conflict resolution algorithms in terms of the degrees of freedom for resolutions as well as resolution search techniques. The tools described in this paper have been implemented in a research system designed to rapidly develop and evaluate prototype concepts and will form the basis for an operational ATC automation system.

  1. View of structures at rear of parcel with 12' scale ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of structures at rear of parcel with 12' scale (in tenths). From right: edge of Round House, Pencil house, Shell House, edge of School House. Heart Shrine made from mortared car headlights at frame left. Camera facing east. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  2. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning.

    PubMed

    Davatzikos, Christos

    2016-10-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.

  3. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning

    PubMed Central

    Davatzikos, Christos

    2017-01-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. PMID:27514582

  4. Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.

    PubMed

    Maggioni, Eleonora; Tana, Maria Gabriella; Arrigoni, Filippo; Zucca, Claudio; Bianchi, Anna Maria

    2014-05-15

    Functional Magnetic Resonance Imaging (fMRI) is used for exploring brain functionality, and recently it was applied for mapping the brain connection patterns. To give a meaningful neurobiological interpretation to the connectivity network, it is fundamental to properly define the network framework. In particular, the choice of the network nodes may affect the final connectivity results and the consequent interpretation. We introduce a novel method for the intra subject topological characterization of the nodes of fMRI brain networks, based on a whole brain parcellation scheme. The proposed whole brain parcellation algorithm divides the brain into clusters that are homogeneous from the anatomical and functional point of view, each of which constitutes a node. The functional parcellation described is based on the Tononi's cluster index, which measures instantaneous correlation in terms of intrinsic and extrinsic statistical dependencies. The method performance and reliability were first tested on simulated data, then on a real fMRI dataset acquired on healthy subjects during visual stimulation. Finally, the proposed algorithm was applied to epileptic patients' fMRI data recorded during seizures, to verify its usefulness as preparatory step for effective connectivity analysis. For each patient, the nodes of the network involved in ictal activity were defined according to the proposed parcellation scheme and Granger Causality Analysis (GCA) was applied to infer effective connectivity. We showed that the algorithm 1) performed well on simulated data, 2) was able to produce reliable inter subjects results and 3) led to a detailed definition of the effective connectivity pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Ageostrophic winds and vertical motion fields accompanying upper level jet streak propagation during the Red River Valley tornado outbreak

    NASA Technical Reports Server (NTRS)

    Moore, J. T.; Squires, M. F.

    1982-01-01

    Preliminary results are shown relating the ageostrophic wind field, through the terms of a semigeostrophic wind equation (assuming adiabatic conditions and the geostrophic momentum approximation) to both air parcel trajectories and their vertical motion fields computed from the parcels' displacement on isentropic surfaces, with respect to pressure. The analysis of results considers both upper-level (324 K) ageostrophic fields and low-level (304 K) fields. Preliminary results tend to support Uccellini and Johnson's (1979) hypothesis concerning upper-level-jet/low-level-jet (ULJ/LLJ) coupling in the exit region of the ULJ. Future plans are described briefly for research intended to clarify the mechanism behind ULJ streak propagation, LLJ development and their relationship to the initiation of severe convection.

  6. Complexity analysis of the Next Gen Air Traffic Management System: trajectory based operations.

    PubMed

    Lyons, Rhonda

    2012-01-01

    According to Federal Aviation Administration traffic predictions currently our Air Traffic Management (ATM) system is operating at 150 percent capacity; forecasting that within the next two decades, the traffic with increase to a staggering 250 percent [17]. This will require a major redesign of our system. Today's ATM system is complex. It is designed to safely, economically, and efficiently provide air traffic services through the cost-effective provision of facilities and seamless services in collaboration with multiple agents however, contrary the vision, the system is loosely integrated and is suffering tremendously from antiquated equipment and saturated airways. The new Next Generation (Next Gen) ATM system is designed to transform the current system into an agile, robust and responsive set of operations that are designed to safely manage the growing needs of the projected increasingly complex, diverse set of air transportation system users and massive projected worldwide traffic rates. This new revolutionary technology-centric system is dynamically complex and is much more sophisticated than it's soon to be predecessor. ATM system failures could yield large scale catastrophic consequences as it is a safety critical system. This work will attempt to describe complexity and the complex nature of the NextGen ATM system and Trajectory Based Operational. Complex human factors interactions within Next Gen will be analyzed using a proposed dual experimental approach designed to identify hazards, gaps and elicit emergent hazards that would not be visible if conducted in isolation. Suggestions will be made along with a proposal for future human factors research in the TBO safety critical Next Gen environment.

  7. 9 CFR 325.2 - Parcel post and ferries deemed carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Parcel post and ferries deemed carriers. 325.2 Section 325.2 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... to transportation by ferry of any products loaded on a truck or other vehicle, or otherwise moved by...

  8. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory.

    PubMed

    Zhou, Rui; Sun, Jinping; Hu, Yuxin; Qi, Yaolong

    2018-01-31

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm.

  9. Multichannel High Resolution Wide Swath SAR Imaging for Hypersonic Air Vehicle with Curved Trajectory

    PubMed Central

    Zhou, Rui; Hu, Yuxin; Qi, Yaolong

    2018-01-01

    Synthetic aperture radar (SAR) equipped on the hypersonic air vehicle in near space has many advantages over the conventional airborne SAR. However, its high-speed maneuvering characteristics with curved trajectory result in serious range migration, and exacerbate the contradiction between the high resolution and wide swath. To solve this problem, this paper establishes the imaging geometrical model matched with the flight trajectory of the hypersonic platform and the multichannel azimuth sampling model based on the displaced phase center antenna (DPCA) technology. Furthermore, based on the multichannel signal reconstruction theory, a more efficient spectrum reconstruction model using discrete Fourier transform is proposed to obtain the azimuth uniform sampling data. Due to the high complexity of the slant range model, it is difficult to deduce the processing algorithm for SAR imaging. Thus, an approximate range model is derived based on the minimax criterion, and the optimal second-order approximate coefficients of cosine function are obtained using the two-population coevolutionary algorithm. On this basis, aiming at the problem that the traditional Omega-K algorithm cannot compensate the residual phase with the difficulty of Stolt mapping along the range frequency axis, this paper proposes an Exact Transfer Function (ETF) algorithm for SAR imaging, and presents a method of range division to achieve wide swath imaging. Simulation results verify the effectiveness of the ETF imaging algorithm. PMID:29385059

  10. Detection of saharan mineral dust aerosol transport over brazilian northeast through a depolarization lidar

    NASA Astrophysics Data System (ADS)

    Guedes, Anderson G.; Landulfo, Eduardo; Montilla-Rosero, Elena; Lopes, Fábio J. S.; Hoelzemann, Judith J.; Fernandez, José Henrique; Silva, Marcos P. A.; Santos, Renata S. S.; Guerrero-Rascado, Juan L.; Alados-Arboledas, Lucas

    2018-04-01

    In this study we present results of linear volume depolarization ratio profiles obtained by a depolarization lidar in operation in Natal, Brazil. The DUSTER system has 4 channels, namely: 1064, 532 s/p and 355 nm. This system is calibrated with a half-wave plate using the Δ90° methodology. The data obtained from this system is correlated with AERONET sunphotometer data, and, when available, CALIPSO satellite data. In addition a trajectory model (HYSPLIT) is used to calculate backward trajectories to assess the origin of the dust polluted air parcels. The objective is to create a transport database of Saharan dust.

  11. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, Ate; Thaw, Melissa; Esser, Brad

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  12. Analysis of air mass trajectories to explain observed variability of tritium in precipitation at the Southern Sierra Critical Zone Observatory, California, USA

    DOE PAGES

    Visser, Ate; Thaw, Melissa; Esser, Brad

    2017-11-20

    Understanding the behavior of tritium, a radioactive isotope of hydrogen, in the environment is important to evaluate the exposure risk of anthropogenic releases, and for its application as a tracer in hydrology and oceanography. To understand and predict the variability of tritium in precipitation, HYSPLIT air mass trajectories were analyzed for 16 aggregate precipitation samples collected over a 2 year period at irregular intervals at a research site located at 2000 m elevation in the southern Sierra Nevada (California, USA). Attributing the variation in tritium to specific source areas confirms the hypothesis that higher latitude or inland sources bring highermore » tritium levels in precipitation than precipitation originating in the lower latitude Pacific Ocean. In this case, the source of precipitation accounts for 79% of the variation observed in tritium concentrations. In conclusion, air mass trajectory analysis is a promising tool to improve the predictions of tritium in precipitation at unmonitored locations and thoroughly understand the processes controlling transport of tritium in the environment.« less

  13. Ares I-X Best Estimated Trajectory Analysis and Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; Starr, Brett R.; Derry, Stephen D.; Brandon, Jay; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air-data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  14. Green infrastructure retrofits on residential parcels: Ecohydrologic modeling for stormwater design

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2014-12-01

    To meet water quality goals stormwater utilities and not-for-profit watershed organizations in the U.S. are working with citizens to design and implement green infrastructure on residential land. Green infrastructure, as an alternative and complement to traditional (grey) stormwater infrastructure, has the potential to contribute to multiple ecosystem benefits including stormwater volume reduction, carbon sequestration, urban heat island mitigation, and to provide amenities to residents. However, in small (1-10-km2) medium-density urban watersheds with heterogeneous land cover it is unclear whether stormwater retrofits on residential parcels significantly contributes to reduce stormwater volume at the watershed scale. In this paper, we seek to improve understanding of how small-scale redistribution of water at the parcel scale as part of green infrastructure implementation affects urban water budgets and stormwater volume across spatial scales. As study sites we use two medium-density headwater watersheds in Baltimore, MD and Durham, NC. We develop ecohydrology modeling experiments to evaluate the effectiveness of redirecting residential rooftop runoff to un-altered pervious surfaces and to engineered rain gardens to reduce stormwater runoff. As baselines for these experiments, we performed field surveys of residential rooftop hydrologic connectivity to adjacent impervious surfaces, and found low rates of connectivity. Through simulations of pervasive adoption of downspout disconnection to un-altered pervious areas or to rain garden stormwater control measures (SCM) in these catchments, we find that most parcel-scale changes in stormwater fate are attenuated at larger spatial scales and that neither SCM alone is likely to provide significant changes in streamflow at the watershed scale.

  15. Multi-scale evolution of a derecho-producing MCS

    NASA Astrophysics Data System (ADS)

    Bernardet, Ligia Ribeiro

    1997-12-01

    In this dissertation we address one type of severe weather: strong straight-line winds. In particular, we focus on derechos, a type of wind storm caused by a convective system and characterized by its long duration and by the large area it covers. One interesting characteristic of these storms is that they develop at night, on the cold side of a thermal boundary. This region is not characterized by large convective instability. In fact, surface parcels are generally stable with respect to vertical displacements. To gain understanding of the physical processes involved in these storms, we focused on the case of a MCS that developed in eastern Colorado on 12-13 May, 1985. The system formed in the afternoon, was active until early morning, and caused strong winds during the night. A multi-scale full physics simulation of this case was performed using a non-hydrostatic mesoscale model. Four telescopically nested grids covering from the synoptic scale down to cloud scale circulations were used. A Lagrangian model was used to follow trajectories of parcels that took part in the updraft and in the downdraft, and balance of forces were computed along the trajectories. Our results show that the synoptic and mesoscale environment of the storm largely influences convective organization and cloud-scale circulations. During the day, when the boundary layer is well mixed, the source of air for the clouds is located within the boundary layer. At night, when the boundary layer becomes stable, the source of air shifts to the top of the boundary layer. It is composed of warm, moist air that is brought by the nocturnal low-level jet. The downdraft structure also changes from day to night. During the day, parcels acquire negative buoyancy because of cooling due to evaporation and melting. As they sink, they remain colder than the environment, and end up at the surface constituting the cold pool. During the night, downdrafts are stronger, generating the strong surface winds. The most

  16. Center of parcel with mosaics. Mosaics consist of everyday throwaway ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Center of parcel with mosaics. Mosaics consist of everyday throwaway objects of all kinds set in concrete mortar on ground. Leaning Tower of Bottle Village in front of Rumpus Room primary façade with 12' scale (in tenths). Camera facing north. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  17. STATISTICAL DECOUPLING OF A LAGRANGIAN FLUID PARCEL IN NEWTONIAN COSMOLOGY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin; Szalay, Alex, E-mail: xwang@cita.utoronto.ca

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the nonlinear evolution of various cosmic objects, e.g., dark matter halos, in the context of Lagrangian fluid dynamics, since fluid parcels with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the evolution equation for the probability distribution of the matter field, our method produces a set of closed ordinary differentialmore » equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (ρPDF). Consequently it is guaranteed that the one-point ρPDF would be preserved by evolving these local, yet nonlinear, curves with the same set of initial data as the real system. Physically, these trajectories describe the mean evolution averaged over all environments by substituting the tidal tensor with its conditional average. For Gaussian distributed dynamical variables, this mean tidal tensor is simply proportional to the velocity shear tensor, and the dynamical system would recover the prediction of the Zel’dovich approximation (ZA) with the further assumption of the linearized continuity equation. For a weakly non-Gaussian field, the averaged tidal tensor could be expanded perturbatively as a function of all relevant dynamical variables whose coefficients are determined by the statistics of the field.« less

  18. Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation.

    PubMed

    Wang, J; Hao, Z; Wang, H

    2018-01-01

    The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI) data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC). The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.

  19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data

    PubMed Central

    James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.

    2015-01-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal

  20. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    PubMed

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during

  1. Bidirectional iterative parcellation of diffusion weighted imaging data: Separating cortical regions connected by the arcuate fasciculus and extreme capsule

    PubMed Central

    Patterson, Dianne K.; Van Petten, Cyma; Beeson, Pélagie M.; Rapcsak, Steven Z.; Plante, Elena

    2014-01-01

    This paper introduces a Bidirectional Iterative Parcellation (BIP) procedure designed to identify the location and size of connected cortical regions (parcellations) at both ends of a white matter tract in diffusion weighted images. The procedure applies the FSL option “probabilistic tracking with classification targets” in a bidirectional and iterative manner. To assess the utility of BIP, we applied the procedure to the problem of parcellating a limited set of well-established gray matter seed regions associated with the dorsal (arcuate fasciculus/superior longitudinal fasciculus) and ventral (extreme capsule fiber system) white matter tracts in the language networks of 97 participants. These left hemisphere seed regions and the two white matter tracts, along with their right hemisphere homologues, provided an excellent test case for BIP because the resulting parcellations overlap and their connectivity via the arcuate fasciculi and extreme capsule fiber systems are well studied. The procedure yielded both confirmatory and novel findings. Specifically, BIP confirmed that each tract connects within the seed regions in unique, but expected ways. Novel findings included increasingly left-lateralized parcellations associated with the arcuate fasciculus/superior longitudinal fasciculus as a function of age and education. These results demonstrate that BIP is an easily implemented technique that successfully confirmed cortical connectivity patterns predicted in the literature, and has the potential to provide new insights regarding the architecture of the brain. PMID:25173414

  2. 77 FR 43561 - Proposed Eligibility Criteria for Bound Printed Matter Parcels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-25

    ... physical density threshold for individual mailpieces. DATES: Comments on this advance notice are due.... Code, require that each class of mail or type of mail service bear the direct and indirect costs... a 98.8% cost coverage. Greater efficiency in the packaging of BPM parcels will provide for more...

  3. Computational Approaches to Simulation and Optimization of Global Aircraft Trajectories

    NASA Technical Reports Server (NTRS)

    Ng, Hok Kwan; Sridhar, Banavar

    2016-01-01

    This study examines three possible approaches to improving the speed in generating wind-optimal routes for air traffic at the national or global level. They are: (a) using the resources of a supercomputer, (b) running the computations on multiple commercially available computers and (c) implementing those same algorithms into NASAs Future ATM Concepts Evaluation Tool (FACET) and compares those to a standard implementation run on a single CPU. Wind-optimal aircraft trajectories are computed using global air traffic schedules. The run time and wait time on the supercomputer for trajectory optimization using various numbers of CPUs ranging from 80 to 10,240 units are compared with the total computational time for running the same computation on a single desktop computer and on multiple commercially available computers for potential computational enhancement through parallel processing on the computer clusters. This study also re-implements the trajectory optimization algorithm for further reduction of computational time through algorithm modifications and integrates that with FACET to facilitate the use of the new features which calculate time-optimal routes between worldwide airport pairs in a wind field for use with existing FACET applications. The implementations of trajectory optimization algorithms use MATLAB, Python, and Java programming languages. The performance evaluations are done by comparing their computational efficiencies and based on the potential application of optimized trajectories. The paper shows that in the absence of special privileges on a supercomputer, a cluster of commercially available computers provides a feasible approach for national and global air traffic system studies.

  4. A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Munoz, Cesar

    2015-01-01

    In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.

  5. Biomass Burning and the 2012 Greenland Ice Sheet (GrIS) melt

    NASA Astrophysics Data System (ADS)

    Choi, H. D.; Soja, A. J.; Polashenski, C.; Fairlie, T. D.; Winker, D. M.; Trepte, C. R.

    2017-12-01

    This study is the part of the Sunlight Absorption on the Greenland ice sheet Experiment (SAGE) project investigating the impact of light absorbing impurities (e.g., aerosols) on the Greenland Ice Sheet (GrIS). Satellite observations, [e.g. Oceansat-2 (OS2) and the Moderate-resolution Imaging Spectroradionmeter (MODIS)] discovered an unusually large melt event in July 2012. NASA sensors showed that nearly 98.6% of the GrIS experienced melting at or near surface [Nghiem et al., 2012]. In this study, we question the extent to which biomass burning derived aerosols enhanced melting across the GrIS. Random points [59 total, 13 coincident with snow pit sites and 46 gridded] are selected across the entire extent of the GrIS from April 1st to August 31st 2012, and then the NASA Langley Trajectory Model (LaTM) is used to simulate the transport of potentially smoke-filled air parcels backwards for 5 days form these points, evaluation the back trajectory for coincidence with active fire detections. The trajectory model is initialized for 24-hour sustained injection from each site, and air parcels are released from the surface to 2 km at 200m intervals. With the trajectory model outputs, we are able to identify trajectories that have coincidences with fires. We focus on events in April through July when the GrIS albedo was dramatically decreased. We also utilize Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data to verify smoke-aerosol signatures in boreal regions based on the NASA LaTM results. The results of this study will help us better understand the transport of biomass burning plumes and black carbon deposition that could lead to enhanced GrIS melting.

  6. Automated MRI parcellation of the frontal lobe.

    PubMed

    Ranta, Marin E; Chen, Min; Crocetti, Deana; Prince, Jerry L; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E; Mostofsky, Stewart H

    2014-05-01

    Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here, we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. [2009]: Psychiatry Res 172:147-154 in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field, and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex [OFC] and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. Copyright © 2013 Wiley Periodicals, Inc.

  7. Automated MRI parcellation of the frontal lobe

    PubMed Central

    Ranta, Marin E.; Chen, Min; Crocetti, Deana; Prince, Jerry L.; Subramaniam, Krish; Fischl, Bruce; Kaufmann, Walter E.; Mostofsky, Stewart H.

    2014-01-01

    Examination of associations between specific disorders and physical properties of functionally relevant frontal lobe sub-regions is a fundamental goal in neuropsychiatry. Here we present and evaluate automated methods of frontal lobe parcellation with the programs FreeSurfer(FS) and TOADS-CRUISE(T-C), based on the manual method described in Ranta et al. (2009) in which sulcal-gyral landmarks were used to manually delimit functionally relevant regions within the frontal lobe: i.e., primary motor cortex, anterior cingulate, deep white matter, premotor cortex regions (supplementary motor complex, frontal eye field and lateral premotor cortex) and prefrontal cortex (PFC) regions (medial PFC, dorsolateral PFC, inferior PFC, lateral orbitofrontal cortex (OFC) and medial OFC). Dice's coefficient, a measure of overlap, and percent volume difference were used to measure the reliability between manual and automated delineations for each frontal lobe region. For FS, mean Dice's coefficient for all regions was 0.75 and percent volume difference was 21.2%. For T-C the mean Dice's coefficient was 0.77 and the mean percent volume difference for all regions was 20.2%. These results, along with a high degree of agreement between the two automated methods (mean Dice's coefficient = 0.81, percent volume difference = 12.4%) and a proof-of-principle group difference analysis that highlights the consistency and sensitivity of the automated methods, indicate that the automated methods are valid techniques for parcellation of the frontal lobe into functionally relevant sub-regions. Thus, the methodology has the potential to increase efficiency, statistical power and reproducibility for population analyses of neuropsychiatric disorders with hypothesized frontal lobe contributions. PMID:23897577

  8. Studies and Application of Remote Sensing Retrieval Method of Soil Moisture Content in Land Parcel Units in Irrigation Area

    NASA Astrophysics Data System (ADS)

    Zhu, H.; Zhao, H. L.; Jiang, Y. Z.; Zang, W. B.

    2018-05-01

    Soil moisture is one of the important hydrological elements. Obtaining soil moisture accurately and effectively is of great significance for water resource management in irrigation area. During the process of soil moisture content retrieval with multiremote sensing data, multi- remote sensing data always brings multi-spatial scale problems which results in inconformity of soil moisture content retrieved by remote sensing in different spatial scale. In addition, agricultural water use management has suitable spatial scale of soil moisture information so as to satisfy the demands of dynamic management of water use and water demand in certain unit. We have proposed to use land parcel unit as the minimum unit to do soil moisture content research in agricultural water using area, according to soil characteristics, vegetation coverage characteristics in underlying layer, and hydrological characteristic into the basis of study unit division. We have proposed division method of land parcel units. Based on multi thermal infrared and near infrared remote sensing data, we calculate the ndvi and tvdi index and make a statistical model between the tvdi index and soil moisture of ground monitoring station. Then we move forward to study soil moisture remote sensing retrieval method on land parcel unit scale. And the method has been applied in Hetao irrigation area. Results show that compared with pixel scale the soil moisture content in land parcel unit scale has displayed stronger correlation with true value. Hence, remote sensing retrieval method of soil moisture content in land parcel unit scale has shown good applicability in Hetao irrigation area. We converted the research unit into the scale of land parcel unit. Using the land parcel units with unified crops and soil attributes as the research units more complies with the characteristics of agricultural water areas, avoids the problems such as decomposition of mixed pixels and excessive dependence on high-resolution data

  9. Potential transport pathways of dust emanating from the playa of Ebinur Lake, Xinjiang, in arid northwest China

    NASA Astrophysics Data System (ADS)

    Ge, Yongxiao; Abuduwaili, Jilili; Ma, Long; Wu, Na; Liu, Dongwei

    2016-09-01

    In this paper, the HYSPLIT model, driven with reanalysis meteorological data from 1978 to 2013, was used to understand the potential transport characteristics of dust and salt dust emanating from the playa of Ebinur Lake in arid northwest China. Daily air parcel trajectories were computed forward for 8 days from an origin centered over Ebinur Lake at 100 m above ground level. Air parcel trajectory density plots were mapped for seven levels: 0-100 m agl., 100-500 m agl., 500-1000 m agl., 1000-1500 m agl., 1500-2000 m agl., 2000-3000 m agl., and 3000-5000 m agl. These show that potential dust transport pathways have clear seasonal differentiation. The potential transport distance of dust and salt dust is greatest in spring and summer. In autumn and winter, the potential transport of the high-density air trajectory is below 1000 m traveling a shorter distance. Potential dust transport pathways showed notifying directivity in different seasons and heights. Southeast in spring and summer, and north to northeast in autumn and winter are the two main potential transport channels of dust and salt dust. Accordingly, dust and salt dust from the playa of Ebinur Lake may influence the atmospheric processes and biogeochemical cycles of a vast region. The main area of influence of dust and salt dust is close to the source area, and will significantly accelerate the melting of snow and ice in the Tianshan Mountains. This highlights the urgent need to combine remote sensing, isotope and other methods to further research the transport characteristics of dust and salt dust from the playa of the Ebinur Lake.

  10. POGO-FAN: Remarkable Empirical Indicators for the Local Chemical Production of Smog- Ozone and NOx-Sensitivity of Air Parcels

    NASA Astrophysics Data System (ADS)

    Chatfield, R. B.; Browell, E. V.; Brune, W. H.; Crawford, J. H.; Esswein, R.; Fried, A.; Olson, J. R.; Shetter, R. E.; Singh, H. B.

    2006-12-01

    We propose and evaluate two related and surprisingly simple empirical estimators for the local chemical production term for photochemical ozone; each uses two moderate-technology chemical measurements and a measurement of ultraviolet light. We nickname the techniques POGO-FAN: Production of Ozone by Gauging Oxidation: Formaldehyde and NO. (1) A non-linear function of a single three-factor index-variable, j (HCHO=>rads) [HCHO] [NO] seems to provide a good estimator of the largest single term in the production of smog ozone, the HOO+NO term, over a very wide range of situations. (2) By considering empirical contour plots summarizing isopleths of HOO+NO using j (HCHO=>rads) [HCHO] and [NO] separately as coordinates, we provide a slightly more complex 2-d indicator of smog ozone production that additionally allows an estimate of the NOx-sensitivity or NOx-saturation (i.e., VOC-sensitivity) of sampled air parcels. ~85 to >90 % of the variance is explained. The correspondence to "EKMA" contour plots, estimating afternoon ozone based on morningtime organics and NOx mixes, is not coincidental. We utilize a broad set of urban plume, regionally polluted and cleaner NASA DC-8 PBL samples from the Intercontinental Transport Experiment-North America (INTEX-NA), in which each of the variables was measured, to help establish our relationship. The estimator is described in terms both both of asymptotic smog photochemistry theory; primarily this suggests appropriate statistical approaches which can capture some of the complex interrelations of lower-tropospheric smog mix through correlation of reactive mixture components. HCHO is not only an important source of HOO radicals, but it more important serves as a "gauge" of all photochemical processing of volatile organic compounds. It probably captures information related to coincident VOC sources of various compounds and parallels in photochemical processing. Constrained modeling of observed atmospheric concentrations suggests that

  11. Distributed Trajectory Flexibility Preservation for Traffic Complexity Mitigation

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Wing, David; Delahaye, Daniel

    2009-01-01

    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors propose the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics based on Lyapunov exponents and traffic proximity.

  12. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  13. Analysis of major air pollutants and submicron particles in New York City and Long Island

    NASA Astrophysics Data System (ADS)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    A year-long sampling campaign of major air pollutants and submicron particle number size distributions was conducted at two sites taken as representative of city-wide air quality in New York City and Long Island, respectively. A number of species were quantified with hourly time resolution, including particle number concentrations in 6 size ranges (20-30 nm, 30-50 nm, 50-70 nm, 70-100 nm, 100-200 nm, and >200 nm), nitrogen oxides, sulfur dioxide, ozone, carbon monoxide, methane, non-methane hydrocarbons, PM2.5 mass concentration and some PM major components (sulfate, organic and elemental carbon). Hourly concentrations of primary and secondary organic carbon were estimated using the EC tracer method. Data were matched with weather parameters and air parcel back-trajectories. A series of tools were thus applied to: (i) study the seasonal, weekly, diurnal cycles of pollutants; (ii) investigate the relationships amongst pollutants through correlation and lagged correlation analyses; (iii) depict the role of atmospheric photochemical processes; (iv) examine the location of the potential sources by mean of conditional bivariate probability function analysis and (v) investigate the role of regional transport of air masses to the concentrations of analyzed species. Results indicate that concentrations of NOx, SO2, CO, non-methane hydrocarbons, primary OC and EC are predominantly determined by local sources, but are also affected by regional transports of polluted air masses. On the contrary, the transport of continental polluted air masses has a main effect in raising the concentrations of secondary PM2.5 (sulfate and secondary organic carbon). By providing direct information on the concentrations and trends of key pollutants and submicron particle number concentrations, this study finally enables some general considerations about air quality status and atmospheric processes over the New York City metropolitan area.

  14. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  15. Transport across the tropical tropopause layer and convection

    NASA Astrophysics Data System (ADS)

    Tissier, Ann-Sophie; Legras, Bernard; Tzella, Alexandra

    2015-04-01

    We investigate how air parcels detrained from convective sources enter the TTL. The approach is based on the comparison of unidimensional trajectories and Lagrangian backward and forward trajectories, using TRACZILLA and ERA-Interim. Backward trajectories are launched at 380K and run until they hit a deep convective cloud. Forward trajectories are launched at the top of high convective clouds identified by brightness temperature from CLAUS dataset. 1D trajectories are computed using Gardiner's method. Results show that the warm pool region during winter and the Bay of Bengal / Sea of China during summer are the prevalent sources as already identified in many previous studies and we quantify the respective role of the various regions. We show that the 1D model explains qualitatively and often quantitatively the 3d results. We also show that in spite of generating very high convection, Africa is quite ineffective as providing air that remains in the TTL while on the opposite the Tibetan Plateau is the most effective region in this respect although its total contribution is minor. Finally, we compare ERA-Interim, JRA-55 and MERRA reanalysis and find large similarities between the two formers.

  16. High Altitude Venus Operations Concept Trajectory Design, Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Lugo, Rafael A.; Ozoroski, Thomas A.; Van Norman, John W.; Arney, Dale C.; Dec, John A.; Jones, Christopher A.; Zumwalt, Carlie H.

    2015-01-01

    A trajectory design and analysis that describes aerocapture, entry, descent, and inflation of manned and unmanned High Altitude Venus Operation Concept (HAVOC) lighter-than-air missions is presented. Mission motivation, concept of operations, and notional entry vehicle designs are presented. The initial trajectory design space is analyzed and discussed before investigating specific trajectories that are deemed representative of a feasible Venus mission. Under the project assumptions, while the high-mass crewed mission will require further research into aerodynamic decelerator technology, it was determined that the unmanned robotic mission is feasible using current technology.

  17. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use

    USGS Publications Warehouse

    Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L.

    2009-01-01

    Detailed urban land use data are important to government officials, researchers, and businesspeople for a variety of purposes. This article presents an approach to classifying detailed urban land use based on geometrical, textural, and contextual information of land parcels. An area of 6 by 14 km in Austin, Texas, with land parcel boundaries delineated by the Travis Central Appraisal District of Travis County, Texas, is tested for the approach. We derive fifty parcel attributes from relevant geographic information system (GIS) and remote sensing data and use them to discriminate among nine urban land uses: single family, multifamily, commercial, office, industrial, civic, open space, transportation, and undeveloped. Half of the 33,025 parcels in the study area are used as training data for land use classification and the other half are used as testing data for accuracy assessment. The best result with a decision tree classification algorithm has an overall accuracy of 96 percent and a kappa coefficient of 0.78, and two naive, baseline models based on the majority rule and the spatial autocorrelation rule have overall accuracy of 89 percent and 79 percent, respectively. The algorithm is relatively good at classifying single-family, multifamily, commercial, open space, and undeveloped land uses and relatively poor at classifying office, industrial, civic, and transportation land uses. The most important attributes for land use classification are the geometrical attributes, particularly those related to building areas. Next are the contextual attributes, particularly those relevant to the spatial relationship between buildings, then the textural attributes, particularly the semivariance texture statistic from 0.61-m resolution images.

  18. Chance Encounter with a Stratospheric Kerosene Rocket Plume from Russia over California

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Wilson, J. C.; Ross, M. N.; Brock, C.; Sheridan, P.; Schoeberl, M. R.; Lait, L. R.; Bui, T. P.; Loewenstein, M.

    1999-01-01

    During a routine ER-2 aircraft high-altitude test flight on April 18, 1997, an unusual aerosol cloud was detected at 20 km altitude near the California coast at about 370 degrees N latitude. Not visually observed by the ER-2 pilot, the cloud was characterized bv high concentration of soot and sulfate aerosol in a region over 100 km in horizontal extent indicating that the source of the plume was a large hydrocarbon fueled vehicle, most likely a launch vehicle powered only by rocket motors burning liquid oxygen and kerosene. Two Russian Soyuz rockets could conceivably have produced the plume. The first was launched from the Baikonur Cosmodrome, Kazakhstan on April 6th; the second was launched from Plesetsk, Russia on April 9. Air parcel trajectory calculations and long-lived tracer gas concentrations in the cloud indicate that the Baikonur rocket launch is the most probable source of the plume. The parcel trajectory calculations do not unambiguously trace the transport of the Soyuz plume from Asia to North America, illustrating serious flaws in the point-to-point trajectory calculations. This chance encounter represents the only measurement of the stratospheric effects of emissions from a rocket powered exclusively with hydrocarbon fuel.

  19. Groupwise connectivity-based parcellation of the whole human cortical surface using watershed-driven dimension reduction.

    PubMed

    Lefranc, Sandrine; Roca, Pauline; Perrot, Matthieu; Poupon, Cyril; Le Bihan, Denis; Mangin, Jean-François; Rivière, Denis

    2016-05-01

    Segregating the human cortex into distinct areas based on structural connectivity criteria is of widespread interest in neuroscience. This paper presents a groupwise connectivity-based parcellation framework for the whole cortical surface using a new high quality diffusion dataset of 79 healthy subjects. Our approach performs gyrus by gyrus to parcellate the whole human cortex. The main originality of the method is to compress for each gyrus the connectivity profiles used for the clustering without any anatomical prior information. This step takes into account the interindividual cortical and connectivity variability. To this end, we consider intersubject high density connectivity areas extracted using a surface-based watershed algorithm. A wide validation study has led to a fully automatic pipeline which is robust to variations in data preprocessing (tracking type, cortical mesh characteristics and boundaries of initial gyri), data characteristics (including number of subjects), and the main algorithmic parameters. A remarkable reproducibility is achieved in parcellation results for the whole cortex, leading to clear and stable cortical patterns. This reproducibility has been tested across non-overlapping subgroups and the validation is presented mainly on the pre- and postcentral gyri. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A Potentially Useful for Airborne Separation in 4D-Trajectory ATM Operations

    NASA Technical Reports Server (NTRS)

    Wing, David J.

    2005-01-01

    An aircraft equipped with Airborne Separation Assistance System functions and 4- dimensional trajectory management capabilities can have significant, potentially transforming, value to Air Traffic Management at the local and system levels. This paper discusses how certain vital characteristics envisioned in the Next Generation Air Transportation System enable some Air Traffic Management functions to be distributed to properly equipped aircraft, and it defines and illustrates this equipage level in a potential application. The new equipage level, perhaps the most capable of many levels permitted, enables an effective implementation of both near- and long-term 4-dimensional trajectory operations in complex airspace, with the aircraft providing the near-term tactical functions and conforming to the long-term trajectory attributes coordinated with ground-based Traffic Flow Management authorities. NASA s recent research and development of this proposed aircraft equipage for en-route and terminal-arrival operations is summarized. The role the equipage level may play in addressing key implementation challenges of reducing ground infrastructure cost, building in security and safety, and scaling to traffic demand is discussed.

  1. Seasonal and air mass trajectory effects on dissolved organic matter of bulk deposition at a coastal town in south-western Europe.

    PubMed

    Santos, Patrícia S M; Santos, Eduarda B H; Duarte, Armando C

    2013-01-01

    Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV-visible and three-dimensional excitation-emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV(250 nm)) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.

  2. Impact of typhoons on the composition of the upper troposphere within the Asian summer monsoon anticyclone: the SWOP campaign in Lhasa 2013

    NASA Astrophysics Data System (ADS)

    Li, Dan; Vogel, Bärbel; Bian, Jianchun; Müller, Rolf; Pan, Laura L.; Günther, Gebhard; Bai, Zhixuan; Li, Qian; Zhang, Jinqiang; Fan, Qiujun; Vömel, Holger

    2017-04-01

    In the frame of the SWOP (sounding water vapour, ozone, and particle) campaign during the Asian summer monsoon (ASM), ozone and water vapour profiles were measured by balloon-borne sensors launched from Lhasa (29.66° N, 91.14° E, elevation 3650 m), China, in August 2013. In total, 24 soundings were launched, nearly half of which show strong variations in the relationship between ozone and water vapour in the tracer-tracer correlation in the upper troposphere and lower stratosphere (UTLS). For each sounding, 20-day backward trajectories were calculated using the trajectory module of the Chemical Lagrangian Model of the Stratosphere (CLaMS) to analyse these variations. The trajectory calculations demonstrate that three tropical cyclones (tropical storm Jebi, typhoons Utor and Trami), which occurred over the western Pacific Ocean during August 2013, had a considerable impact on the vertical distribution of ozone and water vapour by uplifting marine air masses to altitudes of the ASM anticyclone. Air parcels subsequently arrived at the observation site via two primary pathways: firstly via direct horizontal transport from the location of the typhoon to the station within approximately 3 days, and secondly via transport following the clockwise wind flow of the ASM within a timescale of 1 week. Furthermore, the interplay between the spatial position of the ASM anticyclone and tropical cyclones plays a key role in controlling the transport pathways of air parcels from the boundary layer of the western Pacific to Lhasa in horizontal and vertical transport. Moreover, the statistical analysis shows that the strongest impact by typhoons is found at altitudes between 14.5 and 17 km (365-375 K). Low ozone values (50-80 ppbv) were observed between 370 and 380 K due to the strong vertical transport within tropical cyclones.

  3. 48 CFR 242.1404 - Shipments by parcel post or other classes of mail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Shipments by parcel post or other classes of mail. 242.1404 Section 242.1404 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACT MANAGEMENT CONTRACT ADMINISTRATION AND AUDIT...

  4. Spatial Statistics of the Clark County Parcel Map, Trial Geotechnical Models, and Effects on Ground Motions in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Savran, W. H.; Louie, J. N.; Pullammanappallil, S.; Pancha, A.

    2011-12-01

    When deterministically modeling the propagation of seismic waves, shallow shear-wave velocity plays a crucial role in predicting shaking effects such as peak ground velocity (PGV). The Clark County Parcel Map provides us with a data set of geotechnical velocities in Las Vegas Valley, at an unprecedented level of detail. Las Vegas Valley is a basin with similar geologic properties to some areas of Southern California. We analyze elementary spatial statistical properties of the Parcel Map, along with calculating its spatial variability. We then investigate these spatial statistics from the PGV results computed from two geotechnical models that incorporate the Parcel Map as parameters. Plotting a histogram of the Parcel Map 30-meter depth-averaged shear velocity (Vs30) values shows the data to approximately fit a bimodal normal distribution with μ1 = 400 m/s, σ1 = 76 m/s, μ2 = 790 m/s, σ2 = 149 m/s, and p = 0.49., where μ is the mean, σ is standard deviation, and p is the probability mixing factor for the bimodal distribution. Based on plots of spatial power spectra, the Parcel Map appears to be fractal over the second and third decades, in kilometers. The spatial spectra possess the same fractal dimension in the N-S and the E-W directions, indicating isotropic scale invariance. We configured finite-difference wave propagation models at 0.5 Hz with LLNL's E3D code, utilizing the Parcel Map as input parameters to compute a PGV data set from a scenario earthquake (Black Hills M6.5). The resulting PGV is fractal over the same spatial frequencies as the Vs30 data sets associated with their respective models. The fractal dimension is systematically lower in all of the PGV maps as opposed to the Vs30 maps, showing that the PGV maps are richer in higher spatial frequencies. This is potentially caused by a lens focusing effects on seismic waves due to spatial heterogeneity in site conditions.

  5. Nighttime OClO in the Winter Arctic Vortex

    NASA Technical Reports Server (NTRS)

    Canty, T.; Riviere, E. D.; Salawitch, R. J.; Berthet, G.; Renard, J. -B.; Pfeilsticker, K.; Dorf, M.; Butz, A.; Bosch, H.; Stimpfle, R. M.; hide

    2005-01-01

    We show that a nighttime profile of OClO in the Arctic vortex during the winter of 2000 is overestimated, by nearly a factor of 2, using an isentropic trajectory model constrained by observed profiles of ClOx (ClO + 2 X ClOOCl) and BrO. Calculated abundances of nighttime OClO are shown to be sensitive to the abundance of BrOx (BrO + BrCl), details of the air parcel history during the most recent sunrise/sunset transitions, and the BrCl yield from the reaction BrO + ClO. Many uncertainties are considered, and the discrepancy between measured and modeled nighttime OClO appears to be robust. This discrepancy suggests that production of OClO occurs more slowly than implied by standard photochemistry. If the yield of BrCl from the reaction of BrO + ClO is increased from 7% (JPL 2002 value) to 11% (near the upper limit of the uncertainty), good agreement is found between measured and modeled nighttime OClO. This study highlights the importance of accurate knowledge of BrO + ClO reaction kinetics as well as air parcel trajectories for proper interpretation of nighttime OClO. These factors have a considerably smaller impact on the interpretation of OClO observations obtained during twilight (90(deg) <=SZA <= 92(deg)), when photolytic processes are still active.

  6. Automatic Structural Parcellation of Mouse Brain MRI Using Multi-Atlas Label Fusion

    PubMed Central

    Ma, Da; Cardoso, Manuel J.; Modat, Marc; Powell, Nick; Wells, Jack; Holmes, Holly; Wiseman, Frances; Tybulewicz, Victor; Fisher, Elizabeth; Lythgoe, Mark F.; Ourselin, Sébastien

    2014-01-01

    Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm, which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework. PMID:24475148

  7. Ares I-X Best Estimated Trajectory and Comparison with Pre-Flight Predictions

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; Derry, Stephen D.; Brandon, Jay M.; Starr, Brett R.; Tartabini, Paul V.; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air- data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  8. Influence of the Saharan Air Layer on Atlantic tropical cyclone formation during the period 1-12 September 2003

    NASA Astrophysics Data System (ADS)

    Pan, Weiyu; Wu, Liguang; Shie, Chung-Lin

    2011-01-01

    Atmospheric Infrared Sounder (AIRS) data show that the Saharan air layer (SAL) is a dry, warm, and well-mixed layer between 950 and 500 hPa over the tropical Atlantic, extending westward from the African coast to the Caribbean Sea. The formations of both Hurricane Isabel and Tropical Depression 14 (TD14) were accompanied with outbreaks of SAL air during the period 1-12 September 2003, although TD14 failed to develop into a named tropical cyclone. The influence of the SAL on their formations is investigated by examining data from satellite observations and numerical simulations, in which AIRS data are incorporated into the MM5 model through the nudging technique. Analyses of the AIRS and simulation data suggest that the SAL may have played two roles in the formation of tropical cyclones during the period 1-12 September 2003. First, the outbreaks of SAL air on 3 and 8 September enhanced the transverse-vertical circulation with the rising motion along the southern edge of the SAL and the sinking motion inside the SAL, triggering the development of two tropical disturbances associated with Hurricane Isabel and TD14. Second, in addition to the reduced environmental humidity and enhanced static stability in the lower troposphere, the SAL dry air intruded into the inner region of these tropical disturbances as their cyclonic flows became strong. This effect may have slowed down the formation of Isabel and inhibited TD14 becoming a named tropical cyclone, while the enhanced vertical shear contributed little to tropical cyclone formation during this period. The 48-h trajectory calculations confirm that the parcels from the SAL can be transported into the inner region of an incipient tropical cyclone.

  9. A Final Approach Trajectory Model for Current Operations

    NASA Technical Reports Server (NTRS)

    Gong, Chester; Sadovsky, Alexander

    2010-01-01

    Predicting accurate trajectories with limited intent information is a challenge faced by air traffic management decision support tools in operation today. One such tool is the FAA's Terminal Proximity Alert system which is intended to assist controllers in maintaining safe separation of arrival aircraft during final approach. In an effort to improve the performance of such tools, two final approach trajectory models are proposed; one based on polynomial interpolation, the other on the Fourier transform. These models were tested against actual traffic data and used to study effects of the key final approach trajectory modeling parameters of wind, aircraft type, and weight class, on trajectory prediction accuracy. Using only the limited intent data available to today's ATM system, both the polynomial interpolation and Fourier transform models showed improved trajectory prediction accuracy over a baseline dead reckoning model. Analysis of actual arrival traffic showed that this improved trajectory prediction accuracy leads to improved inter-arrival separation prediction accuracy for longer look ahead times. The difference in mean inter-arrival separation prediction error between the Fourier transform and dead reckoning models was 0.2 nmi for a look ahead time of 120 sec, a 33 percent improvement, with a corresponding 32 percent improvement in standard deviation.

  10. Identification of PM10 air pollution origins at a rural background site

    NASA Astrophysics Data System (ADS)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  11. Evaluation of balloon trajectory forecast routines for GAINS

    NASA Astrophysics Data System (ADS)

    Collander, R.; Girz, C.

    The Global Air-ocean IN-situ System (GAINS) is a global observing system designed to augment current environmental observing and monitoring networks. GAINS is a network of long-duration, stratospheric platforms that carry onboard sensors and hundreds of dropsondes to acquire meteorological, air chemistry, and climate data over oceans and in remote land regions of the globe. Although GAINS platforms will include balloons and Remotely Operated Aircraft (ROA), the scope of this paper is limited to balloon-based platforms. A primary goal of GAINS balloon test flights is post-flight recovery of the balloon shell and payload, which requires information on the expected flight path and landing site prior to launch. Software has been developed for the prediction of the balloon trajectory and landing site, with separate versions written to generate predictions based upon rawinsonde data and model output. Balloon positions are calculated in 1-min increments based on wind data from the closest rawinsonde site or model grid point, given a known launch point, ascent and descent rate and flight duration. For short flights (< 6h), rawinsonde winds interpolated to 10-mb levels are used for trajectory calculations. Predictions for flight durations of 6 to 48h are based upon the initialization and 3 h forecast wind fields from NOAA's global aviation- (AVN) and Rapid Update Cycle (RUC) models. Given a limited number of actual balloon launches, trajectories computed from a chronological series of hourly RUC initializations are used as the baseline for comparison purposes. These baseline trajectories are compared to trajectory predictions from the rawinsonde and model-based versions on a monthly and seasonal basis over a 1-year period (January 1 - December 31, 2001) for flight durations of 3h, 6h and 48h. Predicted trajectories diverge from the baseline path, with the divergence increasing with increasing time. We examine the zonal, meridional and net magnitudes of these deviations, and

  12. Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Curci, G.

    2014-11-01

    The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km) ∼ 0.04 - and shows a seasonal trend with a winter minimum - τa(3.5 km) ∼ 0.03 -, and a summer maximum - τa(3.5 km) ∼ 0.06 -, and an unexpected increase from August to September - τa(3.5 km) ∼ 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.

  13. Departure Trajectory Synthesis and the Intercept Problem

    NASA Technical Reports Server (NTRS)

    Bolender, Michael A.; Slater, G. L.

    1997-01-01

    Two areas of the departure problem in air traffic control are discussed. The first topic is the generation of climb-out trajectories to a fix. The trajectories would be utilized by a scheduling algorithm to allocate runways, sequence the proposed departures, and assign a departure time. The second area is concerned with finding horizontal trajectories to merge aircraft from the TRACON to an open slot in the en-route environment. Solutions are presented for the intercept problem for two cases: (1) the aircraft is traveling at the speed of the aircraft in the jetway; (2) the merging aircraft has to accelerate to reach the speed of the aircraft in the en-route stream. An algorithm is given regarding the computation of a solution for the latter case. For the former, a set of equations is given that allows us to numerically solve for the coordinate where the merge will occur.

  14. Fine-Grained Parcellation of Brain Connectivity Improves Differentiation of States of Consciousness During Graded Propofol Sedation.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Ward, B Douglas; Roberts, Christopher J; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Xu, Zhan; Chen, Guangyu; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G

    2017-08-01

    Conscious perception relies on interactions between spatially and functionally distinct modules of the brain at various spatiotemporal scales. These interactions are altered by anesthesia, an intervention that leads to fading consciousness. Relatively little is known about brain functional connectivity and its anesthetic modulation at a fine spatial scale. Here, we used functional imaging to examine propofol-induced changes in functional connectivity in brain networks defined at a fine-grained parcellation based on a combination of anatomical and functional features. Fifteen healthy volunteers underwent resting-state functional imaging in wakeful baseline, mild sedation, deep sedation, and recovery of consciousness. Compared with wakeful baseline, propofol produced widespread, dose-dependent functional connectivity changes that scaled with the extent to which consciousness was altered. The dominant changes in connectivity were associated with the frontal lobes. By examining node pairs that demonstrated a trend of functional connectivity change between wakefulness and deep sedation, quadratic discriminant analysis differentiated the states of consciousness in individual participants more accurately at a fine-grained parcellation (e.g., 2000 nodes) than at a coarse-grained parcellation (e.g., 116 anatomical nodes). Our study suggests that defining brain networks at a high granularity may provide a superior imaging-based distinction of the graded effect of anesthesia on consciousness.

  15. Environmental Baseline Survey Report for the Title Transfer of Land Parcel ED-4 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAIC

    2008-05-01

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of a land parcel referred to as 'ED-4' (ED-4) at the U. S. Department of Energy's (DOE's) East Tennessee Technology Park (ETTP). DOE is proposing to transfer the title of this land to the Heritage Center, LLC. Parcel ED-4 is a land parcel that consists of two noncontiguous areas comprising a total of approximately 18 acres located east of the ETTP. The western tract of ED-4 encompasses approximately 8.5 acres in the northeastern quadrant of the intersection of Boulevard Road and Highway 58. The eastern tract encompasses an areamore » of approximately 9.5 acres in the northwestern quadrant of the intersection of Blair Road and Highway 58 (the Oak Ridge Turnpike). Aerial photographs and site maps from throughout the history of the ETTP, going back to its initial development in the 1940s as the Oak Ridge Gaseous Diffusion Plant (ORGDP), indicate that this area has been undeveloped woodland with the exception of three support facilities for workers constructing the ORGDP since federal acquisition in 1943. These three support facilities, which were located in the western tract of ED-4, included a recreation hall, the Town Hall Camp Operations Building, and the Property Warehouse. A railroad spur also formerly occupied a portion of Parcel ED-4. These former facilities only occupied approximately 5 percent of the total area of Parcel ED-4. This report provides supporting information for the transfer of this government-owned property at ETTP to a non-federal entity. This EBS is based upon the requirements of Sect. 120(h) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). In order to support a Clean Parcel Determination (CPD) in accordance with CERCLA Sect. 120(h)(4)(d), groundwater and sediment samples were collected within, and adjacent to, the Parcel ED-4 study area. The potential for DOE to make a CPD for ED-4 is further supported

  16. Analysis of Trajectory Flexibility Preservation Impact on Traffic Complexity

    NASA Technical Reports Server (NTRS)

    Idris, Husni; El-Wakil, Tarek; Wing, David J.

    2009-01-01

    The growing demand for air travel is increasing the need for mitigation of air traffic congestion and complexity problems, which are already at high levels. At the same time new information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. In answer to this concern, the authors proposed the introduction of decision-making metrics for preserving user trajectory flexibility. The hypothesis is that such metrics will make user actions naturally mitigate traffic complexity. In this paper, the impact of using these metrics on traffic complexity is investigated. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a one-hour time horizon while mitigating the risk of loss of separation with the other aircraft, thus preserving its trajectory flexibility. The experiments showed promising results in that the individual trajectory flexibility preservation induced self-separation and self-organization effects in the overall traffic situation. The effects were quantified using traffic complexity metrics, namely dynamic density indicators, which indicated that using the flexibility metrics reduced aircraft density and the potential of loss of separation.

  17. Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon-222 and Back Trajectories

    NASA Astrophysics Data System (ADS)

    Chambers, S. D.; Choi, T.; Park, S.-J.; Williams, A. G.; Hong, S.-B.; Tositti, L.; Griffiths, A. D.; Crawford, J.; Pereira, E.

    2017-12-01

    We report on the first summer of high-sensitivity radon measurements from a two-filter detector at Jang Bogo Station (Terra Nova Bay) and contrast them with simultaneous observations at King Sejong Station (King George Island). King Sejong radon concentrations were characteristic of a marine baseline station (0.02-0.3 Bq m-3), whereas Jang Bogo values were highly variable (0.06-5.2 Bq m-3), mainly due to emissions from exposed coastal ground (estimated mean flux 0.09-0.11 atoms cm-2 s-1) and shallow atmospheric mixing depths. For wind speeds of ≤3.5 m s-1 the influence of local radon emissions became increasingly more prominent at both sites. A cluster analysis of back trajectories from King Sejong (62°S) revealed a fairly even distribution between air masses that had passed recently over South America, the Southern Ocean, and Antarctica, whereas at Jang Bogo (75°S) 80% of events had recently passed over the Ross Ice Shelf and West Antarctica, 12% were synoptically forced over Cape Adare, and 8% were associated with subsidence over the Antarctic interior and katabatic flow to the station. When cross-checked against radon concentrations, only half of the back trajectories ending at Jang Bogo that had indicated distant contact with nonpolar southern hemisphere continents within the past 10 days showed actual signs of terrestrial influence. A simple-to-implement technique based on high-pass filtered absolute humidity is developed to distinguish between predominantly katabatic, oceanic, and near-coastal air masses for characterization of trace gas and aerosol measurements at coastal East Antarctic sites.

  18. Relationship Between Chronic Obstructive Pulmonary Disease and Air Pollutants Depending on the Origin and Trajectory of Air Masses in the North of Spain.

    PubMed

    Santurtún, Ana; Rasilla, Domingo F; Riancho, Leyre; Zarrabeitia, María T

    2017-11-01

    Chronic obstructive pulmonary disease (COPD) is a common respiratory condition and one of the leading causes of death. Our aim was to analyze the association between emergency room visits due to this disease and meteorological variables and atmospheric contaminant levels in Santander, depending on the origin and trajectory of air masses. Data from emergency room visits at Hospital Marqués de Valdecilla were collected on a daily basis during an 8-year period. Data on concentrations of the main atmospheric pollutants and meteorological variables were also recorded.Retrotrajectories leading to Santander at a height of1,500 meters above sea level were then calculated. Finally, a correlation model was produced to evaluate the effect of the contaminants on emergency visitsdue to COPD. There is a direct association between PM 10 levels and the number of visits to the emergency room due to COPD. For every 10μg/m3 increase in pollutantlevels, emergency visitsincrease by3.34% (p=0.00005), and thiseffect is enhanced in individualsover 74 years of age. This effect is heightened when PM10 levels depend on air masses from the South and when air recirculation occurs. There is no association betweenother pollutants and the number of visits to the emergency room. Exposure to high levels of PM10 causes exacerbations in COPD patients. By studying the atmospheric circulation pattern, we can predict whether PM10 levels will be inappropriately high, and we can also obtain information about the particle components. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Parcels v0.9: prototyping a Lagrangian ocean analysis framework for the petascale age

    NASA Astrophysics Data System (ADS)

    Lange, Michael; van Sebille, Erik

    2017-11-01

    As ocean general circulation models (OGCMs) move into the petascale age, where the output of single simulations exceeds petabytes of storage space, tools to analyse the output of these models will need to scale up too. Lagrangian ocean analysis, where virtual particles are tracked through hydrodynamic fields, is an increasingly popular way to analyse OGCM output, by mapping pathways and connectivity of biotic and abiotic particulates. However, the current software stack of Lagrangian ocean analysis codes is not dynamic enough to cope with the increasing complexity, scale and need for customization of use-cases. Furthermore, most community codes are developed for stand-alone use, making it a nontrivial task to integrate virtual particles at runtime of the OGCM. Here, we introduce the new Parcels code, which was designed from the ground up to be sufficiently scalable to cope with petascale computing. We highlight its API design that combines flexibility and customization with the ability to optimize for HPC workflows, following the paradigm of domain-specific languages. Parcels is primarily written in Python, utilizing the wide range of tools available in the scientific Python ecosystem, while generating low-level C code and using just-in-time compilation for performance-critical computation. We show a worked-out example of its API, and validate the accuracy of the code against seven idealized test cases. This version 0.9 of Parcels is focused on laying out the API, with future work concentrating on support for curvilinear grids, optimization, efficiency and at-runtime coupling with OGCMs.

  20. ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation

    NASA Technical Reports Server (NTRS)

    Carter, A. B.; Klug, G. W.; Williams, N. W.

    1975-01-01

    Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.

  1. The fields of mean concentration in potential sources of ammonium sulphate, ammonium nitrate and natural silicates for the west of Moscow region

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Shukurova, L. M.

    2017-11-01

    According to measurements in 2002-2015 of concentrations of ammonium nitrate, ammonium sulfate and natural silicates in aerosol samples with particles in the range of 1-2 μm in diameter at the Zvenigorod scientific station (55.7° N, 36.8° E) of the A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences and simulation of backward trajectories of air parcels using the trajectory model NOAA HYSPLIT_4 by means of CWT (concentration weighted trajectory) method, the average fields of capacity (in unit of concentration) of potential sources of these admixtures and their sum for the west of Moscow region were obtained. The patterns of large-scale atmospheric circulation, which favoring the transfer of these admixtures from their regions of the most probable potential sources to the western Moscow region, are analyzed.

  2. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  3. A Comparison of Two Methods for Initiating Air Mass Back Trajectories

    NASA Astrophysics Data System (ADS)

    Putman, A.; Posmentier, E. S.; Faiia, A. M.; Sonder, L. J.; Feng, X.

    2014-12-01

    Lagrangian air mass tracking programs in back cast mode are a powerful tool for estimating the water vapor source of precipitation events. The altitudes above the precipitation site where particle's back trajectories begin influences the source estimation. We assume that precipitation comes from water vapor in condensing regions of the air column, so particles are placed in proportion to an estimated condensation profile. We compare two methods for estimating where condensation occurs and the resulting evaporation sites for 63 events at Barrow, AK. The first method (M1) uses measurements from a 35 GHz vertically resolved cloud radar (MMCR), and algorithms developed by Zhao and Garrett1 to calculate precipitation rate. The second method (M2) uses the Global Data Assimilation System reanalysis data in a lofting model. We assess how accurately M2, developed for global coverage, will perform in absence of direct cloud observations. Results from the two methods are statistically similar. The mean particle height estimated by M2 is, on average, 695 m (s.d. = 1800 m) higher than M1. The corresponding average vapor source estimated by M2 is 1.5⁰ (s.d. = 5.4⁰) south of M1. In addition, vapor sources for M2 relative to M1 have ocean surface temperatures averaging 1.1⁰C (s.d. = 3.5⁰C) warmer, and reported ocean surface relative humidities 0.31% (s.d. = 6.1%) drier. All biases except the latter are statistically significant (p = 0.02 for each). Results were skewed by events where M2 estimated very high altitudes of condensation. When M2 produced an average particle height less than 5000 m (89% of events), M2 estimated mean particle heights 76 m (s.d. = 741 m) higher than M1, corresponding to a vapor source 0.54⁰ (s.d. = 4.2⁰) south of M1. The ocean surface at the vapor source was an average of 0.35⁰C (s.d. = 2.35⁰C) warmer and ocean surface relative humidities were 0.02% (s.d. = 5.5%) wetter. None of the biases was statistically significant. If the vapor source

  4. Chemical Characteristics of Continental Outflow from Asia to the Troposphere Over the Western Pacific Ocean during February - March 1994: Results from PEM-West B

    NASA Technical Reports Server (NTRS)

    Talbot, R. W.; Dibb, J. E.; Lefer, B. L.; Bradshaw, J. D.; Sandholm, S. T.; Blake, D. R.; Blake, N. J.; Sachse, G. W.; Sachse, G. W.; Heikes, B. G.; hide

    1997-01-01

    We present here the chemical composition of outflow from the Asian continent to the atmosphere over the western Pacific basin during the Pacific Exploratory Mission-West (PEM-West B) in February-March 1994. Comprehensive measurements of important tropospheric trace gases and aerosol particulate matter were performed from the NASA DC-8 airborne laboratory. Backward 5 day isentropic trajectories were used to partition the outflow from two major source regions- continental north (greater than 20 deg N) and continental south (less than 20 deg N). Air parcels that had not passed over continental areas for the previous 5 days were classified as originating from an aged marine source. The trajectories and the chemistry together indicated that there was extensive rapid outflow of air parcels at altitudes below 5 km, while aged marine air was rarely encountered and only at less than 20 deg N latitude. The outflow at low altitudes had enhancements in common industrial solvent vapors such as C2Cl4, CH3CCl3, and C6H6, intermixed with the combustion emission products C2H2, C2H6, CO, and NO. The mixing ratios of all species were up to tenfold greater in outflow from the continental north compared to the continental south source region, with Pb-210 concentrations reaching 38 fCi (10(exp -15) curies) per standard cubic meter. In the upper troposphere we again observed significant enhancements in combustion-derived species in the 8-10 km altitude range, but water-soluble trace gases and aerosol species were depleted. These observations suggest that ground level emissions were lofted to the upper troposphere by wet convective systems which stripped water-soluble components from these air parcels. There were good correlations between C2H2 and CO and C2H6 (r(sup 2) = 0.70 - 0.97) in these air parcels and much weaker ones between C2H2 and H2O2 or CH3OOH (r(sup 2) = 0.50). These correlations were the strongest in the continental north outflow where combustion inputs appeared to be

  5. Effects of parcelization and land divestiture on forest sustainability in simulated forest landscapes

    Treesearch

    Eric J. Gustafson; Craig Loehle

    2006-01-01

    Ownership parcelization of forest land and divestiture of industrial forest land is increasing throughout the U.S. This may affect (positively or negatively) the ability of forested landscapes to produce benefits that society values, such as fiber, biodiversity and recreation. We used a timber harvest simulator and neutral model landscapes to systematically study how...

  6. Oblique along path toward structures at rear of parcel. Original ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique along path toward structures at rear of parcel. Original skinny mosaic path along edge of structures was altered (delineation can be seen in concrete) path was widened with a newer mosaic to make access to the site safer. Structures (from right) edge of Round House (with "Spring Garden"), Pencil house, Shell House, School House, wood lattice is attached to chain-link fence along north (rear) property line. These structures were all damaged by the 1994 Northridge earthquake. Camera facing northeast. - Grandma Prisbrey's Bottle Village, 4595 Cochran Street, Simi Valley, Ventura County, CA

  7. Using natural beta emission for detecting concealed tobacco in parcels

    NASA Astrophysics Data System (ADS)

    Myers, Jeremy; Hussein, Esam M. A.

    2007-10-01

    It is suspected that postal systems are used for the illegal shipment of tobacco products to circumvent taxation and excise payments. This paper demonstrates that beta-particle emission from the potassium-40 contained in tobacco can be used to passively detect its presence in paperboard postal parcels. The same concept can be utilized for the detection of marijuana, whose leaves are also rich in 40K. The combination of high beta activity and a low weight is a good indicator of the presence of these two contraband materials.

  8. Private forestland parcelization and development in Wisconsin's Northwoods: perceptions of resource-oriented stakeholders

    Treesearch

    Paul H. Gobster; Mark G. Rickenbach

    2004-01-01

    Increases in the parcelization and development of private forestlands in the US and other countries have become a major concern of natural resource agencies and groups. This concern is particularly heightened in heavily forested areas such as Wisconsin's "Northwoods," where private lands make up a majority of the forest area and play a critical role in...

  9. Plume trajectory formation under stack tip self-enveloping

    NASA Astrophysics Data System (ADS)

    Gribkov, A. M.; Zroichikov, N. A.; Prokhorov, V. B.

    2017-10-01

    The phenomenon of stack tip self-enveloping and its influence upon the conditions of plume formation and on the trajectory of its motion are considered. Processes are described occurring in the initial part of the plume while the interaction between vertically directed flue gases outflowing from the stack and a horizontally directed moving air flow at high wind velocities that lead to the formation of a flag-like plume. Conditions responsible for the origin and evolution of interaction between these flows are demonstrated. For the first time, a plume formed under these conditions without bifurcation is registered. A photo image thereof is presented. A scheme for the calculation of the motion of a plume trajectory is proposed, the quantitative characteristics of which are obtained based on field observations. The wind velocity and direction, air temperature, and atmospheric turbulence at the level of the initial part of the trajectory have been obtained based on data obtained from an automatic meteorological system (mounted on the outer parts of a 250 m high stack no. 1 at the Naberezhnye Chelny TEPP plant) as well as based on the results of photographing and theodolite sighting of smoke puffs' trajectory taking into account their velocity within its initial part. The calculation scheme is supplemented with a new acting force—the force of self-enveloping. Based on the comparison of the new calculation scheme with the previous one, a significant contribution of this force to the development of the trajectory is revealed. A comparison of the natural full-scale data with the results of the calculation according to the proposed new scheme is made. The proposed calculation scheme has allowed us to extend the application of the existing technique to the range of high wind velocities. This approach would make it possible to simulate and investigate the trajectory and full rising height of the calculated the length above the mouth of flue-pipes, depending on various modal

  10. The influence of south foehn on the ozone mixing ratios at the high alpine site Arosa

    NASA Astrophysics Data System (ADS)

    Campana, Mike; Li, Yingshi; Staehelin, Johannes; Prevot, Andre S. H.; Bonasoni, Paolo; Loetscher, Hanspeter; Peter, Thomas

    Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5-10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NO y versus O 3 correlation and comparison of O 3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.

  11. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  12. Chemical trends in background air quality and the ionic composition of precipitation for the period 1980-2004 from samples collected at Valentia Observatory, Co. Kerry, Ireland.

    PubMed

    Bashir, Wasim; McGovern, Frank; O'Brien, Phillip; Ryan, Margaret; Burke, Liam; Paull, Brett

    2008-06-01

    A major Irish study, based upon more than 8000 samples collected over the measurement period of 22 years, for sulfur dioxide (SO2-S), sulfate (SO4-S) and nitrogen dioxide (NO2-N) concentrations (microg m(-3)) within air, and the ionic composition of precipitation samples based on sodium (Na+), potassium (K+), magnesium (Mg2+), calcium (Ca2+), chloride (Cl-), sulfate (SO4-S), non-sea salt sulfate (nssSO4-S), ammonium (NH4-N), and nitrate (NO3-N) weighted mean concentrations (mg l(-1)), has been completed. For the air samples, the sulfur dioxide and sulfate concentrations decreased over the sampling period (1980-2004) by 75% and 45%, respectively, whereas no significant trend was observed for nitrogen dioxide. The highest concentrations for sulfur dioxide, sulfate and nitrogen dioxide were associated with wind originating from the easterly and northeasterly directions i.e. those influenced by Irish and European sources. The lowest concentrations were associated with the westerly directions i.e. for air masses originating in the North Atlantic region. This was further verified with the use of backward (back) trajectory analysis, which allowed tracing the movement of air parcels using the European Centre for Medium range Weather Forecasting (ECMWF) ERA-40 re-analysis data. High non-sea salt sulfate levels were being associated with air masses originating from Europe (easterlies) with lower levels from the Atlantic (westerlies). With the precipitation data, analysis of the non-sea salt sulfate concentrations showed a decrease by 47% since the measurements commenced.

  13. Guidance on EPA Concurrence in the Identification of Uncontaminated Parcels under CERCLA Section 120 (h)(4)

    EPA Pesticide Factsheets

    This memorandum addresses the approach EPA should use in determining whether to concur that a parcel has been properly identified by a military service as 'uncontaminated' and therefore transferrable pursuant to CERCLA Section 120 (h)(4).

  14. Handling Trajectory Uncertainties for Airborne Conflict Management

    NASA Technical Reports Server (NTRS)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  15. Modulation of Winter Precipitation Dynamics Over the Arabian Gulf by ENSO

    NASA Astrophysics Data System (ADS)

    Sandeep, S.; Ajayamohan, R. S.

    2018-01-01

    The Arabian Gulf (Gulf) and the surrounding regions are centers of intense economic activity. The precipitating weather systems that form over the Gulf are important for this predominantly arid region. It is suggested that El Niño-Southern Oscillation (ENSO) influences the Middle East precipitation variability through an equatorward shift of the subtropical jet. Here we present compelling evidence to illustrate the role of ENSO in modulating the local dynamics and moisture transport in initiating precipitation during different ENSO phases using satellite and reanalysis data. It is found that the moisture transport from the Red and Arabian Seas toward the Gulf is stronger during El Niño years. The pattern and strength of moisture transport toward the Gulf is weakened during La Niña and neutral years, with most of the transport directed toward the northern Gulf. Using a 120 h back trajectory analysis, it is found that while the air parcels coming toward the Gulf from the Arabian and Red Seas side originate at lower tropospheric levels, the air parcels from the Mediterranean originate at middle and upper tropospheric levels during El Niño years. In contrast, upper tropospheric air parcels originating over the southern Arabian Sea plays a dominant role on Gulf precipitation during La Niña and neutral years. The seasonal mean transients of zonal winds show a robust ENSO signature over the Gulf, indicating a favorable (less favorable) condition for the penetration of midlatitude eddies over the region during El Niño (La Niña) winters.

  16. Survey and Method for Determination of Trajectory Predictor Requirements

    NASA Technical Reports Server (NTRS)

    Rentas, Tamika L.; Green, Steven M.; Cate, Karen Tung

    2009-01-01

    A survey of air-traffic-management researchers, representing a broad range of automation applications, was conducted to document trajectory-predictor requirements for future decision-support systems. Results indicated that the researchers were unable to articulate a basic set of trajectory-prediction requirements for their automation concepts. Survey responses showed the need to establish a process to help developers determine the trajectory-predictor-performance requirements for their concepts. Two methods for determining trajectory-predictor requirements are introduced. A fast-time simulation method is discussed that captures the sensitivity of a concept to the performance of its trajectory-prediction capability. A characterization method is proposed to provide quicker, yet less precise results, based on analysis and simulation to characterize the trajectory-prediction errors associated with key modeling options for a specific concept. Concept developers can then identify the relative sizes of errors associated with key modeling options, and qualitatively determine which options lead to significant errors. The characterization method is demonstrated for a case study involving future airport surface traffic management automation. Of the top four sources of error, results indicated that the error associated with accelerations to and from turn speeds was unacceptable, the error associated with the turn path model was acceptable, and the error associated with taxi-speed estimation was of concern and needed a higher fidelity concept simulation to obtain a more precise result

  17. Lagrangian photochemical modeling studies of the 1987 Antarctic spring vortex. I - Comparison with AAOE observations

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Austin, J.; Mckenna, D. S.; Anderson, J. G.; Fahey, D. W.; Farmer, C. B.; Vedder, J. F.

    1989-01-01

    Results from the Lagrangian photochemical model integrated along computed air parcel trajectories intersected by the ER-2 aircraft are presented and compared with AAOE observations. According to the model, the BrO observations made from the ER-2 within the dehydrated denitrified region are consistent with there being approximately 5 parts per trillion by volume of BrO(y) at 428 K in spring. Within the high ClO region, ozone destruction rates are expected to exceed 2 percent/d with approximately 80 percent due to the ClO dimer mechanism.

  18. Experimental Evaluation of an Integrated Datalink and Automation-Based Strategic Trajectory Concept

    NASA Technical Reports Server (NTRS)

    Mueller, Eric

    2007-01-01

    This paper presents research on the interoperability of trajectory-based automation concepts and technologies with modern Flight Management Systems and datalink communication available on many of today s commercial aircraft. A tight integration of trajectory-based ground automation systems with the aircraft Flight Management System through datalink will enable mid-term and far-term benefits from trajectory-based automation methods. A two-way datalink connection between the trajectory-based automation resident in the Center/TRACON Automation System and the Future Air Navigation System-1 integrated FMS/datalink in NASA Ames B747-400 Level D simulator has been established and extensive simulation of the use of datalink messages to generate strategic trajectories completed. A strategic trajectory is defined as an aircraft deviation needed to solve a conflict or honor a route request and then merge the aircraft back to its nominal preferred trajectory using a single continuous trajectory clearance. Engineers on the ground side of the datalink generated lateral and vertical trajectory clearances and transmitted them to the Flight Management System of the 747; the airborne automation then flew the new trajectory without human intervention, requiring the flight crew only to review and to accept the trajectory. This simulation established the protocols needed for a significant majority of the trajectory change types required to solve a traffic conflict or deviate around weather. This demonstration provides a basis for understanding the requirements for integration of trajectory-based automation with current Flight Management Systems and datalink to support future National Airspace System operations.

  19. Design and implementation of an air monitoring program in support of a brownfields redevelopment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maisel, B.E.; Hunt, G.T.; Devaney, R.J. Jr.

    EPA`s Brownfields Economic Redevelopment Initiative has sparked renewal of industrial and commercial parcels otherwise idled or under-utilized because of real or perceived environmental contamination. In certain cases, restoring such parcels to productive economic use requires a redevelopment effort protective of human health and welfare through minimizing offsite migration of environmental contaminants during cleanup, demolition and remediation activities. To support these objectives, an air monitoring program is often required as an integral element of a comprehensive brownfields redevelopment effort. This paper presents a strategic framework for design and execution of an ambient air monitoring program in support of a brownfields remediationmore » effort ongoing in Lawrence, MA. Based on site characterization, the program included sample collection and laboratory analysis of ambient air samples for polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), total suspended particulate (TSP), inhalable particulate (PM10), and lead. The program included four monitoring phases, identified as background, wintertime, demolition/remediation and post-demolition. Air sampling occurred over a 16 month period during 1996--97, during which time nine sampling locations were utilized to produce approximately 1,500 ambient air samples. Following strict data review and validation procedures, ambient air data interpretation focused on the following: evaluation of upwind/downwind sample pairs, comparison of ambient levels to existing regulatory standards, relation of ambient levels to data reported in the open literature, and, determination of normal seasonal variations in existing background burden, comparison of ambient levels measured during site activity to background levels.« less

  20. A trajectory modeling investigation of the biomass burning-tropical ozone relationship

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Thompson, Anne M.; Mcnamara, Donna P.; Schoeberl, Mark R.; Lait, Leslie R.; Newman, Paul A.; Justice, Christopher O.; Kendall, Jacqueline D.

    1994-01-01

    The hypothesis that tropical total O3 maxima seen by the TOMS satellite derive from African biomass burning has been tested using isentropic trajectory analyses with global meteorological data fields. Two case studies from the 1989 biomass burning season demonstrate that a large fraction of the air arriving at the location of TOMS O3 maxima passed over regions of intense burning. Other trajectories initiated at a series of points over Africa and the Atlantic suggest flight strategies for field studies to be conducted in September 1992.

  1. M-TraCE: a new tool for high-resolution computation and statistical elaboration of backward trajectories on the Italian domain

    NASA Astrophysics Data System (ADS)

    Vitali, Lina; Righini, Gaia; Piersanti, Antonio; Cremona, Giuseppe; Pace, Giandomenico; Ciancarella, Luisella

    2017-12-01

    Air backward trajectory calculations are commonly used in a variety of atmospheric analyses, in particular for source attribution evaluation. The accuracy of backward trajectory analysis is mainly determined by the quality and the spatial and temporal resolution of the underlying meteorological data set, especially in the cases of complex terrain. This work describes a new tool for the calculation and the statistical elaboration of backward trajectories. To take advantage of the high-resolution meteorological database of the Italian national air quality model MINNI, a dedicated set of procedures was implemented under the name of M-TraCE (MINNI module for Trajectories Calculation and statistical Elaboration) to calculate and process the backward trajectories of air masses reaching a site of interest. Some outcomes from the application of the developed methodology to the Italian Network of Special Purpose Monitoring Stations are shown to assess its strengths for the meteorological characterization of air quality monitoring stations. M-TraCE has demonstrated its capabilities to provide a detailed statistical assessment of transport patterns and region of influence of the site under investigation, which is fundamental for correctly interpreting pollutants measurements and ascertaining the official classification of the monitoring site based on meta-data information. Moreover, M-TraCE has shown its usefulness in supporting other assessments, i.e., spatial representativeness of a monitoring site, focussing specifically on the analysis of the effects due to meteorological variables.

  2. Identification of aerosol types over an urban site based on air-mass trajectory classification

    NASA Astrophysics Data System (ADS)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  3. Design and Analysis of Optimal Ascent Trajectories for Stratospheric Airships

    NASA Astrophysics Data System (ADS)

    Mueller, Joseph Bernard

    Stratospheric airships are lighter-than-air vehicles that have the potential to provide a long-duration airborne presence at altitudes of 18-22 km. Designed to operate on solar power in the calm portion of the lower stratosphere and above all regulated air traffic and cloud cover, these vehicles represent an emerging platform that resides between conventional aircraft and satellites. A particular challenge for airship operation is the planning of ascent trajectories, as the slow moving vehicle must traverse the high wind region of the jet stream. Due to large changes in wind speed and direction across altitude and the susceptibility of airship motion to wind, the trajectory must be carefully planned, preferably optimized, in order to ensure that the desired station be reached within acceptable performance bounds of flight time and energy consumption. This thesis develops optimal ascent trajectories for stratospheric airships, examines the structure and sensitivity of these solutions, and presents a strategy for onboard guidance. Optimal ascent trajectories are developed that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct transcription to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across

  4. Cold trap dehydration in the Tropical Tropopause Layer characterised by SOWER chilled-mirror hygrometer network data in the Tropical Pacific

    NASA Astrophysics Data System (ADS)

    Hasebe, F.; Inai, Y.; Shiotani, M.; Fujiwara, M.; Vömel, H.; Nishi, N.; Ogino, S.-Y.; Shibata, T.; Iwasaki, S.; Komala, N.; Peter, T.; Oltmans, S. J.

    2013-04-01

    A network of balloon-borne radiosonde observations employing chilled-mirror hygrometers for water and electrochemical concentration cells for ozone has been operated since the late 1990s in the Tropical Pacific to capture the evolution of dehydration of air parcels advected quasi-horizontally in the Tropical Tropopause Layer (TTL). The analysis of this dataset is made on isentropes taking advantage of the conservative properties of tracers moving adiabatically. The existence of ice particles is diagnosed by lidars simultaneously operated with sonde flights. Characteristics of the TTL dehydration are presented on the basis of individual soundings and statistical features. Supersaturations close to 80% in relative humidity with respect to ice (RHice) have been observed in subvisible cirrus clouds located near the cold point tropopause at extremely low temperatures around 180 K. Although further observational evidence is needed to confirm the credibility of such high values of RHice, the evolution of TTL dehydration is evident from the data in isentropic scatter plots between the sonde-observed mixing ratio (OMR) and the minimum saturation mixing ratio (SMRmin) along the back trajectories associated with the observed air mass. Supersaturation exceeding the critical value of homogeneous ice nucleation (OMR > 1.6 × SMRmin) is frequently observed on the 360 and 365 K surfaces indicating that cold trap dehydration is in progress in the TTL. The near correspondence between the two (OMR ~ SMRmin) at 380 K on the other hand implies that this surface is not sufficiently cold for the advected air parcels to be dehydrated. Above 380 K, cold trap dehydration would scarcely function while some moistening occurs before the air parcels reach the lowermost stratosphere at around 400 K where OMR is generally smaller than SMRmin.

  5. Parcellations and Hemispheric Asymmetries of Human Cerebral Cortex Analyzed on Surface-Based Atlases

    PubMed Central

    Glasser, Matthew F.; Dierker, Donna L.; Harwell, John; Coalson, Timothy

    2012-01-01

    We report on surface-based analyses that enhance our understanding of human cortical organization, including its convolutions and its parcellation into many distinct areas. The surface area of human neocortex averages 973 cm2 per hemisphere, based on cortical midthickness surfaces of 2 cohorts of subjects. We implemented a method to register individual subjects to a hybrid version of the FreeSurfer “fsaverage” atlas whose left and right hemispheres are in precise geographic correspondence. Cortical folding patterns in the resultant population-average “fs_LR” midthickness surfaces are remarkably similar in the left and right hemispheres, even in regions showing significant asymmetry in 3D position. Both hemispheres are equal in average surface area, but hotspots of surface area asymmetry are present in the Sylvian Fissure and elsewhere, together with a broad pattern of asymmetries that are significant though small in magnitude. Multiple cortical parcellation schemes registered to the human atlas provide valuable reference data sets for comparisons with other studies. Identified cortical areas vary in size by more than 2 orders of magnitude. The total number of human neocortical areas is estimated to be ∼150 to 200 areas per hemisphere, which is modestly larger than a recent estimate for the macaque. PMID:22047963

  6. The Relationship of Loss, Mean Age of Air and the Distribution of CFC's to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglas, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Gupta, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2008-01-01

    Model-derived estimates of the annually integrated destruction and lifetime for various ozone depleting substances (ODSs) depend on the simulated stratospheric transport and mixing in the global model used to produce the estimate. Observations in the middle and high latitude lower stratosphere show that the mean age of an air parcel (i.e., the time since its stratospheric entry) is related to the fractional release for the ODs (i.e., the amount of the ODS that has been destroyed relative to the amount at the time of stratospheric entry). We use back trajectory calculations to produce an age spectrum, and explain the relationship between the mean age and the fractional release by showing that older elements in the age spectrum have experienced higher altitudes and greater ODs destruction than younger elements. In our study, models with faster circulations produce distributions for the age-of-air that are 'young' compared to a distribution derived from observations. These models also fail to reproduce the observed relationship between the mean age of air and the fractional release. Models with slower circulations produce both realistic distributions for mean age and a realistic relationship between mean age and fractional release. These models also produce a CFCl3 lifetime of approximately 56 years, longer than the 45 year lifetime used to project future mixing ratios. We find that the use of flux boundary conditions in assessment models would have several advantages, including consistency between ODS evolution and simulated loss even if the simulated residual circulation changes due to climate change.

  7. The impact of biomass burning in North Korea to the air quality in Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, I.; Lee, J.; Kim, Y.

    2011-12-01

    South Korea is contiguous to China, Japan and North Koreas, so air pollutants transported from outside South Korea should be investigated. Nevertheless, few researches have dealt with the influences of air pollutants from North Korea to other areas. The objectives of this study are to understand the influences of air pollutants' emission from North Korea to South Korea, especially Seoul, using the chemical mass balance (CMB) model and the backward trajectory analysis. CMB model were applied to analyze the source apportionment of PAHs at Seoul between 2006 and 2007. To understand the transport of air pollutants emitted from North Korea, the backward trajectories in sampling days were classified to four cases depending on which area the trajectories predominantly passed through. Based on the contribution of biomass burning calculated by CMB and the trajectories, the influence of air pollutants from North Korea to Seoul is quantified. In order to strengthen the uncertainty of CMB result, the trend of levoglucosan (1,6-anhydro-b-D-glucopyranose) concentration at Seoul is also discussed depending on the classification of trajectories.

  8. Brominated flame retardants in the surrounding soil of two manufacturing plants in China: Occurrence, composition profiles and spatial distribution.

    PubMed

    Li, Wen-Long; Liu, Li-Yan; Zhang, Zi-Feng; Song, Wei-Wei; Huo, Chun-Yan; Qiao, Li-Na; Ma, Wan-Li; Li, Yi-Fan

    2016-06-01

    Surface soil samples were collected surrounding two brominated flame retardants (BFRs) manufacturing plants in China in August 2014 and analyzed for 23 polybrominated diphenyl ethers (PBDEs) and 8 novel brominated flame retardants (NBFRs). BDE209 and decabromodiphenylethane (DBDPE) were the predominant compounds in soil with the median levels of 1600 and 560 ng/g dw, respectively. The PBDEs profiles in soil samples were consistent with that of commercial product (comDecaBDE). The percentage contributions to total PBDEs decreased from higher to lower brominated homologues. Lower concentrations of NBFRs (excluding DBDPE) were detected in soil surrounding the two plants, suggesting they are byproducts or degradation products of the manufacturing activities. The concentrations of most BFRs dropped exponentially within 3-5 km of the manufacturing plants, suggesting recent deposition of these compounds to the soil. Directional distribution indicated that PBDEs and DBDPE concentrations were highest in the north direction of Plants 1. Three-day air parcel forward trajectories confirmed that the air parcel was responsible for the higher concentration of BFRs in the soil of north direction of the plant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study.

    PubMed

    Zhang, Xianchang; Cheng, Hewei; Zuo, Zhentao; Zhou, Ke; Cong, Fei; Wang, Bo; Zhuo, Yan; Chen, Lin; Xue, Rong; Fan, Yong

    2018-01-01

    The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo . In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.

  10. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    NASA Astrophysics Data System (ADS)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  11. Heuristics for connectivity-based brain parcellation of SMA/pre-SMA through force-directed graph layout.

    PubMed

    Crippa, Alessandro; Cerliani, Leonardo; Nanetti, Luca; Roerdink, Jos B T M

    2011-02-01

    We propose the use of force-directed graph layout as an explorative tool for connectivity-based brain parcellation studies. The method can be used as a heuristic to find the number of clusters intrinsically present in the data (if any) and to investigate their organisation. It provides an intuitive representation of the structure of the data and facilitates interactive exploration of properties of single seed voxels as well as relations among (groups of) voxels. We validate the method on synthetic data sets and we investigate the changes in connectivity in the supplementary motor cortex, a brain region whose parcellation has been previously investigated via connectivity studies. This region is supposed to present two easily distinguishable connectivity patterns, putatively denoted by SMA (supplementary motor area) and pre-SMA. Our method provides insights with respect to the connectivity patterns of the premotor cortex. These present a substantial variation among subjects, and their subdivision into two well-separated clusters is not always straightforward. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.

  13. Cirrus Parcel Model Comparison Project. Phase 1: The Critical Components to Simulate Cirrus Initiation Explicitly.

    NASA Astrophysics Data System (ADS)

    Lin, Ruei-Fong; O'C. Starr, David; Demott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Kärcher, Bernd; Liu, Xiaohong

    2002-08-01

    laboratory studies, but each includes assumptions that can only be justified by further laboratory research. Consequently, it is not yet clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (0.2-1 m s1) at 60°C. The equilibrium assumption is commonly invoked in cirrus parcel models. The resulting difference in particle-size-dependent solution concentration of haze particles may significantly affect the ice particle formation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of particle number concentration and ice crystal diffusional growth rate, which is particularly sensitive to the deposition coefficient when ice particles are small, modulates the peak particle formation rate achieved in an air parcel and the duration of the active nucleation time period. The consequent differences in cloud microphysical properties, and thus cloud optical properties, between state-of-the-art models of ice crystal initiation are significant.Intermodel differences in the case of all-mode simulations are correspondingly greater than in the case of homogeneous nucleation acting alone. Definitive laboratory and atmospheric benchmark data are needed to improve the treatment of heterogeneous nucleation processes.

  14. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    NASA Technical Reports Server (NTRS)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  15. Point-Mass Aircraft Trajectory Prediction Using a Hierarchical, Highly-Adaptable Software Design

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Woods, Sharon E.; Wing, David J.

    2017-01-01

    A highly adaptable and extensible method for predicting four-dimensional trajectories of civil aircraft has been developed. This method, Behavior-Based Trajectory Prediction, is based on taxonomic concepts developed for the description and comparison of trajectory prediction software. A hierarchical approach to the "behavioral" layer of a point-mass model of aircraft flight, a clear separation between the "behavioral" and "mathematical" layers of the model, and an abstraction of the methods of integrating differential equations in the "mathematical" layer have been demonstrated to support aircraft models of different types (in particular, turbojet vs. turboprop aircraft) using performance models at different levels of detail and in different formats, and promise to be easily extensible to other aircraft types and sources of data. The resulting trajectories predict location, altitude, lateral and vertical speeds, and fuel consumption along the flight path of the subject aircraft accurately and quickly, accounting for local conditions of wind and outside air temperature. The Behavior-Based Trajectory Prediction concept was implemented in NASA's Traffic Aware Planner (TAP) flight-optimizing cockpit software application.

  16. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    NASA Astrophysics Data System (ADS)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  17. A regularized clustering approach to brain parcellation from functional MRI data

    NASA Astrophysics Data System (ADS)

    Dillon, Keith; Wang, Yu-Ping

    2017-08-01

    We consider a data-driven approach for the subdivision of an individual subject's functional Magnetic Resonance Imaging (fMRI) scan into regions of interest, i.e., brain parcellation. The approach is based on a computational technique for calculating resolution from inverse problem theory, which we apply to neighborhood selection for brain connectivity networks. This can be efficiently calculated even for very large images, and explicitly incorporates regularization in the form of spatial smoothing and a noise cutoff. We demonstrate the reproducibility of the method on multiple scans of the same subjects, as well as the variations between subjects.

  18. Sub-parcel terroir mapping supported by UAV-based hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Takács, Katalin; Árvai, Mátyás; Koós, Sándor; Deák, Márton; Bakacsi, Zsófia; László, Péter; Pásztor, László

    2017-04-01

    There is a greater need to better understand the regional-to-parcel variations in viticultural potential. The differentiation and mapping of the variability of grape and wine quality require comprehensive spatial modelling of climatic, topographic and soil properties and a "terroir-based approach". Using remote and proximal sensing sensors and instruments are the most effective way for surveying vineyard status, such as geomorphologic and soil conditions, plant water and nutrient availability, plant health. UAV (Unmanned Aerial Vechicle) platforms are ideal for the remote monitoring of small and medium size vineyards, because flight planning is flexible and very high spatial ground resolution (even centimeters) can be achieved. Using hyperspectral remote sensing techniques the spectral response of the vegetation and the bare soil surface can be analyzed in very high spectral resolution, which can support terroir mapping on a sub-parcel level. Our study area is located in Hungary, in the Tokaj Wine Region, which is a historical region for botrityzed dessert wine making. The area of Tokaj Wine Region was formed mostly by Miocene volcanic activity, where andesite, rhyolite lavas and tuffs are characteristic and loess cover also occurs in some regions. The various geology and morphology of this area result diversity in soil types and soil properties as well. The study site was surveyed by a Cubert UHD-185 hyperspectral camera set on a Cortex Octocopter platform. The hyperspectral images were acquired in VIS-NIR (visible and near-infrared; 450-950 nm), with 4 nm sampling interval. The image acquisition was carried out at bare soil conditions, therefore the most important soil properties, which has dominant role by the delineation of terroir, can be predicted. In our paper we will present the first results of the hyperspectral survey.

  19. Unravelling the Intrinsic Functional Organization of the Human Striatum: A Parcellation and Connectivity Study Based on Resting-State fMRI

    PubMed Central

    Jung, Wi Hoon; Jang, Joon Hwan; Park, Jin Woo; Kim, Euitae; Goo, Eun-Hoe; Im, Oh-Soo; Kwon, Jun Soo

    2014-01-01

    As the main input hub of the basal ganglia, the striatum receives projections from the cerebral cortex. Many studies have provided evidence for multiple parallel corticostriatal loops based on the structural and functional connectivity profiles of the human striatum. A recent resting-state fMRI study revealed the topography of striatum by assigning each voxel in the striatum to its most strongly correlated cortical network among the cognitive, affective, and motor networks. However, it remains unclear what patterns of striatal parcellation would result from performing the clustering without subsequent assignment to cortical networks. Thus, we applied unsupervised clustering algorithms to parcellate the human striatum based on its functional connectivity patterns to other brain regions without any anatomically or functionally defined cortical targets. Functional connectivity maps of striatal subdivisions, identified through clustering analyses, were also computed. Our findings were consistent with recent accounts of the functional distinctions of the striatum as well as with recent studies about its functional and anatomical connectivity. For example, we found functional connections between dorsal and ventral striatal clusters and the areas involved in cognitive and affective processes, respectively, and between rostral and caudal putamen clusters and the areas involved in cognitive and motor processes, respectively. This study confirms prior findings, showing similar striatal parcellation patterns between the present and prior studies. Given such striking similarity, it is suggested that striatal subregions are functionally linked to cortical networks involving specific functions rather than discrete portions of cortical regions. Our findings also demonstrate that the clustering of functional connectivity patterns is a reliable feature in parcellating the striatum into anatomically and functionally meaningful subdivisions. The striatal subdivisions identified here

  20. Proposed Land Conveyance for Construction of Three Facilities at March Air Force Base, California

    DTIC Science & Technology

    1988-09-01

    identified would result from future development on the 845-acre parcel after it has been conveyed. Therefore, detailed development review and...Impact Analysis Process (EIAP) of the Air Force. This detailed development review is within the purview of the state and local government with...establishes the process under which subsequent detailed environmental review would be conducted. CEQA and its implementing regulations are administered by

  1. Long-time Dynamics of Stochastic Wave Breaking

    NASA Astrophysics Data System (ADS)

    Restrepo, J. M.; Ramirez, J. M.; Deike, L.; Melville, K.

    2017-12-01

    A stochastic parametrization is proposed for the dynamics of wave breaking of progressive water waves. The model is shown to agree with transport estimates, derived from the Lagrangian path of fluid parcels. These trajectories are obtained numerically and are shown to agree well with theory in the non-breaking regime. Of special interest is the impact of wave breaking on transport, momentum exchanges and energy dissipation, as well as dispersion of trajectories. The proposed model, ensemble averaged to larger time scales, is compared to ensemble averages of the numerically generated parcel dynamics, and is then used to capture energy dissipation and path dispersion.

  2. Receptor modeling of PM2.5, PM10 and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin, China.

    PubMed

    Kong, Shaofei; Han, Bin; Bai, Zhipeng; Chen, Li; Shi, Jianwu; Xu, Zhun

    2010-09-15

    Atmospheric particulate matter (PM(2.5), PM(10) and TSP) were sampled synchronously during three monitoring campaigns from June 2007 to February 2008 at a coastal site in TEDA of Tianjin, China. Chemical compositions including 19 elements, 6 water-solubility ions, organic and elemental carbon were determined. principle components analysis (PCA) and chemical mass balance modeling (CMB) were applied to determine the PM sources and their contributions with the assistance of NSS SO(4)(2)(-), the mass ratios of NO(3)(-) to SO(4)(2)(-) and OC to EC. Air mass backward trajectory model was compared with source apportionment results to evaluate the origin of PM. Results showed that NSS SO(4)(2)(-) values for PM(2.5) were 2147.38, 1701.26 and 239.80 ng/m(3) in summer, autumn and winter, reflecting the influence of sources from local emissions. Most of it was below zero in summer for PM(10) indicating the influence of sea salt. The ratios of NO(3)(-) to SO(4)(2)(-) was 0.19 for PM(2.5), 0.18 for PM(10) and 0.19 for TSP in winter indicating high amounts of coal consumed for heating purpose. Higher OC/EC values (mostly larger than 2.5) demonstrated that secondary organic aerosol was abundant at this site. The major sources were construction activities, road dust, vehicle emissions, marine aerosol, metal manufacturing, secondary sulfate aerosols, soil dust, biomass burning, some pharmaceutics industries and fuel-oil combustion according to PCA. Coal combustion, marine aerosol, vehicular emission and soil dust explained 5-31%, 1-13%, 13-44% and 3-46% for PM(2.5), PM(10) and TSP, respectively. Backward trajectory analysis showed air parcels originating from sea accounted for 39% in summer, while in autumn and winter the air parcels were mainly related to continental origin. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Ascent trajectory dispersion analysis for WTR heads-up space shuttle trajectory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The results of a Space Transportation System ascent trajectory dispersion analysis are discussed. The purpose is to provide critical trajectory parameter values for assessing the Space Shuttle in a heads-up configuration launched from the Western Test Range (STR). This analysis was conducted using a trajectory profile based on a launch from the WTR in December. The analysis consisted of the following steps: (1) nominal trajectories were simulated under the conditions as specified by baseline reference mission guidelines; (2) dispersion trajectories were simulated using predetermined parametric variations; (3) requirements for a system-related composite trajectory were determined by a root-sum-square (RSS) analysis of the positive deviations between values of the aerodynamic heating indicator (AHI) generated by the dispersion and nominal trajectories; (4) using the RSS assessment as a guideline, the system related composite trajectory was simulated by combinations of dispersion parameters which represented major contributors; (5) an assessment of environmental perturbations via a RSS analysis was made by the combination of plus or minus 2 sigma atmospheric density variation and 95% directional design wind dispersions; (6) maximum aerodynamic heating trajectories were simulated by variation of dispersion parameters which would emulate the summation of the system-related RSS and environmental RSS values of AHI. The maximum aerodynamic heating trajectories were simulated consistent with the directional winds used in the environmental analysis.

  4. Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis.

    PubMed

    Zhang, Sheng; Li, Chiang-Shan R

    2017-11-01

    As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10 -6 , corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.

  5. Virtual decoupling flight control via real-time trajectory synthesis and tracking

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefu

    The production of the General Aviation industry has declined in the past 25 years. Ironically, however, the increasing demand for air travel as a fast, safe, and high-quality mode of transportation has been far from satisfied. Addressing this demand shortfall with personal air transportation necessitates advanced systems for navigation, guidance, control, flight management, and flight traffic control. Among them, an effective decoupling flight control system will not only improve flight quality, safety, and simplicity, and increase air space usage, but also reduce expenses on pilot initial and current training, and thus expand the current market and explore new markets. Because of the formidable difficulties encountered in the actual decoupling of non-linear, time-variant, and highly coupled flight control systems through traditional approaches, a new approach, which essentially converts the decoupling problem into a real-time trajectory synthesis and tracking problem, is employed. Then, the converted problem is solved and a virtual decoupling effect is achieved. In this approach, a trajectory in inertial space can be predefined and dynamically modified based on the flight mission and the pilot's commands. A feedforward-feedback control architecture is constructed to guide the airplane along the trajectory as precisely as possible. Through this approach, the pilot has much simpler, virtually decoupled control of the airplane in terms of speed, flight path angle and horizontal radius of curvature. To verify and evaluate this approach, extensive computer simulation is performed. A great deal of test cases are designed for the flight control under different flight conditions. The simulation results show that our decoupling strategy is satisfactory and promising, and therefore the research can serve as a consolidated foundation for future practical applications.

  6. A review of supercell and tornado dynamics

    NASA Astrophysics Data System (ADS)

    Davies-Jones, Robert

    2015-05-01

    Thunderstorms that form in strong vertical wind shear often evolve into supercell storms. Supercells are well-organized, monolithic units of vigorous long-lasting convection. A classic supercell in its mature stage consists of a rotating updraft (mid-altitude mesocyclone) and a downdraft that coexists symbiotically with the updraft in an almost steady state. Doppler-radar and visual observations along with computer simulations reveal that tornadic supercells evolve through three stages. Firstly, the updraft starts rotating and a mesocyclone forms aloft, secondly a narrower vortex develops near the ground (thus completing a rotating column that extends from the ground to upper levels), and lastly a tornado forms from contraction of the near-ground cyclone. The updraft tilts environmental horizontal vorticity upwards. The updraft rotates cyclonically as a whole if this vorticity is streamwise in the updrafts' reference frame (i.e., in the direction of the storm-relative wind). Updraft rotation and motion are linked so a complete theory of mid-altitude mesocyclones requires an understanding of how supercells propagate. There are two principle propagation mechanisms; one is linear and the other is nonlinear. The process whereby rotation develops in rising air cannot explain how cyclonic rotation starts near the ground where updrafts and background vertical vorticity are normally weak. A near-ground cyclone does not form without a downdraft. In computer simulations, low-altitude air parcels with cyclonic vorticity have previously subsided in horizontal gradients of buoyancy that generate horizontal vorticity. During an air parcel's descent, its horizontal vorticity is first tipped downward into anticyclonic vorticity, but then upwards into cyclonic vorticity before it reaches the nadir of its trajectory because the vorticity vector is inclined upward relative to the velocity vector. The parcel then flows close to the ground into the updraft where its cyclonic vorticity

  7. Rural southeast Texas air quality measurements during the 2006 Texas Air Quality Study.

    PubMed

    Schade, Gunnar W; Khan, Siraj; Park, Changhyoun; Boedeker, Ian

    2011-10-01

    The authors conducted air quality measurements of the criteria pollutants carbon monoxide, nitrogen oxides, and ozone together with meteorological measurements at a park site southeast of College Station, TX, during the 2006 Texas Air Quality Study II (TexAQS). Ozone, a primary focus of the measurements, was above 80 ppb during 3 days and above 75 ppb during additional 8 days in summer 2006, suggestive of possible violations of the ozone National Ambient Air Quality Standard (NAAQS) in this area. In concordance with other air quality measurements during the TexAQS II, elevated ozone mixing ratios coincided with northerly flows during days after cold front passages. Ozone background during these days was as high as 80 ppb, whereas southerly air flows generally provided for an ozone background lower than 40 ppb. Back trajectory analysis shows that local ozone mixing ratios can also be strongly affected by the Houston urban pollution plume, leading to late afternoon ozone increases of as high as 50 ppb above background under favorable transport conditions. The trajectory analysis also shows that ozone background increases steadily the longer a southern air mass resides over Texas after entering from the Gulf of Mexico. In light of these and other TexAQS findings, it appears that ozone air quality is affected throughout east Texas by both long-range and regional ozone transport, and that improvements therefore will require at least a regionally oriented instead of the current locally oriented ozone precursor reduction policies.

  8. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    ERIC Educational Resources Information Center

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  9. Application of Multipurpose Cadastre to Evaluate Energy Security of Land Parcel (Case Study: Gedung A and Gedung B, Institut Teknologi Sumatra)

    NASA Astrophysics Data System (ADS)

    Alif, S. M.; Nugroho, A. P.; Leksono, B. E.

    2018-03-01

    Energy security has one of its dimensions: Short-term energy security which focuses on the ability of the energy system to react promptly to sudden changes within the supply-demand balance. Non-energy components (such as land parcel) that comprise an energy system are analysed comprehensively with other component to measure energy security related to energy supply. Multipurpose cadastre which is an integrated land information system containing legal, physical, and cultural is used to evaluate energy (electrical energy) security of land parcel. The fundamental component of multipurpose cadastre used to evaluate energy security is attribute data which is the value of land parcel facilities. Other fundamental components (geographic control data, base map data, cadastral data) are used as position information and provide weight in room (part of land parcel) valuation. High value-room means the room is comfortable and/or used productively by its occupant. The method of valuation is by comparing one facility to other facilities. Facilities included in room valuation are relatively static items (such as chair, desk, and cabinet) except lamps and other electronic devices. The room value and number of electronic devices which consume electrical energy are correlated with each other. Consumption of electrical energy of electronic devices in the room with average value remains constant while consumption in other room needs to be evaluated to save the energy. The result of this research shows that room value correlate weakly with number of electronic device in corresponding room. It shows excess energy consumed in low-value room. Although numbers of electronic devices do not always mean the consumption of electrical energy and there are plenty electronic devices, it is recommended for occupant to be careful in utilizing electronic devices in low-value room to minimize energy consumption.

  10. The vertical structure of ozone and water vapor profiles in Lhasa within Asia summer monsoon anticyclone during the stratospheric intrusion

    NASA Astrophysics Data System (ADS)

    Li, Dan; Vogel, Bärbel; Bian, Jianchun; Müller, Rolf; Günther, Gebhard; Bai, Zhixuan; Li, Qian; Fan, Qiujun; Zhang, Jinqiang

    2017-04-01

    A stratospheric intrusion process occurred over the southeastern side of the Asia summer monsoon (ASM) region is investigated using the balloon-borne measurements of ozone and water vapor during 18-20 August 2013. Data from Lhasa (29.66° N, 91.14° E, above sea level (asl.) 3,650 m) show that the positive relative change of the ozone mixing ratios in the tropopause layer attained to 90 % on 19 and 20 August. The backward trajectory calculation from CLaMS model and the satellite data from the ozone monitoring instrument (OMI) and the atmospheric infrared sounder (AIRS) indicate that the (stratospheric) air parcels intruded (originated) from the Northeast Asia to the southeastern edge of the ASM anticyclone. Meanwhile, typhoon Utor occurred over the sourtheastern edge of the ASM and lasted from 8 to 18 August 2013. The convection associated with Utor uplifted air with low ozone from the Western Pacific to the middle/upper troposphere. Air parcels with high ozone from the high latitude and with low ozone from the Western Pacific met at the sourtheastern side of the ASM and then transported westward to Lhasa over long-distances (˜2,000 km). In addition, the laminated identification method is used to identify the laminae structure of the ozone and water vapor profiles from the middle troposphere to the lower stratosphere in Lhasa, confirming the role of the dynamic disturbance (e.g., Rossby and gravity wave)

  11. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  12. A Cloud-Resolving Simulation of Hurricane Bob (1991): Storm Structure and Eyewall Buoyancy

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A numerical simulation of Hurricane Bob (1991) is conducted using the Penn State University-National Center for Atmospheric Research mesoscale model MM5 with a horizontal grid spacing of 1.3 Km on the finest nested mesh The model produces a realistic hurricane that intensifies slowly during the period of fine-scale simulation. Time-averaged results reveal the effects of storm motion. vertical shear, beta gyres and deformation forcing on the structure of radial inflow, vertical motion, and precipitation. Instantaneous model fields show that radial inflow in the eyewall is very intense near the surface but transitions to strong low-level outflow near the top of the boundary layer. The low-level structure is modulated by a wavenumber 2 disturbance that rotates around the eyewall at half the speed of the maximum tangential winds and is consistent with a vortex Rossby edge wave. The statistical distribution of vertical velocity in the eyewall indicates that the eyewall is composed of a small number of intense updrafts that account for the majority of the upward mass flux rather than a more gradual and symmetric eyewall circulation, consistent with the concept of hot towers. Tongues of high equivalent potential temperature, Theta(sub e), are seen along the inner edge of the eyewall updraft and within the low-level outflow. This air originates from outside of the eyewall with the highest theta(sub e) air coming from the layer closest to the surface after penetrating closest to the center. Occasionally, high Theta(sub e), air within the eye is drawn into the eyewall updrafts. The high Theta(sub e), air rising within the eyewall is shown to be associated with positive eyewall buoyancy with sufficient convective available potential energy along its path to produce relatively strong convective updrafts. Although the requirements for conditional symmetric instability are met within the eyewall and the air parcel trajectories follow slanted paths, the radial displacement of air

  13. Evaluation of some significant issues affecting trajectory and control management for air-breathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    Horizontal takeoff airbreathing-propulsion launch vehicles require near-optimal guidance and control which takes into account performance sensitivities to atmospheric characteristics while satisfying physically-derived operational constraints. A generic trajectory/control analysis tool that deepens insight into these considerations has been applied to two versions of a winged-cone vehicle model. Information that is critical to the design and trajectory of these vehicles is derived, and several unusual characteristics of the airbreathing propulsion model are shown to have potentially substantial effects on vehicle dynamics.

  14. Transforming the NAS: The Next Generation Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2004-01-01

    The next-generation air traffic control system must be designed to safely and efficiently accommodate the large growth of traffic expected in the near future. It should be sufficiently scalable to contend with the factor of 2 or more increase in demand expected by the year 2020. Analysis has shown that the current method of controlling air traffic cannot be scaled up to provide such levels of capacity. Therefore, to achieve a large increase in capacity while also giving pilots increased freedom to optimize their flight trajectories requires a fundamental change in the way air traffic is controlled. The key to achieving a factor of 2 or more increase in airspace capacity is to automate separation monitoring and control and to use an air-ground data link to send trajectories and clearances directly between ground-based and airborne systems. In addition to increasing capacity and offering greater flexibility in the selection of trajectories, this approach also has the potential to increase safety by reducing controller and pilot errors that occur in routine monitoring and voice communication tasks.

  15. Three Approaches to Using Lengthy Ordinal Scales in Structural Equation Models: Parceling, Latent Scoring, and Shortening Scales

    ERIC Educational Resources Information Center

    Yang, Chongming; Nay, Sandra; Hoyle, Rick H.

    2010-01-01

    Lengthy scales or testlets pose certain challenges for structural equation modeling (SEM) if all the items are included as indicators of a latent construct. Three general approaches to modeling lengthy scales in SEM (parceling, latent scoring, and shortening) have been reviewed and evaluated. A hypothetical population model is simulated containing…

  16. 77 FR 54607 - Proclaiming Certain Lands, Sugar Parcel Lands, as an Addition to the Bay Mills Indian Reservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Proclaiming Certain Lands, Sugar Parcel Lands, as an Addition to the Bay Mills Indian Reservation for the Bay Mills Indian Community of Michigan AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of Reservation Proclamation. SUMMARY: This...

  17. Benefits of Using Pairwise Trajectory Management in the Central East Pacific

    NASA Technical Reports Server (NTRS)

    Chartrand, Ryan; Ballard, Kathryn

    2016-01-01

    Pairwise Trajectory Management (PTM) is a concept that utilizes airborne and ground-based capabilities to enable airborne spacing operations in oceanic regions. The goal of PTM is to use enhanced surveillance, along with airborne tools, to manage the spacing between aircraft. Due to the enhanced airborne surveillance of Automatic Dependent Surveillance-Broadcast (ADS-B) information and reduced communication, the PTM minimum spacing distance will be less than distances currently required of an air traffic controller. Reduced minimum distance will increase the capacity of aircraft operations at a given altitude or volume of airspace, thereby increasing time on desired trajectory and overall flight efficiency. PTM is designed to allow a flight crew to resolve a specific traffic conflict (or conflicts), identified by the air traffic controller, while maintaining the flight crew's desired altitude. The air traffic controller issues a PTM clearance to a flight crew authorized to conduct PTM operations in order to resolve a conflict for the pair (or pairs) of aircraft (i.e., the PTM aircraft and a designated target aircraft). This clearance requires the flight crew of the PTM aircraft to use their ADS-B-enabled onboard equipment to manage their spacing relative to the designated target aircraft to ensure spacing distances that are no closer than the PTM minimum distance. When the air traffic controller determines that PTM is no longer required, the controller issues a clearance to cancel the PTM operation.

  18. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  19. Improving Separation Assurance Stability Through Trajectory Flexibility Preservation

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Shen, Ni; Wing, David J.

    2010-01-01

    New information and automation technologies are enabling the distribution of tasks and decisions from the service providers to the users of the air traffic system, with potential capacity and cost benefits. This distribution of tasks and decisions raises the concern that independent user actions will decrease the predictability and increase the complexity of the traffic system, hence inhibiting and possibly reversing any potential benefits. One such concern is the adverse impact of uncoordinated actions by individual aircraft on the stability of separation assurance. For example, individual aircraft performing self-separation may resolve predicted losses of separation or conflicts with some traffic, only to result in secondary conflicts with other traffic or with the same traffic later in time. In answer to this concern, this paper proposes metrics for preserving user trajectory flexibility to be used in self-separation along with other objectives. The hypothesis is that preserving trajectory flexibility will naturally reduce the creation of secondary conflicts by bringing about implicit coordination between aircraft. The impact of using these metrics on improving self-separation stability is investigated by measuring the impact on secondary conflicts. The scenarios analyzed include aircraft in en route airspace with each aircraft meeting a required time of arrival in a twenty minute time horizon while maintaining separation from the surrounding traffic and using trajectory flexibility metrics to mitigate the risk of secondary conflicts. Preliminary experiments showed promising results in that the trajectory flexibility preservation reduced the potential for secondary conflicts.

  20. Trajectory Browser Website

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  1. Large Enhancements in the O/N2 Ratio in the Evening Sector of the Winter Hemisphere During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Burns, A. G.; Killeen, T. L.; Carignan, G. R.; Roble, R. G.

    1995-01-01

    In this paper, we have looked for enhancements of the O/N2 ratio in data measured by the Dynamics Explorer 2 (DE 2) satellite in the middle latitudes of the winter hemisphere, based on a prediction that was made by the National Center for Atmospheric Research thermosphere/tonosphere general circulation model (NCAR-TIGCM) that such increases occur. The NCAR-TIGCM predicts that these enhancements should be seen throughout the low latitude region and in many middle latitude locations, but that the enhancements in O/N2 are particularly strong in the middle-latitude, evening-to-midnight sector of the winter hemisphere. When this prediction was used to look for these effects in DE 2 NACS (neutral atmosphere composition spectrometer) data, large enhancements in the O/N2 ratio (approx. 50 to 90%) were seen. These enhancements were observed during the main phase of a storm that occurred on November 24, 1982, and were seen in the same region of the winter hemisphere predicted by the NCAR-TIGCM. They are partially the result of the depletion of N2 and, as electron loss is dependent on dissociative recombination at F(sub 2) altitudes, they have implications for electron densities in this area. Parcel trajectories, which have been followed through the NCAR-TIGCM history file for this event, show that large O/N2 enhancements occur in this limited region in the winter hemisphere for two reasons. First, these parcels of air are decelerated by the antisunward edge of the ion convection pattern; individual parcels converge and subsidence occurs. Thus molecular-nitrogen-poor air is brought from higher to lower heights. Because neutral parcels that are found a little poleward of the equatorial edge of the eveningside convection pattern are swept inward toward the center of the auroral oval, the enhancements occur only in a very limited range of latitudes. Second, nitrogen-poor air is transported from regions close to the magnetic pole in the winter hemisphere. During geomagnetic

  2. Consensus seeking, formation keeping, and trajectory tracking in multiple vehicle cooperative control

    NASA Astrophysics Data System (ADS)

    Ren, Wei

    Cooperative control problems for multiple vehicle systems can be categorized as either formation control problems with applications to mobile robots, unmanned air vehicles, autonomous underwater vehicles, satellites, aircraft, spacecraft, and automated highway systems, or non-formation control problems such as task assignment, cooperative transport, cooperative role assignment, air traffic control, cooperative timing, and cooperative search. The cooperative control of multiple vehicle systems poses significant theoretical and practical challenges. For cooperative control strategies to be successful, numerous issues must be addressed. We consider three important and correlated issues: consensus seeking, formation keeping, and trajectory tracking. For consensus seeking, we investigate algorithms and protocols so that a team of vehicles can reach consensus on the values of the coordination data in the presence of imperfect sensors, communication dropout, sparse communication topologies, and noisy and unreliable communication links. The main contribution of this dissertation in this area is that we show necessary and/or sufficient conditions for consensus seeking with limited, unidirectional, and unreliable information exchange under fixed and switching interaction topologies (through either communication or sensing). For formation keeping, we apply a so-called "virtual structure" approach to spacecraft formation flying and multi-vehicle formation maneuvers. As a result, single vehicle path planning and trajectory generation techniques can be employed for the virtual structure while trajectory tracking strategies can be employed for each vehicle. The main contribution of this dissertation in this area is that we propose a decentralized architecture for multiple spacecraft formation flying in deep space with formation feedback introduced. This architecture ensures the necessary precision in the presence of actuator saturation, internal and external disturbances, and

  3. Trajectory and Breakup of Cryogenic Jets in Crossflow

    NASA Astrophysics Data System (ADS)

    Richards, William

    This study investigated the breakup processes of subcritical cryogenic jets injected in to subsonic crossflows of heated air. The crossflow speed, temperature, and jet velocity were varied to demonstrate the effect of thermal differences on a jet in crossflow. High speed back-lit photography and Mie scattering were used to examine the primary breakup regimes, trajectory, and breakup points. The breakup regimes show little change from jets in crossflow near thermodynamic equilibrium. Penetration of the jet increased with an increase in crossflow temperature. The breakup points in the streamwise direction followed trends previously observed for conventional jets. While the height of column fracture did not increase with momentum flux ratio as much as would be expected, its dependence matched that of the trajectory correlation. It is hypothesized that the observed differences are due to the development of a sheath of evaporated fluid around the main liquid core of the jet.

  4. The Use of Amenity Indicators in Anticipating Private Forestland Parcelization: A Look at the Lake States' Northwoods

    Treesearch

    Paul H. Gobster; Thomas L. Schmidt

    2000-01-01

    The subdivision of privately owned parcels of forestland is increasing across the country, but little is known about the rate and magnitude of this change. In trying to better understand how such change is distributed spatially and temporally across the landscape, we examined private forestlands in the nonmetropolitan counties of the Northwoods of Minnesota, Wisconsin...

  5. 76 FR 53981 - New Postal Product

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... Parcel Post (Air CP), Surface Parcel Post (Surface CP) and Express Mail Service (EMS) in the United States is functionally equivalent to the agreement to deliver inbound Air CP, Surface CP and EMS in the... competitive services in the China Post 2011 Agreement include rates for Air CP, Surface CP, and EMS, requires...

  6. 75 FR 53353 - New Postal Product

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-31

    ... Agreement governs rates for Inbound Air Parcel Post (Air CP), Surface Parcel Post (Surface CP) and Express... CP and EMS, as well as ancillary services. Id. at 3. The Postal Service asserts that this product.... 43 that Surface CP at Non-UPU Rates, EMS and Air CP be considered competitive products. Id. The...

  7. Using Wind and Temperature Fields to Study Dehydration Mechanisms in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Pittman, Jasna; Miller, Timothy; Robertson, Franklin

    2008-01-01

    The tropics are the main region for troposphere-to-stratosphere transport (TST) of air. One of the dominant mechanisms that control tropical TST of water vapor is freeze-drying by the cold tropical tropopause. This mechanism is supported by evidence from satellite observations of the "tape recorder", where seasonal changes in stratospheric water vapor are in phase with seasonal changes in tropopause temperatures in the tropics. Over the last few years, however, the concept of the tropical tropopause has evolved from a single material surface to a layer called the Tropical Tropopause Layer (TTL). A recent hypothesis on dehydration mechanisms suggests that dehydration and entry point into the stratosphere are not always co-located (Holton and Gettelman, 2001). Instead, dehydration can occur during horizontal advection through Lagrangian 'cold pools', or coldest regions along a parcel's trajectory, as air ascends within the TTL while the entry point into the stratosphere occurs at a different geographical location. In this study, we investigate the impact that these Lagrangian cold pools have on TTL moisture. For this purpose, we use in situ measurements of TTL water vapor obtained aboard NASA's WB-57 aircraft over the Eastern Tropical Pacific, and we compare these measurements to minimum saturation water vapor mixing ratios obtained from three-dimensional backward trajectory calculations. Aircraft measurements show frequent unsaturated conditions, which suggest that the entry value of stratospheric water vapor in this region was not set by local saturation conditions. Trajectory calculations, driven by both ECMWF operational analysis and reanalysis winds and temperature fields, are used to explore the impact (e.g., geographical location, timing, dehydration magnitude) of the Lagrangian cold pools intercepted by the parcels sampled by the aircraft. We find noteworthy differences in the location of the Lagrangian cold pools using the two ECMWF data sets, namely

  8. Trajectories of martian habitability.

    PubMed

    Cockell, Charles S

    2014-02-01

    Beginning from two plausible starting points-an uninhabited or inhabited Mars-this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments.

  9. Investigating Historic Parcel Changes to Understand Land Use Trends: A Methodology and Application for the San Pedro River Watershed

    EPA Science Inventory

    Long-term land use and land cover change, and the associated impacts, pose critical challenges to sustaining healthy communities and ecosystems. In this study, a methodology was developed to use parcel data to evaluate land use trends in southeast Arizona’s San Pedro River Water...

  10. Multi Sector Planning Tools for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mainini, Matthew; Brasil, Connie

    2010-01-01

    This paper discusses a suite of multi sector planning tools for trajectory-based operations that were developed and evaluated in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. The toolset included tools for traffic load and complexity assessment as well as trajectory planning and coordination. The situation assessment tools included an integrated suite of interactive traffic displays, load tables, load graphs, and dynamic aircraft filters. The planning toolset allowed for single and multi aircraft trajectory planning and data communication-based coordination of trajectories between operators. Also newly introduced was a real-time computation of sector complexity into the toolset that operators could use in lieu of aircraft count to better estimate and manage sector workload, especially in situations with convective weather. The tools were used during a joint NASA/FAA multi sector planner simulation in the AOL in 2009 that had multiple objectives with the assessment of the effectiveness of the tools being one of them. Current air traffic control operators who were experienced as area supervisors and traffic management coordinators used the tools throughout the simulation and provided their usefulness and usability ratings in post simulation questionnaires. This paper presents these subjective assessments as well as the actual usage data that was collected during the simulation. The toolset was rated very useful and usable overall. Many elements received high scores by the operators and were used frequently and successfully. Other functions were not used at all, but various requests for new functions and capabilities were received that could be added to the toolset.

  11. Evaluating the Characteristics of Social Vulnerability to Wildfire: Demographics, Perceptions, and Parcel Characteristics.

    PubMed

    Paveglio, Travis B; Prato, Tony; Edgeley, Catrin; Nalle, Darek

    2016-09-01

    A large body of research focuses on identifying patterns of human populations most at risk from hazards and the factors that help explain performance of mitigations that can help reduce that risk. One common concept in such studies is social vulnerability-human populations' potential exposure to, sensitivity from and ability to reduce negative impacts from a hazard. While there is growing interest in social vulnerability for wildfire, few studies have critically evaluated the characteristics that scholars often indicate influence social vulnerability to that hazard. This research utilizes surveys, wildfire simulations, and GIS data to test the relationships between select demographic, perceptual and parcel characteristics of property owners against empirically simulated metrics for wildfire exposure or wildfire-related damages and their performance of mitigation actions. Our results from Flathead County, MT, USA, suggest that parcel characteristics such as property value, building value, and the year structures were built explaining a significant amount of the variance in elements of social vulnerability. Demographic characteristics commonly used in social vulnerability analysis did not have significant relationships with measures of wildfire exposure or vulnerability. Part-time or full-time residency, age, perceived property risk, and year of development were among the few significant determinants of residents' performance of fuel reduction mitigations, although the significance of these factors varied across the levels of fuel reduction performed by homeowners. We use these and other results to argue for a renewed focus on the finer-scale characteristics that expose some populations to wildfire risk more than others.

  12. Connectivity-based parcellation reveals distinct cortico-striatal connectivity fingerprints in Autism Spectrum Disorder.

    PubMed

    Balsters, Joshua H; Mantini, Dante; Wenderoth, Nicole

    2018-04-15

    Autism Spectrum Disorder (ASD) has been associated with abnormal synaptic development causing a breakdown in functional connectivity. However, when measured at the macro scale using resting state fMRI, these alterations are subtle and often difficult to detect due to the large heterogeneity of the pathology. Recently, we outlined a novel approach for generating robust biomarkers of resting state functional magnetic resonance imaging (RS-fMRI) using connectivity based parcellation of gross morphological structures to improve single-subject reproducibility and generate more robust connectivity fingerprints. Here we apply this novel approach to investigating the organization and connectivity strength of the cortico-striatal system in a large sample of ASD individuals and typically developed (TD) controls (N=130 per group). Our results showed differences in the parcellation of the striatum in ASD. Specifically, the putamen was found to be one single structure in ASD, whereas this was split into anterior and posterior segments in an age, IQ, and head movement matched TD group. An analysis of the connectivity fingerprints revealed that the group differences in clustering were driven by differential connectivity between striatum and the supplementary motor area, posterior cingulate cortex, and posterior insula. Our approach for analysing RS-fMRI in clinical populations has provided clear evidence that cortico-striatal circuits are organized differently in ASD. Based on previous task-based segmentations of the striatum, we believe that the anterior putamen cluster present in TD, but not in ASD, likely contributes to social and language processes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Evaluating the Characteristics of Social Vulnerability to Wildfire: Demographics, Perceptions, and Parcel Characteristics

    NASA Astrophysics Data System (ADS)

    Paveglio, Travis B.; Prato, Tony; Edgeley, Catrin; Nalle, Darek

    2016-09-01

    A large body of research focuses on identifying patterns of human populations most at risk from hazards and the factors that help explain performance of mitigations that can help reduce that risk. One common concept in such studies is social vulnerability—human populations' potential exposure to, sensitivity from and ability to reduce negative impacts from a hazard. While there is growing interest in social vulnerability for wildfire, few studies have critically evaluated the characteristics that scholars often indicate influence social vulnerability to that hazard. This research utilizes surveys, wildfire simulations, and GIS data to test the relationships between select demographic, perceptual and parcel characteristics of property owners against empirically simulated metrics for wildfire exposure or wildfire-related damages and their performance of mitigation actions. Our results from Flathead County, MT, USA, suggest that parcel characteristics such as property value, building value, and the year structures were built explaining a significant amount of the variance in elements of social vulnerability. Demographic characteristics commonly used in social vulnerability analysis did not have significant relationships with measures of wildfire exposure or vulnerability. Part-time or full-time residency, age, perceived property risk, and year of development were among the few significant determinants of residents' performance of fuel reduction mitigations, although the significance of these factors varied across the levels of fuel reduction performed by homeowners. We use these and other results to argue for a renewed focus on the finer-scale characteristics that expose some populations to wildfire risk more than others.

  14. Phase 1 Environmental Baseline Survey Nellis Terrace Housing Area, Parcel E-1, Nellis Air Force Base, Nevada

    DTIC Science & Technology

    2010-03-01

    Program Manger, Nellis AFB, Henry Rodriguez , Toxics Program Manger, Nellis AFB, John Roe, Water Quality Program Manger, Nellis AFB, Charles...Hunt Building Company, LTD " 440 1 N. Mesa St. El Paso, TX 79912 Project: Nellis Air Force Base 174 Swaab Blvd. & 10 Jones Street Las Vegas...Company, Ltd 4401 N. Mesa St. El Paso, TX 79912 Project: Chlordane Soil Sampling Nellis Air Force Base 174 Swaab Blvd. & 10 Jones St. Las Vegas

  15. An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the

  16. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoerberl, M. R.; Elkins, J. W.; Wamsley, P. R.

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta = 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NOy) had also been removed, with layers of enhanced NOy at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approx. 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  17. 27 CFR 44.226 - Delivery of tobacco products, and cigarette papers and tubes for export by parcel post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... products, and cigarette papers and tubes for export by parcel post. 44.226 Section 44.226 Alcohol, Tobacco...) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.226 Delivery of tobacco products, and cigarette papers and tubes for...

  18. 27 CFR 44.226 - Delivery of tobacco products, and cigarette papers and tubes for export by parcel post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products, and cigarette papers and tubes for export by parcel post. 44.226 Section 44.226 Alcohol, Tobacco...) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.226 Delivery of tobacco products, and cigarette papers and tubes for...

  19. 27 CFR 44.226 - Delivery of tobacco products, and cigarette papers and tubes for export by parcel post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... products, and cigarette papers and tubes for export by parcel post. 44.226 Section 44.226 Alcohol, Tobacco...) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.226 Delivery of tobacco products, and cigarette papers and tubes for...

  20. 27 CFR 44.226 - Delivery of tobacco products, and cigarette papers and tubes for export by parcel post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products, and cigarette papers and tubes for export by parcel post. 44.226 Section 44.226 Alcohol, Tobacco...) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.226 Delivery of tobacco products, and cigarette papers and tubes for...

  1. 27 CFR 44.226 - Delivery of tobacco products, and cigarette papers and tubes for export by parcel post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products, and cigarette papers and tubes for export by parcel post. 44.226 Section 44.226 Alcohol, Tobacco...) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.226 Delivery of tobacco products, and cigarette papers and tubes for...

  2. Automated Cooperative Trajectories for a More Efficient and Responsive Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hanson, Curt

    2015-01-01

    The NASA Automated Cooperative Trajectories project is developing a prototype avionics system that enables multi-vehicle cooperative control by integrating 1090 MHz ES ADS-B digital communications with onboard autopilot systems. This cooperative control capability will enable meta-aircraft operations for enhanced airspace utilization, as well as improved vehicle efficiency through wake surfing. This briefing describes the objectives and approach to a flight evaluation of this system planned for 2016.

  3. High-volume rainfall events in Calgary, Alberta, Canada and their relationship to HYSPLIT back trajectories and chemical constituents

    NASA Astrophysics Data System (ADS)

    Ge, C.; Norman, A. L.; Stenhouse, K. J.; Jansens, B.; Beamish, S.

    2016-12-01

    The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model created by the Air Resources Laboratory at the National Oceanic and Atmospheric Administration (NOAA) in the United States is utilized for modelling air mass back-trajectories (AMBT) for weather systems. In this study, the HYSPLIT model was used to analyze weather systems in Calgary, Alberta over an 8 year period. It was found that setting the level 1 height input of the model to examine air masses at 3000 meters above ground level (AGL) more accurately represents true back-trajectories of intense precipitation events than 500 mbar pressure. This study utilizes 3000m AMBT to analyze weather systems from 2008 to 2016 in Calgary, and classifies these events on the basis of their geographic origin. A variety of precipitation characteristics were measured, such as the concentration of insoluble components as well as anion and cation concentrations. Interpretation of storm formation, and its relationship to constituents of precipitation found to be important to droplet activation in clouds - such as insoluble components and sulfate - are explored. Particularly, this study focused on the geographic origin of large precipitation events of 15 mm and over, and whether these events had distinct attributes associated with the insoluble and sulfate components and/or formation at southern latitudes in the North Pacific.

  4. Trajectories of Martian Habitability

    PubMed Central

    2014-01-01

    Abstract Beginning from two plausible starting points—an uninhabited or inhabited Mars—this paper discusses the possible trajectories of martian habitability over time. On an uninhabited Mars, the trajectories follow paths determined by the abundance of uninhabitable environments and uninhabited habitats. On an inhabited Mars, the addition of a third environment type, inhabited habitats, results in other trajectories, including ones where the planet remains inhabited today or others where planetary-scale life extinction occurs. By identifying different trajectories of habitability, corresponding hypotheses can be described that allow for the various trajectories to be disentangled and ultimately a determination of which trajectory Mars has taken and the changing relative abundance of its constituent environments. Key Words: Mars—Habitability—Liquid water—Planetary science. Astrobiology 14, 182–203. PMID:24506485

  5. Management by Trajectory Trade Study of Roles and Responsibilities Between Participants and Automation Report

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia D.; Kaler, Curt; Leiden, Kenneth; Atkins, Stephen; Bell, Alan; Kilbourne, Todd; Evans, Mark

    2017-01-01

    This report describes a trade study of roles and responsibilities associated with the Management by Trajectory (MBT) concept. The MBT concept describes roles, responsibilities, and information and automation requirements for providing air traffic controllers and managers the ability to quickly generate, evaluate and implement changes to an aircraft's trajectory. In addition, the MBT concept describes mechanisms for imposing constraints on flight operator preferred trajectories only to the extent necessary to maintain safe and efficient traffic flows, and the concept provides a method for the exchange of trajectory information between ground automation systems and the aircraft that allows for trajectory synchronization and trajectory negotiation. The participant roles considered in this trade study include: airline dispatcher, flight crew, radar controller, traffic manager, and Air Traffic Control System Command Center (ATCSCC) traffic management specialists. The proposed allocation of roles and responsibilities was based on analysis of several use cases that were developed for this purpose as well as for walking through concept elements. The resulting allocation of roles and responsibilities reflects both increased automation capability to support many aviation functions, as well as increased flexibility to assign responsibilities to different participants - in many cases afforded by the increased automation capabilities. Note that the selection of participants to consider for allocation of each function is necessarily rooted in the current environment, in that MBT is envisioned as an evolution of the National Airspace System (NAS), and not a revolution. A key feature of the MBT allocations is a vision for the traffic management specialist to take on a greater role. This is facilitated by the vision that separation management functions, in addition to traffic management functions, will be carried out as trajectory management functions. This creates an opportunity

  6. Optimum Climb to Cruise Noise Trajectories for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Berton, Jeffrey J.

    2003-01-01

    By entraining large quantities of ambient air into advanced ejector nozzles, the jet noise of the proposed High Speed Civil Transport (HSCT) is expected to be reduced to levels acceptable for airport-vicinity noise certification. Away from the airport, however, this entrained air is shut off and the engines are powered up from their cutback levels to provide better thrust for the climb to cruise altitude. Unsuppressed jet noise levels propagating to the ground far from the airport are expected to be high. Complicating this problem is the HSCT's relative noise level with respect to the subsonic commercial fleet of 2010, which is expected to be much quieter than it is today after the retirement of older, louder, domestic stage II aircraft by the year 2000. In this study, the classic energy state approximation theory is extended to calculate trajectories that minimize the climb to cruise noise of the HSCT. The optimizer dynamically chooses the optimal altitude velocity trajectory, the engine power setting, and whether the ejector should be stowed or deployed with respect to practical aircraft climb constraints and noise limits.

  7. PANTHER. Trajectory Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rintoul, Mark Daniel; Wilson, Andrew T.; Valicka, Christopher G.

    We want to organize a body of trajectories in order to identify, search for, classify and predict behavior among objects such as aircraft and ships. Existing compari- son functions such as the Fr'echet distance are computationally expensive and yield counterintuitive results in some cases. We propose an approach using feature vectors whose components represent succinctly the salient information in trajectories. These features incorporate basic information such as total distance traveled and distance be- tween start/stop points as well as geometric features related to the properties of the convex hull, trajectory curvature and general distance geometry. Additionally, these features can generallymore » be mapped easily to behaviors of interest to humans that are searching large databases. Most of these geometric features are invariant under rigid transformation. We demonstrate the use of different subsets of these features to iden- tify trajectories similar to an exemplar, cluster a database of several hundred thousand trajectories, predict destination and apply unsupervised machine learning algorithms.« less

  8. An IR Sounding-Based Analysis of the Saharan Air Layer in North Africa

    NASA Technical Reports Server (NTRS)

    Nicholls, Stephen D.; Mohr, Karen I.

    2018-01-01

    Intense daytime surface heating over barren-to-sparsely vegetated surfaces results in dry convective mixing. In the absence of external forcing such as mountain waves, the dry convection can produce a deep, well-mixed, nearly isentropic boundary layer that becomes a well-mixed residual layer in the evening. These well-mixed layers (WML) retain their unique mid-tropospheric thermal and humidity structure for several days. To detect the SAL and characterize its properties, AIRS Level 2 Ver. 6 temperature and humidity products (2003-Present) are evaluated against rawinsondes and compared to model analysis at each of the 55 rawinsonde stations in northern Africa. To distinguish WML from Saharan air layers (WMLs of Saharan origin), the detection involved a two-step process: 1) algorithm-based detection of WMLs in dry environments (less than 7 g per kilogram mixing ratio) 2) identification of Sahara air layers (SAL) by applying Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectories to determine the history of each WML. WML occurrence rates from AIRS closely resemble that from rawinsondes, yet rates from model analysis were up to 30% higher than observations in the Sahara due to model errors. Despite the overly frequent occurrence of WMLs from model analysis, HYSPLIT trajectory analysis showed that SAL occurrence rates (given a WML exists) from rawinsondes, AIRS, and model analysis were nearly identical. Although the number of WMLs varied among the data sources, the proportion of WMLs which were classified as SAL was nearly the same. The analysis of SAL bulk properties showed that AIRS and model analysis exhibited a slight warm and moist bias relative to rawinsondes in non-Saharan locations, but model analysis was notably warmer than rawinsondes and AIRS within the Sahara. The latter result is likely associated with the dearth of available data assimilated by model analysis in the Sahara. The variability of SAL thicknesses was reasonably

  9. ENVIRONMENTAL BASELINE SURVEY REPORT FOR WEST BLACK OAK RIDGE, EAST BLACK OAK RIDGE, MCKINNEY RIDGE, WEST PINE RIDGE, AND PARCEL 21D IN THE VICINITY OF THE EAST TENNESSEE TECHNOLOGY PARK, OAK RIDGE, TENNESSEE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David A. King

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy’s (DOE’s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. The goal is to obtain all media no-further-investigation (NFI) determinations for the subject parcels considering existing soils. To augment the existing soils-only NFI determinations, samples of groundwater, surface water, soil, and sediment were collected to support all media NFI decisions. The only updates presented here are those that were made after the original issuance ofmore » the NFI documents. In the subject parcel where the soils NFI determination was not completed for approval (Parcel 21d), the full process has been performed to address the soils as well. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property where hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils

  10. [Influence of atmospheric transport on air pollutant levels at a mountain background site of East China].

    PubMed

    Su, Bin-Bin; Xu, Ju-Yang; Zhang, Ruo-Yu; Ji, Xian-Xin

    2014-08-01

    Transport characteristics of air pollutants transported to the background atmosphere of East China were investigated using HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory) 4.8 model driven by NCEP reanalysis data during June 2011 to May 2012. Based on the air pollutants monitoring data collected at the National atmospheric background monitoring station (Wuyishan station) in Fujian Province, characteristics of different clustered air masses as well as the origins of highly polluted air masses were further examined. The results showed that 65% of all the trajectories, in which air masses mainly passed over highly polluted area of East China, Jiangxi province and upper air in desert areas of Northwest China, carried polluted air to the station, while the rest of trajectories (35%) with air masses originated from ocean could effectively remove air pollutants at the Wuyishan station. However, the impact on the air pollutants for each air mass group varied with seasons. Elevated SO2 concentrations observed at the background station were mainly influenced by coal burning activities in Northern China during heating season. The high CO concentrations were likely associated with the pollutants emission in the process of coal production and consumption in Anhui province. The elevated NO(x), O3, PM10 and PM2.5 concentrations were mostly impacted by East China with high levels of air pollutants.

  11. Assessing the usefulness of the photogrammetric method in the process of capturing data on parcel boundaries

    NASA Astrophysics Data System (ADS)

    Benduch, Piotr; Pęska-Siwik, Agnieszka

    2017-06-01

    A parcel is the most important object of real estate cadastre. Its primary spatial attribute are boundaries, determining the extent of property rights. Capturing the data on boundaries should be performed in the way ensuring sufficiently high accuracy and reliability. In recent years, as part of the project "ZSIN - Construction of Integrated Real Estate Information System - Stage I", in the territories of the participating districts, actions were taken aimed at the modernization of the register of land and buildings. In many cases, this process was carried out basing on photogrammetric materials. Applicable regulations allow such a possibility. This paper, basing on the documentation from the National Geodetic and Cartographic Documentation Center and on the authors' own surveys attempts to assess the applicability of the photogrammetric method to capture data on the boundaries of cadastral parcels. The scope of the research, most importantly, included the problem of accuracy with which it was possible to determine the position of a boundary point using photogrammetric surveys carried out on the terrain model created from processed aerial photographs. The article demonstrates the manner of recording this information in the cadastral database, as well as the resulting legal consequences. Moreover, the level of reliability of the entered values of the selected attributes of boundary points was assessed.

  12. Querying databases of trajectories of differential equations: Data structures for trajectories

    NASA Technical Reports Server (NTRS)

    Grossman, Robert

    1989-01-01

    One approach to qualitative reasoning about dynamical systems is to extract qualitative information by searching or making queries on databases containing very large numbers of trajectories. The efficiency of such queries depends crucially upon finding an appropriate data structure for trajectories of dynamical systems. Suppose that a large number of parameterized trajectories gamma of a dynamical system evolving in R sup N are stored in a database. Let Eta is contained in set R sup N denote a parameterized path in Euclidean Space, and let the Euclidean Norm denote a norm on the space of paths. A data structure is defined to represent trajectories of dynamical systems, and an algorithm is sketched which answers queries.

  13. An Improved Representation of Regional Boundaries on Parcellated Morphological Surfaces

    PubMed Central

    Hao, Xuejun; Xu, Dongrong; Bansal, Ravi; Liu, Jun; Peterson, Bradley S.

    2010-01-01

    Establishing the correspondences of brain anatomy with function is important for understanding neuroimaging data. Regional delineations on morphological surfaces define anatomical landmarks and help to visualize and interpret both functional data and morphological measures mapped onto the cortical surface. We present an efficient algorithm that accurately delineates the morphological surface of the cerebral cortex in real time during generation of the surface using information from parcellated 3D data. With this accurate region delineation, we then develop methods for boundary-preserved simplification and smoothing, as well as procedures for the automated correction of small, misclassified regions to improve the quality of the delineated surface. We demonstrate that our delineation algorithm, together with a new method for double-snapshot visualization of cortical regions, can be used to establish a clear correspondence between brain anatomy and mapped quantities, such as morphological measures, across groups of subjects. PMID:21144708

  14. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  15. Four-body trajectory optimization

    NASA Technical Reports Server (NTRS)

    Pu, C. L.; Edelbaum, T. N.

    1973-01-01

    A collection of typical three-body trajectories from the L1 libration point on the sun-earth line to the earth is presented. These trajectories in the sun-earth system are grouped into four distinct families which differ in transfer time and delta V requirements. Curves showing the variations of delta V with respect to transfer time, and typical two and three-impulse primer vector histories, are included. The development of a four-body trajectory optimization program to compute fuel optimal trajectories between the earth and a point in the sun-earth-moon system are also discussed. Methods for generating fuel optimal two-impulse trajectories which originate at the earth or a point in space, and fuel optimal three-impulse trajectories between two points in space, are presented. A brief qualitative comparison of these methods is given. An example of a four-body two-impulse transfer from the Li libration point to the earth is included.

  16. Logging firms, nonindustrial private forests, and forest parcelization: evidence of firm specialization and its impact on sustainable timber supply

    Treesearch

    Mark Rickenbach; Thomas W. Steele

    2006-01-01

    Increasing forest parcelization has raised concerns about tract-size economies and sustainable timber supply. We explored this issue by examining the logging sector and forest ownership in northern Wisconsin and Michigan's Upper Peninsula. Using 2004 survey data, we found that 48% of logging firms demonstrated a near exclusive reliance on nonindustrial private...

  17. Atmospheric Concentrations of Persistent Organic Pollutants in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Vlahos, P.; Edson, J.; Cifuentes, A.; McGillis, W. R.; Zappa, C.

    2008-12-01

    Long-range transport of persistent organic pollutant (POPs) is a global concern. Remote regions such as the Southern Ocean are greatly under-sampled though critical components in understanding POPs cycling. Over 20 high-volume air samples were collected in the Southern Ocean aboard the RV Brown during the GASEX III experiment between Mar 05 to April 9 2008. The relatively stationary platform (51S,38W) enabled the collection of a unique atmospheric time series at this open ocean station. Air sampling was also conducted across transects from Punto Arenas, Chile and to Montevideo, Uruguay. Samples were collected using glass sleeves packed with poly-urethane foam plugs and C-18 resin in order to collect target organic pollutants (per-fluorinated compounds, currently and historically used pesticides) in this under-sampled region. Here we present POPs concentrations and trends over the sampled period and compare variations with air parcel back trajectories to establish potential origins of their long-range transport.

  18. Moist synoptic transport of CO2 along the mid-latitude storm track

    NASA Astrophysics Data System (ADS)

    Parazoo, N. C.; Denning, A. S.; Berry, J. A.; Wolf, A.; Randall, D. A.; Kawa, S. R.; Pauluis, O.; Doney, S. C.

    2011-05-01

    Atmospheric mixing ratios of CO2 are strongly seasonal in the Arctic due to mid-latitude transport. Here we analyze the seasonal influence of moist synoptic storms by diagnosing CO2 transport from a global model on moist isentropes (to represent parcel trajectories through stormtracks) and parsing transport into eddy and mean components. During winter when northern plants respire, warm moist air, high in CO2, is swept poleward into the polar vortex, while cold dry air, low in CO2, that had been transported into the polar vortex earlier in the year is swept equatorward. Eddies reduce seasonality in mid-latitudes by ˜50% of NEE (˜100% of fossil fuel) while amplifying seasonality at high latitudes. Transport along stormtracks is correlated with rising, moist, cloudy air, which systematically hides this CO2 transport from satellites. We recommend that (1) regional inversions carefully account for meridional transport and (2) inversion models represent moist and frontal processes with high fidelity.

  19. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    NASA Astrophysics Data System (ADS)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations

  20. 3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred; hide

    2008-01-01

    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.

  1. An Evaluation of a Flight Deck Interval Management Algorithm Including Delayed Target Trajectories

    NASA Technical Reports Server (NTRS)

    Swieringa, Kurt A.; Underwood, Matthew C.; Barmore, Bryan; Leonard, Robert D.

    2014-01-01

    NASA's first Air Traffic Management (ATM) Technology Demonstration (ATD-1) was created to facilitate the transition of mature air traffic management technologies from the laboratory to operational use. The technologies selected for demonstration are the Traffic Management Advisor with Terminal Metering (TMA-TM), which provides precise timebased scheduling in the terminal airspace; Controller Managed Spacing (CMS), which provides controllers with decision support tools enabling precise schedule conformance; and Interval Management (IM), which consists of flight deck automation that enables aircraft to achieve or maintain precise in-trail spacing. During high demand operations, TMA-TM may produce a schedule and corresponding aircraft trajectories that include delay to ensure that a particular aircraft will be properly spaced from other aircraft at each schedule waypoint. These delayed trajectories are not communicated to the automation onboard the aircraft, forcing the IM aircraft to use the published speeds to estimate the target aircraft's estimated time of arrival. As a result, the aircraft performing IM operations may follow an aircraft whose TMA-TM generated trajectories have substantial speed deviations from the speeds expected by the spacing algorithm. Previous spacing algorithms were not designed to handle this magnitude of uncertainty. A simulation was conducted to examine a modified spacing algorithm with the ability to follow aircraft flying delayed trajectories. The simulation investigated the use of the new spacing algorithm with various delayed speed profiles and wind conditions, as well as several other variables designed to simulate real-life variability. The results and conclusions of this study indicate that the new spacing algorithm generally exhibits good performance; however, some types of target aircraft speed profiles can cause the spacing algorithm to command less than optimal speed control behavior.

  2. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, T.J.

    1997-05-20

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.

  3. Ballistic projectile trajectory determining system

    DOEpatents

    Karr, Thomas J.

    1997-01-01

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.

  4. Using structured decision making with landowners to address private forest management and parcelization: balancing multiple objectives and incorporating uncertainty

    Treesearch

    Paige F. B. Ferguson; Michael J. Conroy; John F. Chamblee; Jeffrey Hepinstall-Cymerman

    2015-01-01

    Parcelization and forest fragmentation are of concern for ecological, economic, and social reasons. Efforts to keep large, private forests intact may be supported by a decision-making process that incorporates landowners’ objectives and uncertainty. We used structured decision making (SDM) with owners of large, private forests in Macon County, North Carolina....

  5. Aeroassisted orbit transfer vehicle trajectory analysis

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Suit, William T.

    1988-01-01

    The emphasis in this study was on the use of multiple pass trajectories for aerobraking. However, for comparison, single pass trajectories, trajectories using ballutes, and trajectories corrupted by atmospheric anomolies were run. A two-pass trajectory was chosen to determine the relation between sensitivity to errors and payload to orbit. Trajectories that used only aerodynamic forces for maneuvering could put more weight into the target orbits but were very sensitive to variations from the planned trajectors. Using some thrust control resulted in less payload to orbit, but greatly reduced the sensitivity to variations from nominal trajectories. When compared to the non-thrusting trajectories investigated, the judicious use of thrusting resulted in multiple pass trajectories that gave 97 percent of the payload to orbit with almost none of the sensitivity to variations from the nominal.

  6. Flight Test Results: CTAS Cruise/Descent Trajectory Prediction Accuracy for En route ATC Advisories

    NASA Technical Reports Server (NTRS)

    Green, S.; Grace, M.; Williams, D.

    1999-01-01

    The Center/TRACON Automation System (CTAS), under development at NASA Ames Research Center, is designed to assist controllers with the management and control of air traffic transitioning to/from congested airspace. This paper focuses on the transition from the en route environment, to high-density terminal airspace, under a time-based arrival-metering constraint. Two flight tests were conducted at the Denver Air Route Traffic Control Center (ARTCC) to study trajectory-prediction accuracy, the key to accurate Decision Support Tool advisories such as conflict detection/resolution and fuel-efficient metering conformance. In collaboration with NASA Langley Research Center, these test were part of an overall effort to research systems and procedures for the integration of CTAS and flight management systems (FMS). The Langley Transport Systems Research Vehicle Boeing 737 airplane flew a combined total of 58 cruise-arrival trajectory runs while following CTAS clearance advisories. Actual trajectories of the airplane were compared to CTAS and FMS predictions to measure trajectory-prediction accuracy and identify the primary sources of error for both. The research airplane was used to evaluate several levels of cockpit automation ranging from conventional avionics to a performance-based vertical navigation (VNAV) FMS. Trajectory prediction accuracy was analyzed with respect to both ARTCC radar tracking and GPS-based aircraft measurements. This paper presents detailed results describing the trajectory accuracy and error sources. Although differences were found in both accuracy and error sources, CTAS accuracy was comparable to the FMS in terms of both meter-fix arrival-time performance (in support of metering) and 4D-trajectory prediction (key to conflict prediction). Overall arrival time errors (mean plus standard deviation) were measured to be approximately 24 seconds during the first flight test (23 runs) and 15 seconds during the second flight test (25 runs). The major

  7. TrackTable Trajectory Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Andrew T.

    Tracktable is designed for analysis and rendering of the trajectories of moving objects such as planes, trains, automobiles and ships. Its purpose is to operate on large sets of trajectories (millions) to help a user detect, analyze and display patterns. It will also be used to disseminate trajectory research results from Sandia's PANTHER Grand Challenge LDRD.

  8. Cold pool organization and the merging of convective updrafts in a Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Glenn, I. B.; Krueger, S. K.

    2016-12-01

    Cold pool organization is a process that accelerates the transition from shallow to deep cumulus convection, and leads to higher deep convective cloud top heights. The mechanism by which cold pool organization enhances convection remains not well understood, but the basic idea is that since precipitation evaporation and a low equivalent potential temperature in the mid-troposphere lead to strong cold pools, the net cold pool effect can be accounted for in a cumulus parameterization as a relationship involving those factors. Understanding the actual physical mechanism at work will help quantify the strength of the relationship between cold pools and enhanced deep convection. One proposed mechanism of enhancement is that cold pool organization leads to reduced distances between updrafts, creating a local environment more conducive to convection as updrafts entrain parcels of air recently detrained by their neighbors. We take this hypothesis one step further and propose that convective updrafts actually merge, not just exchange recently processed air. Because entrainment and detrainment around an updraft draws nearby air in or pushes it out, respectively, they act like dynamic flow sources and sinks, drawing each other in or pushing each other away. The acceleration is proportional to the inverse square of the distance between two updrafts, so a small reduction in distance can make a big difference in the rate of merging. We have shown in previous research how merging can be seen as collisions between different updraft air parcels using Lagrangian Parcel Trajectories (LPTs) released in a Large Eddy Simulation (LES) during a period with organized deep convection. Now we use a Eulerian frame of reference to examine the updraft merging process during the transition from shallow to organized deep convection. We use a case based on the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) for our LES. We directly measure the rate of entrainment and the properties

  9. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; hide

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (0-450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 microns) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of 0 is estimated to have been dehydrated in this event.

  10. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; hide

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta about 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(sub y)) had also been removed, with layers of enhanced (sub y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (about 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micron) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range of theta is estimated to have been dehydrated in this event.

  11. Dehydration and Denitrification in the Arctic Polar Vortex During the 1995-1996 Winter

    NASA Technical Reports Server (NTRS)

    Hintsa, E. J.; Newman, P. A.; Jonsson, H. H.; Webster, C. R.; May, R. D.; Herman, R. L.; Lait, L. R.; Schoeberl, M. R.; Elkins, J. W.; Wamsley, P. R.; hide

    1998-01-01

    Dehydration of more than 0.5 ppmv water was observed between 18 and 19 km (theta approximately 450-465 K) at the edge of the Arctic polar vortex on February 1, 1996. More than half the reactive nitrogen (NO(y)) had also been removed, with layers of enhanced NO(y) at lower altitudes. Back trajectory calculations show that air parcels sampled inside the vortex had experienced temperatures as low as 188 K within the previous 12 days, consistent with a small amount of dehydration. The depth of the dehydrated layer (approximately 1 km) and the fact that trajectories passed through the region of ice saturation in one day imply selective growth of a small fraction of particles to sizes large enough (>10 micrometers) to be irreversibly removed on this timescale. Over 25% of the Arctic vortex in a 20-30 K range Transport of theta is estimated to have been dehydrated in this event.

  12. An examination of slo-pitch pitching trajectories.

    PubMed

    Wu, Tom; Gervais, Pierre

    2008-01-01

    Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.

  13. MATSurv: multisensor air traffic surveillance system

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov; Pattipati, Krishna R.; Gassner, Richard R.

    1995-09-01

    This paper deals with the design and implementation of MATSurv 1--an experimental Multisensor Air Traffic Surveillance system. The proposed system consists of a Kalman filter based state estimator used in conjunction with a 2D sliding window assignment algorithm. Real data from two FAA radars is used to evaluate the performance of this algorithm. The results indicate that the proposed algorithm provides a superior classification of the measurements into tracks (i.e., the most likely aircraft trajectories) when compared to the aircraft trajectories obtained using the measurement IDs (squawk or IFF code).

  14. Trajectory-Based Takeoff Time Predictions Applied to Tactical Departure Scheduling: Concept Description, System Design, and Initial Observations

    NASA Technical Reports Server (NTRS)

    Engelland, Shawn A.; Capps, Alan

    2011-01-01

    Current aircraft departure release times are based on manual estimates of aircraft takeoff times. Uncertainty in takeoff time estimates may result in missed opportunities to merge into constrained en route streams and lead to lost throughput. However, technology exists to improve takeoff time estimates by using the aircraft surface trajectory predictions that enable air traffic control tower (ATCT) decision support tools. NASA s Precision Departure Release Capability (PDRC) is designed to use automated surface trajectory-based takeoff time estimates to improve en route tactical departure scheduling. This is accomplished by integrating an ATCT decision support tool with an en route tactical departure scheduling decision support tool. The PDRC concept and prototype software have been developed, and an initial test was completed at air traffic control facilities in Dallas/Fort Worth. This paper describes the PDRC operational concept, system design, and initial observations.

  15. The Use of Red Green Blue (RGB) Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, Emily; Zavodsky, Bradley; Molthan, Andrew; Jedlovec, Gary

    2013-01-01

    AIRS ozone and model PV analysis confirm the stratospheric air in RGB Air Mass imagery. Trajectories confirm winds south of the low were distinct from CCB driven winds. Cross sections connect the tropopause fold, downward motion, and high nearsurface winds. Comparison to conceptual models show Shapiro-Keyser features and sting jet characteristics were observed in a storm that impacted the U.S. East Coast. RGB Air Mass imagery can be used to identify stratospheric air and regions susceptible to tropopause folding and attendant non-convective winds.

  16. Differing Air Traffic Controller Responses to Similar Trajectory Prediction Errors

    NASA Technical Reports Server (NTRS)

    Mercer, Joey; Hunt-Espinosa, Sarah; Bienert, Nancy; Laraway, Sean

    2016-01-01

    A Human-In-The-Loop simulation was conducted in January of 2013 in the Airspace Operations Laboratory at NASA's Ames Research Center. The simulation airspace included two en route sectors feeding the northwest corner of Atlanta's Terminal Radar Approach Control. The focus of this paper is on how uncertainties in the study's trajectory predictions impacted the controllers ability to perform their duties. Of particular interest is how the controllers interacted with the delay information displayed in the meter list and data block while managing the arrival flows. Due to wind forecasts with 30-knot over-predictions and 30-knot under-predictions, delay value computations included errors of similar magnitude, albeit in opposite directions. However, when performing their duties in the presence of these errors, did the controllers issue clearances of similar magnitude, albeit in opposite directions?

  17. Four-body trajectory optimization

    NASA Technical Reports Server (NTRS)

    Pu, C. L.; Edelbaum, T. N.

    1974-01-01

    A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.

  18. Overshooting thunderstorm cloud top dynamics as approximated by a linear Lagrangian parcel model with analytic exact solutions

    NASA Technical Reports Server (NTRS)

    Schlesinger, Robert E.

    1990-01-01

    Results are presented from a linear Lagrangian entraining parcel model of an overshooting thunderstorm cloud top. The model, which is similar to that of Adler and Mack (1986), gives analytic exact solutions for vertical velocity and temperature by representing mixing with Rayleigh damping instead of nonlinearly. Model results are presented for various combinations of stratospheric lapse rate, drag intensity, and mixing strength. The results are compared to those of Adler and Mack.

  19. A New Computational Technique for the Generation of Optimised Aircraft Trajectories

    NASA Astrophysics Data System (ADS)

    Chircop, Kenneth; Gardi, Alessandro; Zammit-Mangion, David; Sabatini, Roberto

    2017-12-01

    A new computational technique based on Pseudospectral Discretisation (PSD) and adaptive bisection ɛ-constraint methods is proposed to solve multi-objective aircraft trajectory optimisation problems formulated as nonlinear optimal control problems. This technique is applicable to a variety of next-generation avionics and Air Traffic Management (ATM) Decision Support Systems (DSS) for strategic and tactical replanning operations. These include the future Flight Management Systems (FMS) and the 4-Dimensional Trajectory (4DT) planning and intent negotiation/validation tools envisaged by SESAR and NextGen for a global implementation. In particular, after describing the PSD method, the adaptive bisection ɛ-constraint method is presented to allow an efficient solution of problems in which two or multiple performance indices are to be minimized simultaneously. Initial simulation case studies were performed adopting suitable aircraft dynamics models and addressing a classical vertical trajectory optimisation problem with two objectives simultaneously. Subsequently, a more advanced 4DT simulation case study is presented with a focus on representative ATM optimisation objectives in the Terminal Manoeuvring Area (TMA). The simulation results are analysed in-depth and corroborated by flight performance analysis, supporting the validity of the proposed computational techniques.

  20. 27 CFR 44.225 - Delivery of tobacco products, or cigarette papers or tubes for export other than by parcel post.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products, or cigarette papers or tubes for export other than by parcel post. 44.225 Section 44.225 Alcohol... (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.225 Delivery of tobacco products, or cigarette papers or...

  1. 27 CFR 44.225 - Delivery of tobacco products, or cigarette papers or tubes for export other than by parcel post.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... products, or cigarette papers or tubes for export other than by parcel post. 44.225 Section 44.225 Alcohol... (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.225 Delivery of tobacco products, or cigarette papers or...

  2. 27 CFR 44.225 - Delivery of tobacco products, or cigarette papers or tubes for export other than by parcel post.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products, or cigarette papers or tubes for export other than by parcel post. 44.225 Section 44.225 Alcohol... (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.225 Delivery of tobacco products, or cigarette papers or...

  3. 27 CFR 44.225 - Delivery of tobacco products, or cigarette papers or tubes for export other than by parcel post.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products, or cigarette papers or tubes for export other than by parcel post. 44.225 Section 44.225 Alcohol... (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.225 Delivery of tobacco products, or cigarette papers or...

  4. 27 CFR 44.225 - Delivery of tobacco products, or cigarette papers or tubes for export other than by parcel post.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... products, or cigarette papers or tubes for export other than by parcel post. 44.225 Section 44.225 Alcohol... (CONTINUED) TOBACCO EXPORTATION OF TOBACCO PRODUCTS AND CIGARETTE PAPERS AND TUBES, WITHOUT PAYMENT OF TAX, OR WITH DRAWBACK OF TAX Drawback of Tax § 44.225 Delivery of tobacco products, or cigarette papers or...

  5. Potential sources of Southern Siberia aerosols by data of AERONET site in Tomsk, Russia

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Shukurova, L. M.

    2017-11-01

    For all days of measurements in 2002-2015 of volume concentration of aerosols at the AERONET Tomsk/Tomsk-22 station an array of 10-day backward trajectories of air parcels arriving in Tomsk into seven layers of the troposphere with heights in the range of 0.5-5.0 km is calculated using the trajectory model NOAA HYSPLIT_4. For the three fractions of the aerosol with particle sizes < 1.0 μm, 1.0-2.5 μm, 2.5-5.0 μm and their sum (< 5.0 μm), the field of capacity of the potential sources of aerosols of these fractions for southern Siberia is determined by the CWT (concentration weighted trajectory) method using the backward trajectory array. The analysis is carried out taking into account the processes both the scavenging of the aerosols with precipitation and the dry deposition. Trajectories arriving at different heights were analyzed taking into account the weight coefficients proportional to the backward light scattering coefficients of an aerosols at corresponding heights for warm and cold seasons in Western Siberia. The most capable (in unit of volume concentration μm3 /μm2 ) potential sources of these fractions for southern Siberia are located above North Africa, Eastern Siberia, Central Asia and the Dzhungarian desert in the Xinjiang-Uyghur Autonomous Region of China.

  6. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management.

    PubMed

    Bongiorno, Christian; Miccichè, Salvatore; Mantegna, Rosario N

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers' operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast.

  7. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in air traffic management

    PubMed Central

    Bongiorno, Christian; Mantegna, Rosario N.

    2017-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system aiming at modeling the interactions between aircraft and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts between flight trajectories can occur for two main reasons: either the planning of the flight trajectory was not sufficiently detailed to rule out all potential conflicts or unforeseen events during the flight require modifications of the flight plan that can conflict with other flight trajectories. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our model in generating scenario simulations able to give insights about the air traffic management system. We show that the calibrated model is able to reproduce the existence of a geographical localization of air traffic controllers’ operations. Finally, we use the model to investigate the relationship between directs and conflict resolutions (i) in the presence of perfect forecast ability of controllers, and (ii) in the presence of some degree of uncertainty in flight trajectory forecast. PMID:28419160

  8. Regional source identification using Lagrangian stochastic particle dispersion and HYSPLIT backward-trajectory models.

    PubMed

    Koracin, Darko; Vellore, Ramesh; Lowenthal, Douglas H; Watson, John G; Koracin, Julide; McCord, Travis; DuBois, David W; Chen, L W Antony; Kumar, Naresh; Knipping, Eladio M; Wheeler, Neil J M; Craig, Kenneth; Reid, Stephen

    2011-06-01

    The main objective of this study was to investigate the capabilities of the receptor-oriented inverse mode Lagrangian Stochastic Particle Dispersion Model (LSPDM) with the 12-km resolution Mesoscale Model 5 (MM5) wind field input for the assessment of source identification from seven regions impacting two receptors located in the eastern United States. The LSPDM analysis was compared with a standard version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) single-particle backward-trajectory analysis using inputs from MM5 and the Eta Data Assimilation System (EDAS) with horizontal grid resolutions of 12 and 80 km, respectively. The analysis included four 7-day summertime events in 2002; residence times in the modeling domain were computed from the inverse LSPDM runs and HYPSLIT-simulated backward trajectories started from receptor-source heights of 100, 500, 1000, 1500, and 3000 m. Statistics were derived using normalized values of LSPDM- and HYSPLIT-predicted residence times versus Community Multiscale Air Quality model-predicted sulfate concentrations used as baseline information. From 40 cases considered, the LSPDM identified first- and second-ranked emission region influences in 37 cases, whereas HYSPLIT-MM5 (HYSPLIT-EDAS) identified the sources in 21 (16) cases. The LSPDM produced a higher overall correlation coefficient (0.89) compared with HYSPLIT (0.55-0.62). The improvement of using the LSPDM is also seen in the overall normalized root mean square error values of 0.17 for LSPDM compared with 0.30-0.32 for HYSPLIT. The HYSPLIT backward trajectories generally tend to underestimate near-receptor sources because of a lack of stochastic dispersion of the backward trajectories and to overestimate distant sources because of a lack of treatment of dispersion. Additionally, the HYSPLIT backward trajectories showed a lack of consistency in the results obtained from different single vertical levels for starting the backward trajectories. To

  9. Optimal trajectories of aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  10. The influence of work-family conflict trajectories on self-rated health trajectories in Switzerland: a life course approach.

    PubMed

    Cullati, Stéphane

    2014-07-01

    Self-rated health (SRH) trajectories tend to decline over a lifetime. Moreover, the Cumulative Advantage and Disadvantage (CAD) model indicates that SRH trajectories are known to consistently diverge along socioeconomic positions (SEP) over the life course. However, studies of working adults to consider the influence of work and family conflict (WFC) on SRH trajectories are scarce. We test the CAD model and hypothesise that SRH trajectories diverge over time according to socioeconomic positions and WFC trajectories accentuate this divergence. Using longitudinal data from the Swiss Household Panel (N = 2327 working respondents surveyed from 2004 to 2010), we first examine trajectories of SRH and potential divergence over time across age, gender, SEP and family status using latent growth curve analysis. Second, we assess changes in SRH trajectories in relation to changes in WFC trajectories and divergence in SRH trajectories according to gender, SEP and family status using parallel latent growth curve analysis. Three measures of WFC are used: exhaustion after work, difficulty disconnecting from work, and work interference in private family obligations. The results show that SRH trajectories slowly decline over time and that the rate of change is not influenced by age, gender or SEP, a result which does not support the CAD model. SRH trajectories are significantly correlated with exhaustion after work trajectories but not the other two WFC measures. When exhaustion after work trajectories are taken into account, SRH trajectories of higher educated people decline slower compared to less educated people, supporting the CAD hypothesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. New method for finding multiple meaningful trajectories

    NASA Astrophysics Data System (ADS)

    Bao, Zhonghao; Flachs, Gerald M.; Jordan, Jay B.

    1995-07-01

    Mathematical foundations and algorithms for efficiently finding multiple meaningful trajectories (FMMT) in a sequence of digital images are presented. A meaningful trajectory is motion created by a sentient being or by a device under the control of a sentient being. It is smooth and predictable over short time intervals. A meaningful trajectory can suddenly appear or disappear in sequence images. The development of the FMMT is based on these assumptions. A finite state machine in the FMMT is used to model the trajectories under the conditions of occlusions and false targets. Each possible trajectory is associated with an initial state of a finite state machine. When two frames of data are available, a linear predictor is used to predict the locations of all possible trajectories. All trajectories within a certain error bound are moved to a monitoring trajectory state. When trajectories attain three consecutive good predictions, they are moved to a valid trajectory state and considered to be locked into a tracking mode. If an object is occluded while in the valid trajectory state, the predicted position is used to continue to track; however, the confidence in the trajectory is lowered. If the trajectory confidence falls below a lower limit, the trajectory is terminated. Results are presented that illustrate the FMMT applied to track multiple munitions fired from a missile in a sequence of images. Accurate trajectories are determined even in poor images where the probabilities of miss and false alarm are very high.

  12. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    NASA Astrophysics Data System (ADS)

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  13. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  14. Rapid Design of Gravity Assist Trajectories

    NASA Technical Reports Server (NTRS)

    Carrico, J.; Hooper, H. L.; Roszman, L.; Gramling, C.

    1991-01-01

    Several International Solar Terrestrial Physics (ISTP) missions require the design of complex gravity assisted trajectories in order to investigate the interaction of the solar wind with the Earth's magnetic field. These trajectories present a formidable trajectory design and optimization problem. The philosophy and methodology that enable an analyst to design and analyse such trajectories are discussed. The so called 'floating end point' targeting, which allows the inherently nonlinear multiple body problem to be solved with simple linear techniques, is described. The combination of floating end point targeting with analytic approximations with a Newton method targeter to achieve trajectory design goals quickly, even for the very sensitive double lunar swingby trajectories used by the ISTP missions, is demonstrated. A multiconic orbit integration scheme allows fast and accurate orbit propagation. A prototype software tool, Swingby, built for trajectory design and launch window analysis, is described.

  15. Educational Aspirations Trajectories in England

    ERIC Educational Resources Information Center

    McCulloch, Andrew

    2017-01-01

    This study used latent class analysis to examine the trajectories followed by young people's educational aspirations in England over the age range from 13 to 16 years and their relationship to educational achievement. The results suggested that young people's aspirations followed six trajectories. Four trajectories showed overall patterns of…

  16. Chemical evolution of gaseous air pollutants down-wind of tropical megacities: Mexico City case study

    NASA Astrophysics Data System (ADS)

    Madronich, Sasha

    The photochemical evolution of a polluted air parcel originating in a tropical megacity was modeled for 3 days using a box model with detailed gas-phase chemistry. The parcel was initialized with concentrations typically observed in Mexico City for nitrogen oxides (80 parts per billion on a molar basis, or ppbv), carbon monoxide (3000 ppbv), non-methane hydrocarbons (1700 ppb on a carbon basis, or ppbC) and formaldehyde (23.9 ppbv). Vigorous ozone production occurred during day 1, followed by gradual net destruction during the next 2 days. Other major inorganic products were nitric acid and hydrogen peroxide (35 and 16 ppbv, respectively at the end of day 3), while organic products included ketones (83 ppbv), organic hydroperoxides (25 ppbv), peroxyacyl nitrates (28 ppbv), aldehydes (18 ppbv), organic acids (16 ppbv), alkyl nitrates (10 ppbv) and alcohols (0.2 ppbv). Also produced was multitude of different polyfunctional compounds, present individually at small concentrations, but with significant summed concentrations (68, 49 and 1.5 ppbC, respectively, for compounds having 2, 3 or 4 functional groups), which could contribute to the formation of secondary aerosols. The overall reactivity of the parcel (daytime concentrations of hydroxy, hydroperoxy and organic peroxy radicals; and cumulative hydroxyl radical loss rates) remained relatively constant and high on days 2 and 3. This persistent gas-phase reactivity suggests that urban areas could affect regional and global tropospheric chemistry. However, it remains unclear whether heterogeneous losses, on aerosol particles, reduce this reactivity while simultaneously changing aerosol chemical, microphysical and radiative properties relevant to weather and climate.

  17. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  18. Human care system for heart-rate and human-movement trajectory in home and its application to detect mental disease

    NASA Astrophysics Data System (ADS)

    Hata, Yutaka; Kanazawa, Seigo; Endo, Maki; Tsuchiya, Naoki; Nakajima, Hiroshi

    2012-06-01

    This paper proposes a heart rate monitoring system for detecting autonomic nervous system by the heart rate variability using an air pressure sensor to diagnose mental disease. Moreover, we propose a human behavior monitoring system for detecting the human trajectory in home by an infrared camera. In day and night times, the human behavior monitoring system detects the human movement in home. The heart rate monitoring system detects the heart rate in bed in night time. The air pressure sensor consists of a rubber tube, cushion cover and pressure sensor, and it detects the heart rate by setting it to bed. It unconstraintly detects the RR-intervals; thereby the autonomic nervous system can be assessed. The autonomic nervous system analysis can examine the mental disease. While, the human behavior monitoring system obtains distance distribution image by an infrared camera. It classifies adult, child and the other object from distance distribution obtained by the camera, and records their trajectories. This behavior, i.e., trajectory in home, strongly corresponds to cognitive disorders. Thus, the total system can detect mental disease and cognitive disorders by uncontacted sensors to human body.

  19. Automated Conflict Resolution For Air Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2005-01-01

    The ability to detect and resolve conflicts automatically is considered to be an essential requirement for the next generation air traffic control system. While systems for automated conflict detection have been used operationally by controllers for more than 20 years, automated resolution systems have so far not reached the level of maturity required for operational deployment. Analytical models and algorithms for automated resolution have been traffic conditions to demonstrate that they can handle the complete spectrum of conflict situations encountered in actual operations. The resolution algorithm described in this paper was formulated to meet the performance requirements of the Automated Airspace Concept (AAC). The AAC, which was described in a recent paper [1], is a candidate for the next generation air traffic control system. The AAC's performance objectives are to increase safety and airspace capacity and to accommodate user preferences in flight operations to the greatest extent possible. In the AAC, resolution trajectories are generated by an automation system on the ground and sent to the aircraft autonomously via data link .The algorithm generating the trajectories must take into account the performance characteristics of the aircraft, the route structure of the airway system, and be capable of resolving all types of conflicts for properly equipped aircraft without requiring supervision and approval by a controller. Furthermore, the resolution trajectories should be compatible with the clearances, vectors and flight plan amendments that controllers customarily issue to pilots in resolving conflicts. The algorithm described herein, although formulated specifically to meet the needs of the AAC, provides a generic engine for resolving conflicts. Thus, it can be incorporated into any operational concept that requires a method for automated resolution, including concepts for autonomous air to air resolution.

  20. Automated Design of Noise-Minimal, Safe Rotorcraft Trajectories

    NASA Technical Reports Server (NTRS)

    Morris, Robert A.; Venable, K. Brent; Lindsay, James

    2012-01-01

    NASA and the international community are investing in the development of a commercial transportation infrastructure that includes the increased use of rotorcraft, specifically helicopters and aircraft such as a 40-passenger civil tilt rotors. Rotorcraft have a number of advantages over fixed wing aircraft, primarily in not requiring direct access to the primary fixed wing runways. As such they can operate at an airport without directly interfering with major air carrier and commuter aircraft operations. However, there is significant concern over the impact of noise on the communities surrounding the transportation facilities. In this paper we propose to address the rotorcraft noise problem by exploiting powerful search techniques coming from artificial intelligence, coupled with simulation and field tests, to design trajectories that are expected to improve on the amount of ground noise generated. This paper investigates the use of simulation based on predictive physical models to facilitate the search for low-noise trajectories using a class of automated search algorithms called local search. A novel feature of this approach is the ability to incorporate constraints into the problem formulation that addresses passenger safety and comfort.

  1. Optimal solar sail planetocentric trajectories

    NASA Technical Reports Server (NTRS)

    Sackett, L. L.

    1977-01-01

    The analysis of solar sail planetocentric optimal trajectory problem is described. A computer program was produced to calculate optimal trajectories for a limited performance analysis. A square sail model is included and some consideration is given to a heliogyro sail model. Orbit to a subescape point and orbit to orbit transfer are considered. Trajectories about the four inner planets can be calculated and shadowing, oblateness, and solar motion may be included. Equinoctial orbital elements are used to avoid the classical singularities, and the method of averaging is applied to increase computational speed. Solution of the two-point boundary value problem which arises from the application of optimization theory is accomplished with a Newton procedure. Time optimal trajectories are emphasized, but a penalty function has been considered to prevent trajectories which intersect a planet's surface.

  2. Increased Airway Wall Thickness is Associated with Adverse Longitudinal First-Second Forced Expiratory Volume Trajectories of Former World Trade Center workers.

    PubMed

    de la Hoz, Rafael E; Liu, Xiaoyu; Doucette, John T; Reeves, Anthony P; Bienenfeld, Laura A; Wisnivesky, Juan P; Celedón, Juan C; Lynch, David A; San José Estépar, Raúl

    2018-05-24

    Occupational exposures at the WTC site after September 11, 2001 have been associated with several presumably inflammatory lower airway diseases. In this study, we describe the trajectories of expiratory air flow decline, identify subgroups with adverse progression, and investigate the association of a quantitative computed tomography (QCT) imaging measurement of airway wall thickness, and other risk factors for adverse progression. We examined the trajectories of expiratory air flow decline in a group of 799 former WTC workers and volunteers with QCT-measured (with two independent systems) wall area percent (WAP) and at least 3 periodic spirometries. We calculated individual regression lines for first-second forced expiratory volume (FEV 1 ), identified subjects with rapidly declining and increasing ("gainers"), and compared them to subjects with normal and "stable" FEV 1 decline. We used multivariate logistic regression to model decliner vs. stable trajectories. The mean longitudinal FEV 1 slopes for the entire study population, and its stable, decliner, and gainer subgroups were, respectively, - 35.8, - 8, - 157.6, and + 173.62 ml/year. WAP was associated with "decliner" status (OR adj 1.08, 95% CI 1.02, 1.14, per 5% increment) compared to stable. Age, weight gain, baseline FEV 1 percent predicted, bronchodilator response, and pre-WTC occupational exposures were also significantly associated with accelerated FEV 1 decline. Analyses of gainers vs. stable subgroup showed WAP as a significant predictor in unadjusted but not consistently in adjusted analyses. The apparent normal age-related rate of FEV 1 decline results from averaging widely divergent trajectories. WAP is significantly associated with accelerated air flow decline in WTC workers.

  3. Cirrus Parcel Model Comparison Project. Phase 1; The Critical Components to Simulate Cirrus Initiation Explicitly

    NASA Technical Reports Server (NTRS)

    Lin, Ruei-Fong; Starr, David OC; DeMott, Paul J.; Cotton, Richard; Sassen, Kenneth; Jensen, Eric; Einaudi, Franco (Technical Monitor)

    2001-01-01

    clear if the two approaches can be made consistent. Large haze particles may deviate considerably from equilibrium size in moderate to strong updrafts (20-100 centimeters per second) at -60 C when the commonly invoked equilibrium assumption is lifted. The resulting difference in particle-size- dependent solution concentration of haze particles may significantly affect the ice particle formation rate during the initial nucleation interval. The uptake rate for water vapor excess by ice crystals is another key component regulating the total number of nucleated ice crystals. This rate, the product of particle number concentration and ice crystal diffusional growth rate, which is particularly sensitive to the deposition coefficient when ice particles are small, modulates the peak particle formation rate achieved in an air parcel and the duration of the active nucleation time period. The effects of heterogeneous nucleation are most pronounced in weak updraft situations. Vapor competition by the heterogeneously nucleated ice crystals may limit the achieved ice supersaturation and thus suppresses the contribution of homogeneous nucleation. Correspondingly, ice crystal number density is markedly reduced. Definitive laboratory and atmospheric benchmark data are needed for the heterogeneous nucleation process. Inter-model differences are correspondingly greater than in the case of the homogeneous nucleation process acting alone.

  4. Manipulator trajectories during orbital servicing mission: numerical simulations and experiments on microgravity simulator

    NASA Astrophysics Data System (ADS)

    Rybus, T.; Seweryn, K.

    2018-06-01

    It is considered to use a manipulator-equipped satellite for performing On-Orbit Servicing (OOS) or Active Debris Removal (ADR) missions. In this paper, several possible approaches are reviewed for end-effector (EE) trajectory planning in the Cartesian space, such as application of the Bézier curves for singularity avoidance and method for trajectory optimization. The results of numerical simulations for a satellite equipped with a 7 degree-of-freedom (DoF) manipulator and results of experiments performed on a planar air-bearing microgravity simulator for a simplified two-dimensional (2D) case with a 2-DoF manipulator are presented. Differences between the free-floating case and the case where Attitude and Orbit Control Systems (AOCS) keep constant position and orientation of the satellite are also shown.

  5. Observations of carbon monoxide mixing ratios at a mountain site in central Taiwan during the Asian biomass burning season

    NASA Astrophysics Data System (ADS)

    Lin, Yu Chi; Lin, Chuan Yao; Hsu, Wei Ting

    2010-02-01

    Carbon monoxide (CO) mixing ratios were observed from 30 January to 7 April 2008 at Mt. Lulin (23.51°N, 120.92°E, 2862 m asl) in central Taiwan to investigate characteristics of CO during biomass burning periods. During the sampling campaign, the average mixing ratio of CO was 234 ± 63 ppb with higher levels observed in March. The elevated CO in March can, on the basis of backward trajectories and satellite fire spots analyses, possibly be attributed to biomass burning activities in the Asian continent. Significant diurnal variations of CO mixing ratios were observed at the remote site. The higher CO levels in the afternoon were influenced by the transport of boundary layer pollution to the site during daytime upslope flow. Backward trajectory analysis showed that air masses mainly originated from India (ID), the Indochina Peninsula (IP) and South Coastal China (SC), which together accounted for 85% of the total trajectories. Higher mixing ratios of CO were found in the ID, IP, and SC categories, indicating significant impacts of anthropogenic emissions on the Pacific region. Furthermore, the air parcels were divided into two categories, those that passed over the fire regions and those that did not. The result showed that the average difference of CO levels between the two categories was approximately 79 ppb, suggesting that Asian biomass burning plays an important role in CO levels at this remote site during the springtime.

  6. Environmental Baseline Survey Report for the Title Transfer of Parcel ED-9 at the East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAIC

    2010-05-01

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of the U. S. Department of Energy's (DOE's) Parcel ED-9 at the East Tennessee Technology Park (ETTP). Parcel ED-9 consists of about 13 acres that DOE proposes to transfer to Heritage Center, LLC (hereafter referred to as 'Heritage Center'), a subsidiary of the Community Reuse Organization of East Tennessee (CROET). The 13 acres include two tracts of land, referred to as ED-9A (7.06 acres) and ED-9B (5.02 acres), and a third tract consisting of about 900 linear feet of paved road and adjacent right-of-way, referred to as ED-9C (0.98more » acres). Transfer of the title to ED-9 will be by deed under a Covenant Deferral Request (CDR) pursuant to Section 120(h)(3)(C) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). This report provides a summary of information to support the transfer of this government-owned property at ETTP to a non-federal entity.« less

  7. Method and Apparatus for Generating Flight-Optimizing Trajectories

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G. (Inventor); Wing, David J. (Inventor)

    2015-01-01

    An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information.

  8. A TRAJECTORY-CLUSTERING CORRELATION METHODOLOGY FOR EXAMINING THE LONG-RANGE TRANSPORT OF AIR POLLUTANTS. (R825260)

    EPA Science Inventory

    We present a robust methodology for examining the relationship between synoptic-scale atmospheric transport patterns and pollutant concentration levels observed at a site. Our approach entails calculating a large number of back-trajectories from the observational site over a long...

  9. Trajectory optimization for the National Aerospace Plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    The objective of this second phase research is to investigate the optimal ascent trajectory for the National Aerospace Plane (NASP) from runway take-off to orbital insertion and address the unique problems associated with the hypersonic flight trajectory optimization. The trajectory optimization problem for an aerospace plane is a highly challenging problem because of the complexity involved. Previous work has been successful in obtaining sub-optimal trajectories by using energy-state approximation and time-scale decomposition techniques. But it is known that the energy-state approximation is not valid in certain portions of the trajectory. This research aims at employing full dynamics of the aerospace plane and emphasizing direct trajectory optimization methods. The major accomplishments of this research include the first-time development of an inverse dynamics approach in trajectory optimization which enables us to generate optimal trajectories for the aerospace plane efficiently and reliably, and general analytical solutions to constrained hypersonic trajectories that has wide application in trajectory optimization as well as in guidance and flight dynamics. Optimal trajectories in abort landing and ascent augmented with rocket propulsion and thrust vectoring control were also investigated. Motivated by this study, a new global trajectory optimization tool using continuous simulated annealing and a nonlinear predictive feedback guidance law have been under investigation and some promising results have been obtained, which may well lead to more significant development and application in the near future.

  10. Environmental baseline survey report for West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge and parcel 21D in the vicinity of the East Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, David A.

    2012-11-29

    This environmental baseline survey (EBS) report documents the baseline environmental conditions of five land parcels located near the U.S. Department of Energy?s (DOE?s) East Tennessee Technology Park (ETTP), including West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, West Pine Ridge, and Parcel 21d. Preparation of this report included the detailed search of federal government records, title documents, aerial photos that may reflect prior uses, and visual inspections of the property and adjacent properties. Interviews with current employees involved in, or familiar with, operations on the real property were also conducted to identify any areas on the property wheremore » hazardous substances and petroleum products, or their derivatives, and acutely hazardous wastes may have been released or disposed. In addition, a search was made of reasonably obtainable federal, state, and local government records of each adjacent facility where there has been a release of any hazardous substance or any petroleum product or their derivatives, including aviation fuel and motor oil, and which is likely to cause or contribute to a release of any hazardous substance or any petroleum product or its derivatives, including aviation fuel or motor oil, on the real property. A radiological survey and soil/sediment sampling was conducted to assess baseline conditions of Parcel 21d that were not addressed by the soils-only no-further-investigation (NFI) reports. Groundwater sampling was also conducted to support a Parcel 21d decision. Based on available data West Black Oak Ridge, East Black Oak Ridge, McKinney Ridge, and West Pine Ridge are not impacted by site operations and are not subject to actions per the Federal Facility Agreement (FFA). This determination is supported by visual inspections, records searches and interviews, groundwater conceptual modeling, approved NFI reports, analytical data, and risk analysis results. Parcel 21d data, however, demonstrate impacts from

  11. Trajectory-Oriented Approach to Managing Traffic Complexity: Trajectory Flexibility Metrics and Algorithms and Preliminary Complexity Impact Assessment

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Vivona, Robert A.; Al-Wakil, Tarek

    2009-01-01

    This document describes exploratory research on a distributed, trajectory oriented approach for traffic complexity management. The approach is to manage traffic complexity based on preserving trajectory flexibility and minimizing constraints. In particular, the document presents metrics for trajectory flexibility; a method for estimating these metrics based on discrete time and degree of freedom assumptions; a planning algorithm using these metrics to preserve flexibility; and preliminary experiments testing the impact of preserving trajectory flexibility on traffic complexity. The document also describes an early demonstration capability of the trajectory flexibility preservation function in the NASA Autonomous Operations Planner (AOP) platform.

  12. Terminal-Area Aircraft Intent Inference Approach Based on Online Trajectory Clustering.

    PubMed

    Yang, Yang; Zhang, Jun; Cai, Kai-quan

    2015-01-01

    Terminal-area aircraft intent inference (T-AII) is a prerequisite to detect and avoid potential aircraft conflict in the terminal airspace. T-AII challenges the state-of-the-art AII approaches due to the uncertainties of air traffic situation, in particular due to the undefined flight routes and frequent maneuvers. In this paper, a novel T-AII approach is introduced to address the limitations by solving the problem with two steps that are intent modeling and intent inference. In the modeling step, an online trajectory clustering procedure is designed for recognizing the real-time available routes in replacing of the missed plan routes. In the inference step, we then present a probabilistic T-AII approach based on the multiple flight attributes to improve the inference performance in maneuvering scenarios. The proposed approach is validated with real radar trajectory and flight attributes data of 34 days collected from Chengdu terminal area in China. Preliminary results show the efficacy of the presented approach.

  13. Relationship Between Precipitation Chemistry and Meteorological Parameters at a Urban Site in the North of Queretaro State

    NASA Astrophysics Data System (ADS)

    García Martínez, R.; Hernández, G.; Solis, S.; Torres, M. D.; Padilla, H.; Báez, A.

    2010-12-01

    A total of 50 wet precipitation samples were collected per event at the Juriquilla site from mid-May 2009 to the end of May 2010. The Juriquilla sampling site was located on the roof of the Geoscience Building, Universidad Nacional Autónoma de México, at the Juriquilla Campus in the city of Querétaro located at 20°41'58"N and 100°27'28" W, at 1920 meters above sea level (masl). Sampling was done in passive collectors that consisted of a high density polyethylene funnel connected to a 2-liter polyethylene bottle, supported by a rod 1.5 m above the roof. One of the collectors was used to take samples for trace metals. The analysis was done in soluble and insoluble fractions. Al, Ag, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V and Zn were analyzed by atomic absorption spectroscopy with a graphite furnace accessory. The other collector was used to measure pH and major ions (SO4-2, Cl-, NO3-, Ca2+, Mg2+, Na+, K+ and NH4+) in the soluble fractions, because it was assumed that these ions are completely soluble in rainwater. The major ions SO4-2, Cl-, and NO3-, were analyzed by a Varian Model 2010 ion chromatograph; Ca2+, Mg2+, Na+ and K+ were determined by flame atomic absorption spectrometry and NH4+ by a UV spectrophotometer. In this study, synoptic maps were used to analyze the transport of air masses before rainfall, enabling back trajectories to be used to estimate the source region of pollutants. To understand the variety of synoptic weather conditions, data were associated with the corresponding air mass back trajectories calculated by the NOAA HYSPLIT model (Hybrid Single-Particle Lagrangian Integrated Trajectory Model). Back trajectory models have very simple advection schemes to calculate the previous position of an air parcel by using estimated wind speed and direction for the time period prior to arrival at the selected site. In this study, the origin of the air mass for an event was evaluated by a three-day back-trajectory before arrival to Queretaro. Mass back

  14. Lunar Cube Transfer Trajectory Options

    NASA Technical Reports Server (NTRS)

    Folta, David; Dichmann, Donald James; Clark, Pamela E.; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can b e considered which have a wide range of transfer duration, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO) geostationary transfer orbits (GTO) and higher energy direct lunar transfer and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  15. Lunar Cube Transfer Trajectory Options

    NASA Technical Reports Server (NTRS)

    Folta, David; Dichmann, Donald J.; Clark, Pamela; Haapala, Amanda; Howell, Kathleen

    2015-01-01

    Numerous Earth-Moon trajectory and lunar orbit options are available for Cubesat missions. Given the limited Cubesat injection infrastructure, transfer trajectories are contingent upon the modification of an initial condition of the injected or deployed orbit. Additionally, these transfers can be restricted by the selection or designs of Cubesat subsystems such as propulsion or communication. Nonetheless, many trajectory options can be considered which have a wide range of transfer durations, fuel requirements, and final destinations. Our investigation of potential trajectories highlights several options including deployment from low Earth orbit (LEO), geostationary transfer orbits (GTO), and higher energy direct lunar transfers and the use of longer duration Earth-Moon dynamical systems. For missions with an intended lunar orbit, much of the design process is spent optimizing a ballistic capture while other science locations such as Sun-Earth libration or heliocentric orbits may simply require a reduced Delta-V imparted at a convenient location along the trajectory.

  16. Impact of mercury from the Canadian boreal forest widfires to New England

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Talbot, R. W.

    2010-12-01

    Canadian Boreal forest fires release significant amounts of mercury and constitute several air quality episodes every year in New England, especially during summer. With continuous monitoring of mercury in two New England sites in both rural and elevated area from 2004 to date, several events of the wildfire transport was screened out using ensembles of backward trajectories to ensure the air parcels sampled spent substantial residence time within the box of burned area defined by the the Fire Information for Resource Management System(FIRMS) MODIS hotspot/fires data. Other biomass burning tracers, (such as HCN), were also used as criteria if they are were available during the events period. The mercury to CO ratios during the events were calculated as the input to the Sparse Matrix Operator Kernel Emissions System (SMOKE) model to simulate the high and low ranges of mercury emissions frorm the burned area. We are now using the Community Multiscale Air Quality Modeling System (CMAQ) to study the impact of the mercury emission from the Canadian boreal forest wildfires to the New England region in more details.

  17. Flight test trajectory control analysis

    NASA Technical Reports Server (NTRS)

    Walker, R.; Gupta, N.

    1983-01-01

    Recent extensions to optimal control theory applied to meaningful linear models with sufficiently flexible software tools provide powerful techniques for designing flight test trajectory controllers (FTTCs). This report describes the principal steps for systematic development of flight trajectory controllers, which can be summarized as planning, modeling, designing, and validating a trajectory controller. The techniques have been kept as general as possible and should apply to a wide range of problems where quantities must be computed and displayed to a pilot to improve pilot effectiveness and to reduce workload and fatigue. To illustrate the approach, a detailed trajectory guidance law is developed and demonstrated for the F-15 aircraft flying the zoom-and-pushover maneuver.

  18. MR Imaging Anatomy in Neurodegeneration: A Robust Volumetric Parcellation Method of the Frontal Lobe Gyri with Quantitative Validation in Patients with Dementia

    PubMed Central

    Iordanova, B.; Rosenbaum, D.; Norman, D.; Weiner, M.; Studholme, C.

    2007-01-01

    BACKGROUND AND PURPOSE Brain volumetry is widely used for evaluating tissue degeneration; however, the parcellation methods are rarely validated and use arbitrary planes to mark boundaries of brain regions. The goal of this study was to develop, validate, and apply an MR imaging tracing method for the parcellation of 3 major gyri of the frontal lobe, which uses only local landmarks intrinsic to the structures of interest, without the need for global reorientation or the use of dividing planes or lines. METHODS Studies were performed on 25 subjects—healthy controls and subjects diagnosed with Lewy body dementia and Alzheimer disease—with significant variation in the underlying gyral anatomy and state of atrophy. The protocol was evaluated by using multiple observers tracing scans of subjects diagnosed with neurodegenerative disease and those aging normally, and the results were compared by spatial overlap agreement. To confirm the results, observers marked the same locations in different brains. We illustrated the variabilities of the key boundaries that pose the greatest challenge to defining consistent parcellations across subjects. RESULTS The resulting gyral volumes were evaluated, and their consistency across raters was used as an additional assessment of the validity of our marking method. The agreement on a scale of 0–1 was found to be 0.83 spatial and 0.90 volumetric for the same rater and 0.85 spatial and 0.90 volumetric for 2 different raters. The results revealed that the protocol remained consistent across different neurodegenerative conditions. CONCLUSION Our method provides a simple and reliable way for the volumetric evaluation of frontal lobe neurodegeneration and can be used as a resource for larger comparative studies as well as a validation procedure of automated algorithms. PMID:16971629

  19. Huygens probe entry, descent, and landing trajectory reconstruction using the Program to Optimize Simulated Trajectories II

    NASA Astrophysics Data System (ADS)

    Striepe, Scott Allen

    The objectives of this research were to develop a reconstruction capability using the Program to Optimize Simulated Trajectories II (POST2), apply this capability to reconstruct the Huygens Titan probe entry, descent, and landing (EDL) trajectory, evaluate the newly developed POST2 reconstruction module, analyze the reconstructed trajectory, and assess the pre-flight simulation models used for Huygens EDL simulation. An extended Kalman filter (EKF) module was developed and integrated into POST2 to enable trajectory reconstruction (especially when using POST2-based mission specific simulations). Several validation cases, ranging from a single, constant parameter estimate to multivariable estimation cases similar to an actual mission flight, were executed to test the POST2 reconstruction module. Trajectory reconstruction of the Huygens entry probe at Titan was accomplished using accelerometer measurements taken during flight to adjust an estimated state (e.g., position, velocity, parachute drag, wind velocity, etc.) in a POST2-based simulation developed to support EDL analyses and design prior to entry. Although the main emphasis of the trajectory reconstruction was to evaluate models used in the NASA pre-entry trajectory simulation, the resulting reconstructed trajectory was also assessed to provide an independent evaluation of the ESA result. Major findings from this analysis include: Altitude profiles from this analysis agree well with other NASA and ESA results but not with Radar data, whereas a scale factor of about 0.93 would bring the radar measurements into compliance with these results; entry capsule aerodynamics predictions (axial component only) were well within 3-sigma bounds established pre-flight for most of the entry when compared to reconstructed values; Main parachute drag of 9% to 19% above ESA model was determined from the reconstructed trajectory; based on the tilt sensor and accelerometer data, the conclusion from this assessment was that the

  20. Optimal short-range trajectories for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, G.L.; Erzberger, H.

    1982-12-01

    An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less

  1. Observations of tropospheric trace gases and meteorology in rural Virginia using an unattended monitoring system: Hurricane Hugo (1989), A case study

    NASA Astrophysics Data System (ADS)

    Doddridge, Bruce G.; Dickerson, Russell R.; Holland, Joshua Z.; Cooper, James N.; Wardell, R. Glenn; Poulida, Olga; Watkins, James G.

    1991-05-01

    Tropospheric trace gases such as ozone and reactive nitrogen compounds exert a strong influence on global climate, but observations of these species are limited by the necessity of having a trained observer on site to monitor instruments. A technique using modern communications technology has been developed to transport and review data collected at a remote site. The site was equipped with a PAM II station and satellite data link so that raw, real-time data and equipment status were available for inspection readily on a workstation at the University of Maryland campus through a combination of wide and local area networks. CO, NO, NOy, O3, UV radiative flux, and meteorological parameters were measured in rural Virginia for a full year. The cleanest air observed over the year was associated with the passage of Hurricane Hugo over the mid-Atlantic region on September 22, 1989. Hourly average data for concentrations of CO, NOy, and O3 observed during this particular case study were as low as 90 ppbv, 570 pptv, and 11 ppbv, respectively. Within this period, daytime NO was highly variable, ranging between the detection limit of the instrument, ˜ 20 pptv, and 2.4 ppbv. These concentrations are well below the hourly concentration average at this site for these species during September 1989. Equivalent potential temperature, θe, in conjunction with the trace gas concentrations and geostrophic back-trajectories, illustrates how this hurricane influenced air parcel history; observed concentrations of CO and NOy increased with the time the air parcel spent over land. Observations at this site were consistent with current hurricane models based on mean soundings and aircraft flights. Hurricanes over land also appear to redistribute air vertically throughout the troposphere, creating the potential for substantial post-storm tropospheric column O3 increase.

  2. IRVE-II Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    O'Keefe, Stephen A.; Bose, David M.

    2010-01-01

    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectations

  3. 2011 Mars Science Laboratory Trajectory Reconstruction and Performance from Launch Through Landing

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2013-01-01

    The Mars Science Laboratory (MSL) mission successfully launched on an Atlas V 541 Expendable Evolved Launch Vehicle (EELV) from the Eastern Test Range (ETR) at Cape Canaveral Air Force Station (CCAFS) in Florida at 15:02:00 UTC on November 26th, 2011. At 15:52:06 UTC, six minutes after the MSL spacecraft separated from the Centaur upper stage, the spacecraft transmitter was turned on and in less than 20 s spacecraft carrier lock was achieved at the Universal Space Network (USN) Dongara tracking station located in Western Australia. MSL, carrying the most sophisticated rover ever sent to Mars, entered the Martian atmosphere at 05:10:46 SpaceCraft Event Time (SCET) UTC, and landed inside Gale Crater at 05:17:57 SCET UTC on August 6th, 2012. Confirmation of nominal landing was received at the Deep Space Network (DSN) Canberra tracking station via the Mars Odyssey relay spacecraft at 05:31:45 Earth Received Time (ERT) UTC. This paper summarizes in detail the actual vs. predicted trajectory performance in terms of launch vehicle events, launch vehicle injection performance, actual DSN/USN spacecraft lockup, trajectory correction maneuver performance, Entry, Descent, and Landing events, and overall trajectory and geometry characteristics.

  4. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    PubMed Central

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  5. Automated Cooperative Trajectories

    NASA Technical Reports Server (NTRS)

    Hanson, Curt; Pahle, Joseph; Brown, Nelson

    2015-01-01

    This presentation is an overview of the Automated Cooperative Trajectories project. An introduction to the phenomena of wake vortices is given, along with a summary of past research into the possibility of extracting energy from the wake by flying close parallel trajectories. Challenges and barriers to adoption of civilian automatic wake surfing technology are identified. A hardware-in-the-loop simulation is described that will support future research. Finally, a roadmap for future research and technology transition is proposed.

  6. Developmental Trajectories of Subjective Social Status.

    PubMed

    Goodman, Elizabeth; Maxwell, Sarah; Malspeis, Susan; Adler, Nancy

    2015-09-01

    Subjective social status (SSS), a person's sense of their (or for youth, abstract their family's) position in the socioeconomic hierarchy, is strongly related to health in adults but not health in adolescence. Understanding this developmental discrepancy requires first understanding the developmental trajectory of SSS. The objective of this study was to identify the number and shape of SSS trajectories as adolescents transition to adulthood and explore if trajectory membership affects health. Using data from 7436 assessments from the Princeton School District Study, a decade long cohort study of non-Hispanic black and white youth, latent class growth models with 3 to 7 SSS trajectories were developed. Model fit, trajectory structure, and shape were used to guide optimal model selection. Using this optimal model, the associations of trajectory membership with BMI and depressive symptoms in young adulthood were explored. The 5-class model was optimal. In this model, trajectories were persistent high (7.8%),mid–high (32.2%), middle (43.4%), low–lower (7.4%), and high–low (9.1%). Non-Hispanic black race/ethnicity, lower household income, and low parent education were associated with membership in this high–low trajectory. High–low trajectory membership was associated with higher BMI and depressive symptoms in non-Hispanic white subjects but was not associated with depressive symptoms. It was associated with lower BMI only after adjustment for BMI in adolescence in non-Hispanic black subjects. SSS is relatively stable in adolescence and the transition to adulthood, and it generally reflects objective markers of social advantage. However, socially disadvantaged youth with high SSS in early adolescence may be at increased health risk.

  7. Developmental Trajectories of Subjective Social Status

    PubMed Central

    Maxwell, Sarah; Malspeis, Susan; Adler, Nancy

    2015-01-01

    BACKGROUND AND OBJECTIVE: Subjective social status (SSS), a person’s sense of their (or for youth, their family’s) position in the socioeconomic hierarchy, is strongly related to health in adults but not health in adolescence. Understanding this developmental discrepancy requires first understanding the developmental trajectory of SSS. The objective of this study was to identify the number and shape of SSS trajectories as adolescents transition to adulthood and explore if trajectory membership affects health. METHODS: Using data from 7436 assessments from the Princeton School District Study, a decade-long cohort study of non-Hispanic black and white youth, latent class growth models with 3 to 7 SSS trajectories were developed. Model fit, trajectory structure, and shape were used to guide optimal model selection. Using this optimal model, the associations of trajectory membership with BMI and depressive symptoms in young adulthood were explored. RESULTS: The 5-class model was optimal. In this model, trajectories were persistent high (7.8%), mid–high (32.2%), middle (43.4%), low–lower (7.4%), and high–low (9.1%). Non-Hispanic black race/ethnicity, lower household income, and low parent education were associated with membership in this high–low trajectory. High–low trajectory membership was associated with higher BMI and depressive symptoms in non-Hispanic white subjects but was not associated with depressive symptoms. It was associated with lower BMI only after adjustment for BMI in adolescence in non-Hispanic black subjects. CONCLUSIONS: SSS is relatively stable in adolescence and the transition to adulthood, and it generally reflects objective markers of social advantage. However, socially disadvantaged youth with high SSS in early adolescence may be at increased health risk. PMID:26324868

  8. Subtropical air masses over eastern Canada: Their links to extreme precipitation

    NASA Astrophysics Data System (ADS)

    Gyakum, John; Wood, Alice; Milrad, Shawn; Atallah, Eyad

    2017-04-01

    We investigate extremely warm, moist air masses with an analysis of 850-hPa equivalent potential temperature (θe) extremes at Montreal, Quebec. The utility of using this metric is that it represents the thermodynamic property of air that ascends during a precipitation event. We produce an analysis of the 40 most extreme cases of positive θe, 10 for each season, based upon standardized anomalies from the 33-year climatology. The analysis shows the cases to be characterized by air masses with distinct subtropical traits for all seasons: reduced static stability, anomalously high precipitable water, and anomalously elevated dynamic tropopause heights. Persistent, slow moving upper- and lower-level features were essential in the build up of high- θe air encompassing much of eastern Canada. The trajectory analysis also showed anticyclonic curvature to all paths in all seasons, implying that the subtropical anticyclone is crucial in the transport of high- θe air. These atmospheric rivers during the winter are characterized by trajectories from the subtropical North Atlantic, and over the Gulf Stream current, northward into Montreal. In contrast, the summer anticyclonic trajectories are primarily continental, traveling from Texas north-northeastward into the Great Lakes, and then eastward into Montreal. The role of the air mass in modulating the strength of a precipitation event is addressed with an analysis of the expression, P = RD, where P is the total precipitation, and R is the precipitation rate, averaged through the duration, D, of the event. Though appearing simple, this expression includes R, (assumed to be same as condensation, with an efficiency of 1), which may be expressed as the product of vertical motion and the change of saturation mixing ratio following a moist adiabat, through the troposphere. This expression for R includes the essential ingredients of lift, air mass temperature, and static stability (implicit in vertical motion). We use this

  9. Challenges in Achieving Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Cate, Karen Tung

    2012-01-01

    In the past few years much of the global ATM research community has proposed advanced systems based on Trajectory-Based Operations (TBO). The concept of TBO uses four-dimensional aircraft trajectories as the base information for managing safety and capacity. Both the US and European advanced ATM programs call for the sharing of trajectory data across different decision support tools for successful operations. However, the actual integration of TBO systems presents many challenges. Trajectory predictors are built to meet the specific needs of a particular system and are not always compatible with others. Two case studies are presented which examine the challenges of introducing a new concept into two legacy systems in regards to their trajectory prediction software. The first case describes the issues with integrating a new decision support tool with a legacy operational system which overlap in domain space. These tools perform similar functions but are driven by different requirements. The difference in the resulting trajectories can lead to conflicting advisories. The second case looks at integrating this same new tool with a legacy system originally developed as an integrated system, but diverged many years ago. Both cases illustrate how the lack of common architecture concepts for the trajectory predictors added cost and complexity to the integration efforts.

  10. Patched Conic Trajectory Code

    NASA Technical Reports Server (NTRS)

    Park, Brooke Anderson; Wright, Henry

    2012-01-01

    PatCon code was developed to help mission designers run trade studies on launch and arrival times for any given planet. Initially developed in Fortran, the required inputs included launch date, arrival date, and other orbital parameters of the launch planet and arrival planets at the given dates. These parameters include the position of the planets, the eccentricity, semi-major axes, argument of periapsis, ascending node, and inclination of the planets. With these inputs, a patched conic approximation is used to determine the trajectory. The patched conic approximation divides the planetary mission into three parts: (1) the departure phase, in which the two relevant bodies are Earth and the spacecraft, and where the trajectory is a departure hyperbola with Earth at the focus; (2) the cruise phase, in which the two bodies are the Sun and the spacecraft, and where the trajectory is a transfer ellipse with the Sun at the focus; and (3) the arrival phase, in which the two bodies are the target planet and the spacecraft, where the trajectory is an arrival hyperbola with the planet as the focus.

  11. Trajectory NG: portable, compressed, general molecular dynamics trajectories.

    PubMed

    Spångberg, Daniel; Larsson, Daniel S D; van der Spoel, David

    2011-10-01

    We present general algorithms for the compression of molecular dynamics trajectories. The standard ways to store MD trajectories as text or as raw binary floating point numbers result in very large files when efficient simulation programs are used on supercomputers. Our algorithms are based on the observation that differences in atomic coordinates/velocities, in either time or space, are generally smaller than the absolute values of the coordinates/velocities. Also, it is often possible to store values at a lower precision. We apply several compression schemes to compress the resulting differences further. The most efficient algorithms developed here use a block sorting algorithm in combination with Huffman coding. Depending on the frequency of storage of frames in the trajectory, either space, time, or combinations of space and time differences are usually the most efficient. We compare the efficiency of our algorithms with each other and with other algorithms present in the literature for various systems: liquid argon, water, a virus capsid solvated in 15 mM aqueous NaCl, and solid magnesium oxide. We perform tests to determine how much precision is necessary to obtain accurate structural and dynamic properties, as well as benchmark a parallelized implementation of the algorithms. We obtain compression ratios (compared to single precision floating point) of 1:3.3-1:35 depending on the frequency of storage of frames and the system studied.

  12. Filtering Drifter Trajectories Sampled at Submesoscale Resolution

    DTIC Science & Technology

    2015-07-10

    interval 5 min and a positioning error 1.5 m, the acceleration error is 4 10 m/s , a value comparable with the typical Coriolis acceleration of a water...10 ms , corresponding to the Coriolis acceleration experi- enced by a water parcel traveling at a speed of 2.2 m/s. This value corresponds to the...computed by integrating the NCOM velocity field contaminated by a random walk process whose effective dispersion coefficient (150 m /s) was specified as the

  13. Complex trajectories in a classical periodic potential

    NASA Astrophysics Data System (ADS)

    Anderson, Alexander G.; Bender, Carl M.

    2012-11-01

    This paper examines the complex trajectories of a classical particle in the potential V(x) = -cos (x). Almost all the trajectories describe a particle that hops from one well to another in an erratic fashion. However, it is shown analytically that there are two special classes of trajectories x(t) determined only by the energy of the particle and not by the initial position of the particle. The first class consists of periodic trajectories; that is, trajectories that return to their initial position x(0) after some real time T. The second class consists of trajectories for which there exists a real time T such that x(t + T) = x(t) ± 2π. These two classes of classical trajectories are analogous to valence and conduction bands in quantum mechanics, where the quantum particle either remains localized or else tunnels resonantly (conducts) through a crystal lattice. These two special types of trajectories are associated with sets of energies of measure 0. For other energies, it is shown that for long times the average velocity of the particle becomes a fractal-like function of energy.

  14. Kinematic evaluation of virtual walking trajectories.

    PubMed

    Cirio, Gabriel; Olivier, Anne-Hélène; Marchal, Maud; Pettré, Julien

    2013-04-01

    Virtual walking, a fundamental task in Virtual Reality (VR), is greatly influenced by the locomotion interface being used, by the specificities of input and output devices, and by the way the virtual environment is represented. No matter how virtual walking is controlled, the generation of realistic virtual trajectories is absolutely required for some applications, especially those dedicated to the study of walking behaviors in VR, navigation through virtual places for architecture, rehabilitation and training. Previous studies focused on evaluating the realism of locomotion trajectories have mostly considered the result of the locomotion task (efficiency, accuracy) and its subjective perception (presence, cybersickness). Few focused on the locomotion trajectory itself, but in situation of geometrically constrained task. In this paper, we study the realism of unconstrained trajectories produced during virtual walking by addressing the following question: did the user reach his destination by virtually walking along a trajectory he would have followed in similar real conditions? To this end, we propose a comprehensive evaluation framework consisting on a set of trajectographical criteria and a locomotion model to generate reference trajectories. We consider a simple locomotion task where users walk between two oriented points in space. The travel path is analyzed both geometrically and temporally in comparison to simulated reference trajectories. In addition, we demonstrate the framework over a user study which considered an initial set of common and frequent virtual walking conditions, namely different input devices, output display devices, control laws, and visualization modalities. The study provides insight into the relative contributions of each condition to the overall realism of the resulting virtual trajectories.

  15. Task Decomposition Module For Telerobot Trajectory Generation

    NASA Astrophysics Data System (ADS)

    Wavering, Albert J.; Lumia, Ron

    1988-10-01

    A major consideration in the design of trajectory generation software for a Flight Telerobotic Servicer (FTS) is that the FTS will be called upon to perform tasks which require a diverse range of manipulator behaviors and capabilities. In a hierarchical control system where tasks are decomposed into simpler and simpler subtasks, the task decomposition module which performs trajectory planning and execution should therefore be able to accommodate a wide range of algorithms. In some cases, it will be desirable to plan a trajectory for an entire motion before manipulator motion commences, as when optimizing over the entire trajectory. Many FTS motions, however, will be highly sensory-interactive, such as moving to attain a desired position relative to a non-stationary object whose position is periodically updated by a vision system. In this case, the time-varying nature of the trajectory may be handled either by frequent replanning using updated sensor information, or by using an algorithm which creates a less specific state-dependent plan that determines the manipulator path as the trajectory is executed (rather than a priori). This paper discusses a number of trajectory generation techniques from these categories and how they may be implemented in a task decompo-sition module of a hierarchical control system. The structure, function, and interfaces of the proposed trajectory gener-ation module are briefly described, followed by several examples of how different algorithms may be performed by the module. The proposed task decomposition module provides a logical structure for trajectory planning and execution, and supports a large number of published trajectory generation techniques.

  16. Hi-G electronic gated camera for precision trajectory analysis

    NASA Astrophysics Data System (ADS)

    Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.

    1997-12-01

    It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for

  17. The power of a single trajectory

    NASA Astrophysics Data System (ADS)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  18. Real-time terminal area trajectory planning for runway independent aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Min

    The increasing demand for commercial air transportation results in delays due to traffic queues that form bottlenecks along final approach and departure corridors. In urban areas, it is often infeasible to build new runways, and regardless of automation upgrades traffic must remain separated to avoid the wakes of previous aircraft. Vertical or short takeoff and landing aircraft as Runway Independent Aircraft (RIA) can increase passenger throughput at major urban airports via the use of vertiports or stub runways. The concept of simultaneous non-interfering (SNI) operations has been proposed to reduce traffic delays by creating approach and departure corridors that do not intersect existing fixed-wing routes. However, SNI trajectories open new routes that may overfly noise-sensitive areas, and RIA may generate more noise than traditional jet aircraft, particularly on approach. In this dissertation, we develop efficient SNI noise abatement procedures applicable to RIA. First, we introduce a methodology based on modified approximated cell-decomposition and Dijkstra's search algorithm to optimize longitudinal plane (2-D) RIA trajectories over a cost function that minimizes noise, time, and fuel use. Then, we extend the trajectory optimization model to 3-D with a k-ary tree as the discrete search space. We incorporate geography information system (GIS) data, specifically population, into our objective function, and focus on a practical case study: the design of SNI RIA approach procedures to Baltimore-Washington International airport. Because solutions were represented as trim state sequences, we incorporated smooth transition between segments to enable more realistic cost estimates. Due to the significant computational complexity, we investigated alternative more efficient optimization techniques applicable to our nonlinear, non-convex, heavily constrained, and discontinuous objective function. Comparing genetic algorithm (GA) and adaptive simulated annealing (ASA

  19. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, R. Lee; Thomas, Christopher G., E-mail: Chris.Thomas@cdha.nshealth.ca; Department of Medical Physics, Nova Scotia Cancer Centre, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia B3H 1V7

    2015-05-15

    Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space,more » indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry

  20. The Use of Red Green Blue Air Mass Imagery to Investigate the Role of Stratospheric Air in a Non-Convective Wind Event

    NASA Technical Reports Server (NTRS)

    Berndt, E. B.; Zavodsky, B. T.; Moltham, A. L.; Folmer, M. J.; Jedlovec, G. J.

    2014-01-01

    The investigation of non-convective winds associated with passing extratropical cyclones and the formation of the sting jet in North Atlantic cyclones that impact Europe has been gaining interest. Sting jet research has been limited to North Atlantic cyclones that impact Europe because it is known to occur in Shapiro-Keyser cyclones and theory suggests it does not occur in Norwegian type cyclones. The global distribution of sting jet cyclones is unknown and questions remain as to whether cyclones with Shapiro-Keyser characteristics that impact the United States develop features similar to the sting jet. Therefore unique National Aeronautics and Space Administration (NASA) products were used to analyze an event that impacted the Northeast United States on 09 February 2013. Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) Air Mass imagery and Atmospheric Infrared Sounder (AIRS) ozone data were used in conjunction with NASA's global Modern Era-Retrospective Analysis for Research and Applications (MERRA) reanalysis and higher-resolution regional 13-km Rapid Refresh (RAP) data to analyze the role of stratospheric air in producing high winds. The RGB Air Mass imagery and a new AIRS ozone anomaly product were used to confirm the presence of stratospheric air. Plan view and cross sectional plots of wind, potential vorticity, relative humidity, omega, and frontogenesis were used to analyze the relationship between stratospheric air and high surface winds during the event. Additionally, the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used to plot trajectories to determine the role of the conveyor belts in producing the high winds. Analyses of new satellite products, such as the RGB Air Mass imagery, show the utility of future GOES-R products in forecasting non-convective wind events.

  1. Comparison of ER-2 Aircraft and POAM-III, MLS, and SAGE-II Satellite Measurements During SOLVE Using Traditional Correlative Analysis and Trajectory Hunting Technique

    NASA Technical Reports Server (NTRS)

    Danilin, M. Y.; Ko, Malcolm K. W.; Bevilacqua, R. M.; Lyjak, L. V.; Froidevaux, L.; Santee, M. L.; Zawodny, J. M.; Hoppel, K. W.; Richard, E. C.; Spackman, J. R.; hide

    2001-01-01

    We compared the version 5 Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS), version 3 Polar Ozone and Aerosol Measurement-III (POAM-111) aboard the French satellite SPOT-IV, version 6.0 Stratospheric Aerosol and Gas Experiment 11 (SAGE-II) aboard the Earth Radiation Budget Satellite, and NASA ER-2 aircraft measurements made in the northern hemisphere in January-February 2000 during the SAGE III Ozone Loss and Validation Experiment (SOLVE). This study addresses one of the key scientific objectives of the SOLVE campaign, namely, to validate multi-platform satellite measurements made in the polar stratosphere during winter. This intercomparison was performed using a traditional correlative analysis (TCA) and a trajectory hunting technique (THT). Launching backward and forward trajectories from the points of measurement, the THT identifies air parcels sampled at least twice within a prescribed match criterion during the course of 5 days. We found that the ozone measurements made by these four instruments agree most of the time within 110% in the stratosphere up to 1400 K (approximately 35 km). The water vapor measurements from POAM-III and the ER-2 Harvard Lyman-alpha hygrometer and JPL laser hygrometer agree to within 10.5 ppmv (or about +/-10%) in the lower stratosphere above 380 K. The MLS and ER-2 ClO measurements agree within their error bars for the TCA. The MLS and ER-2 nitric acid measurements near 17-20 km altitude agree within their uncertainties most of the time with a hint of a positive offset by MLS according to the TCA. We also applied the AER box model constrained by the ER-2 measurements for analysis of the ClO and HN03 measurements using the THT. We found that: (1) the model values of ClO are smaller by about 0.3-0.4 (0.2) ppbv below (above) 400 K than those by MLS and (2) the HN03 comparison shows a positive offset of MLS values by approximately 1 and 1-2 ppbv below 400 K and near 450 K, respectively. It is hard to

  2. Analysis of Air Traffic Track Data with the AutoBayes Synthesis System

    NASA Technical Reports Server (NTRS)

    Schumann, Johann Martin Philip; Cate, Karen; Lee, Alan G.

    2010-01-01

    The Next Generation Air Traffic System (NGATS) is aiming to provide substantial computer support for the air traffic controllers. Algorithms for the accurate prediction of aircraft movements are of central importance for such software systems but trajectory prediction has to work reliably in the presence of unknown parameters and uncertainties. We are using the AutoBayes program synthesis system to generate customized data analysis algorithms that process large sets of aircraft radar track data in order to estimate parameters and uncertainties. In this paper, we present, how the tasks of finding structure in track data, estimation of important parameters in climb trajectories, and the detection of continuous descent approaches can be accomplished with compact task-specific AutoBayes specifications. We present an overview of the AutoBayes architecture and describe, how its schema-based approach generates customized analysis algorithms, documented C/C++ code, and detailed mathematical derivations. Results of experiments with actual air traffic control data are discussed.

  3. Variation in Trajectories of Women's Marital Quality

    PubMed Central

    James, Spencer L.

    2014-01-01

    I examine variation in trajectories of women's marital quality across the life course. The analysis improves upon earlier research in three ways: (1) the analysis uses a sequential cohort design and data from the first 35 years of marriage; (2) I analyze rich data from a national sample; (3) I examine multiple dimensions of marital quality. Latent class growth analyses estimated on data from women in the National Longitudinal Survey of Youth-1979 (N = 2604) suggest multiple trajectories for each of three dimensions of marital quality, including two trajectories of marital happiness, two trajectories of marital communication, and three trajectories of marital conflict. Socioeconomic and demographic covariates are then used to illustrate how factors such as income, cohabitation, and race-ethnicity set individuals at risk of poor marital quality throughout the life course by differentiating between high and low trajectories of marital quality. Women on low marital quality trajectories are, as expected, at much greater risk of divorce. Taken together, these findings show how fundamental socioeconomic and demographic characteristics contribute to subsequent marital outcomes via their influence on trajectories of marital quality as well as providing a better picture of the complexity in contemporary patterns of marital quality. PMID:25432600

  4. Trajectories of Delinquency and Parenting Styles

    PubMed Central

    Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R. M.; van der Laan, Peter H.

    2007-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10–19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents. PMID:17786548

  5. Trajectories of delinquency and parenting styles.

    PubMed

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R M; van der Laan, Peter H

    2008-02-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10-19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents.

  6. Flash trajectory imaging of target 3D motion

    NASA Astrophysics Data System (ADS)

    Wang, Xinwei; Zhou, Yan; Fan, Songtao; He, Jun; Liu, Yuliang

    2011-03-01

    We present a flash trajectory imaging technique which can directly obtain target trajectory and realize non-contact measurement of motion parameters by range-gated imaging and time delay integration. Range-gated imaging gives the range of targets and realizes silhouette detection which can directly extract targets from complex background and decrease the complexity of moving target image processing. Time delay integration increases information of one single frame of image so that one can directly gain the moving trajectory. In this paper, we have studied the algorithm about flash trajectory imaging and performed initial experiments which successfully obtained the trajectory of a falling badminton. Our research demonstrates that flash trajectory imaging is an effective approach to imaging target trajectory and can give motion parameters of moving targets.

  7. Radiation Detection Field Test at the Federal Express (FedEx) Air Cargo Facility at Denver International Airport (DIA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirup, D; Waters, A; Hall, H

    2004-02-11

    Lawrence Livermore National Laboratory (LLNL) recently conducted a field-test of radiation detection and identification equipment at the air cargo facility of Federal Express (FedEx) located at Denver International Airport (DIA) over a period of two weeks. Comprehensive background measurements were performed and were analyzed, and a trial strategy for detection and identification of parcels displaying radioactivity was implemented to aid in future development of a comprehensive protection plan. The purpose of this project was threefold: {sm_bullet} Quantify background radiation environments at an air cargo facility. {sm_bullet} Quantify and identify ''nuisance'' alarms. {sm_bullet} Evaluate the performance of various isotope identifiers deployedmore » in an operational environment (in this case, the operational environment included the biggest blizzard in over 90 years!).« less

  8. A Cockpit-Based Application for Traffic Aware Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Woods, Sharon E.; Vivona, Robert A.; Roscoe, David A.; LeFebvre, Brendan C.; Wing, David J.; Ballin, Mark G.

    2013-01-01

    The Traffic Aware Planner (TAP) is a cockpit-based advisory tool designed to be hosted on a Class 2 Electronic Flight Bag and developed to enable the concept of Traffic Aware Strategic Aircrew Requests (TASAR). This near-term concept provides pilots with optimized route changes that reduce fuel burn or flight time, avoids interactions with known traffic, weather and restricted airspace, and may be used by the pilots to request a trajectory change from air traffic control. TAP's internal architecture and algorithms are derived from the Autonomous Operations Planner, a flight-deck automation system developed by NASA to support research into aircraft self-separation. This paper reviews the architecture, functionality and operation of TAP.

  9. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    PubMed

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  10. Inverse Flush Air Data System (FADS) for Real Time Simulations

    NASA Astrophysics Data System (ADS)

    Madhavanpillai, Jayakumar; Dhoaya, Jayanta; Balakrishnan, Vidya Saraswathi; Narayanan, Remesh; Chacko, Finitha Kallely; Narayanan, Shyam Mohan

    2017-12-01

    Flush Air Data Sensing System (FADS) forms a mission critical sub system in future reentry vehicles. FADS makes use of surface pressure measurements from the nose cap of the vehicle for deriving the air data parameters of the vehicle such as angle of attack, angle of sideslip, Mach number, etc. These parameters find use in the flight control and guidance systems, and also assist in the overall mission management. The FADS under consideration in this paper makes use of nine pressure ports located in the nose cap of a technology demonstrator vehicle. In flight, the air data parameters are obtained from the FADS estimation algorithm using the pressure data at the nine pressure ports. But, these pressure data will not be available, for testing the FADS package during ground simulation. So, an inverse software to FADS which estimates the pressure data at the pressure ports for a given flight condition is developed. These pressure data at the nine ports will go as input to the FADS package during ground simulation. The software is run to generate the pressure data for the descent phase trajectory of the technology demonstrator. This data is used again to generate the air data parameters from FADS algorithm. The computed results from FADS algorithm match well with the trajectory data.

  11. Lander Trajectory Reconstruction computer program

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Bradt, A. J.; Ferguson, J. B.; Schnelker, H. J.

    1971-01-01

    The Lander Trajectory Reconstruction (LTR) computer program is a tool for analysis of the planetary entry trajectory and atmosphere reconstruction process for a lander or probe. The program can be divided into two parts: (1) the data generator and (2) the reconstructor. The data generator provides the real environment in which the lander or probe is presumed to find itself. The reconstructor reconstructs the entry trajectory and atmosphere using sensor data generated by the data generator and a Kalman-Schmidt consider filter. A wide variety of vehicle and environmental parameters may be either solved-for or considered in the filter process.

  12. EUROPA Multiple-Flyby Trajectory Design

    NASA Technical Reports Server (NTRS)

    Buffington, Brent; Campagnola, Stefano; Petropoulos, Anastassios

    2012-01-01

    As reinforced by the 2011 NRC Decadal Survey, Europa remains one of the most scientifically intriguing targets in planetary science due to its potential suitability for life. However, based on JEO cost estimates and current budgetary constraints, the Decadal Survey recommended-and later directed by NASA Headquarters-a more affordable pathway to Europa exploration be derived. In response, a flyby-only proof-of-concept trajectory has been developed to investigate Europa. The trajectory, enabled by employing a novel combination of new mission design techniques, successfully fulfills a set of Science Definition Team derived scientific objectives carried out by a notional payload including ice penetrating radar, topographic imaging, and short wavelength infrared observations, and ion neutral mass spectrometry in-situ measurements. The current baseline trajectory, referred to as 11-F5, consists of 34 Europa and 9 Ganymede flybys executed over the course of 2.4 years, reached a maximum inclination of 15 degrees, has a deterministic delta v of 157 m/s (post-PJR), and has a total ionizing dose of 2.06 Mrad (Si behind 100 mil Al, spherical shell). The 11-F5 trajectory and more generally speaking, flyby-only trajectories-exhibit a number of potential advantages over an Europa orbiter mission.

  13. Trajectory options for the DART mission

    NASA Astrophysics Data System (ADS)

    Atchison, Justin A.; Ozimek, Martin T.; Kantsiper, Brian L.; Cheng, Andrew F.

    2016-06-01

    This study presents interplanetary trajectory options for the Double Asteroid Redirection Test (DART) spacecraft to reach the near Earth object, Didymos binary system, during its 2022 Earth conjunction. DART represents a component of a joint NASA-ESA mission to study near Earth object kinetic impact deflection. The DART trajectory must satisfy mission objectives for arrival timing, geometry, and lighting while minimizing launch vehicle and spacecraft propellant requirements. Chemical propulsion trajectories are feasible from two candidate launch windows in late 2020 and 2021. The 2020 trajectories are highly perturbed by Earth's orbit, requiring post-launch deep space maneuvers to retarget the Didymos system. Within these windows, opportunities exist for flybys of additional near Earth objects: Orpheus in 2021 or 2007 YJ in 2022. A second impact attempt, in the event that the first impact is unsuccessful, can be added at the expense of a shorter launch window and increased (∼3x) spacecraft ΔV . However, the second impact arrival geometry has poor lighting, high Earth ranges, and would require additional degrees of freedom for solar panel and/or antenna gimbals. A low-thrust spacecraft configuration increases the trajectory flexibility. A solar electric propulsion spacecraft could be affordably launched as a secondary spacecraft in an Earth orbit and spiral out to target the requisite interplanetary departure condition. A sample solar electric trajectory was constructed from an Earth geostationary transfer using a representative 1.5 kW thruster. The trajectory requires 9 months to depart Earth's sphere of influence, after which its interplanetary trajectory includes a flyby of Orpheus and a second Didymos impact attempt. The solar electric spacecraft implementation would impose additional bus design constraints, including large solar arrays that could pose challenges for terminal guidance. On the basis of this study, there are many feasible options for DART to

  14. Entry trajectory and atmosphere reconstruction methodologies for the Mars Exploration Rover mission

    NASA Astrophysics Data System (ADS)

    Desai, Prasun N.; Blanchard, Robert C.; Powell, Richard W.

    2004-02-01

    The Mars Exploration Rover (MER) mission will land two landers on the surface of Mars, arriving in January 2004. Both landers will deliver the rovers to the surface by decelerating with the aid of an aeroshell, a supersonic parachute, retro-rockets, and air bags for safely landing on the surface. The reconstruction of the MER descent trajectory and atmosphere profile will be performed for all the phases from hypersonic flight through landing. A description of multiple methodologies for the flight reconstruction is presented from simple parameter identification methods through a statistical Kalman filter approach.

  15. Trajectories of Marital Conflict Across the Life Course: Predictors and Interactions With Marital Happiness Trajectories

    PubMed Central

    Kamp Dush, Claire M.; Taylor, Miles G.

    2011-01-01

    Using typologies outlined by Gottman and Fitzpatrick as well as institutional and companionate models of marriage, the authors conducted a latent class analysis of marital conflict trajectories using 20 years of data from the Marital Instability Over the Life Course study. Respondents were in one of three groups: high, medium (around the mean), or low conflict. Several factors predicted conflict trajectory group membership; respondents who believed in lifelong marriage and shared decisions equally with their spouse were more likely to report low and less likely to report high conflict. The conflict trajectories were intersected with marital happiness trajectories to examine predictors of high and low quality marriages. A stronger belief in lifelong marriage, shared decision making, and husbands sharing a greater proportion of housework were associated with an increased likelihood of membership in a high happiness, low conflict marriage, and a decreased likelihood of a low marital happiness group. PMID:22328798

  16. Quantum dynamics modeled by interacting trajectories

    NASA Astrophysics Data System (ADS)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  17. Trajectories of Listeria-type motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  18. Online monitoring of water-soluble ionic composition of PM10 during early summer over Lanzhou City.

    PubMed

    Fan, Jin; Yue, Xiaoying; Jing, Yi; Chen, Qiang; Wang, Shigong

    2014-02-01

    Lanzhou is one of the most aerosol-polluted cities in China. In this study, an online analyzer for Monitoring for AeRosols and GAses was deployed to measure major water-soluble inorganic ions in PM10 at 1-hour time resolution, and 923 samples were obtained from Apr 1 to May 24, 2011. During the field campaign, air pollution days were encountered with Air Quality Index more than 100 and daily average concentration of PM10 exceeding 150 microg/m3. Based on the variation of water-soluble ions and results of Positive Matrix Factorization 3.0 model execution, the air pollution days were classified as crustal species- or secondary aerosol-induced, and the different formation mechanisms of these two air pollution types were studied. During the crustal species pollution days, the content of Ca2+ increased and was about 2.3 times higher than the average on clear days, and the air parcel back trajectory was used to analyze the sources of crustal species. Data on sulfate, trace gases and meteorological factors were used to reveal the formation mechanism of secondary aerosol pollution. The sulfur oxidation ratio (SOR) was derived from the 923 samples, and the SOR had high positive correlation with relative humidity in early summer in Lanzhou.

  19. Trajectory Based Behavior Analysis for User Verification

    NASA Astrophysics Data System (ADS)

    Pao, Hsing-Kuo; Lin, Hong-Yi; Chen, Kuan-Ta; Fadlil, Junaidillah

    Many of our activities on computer need a verification step for authorized access. The goal of verification is to tell apart the true account owner from intruders. We propose a general approach for user verification based on user trajectory inputs. The approach is labor-free for users and is likely to avoid the possible copy or simulation from other non-authorized users or even automatic programs like bots. Our study focuses on finding the hidden patterns embedded in the trajectories produced by account users. We employ a Markov chain model with Gaussian distribution in its transitions to describe the behavior in the trajectory. To distinguish between two trajectories, we propose a novel dissimilarity measure combined with a manifold learnt tuning for catching the pairwise relationship. Based on the pairwise relationship, we plug-in any effective classification or clustering methods for the detection of unauthorized access. The method can also be applied for the task of recognition, predicting the trajectory type without pre-defined identity. Given a trajectory input, the results show that the proposed method can accurately verify the user identity, or suggest whom owns the trajectory if the input identity is not provided.

  20. UAV Trajectory Modeling Using Neural Networks

    NASA Technical Reports Server (NTRS)

    Xue, Min

    2017-01-01

    Massive small unmanned aerial vehicles are envisioned to operate in the near future. While there are lots of research problems need to be addressed before dense operations can happen, trajectory modeling remains as one of the keys to understand and develop policies, regulations, and requirements for safe and efficient unmanned aerial vehicle operations. The fidelity requirement of a small unmanned vehicle trajectory model is high because these vehicles are sensitive to winds due to their small size and low operational altitude. Both vehicle control systems and dynamic models are needed for trajectory modeling, which makes the modeling a great challenge, especially considering the fact that manufactures are not willing to share their control systems. This work proposed to use a neural network approach for modelling small unmanned vehicle's trajectory without knowing its control system and bypassing exhaustive efforts for aerodynamic parameter identification. As a proof of concept, instead of collecting data from flight tests, this work used the trajectory data generated by a mathematical vehicle model for training and testing the neural network. The results showed great promise because the trained neural network can predict 4D trajectories accurately, and prediction errors were less than 2:0 meters in both temporal and spatial dimensions.

  1. Optimal Output Trajectory Redesign for Invertible Systems

    NASA Technical Reports Server (NTRS)

    Devasia, S.

    1996-01-01

    Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs

  2. The Water Vapor Source and Transport Characteristic of Rainy Seasons in Eastern China Base on Lagrangian Method

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Jiang, Z.; Liu, Z.; Li, L.

    2017-12-01

    The Hybrid Single-Particle Lagrangian Integrated Trajectory platform is employed in this studyto simulate trajectories of air parcels in the different rainy seasons in East China from 1961 to 2010,with the purpose of investigating general and specific characteristics of moisture sources and the eventual relationship withprecipitation in each rainy season.The moisture transport andsource-sink characteristics of different rainy seasons have evident differences. The results show that the frontal pre-rainy season is mainly influenced bywinter monsoon system, and the precipitation is strongly affected by water vapor from Pacific Ocean (PO) and East China (EC). Afterthe onset of South China Sea Summer Monsoon (SCSMS), the moisture from Pacific Ocean decreases and from Indian Ocean monsoon area increases. Afterwards, with the northward of the rain belt, the parcels from Southwest region (South China Sea (SCS), Indian Ocean (IO) andIndo-China Peninsula and Indian Peninsula(IP)) decrease and from North region (EC, Eurasia (EA) and PO) increase. Besides, most of the land areas are water vapor sink region and most of sea areas are water vapor source region. Before the onset of SCSMS, EC and PO are two main water vapor source areas.After the onset of SCSMS, the source from PO decreasesand Indian monsoon area becomes the main vapor source region. IP is the main water vapor sink area for all four rainy seasons.As for moisture circulation characteristics, the results of vertical structure of water vapor transport indicate that the maximum water vapor transport in west and east boundaries is located in mid-troposphere and in south and north boundaries is at low-troposphere. The spatiotemporal analysis of moisture trajectory based onmultivariate empirical orthogonal function (MVEOF) indicates that the first mode has close relationship with the precipitation in North China and PDO pattern; the second mode is closely related with the precipitation in Yangtze-Huaihe river basin and

  3. Before the first breath: prenatal exposures to air pollution and lung development.

    PubMed

    Veras, Mariana Matera; de Oliveira Alves, Nilmara; Fajersztajn, Lais; Saldiva, Paulo

    2017-03-01

    Various environmental contaminants are known to impair the growth trajectories of major organs, indirectly (gestational exposure) or directly (postnatal exposure). Evidence associates pre-gestational and gestational exposure to air pollutants with adverse birth outcomes (e.g., low birth weight, prematurity) and with a wide range of diseases in childhood and later in life. In this review, we explore the way that pre-gestational and gestational exposure to air pollution affects lung development. We present results in topics underlining epidemiological and toxicological evidence. We also provide a summary of the biological mechanisms by which air pollution exposure possibly leads to adverse respiratory outcomes. We conclude that gestational and early life exposure to air pollutants are linked to alterations in lung development and function and to other negative respiratory conditions in childhood (wheezing, asthma) that may last into adulthood. Plausible mechanisms encompass changes in maternal physiology (e.g., hypoxia, oxidative stress and inflammation) and DNA alterations in the fetus. Evidence for pre-gestational and gestational effects on the lung is scarce compared with that on early life exposure and further studies are needed. However, the suggested mechanisms are credible and the evidence of pre-gestational and gestational air pollution exposure is robust for adverse birth outcomes. Air pollutants might change lung developmental trajectories of the unborn child predisposing it to diseases later in life highlighting the urgent need for controls on urban air pollution levels worldwide.

  4. Inferring Lévy walks from curved trajectories: A rescaling method

    NASA Astrophysics Data System (ADS)

    Tromer, R. M.; Barbosa, M. B.; Bartumeus, F.; Catalan, J.; da Luz, M. G. E.; Raposo, E. P.; Viswanathan, G. M.

    2015-08-01

    An important problem in the study of anomalous diffusion and transport concerns the proper analysis of trajectory data. The analysis and inference of Lévy walk patterns from empirical or simulated trajectories of particles in two and three-dimensional spaces (2D and 3D) is much more difficult than in 1D because path curvature is nonexistent in 1D but quite common in higher dimensions. Recently, a new method for detecting Lévy walks, which considers 1D projections of 2D or 3D trajectory data, has been proposed by Humphries et al. The key new idea is to exploit the fact that the 1D projection of a high-dimensional Lévy walk is itself a Lévy walk. Here, we ask whether or not this projection method is powerful enough to cleanly distinguish 2D Lévy walk with added curvature from a simple Markovian correlated random walk. We study the especially challenging case in which both 2D walks have exactly identical probability density functions (pdf) of step sizes as well as of turning angles between successive steps. Our approach extends the original projection method by introducing a rescaling of the projected data. Upon projection and coarse-graining, the renormalized pdf for the travel distances between successive turnings is seen to possess a fat tail when there is an underlying Lévy process. We exploit this effect to infer a Lévy walk process in the original high-dimensional curved trajectory. In contrast, no fat tail appears when a (Markovian) correlated random walk is analyzed in this way. We show that this procedure works extremely well in clearly identifying a Lévy walk even when there is noise from curvature. The present protocol may be useful in realistic contexts involving ongoing debates on the presence (or not) of Lévy walks related to animal movement on land (2D) and in air and oceans (3D).

  5. Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study.

    PubMed

    Bisecco, Alvino; Rocca, Maria A; Pagani, Elisabetta; Mancini, Laura; Enzinger, Christian; Gallo, Antonio; Vrenken, Hugo; Stromillo, Maria Laura; Copetti, Massimiliano; Thomas, David L; Fazekas, Franz; Tedeschi, Gioacchino; Barkhof, Frederik; Stefano, Nicola De; Filippi, Massimo

    2015-07-01

    In this multicenter study, we performed a tractography-based parcellation of the thalamus and its white matter connections to investigate the relationship between thalamic connectivity abnormalities and cognitive impairment in multiple sclerosis (MS). Dual-echo, morphological and diffusion tensor (DT) magnetic resonance imaging (MRI) scans were collected from 52 relapsing-remitting MS patients and 57 healthy controls from six European centers. Patients underwent an extensive neuropsychological assessment. Thalamic connectivity defined regions (CDRs) were segmented based on their cortical connectivity using diffusion tractography-based parcellation. Between-group differences of CDRs and cortico-thalamic tracts DT MRI indices were assessed. A vertex analysis of thalamic shape was also performed. A random forest analysis was run to identify the best imaging predictor of global cognitive impairment and deficits of specific cognitive domains. Twenty-two (43%) MS patients were cognitively impaired (CI). Compared to cognitively preserved, CI MS patients had increased fractional anisotropy of frontal, motor, postcentral and occipital connected CDRs (0.002

  6. Brownian relaxation of an inelastic sphere in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bird, G. A., E-mail: gab@gab.com.au

    2016-06-15

    The procedures that are used to calculate the forces and moments on an aerodynamic body in the rarefied gas of the upper atmosphere are applied to a small sphere of the size of an aerosol particle at sea level. While the gas-surface interaction model that provides accurate results for macroscopic bodies may not be appropriate for bodies that are comprised of only about a thousand atoms, it provides a limiting case that is more realistic than the elastic model. The paper concentrates on the transfer of energy from the air to an initially stationary sphere as it acquires Brownian motion.more » Individual particle trajectories vary wildly, but a clear relaxation process emerges from an ensemble average over tens of thousands of trajectories. The translational and rotational energies in equilibrium Brownian motion are determined. Empirical relationships are obtained for the mean translational and rotational relaxation times, the mean initial power input to the particle, the mean rates of energy transfer between the particle and air, and the diffusivity. These relationships are functions of the ratio of the particle mass to an average air molecule mass and the Knudsen number, which is the ratio of the mean free path in the air to the particle diameter. The ratio of the molecular radius to the particle radius also enters as a correction factor. The implications of Brownian relaxation for the second law of thermodynamics are discussed.« less

  7. Seasonal variation, sources and gas/particle partitioning of polycyclic aromatic hydrocarbons in Guangzhou, China.

    PubMed

    Yang, Yunyun; Guo, Pengran; Zhang, Qian; Li, Deliang; Zhao, Lan; Mu, Dehai

    2010-05-15

    Air samples were collected weekly at an urban site and a suburban site in Guangzhou City, China, from April 2005 to March 2006, to measure the concentrations of polycyclic aromatic hydrocarbons (PAHs) in the ambient air and study their seasonal variations, gas/particle partitioning, origins and sources. The concentrations of summation Sigma16-PAHs (particle+gas) were 129.9+/-73.1 ng m(-)(3) at the urban site and 120.4+/-48.5 ng m(-)(3) at the suburban site, respectively. It was found that there was no significant difference in PAH concentrations between the urban and suburban sites. Seasonal variations of PAH concentrations at the two sampling sites were similar, with higher levels in the winter that gradually decreased to the lowest levels in the summer. The average concentrations of summation Sigma16-PAHs in the winter samples were approximately three times higher than those of the summer samples because in the summer local emissions dominated, and in the winter the contribution from outside sources or transported PAHs is increased. The plot of logK(p) versus logP(L)(0) for the data sets of summer and winter season samples had significantly different slopes at both sampling sites. The slopes for the winter samples were steeper than those for the summer samples. It was also observed that gas/particle partitioning of PAHs showed different characteristics depending on air parcel trajectories. Steeper slopes were obtained for an air parcel that traveled across the continent to the sampling site from the northern or northeastern sector, whereas shallower slopes were obtained for air masses that traveled across the sea from the southern or eastern sector. Diagnostic ratio analytical results imply that the origins of PAHs were mainly from petroleum combustion and coal/biomass burning. The anthracene/phenanthrene and benzo[a]anthracene/chrysene ratios in the winter were significantly lower than those in the summer, which indicate that there might be long

  8. Multi-state trajectory approach to non-adiabatic dynamics: General formalism and the active state trajectory approximation

    NASA Astrophysics Data System (ADS)

    Tao, Guohua

    2017-07-01

    A general theoretical framework is derived for the recently developed multi-state trajectory (MST) approach from the time dependent Schrödinger equation, resulting in equations of motion for coupled nuclear-electronic dynamics equivalent to Hamilton dynamics or Heisenberg equation based on a new multistate Meyer-Miller (MM) model. The derived MST formalism incorporates both diabatic and adiabatic representations as limiting cases and reduces to Ehrenfest or Born-Oppenheimer dynamics in the mean-field or the single-state limits, respectively. In the general multistate formalism, nuclear dynamics is represented in terms of a set of individual state-specific trajectories, while in the active state trajectory (AST) approximation, only one single nuclear trajectory on the active state is propagated with its augmented images running on all other states. The AST approximation combines the advantages of consistent nuclear-coupled electronic dynamics in the MM model and the single nuclear trajectory in the trajectory surface hopping (TSH) treatment and therefore may provide a potential alternative to both Ehrenfest and TSH methods. The resulting algorithm features in a consistent description of coupled electronic-nuclear dynamics and excellent numerical stability. The implementation of the MST approach to several benchmark systems involving multiple nonadiabatic transitions and conical intersection shows reasonably good agreement with exact quantum calculations, and the results in both representations are similar in accuracy. The AST treatment also reproduces the exact results reasonably, sometimes even quantitatively well, with a better performance in the adiabatic representation.

  9. Decomposing the profile of PM in two low polluted German cities--mapping of air mass residence time, focusing on potential long range transport impacts.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-07-01

    This paper aims to decompose the profile of particulates in Karlsruhe and Potsdam (Germany), focusing on the localization of PM potential transboundary sources. An air mass cluster analysis was implemented, followed by a study of air mass residence time on a grid of a 0.5° × 0.5° resolution. Particulate/gaseous daily air pollution and meteorological data were used to indicate PM local sources. Four Principal Component Analysis (PCA) components were produced: traffic, photochemical, industrial/domestic and particulate. PM2.5/PM10 ratio seasonal trends, indicated production of PMCOARSE (PM10-PM2.5) from secondary sources in Potsdam during warm period (WP). The residing areas of incoming slow moving air masses are potential transboundary PM sources. For Karlsruhe those areas were mainly around the city. An air mass residence time secondary peak was observed over Stuttgart. For Potsdam, areas with increased dwelling time of the arriving air parcels were detected particularly above E/SE Germany. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Towards Designing Graceful Degradation into Trajectory Based Operations: A Human-systems Integration Approach

    NASA Technical Reports Server (NTRS)

    Edwards, Tamsyn; Lee, Paul

    2017-01-01

    One of the most fundamental changes to the air traffic management system in NextGen is the concept of trajectory based operations (TBO). With the introduction of such change, system safety and resilience is a critical concern, in particular, the ability of systems to gracefully degrade. In order to design graceful degradation into a TBO envrionment, knowledge of the potential causes of degradation, and appropriate solutions, is required. In addition, previous research has predominantly explored the technological contribution to graceful degradation, frequently neglecting to consider the role of the human operator, specifically, air traffic controllers (ATCOs). This is out of step with real-world operations, and potentially limits an ecologically valid understanding of achieving graceful degradation in an air traffic control (ATC) environment. The following literature review aims to identify and summarize the literature to date on the potential causes of degradation in ATC and the solutions that may be applied within a TBO context, with a specific focus on the contribution of the air traffic controller. A framework of graceful degradation, developed from the literature, is presented. It is argued that in order to achieve graceful degradation within TBO, a human-system integration approach must be applied.

  11. Back-trajectory modeling of high time-resolution air measurement data to separate nearby sources

    EPA Science Inventory

    Strategies to isolate air pollution contributions from sources is of interest as voluntary or regulatory measures are undertaken to reduce air pollution. When different sources are located in close proximity to one another and have similar emissions, separating source emissions ...

  12. Minimum impulse trajectories for Mars round trip missions

    NASA Technical Reports Server (NTRS)

    Horvat, Glen M.; Alexander, Stephen W.

    1992-01-01

    Data are presented for minimum-impulse earth-Mars round-trip trajectories for the 2010 to 2027 Mars launch opportunities. Round-trip mission times from 120 to 600 days, including a 30-day rendezvous at Mars, for direct trajectories and trajectories utilizing a Venus gravitational assist are considered. Optimal planetary launch and arrival dates and total impulse requirements are based on all maneuvers being performed propulsively with no finite burn or other losses. Direct trajectories have the lowest impulse requirements for shorter mission times and Venus gravitational assist trajectories have the lowest impulse requirements for longer mission times. It is shown that one can depart on trajectories to Mars, beginning with lower energy trajectories to the moon. The fuel savings varies, depending on the final energy level required and on the swingby procedure used. Procedures discussed include single lunar swingbys, double-powered or unpowered lunar swingbys, third lunar flybys a year later, and gravity assists by Venus and earth after the final lunar swingby.

  13. Air quality climate in the Columbia River Basin.

    Treesearch

    Sue A. Ferguson

    1998-01-01

    Aspects of climate that influence air quality in the Columbia River basin of the Northwestern United States are described. A few, relatively simple, analytical tools were developed to show the spatial and temporal patterns of mean-monthly mixing heights, precipitation scavenging, upper level and surface trajectory winds, and drought that inhibit pollution uptake. Also...

  14. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    NASA Astrophysics Data System (ADS)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able

  15. Visiting Vehicle Ground Trajectory Tool

    NASA Technical Reports Server (NTRS)

    Hamm, Dustin

    2013-01-01

    The International Space Station (ISS) Visiting Vehicle Group needed a targeting tool for vehicles that rendezvous with the ISS. The Visiting Vehicle Ground Trajectory targeting tool provides the ability to perform both realtime and planning operations for the Visiting Vehicle Group. This tool provides a highly reconfigurable base, which allows the Visiting Vehicle Group to perform their work. The application is composed of a telemetry processing function, a relative motion function, a targeting function, a vector view, and 2D/3D world map type graphics. The software tool provides the ability to plan a rendezvous trajectory for vehicles that visit the ISS. It models these relative trajectories using planned and realtime data from the vehicle. The tool monitors ongoing rendezvous trajectory relative motion, and ensures visiting vehicles stay within agreed corridors. The software provides the ability to update or re-plan a rendezvous to support contingency operations. Adding new parameters and incorporating them into the system was previously not available on-the-fly. If an unanticipated capability wasn't discovered until the vehicle was flying, there was no way to update things.

  16. Trajectory Approaches for Launching Hypersonic Flight Tests (Preprint)

    DTIC Science & Technology

    2014-08-01

    This paper presents some approaches toward designing trajectories for hypersonic testing at up to Mach 10 speed using a reusable rocket -powered first...Program to Optimize Simulated Trajectories (POST) code to look at different ways of flying to Mach 10 with a reusable first stage rocket . These trajectories...are good starting points for how to setup a trajectory simulation to meet hypersonic testing needs. 15. SUBJECT TERMS responsive and reusable rocket

  17. Long-range atmospheric transport of persistent organochlorinated compounds from south and mainland south-eastern Asia to a remote mountain site in south-western China.

    PubMed

    Xu, Yue; Zhang, Gan; Li, Jun; Chakraborty, Paromita; Li, Hua; Liu, Xiang

    2011-11-01

    A range of organochlorinated compounds have been consumed in China, India and the countries of mainland southeast Asia (MSA). Considering their persistence in the environment and ability in long-range atmospheric transport (LRAT), the potential outflow of these compounds from this region is therefore of great concern in the context of the global distribution of toxic chemicals. As part of a monitoring campaign aimed at investigating the LRAT of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) from southern China, MSA and northern India, atmospheric levels of OCPs and PCBs were measured once a week from October 2005 through December 2006 at Tengchong Mountain (TM), a remote site located in south-western China. The average concentrations of OCPs were found to be higher than those in other remote stations in the Arctic and the Tibetan plateau, except for α-hexachlorocyclohexane (α-HCH). A high level of β-HCH and low α-HCH/β-HCH ratio was attributed to an accidental release of β-HCH from unknown sources, besides obvious evidence of lindane (γ-HCH) and technical HCH usage. Temporal variations of chlordanes and endosulfan were related to the usage pattern of these compounds, as well as LRAT. In contrast, dichlorodiphenyltrichloroethane (DDT) exhibited a relatively minor seasonal variation. The OCP levels at the monitoring site were found to be related to the air parcel back trajectories on the basis of four distinct clusters. Elevated levels of HCHs and DDTs were observed when air parcels originated from northern India where considerable OCP usage was reported recently, while high levels of γ-HCH and TC (trans-chlordane) were mainly associated with air masses from southern China and northern MSA. The study highlighted the high background level of OCPs as well as their temporal patterns of trans-boundary LRAT in the MSA region.

  18. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... after lift-off, the limits of a launch vehicle's normal flight, as defined by the nominal trajectory and... straight-up trajectory for any time after lift-off until the straight-up time that would result if the...

  19. 14 CFR 417.207 - Trajectory analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... after lift-off, the limits of a launch vehicle's normal flight, as defined by the nominal trajectory and... straight-up trajectory for any time after lift-off until the straight-up time that would result if the...

  20. An Assessment of the Ozone Loss During the 1999-2000 SOLVE Arctic Campaign

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.; Lait, Leslie R.; McGee, Thomas J.; Burris, John F.; Browell, Edward V.; Grant, William B.; Richard, Eric; VonderGathen, Peter; Bevilacqua, Richard; hide

    2001-01-01

    Ozone observations from ozonesondes, the lidars aboard the DC-8, in situ ozone measurements from the ER-2, and satellite ozone measurements from Polar Ozone and Aerosol Measurement III (POAM) were used to assess ozone loss during the Sage III Ozone Loss and Validation Experiment (SOLVE) 1999-2000 Arctic campaign. Two methods of analysis were used. In the first method a simple regression analysis is performed on the ozonesonde and POAM measurements within the vortex. In the second method, the ozone measurements from all available ozone data were injected into a free running diabatic trajectory model and carried forward in time from December 1 to March 15. Vortex ozone loss was then estimated by comparing the ozone values of those parcels initiated early in the campaign with those parcels injected later in the campaign. Despite the variety of observational techniques used during SOLVE, the measurements provide a fairly consistent picture. Over the whole vortex, the largest ozone loss occurs between 550 and 400 K potential temperatures (approximately 23-16 km) with over 1.5 ppmv lost by March 15, the end of the SOLVE mission period. An ozone loss rate of 0.04-0.05 ppmv/day was computed for March 15. Ozonesondes launched after March 15 suggest that an additional 0.5 ppmv or more ozone was lost between March 15 and April 1. The small disagreement between ozonesonde and POAM analysis of January ozone loss is found to be due to biases in vortex sampling. POAM makes most of its solar occultation measurements at the vortex edge during January 2000 which bias samples toward air parcels that have been exposed to sunlight and likely do experience ozone loss. Ozonesonde measurements and the trajectory technique use observations that are more distributed within the interior of the vortex. Thus the regression analysis of the POAM measurements tends to overestimate mid-winter vortex ozone loss. Finally, our loss calculations are broadly consistent with other loss computations

  1. Airborne heavy metals in two cities of North Rhine Westphalia - Performing inhalation cancer risk assessment in terms of atmospheric circulation.

    PubMed

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2017-11-01

    The main objective of this study was to examine the levels of four heavy metals (As, Cd, Pb and Ni) in PM 10 samples collected in two urban background stations in Dortmund and Bielefeld, in relation to atmospheric circulation. Pollution roses, Conditional Probability Function (CPF) roses and backward air mass trajectory clusters were used to identify air currents associated with the importation of PM 10 and of the included metal constituents. In addition, PM 10 , NO 2 , SO 2 , O 3 , As, Cd, Ni and Pb concentrations were analyzed by a Principal Component Analysis (PCA) to reveal major local emission sources of PM 10 metal content. Traffic was the main emitter of PM 10 , As, Cd, and Pb in both cities, highlighting the existence of non-negligible lead quantities in unleaded gasoline, whilst nickel emissions were associated with heavy fuel oil combustion in industries and primarily for domestic heating. The created CPF roses and trajectory clusters were in good agreement, clearly revealing that eastern air currents enriched the locally produced PM 10 load with additional aerosols from Eastern Europe. The concentrations of arsenic and cadmium were also enhanced by the arrival of air parcels from the East, indicating the anthropogenic origin of the exogenous aerosols due to combustion. The induced cancer risk (CR inh ) for adults, due to inhalation of individual metal constituents, was also estimated in terms of atmospheric circulation, indicating higher risk in Dortmund than in Bielefeld. CR inh values for arsenic exceeded the limit of 1 × 10 -6 in both cities, primarily during the influence of eastern circulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Friendship networks and trajectories of adolescent tobacco use.

    PubMed

    Pollard, Michael S; Tucker, Joan S; Green, Harold D; Kennedy, David; Go, Myong-Hyun

    2010-07-01

    This article examines how friendship networks in adolescence are linked to tobacco use trajectories through a combination of analytic techniques that traditionally are located in separate literatures: social network analysis and developmental trajectory analysis. Using six years of longitudinal data from the National Longitudinal Study of Adolescent Health, we identify a set of six unique developmental trajectories of smoking (never smokers, steady lows, delayed increasers, early increasers, decreasers, and steady highs). Individuals' locations in their friendship networks were then linked to their trajectory group membership. Adolescents with a greater number of smoking friends were more likely to belong to the higher use trajectories. Beyond this exposure to smoking peers, individuals who at baseline were either members of a smoking group or liaisons to a smoking group were more likely than members of a nonsmoking group to belong to the higher use trajectories. Liaisons to a smoking group were particularly likely to belong to the delayed increaser trajectory group. Trajectory group membership for adolescents who belonged to a nonsmoking group did not significantly differ from those who were isolates or liaisons to a nonsmoking group. The study suggests features of an individual's social network have long-lasting associations with smoking behaviors. 2010 Elsevier Ltd. All rights reserved.

  3. Wave energy absorption by a submerged air bag connected to a rigid float.

    PubMed

    Kurniawan, A; Chaplin, J R; Hann, M R; Greaves, D M; Farley, F J M

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  4. Wave energy absorption by a submerged air bag connected to a rigid float

    PubMed Central

    Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-01-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section. PMID:28484330

  5. Wave energy absorption by a submerged air bag connected to a rigid float

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Hann, M. R.; Greaves, D. M.; Farley, F. J. M.

    2017-04-01

    A new wave energy device features a submerged ballasted air bag connected at the top to a rigid float. Under wave action, the bag expands and contracts, creating a reciprocating air flow through a turbine between the bag and another volume housed within the float. Laboratory measurements are generally in good agreement with numerical predictions. Both show that the trajectory of possible combinations of pressure and elevation at which the device is in static equilibrium takes the shape of an S. This means that statically the device can have three different draughts, and correspondingly three different bag shapes, for the same pressure. The behaviour in waves depends on where the mean pressure-elevation condition is on the static trajectory. The captured power is highest for a mean condition on the middle section.

  6. Hydrocarbon concentrations at the Alpine mountain sites Jungfraujoch and Arosa

    NASA Astrophysics Data System (ADS)

    Li, Yingshi; Campana, Mike; Reimann, Stefan; Schaub, Daniel; Stemmler, Konrad; Staehelin, Johannes; Peter, Thomas

    Volatile hydrocarbons have been measured for 1 yr at Arosa (2010 m asl) to determine the contribution of European emissions to the trace gas concentrations at this remote site. Results are compared to concurrent hydrocarbon concentrations at the high Alpine background site Jungfraujoch (3580 m asl). Hydrocarbon concentrations at Arosa are generally much higher than at Jungfraujoch. The influence of the Alpine boundary layer air was studied based on the diurnal variation of hydrocarbon concentrations, i.e. rising pollutant concentrations in the morning at Arosa and in the afternoon at Jungfraujoch. Different hydrocarbon emission sources of the uplifting air were found at the two sites. At Jungfraujoch, several transatlantic events were detected from October 2001 to January 2002 based on analysis of hydrocarbon ratios and air parcel trajectories. The OH concentration during the transatlantic transport was estimated to be around 5×10 5 cm -3, derived from simultaneous hydrocarbon oxidation and dilution in the free troposphere. These transatlantic transport events were tracked back to warm conveyor belts, characterized by uniform dynamics and relatively uniform surface sources. In addition, ozone production in the free tropospheric transport was also documented in these events.

  7. PTM Along Track Algorithm to Maintain Spacing During Same Direction Pair-Wise Trajectory Management Operations

    NASA Technical Reports Server (NTRS)

    Carreno, Victor A.

    2015-01-01

    Pair-wise Trajectory Management (PTM) is a cockpit based delegated responsibility separation standard. When an air traffic service provider gives a PTM clearance to an aircraft and the flight crew accepts the clearance, the flight crew will maintain spacing and separation from a designated aircraft. A PTM along track algorithm will receive state information from the designated aircraft and from the own ship to produce speed guidance for the flight crew to maintain spacing and separation

  8. Methods, fluxes and sources of gas phase alkyl nitrates in the coastal air.

    PubMed

    Dirtu, Alin C; Buczyńska, Anna J; Godoi, Ana F L; Favoreto, Rodrigo; Bencs, László; Potgieter-Vermaak, Sanja S; Godoi, Ricardo H M; Van Grieken, René; Van Vaeck, Luc

    2014-10-01

    The daily and seasonal atmospheric concentrations, deposition fluxes and emission sources of a few C3-C9 gaseous alkyl nitrates (ANs) at the Belgian coast (De Haan) on the Southern North Sea were determined. An adapted sampler design for low- and high-volume air-sampling, optimized sample extraction and clean-up, as well as identification and quantification of ANs in air samples by means of gas chromatography mass spectrometry, are reported. The total concentrations of ANs ranged from 0.03 to 85 pptv and consisted primarily of the nitro-butane and nitro-pentane isomers. Air mass backward trajectories were calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to determine the influence of main air masses on AN levels in the air. The shorter chain ANs have been the most abundant in the Atlantic/Channel/UK air masses, while longer chain ANs prevailed in continental air. The overall mean N fluxes of the ANs were slightly higher for summer than those for winter-spring, although their contributions to the total nitrogen flux were low. High correlations between AN and HNO₂ levels were observed during winter/spring. During summer, the shorter chain ANs correlated well with precipitation. Source apportionment by means of principal component analysis indicated that most of the gas phase ANs could be attributed to traffic/combustion, secondary photochemical formation and biomass burning, although marine sources may also have been present and a contributing factor.

  9. Molecular adsorption steers bacterial swimming at the air/water interface.

    PubMed

    Morse, Michael; Huang, Athena; Li, Guanglai; Maxey, Martin R; Tang, Jay X

    2013-07-02

    Microbes inhabiting Earth have adapted to diverse environments of water, air, soil, and often at the interfaces of multiple media. In this study, we focus on the behavior of Caulobacter crescentus, a singly flagellated bacterium, at the air/water interface. Forward swimming C. crescentus swarmer cells tend to get physically trapped at the surface when swimming in nutrient-rich growth medium but not in minimal salt motility medium. Trapped cells move in tight, clockwise circles when viewed from the air with slightly reduced speed. Trace amounts of Triton X100, a nonionic surfactant, release the trapped cells from these circular trajectories. We show, by tracing the motion of positively charged colloidal beads near the interface that organic molecules in the growth medium adsorb at the interface, creating a high viscosity film. Consequently, the air/water interface no longer acts as a free surface and forward swimming cells become hydrodynamically trapped. Added surfactants efficiently partition to the surface, replacing the viscous layer of molecules and reestablishing free surface behavior. These findings help explain recent similar studies on Escherichia coli, showing trajectories of variable handedness depending on media chemistry. The consistent behavior of these two distinct microbial species provides insights on how microbes have evolved to cope with challenging interfacial environments. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  11. Persistence length measurements from stochastic single-microtubule trajectories.

    PubMed

    van den Heuvel, M G L; Bolhuis, S; Dekker, C

    2007-10-01

    We present a simple method to determine the persistence length of short submicrometer microtubule ends from their stochastic trajectories on kinesin-coated surfaces. The tangent angle of a microtubule trajectory is similar to a random walk, which is solely determined by the stiffness of the leading tip and the velocity of the microtubule. We demonstrate that even a single-microtubule trajectory suffices to obtain a reliable value of the persistence length. We do this by calculating the variance in the tangent trajectory angle of an individual microtubule. By averaging over many individual microtubule trajectories, we find that the persistence length of microtubule tips is 0.24 +/- 0.03 mm.

  12. Improved Propulsion Modeling for Low-Thrust Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Knittel, Jeremy M.; Englander, Jacob A.; Ozimek, Martin T.; Atchison, Justin A.; Gould, Julian J.

    2017-01-01

    Low-thrust trajectory design is tightly coupled with spacecraft systems design. In particular, the propulsion and power characteristics of a low-thrust spacecraft are major drivers in the design of the optimal trajectory. Accurate modeling of the power and propulsion behavior is essential for meaningful low-thrust trajectory optimization. In this work, we discuss new techniques to improve the accuracy of propulsion modeling in low-thrust trajectory optimization while maintaining the smooth derivatives that are necessary for a gradient-based optimizer. The resulting model is significantly more realistic than the industry standard and performs well inside an optimizer. A variety of deep-space trajectory examples are presented.

  13. An Examination of "The Martian" Trajectory

    NASA Technical Reports Server (NTRS)

    Burke, Laura

    2015-01-01

    This analysis was performed to support a request to examine the trajectory of the Hermes vehicle in the novel "The Martian" by Andy Weir. Weir developed his own tool to perform the analysis necessary to provide proper trajectory information for the novel. The Hermes vehicle is the interplanetary spacecraft that shuttles the crew to and from Mars. It is notionally a Nuclear powered vehicle utilizing VASIMR engines for propulsion. The intent of this analysis was the determine whether the trajectory as it was outlined in the novel is consistent with the rules of orbital mechanics.

  14. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.

  15. Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method

    PubMed Central

    Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  16. Optimizing interplanetary trajectories with deep space maneuvers

    NASA Astrophysics Data System (ADS)

    Navagh, John

    1993-09-01

    Analysis of interplanetary trajectories is a crucial area for both manned and unmanned missions of the Space Exploration Initiative. A deep space maneuver (DSM) can improve a trajectory in much the same way as a planetary swingby. However, instead of using a gravitational field to alter the trajectory, the on-board propulsion system of the spacecraft is used when the vehicle is not near a planet. The purpose is to develop an algorithm to determine where and when to use deep space maneuvers to reduce the cost of a trajectory. The approach taken to solve this problem uses primer vector theory in combination with a non-linear optimizing program to minimize Delta(V). A set of necessary conditions on the primer vector is shown to indicate whether a deep space maneuver will be beneficial. Deep space maneuvers are applied to a round trip mission to Mars to determine their effect on the launch opportunities. Other studies which were performed include cycler trajectories and Mars mission abort scenarios. It was found that the software developed was able to locate quickly DSM's which lower the total Delta(V) on these trajectories.

  17. The Yearly Variation in Fall-Winter Arctic Winter Vortex Descent

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Newman, Paul A.

    1999-01-01

    Using the change in HALOE methane profiles from early September to late March, we have estimated the minimum amount of diabatic descent within the polar which takes place during Arctic winter. The year to year variations are a result in the year to year variations in stratospheric wave activity which (1) modify the temperature of the vortex and thus the cooling rate; (2) reduce the apparent descent by mixing high amounts of methane into the vortex. The peak descent amounts from HALOE methane vary from l0km -14km near the arrival altitude of 25 km. Using a diabatic trajectory calculation, we compare forward and backward trajectories over the course of the winter using UKMO assimilated stratospheric data. The forward calculation agrees fairly well with the observed descent. The backward calculation appears to be unable to produce the observed amount of descent, but this is only an apparent effect due to the density decrease in parcels with altitude. Finally we show the results for unmixed descent experiments - where the parcels are fixed in latitude and longitude and allowed to descend based on the local cooling rate. Unmixed descent is found to always exceed mixed descent, because when normal parcel motion is included, the path average cooling is always less than the cooling at a fixed polar point.

  18. Automatic acquisition of motion trajectories: tracking hockey players

    NASA Astrophysics Data System (ADS)

    Okuma, Kenji; Little, James J.; Lowe, David

    2003-12-01

    Computer systems that have the capability of analyzing complex and dynamic scenes play an essential role in video annotation. Scenes can be complex in such a way that there are many cluttered objects with different colors, shapes and sizes, and can be dynamic with multiple interacting moving objects and a constantly changing background. In reality, there are many scenes that are complex, dynamic, and challenging enough for computers to describe. These scenes include games of sports, air traffic, car traffic, street intersections, and cloud transformations. Our research is about the challenge of inventing a descriptive computer system that analyzes scenes of hockey games where multiple moving players interact with each other on a constantly moving background due to camera motions. Ultimately, such a computer system should be able to acquire reliable data by extracting the players" motion as their trajectories, querying them by analyzing the descriptive information of data, and predict the motions of some hockey players based on the result of the query. Among these three major aspects of the system, we primarily focus on visual information of the scenes, that is, how to automatically acquire motion trajectories of hockey players from video. More accurately, we automatically analyze the hockey scenes by estimating parameters (i.e., pan, tilt, and zoom) of the broadcast cameras, tracking hockey players in those scenes, and constructing a visual description of the data by displaying trajectories of those players. Many technical problems in vision such as fast and unpredictable players' motions and rapid camera motions make our challenge worth tackling. To the best of our knowledge, there have not been any automatic video annotation systems for hockey developed in the past. Although there are many obstacles to overcome, our efforts and accomplishments would hopefully establish the infrastructure of the automatic hockey annotation system and become a milestone for

  19. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil S. (Inventor); Sridhar, Banavar (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Chatterji, Gano Broto (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements.

  20. Optimization of interplanetary trajectories with unpowered planetary swingbys

    NASA Technical Reports Server (NTRS)

    Sauer, Carl G., Jr.

    1988-01-01

    A method is presented for calculating and optimizing unpowered planetary swingby trajectories using a patched conic trajectory generator. Examples of unpowered swingby trajectories are given to demonstrate the method. The method, which uses primer vector theory, is not highly accurate, but provides projections for preliminary mission definition studies. Advantages to using a patched conic trajectory simulation for preliminary studies which examine many different and complex missions include calculation speed and adaptability to changes or additions to the formulation.

  1. Allowable Trajectory Variations for Space Shuttle Orbiter Entry-Aeroheating CFD

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Alter, Stephen J.

    2008-01-01

    Reynolds-number criteria are developed for acceptable variations in Space Shuttle Orbiter entry trajectories for use in computational aeroheating analyses. The criteria determine if an existing computational fluid dynamics solution for a particular trajectory can be extrapolated to a different trajectory. The criteria development begins by estimating uncertainties for seventeen types of computational aeroheating data, such as boundary layer thickness, at exact trajectory conditions. For each type of datum, the allowable uncertainty contribution due to trajectory variation is set to be half of the value of the estimated exact-trajectory uncertainty. Then, for the twelve highest-priority datum types, Reynolds-number relations between trajectory variation and output uncertainty are determined. From these relations the criteria are established for the maximum allowable trajectory variations. The most restrictive criterion allows a 25% variation in Reynolds number at constant Mach number between trajectories.

  2. An improved model for computing the trajectories of conductive particles in roll-type electrostatic separator for recycling metals from WEEE.

    PubMed

    Wu, Jiang; Li, Jia; Xu, Zhenming

    2009-08-15

    Electrostatic separation presents an effective and environmentally friendly way for recycling metals and nonmetals from ground waste electrical and electronic equipment (WEEE). For this process, the trajectory of conductive particle is significant and some models have been established. However, the results of previous researches are limited by some simplifying assumptions and lead to a notable discrepancy between the model prediction and the experimental results. In the present research, a roll-type corona-electrostatic separator and ground printed circuit board (PCB) wastes were used to investigate the trajectory of the conductive particle. Two factors, the air drag force and the different charging situation, were introduced into the improved model. Their effects were analyzed and an improved model for the theoretical trajectory of conductive particle was established. Compared with the previous one, the improved model shows a good agreement with the experimental results. It provides a positive guidance for designing of separator and makes a progress for recycling the metals and nonmetals from WEEE.

  3. Automated trajectory planning for multiple-flyby interplanetary missions

    NASA Astrophysics Data System (ADS)

    Englander, Jacob

    Many space mission planning problems may be formulated as hybrid optimal control problems (HOCP), i.e. problems that include both real-valued variables and categorical variables. In interplanetary trajectory design problems the categorical variables will typically specify the sequence of planets at which to perform flybys, and the real-valued variables will represent the launch date, ight times between planets, magnitudes and directions of thrust, flyby altitudes, etc. The contribution of this work is a framework for the autonomous optimization of multiple-flyby interplanetary trajectories. The trajectory design problem is converted into a HOCP with two nested loops: an "outer-loop" that finds the sequence of flybys and an "inner-loop" that optimizes the trajectory for each candidate yby sequence. The problem of choosing a sequence of flybys is posed as an integer programming problem and solved using a genetic algorithm (GA). This is an especially difficult problem to solve because GAs normally operate on a fixed-length set of decision variables. Since in interplanetary trajectory design the number of flyby maneuvers is not known a priori, it was necessary to devise a method of parameterizing the problem such that the GA can evolve a variable-length sequence of flybys. A novel "null gene" transcription was developed to meet this need. Then, for each candidate sequence of flybys, a trajectory must be found that visits each of the flyby targets and arrives at the final destination while optimizing some cost metric, such as minimizing ▵v or maximizing the final mass of the spacecraft. Three different classes of trajectory are described in this work, each of which requireda different physical model and optimization method. The choice of a trajectory model and optimization method is especially challenging because of the nature of the hybrid optimal control problem. Because the trajectory optimization problem is generated in real time by the outer-loop, the inner

  4. Development of Air Quality Impact Assessment Method of Potential Volcanic Hazard near the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Sunwoo, Y.; Kim, Y. J.; Kim, D.; Park, J. E.; Hong, K. H.

    2016-12-01

    Many volcanos are located within 1,500 km of Korea which implies that a potential disaster is always possible. Several eruption precursors were observed rather recently at Mt. Baekdu, which has sparked intensive research on volcanic disasters in Korea. For assessment of potential volcanic hazard in Korea, we developed classification method of volcanic eruption dates using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT-4) regarding air quality impact. And, we conducted 3 dimensional chemistry transport modeling for selected eruption dates. WRF-ARW(version 3.6.1) meteorological modeling was employed for high resolution HYSPLIT input meteorological data,. The modeling domain covers Northeast Asia including Korea, Japan, east China, and part of Russia. Forward trajectories were calculated every 3 hours for 1 year (2010) and the trajectories were initiated from 3 volcanoes, Mt. Baekdu, Mt. Aso, and Mt. Tarumae. Selected eruption dates were classified into 5 classes using 4 parameters, PBL, trajectory retention time, initial trajectory altitude and exposed population. The number of significant days for volcanic eruption impact were 7 for Mt. Baekdu (spring and fall), 7 for Mt. Aso (summer), 1 for Mt. Tarumae (spring), and these were classified as class A, with the highest risk of incurring severe air pollution episodes in the receptor area. In addition, we analyzed the spatio-temporal distributions of these trajectories in the receptor area to help determine the period and domain of the volcanic eruption 3 dimensional chemistry transport modeling. Using class A eruption dates, we conducted CMAQ(v5.0.2) modeling for calculate full chemical reactions of volcanic gases and ashes in troposphere.

  5. Lifecourse Childhood Adiposity Trajectories Associated With Adolescent Insulin Resistance

    PubMed Central

    Huang, Rae-Chi; de Klerk, Nicholas H.; Smith, Anne; Kendall, Garth E.; Landau, Louis I.; Mori, Trevor A.; Newnham, John P.; Stanley, Fiona J.; Oddy, Wendy H.; Hands, Beth; Beilin, Lawrence J.

    2011-01-01

    OBJECTIVE In light of the obesity epidemic, we aimed to characterize novel childhood adiposity trajectories from birth to age 14 years and to determine their relation to adolescent insulin resistance. RESEARCH DESIGN AND METHODS A total of 1,197 Australian children with cardiovascular/metabolic profiling at age 14 years were studied serially from birth to age 14 years. Semiparametric mixture modeling was applied to anthropometric data over eight time points to generate adiposity trajectories of z scores (weight-for-height and BMI). Fasting insulin and homeostasis model assessment of insulin resistance (HOMA-IR) were compared at age 14 years between adiposity trajectories. RESULTS Seven adiposity trajectories were identified. Three (two rising and one chronic high adiposity) trajectories comprised 32% of the population and were associated with significantly higher fasting insulin and HOMA-IR compared with a reference trajectory group (with longitudinal adiposity z scores of approximately zero). There was a significant sex by trajectory group interaction (P < 0.001). Girls within a rising trajectory from low to moderate adiposity did not show increased insulin resistance. Maternal obesity, excessive weight gain during pregnancy, and gestational diabetes were more prevalent in the chronic high adiposity trajectory. CONCLUSIONS A range of childhood adiposity trajectories exist. The greatest insulin resistance at age 14 years is seen in those with increasing trajectories regardless of birth weight and in high birth weight infants whose adiposity remains high. Public health professionals should urgently target both excessive weight gain in early childhood across all birth weights and maternal obesity and excessive weight gain during pregnancy. PMID:21378216

  6. Design and interpretation of cell trajectory assays

    PubMed Central

    Bowden, Lucie G.; Simpson, Matthew J.; Baker, Ruth E.

    2013-01-01

    Cell trajectory data are often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published datasets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual-based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that are most reliable when the experiment is performed in a quasi-one-dimensional geometry with a large number of identically prepared experiments conducted over a relatively short time-interval rather than a few trajectories recorded over particularly long time-intervals. PMID:23985736

  7. Low-energy Lunar Trajectories with Lunar Flybys

    NASA Astrophysics Data System (ADS)

    Wei, B. W.; Li, Y. S.

    2017-09-01

    The low-energy lunar trajectories with lunar flybys are investigated in the Sun-Earth-Moon bicircular problem (BCP). Accordingly, the characteristics of the distribution of trajectories in the phase space are summarized. To begin with, by using invariant manifolds of the BCP system, the low-energy lunar trajectories with lunar flybys are sought based on the BCP model. Secondly, through the treating time as an augmented dimension in the phase space of nonautonomous system, the state space map that reveals the distribution of these lunar trajectories in the phase space is given. As a result, it is become clear that low-energy lunar trajectories exist in families, and every moment of a Sun-Earth-Moon synodic period can be the departure date. Finally, the changing rule of departure impulse, midcourse impulse at Poincaré section, transfer duration, and system energy of different families are analyzed. Consequently, the impulse optimal family and transfer duration optimal family are obtained respectively.

  8. US Decadal Survey Outer Solar System Missions: Trajectory Options

    NASA Astrophysics Data System (ADS)

    Spilker, T. R.; Atkinson, D. H.; Strange, N. J.; Landau, D.

    2012-04-01

    The report of the US Planetary Science Decadal Survey (PSDS), released in draft form March 7, 2011, identifies several mission concepts involving travel to high-priority outer solar system (OSS) destinations. These include missions to Europa and Jupiter, Saturn and two of its satellites, and Uranus. Because travel to the OSS involves much larger distances and larger excursions out of the sun's gravitational potential well than inner solar system (ISS) missions, transfer trajectories for OSS missions are stronger drivers of mission schedule and resource requirements than for ISS missions. Various characteristics of each planet system, such as obliquity, radiation belts, rings, deep gravity wells, etc., carry ramifications for approach trajectories or trajectories within the systems. The maturity of trajectory studies for each of these destinations varies significantly. Europa has been the focus of studies for well over a decade. Transfer trajectory options from Earth to Jupiter are well understood. Current studies focus on trajectories within the Jovian system that could reduce the total mission cost of a Europa orbiter mission. Three missions to the Saturn system received high priority ratings in the PSDS report: two flagship orbital missions, one to Titan and one to Enceladus, and a Saturn atmospheric entry probe mission for NASA's New Frontiers Program. The Titan Saturn System Mission (TSSM) studies of 2007-2009 advanced our understanding of trajectory options for transfers to Saturn, including solar electric propulsion (SEP) trajectories. But SEP trajectories depend more on details of spacecraft and propulsion system characteristics than chemical trajectories, and the maturity of SEP trajectory search tools has not yet caught up with chemical trajectory tools, so there is still more useful research to be done on Saturn transfers. The TSSM studies revealed much about Saturn-orbiting trajectories that yield efficient and timely delivery to Titan or Enceladus

  9. Preserving correlations between trajectories for efficient path sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingrich, Todd R.; Geissler, Phillip L.; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2015-06-21

    Importance sampling of trajectories has proved a uniquely successful strategy for exploring rare dynamical behaviors of complex systems in an unbiased way. Carrying out this sampling, however, requires an ability to propose changes to dynamical pathways that are substantial, yet sufficiently modest to obtain reasonable acceptance rates. Satisfying this requirement becomes very challenging in the case of long trajectories, due to the characteristic divergences of chaotic dynamics. Here, we examine schemes for addressing this problem, which engineer correlation between a trial trajectory and its reference path, for instance using artificial forces. Our analysis is facilitated by a modern perspective onmore » Markov chain Monte Carlo sampling, inspired by non-equilibrium statistical mechanics, which clarifies the types of sampling strategies that can scale to long trajectories. Viewed in this light, the most promising such strategy guides a trial trajectory by manipulating the sequence of random numbers that advance its stochastic time evolution, as done in a handful of existing methods. In cases where this “noise guidance” synchronizes trajectories effectively, as the Glauber dynamics of a two-dimensional Ising model, we show that efficient path sampling can be achieved for even very long trajectories.« less

  10. Prosocial Behavior: Long-Term Trajectories and Psychosocial Outcomes

    PubMed Central

    Flynn, Elinor; Ehrenreich, Samuel E.; Beron, Kurt J.; Underwood, Marion K.

    2015-01-01

    This study investigated developmental trajectories for prosocial behavior for a sample followed from age 10 – 18 and examined possible adjustment outcomes associated with membership in different trajectory groups. Participants were 136 boys and 148 girls, their teachers, and their parents (19.4% African American, 2.4% Asian, 51.9% Caucasian, 19.5% Hispanic, and 5.8% other). Teachers rated children’s prosocial behavior yearly in grades 4 – 12. At the end of the 12th grade year, teachers, parents, and participants reported externalizing behaviors and participants reported internalizing symptoms, narcissism, and features of borderline personality disorder. Results suggested that prosocial behavior remained stable from middle childhood through late adolescence. Group-based mixture modeling revealed three prosocial trajectory groups: low (18.7%), medium (52.8%), and high (29.6%). Membership in the high prosocial trajectory group predicted lower levels of externalizing behavior as compared to the low prosocial trajectory group, and for girls, lower levels of internalizing symptoms. Membership in the medium prosocial trajectory group also predicted being lower on externalizing behaviors. Membership in the high prosocial trajectory group predicted lower levels of borderline personality features for girls only. PMID:26236108

  11. Optimal helicopter trajectory planning for terrain following flight

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.

  12. Prosocial Behavior: Long-Term Trajectories and Psychosocial Outcomes.

    PubMed

    Flynn, Elinor; Ehrenreich, Samuel E; Beron, Kurt J; Underwood, Marion K

    2015-08-01

    This study investigated developmental trajectories for prosocial behavior for a sample followed from age 10 - 18 and examined possible adjustment outcomes associated with membership in different trajectory groups. Participants were 136 boys and 148 girls, their teachers, and their parents (19.4% African American, 2.4% Asian, 51.9% Caucasian, 19.5% Hispanic, and 5.8% other). Teachers rated children's prosocial behavior yearly in grades 4 - 12. At the end of the 12 th grade year, teachers, parents, and participants reported externalizing behaviors and participants reported internalizing symptoms, narcissism, and features of borderline personality disorder. Results suggested that prosocial behavior remained stable from middle childhood through late adolescence. Group-based mixture modeling revealed three prosocial trajectory groups: low (18.7%), medium (52.8%), and high (29.6%). Membership in the high prosocial trajectory group predicted lower levels of externalizing behavior as compared to the low prosocial trajectory group, and for girls, lower levels of internalizing symptoms. Membership in the medium prosocial trajectory group also predicted being lower on externalizing behaviors. Membership in the high prosocial trajectory group predicted lower levels of borderline personality features for girls only.

  13. Towards Designing Graceful Degradation into Trajectory Based Operations: A Human-Machine System Integration Approach

    NASA Technical Reports Server (NTRS)

    Edwards, Tamsyn; Lee, Paul

    2017-01-01

    One of the most fundamental changes to the air traffic management system in NextGen is the concept of trajectory based operations (TBO). With the introduction of such change, system safety and resilience is a critical concern, in particular, the ability of systems to gracefully degrade. In order to design graceful degradation into a TBO envrionment, knowledge of the potential causes of degradation, and appropriate solutions, is required. In addition, previous research has predominantly explored the technological contribution to graceful degradation, frequently neglecting to consider the role of the human operator, specifically, air traffic controllers (ATCOs). This is out of step with real-world operations, and potentially limits an ecologically valid understanding of achieving graceful degradation in an air traffic control (ATC) environment. The following literature review aims to identify and summarize the literature to date on the potential causes of degradation in ATC and the solutions that may be applied within a TBO context, with a specific focus on the contribution of the air traffic controller. A framework of graceful degradation, developed from the literature, is presented. It is argued that in order to achieve graceful degradation within TBO, a human-system integration approach must be applied.

  14. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  15. Investigation of the Physical Processes Governing Large-Scale Tracer Transport in the Stratosphere and Troposphere

    NASA Technical Reports Server (NTRS)

    Selkirk, Henry B.

    2001-01-01

    This report summarizes work conducted from January 1996 through April 1999 on a program of research to investigate the physical mechanisms that underlie the transport of trace constituents in the stratosphere-troposphere system. The primary scientific goal of the research has been to identify the processes which transport air masses within the lower stratosphere, particularly between the tropics and middle latitudes. This research was conducted in collaboration with the Subsonic Assessment (SASS) of the NASA Atmospheric Effects of Radiation Program (AEAP) and the Upper Atmospheric Research Program (UARP). The SASS program sought to understand the impact of the present and future fleets of conventional jet traffic on the upper troposphere and lower stratosphere, while complementary airborne observations under UARP seek to understand the complex interactions of dynamical and chemical processes that affect the ozone layer. The present investigation contributed to the goals of each of these by diagnosing the history of air parcels intercepted by NASA research aircraft in UARP and AEAP campaigns. This was done by means of a blend of trajectory analyses and tracer correlation techniques.

  16. Five-year trends of selected halogenated flame retardants in the atmosphere of Northeast China.

    PubMed

    Li, Wen-Long; Liu, Li-Yan; Song, Wei-Wei; Zhang, Zi-Feng; Qiao, Li-Na; Ma, Wan-Li; Li, Yi-Fan

    2016-01-01

    This study collected 227 pairs of gas phase and particle phase air samples in a typical urban city of Northeast China from 2008 to 2013. Four alternative halogenated flame retardants for polybrominated diphenyl ethers (PBDEs) were analyzed, namely 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EHTBB), bis (2-ethylhexyl) tetrabromophthalate (BEHTBP), syn-dechlorane plus (syn-DP) and anti-dechlorane plus (anti-DP). The average concentrations for EHTBB and BEHTBP were 5.2 ± 20 and 30 ± 200 pg/m3, respectively, while for syn-DP and anti-DPwere 1.9±5.1 and 5.8±18 pg/m3, respectively. Generally, they were frequently detected in the particle phase, and the gas/particle partitioning suggested they were the maximum partition chemicals. The fractional abundance of EHTBB (fEHTBB) and syn-DP (fsyn)were comparablewith those in other studies. Strong local sources were identified based on the air parcel backward trajectories and the potential source contribution function. The concentrations of these chemicals were significantly increased during this sampling campaign, possibly suggesting their increasing usages from 2008 to 2013 in China.

  17. On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air.

    PubMed

    Westgate, John N; Wania, Frank

    2011-10-15

    Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ∼700 m be considered.

  18. Trajectory Model of Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The goal of this work was to predict the trajectories of blowing lunar regolith (soil) particles when a spacecraft lands on or launches from the Moon. The blown regolith is known to travel at very high velocity and to damage any hardware located nearby on the Moon. It is important to understand the trajectories so we can develop technologies to mitigate the blast effects for the launch and landing zones at a lunar outpost. A mathematical model was implemented in software to predict the trajectory of a single spherical mass acted on by the gas jet from the nozzle of a lunar lander.

  19. Broken-Plane Maneuver Applications for Earth to Mars Trajectories

    NASA Technical Reports Server (NTRS)

    Abilleira, Fernando

    2007-01-01

    Optimization techniques are critical when investigating Earth to Mars trajectories since they have the potential of reducing the total (delta)V of a mission. A deep space maneuver (DSM) executed during the cruise may improve a trajectory by reducing the total mission V. Nonetheless, DSMs not only may improve trajectory performance (from an energetic point of view) but also open up new families of trajectories that would satisfy very specific mission requirements not achievable with ballistic trajectories. In the following pages, various specific examples showing the potential advantages of the usage of broken plane maneuvers will be introduced. These examples correspond to possible scenarios for Earth to Mars trajectories during the next decade (2010-2020).

  20. Analysis of diurnal and seasonal climate patterns in the Rwenzori Mountains, East Africa, using satellite data and models

    NASA Astrophysics Data System (ADS)

    Cavagnaro, D. B.; Doughty, A. M.; Hatchett, B.

    2016-12-01

    The Rwenzori Mountains of Uganda and Democratic Republic of the Congo are one of only three remaining glaciated sites in Africa. Because of their remoteness and sparsity of meteorological data, the climate patterns are not well-known or well understood, which may lead to high uncertainty in glacier mass-balance estimates and paleoclimate reconstructions. This project uses remotely-sensed precipitation data, automatic weather station data, and back-trajectory modeling of air parcels to characterize the diurnal and seasonal climate patterns at the Rwenzori. Of the two wet seasons, we estimate that the short-rains (SON) provide up to 500% more snow accumulation. Precipitation is highly diurnal and driven by convection to the east of the Rwenzori as well as local up-valley convection (Mölg et al., 2003). Back-trajectory modeling shows that precipitation tends to occur at the Rwenzori when airstreams are able to pick up moisture during peak daytime convection on the East African Plateau the day before arriving at the Rwenzori. This relationship is supported by the fact that precipitation rates at the western end of the plateau follow a stronger diurnal cycle than precipitation rates at the eastern end, at Mount Kenya.