Sample records for air pulse stimulation

  1. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  2. Air pulse deformation measurement: a preliminary method for noninvasive vocal fold pliability analysis.

    PubMed

    Larsson, Hans; Lindestad, P Å; Hertegård, S

    2011-01-01

    A new method, air pulse pliability measurement, is presented, with which the pliability and elasticity of the vocal folds was measured in vitro and in vivo using air pulses. The size of the mucosal movements induced by air pulse stimulation was measured with a laser-based technique. The air pulses fed via a 2-mm tubing, introduced through the working channel of a flexible endoscope. Both in vitro and in vivo tests were performed. Nine normal, vocally healthy subjects were examined by air pulse stimulations of the vocal folds, of the skin (cheek and dorsum of the hand) and of the inside of the lips. The in vitro tests showed a coefficient of variation of 5% within a range of 1-5 mm from the probe to the surface. The elasticity data showed no differences between vocal folds, lips or cheek. The hand data showed a significantly higher stiffness as compared to the other 3 measuring points (p < 0.001). The coefficient of variation was about 35% for all measuring points, but in ideal conditions on skin it was 9%. The results show that the technique allows automatic, quantitative, noninvasive vocal fold pliability measurements on awake subjects. Copyright © 2010 S. Karger AG, Basel.

  3. Quadro-pulse stimulation is more effective than paired-pulse stimulation for plasticity induction of the human motor cortex.

    PubMed

    Hamada, Masashi; Hanajima, Ritsuko; Terao, Yasuo; Arai, Noritoshi; Furubayashi, Toshiaki; Inomata-Terada, Satomi; Yugeta, Akihiro; Matsumoto, Hideyuki; Shirota, Yuichiro; Ugawa, Yoshikazu

    2007-12-01

    Repetitive paired-pulse transcranial magnetic stimulation (TMS) at I-wave periodicity has been shown to induce a motor-evoked potential (MEP) facilitation. We hypothesized that a greater enhancement of motor cortical excitability is provoked by increasing the number of pulses per train beyond those by paired-pulse stimulation (PPS). We explored motor cortical excitability changes induced by repetitive application of trains of four monophasic magnetic pulses (quadro-pulse stimulation: QPS) at 1.5-ms intervals, repeated every 5s over the motor cortex projecting to the hand muscles. The aftereffects of QPS were evaluated with MEPs to a single-pulse TMS, motor threshold (MT), and responses to brain-stem stimulation. These effects were compared to those after PPS. To evaluate the QPS safety, we also studied the spread of excitation and after discharge using surface electromyograms (EMGs) of hand and arm muscles. Sizes of MEPs from the hand muscle were enhanced for longer than 75min after QPS; they reverted to the baseline at 90min. Responses to brain-stem stimulation from the hand muscle and cortical MEPs from the forearm muscle were unchanged after QPS over the hand motor area. MT was unaffected by QPS. No spreads of excitation were detected after QPS. The appearance rate of after discharges during QPS was not different from that during sham stimulation. Results show that QPS can safely induce long-lasting, topographically specific enhancement of motor cortical excitability. QPS is more effective than PPS for inducing motor cortical plasticity.

  4. Predicting non-isometric fatigue induced by electrical stimulation pulse trains as a function of pulse duration

    PubMed Central

    2013-01-01

    Background Our previous model of the non-isometric muscle fatigue that occurs during repetitive functional electrical stimulation included models of force, motion, and fatigue and accounted for applied load but not stimulation pulse duration. Our objectives were to: 1) further develop, 2) validate, and 3) present outcome measures for a non-isometric fatigue model that can predict the effect of a range of pulse durations on muscle fatigue. Methods A computer-controlled stimulator sent electrical pulses to electrodes on the thighs of 25 able-bodied human subjects. Isometric and non-isometric non-fatiguing and fatiguing knee torques and/or angles were measured. Pulse duration (170–600 μs) was the independent variable. Measurements were divided into parameter identification and model validation subsets. Results The fatigue model was simplified by removing two of three non-isometric parameters. The third remained a function of other model parameters. Between 66% and 77% of the variability in the angle measurements was explained by the new model. Conclusion Muscle fatigue in response to different stimulation pulse durations can be predicted during non-isometric repetitive contractions. PMID:23374142

  5. Analysis and Optimization of Pulse Dynamics for Magnetic Stimulation

    PubMed Central

    Goetz, Stefan M.; Truong, Cong Nam; Gerhofer, Manuel G.; Peterchev, Angel V.; Herzog, Hans-Georg; Weyh, Thomas

    2013-01-01

    Magnetic stimulation is a standard tool in brain research and has found important clinical applications in neurology, psychiatry, and rehabilitation. Whereas coil designs and the spatial field properties have been intensively studied in the literature, the temporal dynamics of the field has received less attention. Typically, the magnetic field waveform is determined by available device circuit topologies rather than by consideration of what is optimal for neural stimulation. This paper analyzes and optimizes the waveform dynamics using a nonlinear model of a mammalian axon. The optimization objective was to minimize the pulse energy loss. The energy loss drives power consumption and heating, which are the dominating limitations of magnetic stimulation. The optimization approach is based on a hybrid global-local method. Different coordinate systems for describing the continuous waveforms in a limited parameter space are defined for numerical stability. The optimization results suggest that there are waveforms with substantially higher efficiency than that of traditional pulse shapes. One class of optimal pulses is analyzed further. Although the coil voltage profile of these waveforms is almost rectangular, the corresponding current shape presents distinctive characteristics, such as a slow low-amplitude first phase which precedes the main pulse and reduces the losses. Representatives of this class of waveforms corresponding to different maximum voltages are linked by a nonlinear transformation. The main phase, however, scales with time only. As with conventional magnetic stimulation pulses, briefer pulses result in lower energy loss but require higher coil voltage than longer pulses. PMID:23469168

  6. Gastric electrical stimulation with short pulses reduces vomiting but not dysrhythmias in dogs.

    PubMed

    Chen, Jiande D Z; Qian, Liwei; Ouyang, Hui; Yin, Jieyun

    2003-02-01

    The aim of this study was to investigate the acute effects of 3 different methods of electrical stimulation in the prevention of vasopressin-induced emetic response and gastric dysrhythmias. Seven female hound dogs chronically implanted with 4 pairs of electrodes on gastric serosa were used in a 5-session study. Saline and vasopressin were infused in sessions 1 and 2, respectively. In the other 3 sessions with vasopressin infusion, 3 different methods of electrical stimulation (short-pulse stimulation, long-pulse stimulation, and electroacupuncture) were applied. Gastric slow waves and vomiting and behaviors suggestive of nausea were recorded in each session. In a separate study, additional experiments were performed in 5 vagotomized dogs to investigate vagally mediated mechanisms. Vasopressin induced gastric dysrhythmias, uncoupling of slow waves, and vomiting and behaviors suggestive of nausea (P < 0.02, analysis of variance). Long-pulse stimulation, but not short-pulse stimulation or electroacupuncture, was capable of preventing vasopressin-induced gastric dysrhythmias and gastric slow wave uncoupling. Short-pulse stimulation and electroacupuncture, but not long-pulse stimulation, prevented vomiting and significantly reduced the symptom scores, which was not noted in the dogs with truncal vagotomy. Long-pulse stimulation normalizes vasopressin-induced slow wave abnormalities with no improvement in vomiting and behaviors suggestive of nausea. Short-pulse stimulation and electroacupuncture prevent vomiting and behaviors suggestive of nausea induced by vasopressin but have no effects on slow waves, and their effects are vagally mediated.

  7. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    PubMed Central

    D’Ostilio, Kevin; Rothwell, John C; Murphy, David L

    2014-01-01

    Objective This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with lower voltage rating than prior cTMS devices. Main results cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (<10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in 10 healthy volunteers. Significance The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool. PMID:25242286

  8. Controllable pulse parameter transcranial magnetic stimulator with enhanced circuit topology and pulse shaping

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; DʼOstilio, Kevin; Rothwell, John C.; Murphy, David L.

    2014-10-01

    Objective. This work aims at flexible and practical pulse parameter control in transcranial magnetic stimulation (TMS), which is currently very limited in commercial devices. Approach. We present a third generation controllable pulse parameter device (cTMS3) that uses a novel circuit topology with two energy-storage capacitors. It incorporates several implementation and functionality advantages over conventional TMS devices and other devices with advanced pulse shape control. cTMS3 generates lower internal voltage differences and is implemented with transistors with a lower voltage rating than prior cTMS devices. Main results. cTMS3 provides more flexible pulse shaping since the circuit topology allows four coil-voltage levels during a pulse, including approximately zero voltage. The near-zero coil voltage enables snubbing of the ringing at the end of the pulse without the need for a separate active snubber circuit. cTMS3 can generate powerful rapid pulse sequences (\\lt 10 ms inter pulse interval) by increasing the width of each subsequent pulse and utilizing the large capacitor energy storage, allowing the implementation of paradigms such as paired-pulse and quadripulse TMS with a single pulse generation circuit. cTMS3 can also generate theta (50 Hz) burst stimulation with predominantly unidirectional electric field pulses. The cTMS3 device functionality and output strength are illustrated with electrical output measurements as well as a study of the effect of pulse width and polarity on the active motor threshold in ten healthy volunteers. Significance. The cTMS3 features could extend the utility of TMS as a research, diagnostic, and therapeutic tool.

  9. Effects of high-level pulse train stimulation on retinal function.

    PubMed

    Cohen, Ethan D

    2009-06-01

    We examined how stimulation of the local retina by high-level current pulse trains affected the light-evoked responses of the retinal ganglion cells. The spikes of retinal ganglion cell axons were recorded extracellularly using an in vitro eyecup preparation of the rabbit retina. Epiretinal electrical stimulation was delivered via a 500 microm inner diameter saline-filled, transparent tube positioned over the retinal surface forming the receptive field center. Spot stimuli were presented periodically to the receptive field center during the experiment. Trains of biphasic 1 ms current pulses were delivered to the retina at 50 Hz for 1 min. Pulse train charge densities of 1.3-442 microC/cm(2)/phase were examined. After pulse train stimulation with currents >or=300 microA (133 microC/cm(2)/phase), the ganglion cell's ability to respond to light was depressed and a significant time was required for recovery of the light-evoked response. During train stimulation, the ganglion cell's ability to spike following each current pulse fatigued. The current levels evoking train-evoked depression were suprathreshold to those evoking action potentials. Train-evoked depression was stronger touching the retinal surface, and in some cases impaired ganglion cell function for up to 30 min. This overstimulation could cause a transient refractory period for electrically stimulated perception in the retinal region below the electrode.

  10. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Peer, J.; Kendl, A.

    2010-06-01

    The electromagnetic pulses of rare long (order of seconds) repetitive lightning discharges near strike point (order of 100 m) are analyzed and compared to magnetic fields applied in standard clinical transcranial magnetic stimulation (TMS) practice. It is shown that the time-varying lightning magnetic fields and locally induced electric fields are in the same order of magnitude and frequency as those established in TMS experiments to study stimulated perception phenomena, like magnetophosphenes. Lightning electromagnetic pulse induced transcranial magnetic stimulation of phosphenes in the visual cortex is concluded to be a plausible interpretation of a large class of reports on luminous perceptions during thunderstorms.

  11. Higher-order power harmonics of pulsed electrical stimulation modulates corticospinal contribution of peripheral nerve stimulation.

    PubMed

    Chen, Chiun-Fan; Bikson, Marom; Chou, Li-Wei; Shan, Chunlei; Khadka, Niranjan; Chen, Wen-Shiang; Fregni, Felipe

    2017-03-03

    It is well established that electrical-stimulation frequency is crucial to determining the scale of induced neuromodulation, particularly when attempting to modulate corticospinal excitability. However, the modulatory effects of stimulation frequency are not only determined by its absolute value but also by other parameters such as power at harmonics. The stimulus pulse shape further influences parameters such as excitation threshold and fiber selectivity. The explicit role of the power in these harmonics in determining the outcome of stimulation has not previously been analyzed. In this study, we adopted an animal model of peripheral electrical stimulation that includes an amplitude-adapted pulse train which induces force enhancements with a corticospinal contribution. We report that the electrical-stimulation-induced force enhancements were correlated with the amplitude of stimulation power harmonics during the amplitude-adapted pulse train. In an exploratory analysis, different levels of correlation were observed between force enhancement and power harmonics of 20-80 Hz (r = 0.4247, p = 0.0243), 100-180 Hz (r = 0.5894, p = 0.0001), 200-280 Hz (r = 0.7002, p < 0.0001), 300-380 Hz (r = 0.7449, p < 0.0001), 400-480 Hz (r = 0.7906, p < 0.0001), 500-600 Hz (r = 0.7717, p < 0.0001), indicating a trend of increasing correlation, specifically at higher order frequency power harmonics. This is a pilot, but important first demonstration that power at high order harmonics in the frequency spectrum of electrical stimulation pulses may contribute to neuromodulation, thus warrant explicit attention in therapy design and analysis.

  12. A Novel Transcranial Magnetic Stimulator Inducing Near Rectangular Pulses with Controllable Pulse Width (cTMS)

    PubMed Central

    Jalinous, Reza; Lisanby, Sarah H.

    2013-01-01

    A novel transcranial magnetic stimulation (TMS) device with controllable pulse width (PW) and near rectangular pulse shape (cTMS) is described. The cTMS device uses an insulated gate bipolar transistor (IGBT) with appropriate snubbers to switch coil currents up to 7 kA, enabling PW control from 5 μs to over 100 μs. The near-rectangular induced electric field pulses use 22–34% less energy and generate 67–72% less coil heating compared to matched conventional cosine pulses. CTMS is used to stimulate rhesus monkey motor cortex in vivo with PWs of 20 to 100 μs, demonstrating the expected decrease of threshold pulse amplitude with increasing PW. The technological solutions used in the cTMS prototype can expand functionality, and reduce power consumption and coil heating in TMS, enhancing its research and therapeutic applications. PMID:18232369

  13. Pulsed laser versus electrical energy for peripheral nerve stimulation

    PubMed Central

    Wells, Jonathon; Konrad, Peter; Kao, Chris; Jansen, E. Duco; Mahadevan-Jansen, Anita

    2010-01-01

    Transient optical neural stimulation has previously been shown to elicit highly controlled, artifact-free potentials within the nervous system in a non-contact fashion without resulting in damage to tissue. This paper presents the physiologic validity of elicited nerve and muscle potentials from pulsed laser induced stimulation of the peripheral nerve in a comparative study with the standard method of electrically evoked potentials. Herein, the fundamental physical properties underlying the two techniques are contrasted. Key laser parameters for efficient optical stimulation of the peripheral nerve are detailed. Strength response curves are shown to be linear for each stimulation modality, although fewer axons can be recruited with optically evoked potentials. Results compare the relative transient energy requirements for stimulation using each technique and demonstrate that optical methods can selectively excite functional nerve stimulation. Adjacent stimulation and recording of compound nerve potentials in their entirety from optical and electrical stimulation are presented, with optical responses shown to be free of any stimulation artifact. Thus, use of a pulsed laser exhibits some advantages when compared to standard electrical means for excitation of muscle potentials in the peripheral nerve in the research domain and possibly for clinical diagnostics in the future. PMID:17537515

  14. Nanosecond laser pulse stimulation of spiral ganglion neurons and model cells.

    PubMed

    Rettenmaier, Alexander; Lenarz, Thomas; Reuter, Günter

    2014-04-01

    Optical stimulation of the inner ear has recently attracted attention, suggesting a higher frequency resolution compared to electrical cochlear implants due to its high spatial stimulation selectivity. Although the feasibility of the effect is shown in multiple in vivo experiments, the stimulation mechanism remains open to discussion. Here we investigate in single-cell measurements the reaction of spiral ganglion neurons and model cells to irradiation with a nanosecond-pulsed laser beam over a broad wavelength range from 420 nm up to 1950 nm using the patch clamp technique. Cell reactions were wavelength- and pulse-energy-dependent but too small to elicit action potentials in the investigated spiral ganglion neurons. As the applied radiant exposure was much higher than the reported threshold for in vivo experiments in the same laser regime, we conclude that in a stimulation paradigm with nanosecond-pulses, direct neuronal stimulation is not the main cause of optical cochlea stimulation.

  15. Analysis of the effect of repeated-pulse transcranial magnetic stimulation at the Guangming point on electroencephalograms.

    PubMed

    Zhang, Xin; Fu, Lingdi; Geng, Yuehua; Zhai, Xiang; Liu, Yanhua

    2014-03-01

    Here, we administered repeated-pulse transcranial magnetic stimulation to healthy people at the left Guangming (GB37) and a mock point, and calculated the sample entropy of electroencephalo-gram signals using nonlinear dynamics. Additionally, we compared electroencephalogram sample entropy of signals in response to visual stimulation before, during, and after repeated-pulse tran-scranial magnetic stimulation at the Guangming. Results showed that electroencephalogram sample entropy at left (F3) and right (FP2) frontal electrodes were significantly different depending on where the magnetic stimulation was administered. Additionally, compared with the mock point, electroencephalogram sample entropy was higher after stimulating the Guangming point. When visual stimulation at Guangming was given before repeated-pulse transcranial magnetic stimula-tion, significant differences in sample entropy were found at five electrodes (C3, Cz, C4, P3, T8) in parietal cortex, the central gyrus, and the right temporal region compared with when it was given after repeated-pulse transcranial magnetic stimulation, indicating that repeated-pulse transcranial magnetic stimulation at Guangming can affect visual function. Analysis of electroencephalogram revealed that when visual stimulation preceded repeated pulse transcranial magnetic stimulation, sample entropy values were higher at the C3, C4, and P3 electrodes and lower at the Cz and T8 electrodes than visual stimulation followed preceded repeated pulse transcranial magnetic stimula-tion. The findings indicate that repeated-pulse transcranial magnetic stimulation at the Guangming evokes different patterns of electroencephalogram signals than repeated-pulse transcranial mag-netic stimulation at other nearby points on the body surface, and that repeated-pulse transcranial magnetic stimulation at the Guangming is associated with changes in the complexity of visually evoked electroencephalogram signals in parietal regions, central gyrus

  16. Effects of pulsed magnetic stimulation on tumor development and immune functions in mice.

    PubMed

    Yamaguchi, Sachiko; Ogiue-Ikeda, Mari; Sekino, Masaki; Ueno, Shoogo

    2006-01-01

    We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.

  17. Continuous-wave vs. pulsed infrared laser stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2011-03-01

    Optical nerve stimulation has recently been developed as an alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuouswave (CW) infrared laser radiation, for potential diagnostic applications. A Thulium fiber laser (λ = 1870 nm) was used for non-contact optical stimulation of the rat prostate cavernous nerves, in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, was achieved with the laser operating in either CW mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation was observed to be primarily dependent on a threshold nerve temperature (42-45 °C), not an incident fluence, as previously reported. CW optical nerve stimulation provides a significantly faster ICP response time using a laser with lower power output than pulsed stimulation. CW optical nerve stimulation may therefore represent an alternative mode of stimulation for intra-operative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  18. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, J.W.

    1993-06-08

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  19. Compact biomedical pulsed signal generator for bone tissue stimulation

    DOEpatents

    Kronberg, James W.

    1993-01-01

    An apparatus for stimulating bone tissue for stimulating bone growth or treating osteoporosis by applying directly to the skin of the patient an alternating current electrical signal comprising wave forms known to simulate the piezoelectric constituents in bone. The apparatus may, by moving a switch, stimulate bone growth or treat osteoporosis, as desired. Based on low-power CMOS technology and enclosed in a moisture-resistant case shaped to fit comfortably, two astable multivibrators produce the desired waveforms. The amplitude, pulse width and pulse frequency, and the subpulse width and subpulse frequency of the waveforms are adjustable. The apparatus, preferably powered by a standard 9-volt battery, includes signal amplitude sensors and warning signals indicate an output is being produced and the battery needs to be replaced.

  20. Long pacing pulses reduce phrenic nerve stimulation in left ventricular pacing.

    PubMed

    Hjortshøj, Søren; Heath, Finn; Haugland, Morten; Eschen, Ole; Thøgersen, Anna Margrethe; Riahi, Sam; Toft, Egon; Struijk, Johannes Jan

    2014-05-01

    Phrenic nerve stimulation is a major obstacle in cardiac resynchronization therapy (CRT). Activation characteristics of the heart and phrenic nerve are different with higher chronaxie for the heart. Therefore, longer pulse durations could be beneficial in preventing phrenic nerve stimulation during CRT due to a decreased threshold for the heart compared with the phrenic nerve. We investigated if long pulse durations decreased left ventricular (LV) thresholds relatively to phrenic nerve thresholds in humans. Eleven patients, with indication for CRT and phrenic nerve stimulation at the intended pacing site, underwent determination of thresholds for the heart and phrenic nerve at different pulse durations (0.3-2.9 milliseconds). The resulting strength duration curves were analyzed by determining chronaxie and rheobase. Comparisons for those parameters were made between the heart and phrenic nerve, and between the models of Weiss and Lapicque as well. In 9 of 11 cases, the thresholds decreased faster for the LV than for the phrenic nerve with increasing pulse duration. In 3 cases, the thresholds changed from unfavorable for LV stimulation to more than a factor 2 in favor of the LV. The greatest change occurred for pulse durations up to 1.5 milliseconds. The chronaxie of the heart was significantly higher than the chronaxie of the phrenic nerve (0.47 milliseconds vs. 0.22 milliseconds [P = 0.029, Lapicque] and 0.79 milliseconds vs. 0.27 milliseconds [P = 0.033, Weiss]). Long pulse durations lead to a decreased threshold of the heart relatively to the phrenic nerve and may prevent stimulation of the phrenic nerve in a clinical setting. © 2013 Wiley Periodicals, Inc.

  1. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging

    NASA Astrophysics Data System (ADS)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.

  2. Nd:YAP laser pulse compression by three-stage transient stimulated Brillouin and Raman scattering

    NASA Astrophysics Data System (ADS)

    Kubeček, V.; Hamal, K.; Procházka, I.; Buzelis, R.; Girdauskas, V.; Dementiev, A.

    1991-08-01

    There is a continuous effort to generate stable, powerful picosecond laser pulses for application in spectroscopy, nonlinear optics and parametric light generation, as well. One of the possible methods is the compression of longer nanosecond laser pulses by stimulated Brillouin and stimulated Raman scattering. The advantages of such a technique, in comparison to the used mode locked picosecond lasers, are as follows: the absence of the active and/or passive mode lockers used to generate a train of picosecond pulses, and the absence of a fast electrooptical shutter used to select a single pulse from a train of pulses. The application of stimulated Brillouin and stimulated Raman scattering permits to generate picosecond pulses in the wavelength regions not covered by mode locked lasers. Of special interest is the wavelength region of 0·8 μm, which may be amplified by the attractive Titanium Sapphire lasers. In this paper we are summarizing our results in theoretical modelling and in real generation of picosecond pulses by means of cascaded stimulated Brillouin and Raman scattering. The models of scattering processes have been investigated. The stable generation of 5, 7, 3 picosecond pulses have been optimized for the wavelengths of 0·8, 0·64 and 0·54 μm, respectively. In all these cases, the pulses exhibited the far field pattern close to Gaussian, with the pulse energy ranging from 0·2 to 1 mJ.

  3. Respiratory and Pulse Changes Due to Vestibular Stimulations in a Motion-Based Simulator.

    PubMed

    Ilbasmis, Savas; Yildiz, Safak

    2017-01-01

    One of the mechanisms leading to spatial disorientation (SD) is overstimulation of the vestibular system by various aircraft maneuvers. The objective of this study was to observe respiratory rate and pulse changes during vestibular system stimulations with the help of two selected SD training profiles. The respiration and pulse rates of 15 subjects were recorded in response to 2 sequential SD training profiles on a motion-based simulator. The session started with a motionless instruction period (IP), continued with a Coriolis profile (CP) which stimulated the semicircular canals, and ended with a Dark Takeoff profile (DP) which stimulated the otolith organs. Recorded parameter means during profiles were statistically compared with IP mean values. The average age of all subjects was 23.67 ± 1.11. Mean CP respiratory rate (23.43 ± 3.21) was higher than mean IP respiratory rate (21.39 ± 4.27) and mean DP pulse rate (79.88 ± 10.39) was lower than mean IP pulse rate (84.76 ± 14.26) of the subjects. These differences were statistically significant. Data indicate that stimulation of the semicircular canals increased respiration rate while stimulation of the otoliths caused a reduction in pulse rate. This was considered to be a result of vestibulorespiratory reflex. Inputs from the vestibular otolith organs contribute to the control of blood pressure during movement and changes in posture. Predicting pulse and respiratory changes due to aerial maneuvers may be important for pilot safety during flight.Ilbasmis S, Yildiz S. Respiratory and pulse changes due to vestibular stimulations in a motion-based simulator. Aerosp Med Hum Perform. 2017; 88(1):48-51.

  4. Pulse duration settings in subthalamic stimulation for Parkinson's disease

    PubMed Central

    Steigerwald, Frank; Timmermann, Lars; Kühn, Andrea; Schnitzler, Alfons; Reich, Martin M.; Kirsch, Anna Dalal; Barbe, Michael Thomas; Visser‐Vandewalle, Veerle; Hübl, Julius; van Riesen, Christoph; Groiss, Stefan Jun; Moldovan, Alexia‐Sabine; Lin, Sherry; Carcieri, Stephen; Manola, Ljubomir

    2017-01-01

    ABSTRACT Background Stimulation parameters in deep brain stimulation (DBS) of the subthalamic nucleus for Parkinson's disease (PD) are rarely tested in double‐blind conditions. Evidence‐based recommendations on optimal stimulator settings are needed. Results from the CUSTOM‐DBS study are reported, comparing 2 pulse durations. Methods A total of 15 patients were programmed using a pulse width of 30 µs (test) or 60 µs (control). Efficacy and side‐effect thresholds and unified PD rating scale (UPDRS) III were measured in meds‐off (primary outcome). The therapeutic window was the difference between patients’ efficacy and side effect thresholds. Results The therapeutic window was significantly larger at 30 µs than 60 µs (P = ·0009) and the efficacy (UPDRS III score) was noninferior (P = .00008). Interpretation Subthalamic neurostimulation at 30 µs versus 60 µs pulse width is equally effective on PD motor signs, is more energy efficient, and has less likelihood of stimulation‐related side effects. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:29165837

  5. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    PubMed

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Ultrashort laser pulses and electromagnetic pulse generation in air and on dielectric surfaces.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B; Kapetanakos, C A

    2004-06-01

    Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMPS). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is nonradiative and axially directed. Radiative EMP energy is present only for nonsteady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident. For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small, < 10(-8). Results of full-scale, self-consistent, numerical simulations of atmospheric and dielectric surface EMP generation are presented. A recent experiment on atmospheric EMP generation is also simulated.

  7. Repetitive transcranial magnetic stimulator with controllable pulse parameters.

    PubMed

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  8. Repetitive transcranial magnetic stimulator with controllable pulse parameters

    NASA Astrophysics Data System (ADS)

    Peterchev, Angel V.; Murphy, David L.; Lisanby, Sarah H.

    2011-06-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10-310 µs and positive/negative phase amplitude ratio of 1-56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation up to 82% and 57% and decreases coil heating up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications and could lead to clinical applications with potentially enhanced potency.

  9. Repetitive Transcranial Magnetic Stimulator with Controllable Pulse Parameters

    PubMed Central

    Peterchev, Angel V; Murphy, David L; Lisanby, Sarah H

    2013-01-01

    The characteristics of transcranial magnetic stimulation (TMS) pulses influence the physiological effect of TMS. However, available TMS devices allow very limited adjustment of the pulse parameters. We describe a novel TMS device that uses a circuit topology incorporating two energy storage capacitors and two insulated-gate bipolar transistor (IGBT) modules to generate near-rectangular electric field pulses with adjustable number, polarity, duration, and amplitude of the pulse phases. This controllable pulse parameter TMS (cTMS) device can induce electric field pulses with phase widths of 10–310 μs and positive/negative phase amplitude ratio of 1–56. Compared to conventional monophasic and biphasic TMS, cTMS reduces energy dissipation by up to 82% and 57%, and decreases coil heating by up to 33% and 41%, respectively. We demonstrate repetitive TMS trains of 3,000 pulses at frequencies up to 50 Hz with electric field pulse amplitude and width variability less than the measurement resolution (1.7% and 1%, respectively). Offering flexible pulse parameter adjustment and reduced power consumption and coil heating, cTMS enhances existing TMS paradigms, enables novel research applications, and could lead to clinical applications with potentially enhanced potency. PMID:21540487

  10. Electrical stimulation vs. pulsed and continuous-wave optical stimulation of the rat prostate cavernous nerves, in vivo

    NASA Astrophysics Data System (ADS)

    Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.

    2015-07-01

    Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.

  11. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test

    PubMed Central

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong

    2017-01-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test. PMID:28442945

  12. Controlled generation of a single Trichel pulse and a series of single Trichel pulses in air

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, Jerzy; Berendt, Artur; Akishev, Yuri

    2018-04-01

    In this paper, a simple method for the controlled generation of a single Trichel pulse or a series of single Trichel pulses of a regulated repetition frequency in air is proposed. The concept of triggering a single Trichel pulse or a series of such pulses is based on the precise controlling the voltage inception of the negative corona, which can be accomplished through the use of a ramp voltage pulse or a series of such pulses with properly chosen ramp voltage pulse parameters (rise and fall times, and ramp voltage pulse repetition frequency). The proposal has been tested in experiments using a needle-to-plate electrode arrangement in air, and reproducible Trichel pulses (single or in a series) were obtained by triggering them with an appropriately designed voltage waveform. The proposed method and results obtained have been qualitatively analysed. The analysis provides guidance for designing the voltage ramp pulse in respect of the generation of a single Trichel pulse or a series of single Trichel pulses. The controlled generation of a single Trichel pulse or a series of such pulses would be a helpful research tool for the refined studies of the fundamental processes in a negative corona discharge in a single- (air is an example) and multi-phase gaseous fluids. The controlled generation of a single Trichel pulse or a series of Trichel pulses can also be attractive for those corona treatments which need manipulation of the electric charge and heat portions delivered by the Trichel pulses to the object.

  13. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription.

    PubMed

    Stavreva, Diana A; Wiench, Malgorzata; John, Sam; Conway-Campbell, Becky L; McKenna, Mervyn A; Pooley, John R; Johnson, Thomas A; Voss, Ty C; Lightman, Stafford L; Hager, Gordon L

    2009-09-01

    Studies on glucocorticoid receptor (GR) action typically assess gene responses by long-term stimulation with synthetic hormones. As corticosteroids are released from adrenal glands in a circadian and high-frequency (ultradian) mode, such treatments may not provide an accurate assessment of physiological hormone action. Here we demonstrate that ultradian hormone stimulation induces cyclic GR-mediated transcriptional regulation, or gene pulsing, both in cultured cells and in animal models. Equilibrium receptor-occupancy of regulatory elements precisely tracks the ligand pulses. Nascent RNA transcripts from GR-regulated genes are released in distinct quanta, demonstrating a profound difference between the transcriptional programs induced by ultradian and constant stimulation. Gene pulsing is driven by rapid GR exchange with response elements and by GR recycling through the chaperone machinery, which promotes GR activation and reactivation in response to the ultradian hormone release, thus coupling promoter activity to the naturally occurring fluctuations in hormone levels. The GR signalling pathway has been optimized for a prompt and timely response to fluctuations in hormone levels, indicating that biologically accurate regulation of gene targets by GR requires an ultradian mode of hormone stimulation.

  14. In vitro stimulation with a strongly pulsed electromagnetic field on rat basophilic leukemia cells

    NASA Astrophysics Data System (ADS)

    Choi, J. W.; Shin, S. C.; Kim, S.; Chung, E. R.; Bang, J. H.; Cho, G. I.; Choi, S. D.; Park, Y. S.; Jang, T. S.; Yoo, Y. M.; Lee, S. S.; Hwang, D. G.

    2010-05-01

    In this study, the effects of pulsed electromagnetic field stimulation with a strong magnetic field on rat basophilic leukemia (RBL-2H3) cells were investigated to confirm the efficacy of the magnetic stimulator for biomedical applications. The maximum intensity of the magnetic field generated from the stimulation coil was 0.203 T, and the transition time was 126 μs. The oscillation time and frequency of the pulsed field were almost 0.1 ms and 8 kHz, respectively. The cell count as well as the mRNA expression and DNA sequence of the cytokine genes, such as the tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4), of the stimulated RBL-2H3 cells were analyzed with a hemocytometer and via reverse transcriptase polymerase chain reaction to determine the physiological response under a strong pulse field. After 12 h stimulation, cell death was observed at an increasing scale with the increase in the stimulation time. On the other hand, the cells that were stimulated for 10 min almost doubled as the interval time between the stimulations was extended.

  15. Initiation of air ionization by ultrashort laser pulses: evidence for a role of metastable-state air molecules

    NASA Astrophysics Data System (ADS)

    Bulgakov, A. V.; Mirza, I.; Bulgakova, N. M.; Zhukov, V. P.; Machulka, R.; Haderka, O.; Campbell, E. E. B.; Mocek, T.

    2018-06-01

    Transmission measurements for femtosecond laser pulses focused in air with spectral analysis of emission from the focal region have been carried out for various pulse energies and air pressures. The air breakdown threshold and pulse attenuation due to plasma absorption are evaluated and compared with calculations based on the multiphoton ionization model. The plasma absorption is found to depend on the pulse repetition rate and is considerably stronger at 1 kHz than at 1–10 Hz. This suggests that accumulation of metastable states of air molecules plays an important role in initiation of air breakdown, enhancing the ionization efficiency at high repetition rates. Possible channels of metastable-state-assisted air ionization and the role of the observed accumulation effect in laser material processing are discussed.

  16. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  17. Versatile Stimulation Back-End With Programmable Exponential Current Pulse Shapes for a Retinal Visual Prosthesis.

    PubMed

    Maghami, Mohammad Hossein; Sodagar, Amir M; Sawan, Mohamad

    2016-11-01

    This paper reports on the design, implementation, and test of a stimulation back-end, for an implantable retinal prosthesis. In addition to traditional rectangular pulse shapes, the circuit features biphasic stimulation pulses with both rising and falling exponential shapes, whose time constants are digitally programmable. A class-B second generation current conveyor is used as a wide-swing, high-output-resistance stimulation current driver, delivering stimulation current pulses of up to ±96 μA to the target tissue. Duration of the generated current pulses is programmable within the range of 100 μs to 3 ms. Current-mode digital-to-analog converters (DACs) are used to program the amplitudes of the stimulation pulses. Fabricated using the IBM 130 nm process, the circuit consumes 1.5×1.5 mm 2 of silicon area. According to the measurements, the DACs exhibit DNL and INL of 0.23 LSB and 0.364 LSB, respectively. Experimental results indicate that the stimuli generator meets expected requirements when connected to electrode-tissue impedance of as high as 25 k Ω. Maximum power consumption of the proposed design is 3.4 mW when delivering biphasic rectangular pulses to the target load. A charge pump block is in charge of the upconversion of the standard 1.2-V supply voltage to ±3.3V.

  18. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or wate...

  19. Single laser pulse compression via strongly coupled stimulated Brillouin scattering in plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, H.; Wu, Z. H.; Zhang, Z. M.

    2016-07-15

    Laser amplification in plasma, including stimulated Raman scattering amplification and strongly coupled stimulated Brillouin scattering (sc-SBS) amplification, is very promising to generate ultrahigh-power and ultrashort laser pulses. But both are quite complex in experiments: at least three different laser pulses must be prepared; temporal delay and spatial overlap of these three pulses are difficult. We propose a single pulse compression scheme based on sc-SBS in plasma. Only one moderately long laser is applied, the front part of which ionizes the gas to produced plasma, and gets reflected by a plasma mirror at the end of the gas channel. The reflectedmore » front quickly depletes the remaining part of the laser by sc-SBS in the self-similar regime. The output laser is much stronger and shorter. This scheme is at first considered theoretically, then validated by using 1D PIC simulations.« less

  20. Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. A. K.; DiGiovanna, J.; Cavuscens, S.; Ranieri, M.; Guinand, N.; van de Berg, R.; Carpaneto, J.; Kingma, H.; Guyot, J.-P.; Micera, S.; Perez Fornos, A.

    2016-08-01

    Objective. The vestibular system provides essential information about balance and spatial orientation via the brain to other sensory and motor systems. Bilateral vestibular loss significantly reduces quality of life, but vestibular implants (VIs) have demonstrated potential to restore lost function. However, optimal electrical stimulation strategies have not yet been identified in patients. In this study, we compared the two most common strategies, pulse amplitude modulation (PAM) and pulse rate modulation (PRM), in patients. Approach. Four subjects with a modified cochlear implant including electrodes targeting the peripheral vestibular nerve branches were tested. Charge-equivalent PAM and PRM were applied after adaptation to baseline stimulation. Vestibulo-ocular reflex eye movement responses were recorded to evaluate stimulation efficacy during acute clinical testing sessions. Main results. PAM evoked larger amplitude eye movement responses than PRM. Eye movement response axes for lateral canal stimulation were marginally better aligned with PRM than with PAM. A neural network model was developed for the tested stimulation strategies to provide insights on possible neural mechanisms. This model suggested that PAM would consistently cause a larger ensemble firing rate of neurons and thus larger responses than PRM. Significance. Due to the larger magnitude of eye movement responses, our findings strongly suggest PAM as the preferred strategy for initial VI modulation.

  1. Optimally shaped narrowband picosecond pulses for femtosecond stimulated Raman spectroscopy.

    PubMed

    Hoffman, David P; Valley, David; Ellis, Scott R; Creelman, Mark; Mathies, Richard A

    2013-09-09

    A comparison between a Fabry-Pérot etalon filter and a conventional grating filter for producing the picosecond (ps) Raman pump pulses for femtosecond stimulated Raman spectroscopy (FSRS) is presented. It is shown that for pulses of equal energy the etalon filter produces Raman signals twice as large as that of the grating filter while suppressing the electronically resonant background signal. The time asymmetric profile of the etalon-generated pulse is shown to be responsible for both of these observations. A theoretical discussion is presented which quantitatively supports this hypothesis. It is concluded that etalons are the ideal method for the generation of narrowband ps pulses for FSRS because of the optical simplicity, efficiency, improved FSRS intensity and reduced backgrounds.

  2. Two-stage optical parametric chirped-pulse amplifier using sub-nanosecond pump pulse generated by stimulated Brillouin scattering compression

    NASA Astrophysics Data System (ADS)

    Ogino, Jumpei; Miyamoto, Sho; Matsuyama, Takahiro; Sueda, Keiichi; Yoshida, Hidetsugu; Tsubakimoto, Koji; Miyanaga, Noriaki

    2014-12-01

    We demonstrate optical parametric chirped-pulse amplification (OPCPA) based on two-beam pumping, using sub-nanosecond pulses generated by stimulated Brillouin scattering compression. Seed pulse energy, duration, and center wavelength were 5 nJ, 220 ps, and ˜1065 nm, respectively. The 532 nm pulse from a Q-switched Nd:YAG laser was compressed to ˜400 ps in heavy fluorocarbon FC-40 liquid. Stacking of two time-delayed pump pulses reduced the amplifier gain fluctuation. Using a walk-off-compensated two-stage OPCPA at a pump energy of 34 mJ, a total gain of 1.6 × 105 was obtained, yielding an output energy of 0.8 mJ. The amplified chirped pulse was compressed to 97 fs.

  3. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  4. Single Broadband Phase-Shaped Pulse Stimulated Raman Spectroscopy for Standoff Trace Explosive Detection.

    PubMed

    Glenn, Rachel; Dantus, Marcos

    2016-01-07

    Recent success with trace explosives detection based on the single ultrafast pulse excitation for remote stimulated Raman scattering (SUPER-SRS) prompts us to provide new results and a Perspective that describes the theoretical foundation of the strategy used for achieving the desired sensitivity and selectivity. SUPER-SRS provides fast and selective imaging while being blind to optical properties of the substrate such as color, texture, or laser speckle. We describe the strategy of combining coherent vibrational excitation with a reference pulse in order to detect stimulated Raman gain or loss. A theoretical model is used to reproduce experimental spectra and to determine the ideal pulse parameters for best sensitivity, selectivity, and resolution when detecting one or more compounds simultaneously.

  5. Pulse Width Affects Scalp Sensation of Transcranial Magnetic Stimulation.

    PubMed

    Peterchev, Angel V; Luber, Bruce; Westin, Gregory G; Lisanby, Sarah H

    Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 point increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 points increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Pulse width affects scalp sensation of transcranial magnetic stimulation

    PubMed Central

    Peterchev, Angel V.; Luber, Bruce; Westin, Gregory G.; Lisanby, Sarah H.

    2016-01-01

    Background Scalp sensation and pain comprise the most common side effect of transcranial magnetic stimulation (TMS), which can reduce tolerability and complicate experimental blinding. Objective We explored whether changing the width of single TMS pulses affects the quality and tolerability of the resultant somatic sensation. Methods Using a controllable pulse parameter TMS device with a figure-8 coil, single monophasic magnetic pulses inducing electric field with initial phase width of 30, 60, and 120 µs were delivered in 23 healthy volunteers. Resting motor threshold of the right first dorsal interosseus was determined for each pulse width, as reported previously. Subsequently, pulses were delivered over the left dorsolateral prefrontal cortex at each of the three pulse widths at two amplitudes (100% and 120% of the pulse-width-specific motor threshold), with 20 repetitions per condition delivered in random order. After each pulse, subjects rated 0-to-10 visual analog scales for Discomfort, Sharpness, and Strength of the sensation. Results Briefer TMS pulses with amplitude normalized to the motor threshold were perceived as slightly more uncomfortable than longer pulses (with an average 0.89 points increase on the Discomfort scale for pulse width of 30 µs compared to 120 µs). The sensation of the briefer pulses was felt to be substantially sharper (2.95 point increase for 30 µs compared to 120 µs pulse width), but not stronger than longer pulses. As expected, higher amplitude pulses increased the perceived discomfort and strength, and, to a lesser degree the perceived sharpness. Conclusions Our findings contradict a previously published hypothesis that briefer TMS pulses are more tolerable. We discovered that the opposite is true, which merits further study as a means of enhancing tolerability in the context of repetitive TMS. PMID:28029593

  7. Algal Cell Response to Pulsed Waved Stimulation and Its Application to Increase Algal Lipid Production

    NASA Astrophysics Data System (ADS)

    Savchenko, Oleksandra; Xing, Jida; Yang, Xiaoyan; Gu, Quanrong; Shaheen, Mohamed; Huang, Min; Yu, Xiaojian; Burrell, Robert; Patra, Prabir; Chen, Jie

    2017-02-01

    Generating renewable energy while sequestering CO2 using algae has recently attracted significant research attention, mostly directing towards biological methods such as systems biology, genetic engineering and bio-refining for optimizing algae strains. Other approaches focus on chemical screening to adjust culture conditions or culture media. We report for the first time the physiological changes of algal cells in response to a novel form of mechanical stimulation, or a pulsed wave at the frequency of 1.5 MHz and the duty cycle of 20%. We studied how the pulsed wave can further increase algal lipid production on top of existing biological and chemical methods. Two commonly used algal strains, fresh-water Chlorella vulgaris and seawater Tetraselmis chuii, were selected. We have performed the tests in shake flasks and 1 L spinner-flask bioreactors. Conventional Gravimetric measurements show that up to 20% increase for algal lipid could be achieved after 8 days of stimulation. The total electricity cost needed for the stimulations in a one-liter bioreactor is only one-tenth of a US penny. Gas liquid chromatography shows that the fatty acid composition remains unchanged after pulsed-wave stimulation. Scanning electron microscope results also suggest that pulsed wave stimulation induces shear stress and thus increases algal lipid production.

  8. Short-pulse amplification by strongly coupled stimulated Brillouin scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew R., E-mail: mredward@princeton.edu; Mikhailova, Julia M.; Jia, Qing

    2016-08-15

    We examine the feasibility of strongly coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  9. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  10. Air-Stimulated ATP Release from Keratinocytes Occurs through Connexin Hemichannels

    PubMed Central

    Barr, Travis P.; Albrecht, Phillip J.; Hou, Quanzhi; Mongin, Alexander A.; Strichartz, Gary R.; Rice, Frank L.

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease. PMID:23457608

  11. Air-stimulated ATP release from keratinocytes occurs through connexin hemichannels.

    PubMed

    Barr, Travis P; Albrecht, Phillip J; Hou, Quanzhi; Mongin, Alexander A; Strichartz, Gary R; Rice, Frank L

    2013-01-01

    Cutaneous ATP release plays an important role in both epidermal stratification and chronic pain, but little is known about ATP release mechanisms in keratinocytes that comprise the epidermis. In this study, we analyzed ATP release from cultured human neonatal keratinocytes briefly exposed to air, a process previously demonstrated to trigger ATP release from these cells. We show that exposing keratinocytes to air by removing media for 15 seconds causes a robust, long-lasting ATP release. This air-stimulated ATP release was increased in calcium differentiated cultures which showed a corresponding increase in connexin 43 mRNA, a major component of keratinocyte hemichannels. The known connexin hemichannel inhibitors 1-octanol and carbenoxolone both significantly reduced air-stimulated ATP release, as did two drugs traditionally used as ABC transporter inhibitors (glibenclamide and verapamil). These same 4 inhibitors also prevented an increase in the uptake of a connexin permeable dye induced by air exposure, confirming that connexin hemichannels are open during air-stimulated ATP release. In contrast, activity of the MDR1 ABC transporter was reduced by air exposure and the drugs that inhibited air-stimulated ATP release had differential effects on this transporter. These results indicate that air exposure elicits non-vesicular release of ATP from keratinocytes through connexin hemichannels and that drugs used to target connexin hemichannels and ABC transporters may cross-inhibit. Connexins represent a novel, peripheral target for the treatment of chronic pain and dermatological disease.

  12. Formation of an optical pulsed discharge in a supersonic air flow by radiation of a repetitively pulsed CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malov, Aleksei N; Orishich, Anatolii M

    Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less

  13. Generation of UV light by intense ultrashort laser pulses in air

    NASA Astrophysics Data System (ADS)

    Alexeev, Ilya; Ting, Antonio; Gordon, Daniel; Briscoe, Eldridge; Penano, Joe; Sprangle, Phillip

    2004-11-01

    The propagation of collimated high-peak-power ultrashort laser pulses in air has attracted considerable attention, which may have a variety of important applications including remote sensing and chemical-biological aerosols standoff detection. Sub-millimeter diameter laser filaments can develop without any focusing optics and instead solely from laser self-focusing and plasma formation in air. These filaments can produce ultraviolet radiations in the form of the 3rd harmonic of the fundamental frequency and also through spectral broadening due to self-phase modulation of the laser pulse. Using femtosecond laser pulses produced by a high power Ti:Sapphire laser (0.8 TW, 50 fs, 800 nm) we observed generation of the third harmonic radiation light in air (centered around 267 nm) by the laser filaments. Characterization of the 3rd harmonic generation with respect to the major gas components of the air will be reported. Supported by the ONR and RDECOM. I. Alexeev is NRC/NRL Post-Doc.

  14. Optimal Pulse Configuration Design for Heart Stimulation. A Theoretical, Numerical and Experimental Study.

    NASA Astrophysics Data System (ADS)

    Hardy, Neil; Dvir, Hila; Fenton, Flavio

    Existing pacemakers consider the rectangular pulse to be the optimal form of stimulation current. However, other waveforms for the use of pacemakers could save energy while still stimulating the heart. We aim to find the optimal waveform for pacemaker use, and to offer a theoretical explanation for its advantage. Since the pacemaker battery is a charge source, here we probe the stimulation current waveforms with respect to the total charge delivery. In this talk we present theoretical analysis and numerical simulations of myocyte ion-channel currents acting as an additional source of charge that adds to the external stimulating charge for stimulation purposes. Therefore, we find that as the action potential emerges, the external stimulating current can be reduced accordingly exponentially. We then performed experimental studies in rabbit and cat hearts and showed that indeed exponential truncated pulses with less total charge can still induce activation in the heart. From the experiments, we present curves showing the savings in charge as a function of exponential waveform and we calculated that the longevity of the pacemaker battery would be ten times higher for the exponential current compared to the rectangular waveforms. Thanks to Petit Undergraduate Research Scholars Program and NSF# 1413037.

  15. Sensitivity to pulse phase duration in cochlear implant listeners: Effects of stimulation mode

    PubMed Central

    Chatterjee, Monita; Kulkarni, Aditya M.

    2014-01-01

    The objective of this study was to investigate charge-integration at threshold by cochlear implant listeners using pulse train stimuli in different stimulation modes (monopolar, bipolar, tripolar). The results partially confirmed and extended the findings of previous studies conducted in animal models showing that charge-integration depends on the stimulation mode. The primary overall finding was that threshold vs pulse phase duration functions had steeper slopes in monopolar mode and shallower slopes in more spatially restricted modes. While the result was clear-cut in eight users of the Cochlear CorporationTM device, the findings with the six user of the Advanced BionicsTM device who participated were less consistent. It is likely that different stimulation modes excite different neuronal populations and/or sites of excitation on the same neuron (e.g., peripheral process vs central axon). These differences may influence not only charge integration but possibly also temporal dynamics at suprathreshold levels and with more speech-relevant stimuli. Given the present interest in focused stimulation modes, these results have implications for cochlear implant speech processor design and protocols used to map acoustic amplitude to electric stimulation parameters. PMID:25096116

  16. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation.

    PubMed

    Nada, Mohanad H; Wang, Hong; Workalemahu, Grefachew; Tanaka, Yoshimasa; Morita, Craig T

    2017-01-01

    Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those

  17. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  18. Walking behavior in a circular arena modified by pulsed light stimulation in Drosophila melanogaster w1118 line.

    PubMed

    Qiu, Shuang; Xiao, Chengfeng

    2018-05-01

    The Drosophila melanogaster white-eyed w 1118 line serves as a parental stock, allowing genetic recombination of any gene of interest along with a readily recognizable marker. w 1118 flies display behavioral susceptibility to environmental stimulation such as light. It is of great importance to characterize the behavioral performance of w 1118 flies because this would provide a baseline from which the effect of the gene of interest could be differentiated. Little work has been performed to characterize the walking behavior in adult w 1118 flies. Here we show that pulsed light stimulation increased the regularity of walking trajectories of w 1118 flies in circular arenas. We statistically modeled the distribution of distances to center and extracted the walking structures of w 1118 flies. Pulsed light stimulation redistributed the time proportions for individual walking structures. Specifically, pulsed light stimulation reduced the episodes of crossing over the central region of the arena. An addition of four genomic copies of mini-white, a common marker gene for eye color, mimicked the effect of pulsed light stimulation in reducing crossing in a circular arena. The reducing effect of mini-white was copy-number-dependent. These findings highlight the rhythmic light stimulation-evoked modifications of walking behavior in w 1118 flies and an unexpected behavioral consequence of mini-white in transgenic flies carrying w 1118 isogenic background. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Threshold Evolution as an Analysis of the Different Pulse Frequencies in Rechargeable Systems for Spinal Cord Stimulation.

    PubMed

    Abejón, David; Rueda, Pablo; Vallejo, Ricardo

    2016-04-01

    Pulse frequency (Fc) is one of the most important parameters in neurostimulation, with Pulse Amplitude (Pw) and Amplitude (I). Up to certain Fc, increasing the number of pulses will generate action potentials in neighboring neural structures and may facilitate deeper penetration of the electromagnetic fields. In addition, changes in frequency modify the patient's sensation with stimulation. Fifty patients previously implanted with rechargeable current control spinal cord stimulation. With pulse width fixed at 300 μsec, we stimulated at 26 different Fc values between 40 and 1200 Hz and determine the influence of these changes on different stimulation thresholds: perception threshold (Tp ), therapeutic perception (Tt), and discomfort threshold (Td). Simultaneously, paresthesia coverage of the painful area and patient's sensation and satisfaction related to the quality of stimulation were recorded. Pulse Fc is inversely proportional to stimulation thresholds and this influence is statistically significant (p < 0.05). As Pulse Fc increased from 40 to 1200 Hz, the mean threshold decreases from 7.25 to 1.38 mA (Tp ), 8.17 to 1.63 (Tt ), and 9.20 to 1.85 (Td). Significant differences for Tp and Tt began at 750 Hz (Tp , Tt ) and at 650 Hz for Td. No significant influence was found regarding paresthesia coverage. As expected, Fc affects significantly patient's sensation and satisfaction. Changes in Fc affect the quality of paresthesias. Within the evaluated parameters higher frequencies are inversely proportional to stimulation thresholds and Tt. It seems that Fc is a vital parameter to achieve therapeutic success. Changes in Fc is a useful parameter to modulate the patient's sensory perception. Fc can be successfully used to adjust the quality of the paresthesias and to modify patient's subjective sensation. We showed that as the frequency increases, the patient's satisfaction with the perceived sensation decreases, suggesting that higher Fc may need to be set up at

  20. The neuronal response to electrical constant-amplitude pulse train stimulation: additive Gaussian noise.

    PubMed

    Matsuoka, A J; Abbas, P J; Rubinstein, J T; Miller, C A

    2000-11-01

    Experimental results from humans and animals show that electrically evoked compound action potential (EAP) responses to constant-amplitude pulse train stimulation can demonstrate an alternating pattern, due to the combined effects of highly synchronized responses to electrical stimulation and refractory effects (Wilson et al., 1994). One way to improve signal representation is to reduce the level of across-fiber synchrony and hence, the level of the amplitude alternation. To accomplish this goal, we have examined EAP responses in the presence of Gaussian noise added to the pulse train stimulus. Addition of Gaussian noise at a level approximately -30 dB relative to EAP threshold to the pulse trains decreased the amount of alternation, indicating that stochastic resonance may be induced in the auditory nerve. The use of some type of conditioning stimulus such as Gaussian noise may provide a more 'normal' neural response pattern.

  1. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation.

    PubMed

    Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan

    2014-10-15

    Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the

  2. Discovery of pulsed OH maser emission stimulated by a pulsar.

    PubMed

    Weisberg, Joel M; Johnston, Simon; Koribalski, Bärbel; Stanimirovic, Snezana

    2005-07-01

    Stimulated emission of radiation has not been directly observed in astrophysical situations up to this time. Here we demonstrate that photons from pulsar B1641-45 stimulate pulses of excess 1720-megahertz line emission in an interstellar hydroxyl (OH) cloud. As this stimulated emission is driven by the pulsar, it varies on a few-millisecond time scale, which is orders of magnitude shorter than the quickest OH maser variations previously detected. Our 1612-megahertz spectra are inverted copies of the 1720-megahertz spectra. This "conjugate line" phenomenon enables us to constrain the properties of the interstellar OH line-producing gas. We also show that pulsar signals undergo significantly deeper OH absorption than do other background sources, which confirms earlier tentative findings that OH clouds are clumpier on small scales than are neutral hydrogen clouds.

  3. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  4. Muscle oxygenation of vastus lateralis and medialis muscles during alternating and pulsed current electrical stimulation.

    PubMed

    Aldayel, Abdulaziz; Muthalib, Makii; Jubeau, Marc; McGuigan, Michael; Nosaka, Kazunori

    2011-05-01

    This study compared between alternating and pulsed current electrical muscle stimulation (EMS) for muscle oxygenation and blood volume during isometric contractions. Nine healthy men (23-48 years) received alternating current EMS (2500 Hz) modulated at 75 Hz on the knee extensors of one leg, and pulsed current EMS (75 Hz) for the other leg separated by 2 weeks in a randomised, counter-balanced order. Pulse duration (400 μs), on-off ratio (5-15 s) and other stimulation parameters were matched between conditions and 30 isometric contractions were induced at the knee joint angle of 100° (0° full extension). Changes in tissue oxygenation index (∆TOI) and total hemoglobin volume (∆tHb) of vastus lateralis and medialis muscles over 30 contractions were assessed by a near-infrared spectroscopy, and were compared between conditions by a two-way repeated measures ANOVA. Peak torque produced during EMS increased over 30 contractions in response to the increase in the stimulation intensity for pulsed current, but not for the alternating current EMS. The torque during each isometric contraction was less stable in alternating than pulsed current EMS. The changes in ∆TOI amplitude during relaxation phases and ∆tHb amplitude were not significantly different between conditions. However, the decreases in ∆TOI amplitude during contraction phases from baseline were significantly (P < 0.05) greater for the pulsed current than alternating current from the 18th contraction (-15.6 ± 2.3 vs. -8.9 ± 1.8%) to 30th contraction (-10.7 ± 1.8 vs. -4.8 ± 1.5%). These results suggest that the muscles were less activated in the alternating current EMS when compared with the pulsed current EMS.

  5. Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study.

    PubMed

    De Jesus, Sol; Almeida, Leonardo; Shahgholi, Leili; Martinez-Ramirez, Daniel; Roper, Jaimie; Hass, Chris J; Akbar, Umer; Wagle Shukla, Aparna; Raike, Robert S; Okun, Michael S

    2018-01-01

    Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ 2  = 16.1, p = 0.006), posture (χ 2  = 15.9, p = 0.007) and with action (χ 2  = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required. Copyright © 2017. Published by Elsevier Ltd.

  6. Sub-threshold depolarizing pre-pulses can enhance the efficiency of biphasic stimuli in transcutaneous neuromuscular electrical stimulation.

    PubMed

    Vargas Luna, Jose Luis; Mayr, Winfried; Cortés-Ramirez, Jorge-Armando

    2018-06-09

    There is multiple evidence in the literature that a sub-threshold pre-pulse, delivered immediately prior to an electrical stimulation pulse, can alter the activation threshold of nerve fibers and motor unit recruitment characteristics. So far, previously published works combined monophasic stimuli with sub-threshold depolarizing pre-pulses (DPPs) with inconsistent findings-in some studies, the DPPs decreased the activation threshold, while in others it was increased. This work aimed to evaluate the effect of DPPs during biphasic transcutaneous electrical stimulation and to study the possible mechanism underlying those differences. Sub-threshold DPPs between 0.5 and 15 ms immediately followed by biphasic or monophasic pulses were administered to the tibial nerve; the electrophysiological muscular responses (motor-wave, M-wave) were monitored via electromyogram (EMG) recording from the soleus muscle. The data show that, under the specific studied conditions, DPPs tend to lower the threshold for nerve fiber activation rather than elevating it. DPPs with the same polarity as the leading phase of biphasic stimuli are more effective to increase the sensitivity. This work assesses for the first time the effect of DPPs on biphasic pulses, which are required to achieve charge-balanced stimulation, and it provides guidance on the effect of polarity and intensity to take full advantage of this feature. Graphical abstract In this work, the effect of sub-threshold depolarizing pre-pulses (DPP) is investigated in a setup with transcutaneous electrical stimulation. We found that, within the tested 0-15 ms DPP duration range, the DPPs administered immediately before biphasic pulses proportionally increase the nerve excitability as visible in the M-waves recorded from the soleus muscle. Interestingly, these findings oppose published results, where DPPs, administered immediately before monophasic stimuli via implanted electrodes, led to decrease of nerve excitability.

  7. Air liquide's space pulse tube cryocooler systems

    NASA Astrophysics Data System (ADS)

    Trollier, T.; Tanchon, J.; Buquet, J.; Ravex, A.

    2017-11-01

    Thanks to important development efforts completed with ESA funding, Air Liquide Advanced Technology Division (AL/DTA), is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc… The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  8. Pulse-analysis-pulse investigation of femtosecond laser-induced periodic surface structures on silicon in air.

    PubMed

    Oboňa, J Vincenc; Skolski, J Z P; Römer, G R B E; in t Veld, A J Huis

    2014-04-21

    A new approach to experimentally investigate laser-induced periodic surface structures (LIPSSs) is introduced. Silicon was iteratively exposed to femtosecond laser pulses at λ = 800 nm and normal incidence in ambient air and at a fluence slightly over the single-pulse modification threshold. After each laser pulse, the topography of the surface was inspected by confocal microscopy. Subsequently, the sample was reproducibly repositioned in the laser setup, to be exposed to the next laser pulse. By this approach, the initiation and spatial evolution ("growth") of the LIPSSs were analyzed as function of the number of pulses applied. It was found that, after the first laser pulses, the ridges of the LIPSSs elevate, and valleys between the ridges deepen, by a few tens of nanometers relative to the initial surface. An electromagnetic model, discussed in earlier works, predicted that the spatial periodicity of LIPSSs decreases with the number of laser pulses applied. This implies material transport and reorganization of the irradiated material on the surface, due to each laser pulse. However, our experiments show a negligible shift of the lateral positions of the LIPSSs on the surface.

  9. Adjusting Pulse Amplitude During Transcutaneous Electrical Nerve Stimulation Does Not Provide Greater Hypoalgesia.

    PubMed

    Bergeron-Vézina, Kayla; Filion, Camille; Couture, Chantal; Vallée, Élisabeth; Laroche, Sarah; Léonard, Guillaume

    2018-03-01

    Transcutaneous electrical nerve stimulation (TENS) is an electrotherapeutic modality commonly used in rehabilitation to relieve pain. Adjusting pulse amplitude (intensity) during TENS treatment has been suggested to overcome nerve habituation. However, it is still unclear if this procedure leads to greater hypoalgesia. The aim of this study was to determine if the hypoalgesic effect of TENS is greater when pulse amplitude is adjusted throughout the TENS treatment session in chronic low-back pain patients. Randomized double-blind crossover study. Recruitment and assessment were conducted at the Clinique universitaire de réadaptation de l'Estrie (CURE) of the Faculty of Medicine and Health Sciences of the Université de Sherbrooke. Twenty-one volunteers with chronic low-back pain were enrolled and completed this investigation. Each patient received two high-frequency TENS treatments on two separate sessions: (1) with adjustment of pulse amplitude and (2) without pulse amplitude adjustment. Pain intensity and unpleasantness were assessed before, during, and after TENS application with a 10 cm visual analog scale. Both TENS conditions (with and without adjustment of intensity) decreased pain intensity and unpleasantness when compared with baseline. No difference was observed between the two stimulation conditions for both pain intensity and unpleasantness. The current results suggest that adjustment of pulse amplitude during TENS application does not provide greater hypoalgesia in individuals with chronic low-back pain. Future studies are needed to confirm these findings in other pain populations.

  10. Timing of pulsed electromagnetic field stimulation does not affect the promotion of bone cell development.

    PubMed

    Hannay, Gwynne; Leavesley, David; Pearcy, Mark

    2005-12-01

    Pulsed electromagnetic field (PEMF) devices have been used clinically to promote the healing of surgically resistant fractures in vivo. However, there is a sparsity of data on how the timing of an applied PEMF effects the osteogenic cells that would be present within the fracture gap. The purpose of this study was to examine the response of osteoblast-like cells to a PEMF stimulus, mimicking that of a clinically available device, using four protocols for the timing of the stimulus. The PEMF signal consisted of a 5 ms pulse burst (containing 20 pulses) repeated at 15 Hz. Cultures of a human osteosarcoma cell line, SaOS-2, were exposed to the four timing protocols, each conducted over 3 days. Protocol one stimulated the cells for 8 h each day, protocol two stimulated the cells for 24 h on the first day, protocol three stimulated the cells for 24 h on the second day, and protocol four stimulated the cells for 24 h on the third day. Cells were seeded with either 25,000 or 50,000 cells/well (24-well cell culture plates). All assays showed reduced proliferation and increased differentiation (alkaline phosphatase activity) in the PEMF stimulated cultures compared with the control cultures, except for protocol four alkaline phosphatase measurements. No clear trend was observed between the four protocols; however this may be due to cell density. The results indicated that an osteoblast-like cell line is responsive to a 15 Hz PEMF stimulus, which will stimulate the cell line to into an increasing state of maturity. Bioelectromagnetics (c) 2005 Wiley-Liss, Inc

  11. Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons

    PubMed Central

    Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.

    2013-01-01

    Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134

  12. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  13. Potential of M-Wave Elicited by Double Pulse for Muscle Fatigue Evaluation in Intermittent Muscle Activation by Functional Electrical Stimulation for Motor Rehabilitation

    PubMed Central

    Miura, Naoto; Watanabe, Takashi

    2016-01-01

    Clinical studies on application of functional electrical stimulation (FES) to motor rehabilitation have been increasing. However, muscle fatigue appears early in the course of repetitive movement production training by FES. Although M-wave variables were suggested to be reliable indices of muscle fatigue in long lasting constant electrical stimulation under the isometric condition, the ability of M-wave needs more studies under intermittent stimulation condition, because the intervals between electrical stimulations help recovery of muscle activation level. In this paper, M-waves elicited by double pulses were examined in muscle fatigue evaluation during repetitive movements considering rehabilitation training with surface electrical stimulation. M-waves were measured under the two conditions of repetitive stimulation: knee extension force production under the isometric condition and the dynamic movement condition by knee joint angle control. Amplitude of M-wave elicited by the 2nd pulse of a double pulse decreased during muscle fatigue in both measurement conditions, while the change in M-waves elicited by single pulses in a stimulation burst was not relevant to muscle fatigue in repeated activation with stimulation interval of 1 s. Fatigue index obtained from M-waves elicited by 2nd pulses was suggested to provide good estimation of muscle fatigue during repetitive movements with FES. PMID:27110556

  14. Sub-luminal pulses from cosmic ray air showers

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    Some of the signals produced by air showers in scintillators possess a distinctive feature, a sub-luminal pulse (SLP) following the normal one with a time delay of approximately 1.5 r/c. The average amplitude of the SLP corresponds to an energy deposit of about 50 MeV, three times as much as is deposited in a typical scintillator by vertical minimum ionizing muons. The SLP account for approximately 5% of the energy deposited in the atmosphere by IR showers with energy 10 to the 10th power GeV at impact parameters 1 km. Assuming that these pulses are due to neutrons travelling with a speed slightly less than c, they provide a unique means of estimating E sub h, the energy deposited by slow hadrons, in showers of this very high energy. On the other hand, if not allowed for properly, these pulses are liable to cause errors in estimating the impact parameters of large showers from pulse width observations.

  15. Laser Induced Fluorescence Studies of NO Kinetics in Short Pulse Air and Air-Fuel Nonequilibrium Discharges

    NASA Astrophysics Data System (ADS)

    Lempert, Walter; Uddi, Mruthunjaya; Adamovich, Igor

    2008-10-01

    Laser Induced Fluorescence is used to measure absolute NO concentrations in air, methane-air, and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single 25 nsec discharge pulse. Peak NO density in air at 60 torr is ˜8.10^12 cm-3 occurring at ˜500 μs after the pulse, with decay time of ˜16.5 msec. Peak NO atom mole fraction in methane-air at φ=0.5 is approximately equal to that in pure air with similar rise and decay rate. In φ = 0.5 ethylene-air, the rise and decay times are also comparable to air and methane--air, but peak NO concentration is a factor of ˜2.5 lower. Spontaneous emission measurements show that N2(C) and NO (A) decay in ˜25ns and ˜2.5μs, respectively. Kinetic modeling calculations incorporating Boltzmann solver for EEDF, and electron impact and full air species kinetics, complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism, are compared with the experimental data using three different mechanisms. It is concluded that processes involving long lifetime (˜100 μsec) meta-stable states, such as N2 (X,v) and O2(b^1σ), which are formed by quenching of the metastable N2 (A) state by ground state O2, play a dominant role in NO formation.

  16. Modeling seismic stimulation: Enhanced non-aqueous fluid extraction from saturated porous media under pore-pressure pulsing at low frequencies

    NASA Astrophysics Data System (ADS)

    Lo, Wei-Cheng; Sposito, Garrison; Huang, Yu-Han

    2012-03-01

    Seismic stimulation, the application of low-frequency stress-pulsing to the boundary of a porous medium containing water and a non-aqueous fluid to enhance the removal of the latter, shows great promise for both contaminated groundwater remediation and enhanced oil recovery, but theory to elucidate the underlying mechanisms lag significantly behind the progress achieved in experimental research. We address this conceptual lacuna by formulating a boundary-value problem to describe pore-pressure pulsing at seismic frequencies that is based on the continuum theory of poroelasticity for an elastic porous medium permeated by two immiscible fluids. An exact analytical solution is presented that is applied numerically using elasticity parameters and hydraulic data relevant to recent proof-of-principle laboratory experiments investigating the stimulation-induced mobilization of trichloroethene (TCE) in water flowing through a compressed sand core. The numerical results indicated that significant stimulation-induced increases of the TCE concentration in effluent can be expected from pore-pressure pulsing in the frequency range of 25-100 Hz, which is in good agreement with what was observed in the laboratory experiments. Sensitivity analysis of our numerical results revealed that the TCE concentration in the effluent increases with the porous medium framework compressibility and the pulsing pressure. Increasing compressibility also leads to an optimal stimulation response at lower frequencies, whereas changing the pulsing pressure does not affect the optimal stimulation frequency. Within the context of our model, the dominant physical cause for enhancement of non-aqueous fluid mobility by seismic stimulation is the dilatory motion of the porous medium in which the solid and fluid phases undergo opposite displacements, resulting in stress-induced changes of the pore volume.

  17. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Xuan; Wang, Hai-Peng; Bao, Xue-Liang; Lü, Xiao-Ying; Wang, Zhi-Gong

    2016-02-01

    Objective. Surface electromyography (sEMG) is often used as a control signal in neuromuscular electrical stimulation (NMES) systems to enhance the voluntary control and proprioceptive sensory feedback of paralyzed patients. Most sEMG-controlled NMES systems use the envelope of the sEMG signal to modulate the stimulation intensity (current amplitude or pulse width) with a constant frequency. The aims of this study were to develop a strategy that co-modulates frequency and pulse width based on features of the sEMG signal and to investigate the torque-reproduction performance and the level of fatigue resistance achieved with our strategy. Approach. We examined the relationships between wrist torque and two stimulation parameters (frequency and pulse width) and between wrist torque and two sEMG time-domain features (mean absolute value (MAV) and number of slope sign changes (NSS)) in eight healthy volunteers. By using wrist torque as an intermediate variable, customized and generalized transfer functions were constructed to convert the two features of the sEMG signal into the two stimulation parameters, thereby establishing a MAV/NSS dual-coding (MNDC) algorithm. Wrist torque reproduction performance was assessed by comparing the torque generated by the algorithms with that originally recorded during voluntary contractions. Muscle fatigue was assessed by measuring the decline percentage of the peak torque and by comparing the torque time integral of the response to test stimulation trains before and after fatigue sessions. Main Results. The MNDC approach could produce a wrist torque that closely matched the voluntary wrist torque. In addition, a smaller decay in the wrist torque was observed after the MNDC-coded fatigue stimulation was applied than after stimulation using pulse-width modulation alone. Significance. Compared with pulse-width modulation stimulation strategies that are based on sEMG detection, the MNDC strategy is more effective for both voluntary muscle

  18. Rate discrimination at low pulse rates in normal-hearing and cochlear implant listeners: Influence of intracochlear stimulation site.

    PubMed

    Stahl, Pierre; Macherey, Olivier; Meunier, Sabine; Roman, Stéphane

    2016-04-01

    Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.

  19. Magnetic-field generation by pulsed irradiation of aluminium in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumakov, A N; Chekan, P V

    Magnetic-field generation arising under irradiation of an aluminium barrier in the air by a series of laser pulses is studied experimentally. It is found that the magnetic field increases nonlinearly from 10{sup -5} to 10{sup -3} T with increasing laser power density from 10{sup 7} to 10{sup 9} W cm{sup -2}, the degree of nonlinearity being different for single nanosecond pulses, for a series of such pulses with a repetition rate of 100 – 150 μs and for a combination of a millisecond laser pulse and a series of nanosecond laser pulses. The dependences of the magnetic-field induction on themore » power density of laser radiation in the above-mentioned regimes are established. (interaction of laser radiation with matter)« less

  20. A Dielectric Rod Antenna for Picosecond Pulse Stimulation of Neurological Tissue

    PubMed Central

    Petrella, Ross A.; Schoenbach, Karl H.; Xiao, Shu

    2016-01-01

    A dielectrically loaded wideband rod antenna has been studied as a pulse delivery system to subcutaneous tissues. Simulation results applying 100 ps electrical pulse show that it allows us to generate critical electric field for biological effects, such as brain stimulation, in the range of several centimeters. In order to reach the critical electric field for biological effects, which is approximately 20 kV/cm, at a depth of 2 cm, the input voltage needs to be 175 kV. The electric field spot size in the brain at this position is approximately 1 cm2. Experimental studies in free space with a conical antenna (part of the antenna system) with aluminum nitride as the dielectric have confirmed the accuracy of the simulation. These results set the foundation for high voltage in situ experiments on the complete antenna system and the delivery of pulses to biological tissue. PMID:27563160

  1. Cranial electrotherapy stimulation and transcranial pulsed current stimulation: a computer based high-resolution modeling study.

    PubMed

    Datta, Abhishek; Dmochowski, Jacek P; Guleyupoglu, Berkan; Bikson, Marom; Fregni, Felipe

    2013-01-15

    The field of non-invasive brain stimulation has developed significantly over the last two decades. Though two techniques of noninvasive brain stimulation--transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS)--are becoming established tools for research in neuroscience and for some clinical applications, related techniques that also show some promising clinical results have not been developed at the same pace. One of these related techniques is cranial electrotherapy stimulation (CES), a class of transcranial pulsed current stimulation (tPCS). In order to understand further the mechanisms of CES, we aimed to model CES using a magnetic resonance imaging (MRI)-derived finite element head model including cortical and also subcortical structures. Cortical electric field (current density) peak intensities and distributions were analyzed. We evaluated different electrode configurations of CES including in-ear and over-ear montages. Our results confirm that significant amounts of current pass the skull and reach cortical and subcortical structures. In addition, depending on the montage, induced currents at subcortical areas, such as midbrain, pons, thalamus and hypothalamus are of similar magnitude than that of cortical areas. Incremental variations of electrode position on the head surface also influence which cortical regions are modulated. The high-resolution modeling predictions suggest that details of electrode montage influence current flow through superficial and deep structures. Finally we present laptop based methods for tPCS dose design using dominant frequency and spherical models. These modeling predictions and tools are the first step to advance rational and optimized use of tPCS and CES. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Case report of vasovagal syncope associated with single pulse transcranial magnetic stimulation in a healthy adult participant.

    PubMed

    Gillick, Bernadette T; Rich, Tonya; Chen, Mo; Meekins, Gregg D

    2015-12-01

    Non-invasive brain stimulation-related seizures or syncopal events are rare. However, we report on a syncopal event in a healthy female during a transcranial magnetic stimulation single-pulse testing session. A 47-year-old healthy female presented for a transcranial magnetic stimulation session involving single-pulse assessment of cortical excitability. During the session, the participant appeared to have a brief event involving fainting and myoclonic jerks of the upper extremities. Orthostatic assessment was performed after the event and physician evaluation determined that this was a vasovagal syncopal event. The ethical aspects of this neurophysiology testing protocol were reviewed by the University of Minnesota Institutional Review Board (IRB), and formal IRB approval was deemed unnecessary for single-pulse assessment of healthy control participants not directly involved in a research study. Informed consent was obtained by the participant, including review of potential adverse events. Although rare and rarely reported, vasovagal syncopal events surrounding non-invasive brain stimulation do occur. Thorough pre-screening should incorporate assessment of history of syncope and a plan for risk mitigation if such an event should occur. A complete assessment of the impact of stimulation on the autonomic nervous system is unknown. As such studies expand into patients with myriad neurologic diagnoses, further studies on this effect, in both healthy control and patient populations, are warranted. Such knowledge could contribute to identification of the optimal study participant, and improvements in techniques of stimulation administration.

  3. Kilohertz and Low-Frequency Electrical Stimulation With the Same Pulse Duration Have Similar Efficiency for Inducing Isometric Knee Extension Torque and Discomfort.

    PubMed

    Medeiros, Flávia Vanessa; Bottaro, Martim; Vieira, Amilton; Lucas, Tiago Pires; Modesto, Karenina Arrais; Bo, Antonio Padilha L; Cipriano, Gerson; Babault, Nicolas; Durigan, João Luiz Quagliotti

    2017-06-01

    To test the hypotheses that, as compared with pulsed current with the same pulse duration, kilohertz frequency alternating current would not differ in terms of evoked-torque production and perceived discomfort, and as a result, it would show the same current efficiency. A repeated-measures design with 4 stimuli presented in random order was used to test 25 women: (1) 500-microsecond pulse duration, (2) 250-microsecond pulse duration, (3) 500-microsecond pulse duration and low carrier frequency (1 kHz), (4) 250-microsecond pulse duration and high carrier frequency (4 kHz). Isometric peak torque of quadriceps muscle was measured using an isokinetic dynamometer. Discomfort was measured using a visual analog scale. Currents with long pulse durations induced approximately 21% higher evoked torque than short pulse durations. In addition, currents with 500 microseconds delivered greater amounts of charge than stimulation patterns using 250-microsecond pulse durations (P < 0.05). All currents presented similar discomfort. There was no difference on stimulation efficiency with the same pulse duration. Both kilohertz frequency alternating current and pulsed current, with the same pulse duration, have similar efficiency for inducing isometric knee extension torque and discomfort. However, neuromuscular electrical stimulation (NMES) with longer pulse duration induces higher NMES-evoked torque, regardless of the carrier frequency. Pulse duration is an important variable that should receive more attention for an optimal application of NMES in clinical settings.

  4. Short-pulse laser amplification and saturation using stimulated Raman scattering

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Ren, J.; Kwan, T. J. T.; Schmitt, M. J.; Lundquist, P. B.; Sarkisyan, S.; Nelson-Melby, E.

    2010-11-01

    Recent theoretical and experimental work has focused on using backward-stimulated Raman scattering (BSRS) in plasmas as a means of laser pulse amplification and compression [1,2,3]. We present initial computational and experimental work on SRS amplification in a capillary-discharge generated Xe plasma. The experimental set-up uses a 200 ps pump pulse with an 800 nm wavelength seeded by a 100 fs pulse from a broadband source and counter-propagates the pulses through a plasma of length 1 cm and diameter 0.1 cm. Results from initial experiments characterizing the plasma and on short-pulse amplification will be presented. Additionally, we present results from calculations using pF3d [4], and discuss the role of SRS saturation and determine the possible significance of electron trapping with a model implemented in pF3d [5]. [1] G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. 81 4879 (1998). [2] V. M. Malkin, G. Shvets, and N. J. Fisch, Phys. Rev. Lett. 82 4448 (1999). [3] R. K. Kirkwood, E. Dewald, and C. Niemann, et al., Phys. Plasmas 14 113109 (2007). [4] R. L. Berger, B. F. Lasinski, T. B. Kaiser, et al., Phys. Fluids B 5 2243 (1993). [5] H. X. Vu, D. F. DuBois, and B. Bezzerides, Phys. Plasmas 14 012702 (2007). Supported by US DOE and LANS, LLC under contract DE-AC52-06NA25396. LA-UR-10-04787

  5. [Observation on non-invasive electrode pulse electric stimulation for treatment of Bell's palsy].

    PubMed

    Guo, Qing-Hua; Yan, Jian-Zhen; Yan, Wu-Shen; Xiao, Mei-Zhen

    2006-12-01

    To explore non-invasive therapy for treatment of Bell palsy. Two hundred and seventy-six were randomly divided into two groups, a treatment group and a control group, 138 cases in each group. The treatment group were treated with non-invasive electrode pulse electric stimulation at Taiyang (EX-HN 5), Sibai (ST 2), Qianzheng (Extra), Dicang (ST 4), and the control group with routine medicine (prednisone, dibazol, vitamine B complex and Qianzheng Powder), once each day, 10 days constituting one course. After two courses, their therapeutic effects were compared. The cured rate and the effective rate were 83.3% and 99.3% in the treatment group, and 48.5% and 88.4% in the control group respectively with a significant difference between the two groups (P < 0.05). Non-invasive electrode pulse electric stimulation at facial points has obvious therapeutic effect on Bell palsy.

  6. Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses.

    PubMed

    Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-06-22

    Waveform-controlled terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~1.7 optical cycles) laser pulses at 1.8 μm into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.

  7. Wideband Arrhythmia-Insensitive-Rapid (AIR) Pulse Sequence for Cardiac T1 mapping without Image Artifacts induced by ICD

    PubMed Central

    Hong, KyungPyo; Jeong, Eun-Kee; Wall, T. Scott; Drakos, Stavros G.; Kim, Daniel

    2015-01-01

    Purpose To develop and evaluate a wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by implantable-cardioverter-defibrillator (ICD). Methods We developed a wideband AIR pulse sequence by incorporating a saturation pulse with wide frequency bandwidth (8.9 kHz), in order to achieve uniform T1 weighting in the heart with ICD. We tested the performance of original and “wideband” AIR cardiac T1 mapping pulse sequences in phantom and human experiments at 1.5T. Results In 5 phantoms representing native myocardium and blood and post-contrast blood/tissue T1 values, compared with the control T1 values measured with an inversion-recovery pulse sequence without ICD, T1 values measured with original AIR with ICD were considerably lower (absolute percent error >29%), whereas T1 values measured with wideband AIR with ICD were similar (absolute percent error <5%). Similarly, in 11 human subjects, compared with the control T1 values measured with original AIR without ICD, T1 measured with original AIR with ICD was significantly lower (absolute percent error >10.1%), whereas T1 measured with wideband AIR with ICD was similar (absolute percent error <2.0%). Conclusion This study demonstrates the feasibility of a wideband pulse sequence for cardiac T1 mapping without significant image artifacts induced by ICD. PMID:25975192

  8. Corneal surface temperature change as the mode of stimulation of the non-contact corneal aesthesiometer.

    PubMed

    Murphy, P J; Morgan, P B; Patel, S; Marshall, J

    1999-05-01

    The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.

  9. Exponential current pulse generation for efficient very high-impedance multisite stimulation.

    PubMed

    Ethier, S; Sawan, M

    2011-02-01

    We describe in this paper an intracortical current-pulse generator for high-impedance microstimulation. This dual-chip system features a stimuli generator and a high-voltage electrode driver. The stimuli generator produces flexible rising exponential pulses in addition to standard rectangular stimuli. This novel stimulation waveform is expected to provide superior energy efficiency for action potential triggering while releasing less toxic reduced ions in the cortical tissues. The proposed fully integrated electrode driver is used as the output stage where high-voltage supplies are generated on-chip to significantly increase the voltage compliance for stimulation through high-impedance electrode-tissue interfaces. The stimuli generator has been implemented in 0.18-μm CMOS technology while a 0.8-μm CMOS/DMOS process has been used to integrate the high-voltage output stage. Experimental results show that the rectangular pulses cover a range of 1.6 to 167.2 μA with a DNL and an INL of 0.098 and 0.163 least-significant bit, respectively. The maximal dynamic range of the generated exponential reaches 34.36 dB at full scale within an error of ± 0.5 dB while all of its parameters (amplitude, duration, and time constant) are independently programmable over wide ranges. This chip consumes a maximum of 88.3 μ W in the exponential mode. High-voltage supplies of 8.95 and -8.46 V are generated by the output stage, boosting the voltage swing up to 13.6 V for a load as high as 100 kΩ.

  10. Modulation of H-Reflex Depression with Paired-Pulse Stimulation in Healthy Active Humans.

    PubMed

    Oza, Preeti D; Dudley-Javoroski, Shauna; Shields, Richard K

    2017-01-01

    Depression of the Hoffman reflex (H-reflex) is used to examine spinal control mechanisms during exercise, fatigue, and vibration and in response to training. H-reflex depression protocols frequently use trains of stimuli; this is time-consuming and prevents instantaneous assessment of motor neuronal excitability. The purpose of this study was to determine if paired-pulse H-reflex depression is reproducible and whether paired-pulse stimulation adequately estimates the depression induced by the more traditional ten-pulse train. H-reflexes were elicited via ten-pulse trains at 0.1, 0.2, 1, 2, and 5 Hz in ten neurologically intact individuals on two separate days. We measured the depression elicited by the second pulse (H2) and the mean depression elicited by pulses 2-10 (Hmean). H2 was consistent at all frequencies on both days ( r 2 = 0.97, p < 0.05, and ICC (3,1) = 0.81). H2 did not differ from Hmean ( p > 0.05). The results indicate that paired-pulse H-reflex depression has high between-day reliability and yields depression estimates that are comparable to those obtained via ten-pulse trains. Paired-pulse H-reflex depression may be especially useful for studies that require rapid assessment of motor neuronal excitability, such as during exercise, fatigue, and vibration, or to establish recovery curves following inhibition.

  11. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    NASA Astrophysics Data System (ADS)

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.

  12. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    PubMed Central

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312

  13. Comparison of three pulsed infrared lasers for optical stimulation of the rat prostate cavernous nerves

    NASA Astrophysics Data System (ADS)

    Stahl, Charlotte S. D.; Tozburun, Serhat; Hutchens, Thomas C.; Lagoda, Gwen A.; Burnett, Arthur L.; Keller, Matthew D.; Fried, Nathaniel M.

    2013-03-01

    Optical nerve stimulation (ONS) is being explored for identification and preservation of the cavernous nerves (CN), responsible for erectile function, during prostate cancer surgery. This study compares three pulsed infrared lasers to determine whether differences in spectral linewidth and/or temporal pulse profile influence successful ONS of CN. Infrared laser radiation from the Capella diode laser (1873 nm, 5 ms, 10 Hz), Thulium fiber laser (TFL) (1873 nm, 5 ms, 10 Hz), and solid-state Holmium:YAG laser (2120 nm, 200 μs, 5 Hz) were transmitted through 400-μm-corediameter optical fibers, producing a 1-mm-diameter-spot on the nerve surface. Successful ONS was judged by an intracavernous pressure (ICP) response in the penis (n =10 rats) during a total stimulation time of 30 s. The narrow linewidth TFL (Δλ 0.5 nm) and broad linewidth Capella laser (Δλ 12 nm) performed similarly, producing ICP responses with a threshold radiant exposure of 0.45 J/cm2, and ICP response times of 12-17 s, while the Holmium laser stimulated at 0.59 J/cm2, and ICP response times of about 14-28 s. All three lasers demonstrated successful ONS of CN. ICP response time was dependent on the rate of energy deposition into the CN, rather than linewidth or temporal pulse profile.

  14. Interaction of Intense Short Laser Pulses with Air and Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Eisenmann, S.; Katzir, Y.; Zigler, A.; Fibich, G.; Louzon, E.; Ehrlich, Y.; Henis, Z.; Pecker, S.; Fisher, D.; Fraenkel, M.

    A study of the propagation of intense short laser pulses in air and the interaction of these pulses with distant targets is described. It is shown that the beam filamentation pattern can be controlled by introducing beam astigmatism. In addition, it is demonstrated that the collapse distance of intense femtosecond laser beams scales as P-1/2 for input powers that are moderately above the critical power for self focusing, and that at higher powers the collapse distance scales as P-1. Related to the interaction of intense short pulses with distant targets, it is measured that the threshold fluence for optical damage in wide gap materials is lower by up to 20% for negatively chirped pulses than for positively chirped, at pulse durations ranging from 60 fs to 1 ps.

  15. A Simple Constant-Current Neural Stimulator With Accurate Pulse-Amplitude Control

    DTIC Science & Technology

    2001-10-25

    STIMULATOR The block diagram of the proposed neurostimulator is displayed in Figure 1. It consists of a pair of transformers followed by full-bridge...to 6%. Pulse-repetition ranges from 1Hz to 10Hz. Figure 1. Block diagram of the neurostimulator Voltage Regulator T 1 Astable T 2 V/I...discrete transistors. For explanatory reasons, the neurostimulator schematic is split into three main elements: the oscillator, the output V/I converter

  16. Exhausted implanted pulse generator in sacral nerve stimulation for faecal incontinence: What next in daily practice for patients?

    PubMed

    Duchalais, Emilie; Meurette, Guillaume; Perrot, Bastien; Wyart, Vincent; Kubis, Caroline; Lehur, Paul-Antoine

    2016-02-01

    The efficacy of sacral nerve stimulation in faecal incontinence relies on an implanted pulse generator known to have a limited lifespan. The long-term use of sacral nerve stimulation raises concerns about the true lifespan of generators. The aim of the study was to assess the lifespan of sacral nerve stimulation implanted pulse generators in daily practice, and the outcome of exhausted generator replacement, in faecal incontinent patients. Faecal incontinent patients with pulse generators (Medtronic Interstim™ or InterstimII™) implanted in a single centre from 2001 to 2014 were prospectively followed up. Generator lifespan was measured according to the Kaplan-Meier method. Patients with a generator explanted/turned off before exhaustion were excluded. Morbidity of exhausted generator replacement and the outcome (Cleveland Clinic Florida Faecal Incontinence (CCF-FI) and Faecal Incontinence Quality of Life (FIQL) scores) were recorded. Of 135 patients with an implanted pulse generator, 112 (InterstimII 66) were included. Mean follow-up was 4.9 ± 2.8 years. The generator reached exhaustion in 29 (26%) cases. Overall median lifespan of an implanted pulse generator was approximately 9 years (95% CI 8-9.2). Interstim and InterstimII 25th percentile lifespan was 7.2 (CI 6.4-8.3) and 5 (CI 4-not reached) years, respectively. After exhaustion, generators were replaced, left in place or explanted in 23, 2 and 4 patients, respectively. Generator replacement was virtually uneventful. CCF-FI/FIQL scores remained unchanged after generator replacement (CCF-FI 8 ± 2 vs 7 ± 3; FIQL 3 ± 0.6 vs 3 ± 0.5; p = ns). In this study, the implanted pulse generator observed median lifespan was 9 years. After exhaustion, generators were safely and efficiently replaced. The study also gives insight into long-term needs and costs of sacral nerve stimulation (SNS) therapy.

  17. Evaluation of a cochlear-implant processing strategy incorporating phantom stimulation and asymmetric pulses.

    PubMed

    Carlyon, Robert P; Monstrey, Jolijn; Deeks, John M; Macherey, Olivier

    2014-12-01

    To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and "phantom stimulation", where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. The proposed method does not improve speech perception, at least in the short term.

  18. High-Frequency (1 kHz) Spinal Cord Stimulation-Is Pulse Shape Crucial for the Efficacy? A Pilot Study.

    PubMed

    Song, Zhiyang; Meyerson, Björn A; Linderoth, Bengt

    2015-12-01

    Conflicting data regarding the efficacy of high-frequency spinal cord stimulation (HF SCS) has prompted the issue of the possible importance of the shape of the stimulating pulses. The aim of this pilot study was to compare HF SCS applied with monophasic and biphasic pulses of two different durations with conventional SCS in a rat model of neuropathic pain. Rats were operated with lesions of sciatic nerve branches according to the spared nerve injury procedure (SNI). Animals, which developed pathological tactile hypersensitivity after surgery, were implanted with four-polar miniature SCS leads. SCS was applied during 60 min with either conventional current parameters (monophasic pulse width [PW]: 200 μsec; 50 Hz and amplitude 80% of the motor threshold [MT]), or with high-frequency SCS (1 kHz) with monophasic or biphasic pulses, the latter with pulse widths of either 24 (12 + 12) or 48 (24 + 24) μsec. The outcomes were examined regarding change of tactile hypersensitivity during the one-hour SCS period and with two tests of thermal sensitivity. Conventional monophasic SCS, as well as HF SCS applied with monophasic PW = 24 μsec or with biphasic PW = 48 (24 + 24) μsec, had similar suppressive effects on tactile hypersensitivity. Solely, HF SCS applied with biphasic pulses with a total PW of 24 (12 + 12) μsec demonstrated no effect. Thermal hypersensitivity was unaffected by HF SCS with all pulse varieties. There is no significant difference in efficacy between HF SCS applied with low amplitude ("subparesthetic") monophasic and biphasic pulses. However, short PWs providing only 12 μsec of cathodal stimulation was ineffective, presumably because of insufficient electric charge transfer from the lead contacts to the nervous tissue. © 2015 International Neuromodulation Society.

  19. Prenatal androgen excess enhances stimulation of the GNRH pulse in pubertal female rats.

    PubMed

    Yan, Xiaonan; Yuan, Chun; Zhao, Nannan; Cui, Yugui; Liu, Jiayin

    2014-07-01

    In adolescent girls with polycystic ovary syndrome (PCOS), neuroendocrine derangements manifest after the onset of puberty, characterized by rapid LH pulse frequency. The early mechanism underlying the pubertal regulation of the GNRH/LH pulsatile release in adolescents with PCOS remains uncertain. To determine the effects of prenatal androgen exposure on the activation of GNRH neurons and generation of LH pulse at puberty, we administrated 5α-dihydrotestosterone to pregnant rats and observed serum LH levels and expression of hypothalamic genes in female offspring from postnatal 4 to 8 weeks. The 6-week-old prenatally androgenized (PNA) female rats exhibited an increase in LH pulse frequency. The hypothalamic expression of neurokinin B (Nkb (Tac2)) and Lepr mRNA levels in PNA rats increased remarkably before puberty and remained high during puberty, whereas elevated Kiss1 mRNA levels were detected only after the onset of puberty. Exogenous kisspeptin, NK3R agonist, and leptin triggered tonic stimulation of GNRH neurons and increased LH secretion in 6-week-old PNA rats. Leptin upregulated Kiss1 mRNA levels in the hypothalamus of pubertal PNA rats; however, pretreatment with a kisspeptin antagonist failed to suppress the elevated serum LH stimulated by leptin, indicating that the stimulatory effects of leptin may be conveyed indirectly to GNRH neurons via other neural components within the GNRH neuronal network, rather than through the kisspeptin-GPR54 pathway. These findings validate the hypotheses that NKB and leptin play an essential role in the activation of GNRH neurons and initiation of increased LH pulse frequency in PNA female rats at puberty and that kisspeptin may coordinate their stimulatory effects on LH release. © 2014 Society for Endocrinology.

  20. A Dual Mode Pulsed Electro-Magnetic Cell Stimulator Produces Acceleration of Myogenic Differentiation

    PubMed Central

    Leon-Salas, Walter D.; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-01-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/−40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models. PMID:23445453

  1. A dual mode pulsed electro-magnetic cell stimulator produces acceleration of myogenic differentiation.

    PubMed

    Leon-Salas, Walter D; Rizk, Hatem; Mo, Chenglin; Weisleder, Noah; Brotto, Leticia; Abreu, Eduardo; Brotto, Marco

    2013-04-01

    This paper presents the design and test of a dual-mode electric and magnetic biological stimulator (EM-Stim). The stimulator generates pulsing electric and magnetic fields at programmable rates and intensities. While electric and magnetic stimulators have been reported before, this is the first device that combines both modalities. The ability of the dual stimulation to target bone and muscle tissue simultaneously has the potential to improve the therapeutic treatment of osteoporosis and sarcopenia. The device is fully programmable, portable and easy to use, and can run from a battery or a power supply. The device can generate magnetic fields of up to 1.6 mT and output voltages of +/- 40 V. The EM-Stim accelerated myogenic differentiation of myoblasts into myotubes as evidenced by morphometric, gene expression, and protein content analyses. Currently, there are many patents concerned with the application of single electrical or magnetic stimulation, but none that combine both simultaneously. However, we applied for and obtained a provisional patent for new device to fully explore its therapeutic potential in pre-clinical models.

  2. Effects of pulse width and coding on radar returns from clear air

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    In atmospheric radar studies it is desired to obtain maximum information about the atmosphere and to use efficiently the radar transmitter and processing hardware. Large pulse widths are used to increase the signal to noise ratio since clear air returns are generally weak and maximum height coverage is desired. Yet since good height resolution is equally important, pulse compression techniques such as phase coding are employed to optimize the average power of the transmitter. Considerations in implementing a coding scheme and subsequent effects of an impinging pulse on the atmosphere are investigated.

  3. Low-intensity pulsed ultrasound stimulation promotes osteoblast differentiation through hedgehog signaling.

    PubMed

    Matsumoto, Kenichi; Shimo, Tsuyoshi; Kurio, Naito; Okui, Tatsuo; Ibaragi, Soichiro; Kunisada, Yuki; Obata, Kyoichi; Masui, Masanori; Pai, Pang; Horikiri, Yuu; Yamanaka, Nobuyuki; Takigawa, Masaharu; Sasaki, Akira

    2018-06-01

    Low-intensity pulsed ultrasound (LIPUS) has been used as an adjunct to fracture healing therapies, but the mechanisms underlying its action are not known. We reported that sonic hedgehog (SHH) signaling was activated in osteoblasts at the dynamic remodeling site of a bone fracture. Mechanical stimulation is a crucial factor in bone remodeling, and it is related to the primary cilia as a sensor of hedgehog signaling. Here we observed that LIPUS promoted callus formation in accord with Gli2-positive cells after 14 days at the mouse femur fractured site compared with a control group. An immunofluorescence analysis showed that the numbers of primary cilia and cilia/osterix double-positive osteoblasts were increased at the fracture site by LIPUS. LIPUS stimulated not only the number and the length of primary cilia, but also the levels of ciliated protein, Ift88 mRNA, and SHH, Gli1, and Gli2 in MC3T3-E1 cells. Further experiments revealed that LIPUS stimulated osteogenic differentiation in the presence of smoothened agonist (SAG) treatment. These results indicate that LIPUS stimulates osteogenic differentiation and the maturation of osteoblasts by a primary cilium-mediated activation of hedgehog signaling. © 2017 Wiley Periodicals, Inc.

  4. Effects of locus coeruleus stimulation on the responses of SI neurons of the rat to controlled natural and electrical stimulation of the skin.

    PubMed

    Snow, P J; Andre, P; Pompeiano, O

    1999-02-01

    1. The effects of microstimulation of the locus coeruleus (LC) region on the spontaneous discharge and the response of SI neurons to natural and electrical stimulation of the skin have been investigated in 26 urethane anesthetized Sprague-Dawley rats. In particular, one or two air puffs, 5-10 msec in duration, 1-2 psi, usually separated by an interval of 40 msec, were applied on the hairy skin of the wrist or the forepaw at the presentation rate of 1/sec. For units unresponsive to air puffs, similar presentation of low intensity electrical stimuli (0.2-5.0 V, 0.2-0.4 msec pulses) were applied through two needles inserted on the most effective area of the skin. Both natural and electrical stimulations of the skin were applied under control conditions, as well as 50 msec after a 250 msec train of 0.3 msec pulses at 40 Hz. 20-30 microA applied stereotaxically to the LC complex through a tungsten microelectrode. 2. Not all cortical units exhibited spontaneous discharge. Most of the units, however, which were spontaneously active, were inhibited by electrical stimulation of the LC complex, while the remaining ones were excited. The sites of stimulation, which included either the LC proper or the locus subcoeruleus, were identified following both anatomical and physiological criteria. 3. SI neurons recorded at sites between 400 and 950 microns below the surface of the cortex, thus being most likely granule cells of layers III and IV, responded to cutaneous stimuli with spikes which occurred with a latency of 20-30 msec in response to single air puffs and a latency of 15-20 msec in response to single electrical pulses to the skin. In both instances the response to the second stimulus applied at the interstimulus interval of 40 msec was markedly reduced or abolished due to postexcitatory inhibition following the response to the first stimulus (in-field inhibition). In contrast, units particularly located at or below 1000 microns from the cortical surface, which were of

  5. Air Liquide's pulse tube cryocooler systems for space applications

    NASA Astrophysics Data System (ADS)

    Trollier, T.; Tanchon, J.; Rey, J. C.; Ravex, A.; Buquet, J.

    2009-05-01

    Thanks to important development efforts completed internally and with the European Space Agency (ESA) funding, Air Liquide Advanced Technology Division (AL/DTA) is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc... The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W maximal compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ESA ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  6. Reduction of the pace polarization artefact for capture detection applications by a tri-phasic stimulation pulse.

    PubMed

    Sutton, R; Fröhlig, G; de Voogt, W G; Goethals, M; Hintringer, F; Kennergren, C; Scanu, P; Guilleman, D; Treese, N; Hartung, W M; Stammwitz, E; Muetstege, A

    2004-11-01

    This study investigated the ability to minimize pace polarization artefacts (PPA) by adjusting the post-stimulus pulse duration of a tri-phasic stimulation pulse. Adjustment of the stimulation pulse was enabled by downloading special study software into an already implanted pacemaker. Tests were performed in a total of 296 atrial leads and 311 ventricular leads. Both chronic and acute leads were included in the study. Statistically significant differences were found in the initial PPA (without any adjustment of the stimulus pulse) between atrial and ventricular leads. In addition, significant differences were observed among various lead models with respect to changes over time in the initial ventricular PPA. Successful PPA reduction was defined as a reduction of the PPA below 0.5 mV for atrial leads and below 1 mV for ventricular leads. Results show a success rate for ventricular and atrial PPA reduction of 97.8% and 98.7%, respectively. Threshold tests showed that after reduction of the PPA loss of ventricular capture can be reliably detected. However, atrial threshold tests showed many false positive evoked response detections. In addition, unexpectedly high evoked response amplitudes were observed in the atrium after reduction of the PPA. Results from additional measurements suggest that these high atrial evoked response amplitudes come from the influence of the input filter of the pacemaker.

  7. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  8. Third harmonic from air breakdown plasma induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Negutu, C.; Puscas, N. N.

    2018-06-01

    Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

  9. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  10. Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber.

    PubMed

    Tang, W W; Shu, C

    2005-02-21

    We demonstrate a regeneratively mode-locked optical pulse source at about 10 GHz using an optoelectronic oscillator constructed with an electro-absorption modulator integrated distributed feedback laser diode. The 10 GHz RF component is derived from the interaction between the pump wave and the backscattered, frequency-downshifted Stokes wave resulted from stimulated Brillouin scattering in an optical fiber. The component serves as a modulation source for the 1556 nm laser diode without the need for any electrical or optical RF filter to perform the frequency extraction. Dispersion-compensated fiber, dispersion-shifted fiber, and standard single-mode fiber have been used respectively to generate optical pulses at variable repetition rates.

  11. Optimization of interaction conditions for efficient short laser pulse amplification by stimulated Brillouin scattering in the strongly coupled regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiaramello, M.; Riconda, C.; Amiranoff, F.

    Plasma amplification of low energy, a short (∼100–500 fs) laser pulse by an energetic long (∼10 ps) pulse via strong coupling Stimulated Brillouin Backscattering is investigated with an extensive analysis of one-dimensional particle-in-cell simulations. Parameters relevant to nowadays experimental conditions are investigated. The obtained seed pulse spectra are analyzed as a function of the interaction conditions such as plasma profile, pulses delay, and seed or pulse duration. The factors affecting the amount of energy transferred are determined, and the competition between Brillouin-based amplification and parasitic Raman backscattering is analyzed, leading to the optimization of the interaction conditions.

  12. An experimental vestibular neural prosthesis: design and preliminary results with rhesus monkeys stimulated with modulated pulses.

    PubMed

    Nie, Kaibao; Ling, Leo; Bierer, Steven M; Kaneko, Chris R S; Fuchs, Albert F; Oxford, Trey; Rubinstein, Jay T; Phillips, James O

    2013-06-01

    A vestibular neural prosthesis was designed on the basis of a cochlear implant for treatment of Meniere's disease and other vestibular disorders. Computer control software was developed to generate patterned pulse stimuli for exploring optimal parameters to activate the vestibular nerve. Two rhesus monkeys were implanted with the prototype vestibular prosthesis and they were behaviorally evaluated post implantation surgery. Horizontal and vertical eye movement responses to patterned electrical pulse stimulations were collected on both monkeys. Pulse amplitude modulated (PAM) and pulse rate modulated (PRM) trains were applied to the lateral canal of each implanted animal. Robust slow-phase nystagmus responses following the PAM or PRM modulation pattern were observed in both implanted monkeys in the direction consistent with the activation of the implanted canal. Both PAM and PRM pulse trains can elicit a significant amount of in-phase modulated eye velocity changes and they could potentially be used for efficiently coding head rotational signals in future vestibular neural prostheses.

  13. Pulse detonation engines and components thereof

    NASA Technical Reports Server (NTRS)

    Tangirala, Venkat Eswarlu (Inventor); Rasheed, Adam (Inventor); Vandervort, Christian Lee (Inventor); Dean, Anthony John (Inventor)

    2009-01-01

    A pulse detonation engine comprises a primary air inlet; a primary air plenum located in fluid communication with the primary air inlet; a secondary air inlet; a secondary air plenum located in fluid communication with the secondary air inlet, wherein the secondary air plenum is substantially isolated from the primary air plenum; a pulse detonation combustor comprising a pulse detonation chamber, wherein the pulse detonation chamber is located downstream of and in fluid communication with the primary air plenum; a coaxial liner surrounding the pulse detonation combustor defining a cooling plenum, wherein the cooling plenum is in fluid communication with the secondary air plenum; an axial turbine assembly located downstream of and in fluid communication with the pulse detonation combustor and the cooling plenum; and a housing encasing the primary air plenum, the secondary air plenum, the pulse detonation combustor, the coaxial liner, and the axial turbine assembly.

  14. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  15. Improved convection compensating pulsed field gradient spin-echo and stimulated-echo methods.

    PubMed

    Sørland, G H; Seland, J G; Krane, J; Anthonsen, H W

    2000-02-01

    The need for convection compensating methods in NMR has been manifested through an increasing number of publications related to the subject over the past few years (J. Magn. Reson. 125, 372 (1997); 132, 13 (1998); 131, 126 (1998); 118, 50 (1996); 133, 379 (1998)). When performing measurements at elevated temperature, small convection currents may give rise to erroneous values of the diffusion coefficient. In work with high resolution NMR spectroscopy, the application of magnetic field gradients also introduces an eddy-current magnetic field which may result in errors in phase and baseline in the FFT-spectra. The eddy current field has been greatly suppressed by the application of bipolar magnetic field gradients. However, when introducing bipolar magnetic field gradients, the pulse sequence is lengthened significantly. This has recently been pointed out as a major drawback because of the loss of coherence and of NMR-signal due to transverse relaxation processes. Here we present modified convection compensating pulsed field gradient double spin echo and double stimulated echo sequences which suppress the eddy-current magnetic field without increasing the duration of the pulse sequences. Copyright 2000 Academic Press.

  16. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  17. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  18. Experimental Observation of Near-Field Deterioration Induced by Stimulated Rotational Raman Scattering in Long Air Paths

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhang, Xiao-Min; Han, Wei; Li, Fu-Quan; Zhou, Li-Dan; Feng, Bin; Xiang, Yong

    2011-08-01

    We report the experimental investigation of a stimulated rotational Raman scattering effect in long air paths on SG-III TIL, with a 1053 nm, 20-cm-diameter, linearly polarized, 3 ns flat-topped laser pulse. An intense speckle pattern of near field with thickly dotted hot spots is observed at the end of propagation with an intensity-length product above 17TW/cm. The Stokes developing from the scattering of the laser beam by quantum fluctuations is characterized by a combination of high spatial frequency components. The observed speckle pattern with small-diameter hot spots results from the combination of the nonlinear Raman amplification and the linear diffraction propagation effect of the Stokes with a noise pattern arising from the spontaneous Raman scattering. A new promising suppression concept based on the special characteristic of the Stokes, called active and selective filtering of Stokes, is proposed.

  19. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  20. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  1. Plasma induced degradation of Indigo Carmine by bipolar pulsed dielectric barrier discharge(DBD) in the water-air mixture.

    PubMed

    Zhang, Ruo-Bing; Wu, Yan; Li, Guo-Feng; Wang, Ning-Hui; Li, Jie

    2004-01-01

    Degradation of the Indigo Carmine (IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase o3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C(p) are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.

  2. Adaptation of the cortical somatosensory evoked potential following pulsed pneumatic stimulation of the lower face in adults.

    PubMed

    Custead, Rebecca; Oh, Hyuntaek; Rosner, Austin Oder; Barlow, Steven

    2015-10-05

    Cortical adaptation to sustained sensory input is a pervasive form of short-term plasticity in neurological systems. Its role in sensory perception in health and disease, or predicting long-term plastic changes resulting from sensory training offers insight into the mechanisms of somatosensory and sensorimotor processing. A 4-channel electroencephalography (EEG) recording montage was placed bilaterally (C3-P3, C4-P4, F7-P3, F8-P4) to characterize the short-term effects of pulsed pneumatic orofacial stimulation on the cortical somatosensory evoked potential (cSEP) in twenty neurotypical adults (mean age=21±2.88 years). A servo-controlled pneumatic amplifier was used to deliver a repetitive series of pneumatic pulse trains (six 50-ms pulses, 5-second intertrain interval) through a linked pair of custom acetal homopolymer probes (aka TAC-Cells) adhered to the nonglabrous skin of the lower face proximal to the right oral angle to synchronously activate mechanoreceptive afferents in the trigeminal nerve. Blocks of pulse trains were counterbalanced among participants and delivered at two rates, 2 and 4Hz. TAC-Cell stimulation of the lower face consistently evoked a series of cSEPs at P7, N20, P28, N38, P75, N85, and P115. The spatial organization and adaptation of the evoked cSEP was dependent on stimulus pulse index (1-6 within the pulse train, p=.012), frequency of stimulus presentation (2 vs 4Hz, p<.001), component (P7-P115, p<.001), and recording montage (channels 1-4, p<.001). Early component latencies (P7-N20) were highly stable in polarity (sign) and latency, and consistent with putative far-field generators (e.g., trigeminal brainstem, ventroposteromedial thalamus). Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on the decline and recovery of muscle force.

    PubMed

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2017-05-02

    Neuromuscular electrical stimulation (NMES) is commonly used to activate skeletal muscles and reverse muscle atrophy in clinical populations. Clinical recommendations for NMES suggest the use of short pulse widths (100-200 μs) and low-to-moderate pulse frequencies (30-50 Hz). However, this type of NMES causes rapid muscle fatigue due to the (non-physiological) high stimulation intensities and non-orderly recruitment of motor units. The use of both wide pulse widths (1000 μs) and tendon vibration might optimize motor unit activation through spinal reflex pathways and thus delay the onset of muscle fatigue, increasing muscle force and mass. Thus, the objective of this study was to examine the acute effects of patellar tendon vibration superimposed onto wide-pulse width (1000 μs) knee extensor electrical stimulation (NMES, 30 Hz) on peak muscle force, total impulse before "muscle fatigue", and the post-exercise recovery of muscle function. Tendon vibration (Vib), NMES (STIM) or NMES superimposed onto vibration (STIM + Vib) were applied in separate sessions to 16 healthy adults. Total torque-time integral (TTI), maximal voluntary contraction torque (MVIC) and indirect measures of muscle damage were tested before, immediately after, 1 h and 48 h after each stimulus. TTI increased (145.0 ± 127.7%) in STIM only for "positive responders" to the tendon vibration (8/16 subjects), but decreased in "negative responders" (-43.5 ± 25.7%). MVIC (-8.7%) and rectus femoris electromyography (RF EMG) (-16.7%) decreased after STIM (group effect) for at least 1 h, but not after STIM + Vib. No changes were detected in indirect markers of muscle damage in any condition. Tendon vibration superimposed onto wide-pulse width NMES increased TTI only in 8 of 16 subjects, but reduced voluntary force loss (fatigue) ubiquitously. Negative responders to tendon vibration may derive greater benefit from wide-pulse width NMES alone.

  4. Mechanism of UES relaxation initiated by gastric air distension

    PubMed Central

    Medda, Bidyut K.; Shaker, Reza

    2014-01-01

    The aim of this study was to determine the mechanism of initiation of transient upper esophageal sphincter relaxation (TUESR) caused by gastric air distension. Cats (n = 31) were decerebrated, EMG electrodes were placed on the cricopharyngeus, a gastric fistula was formed, and a strain gauge was sewn on the lower esophageal sphincter (n = 8). Injection of air (114 ± 13 ml) in the stomach caused TUESR (n = 18) and transient lower esophageal sphincter relaxation (TLESR, n = 6), and this effect was not significantly (P > 0.05) affected by thoracotomy. Free air or bagged air (n = 6) activated TLESR, but only free air activated TUESR. Closure of the gastroesophageal junction blocked TUESR (9/9), but not TLESR (4/4), caused by air inflation of the stomach. Venting air from distal esophagus during air inflation of the stomach prevented TUESR (n = 12) but did not prevent air escape from the stomach to the esophagus (n = 4). Rapid injection of air on the esophageal mucosa always caused TUESR (9/9) but did not always (7/9) cause an increase in esophageal pressure. The time delay between the TUESR and the rapid air pulse was significantly more variable (P < 0.05) than the time delay between the rapid air pulse and the rise in esophageal pressure. We concluded that the TUESR caused by gastric air distension is dependent on air escape from the stomach, which stimulates receptors in the esophagus, but is not dependent on distension of the stomach or esophagus, or the TLESR. Therefore, the TUESR caused by gastric air distension is initiated by stimulation of receptors in the esophageal mucosa. PMID:24970778

  5. Mechanism of UES relaxation initiated by gastric air distension.

    PubMed

    Lang, Ivan M; Medda, Bidyut K; Shaker, Reza

    2014-08-15

    The aim of this study was to determine the mechanism of initiation of transient upper esophageal sphincter relaxation (TUESR) caused by gastric air distension. Cats (n = 31) were decerebrated, EMG electrodes were placed on the cricopharyngeus, a gastric fistula was formed, and a strain gauge was sewn on the lower esophageal sphincter (n = 8). Injection of air (114 ± 13 ml) in the stomach caused TUESR (n = 18) and transient lower esophageal sphincter relaxation (TLESR, n = 6), and this effect was not significantly (P > 0.05) affected by thoracotomy. Free air or bagged air (n = 6) activated TLESR, but only free air activated TUESR. Closure of the gastroesophageal junction blocked TUESR (9/9), but not TLESR (4/4), caused by air inflation of the stomach. Venting air from distal esophagus during air inflation of the stomach prevented TUESR (n = 12) but did not prevent air escape from the stomach to the esophagus (n = 4). Rapid injection of air on the esophageal mucosa always caused TUESR (9/9) but did not always (7/9) cause an increase in esophageal pressure. The time delay between the TUESR and the rapid air pulse was significantly more variable (P < 0.05) than the time delay between the rapid air pulse and the rise in esophageal pressure. We concluded that the TUESR caused by gastric air distension is dependent on air escape from the stomach, which stimulates receptors in the esophagus, but is not dependent on distension of the stomach or esophagus, or the TLESR. Therefore, the TUESR caused by gastric air distension is initiated by stimulation of receptors in the esophageal mucosa. Copyright © 2014 the American Physiological Society.

  6. LASER PLASMA: Experimental confirmation of the erosion origin of pulsed low-threshold surface optical breakdown of air

    NASA Astrophysics Data System (ADS)

    Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.

    1988-08-01

    Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).

  7. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    NASA Astrophysics Data System (ADS)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  8. Characteristics of a Pulse-Periodic Corona Discharge in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Sosnin, E. A.; Burachenko, A. G.; Panarin, V. A.; Skakun, V. S.

    2018-05-01

    Pulse-periodic corona discharge in atmospheric air excited by applying a voltage pulse with a subnanosecond or microsecond rise time to a point electrode is studied experimentally. It is shown that, at a voltage rise rate of dU/ dt 1014 V/s, positive and negative ball-shaped streamers with a front velocity of ≥2 mm/ns form near the point electrode. As dU/ dt is reduced to 1010-1011 V/s, the streamer shape changes and becomes close to cylindrical. The propagation velocity of cylindrical streamers is found to be 0.1 mm/ns at dU/ dt 2 × 1010 V/s. It is shown that the propagation direction of a cylindrical streamer can be changed by tilting the point electrode, on the axis of which the electric field strength reaches its maximum value. It is established that, for the negative polarity of the point electrode and a microsecond rise time of the voltage pulse, a higher voltage is required to form a cylindrical streamer than for the positive polarity of the point electrode.

  9. Can a single pulse transcranial magnetic stimulation targeted to the motor cortex interrupt pain processing?

    PubMed Central

    Kisler, Lee-Bareket; Gurion, Ilan; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone

    2018-01-01

    The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1’s role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual’s first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and ‘SHAM-VL’), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here. PMID:29630681

  10. Can a single pulse transcranial magnetic stimulation targeted to the motor cortex interrupt pain processing?

    PubMed

    Kisler, Lee-Bareket; Gurion, Ilan; Granovsky, Yelena; Sinai, Alon; Sprecher, Elliot; Shamay-Tsoory, Simone; Weissman-Fogel, Irit

    2018-01-01

    The modulatory role of the primary motor cortex (M1), reflected by an inhibitory effect of M1-stimulation on clinical pain, motivated us to deepen our understanding of M1's role in pain modulation. We used Transcranial Magnetic Stimulation (TMS)-induced virtual lesion (VL) to interrupt with M1 activity during noxious heat pain. We hypothesized that TMS-VL will effect experimental pain ratings. Three VL protocols were applied consisting of single-pulse TMS to transiently interfere with right M1 activity: (1) VLM1- TMS applied to 11 subjects, 20 msec before the individual's first pain-related M1 peak activation, as determined by source analysis (sLORETA), (2) VL-50 (N = 16; TMS applied 50 ms prior to noxious stimulus onset), and (3) VL+150 (N = 16; TMS applied 150 ms after noxious stimulus onset). Each protocol included 3 conditions ('pain-alone', ' TMS-VL', and 'SHAM-VL'), each consisted of 30 noxious heat stimuli. Pain ratings were compared, in each protocol, for TMS-VL vs. SHAM-VL and vs. pain-alone conditions. Repeated measures analysis of variance, corrected for multiple comparisons revealed no significant differences in the pain ratings between the different conditions within each protocol. Therefore, our results from this exploratory study suggest that a single pulse TMS-induced VL that is targeted to M1 failed to interrupt experimental pain processing in the specific three stimulation timing examined here.

  11. The life cycle of infrared ultra-short high intensity laser pulses in air

    NASA Astrophysics Data System (ADS)

    Ma, Cunliang; Lin, Wenbin

    2015-08-01

    The life cycle of ultra-short high intensity laser pulses propagation in air is studied. As the controversial of the high-order Kerr indices measured by Loriot et al. [Opt. Express 18, 3011 (2010)], we focus on two models which are high-order Kerr effect included and not included. Two factors are mainly analyzed, group-velocity-dispersion and the energy evolution of the pulse. It is found that the group-velocity-dispersion can not be simply ignored even though the pulse's duration is as long as several hundreds femtoseconds. The energy loss due to the multi-photon-absorption is very small, and it may hardly change the propagation length of the pulse. Another contribution of this work is to introduce a probability quantity, which may be useful in validating the positive and negative alternating of the Kerr and high-order Kerr indices.

  12. Impacts of selected stimulation patterns on the perception threshold in electrocutaneous stimulation

    PubMed Central

    2011-01-01

    Background Consistency is one of the most important concerns to convey stable artificially induced sensory feedback. However, the constancy of perceived sensations cannot be guaranteed, as the artificially evoked sensation is a function of the interaction of stimulation parameters. The hypothesis of this study is that the selected stimulation parameters in multi-electrode cutaneous stimulation have significant impacts on the perception threshold. Methods The investigated parameters included the stimulated location, the number of active electrodes, the number of pulses, and the interleaved time between a pair of electrodes. Biphasic, rectangular pulses were applied via five surface electrodes placed on the forearm of 12 healthy subjects. Results Our main findings were: 1) the perception thresholds at the five stimulated locations were significantly different (p < 0.0001), 2) dual-channel simultaneous stimulation lowered the perception thresholds and led to smaller variance in perception thresholds compared to single-channel stimulation, 3) the perception threshold was inversely related to the number of pulses, and 4) the perception threshold increased with increasing interleaved time when the interleaved time between two electrodes was below 500 μs. Conclusions To maintain a consistent perception threshold, our findings indicate that dual-channel simultaneous stimulation with at least five pulses should be used, and that the interleaved time between two electrodes should be longer than 500 μs. We believe that these findings have implications for design of reliable sensory feedback codes. PMID:21306616

  13. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  14. Short pulse gastric electrical stimulation for cisplatin-induced emesis in dogs.

    PubMed

    Song, J; Zhong, D-X; Qian, W; Hou, X-H; Chen, J D Z

    2011-05-01

    In a previous study, we investigated the ameliorating effect of gastric electrical stimulation (GES) with a single set of parameters on emesis and behaviors suggestive of nausea induced by cisplatin in dogs. The aim of this study was to investigate the effects of GES with different parameters on cisplatin-induced emesis in dogs. Seven dogs implanted with gastric serosal electrodes were studied in six randomized sessions: one control session with cisplatin (2 mg kg(-1)) and five sessions with cisplatin plus GES of different parameters: GES-A: 14 Hz, 5 mA, 0.3 ms, 0.1 s on and 5 s off; GES-B: increased frequency and on-time; GES-C: increased frequency; GES-D: increased frequency and pulse width; and GES-E: increased frequency and amplitude. Gastric slow waves and emetic responses were recorded in each session. (i) Cisplatin induced emetic responses and gastric dysrhythmia. The peak time of the emetic response was during the fourth hour after cisplatin. (ii) GES with appropriate parameters reduced cisplatin-induced emesis. The number of vomiting times during the 6 h after cisplatin was 7.0 ± 1.4 in the control, 4.7 ± 1.2 with GES-A (P = 0.179), 4.2 ± 1.2 with GES-B (P = 0.109), 7.0 ± 0.8 with GES-C (P = 0.928), 2.1 ± 0.3 with GES-D (P = 0.005) and 4.7 ± 1.5 with GES-E (P = 0.129). However, none of the GES parameters could improve gastric dysrhythmia. Gastric electrical stimulation with appropriate parameters reduces cisplatin-induced emetic responses and behaviors suggestive of nausea in dogs. Among the tested parameters, GES with increased pulse width seems to produce better relief of cisplatin-induced emesis. © 2011 Blackwell Publishing Ltd.

  15. Acoustic Events and “Optophonic” Cochlear Responses Induced by Pulsed Near-Infrared LASER

    PubMed Central

    Maier, Hannes; Richter, Claus-Peter; Kral, Andrej

    2012-01-01

    Optical stimulation of neural tissue within the cochlea was described as a possible alternative to electrical stimulation. Most optical stimulation was performed with pulsed lasers operating with near-infrared (NIR) light and in thermal confinement. Under these conditions, the coexistence of laser-induced optoacoustic stimulation of the cochlea (“optophony”) has not been analyzed yet. This study demonstrates that pulsed 1850-nm laser light used for neural stimulation also results in sound pressure levels up to 62 dB peak-to-peak equivalent sound pressure level (SPL) in air. The sound field was confined to a small volume along the laser beam. In dry nitrogen, laser-induced acoustic events disappeared. Hydrophone measurements demonstrated pressure waves for laser fibers immersed in water. In hearing rats, laser-evoked signals were recorded from the cochlea without targeting neural tissue. The signals showed a two-domain response differing in amplitude and latency functions, as well as sensitivity to white-noise masking. The first component had characteristics of a cochlear microphonic potential, and the second component was characteristic for a compound action potential. The present data demonstrate that laser-evoked acoustic events can stimulate a hearing cochlea. Whenever optical stimulation is used, care must be taken to distinguish between such “optophony” and the true optoneural response. PMID:21278011

  16. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).

    PubMed

    Bochkezanian, Vanesa; Newton, Robert U; Trajano, Gabriel S; Vieira, Amilton; Pulverenti, Timothy S; Blazevich, Anthony J

    2018-02-13

    Neuromuscular electrical stimulation (NMES) is commonly used in skeletal muscles in people with spinal cord injury (SCI) with the aim of increasing muscle recruitment and thus muscle force production. NMES has been conventionally used in clinical practice as functional electrical stimulation (FES), using low levels of evoked force that cannot optimally stimulate muscular strength and mass improvements, and thus trigger musculoskeletal changes in paralysed muscles. The use of high intensity intermittent NMES training using wide-pulse width and moderate-intensity as a strength training tool could be a promising method to increase muscle force production in people with SCI. However, this type of protocol has not been clinically adopted because it may generate rapid muscle fatigue and thus prevent the performance of repeated high-intensity muscular contractions in paralysed muscles. Moreover, superimposing patellar tendon vibration onto the wide-pulse width NMES has been shown to elicit further increases in impulse or, at least, reduce the rate of fatigue in repeated contractions in able-bodied populations, but there is a lack of evidence to support this argument in people with SCI. Nine people with SCI received two NMES protocols with and without superimposing patellar tendon vibration on different days (i.e. STIM and STIM+vib), which consisted of repeated 30 Hz trains of 58 wide-pulse width (1000 μs) symmetric biphasic pulses (0.033-s inter-pulse interval; 2 s stimulation train; 2-s inter-train interval) being delivered to the dominant quadriceps femoris. Starting torque was 20% of maximal doublet-twitch torque and stimulations continued until torque declined to 50% of the starting torque. Total knee extensor impulse was calculated as the primary outcome variable. Total knee extensor impulse increased in four subjects when patellar tendon vibration was imposed (59.2 ± 15.8%) but decreased in five subjects (- 31.3 ± 25.7%). However, there were no

  17. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  18. The stimulated Brillouin scattering during the interaction of picosecond laser pulses with moderate- scale-length plasmas

    NASA Astrophysics Data System (ADS)

    Gaeris, Andres Claudio

    The Stimulated Brillouin Scattering (SBS) instability is studied in moderately short scale-length plasmas. The backscattered and specularly reflected light resulting from the interaction of a pair of high power picosecond duration laser pulses with solid Silicon, Gold and Parylene-N (CH) strip targets was spectrally resolved. The first, weaker laser pulse forms a short scale-length plasma while the second delayed one interacts with the isothermally expanded, underdense region of the plasma. The pulses are generated by the Table Top Terawatt (TTT) laser operating at 1054 nm (infrared) with intensities up to 5.10 16 W/cm2. Single laser pulses only show Lambertian scattering on the target critical surface. Pairs of pulses with high intensity in the second pulse show an additional backscattered, highly blueshifted feature, associated with SBS. Increasing this second pulse intensity even more leads to the appearance of a third feature, even more blueshifted than the second, resulting from the Brillouin sidescattering of the laser pulse reflected on the critical surface. The SBS threshold intensities and enhanced reflectivities for P-polarized light are determined for different plasma density scale-lengths. These measurements agree with the convective thresholds predicted by the SBS theory of Liu, Rosenbluth, and White using plasma profiles simulated by the LILAC code. The spectral position of the Brillouin back- and sidescattered features are determined. The SBS and Doppler shifts are much too small to explain the observed blueshifts. The refractive index shift is of the right magnitude, although more detailed verification is required in the future.

  19. The interaction of reflexes elicited by stimulation of carotid body chemoreceptors and receptors in the nasal mucosa affecting respiration and pulse interval in the dog

    PubMed Central

    Angell-James, Jennifer E.; Daly, M. de Burgh

    1973-01-01

    1. The effects on respiration and pulse interval of stimulation of the carotid body chemoreceptors before, during and after stimulation of receptors in the nose have been studied in the anaesthetized dog. 2. Stimulation of a carotid body by infusion of cyanide into the ipsi-lateral common carotid artery causes hyperpnoea and either an increase, decrease or no change in pulse interval. 3. Excitation of receptors in the nasal mucosa leads to reflex apnoea or a reduction in breathing, and an increase in pulse interval. 4. When the carotid bodies are excited by the same dose of cyanide during stimulation of the nasal mucosa, the chemoreceptor-respiratory response is abolished or reduced in size compared with the control effect. On the other hand, the chemoreceptor-cardio-inhibitory response is considerably enhanced. 5. The potentiated cardio-inhibitory response of combined chemoreceptor and nasal stimulation could not be accounted for by the change in pulmonary ventilation, arterial PO2 or PCO2, or mean arterial blood pressure. 6. These results indicate that excitation of the nasal reflex inhibits the chemoreceptor-respiratory reflex response but facilitates the chemoreceptor-cardio-inhibitory reflex response. The possible sites of these interactions between the nasal and chemoreceptor reflexes are discussed. PMID:4689961

  20. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.

    2016-03-21

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less

  1. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    NASA Astrophysics Data System (ADS)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  2. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  3. A precision mechanical nerve stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1988-01-01

    An electromechanical device, used to apply and monitor stimulating pulses to a mammalian motor nerve, has been successfully developed at NASA Langley Research Center. Two existing force transducers, a flight skin friction balance and a miniature skin friction balance which were designed for making aerodynamic drag measurements, were modified and incorporated to form this precision instrument. The nerve stimulator is a type one servomechanism capable of applying and monitoring stimulating pulses of 0 to 10 grams with a precision of better than +/- 0.05 grams. Additionally, the device can be independently used to apply stimulating pulses by displacing the nerve from 0 to 0.25 mm with a precision of better than +/- 0.001 mm while measuring the level of the load applied.

  4. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  5. Numerical Analysis of Laser Repetition Rate and Pulse Numbers in Multi-pulsed Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Song, Junling; Hong, Yanji; Wen, Ming; Li, Qian

    2011-11-01

    A flat-roofed parabolic nozzle is adopted to study the multi-pulse laser propulsion performance. The multi-pulse impulse coupling coefficient decreases when the laser repetition rate increases in the range of 10 to 400 Hz. The details of the evolution process of the inner and outer flow fields are simulated. The results indicate that the air exhaust and refill processes influence multi-pulse propulsion performance directly. By comparing the initial and multi-pulse flow fields, the air in the nozzle is found to be partially recovered. An uneven low-density distribution and the mass loss result in a decrease in Cm when the pulse number increases. Moreover, breathing in air to the nozzle for multi-pulse when the focal position is near the exit is beneficial.

  6. Surface-distributed low-frequency asynchronous stimulation delays fatigue of stimulated muscles.

    PubMed

    Maneski, Lana Z Popović; Malešević, Nebojša M; Savić, Andrej M; Keller, Thierry; Popović, Dejan B

    2013-12-01

    One important reason why functional electrical stimulation (FES) has not gained widespread clinical use is the limitation imposed by rapid muscle fatigue due to non-physiological activation of the stimulated muscles. We aimed to show that asynchronous low-pulse-rate (LPR) electrical stimulation applied by multipad surface electrodes greatly postpones the occurrence of muscle fatigue compared with conventional stimulation (high pulse rate, HPR). We compared the produced force vs. time of the forearm muscles responsible for finger flexion in 2 stimulation protocols, LPR (fL = 10 Hz) and HPR (fH = 40 Hz). Surface-distributed low-frequency asynchronous stimulation (sDLFAS) doubles the time interval before the onset of fatigue (104 ± 80%) compared with conventional synchronous stimulation. Combining the performance of multipad electrodes (increased selectivity and facilitated positioning) with sDLFAS (decreased fatigue) can improve many FES applications in both the lower and upper extremities. Copyright © 2013 Wiley Periodicals, Inc.

  7. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    PubMed Central

    2010-01-01

    Background Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and -3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-κB ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions PEMF exposure

  8. Termination of atrial fibrillation using pulsed low-energy far-field stimulation

    PubMed Central

    Fenton, Flavio H.; Luther, Stefan; Cherry, Elizabeth M.; Otani, Niels F.; Krinsky, Valentin; Pumir, Alain; Bodenschatz, Eberhard; Gilmour, Robert F.

    2010-01-01

    Background Electrically-based therapies for terminating atrial fibrillation (AF) currently fall into two categories: anti-tachycardia pacing (ATP) and cardioversion. ATP utilizes low-intensity pacing stimuli delivered via a single electrode and is effective for terminating slower tachycardias, but is less effective for treating AF. In contrast, cardioversion uses a single high-voltage shock to terminate AF reliably, but the voltages required produce undesirable side effects, including tissue damage and pain. We propose a new method to terminate AF called far-field anti-fibrillation pacing (FF-AFP), which delivers a short train of low-intensity electrical pulses at the frequency of ATP, but from field electrodes. Prior theoretical work has suggested that this approach can create a large number of activation sites (“virtual” electrodes) that emit propagating waves within the tissue without implanting physical electrodes and thereby may be more effective than point-source stimulation. Methods and Results Using optical mapping in isolated perfused canine atrial preparations, we show that a series of pulses at low field strength (0.9-1.4 V/cm) is sufficient to entrain and subsequently extinguish AF with a success rate of 93 percent (69/74 trials in 8 preparations). We further demonstrate that the mechanism behind FFAFP success is the generation of wave emission sites within the tissue by the applied electric field, which entrains the tissue as the field is pulsed. Conclusions AF in our model can be terminated by FF-AFP using only 13% of the energy required for cardioversion. Further studies are needed to determine whether this marked reduction in energy can increase the effectiveness and safety of terminating atrial tachyarrhythmias clinically. PMID:19635972

  9. Quantitative measures of air-gun pulses recorded on sperm whales (Physeter macrocephalus) using acoustic tags during controlled exposure experiments.

    PubMed

    Madsen, P T; Johnson, M; Miller, P J O; Aguilar Soto, N; Lynch, J; Tyack, P

    2006-10-01

    The widespread use of powerful, low-frequency air-gun pulses for seismic seabed exploration has raised concern about their potential negative effects on marine wildlife. Here, we quantify the sound exposure levels recorded on acoustic tags attached to eight sperm whales at ranges between 1.4 and 12.6 km from controlled air-gun array sources operated in the Gulf of Mexico. Due to multipath propagation, the animals were exposed to multiple sound pulses during each firing of the array with received levels of analyzed pulses falling between 131-167 dB re. 1 microPa (pp) [111-147 dB re. 1 microPa (rms) and 100-135 dB re. 1 microPa2 s] after compensation for hearing sensitivity using the M-weighting. Received levels varied widely with range and depth of the exposed animal precluding reliable estimation of exposure zones based on simple geometric spreading laws. When whales were close to the surface, the first arrivals of air-gun pulses contained most energy between 0.3 and 3 kHz, a frequency range well beyond the normal frequencies of interest in seismic exploration. Therefore air-gun arrays can generate significant sound energy at frequencies many octaves higher than the frequencies of interest for seismic exploration, which increases concern of the potential impact on odontocetes with poor low frequency hearing.

  10. Investigations in x-radiation stimulation

    NASA Astrophysics Data System (ADS)

    Gupta, K. D.

    1982-03-01

    The objective is to invent a crystal x-ray laser. Investigations in the Radiation Research Lab. at Texas Tech University have established in a very straightforward way the line narrowing associated with a threshold pumping and a nonlinear rise in intensity. Recent work on x-ray Borrmann channeling via monocrystals has demonstrated the existence of a monochromatic x-ray beam without any vertical divergence. This would allow the transport of x-ray energy in space for thousands of miles without any loss of power. Preliminary experiments with a monocrystal excited by pulsed x-rays at Air Force Weapons Laboratory, KAFB, Albuquerque, seem to indicate a gain in intensity of the nondivergent hot spot with a concomitant fading of the regular Laue pattern. Current investigations in this line indicates that with proper doping of the monocrystal the nondivergent beam could be increased in intensity using a flash x-ray tube to pump the doped monocrystal. A concial target double beam flash x-ray line source instrument has been constructed to obtain a beam of nondivergent, stimulated, coherent, and monochromatic x-rays from doped monocrystals. A generation of stimulated x-rays using bunched electrons from pulsed high power klystron striking a monocrystal has been conceived.

  11. The effect of pulse width and contact configuration on paresthesia coverage in spinal cord stimulation.

    PubMed

    Holsheimer, Jan; Buitenweg, Jan R; Das, John; de Sutter, Paul; Manola, Ljubomir; Nuttin, Bart

    2011-05-01

    In spinal cord stimulation for the management of chronic, intractable pain, a satisfactory analgesic effect can be obtained only when the stimulation-induced paresthesias cover all painful body areas completely or partially. To investigate the effect of stimulus pulse width (PW) and contact configuration (CC) on the area of paresthesia (PA), perception threshold (VPT), discomfort threshold (VDT), and usage range (UR) in spinal cord stimulation. Chronic pain patients were tested during a follow-up visit. They were stimulated monopolarly and with the CC giving each patient the best analgesia. VPT, VDT, and UR were determined for PWs of 90, 210, and 450 microseconds. The paresthesia contours at VDT were drawn on a body map and digitized; PA was calculated; and its anatomic composition was described. The effects of PW and CC on PA, VPT, VDT, and UR were tested statistically. Twenty-four of 31 tests with low thoracic stimulation and 8 of 9 tests with cervical stimulation gave a significant extension of PA at increasing PW. In 14 of 18 tests (low thoracic), a caudal extension was obtained (primarily in L5-S2). In cervical stimulation the extension was predominantly caudal as well. In contrast to VPT and VDT, UR is not significantly different when stimulating with any CC. PA extends caudally with increasing PW. The mechanism includes that the larger and smaller dorsal column fibers have a different mediolateral distribution and that smaller dorsal column fibers have a smaller UR and can be activated only when PW is sufficiently large. A similar effect of CC on PA is unlikely as long as electrodes with a large intercontact distance are applied.

  12. Oscillations of absorption of a probe picosecond light pulse caused by its interaction with stimulated picosecond emission of GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.

    2015-04-15

    The self-modulation of absorption of a picosecond light pulse was observed earlier [1] in a thin (∼1-μm thick) GaAs layer pumped by a high-power picosecond pulse. Analysis of the characteristics of this self-modulation predicted [5] that the dependences of the probe pulse absorption on the pump pulse energy and picosecond delay between pump and probe pulses should be self-modulated by oscillations. Such self-modulation was experimentally observed in this work. Under certain conditions, absorption oscillations proved to be a function of part of the energy of picosecond stimulated emission of GaAs lying above a certain threshold in the region where themore » emission front overlapped the probe pulse front. Absorption oscillations are similar to self-modulation of the GaAs emission characteristics observed earlier [4]. This suggests that the self-modulation of absorption and emission is determined by the same type of interaction of light pulses in the active medium, the physical mechanism of which has yet to be determined.« less

  13. The study of low temperature plasma of pulse discharge in relation to air cleaning units.

    NASA Astrophysics Data System (ADS)

    Ponizovskiy, A.; Gosteev, S.; Kuzhel, O.

    2017-11-01

    In paper it studied parameters of low-temperature plasma (LTP) used in systems for cleaning waste gas. LTP created by positive nanosecond corona discharges, generated by high voltage pulses with a rise time of 50 ns, duration up to 400 ns, an amplitude up to 90 kV and pulses repetition 50-1000 Hz. in coaxial electrode system with gap space 3-10 cm through which moving air with linear velocity v = 0.01 to 10 m/s.

  14. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  15. Evaluation of a cochlear-implant processing strategy incorporating phantom stimulation and asymmetric pulses

    PubMed Central

    Monstrey, Jolijn; Deeks, John M.; Macherey, Olivier

    2014-01-01

    Objective To evaluate a speech-processing strategy in which the lowest frequency channel is conveyed using an asymmetric pulse shape and “phantom stimulation”, where current is injected into one intra-cochlear electrode and where the return current is shared between an intra-cochlear and an extra-cochlear electrode. This strategy is expected to provide more selective excitation of the cochlear apex, compared to a standard strategy where the lowest-frequency channel is conveyed by symmetric pulses in monopolar mode. In both strategies all other channels were conveyed by monopolar stimulation. Design Within-subjects comparison between the two strategies. Four experiments: (1) discrimination between the strategies, controlling for loudness differences, (2) consonant identification, (3) recognition of lowpass-filtered sentences in quiet, (4) sentence recognition in the presence of a competing speaker. Study sample Eight users of the Advanced Bionics CII/Hi-Res 90k cochlear implant. Results Listeners could easily discriminate between the two strategies but no consistent differences in performance were observed. Conclusions The proposed method does not improve speech perception, at least in the short term. PMID:25358027

  16. Ps laser pulse induced stimulated Raman scattering of ammonium nitrate dissolved in water

    NASA Astrophysics Data System (ADS)

    Kumar, V. Rakesh; Kiran, P. Prem

    2018-04-01

    An intense picosecond laser pulse focused into a liquid medium generates a shock wave in the focal region. This shock wave while propagating into the medium varies the pressure and temperature of the liquid locally leading to the appearance of novel phases which are manifested by the appearance of Raman peaks. We present the phase changes of ammonium nitrate (AN) dissolved in water by studying the forward and backward stimulated Raman Scattering (FSRS and BSRS) signals due to propagation of 30 ps laser pulse induced shockwaves. The dominant peak corresponding to the NO3- symmetric stretching mode is observed with a Raman shift of 1045 cm-1 which represents phase IV of AN with an orthogonal crystalline structure. Apart from this peak, the dominant mode of liquid phase of water with a Raman shift of 3400 cm-1 and an ice VII peak at a Raman shift of 3050 cm-1 confirming the pressure of 10 GPa is observed. The effect of the concentration and input energy on the appearance of the phases will be presented.

  17. Single Pulse Electrical Stimulation to identify epileptogenic cortex: Clinical information obtained from early evoked responses.

    PubMed

    Mouthaan, B E; van 't Klooster, M A; Keizer, D; Hebbink, G J; Leijten, F S S; Ferrier, C H; van Putten, M J A M; Zijlmans, M; Huiskamp, G J M

    2016-02-01

    Single Pulse Electrical Stimulation (SPES) probes epileptogenic cortex during electrocorticography. Two SPES responses are described: pathological delayed responses (DR, >100 ms) associated with the seizure onset zone (SOZ) and physiological early responses (ER, <100 ms) that map cortical connectivity. We analyzed properties of ERs, including frequencies >80 Hz, in the SOZ and seizure propagation areas. We used data from 12 refractory epilepsy patients. SPES consisted of 10 pulses of 1 ms, 4-8 mA and 5s interval on adjacent electrodes pairs. Data were available at 2048 samples/s for six and 512 samples/s (22 bits) for eight patients and analyzed in the time-frequency (TF) and time-domain (TD). Electrodes with ERs were stronger associated with SOZ than non-SOZ electrodes. ERs with frequency content >80 Hz exist and are specific for SOZ channels. ERs evoked by stimulation of seizure onset electrodes were associated with electrodes involved in seizure propagation. Analysis of ERs can reveal aspects of pathology, manifested by association with seizure propagation and areas with high ER numbers that coincide with the SOZ. Not only DRs, but also ERs could have clinical value for mapping epileptogenic cortex and help to unravel aspects of the epileptic network. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulatedmore » charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].« less

  19. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    PubMed Central

    Miller, V.; Lin, A.; Kako, F.; Gabunia, K.; Kelemen, S.; Brettschneider, J.; Fridman, G.; Fridman, A.; Autieri, M.

    2015-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue. PMID:26543345

  20. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, V., E-mail: vmiller@coe.drexel.edu; Lin, A.; Brettschneider, J.

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of themore » tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.« less

  1. [New use of pulse-oximeter as a prophylactic Stimulator to the wearer and a lifesaving tools for prevention of hypoxic mishaps].

    PubMed

    Morioka, Tohru; Terasaki, Hidenori

    2014-03-01

    Pulse-oximeter has been widely used for the clinical assessment of physical status of a patient and as an alarming tool of hypoxia to medical personnel at the bedside or in the observation center. However, it has never been used for direct stimulation of the wearer. We considered innovation of pulse-oximeter as a prophylactic alarm-oximeter for the wearer. If SPO2 goes down to unfavorable level, the alarm-oximeter starts to send signal through a control box to a stimulator, such as an electrical nerve stimulator, a cold thermal tip, or mechanical device like a vibrator or compressor. The dermal stimulator is usually fixed to the right or left wrist with a Velcro band. The control box is affixed to the wristband by using Velcro. The alarm may be sent to an earphone or speaker with a verbal command like "take a deep breath". Alarm-oximeter will be combined to an oxygen inhaler or mechanical ventilatory assist device, or a drug administration system through electric line or wireless transmitter to start or change its function before the arrival of medical personnel. It will prevent hypoxic mishaps during medical intervention or sleep apnea syndrome. It will be also applicable to stop snoring.

  2. The dependence on optical energy of terahertz emission from air plasma induced by two-color femtosecond laser-pulses

    NASA Astrophysics Data System (ADS)

    Wu, Si-Qing; Liu, Jin-Song; Wang, Sheng-Lie; Hu, Bing

    2013-10-01

    The generation of terahertz (THz) emission from air plasma induced by two-color femtosecond laser pulses is studied on the basis of a transient photocurrent model. While the gas is ionized by the two-color femtosecond laser-pulses composed of the fundamental and its second harmonic, a non-vanishing directional photoelectron current emerges, radiating a THz electromagnetic pulse. The gas ionization processes at three different laser-pulse energies are simulated, and the corresponding THz waveforms and spectra are plotted. The results demonstrate that, by keeping the laser-pulse width and the relative phase between two pulses invariant when the laser energy is at a moderate value, the emitted THz fields are significantly enhanced with a near-linear dependence on the optical energy.

  3. Effect of the stimulus frequency and pulse number of repetitive transcranial magnetic stimulation on the inter-reversal time of perceptual reversal on the right superior parietal lobule

    NASA Astrophysics Data System (ADS)

    Nojima, Kazuhisa; Ge, Sheng; Katayama, Yoshinori; Ueno, Shoogo; Iramina, Keiji

    2010-05-01

    The aim of this study is to investigate the effect of the stimulus frequency and pulses number of repetitive transcranial magnetic stimulation (rTMS) on the inter-reversal time (IRT) of perceptual reversal on the right superior parietal lobule (SPL). The spinning wheel illusion was used as the ambiguous figures stimulation in this study. To investigate the rTMS effect over the right SPL during perceptual reversal, 0.25 Hz 60 pulse, 1 Hz 60 pulse, 0.5 Hz 120 pulse, 1 Hz 120 pulse, and 1 Hz 240 pulse biphasic rTMS at 90% of resting motor threshold was applied over the right SPL and the right posterior temporal lobe (PTL), respectively. As a control, a no TMS was also conducted. It was found that rTMS on 0.25 Hz 60 pulse and 1 Hz 60 pulse applied over the right SPL caused shorter IRT. In contrast, it was found that rTMS on 1 Hz 240-pulse applied over the right SPL caused longer IRT. On the other hand, there is no significant difference between IRTs when the rTMS on 0.5 Hz 120 pulse and 1 Hz 120 pulse were applied over the right SPL. Therefore, the applying of rTMS over the right SPL suggests that the IRT of perceptual reversal is effected by the rTMS conditions such as the stimulus frequency and the number of pulses.

  4. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  5. Post-filamentation high-intensive light channels formation upon ultrashort laser pulses self-focusing in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemlyanov, A. A.

    2017-01-01

    Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.

  6. Design, development and validation of a new laryngo-pharyngeal endoscopic esthesiometer and range-finder based on the assessment of air-pulse variability determinants.

    PubMed

    Giraldo-Cadavid, Luis F; Agudelo-Otalora, Luis Mauricio; Burguete, Javier; Arbulu, Mario; Moscoso, William Daniel; Martínez, Fabio; Ortiz, Andrés Felipe; Diaz, Juan; Pantoja, Jaime A; Rueda-Arango, Andrés Felipe; Fernández, Secundino

    2016-05-10

    Laryngo-pharyngeal mechano-sensitivity (LPMS) is involved in dysphagia, sleep apnea, stroke, irritable larynx syndrome and cough hypersensitivity syndrome among other disorders. These conditions are associated with a wide range of airway reflex abnormalities. However, the current device for exploring LPMS is limited because it assesses only the laryngeal adductor reflex during fiber-optic endoscopic evaluations of swallowing and requires a high degree of expertise to obtain reliable results, introducing intrinsic expert variability and subjectivity. We designed, developed and validated a new air-pulse laryngo-pharyngeal endoscopic esthesiometer with a built-in laser range-finder (LPEER) based on the evaluation and control of air-pulse variability determinants and on intrinsic observer variability and subjectivity determinants of the distance, angle and site of stimulus impact. The LPEER was designed to be capable of delivering precise and accurate stimuli with a wide range of intensities that can explore most laryngo-pharyngeal reflexes. We initially explored the potential factors affecting the reliability of LPMS tests and included these factors in a multiple linear regression model. The following factors significantly affected the precision and accuracy of the test (P < 0.001): the tube conducting the air-pulses, the supply pressure of the system, the duration of the air-pulses, and the distance and angle between the end of the tube conducting the air-pulses and the site of impact. To control all of these factors, an LPEER consisting of an air-pulse generator and an endoscopic laser range-finder was designed and manufactured. We assessed the precision and accuracy of the LPEER's stimulus and range-finder according to the coefficient of variation (CV) and by looking at the differences between the measured properties and the desired values, and we performed a pilot validation on ten human subjects. The air-pulses and range-finder exhibited good precision and

  7. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials.

    PubMed

    Hannemann, P F W; Mommers, E H H; Schots, J P M; Brink, P R G; Poeze, M

    2014-08-01

    The aim of this systematic review and meta-analysis was to evaluate the best currently available evidence from randomized controlled trials comparing pulsed electromagnetic fields (PEMF) or low-intensity pulsed ultrasound (LIPUS) bone growth stimulation with placebo for acute fractures. We performed a systematic literature search of the medical literature from 1980 to 2013 for randomized clinical trials concerning acute fractures in adults treated with PEMF or LIPUS. Two reviewers independently determined the strength of the included studies by assessing the risk of bias according to the criteria in the Cochrane Handbook for Systematic Reviews of Interventions. Seven hundred and thirty-seven patients from 13 trials were included. Pooled results from 13 trials reporting proportion of nonunion showed no significant difference between PEMF or LIPUS and control. With regard to time to radiological union, we found heterogeneous results that significantly favoured PEMF or LIPUS bone growth stimulation only in non-operatively treated fractures or fractures of the upper limb. Furthermore, we found significant results that suggest that the use of PEMF or LIPUS in acute diaphyseal fractures may accelerate the time to clinical union. Current evidence from randomized trials is insufficient to conclude a benefit of PEMF or LIPUS bone growth stimulation in reducing the incidence of nonunions when used for treatment in acute fractures. However, our systematic review and meta-analysis suggest that PEMF or LIPUS can be beneficial in the treatment of acute fractures regarding time to radiological and clinical union. PEMF and LIPUS significantly shorten time to radiological union for acute fractures undergoing non-operative treatment and acute fractures of the upper limb. Furthermore, PEMF or LIPUS bone growth stimulation accelerates the time to clinical union for acute diaphyseal fractures.

  8. Air-coupled ultrasound stimulated optical vibrometry for resonance analysis of rubber tubes

    PubMed Central

    Zhang, Xiaoming; Kinnick, Randall R.; Greenleaf, James F.

    2008-01-01

    Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful in better understanding the coupling effects of surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo. PMID:18499208

  9. Air-coupled ultrasound stimulated optical vibrometry for resonance analysis of rubber tubes.

    PubMed

    Zhang, Xiaoming; Kinnick, Randall R; Greenleaf, James F

    2009-01-01

    Air-coupled ultrasound stimulated optical vibrometry is proposed to generate and detect the resonances of a rubber tube in air. Amplitude-modulated (AM) focused ultrasound radiation force from a broadband air-coupled ultrasound transducer with center frequency of 500 kHz is used to generate a low frequency vibration in the tube. The resonances of several modes of the tube are measured with a laser vibrometer of 633 nm wavelength. A wave propagation approach is used to calculate the resonances of the tube from its known material properties. Theoretical and experimental resonance frequencies agree within 5%. This method may be useful in measuring the in vitro elastic properties of arteries from the resonance measurements in air. It may also be helpful to better understand the coupling effects of the surrounding tissue and interior blood on the vessel wall by measuring the resonance of the vessel in vitro and in vivo.

  10. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  11. Fabrication of narrow pulse passively Q-switched self-stimulated Raman laser with c-cut Nd:GdVO4

    NASA Astrophysics Data System (ADS)

    Shen, Gao; Li, Zuo-han; Han, Ming

    2016-11-01

    Combining the self-stimulated Raman scattering technology and saturable absorber of Cr4+:YAG, a 1.17 μm c-cut Nd:GdVO4 picosecond Q-switched laser is demonstrated in this paper. With an incident pump power of 10 W, the Q-switched laser with average power of 430 mW for 1.17 μm, pulse width of 270 ps, repetition rate of 13 kHz and the first order Stokes conversion efficiency of 4.3% is obtained. The Q-switched pulse width can be the narrowest in our research. In addition, the yellow laser at 0.58 μm is also achieved by using the LiB3O5 frequency doubling crystal.

  12. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ayumu; Ohba, Hironori; Toshimitsu, Masaaki; Akaoka, Katsuaki; Ruas, Alexandre; Sakka, Tetsuo; Wakaida, Ikuo

    2018-04-01

    The decommissioning of the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi Nuclear Power Plant is an essential issue in nuclear R&D. Fiber-optic laser-induced breakdown spectroscopy (Fiber-optic LIBS) could be used for in-situ elemental analysis of the inside of the damaged reactors. To improve the performances under difficult conditions, using a long-pulse laser can be an efficient alternative. In this work, the emission spectra of zirconium metal in air obtained for a normal-pulse laser (6 ns) and a long-pulse laser (100 ns) (wavelength: 1064 nm, pulse energy: 12.5 mJ, spot diameter: 0.35 mm) are compared to investigate the fundamental aspects of fiber-optic LIBS with the long-pulse laser. The spectral features are considerably different: when the long-pulse laser is used, the atomic and molecular emission is remarkably enhanced. The enhancement of the atomic emission at the near infrared (NIR) region would lead to the observation of emission lines with minimum overlapping. To understand the differences in the spectra induced respectively from the normal-pulse laser and the long-pulse laser, photodiode signals, time-resolved spectra, plasma parameters, emission from the ambient air, and emission regions are investigated, showing the particular characteristics of the plasma produced by the long-pulse laser.

  13. Dynamics of ozone and OH radicals generated by pulsed corona discharge in humid-air flow reactor measured by laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Oda, Tetsuji

    2003-05-01

    The dynamics of ozone and OH radicals are studied in pulsed corona discharge plasma in a humid-air environment. Ozone density is measured by the laser absorption method, and OH density is measured by the laser-induced fluorescence (LIF) method. A 100-ns pulsed corona discharge occurs between a series of 25 needle electrodes and a plate electrode. After the pulsed discharge, the time evolutions of ozone and OH densities are measured in humid air or a humid nitrogen-oxygen mixture. Results show that the addition of 2.4% water vapor to dry air reduces ozone production by a factor of about 6, and shortens the ozone formation time constant from 30 to 6 μs. Water vapor may reduce atomic oxygen levels leading to the decreased production of ozone by O+O2 reaction. The LIF measurement for OH radicals shows that OH density is approximately constant for 10 μs after the pulsed discharge, then decays by recombination reaction and reactions with the discharge products of oxygen, such as ozone or atomic oxygen. Absolute OH density is estimated; it is about 3×1015 cm-3 in streamers at 10 μs after discharge in the H2O(2.4%)/N2 mixture.

  14. Intensity coding in electric hearing: effects of electrode configurations and stimulation waveforms.

    PubMed

    Chua, Tiffany Elise H; Bachman, Mark; Zeng, Fan-Gang

    2011-01-01

    Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were five Clarion cochlear implant users. For each subject, data from apical, middle, and basal electrode positions were collected when possible. Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen.

  15. Neuromuscular Electrical Stimulation for Skeletal Muscle Function

    PubMed Central

    Doucet, Barbara M.; Lam, Amy; Griffin, Lisa

    2012-01-01

    Lack of neural innervation due to neurological damage renders muscle unable to produce force. Use of electrical stimulation is a medium in which investigators have tried to find a way to restore movement and the ability to perform activities of daily living. Different methods of applying electrical current to modify neuromuscular activity are electrical stimulation (ES), neuromuscular electrical stimulation (NMES), transcutaneous electrical nerve stimulation (TENS), and functional electrical stimulation (FES). This review covers the aspects of electrical stimulation used for rehabilitation and functional purposes. Discussed are the various parameters of electrical stimulation, including frequency, pulse width/duration, duty cycle, intensity/amplitude, ramp time, pulse pattern, program duration, program frequency, and muscle group activated, and how they affect fatigue in the stimulated muscle. PMID:22737049

  16. Stimulated backward Raman scattering driven collectively by two picosecond laser pulses in a bi- or multi-speckle configuration

    NASA Astrophysics Data System (ADS)

    Glize, K.; Rousseaux, C.; Bénisti, D.; Dervieux, V.; Gremillet, L.; Baton, S. D.; Lancia, L.

    2017-03-01

    In this paper, we investigate, both experimentally and numerically, the backward stimulated Raman scattering (SRS) excited collectively by two laser pulses. The experiments have been carried out at the LULI facility using two co-propagating 1- μ m wavelength, 1.5- ps duration laser pulses focused in a preformed underdense plasma. A particular emphasis is laid on the configuration where the pulses are focused side-by-side, with a lateral distance of 80 - 90 μ m , but not simultaneously. It is experimentally demonstrated that a weak-intensity speckle, ineffective when fired alone in a preformed plasma, yields a significant SRS-induced reflectivity if launched a few picoseconds after a strong one. The data have been obtained by using both highly space-time resolved Thomson diagnostics and space-resolved SRS reflectivity measurements. By choosing either parallel or orthogonal polarizations for the two laser pulses, our experiments shed light on the role of either electrostatic or electromagnetic seeding in enhancing SRS from weak-intensity speckles. A major finding is that seeding operates over unexpectedly long times ( 15 - 20 ps under our experimental conditions). Similar results are obtained in lower-density plasmas, or when the weak pulse is smoothed by a random phase plate, thus leading to multiple speckle interaction, while the strong pulse is focused within the speckle pattern. The data are discussed with the help of particle-in-cell numerical simulations, which confirm the destabilizing effect of the strong pulse over the weak one after a short transient time.

  17. Cortico-cortical and motor evoked potentials to single and paired-pulse stimuli: An exploratory transcranial magnetic and intracranial electric brain stimulation study.

    PubMed

    Boulogne, Sébastien; Andre-Obadia, Nathalie; Kimiskidis, Vasilios K; Ryvlin, Philippe; Rheims, Sylvain

    2016-11-01

    Paired-pulse (PP) paradigms are commonly employed to assess in vivo cortical excitability using transcranial magnetic stimulation (TMS) to stimulate the primary motor cortex and modulate the induced motor evoked potential (MEP). Single-pulse cortical direct electrical stimulation (DES) during intracerebral EEG monitoring allows the investigation of brain connectivity by eliciting cortico-cortical evoked potentials (CCEPs). However, PP paradigm using intracerebral DES has rarely been reported and has never been previously compared with TMS. The work was intended (i) to verify that the well-established modulations of MEPs following PP TMS remain similar using DES in the motor cortex, and (ii) to evaluate if a similar pattern could be observed in distant cortico-cortical connections through modulations of CCEP. Three patients undergoing intracerebral EEG monitoring with electrodes implanted in the central region were studied. Single-pulse DES (1-3 mA, 1 ms, 0.2 Hz) and PP DES using six interstimulus intervals (5, 15, 30, 50, 100, and 200 ms) in the motor cortex with concomitant recording of CCEPs and MEPs in contralateral muscles were performed. Finally, a navigated PP TMS session targeted the intracranial stimulation site to record TMS-induced MEPs in two patients. MEP modulations elicited by PP intracerebral DES proved similar among the three patients and to those obtained by PP TMS. CCEP modulations elicited by PP intracerebral DES usually showed a pattern comparable to that of MEP, although a different pattern could be observed occasionally. PP intracerebral DES seems to involve excitatory and inhibitory mechanisms similar to PP TMS and allows the recording of intracortical inhibition and facilitation modulation on cortico-cortical connections. Hum Brain Mapp 37:3767-3778, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Specific CA3 neurons decode neural information of dentate granule cells evoked by paired-pulse stimulation in co-cultured networks.

    PubMed

    Poli, Daniele; DeMarse, Thomas B; Wheeler, Bruce C; Brewer, Gregory J

    2017-07-01

    CA3 and dentate gyrus (DG) neurons are cultured in two-chamber devices on multi-electrode arrays (MEAs) and connected via micro-tunnels. In order to evoke time-locked activity, paired-pulse stimulation is applied to 22 different sites and repeated 25 times in each well in 5 MEA co-cultures and results compared to CA3-CA3 and DG-DG networks homologous controls. In these hippocampal sub-regions, we focus on the mechanisms underpinning a network's ability to decode the identity of site specific stimulation from analysis of evoked network responses using a support vector machine classifier. Our results indicate that a pool of CA3 neurons is able to reliably decode the identity of DG stimulation site information.

  19. Propagation of intense short laser pulses in the atmosphere.

    PubMed

    Sprangle, P; Peñano, J R; Hafizi, B

    2002-10-01

    The propagation of short, intense laser pulses in the atmosphere is investigated theoretically and numerically. A set of three-dimensional (3D), nonlinear propagation equations is derived, which includes the effects of dispersion, nonlinear self-focusing, stimulated molecular Raman scattering, multiphoton and tunneling ionization, energy depletion due to ionization, relativistic focusing, and ponderomotively excited plasma wakefields. The instantaneous frequency spread along a laser pulse in air, which develops due to various nonlinear effects, is analyzed and discussed. Coupled equations for the power, spot size, and electron density are derived for an intense ionizing laser pulse. From these equations we obtain an equilibrium for a single optical-plasma filament, which involves a balancing between diffraction, nonlinear self-focusing, and plasma defocusing. The equilibrium is shown to require a specific distribution of power along the filament. It is found that in the presence of ionization a self-guided optical filament is not realizable. A method for generating a remote spark in the atmosphere is proposed, which utilizes the dispersive and nonlinear properties of air to cause a low-intensity chirped laser pulse to compress both longitudinally and transversely. For optimally chosen parameters, we find that the transverse and longitudinal focal lengths can be made to coincide, resulting in rapid intensity increase, ionization, and white light generation in a localized region far from the source. Coupled equations for the laser spot size and pulse duration are derived, which can describe the focusing and compression process in the low-intensity regime. More general examples involving beam focusing, compression, ionization, and white light generation near the focal region are studied by numerically solving the full set of 3D, nonlinear propagation equations.

  20. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  1. Effects of Pulse Shape and Polarity on Sensitivity to Cochlear Implant Stimulation: A Chronic Study in Guinea Pigs.

    PubMed

    Macherey, Olivier; Cazals, Yves

    2016-01-01

    Most cochlear implants (CIs) stimulate the auditory nerve with trains of symmetric biphasic pulses consisting of two phases of opposite polarity. Animal and human studies have shown that both polarities can elicit neural responses. In human CI listeners, studies have shown that at suprathreshold levels, the anodic phase is more effective than the cathodic phase. In contrast, animal studies usually show the opposite trend. Although the reason for this discrepancy remains unclear, computational modelling results have proposed that the degeneration of the peripheral processes of the neurons could lead to a higher efficiency of anodic stimulation. We tested this hypothesis in ten guinea pigs who were deafened with an injection of sysomycin and implanted with a single ball electrode inserted in the first turn of the cochlea. Animals were tested at regular intervals between 1 week after deafening and up to 1 year for some of them. Our hypothesis was that if the effect of polarity is determined by the presence or absence of peripheral processes, the difference in polarity efficiency should change over time because of a progressive neural degeneration. Stimuli consisted of charge-balanced symmetric and asymmetric pulses allowing us to observe the response to each polarity individually. For all stimuli, the inferior colliculus evoked potential was measured. Results show that the cathodic phase was more effective than the anodic phase and that this remained so even several months after deafening. This suggests that neural degeneration cannot entirely account for the higher efficiency of anodic stimulation observed in human CI listeners.

  2. Intensity coding in electric hearing: Effects of electrode configurations and stimulation waveforms

    PubMed Central

    Chua, Tiffany Elise H.; Bachman, Mark; Zeng, Fan-Gang

    2011-01-01

    Objectives Current cochlear implants typically stimulate the auditory nerve with biphasic pulses and monopolar electrode configurations. Tripolar stimulation can increase spatial selectivity and potentially improve place pitch related perception, but requires higher current levels to elicit the same loudness as monopolar stimulation. The present study combined delayed pseudomonophonasic pulses, which produce lower thresholds, with tripolar stimulation in an attempt to solve the power-performance tradeoff problem. Design The present study systematically measured thresholds, dynamic range, loudness growth, and intensity discrimination using either biphasic or delayed pseudomonophonasic pulses under both monopolar and tripolar stimulation. Participants were 5 Clarion cochlear implant users. For each subject, data from apical, middle and basal electrode positions were collected when possible. Results Compared with biphasic pulses, delayed pseudomonophonasic pulses increased the dynamic range by lowering thresholds while maintaining comparable maximum allowable levels under both electrode configurations. However, delayed pseudomonophonasic pulses did not change the shape of loudness growth function and actually increased intensity discrimination limens, especially at lower current levels. Conclusions The present results indicate that delayed pseudomonophonasic pulses coupled with tripolar stimulation cannot provide significant power savings, nor can it increase the functional dynamic range. Whether this combined stimulation could improve functional spectral resolution remains to be seen. PMID:21610498

  3. Variability and Reliability of Paired-Pulse Depression and Cortical Oscillation Induced by Median Nerve Stimulation.

    PubMed

    Onishi, Hideaki; Otsuru, Naofumi; Kojima, Sho; Miyaguchi, Shota; Saito, Kei; Inukai, Yasuto; Yamashiro, Koya; Sato, Daisuke; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2018-05-08

    Paired-pulse depression (PPD) has been widely used to investigate the functional profiles of somatosensory cortical inhibition. However, PPD induced by somatosensory stimulation is variable, and the reasons for between- and within-subject PPD variability remains unclear. Therefore, the purpose of this study was to clarify the factors influencing PPD variability induced by somatosensory stimulation. The study participants were 19 healthy volunteers. First, we investigated the relationship between the PPD ratio of each component (N20m, P35m, and P60m) of the somatosensory magnetic field, and the alpha, beta, and gamma band changes in power [event-related desynchronization (ERD) and event-related synchronization (ERS)] induced by median nerve stimulation. Second, because brain-derived neurotrophic factor (BDNF) gene polymorphisms reportedly influence the PPD ratio, we assessed whether BDNF genotype influences PPD ratio variability. Finally, we evaluated the test-retest reliability of PPD and the alpha, beta, and gamma ERD/ERS induced by somatosensory stimulation. Significant positive correlations were observed between the P60m_PPD ratio and beta power change, and the P60m_PPD ratio was significantly smaller for the beta ERD group than for the beta ERS group. P35m_PPD was found to be robust and highly reproducible; however, P60m_PPD reproducibility was poor. In addition, the ICC values for alpha, beta, and gamma ERD/ERS were 0.680, 0.760, and 0.552 respectively. These results suggest that the variability of PPD for the P60m deflection may be influenced by the ERD/ERS magnitude, which is induced by median nerve stimulation.

  4. Continuous-wave infrared optical nerve stimulation for potential diagnostic applications

    NASA Astrophysics Data System (ADS)

    Tozburun, Serhat; Cilip, Christopher M.; Lagoda, Gwen A.; Burnett, Arthur L.; Fried, Nathaniel M.

    2010-09-01

    Optical nerve stimulation using infrared laser radiation has recently been developed as a potential alternative to electrical nerve stimulation. However, recent studies have focused primarily on pulsed delivery of the laser radiation and at relatively low pulse rates. The objective of this study is to demonstrate faster optical stimulation of the prostate cavernous nerves using continuous-wave (cw) infrared laser radiation for potential diagnostic applications. A thulium fiber laser (λ=1870 nm) is used for noncontact optical stimulation of the rat prostate cavernous nerves in vivo. Optical nerve stimulation, as measured by an intracavernous pressure (ICP) response in the penis, is achieved with the laser operating in either cw mode, or with a 5-ms pulse duration at 10, 20, 30, 40, 50, and 100 Hz. Successful optical stimulation is observed to be primarily dependent on a threshold nerve temperature (42 to 45 °C), rather than an incident fluence, as previously reported. cw optical nerve stimulation provides a significantly faster ICP response time using a lower power (and also less expensive) laser than pulsed stimulation. cw optical nerve stimulation may therefore represent an alternative mode of stimulation for intraoperative diagnostic applications where a rapid response is critical, such as identification of the cavernous nerves during prostate cancer surgery.

  5. The effect of temperature on pulsed positive streamer discharges in air over the range 292 K–1438 K

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Ishikawa, Yuta

    2018-05-01

    The effect of temperature on pulsed positive streamer discharges in air is measured by comparing atmospheric-pressure, high-temperature discharges with low-pressure, room-temperature discharges at the same air densities n and discharge voltages. Both discharges have the same reduced electric field E/n, so the differences between the two discharges only depend on the temperature, which is varied from 292 K to 1438 K. Temperature affects the discharge pulse energy most significantly; at 1438 K, the energy of an atmospheric-pressure discharge pulse is approximately 30 times larger than that of the corresponding 20.5 kPa, room-temperature discharge. Temperature also affects the shapes of the streamers when K, but no significant effect is observed for K. There is also no significant temperature effect on the spatially integrated intensity of N2(C–B) emission. However, temperature strongly affects the ratio of the integrated emission intensity to the discharge energy. No effect of the temperature is observed on the propagation velocity of the primary streamer or on the length of the secondary streamer.

  6. Study on Decomposition of Indoor Air Contaminants by Pulsed Atmospheric Microplasma

    PubMed Central

    Shimizu, Kazuo; Kuwabara, Tomoya; Blajan, Marius

    2012-01-01

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm) after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment. PMID:23202173

  7. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation.

    PubMed

    Yamao, Yukihiro; Matsumoto, Riki; Kunieda, Takeharu; Arakawa, Yoshiki; Kobayashi, Katsuya; Usami, Kiyohide; Shibata, Sumiya; Kikuchi, Takayuki; Sawamoto, Nobukatsu; Mikuni, Nobuhiro; Ikeda, Akio; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-09-01

    The preservation of language function during brain surgery still poses a challenge. No intraoperative methods have been established to monitor the language network reliably. We aimed to establish intraoperative language network monitoring by means of cortico-cortical evoked potentials (CCEPs). Subjects were six patients with tumors located close to the arcuate fasciculus (AF) in the language-dominant left hemisphere. Under general anesthesia, the anterior perisylvian language area (AL) was first defined by the CCEP connectivity patterns between the ventrolateral frontal and temporoparietal area, and also by presurgical neuroimaging findings. We then monitored the integrity of the language network by stimulating AL and by recording CCEPs from the posterior perisylvian language area (PL) consecutively during both general anesthesia and awake condition. High-frequency electrical stimulation (ES) performed during awake craniotomy confirmed language function at AL in all six patients. Despite an amplitude decline (≤32%) in two patients, CCEP monitoring successfully prevented persistent language impairment. After tumor removal, single-pulse ES was applied to the white matter tract beneath the floor of the removal cavity in five patients, in order to trace its connections into the language cortices. In three patients in whom high-frequency ES of the white matter produced naming impairment, this "eloquent" subcortical site directly connected AL and PL, judging from the latencies and distributions of cortico- and subcortico-cortical evoked potentials. In conclusion, this study provided the direct evidence that AL, PL, and AF constitute the dorsal language network. Intraoperative CCEP monitoring is clinically useful for evaluating the integrity of the language network. Copyright © 2014 Wiley Periodicals, Inc.

  8. Encoding of the amplitude modulation of pulsatile electrical stimulation in the feline cochlear nucleus by neurons in the inferior colliculus; effects of stimulus pulse rate

    NASA Astrophysics Data System (ADS)

    McCreery, Douglas; Han, Martin; Pikov, Victor; Yadav, Kamal; Pannu, Satinderpall

    2013-10-01

    Objectives. Persons without a functional auditory nerve cannot benefit from cochlear implants, but some hearing can be restored by an auditory brainstem implant (ABI) with stimulating electrodes implanted on the surface of the cochlear nucleus (CN). Most users benefit from their ABI, but speech recognition tends to be poorer than for users of cochlear implants. Psychophysical studies suggest that poor modulation detection may contribute to the limited performance of ABI users. In a cat model, we determined how the pulse rate of the electrical stimulus applied within or on the CN affects temporal and rate encoding of amplitude modulation (AM) by neurons in the central nucleus of the inferior colliculus (ICC). Approach. Stimulating microelectrodes were implanted chronically in and on the cats' CN, and multi-site recording microelectrodes were implanted chronically into the ICC. Encoding of AM pulse trains by neurons in the ICC was characterized as vector strength (VS), the synchrony of neural activity with the AM, and as the mean rate of neuronal action potentials (neuronal spike rate (NSR)). Main results. For intranuclear microstimulation, encoding of AM as VS was up to 3 dB greater when stimulus pulse rate was increased from 250 to 500 pps, but only for neuronal units with low best acoustic frequencies, and when the electrical stimulation was modulated at low frequencies (10-20 Hz). For stimulation on the surface of the CN, VS was similar at 250 and 500 pps, and the dynamic range of the VS was reduced for pulse rates greater than 250 pps. Modulation depth was encoded strongly as VS when the maximum stimulus amplitude was held constant across a range of modulation depth. This ‘constant maximum’ protocol allows enhancement of modulation depth while preserving overall dynamic range. However, modulation depth was not encoded as strongly as NSR. Significance. The findings have implications for improved sound processors for present and future ABIs. The performance of

  9. Interactions between rewarding lateral hypothalamic and aversive nucleus reticularis gigantocellularis stimulation.

    PubMed

    Diotte, M; Miguelez, M; Miliaressis, E; Bielajew, C

    2000-12-05

    The interaction between rewarding and aversive consequences of brain stimulation were assessed in two studies. In the first, the frequency threshold for 300 ms trains of combined lateral hypothalamic (LH) and nucleus reticularis gigantocellularis (Gi) stimulation, in which each LH pulse was followed 2 ms later by the Gi one, was determined for one month. Compared to the threshold for trains of single LH pulses, combined LH-Gi stimulation initially increased the frequency threshold; however, this effect reversed within one session and was subsequently maintained for the duration of the study. The aversion produced by Gi stimulation, as measured by latency to escape, was abolished following a single session of LH-Gi pairs. In the second study, a subset of animals received both presentations of combined pulses, LH followed by Gi, and the reverse; the interval between pulses was varied from 0.2 to 6.4 ms. The effectiveness of combined stimulation, determined by the ratio of LH frequency thresholds to that of the LH-Gi ranged from 0 to 50% across animals but the individual effectiveness functions within animals did not vary with different intervals. In addition, the order of presentation of pulses was of no consequence. Thus, not only did exposure to LH stimulation appear to obliterate Gi aversion, but the combination of LH and Gi pulses added to the rewarding effect produced by LH stimulation alone.

  10. Highly sensitive protein detection by biospecific AFM-based fishing with pulsed electrical stimulation.

    PubMed

    Pleshakova, Tatyana O; Malsagova, Kristina A; Kaysheva, Anna L; Kopylov, Arthur T; Tatur, Vadim Yu; Ziborov, Vadim S; Kanashenko, Sergey L; Galiullin, Rafael A; Ivanov, Yuri D

    2017-08-01

    We report here the highly sensitive detection of protein in solution at concentrations from 10 -15 to 10 -18 m using the combination of atomic force microscopy (AFM) and mass spectrometry. Biospecific detection of biotinylated bovine serum albumin was carried out by fishing out the protein onto the surface of AFM chips with immobilized avidin, which determined the specificity of the analysis. Electrical stimulation was applied to enhance the fishing efficiency. A high sensitivity of detection was achieved by application of nanosecond electric pulses to highly oriented pyrolytic graphite placed under the AFM chip. A peristaltic pump-based flow system, which is widely used in routine bioanalytical assays, was employed throughout the analysis. These results hold promise for the development of highly sensitive protein detection methods using nanosensor devices.

  11. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  12. Observation of a new coherent transient in NMR -- nutational two-pulse stimulated echo in the angular distribution of γ-radiation from oriented nuclei

    NASA Astrophysics Data System (ADS)

    Shakhmuratova, L. N.; Hutchison, W. D.; Isbister, D. J.; Chaplin, D. H.

    1997-07-01

    A new coherent transient in pulsed NMR, the two-pulse nutational stimulated echo, is reported for the ferromagnetic system 60CoFe using resonant perturbations on the directional emission of anisotropic γ-radiation from thermally oriented nuclei. The new spin echo is a result of non-linear nuclear spin dynamics due to large Larmor inhomogeneity active during radiofrequency pulse application. It is made readily observable through the gross detuning between NMR radiofrequency excitation and gamma radiation detection, and inhomogeneity in the Rabi frequency caused by metallic skin-effect. The method of concatenation of perturbation factors in a statistical tensor formalism is quantitatively applied to successfully predict and then fit in detail the experimental time-domain data.

  13. Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance.

    PubMed

    Boinagrov, David; Lei, Xin; Goetz, Georges; Kamins, Theodore I; Mathieson, Keith; Galambos, Ludwig; Harris, James S; Palanker, Daniel

    2016-02-01

    Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.

  14. Generation of coherent magnons in NiO stimulated by EUV pulses from a seeded free-electron laser

    NASA Astrophysics Data System (ADS)

    Simoncig, A.; Mincigrucci, R.; Principi, E.; Bencivenga, F.; Calvi, A.; Foglia, L.; Kurdi, G.; Matruglio, A.; Dal Zilio, S.; Masciotti, V.; Lazzarino, M.; Masciovecchio, C.

    2017-12-01

    The full comprehension of magnetic phenomena at the femtosecond (fs) time scale is of high demand for current material science and technology. Here we report the observation of coherent collective modes in the antiferromagnetic insulator nickel oxide (NiO) identified by a frequency of 0.86 THz, which matches the expected out-of-plane single-mode magnon resonance. Such collective excitations are inelastically stimulated by extreme ultraviolet (EUV) pulses delivered by a seeded free-electron laser (FEL) and subsequently revealed probing the transient optical activity of NiO looking at the Faraday effect. Moreover, the unique capability of the employed FEL source to deliver circularly polarized pulses allows us to demonstrate optomagnetic control of such collective modes at EUV photon energies. These results may set a starting point for future investigations of magnetic materials at time scales comparable or faster than those typical of exchange interactions.

  15. Experimental establishment of the erosion nature of the pulsed low-threshold optical breakdown of air near the surface

    NASA Astrophysics Data System (ADS)

    Min'ko, L. Ia.; Chumakov, A. N.; Chivel', Iu. A.

    1988-08-01

    Nanosecond kinetic spectroscopy methods are used to establish the erosion nature of the pulsed low-threshold optical breakdown of air near the surface upon exposure of certain metals (indium, lead) to microsecond neodymium and CO2 laser radiation. It is shown that this optical breakdown of air by CO2 laser radiation is accompanied by the formation of a plasma spectrum which is optically thin in the visible range.

  16. Asleep Deep Brain Stimulation Reduces Incidence of Intracranial Air during Electrode Implantation.

    PubMed

    Ko, Andrew L; Magown, Philippe; Ozpinar, Alp; Hamzaoglu, Vural; Burchiel, Kim J

    2018-05-30

    Asleep deep brain stimulation (aDBS) implantation replaces microelectrode recording for image-guided implantation, shortening the operative time and reducing cerebrospinal fluid egress. This may decrease pneumocephalus, thus decreasing brain shift during implantation. To compare the incidence and volume of pneumocephalus during awake (wkDBS) and aDBS procedures. A retrospective review of bilateral DBS cases performed at Oregon Health & Science University from 2009 to 2017 was undertaken. Postimplantation imaging was reviewed to determine the presence and volume of intracranial air and measure cortical brain shift. Among 371 patients, pneumocephalus was noted in 66% of wkDBS and 15.6% of aDBS. The average volume of air was significantly higher in wkDBS than aDBS (8.0 vs. 1.8 mL). Volumes of air greater than 7 mL, which have previously been linked to brain shift, occurred significantly more frequently in wkDBS than aDBS (34 vs 5.6%). wkDBS resulted in significantly larger cortical brain shifts (5.8 vs. 1.2 mm). We show that aDBS reduces the incidence of intracranial air, larger air volumes, and cortical brain shift. Large volumes of intracranial air have been correlated to shifting of brain structures during DBS procedures, a variable that could impact accuracy of electrode placement. © 2018 S. Karger AG, Basel.

  17. Mimicking muscle activity with electrical stimulation

    NASA Astrophysics Data System (ADS)

    Johnson, Lise A.; Fuglevand, Andrew J.

    2011-02-01

    Functional electrical stimulation is a rehabilitation technology that can restore some degree of motor function in individuals who have sustained a spinal cord injury or stroke. One way to identify the spatio-temporal patterns of muscle stimulation needed to elicit complex upper limb movements is to use electromyographic (EMG) activity recorded from able-bodied subjects as a template for electrical stimulation. However, this requires a transfer function to convert the recorded (or predicted) EMG signals into an appropriate pattern of electrical stimulation. Here we develop a generalized transfer function that maps EMG activity into a stimulation pattern that modulates muscle output by varying both the pulse frequency and the pulse amplitude. We show that the stimulation patterns produced by this transfer function mimic the active state measured by EMG insofar as they reproduce with good fidelity the complex patterns of joint torque and joint displacement.

  18. Transcranial electric stimulation for intraoperative motor evoked potential monitoring: dependence of required stimulation current on interstimulus interval value.

    PubMed

    Joksimovic, Boban; Szelenyi, Andrea; Seifert, Volker; Damjanovic, Aleksandar; Damjanovic, Aleksandra; Rasulic, Lukas

    2015-05-01

    To evaluate the relationship between stimulus intensity by constant current transcranial electric stimulation and interstimulus interval (ISI) for eliciting muscle motor evoked potentials (MEPs) in three different hand muscles and the tibialis anterior muscles. We tested intraoperatively different monophasic constant current pulses and ISIs in 22 patients with clinically normal motor function. Motor thresholds of contralateral muscle MEPs were determined at 0.5 milliseconds (ms) pulse duration and ISIs of 1, 2, 3, 4, 5, and 10 ms using a train of 2, 3, and 5 monophasic constant current pulses of 62 to 104 mA before craniotomy and after closure of the dura mater. The lowest stimulation threshold to elicit MEPs in the examined muscles was achieved with a train of 5 pulses (ISI: 3 ms) before craniotomy, which was statistically significant compared with 2 pulses (ISI: 3 ms) as well as 3 pulses (ISIs: 3 and 10 ms). An ISI of 3 ms gave the lowest motor thresholds with statistical significance compared with the ISIs of 4 ms (2 pulses) and of 1 ms (3 pulses). All current intensity (mA) and ISI (ms) relationship graphs had a trend of the exponential function as y = a + bx + c ρ (x), where y is intensity (mA) and x is ISI (ms). The minimum of the function was determined for each patient and each muscle. The difference was statistically significant between 3 and 5 pulses before craniotomy and between 3 and 5 pulses and 2 and 5 pulses after closure of the dura mater. In adult neurosurgical patients with a normal motor status, a train of 5 pulses and an ISI of 3 ms provide the lowest motor thresholds. We provided evidence of the dependence of required stimulation current on ISI. Georg Thieme Verlag KG Stuttgart · New York.

  19. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-15

    In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. EFFECTS OF LASER RADIATION ON MATTER: Efficient surface-erosion plasma formation in air due to the action of pulse-periodic laser radiation

    NASA Astrophysics Data System (ADS)

    Min'ko, L. Ya; Chumakou, A. N.; Bosak, N. A.

    1990-11-01

    A study was made of the interaction of a series of periodic laser (λ = 1.06 μm) pulses with a number of materials (aluminum, copper, graphite, ebonite) in air at laser radiation power densities q = 107-109 W/cm2 and repetition frequencies f<=50 kHz. The radiation was concentrated in spots of ~ 10 - 2 cm2 area. Efficient formation of plasma as a result of laser erosion (q > 2 × 108 W/cm2, f>=5 kHz) was observed. A screening layer of an air plasma created by the first pulse of the series was expelled from the interaction zone and this was followed by erosion plasma formation under conditions of slight screening of the target during the action of the subsequent laser pulses.

  1. Spinal cord stimulation for the treatment of chronic back pain patients: 500-Hz vs. 1000-Hz burst stimulation.

    PubMed

    Van Havenbergh, Tony; Vancamp, Tim; Van Looy, Pieter; Vanneste, Sven; De Ridder, Dirk

    2015-01-01

    Spinal cord stimulation is a commonly used, safe, and effective procedure applied for medically intractable failed back surgery syndrome, as well as other neuropathic pain syndromes. Recently, a novel stimulation paradigm called burst stimulation has been developed that is paresthesia-free and has a more pronounced suppressive effect on neuropathic pain. Fifteen patients who were being treated with burst spinal cord stimulation for failed back surgery syndrome participated in an open-label trial to verify whether their pain suppression could be further ameliorated by changing the burst pattern. Burst stimulation with packets of five electrical pulses delivered at 500 Hz with 1000-μsec pulse width 40 times per second was changed to burst mode delivering five spikes at 1000 Hz with 500-μsec pulse width 40 times a second. As the amplitudes did not differ between the two groups, the total delivery of current to the spinal cord was not different between the two modes of burst stimulation. Scores on visual analog scales for pain and paresthesia, the Pain Catastrophizing Scale, the Pain Vigilance and Awareness Questionnaire, and the Short Form 36 quality of life measurement were compared between the two modes of burst stimulation. [Correction added on 06 Feb 2015, after first online publication: this paragraph has been revised to signify the comparison of amplitudes between two groups] No statistically significant differences were found between the two modes of stimulation. The results suggest that increasing the frequency from 500 to 1000 Hz while keeping the pulse width constant does not add any extra benefit in suppressing pain. Further studies should verify whether increasing the frequency above 1000 Hz has a similar lack of effect. © 2014 International Neuromodulation Society.

  2. Exploring the contributions of the supplementary eye field to subliminal inhibition using double-pulse transcranial magnetic stimulation.

    PubMed

    Chiau, Hui-Yan; Muggleton, Neil G; Juan, Chi-Hung

    2017-01-01

    It is widely accepted that the supplementary eye fields (SEF) are involved in the control of voluntary eye movements. However, recent evidence suggests that SEF may also be important for unconscious and involuntary motor processes. Indeed, Sumner et al. ([2007]: Neuron 54:697-711) showed that patients with micro-lesions of the SEF demonstrated an absence of subliminal inhibition as evoked by masked-prime stimuli. Here, we used double-pulse transcranial magnetic stimulation (TMS) in healthy volunteers to investigate the role of SEF in subliminal priming. We applied double-pulse TMS at two time windows in a masked-prime task: the first during an early phase, 20-70 ms after the onset of the mask but before target presentation, during which subliminal inhibition is present; and the second during a late phase, 20-70 ms after target onset, during which the saccade is being prepared. We found no effect of TMS with the early time window of stimulation, whereas a reduction in the benefit of an incompatible subliminal prime stimulus was found when SEF TMS was applied at the late time window. These findings suggest that there is a role for SEF related to the effects of subliminal primes on eye movements, but the results do not support a role in inhibiting the primed tendency. Hum Brain Mapp 38:339-351, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Coupling BCI and cortical stimulation for brain-state-dependent stimulation: methods for spectral estimation in the presence of stimulation after-effects

    PubMed Central

    Walter, Armin; Murguialday, Ander R.; Rosenstiel, Wolfgang; Birbaumer, Niels; Bogdan, Martin

    2012-01-01

    Brain-state-dependent stimulation (BSDS) combines brain-computer interfaces (BCIs) and cortical stimulation into one paradigm that allows the online decoding for example of movement intention from brain signals while simultaneously applying stimulation. If the BCI decoding is performed by spectral features, stimulation after-effects such as artefacts and evoked activity present a challenge for a successful implementation of BSDS because they can impair the detection of targeted brain states. Therefore, efficient and robust methods are needed to minimize the influence of the stimulation-induced effects on spectral estimation without violating the real-time constraints of the BCI. In this work, we compared four methods for spectral estimation with autoregressive (AR) models in the presence of pulsed cortical stimulation. Using combined EEG-TMS (electroencephalography-transcranial magnetic stimulation) as well as combined electrocorticography (ECoG) and epidural electrical stimulation, three patients performed a motor task using a sensorimotor-rhythm BCI. Three stimulation paradigms were varied between sessions: (1) no stimulation, (2) single stimulation pulses applied independently (open-loop), or (3) coupled to the BCI output (closed-loop) such that stimulation was given only while an intention to move was detected using neural data. We found that removing the stimulation after-effects by linear interpolation can introduce a bias in the estimation of the spectral power of the sensorimotor rhythm, leading to an overestimation of decoding performance in the closed-loop setting. We propose the use of the Burg algorithm for segmented data to deal with stimulation after-effects. This work shows that the combination of BCIs controlled with spectral features and cortical stimulation in a closed-loop fashion is possible when the influence of stimulation after-effects on spectral estimation is minimized. PMID:23162436

  4. A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation.

    PubMed

    Dong, Xiaoxi; Liu, Tianjun; Wang, Han; Yang, Jichun; Chen, Zhuying; Hu, Yong; Li, Yingxin

    2017-07-01

    This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50-55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50-55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order

  5. Tunable picosecond infrared pulses generated by stimulated electronic Raman scattering of a mode-locked Ti:Sapphire laser in potassium vapor

    NASA Astrophysics Data System (ADS)

    Ohde, H.; Lin, S.; Minoh, A.; Shimizu, F. O.; Aono, M.; Suzuki, T.

    1996-01-01

    A down-conversion to the mid-infrared region by using Stimulated Electronic Raman Scattering (SERS) in potassium vapor is described. The pump radiation is a frequency-doubled regeneratively amplified Ti:Sapphire laser with a pulse duration of 2 ps, pulse energy of 0.2 mJ, and repetition rate of 10 Hz. With the pumping frequency tuned around the potassium 4 s-5 p transition, nearly transform-limited infrared radiation tunable between 2.2 and 3.4 μm has been generated with a peak infrared energy of 12 µJ, corresponding to a quantum efficiency of 17%, and with a pulse duration of 2 ps. The present tuning range could be extended by extending the tuning range of the pump laser. In comparison, intense infrared radiation of 90 µJ energy but with a very narrow tunability around 2.9 μm has also been generated by SERS in barium vapor.

  6. Stimulation of the cochlea using green laser light

    NASA Astrophysics Data System (ADS)

    Wenzel, G. I.; Balster, S.; Lim, H. H.; Zhang, K.; Reich, U.; Lubatschowski, H.; Ertmer, W.; Lenarz, T.; Reuter, G.

    2009-02-01

    The success of conventional hearing aids and electrical cochlear implants have generally been limited to hearing in quiet situations, in part due to a lack of localized (i.e., frequency specificity) sensorineural activation and subsequent impaired speech discrimination in noise. Laser light is a source of energy that can be focused in a controlled manner and may provide more localized activation of the inner ear, the cochlea. Compound action potentials have been elicited using 2.12 µm laser pulses through activation of auditory nerve fibers (Izzo et al. 2006). Laser stimulation (813 nm) of the cochlea has shown to induce basilar membrane motion and cochlear microphonic potentials (Fridberger et al. 2006). We sought to assess if visible light (green, 532 nm, 10 ns pulses) could be used to consistently activate the cochlea. The laser parameters were selected based on our initial attempt to induce an optoacoustic effect as the energy transfer mechanism to the cochlea. Click evoked auditory brainstem responses (AABRs) were recorded preoperatively in ketamine-anesthetized guinea pigs to confirm normal hearing. The bulla and then the cochlea were exposed. Optically evoked ABRs (OABR) were recorded in response to laser stimulation with a 50 µm optical fiber (532 nm, 10 ns pulses, 500 repetitions, 10 pulses/s; Nd:YAG laser) at the round window (RW) directed towards the basilar membrane (BM). OABRs similar in morphology to acoustically evoked ABRs, except for shorter latencies, were obtained for stimulation through the RW with energy levels between 1.7-30 µJ/pulse. The OABRs increased with increasing energy level reaching a saturation level around 13-15 µJ/pulse. Furthermore the responses remained consistent across stimulation over time, including stimulation at 13 µJ/pulse for over 30 minutes, indicating minimal or no damage within the cochlea with this type of laser stimulation. Overall we have demonstrated that laser light stimulation with 532 nm has

  7. Modeling of nanosecond pulsed laser processing of polymers in air and water

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon

    2018-07-01

    Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in air. Plasma expansion velocities are much lower in water than in air. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.

  8. Air-guided photonic-crystal-fiber pulse-compression delivery of multimegawatt femtosecond laser output for nonlinear-optical imaging and neurosurgery

    NASA Astrophysics Data System (ADS)

    Lanin, Aleksandr A.; Fedotov, Il'ya V.; Sidorov-Biryukov, Dmitrii A.; Doronina-Amitonova, Lyubov V.; Ivashkina, Olga I.; Zots, Marina A.; Sun, Chi-Kuang; Ömer Ilday, F.; Fedotov, Andrei B.; Anokhin, Konstantin V.; Zheltikov, Aleksei M.

    2012-03-01

    Large-core hollow photonic-crystal fibers (PCFs) are shown to enable a fiber-format air-guided delivery of ultrashort infrared laser pulses for neurosurgery and nonlinear-optical imaging. With an appropriate dispersion precompensation, an anomalously dispersive 15-μm-core hollow PCF compresses 510-fs, 1070-nm light pulses to a pulse width of about 110 fs, providing a peak power in excess of 5 MW. The compressed PCF output is employed to induce a local photodisruption of corpus callosum tissues in mouse brain and is used to generate the third harmonic in brain tissues, which is captured by the PCF and delivered to a detector through the PCF cladding.

  9. A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study.

    PubMed

    Almeida, Leonardo; Martinez-Ramirez, Daniel; Ahmed, Bilal; Deeb, Wissam; Jesus, Sol De; Skinner, Jared; Terza, Matthew J; Akbar, Umer; Raike, Robert S; Hass, Chris J; Okun, Michael S

    2017-04-01

    Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. To assess safety and tolerability of square biphasic DBS in dystonia patients. This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ 2  = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.

  10. Tickling the retina: integration of subthreshold electrical pulses can activate retinal neurons

    NASA Astrophysics Data System (ADS)

    Sekhar, S.; Jalligampala, A.; Zrenner, E.; Rathbun, D. L.

    2016-08-01

    Objective. The field of retinal prosthetics has made major progress over the last decade, restoring visual percepts to people suffering from retinitis pigmentosa. The stimulation pulses used by present implants are suprathreshold, meaning individual pulses are designed to activate the retina. In this paper we explore subthreshold pulse sequences as an alternate stimulation paradigm. Subthreshold pulses have the potential to address important open problems such as fading of visual percepts when patients are stimulated at moderate pulse repetition rates and the difficulty in preferentially stimulating different retinal pathways. Approach. As a first step in addressing these issues we used Gaussian white noise electrical stimulation combined with spike-triggered averaging to interrogate whether a subthreshold sequence of pulses can be used to activate the mouse retina. Main results. We demonstrate that the retinal network can integrate multiple subthreshold electrical stimuli under an experimental paradigm immediately relevant to retinal prostheses. Furthermore, these characteristic stimulus sequences varied in their shape and integration window length across the population of retinal ganglion cells. Significance. Because the subthreshold sequences activate the retina at stimulation rates that would typically induce strong fading (25 Hz), such retinal ‘tickling’ has the potential to minimize the fading problem. Furthermore, the diversity found across the cell population in characteristic pulse sequences suggests that these sequences could be used to selectively address the different retinal pathways (e.g. ON versus OFF). Both of these outcomes may significantly improve visual perception in retinal implant patients.

  11. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. Themore » elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.« less

  12. Technique of electrical stimulation of the vestibular analyzer under clinical conditions

    NASA Technical Reports Server (NTRS)

    Khechinashvili, S. N.; Zargaryan, B. M.; Karakozov, K. G.

    1980-01-01

    Vestibular reactions appear under the action of direct current (dc) on the labyrinth of man and animals. A decrease of the stimulation effect of dc on the extralabyrinthine nervous formations in the suggested method is achieved by the use of electric pulses with steep front and back parts, as well as by previous anesthetization of the skin in the electrode application area by means of novocain solution electrophoresis. For this purpose a pulse producer giving trapezoid pulses with smoothly changing fronts and duration was constructed. With the help of an interrupter it is possible to stop the current increase instantly, and stimulation is performed at the level of the pulse 'plateau'. To induce vestibular reactions under monopolar stimulation, it is necessary to apply the current twice as high as that with bipolar electrode position. The use of short pulses with steep front and back parts for electrode stimulation of the vestibular analyzer is considered to be inexpedient.

  13. Measuring biogeochemical responses to pulses of water

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-05-01

    Hydrologic pulses, temporary increases in water inputs such as bouts of precipitation, can affect biogeochemical processes in ecosystems by providing water and nutrient resources. However, ecosystem responses to the water vary. Harms and Grimm conducted experiments to determine how hydrologic pulses and existing moisture conditions interact to affect the biogeochemistry of desert floodplains. During dry and monsoon seasons at their study site in the floodplains of the San Pedro River in Arizona, the researchers experimentally added pulses of water and then measured emissions of several trace gases that are indicators of biological processes. They found that the size of the added hydrologic pulse strongly interacted with existing soil moisture conditions in determining emissions of some trace gases. For instance, following dry conditions, pulses of water stimulated carbon dioxide, methane, and nitric oxide emissions, with larger water pulses stimulating more emissions. However, when soil was already wet, the addition of water pulses had less effect on the emission of these gases. (Journal of Geophysical Research-Biogeosciences, doi:10.1029/2011JG001775, 2012)

  14. Filamentation in Air with Ultrashort Mid-Infrared Pulses

    DTIC Science & Technology

    2011-05-09

    remote sensing [11, 12], lightning guiding [13–15], supercontinuum generation ( SCG ) [16], pulse compression [17], and THz generation [18]. Although...shock) and push the pulse toward positive times [23, 24, 46, 54, 55] [see Fig. 3(a) at ζ = 0.6]. Subsequently, the pulse collapses at ζ = 0.9, and SCG

  15. Signal and response properties indicate an optoacoustic effect underlying the intra-cochlear laser-optical stimulation

    NASA Astrophysics Data System (ADS)

    Kallweit, Nicole; Baumhoff, Peter; Krueger, Alexander; Tinne, Nadine; Heisterkamp, Alexander; Kral, Andrej; Maier, Hannes; Ripken, Tammo

    2016-02-01

    Optical cochlea stimulation is under investigation as a potential alternative to conventional electric cochlea implants in treatment of sensorineural hearing loss. If direct optical stimulation of spiral ganglion neurons (SGNs) would be feasible, a smaller stimulation volume and, therefore, an improved frequency resolution could be achieved. However, it is unclear whether the mechanism of optical stimulation is based on direct neuronal stimulation or on optoacoustics. Animal studies on hearing vs. deafened guinea pigs already identified the optoacoustic effect as potential mechanism for intra-cochlear optical stimulation. In order to characterize the optoacoustic stimulus more thoroughly the acoustic signal along the beam path of a pulsed laser in water was quantified and compared to the neuronal response properties of hearing guinea pigs stimulated with the same laser parameters. Two pulsed laser systems were used for analyzing the influence of variable pulse duration, pulse energy, pulse peak power and absorption coefficient. Preliminary results of the experiments in water and in vivo suggesta similar dependency of response signals on the applied laser parameters: Both datasets show an onset and offset signal at the beginning and the end of the laser pulse. Further, the resulting signal amplitude depends on the pulse peak power as well as the temporal development of the applied laser pulse. The data indicates the maximum of the first derivative of power as the decisive factor. In conclusion our findings strengthen the hypothesis of optoacoustics as the underlying mechanism for optical stimulation of the cochlea.

  16. Effects of air-pulsed cryotherapy on neuromuscular recovery subsequent to exercise-induced muscle damage.

    PubMed

    Guilhem, Gaël; Hug, François; Couturier, Antoine; Regnault, Stéphanie; Bournat, Laure; Filliard, Jean-Robert; Dorel, Sylvain

    2013-08-01

    Localized cooling has been proposed as an effective strategy to limit the deleterious effects of exercise-induced muscle damage on neuromuscular function. However, the literature reports conflicting results. This randomized controlled trial aimed to determine the effects of a new treatment, localized air-pulsed cryotherapy (-30°C), on the recovery time-course of neuromuscular function following a strenuous eccentric exercise. Controlled laboratory study. A total of 24 participants were included in either a control group (CONT) or a cryotherapy group (CRYO). Immediately after 3 sets of 20 maximal isokinetic eccentric contractions of elbow flexors, and then 1, 2, and 3 days after exercise, the CRYO group received a cryotherapy treatment (3 × 4 minutes at -30°C separated by 1 minute). The day before and 1, 2, 3, 7, and 14 days after exercise, several parameters were quantified: maximal isometric torque and its associated maximal electromyographic activity recorded by a 64-channel electrode, delayed-onset muscle soreness (DOMS), biceps brachii transverse relaxation time (T2) measured using magnetic resonance imaging, creatine kinase activity, interleukin-6, and C-reactive protein. Maximal isometric torque decreased similarly for the CONT (-33% ± 4%) and CRYO groups (-31% ± 6%). No intergroup differences were found for DOMS, electromyographic activity, creatine kinase activity, and T2 level averaged across the whole biceps brachii. C-reactive protein significantly increased for CONT (+93% at 72 hours, P < .05) but not for CRYO. Spatial analysis showed that cryotherapy delayed the significant increase of T2 and the decrease of electromyographic activity level for CRYO compared with CONT (between day 1 and day 3) in the medio-distal part of the biceps brachii. Although some indicators of muscle damage after severe eccentric exercise were delayed (ie, local formation of edema and decrease of muscle activity) by repeated air-pulsed cryotherapy, we provide evidence that

  17. Stimulation of waste decomposition in an old landfill by air injection.

    PubMed

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli

    2016-12-01

    Three pilot-scale lysimeters were operated for 4.5years to quantify the change in the carbon and nitrogen pool in an old landfill under various air injection conditions. The results indicate that air injection at the bottom layer facilitated homogeneous distribution of oxygen in the waste matrix. Substantial total organic carbon (TOC) decomposition and methane generation reduction were achieved. Considerable amount of nitrogen was removed, suggesting that in situ nitrogen removal via the effective simultaneous nitrification and denitrification mechanism is viable. Moreover, material mass change measurements revealed a slight mass reduction of aged MSW (by approximately 4.0%) after 4.5years of aeration. Additionally, experiments revealed that intensive aeration during the final stage of the experiment did not further stimulate the degradation of the aged MSW. Therefore, elimination of the labile fraction of aged MSW should be considered the objective of in situ aeration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pulse Shape Correlation for Laser Detection and Ranging (LADAR)

    DTIC Science & Technology

    2010-03-01

    with the incoming measured laser pulse [3]. All of these shapes are symmetric. Siegman and Liu’s findings indicate that the pulse is seldom symmetric...of Engineering, Air Force Institute of Technology (AETC), Wright Pat- terson AFB, OH, March 2007. 10. Siegman , Anthony E. Lasers . University Science...Pulse Shape Correlation for Laser Detection and Ranging (LADAR) THESIS Brian T. Deas, Major, USAF AFIT/GE/ENG/10-07 DEPARTMENT OF THE AIR FORCE AIR

  19. Towards a Switched-Capacitor Based Stimulator for Efficient Deep-Brain Stimulation

    PubMed Central

    Vidal, Jose; Ghovanloo, Maysam

    2013-01-01

    We have developed a novel 4-channel prototype stimulation circuit for implantable neurological stimulators (INS). This Switched-Capacitor based Stimulator (SCS) aims to utilize charge storage and charge injection techniques to take advantage of both the efficiency of conventional voltage-controlled stimulators (VCS) and the safety and controllability of current-controlled stimulators (CCS). The discrete SCS prototype offers fine control over stimulation parameters such as voltage, current, pulse width, frequency, and active electrode channel via a LabVIEW graphical user interface (GUI) when connected to a PC through USB. Furthermore, the prototype utilizes a floating current sensor to provide charge-balanced biphasic stimulation and ensure safety. The stimulator was analyzed using an electrode-electrolyte interface (EEI) model as well as with a pair of pacing electrodes in saline. The primary motivation of this research is to test the feasibility and functionality of a safe, effective, and power-efficient switched-capacitor based stimulator for use in Deep Brain Stimulation. PMID:21095987

  20. Mechanism of orientation of stimulating currents in magnetic brain stimulation (abstract)

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Matsuda, T.

    1991-04-01

    We made a functional map of the human motor cortex related to the hand and foot areas by stimulating the human brain with a focused magnetic pulse. We observed that each functional area in the cortex has an optimum direction for which stimulating currents can produce neural excitation. The present report focuses on the mechanism which is responsible for producing this anisotropic response to brain stimulation. We first obtained a functional map of the brain related to the left ADM (abductor digiti minimi muscles). When the stimulating currents were aligned in the direction from the left to the right hemisphere, clear EMG (electromyographic) responses were obtained only from the left ADM to magnetic stimulation of both hemisphere. When the stimulating currents were aligned in the direction from the right to the left hemisphere, clear EMG signals were obtained only from the right ADM to magnetic stimulation of both hemisphere. The functional maps of the brain were sensitive to changes in the direction of the stimulating currents. To explain the phenomena obtained in the experiments, we developed a model of neural excitation elicited by magnetic stimulation. When eddy currents which are induced by pulsed magnetic fields flow in the direction from soma to the distal part of neural fiber, depolarized area in the distal part are excited, and the membrane excitation propagates along the nerve fiber. In contrast, when the induced currents flow in the direction from the distal part to soma, hyperpolarized parts block or inhibit neural excitation even if the depolarized parts near the soma can be excited. The model explains our observation that the orientation of the induced current vectors reflect both the functional and anatomical organization of the neural fibers in the brain.

  1. Upper stimulation threshold for retinal ganglion cell activation.

    PubMed

    Meng, Kevin; Fellner, Andreas; Rattay, Frank; Ghezzi, Diego; Meffin, Hamish; Ibbotson, Michael R; Kameneva, Tatiana

    2018-08-01

    The existence of an upper threshold in electrically stimulated retinal ganglion cells (RGCs) is of interest because of its relevance to the development of visual prosthetic devices, which are designed to restore partial sight to blind patients. The upper threshold is defined as the stimulation level above which no action potentials (direct spikes) can be elicited in electrically stimulated retina. We collected and analyzed in vitro recordings from rat RGCs in response to extracellular biphasic (anodic-cathodic) pulse stimulation of varying amplitudes and pulse durations. Such responses were also simulated using a multicompartment model. We identified the individual cell variability in response to stimulation and the phenomenon known as upper threshold in all but one of the recorded cells (n  =  20/21). We found that the latencies of spike responses relative to stimulus amplitude had a characteristic U-shape. In silico, we showed that the upper threshold phenomenon was observed only in the soma. For all tested biphasic pulse durations, electrode positions, and pulse amplitudes above lower threshold, a propagating action potential was observed in the distal axon. For amplitudes above the somatic upper threshold, the axonal action potential back-propagated in the direction of the soma, but the soma's low level of hyperpolarization prevented action potential generation in the soma itself. An upper threshold observed in the soma does not prevent spike conductance in the axon.

  2. Stimulation of the human auditory nerve with optical radiation

    NASA Astrophysics Data System (ADS)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  3. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study

    NASA Astrophysics Data System (ADS)

    Mercadal, Borja; Arena, Christopher B.; Davalos, Rafael V.; Ivorra, Antoni

    2017-10-01

    Electroporation based treatments consist in applying one or multiple high voltage pulses to the tissues to be treated. As an undesired side effect, these pulses cause electrical stimulation of excitable tissues such as nerves and muscles. This increases the complexity of the treatments and may pose a risk to the patient. To minimize electrical stimulation during electroporation based treatments, it has been proposed to replace the commonly used monopolar pulses by bursts of short bipolar pulses. In the present study, we have numerically analyzed the rationale for such approach. We have compared different pulsing protocols in terms of their electroporation efficacy and their capability of triggering action potentials in nerves. For that, we have developed a modeling framework that combines numerical models of nerve fibers and experimental data on irreversible electroporation. Our results indicate that, by replacing the conventional relatively long monopolar pulses by bursts of short bipolar pulses, it is possible to ablate a large tissue region without triggering action potentials in a nearby nerve. Our models indicate that this is possible because, as the pulse length of these bipolar pulses is reduced, the stimulation thresholds raise faster than the irreversible electroporation thresholds. We propose that this different dependence on the pulse length is due to the fact that transmembrane charging for nerve fibers is much slower than that of cells treated by electroporation because of their geometrical differences.

  4. Novel Stimulation Paradigms with Temporally-Varying Parameters to Reduce Synchronous Activity at the Onset of High Frequency Stimulation in Rat Hippocampus

    PubMed Central

    Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng

    2017-01-01

    Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946

  5. Field-Distortion Air-Insulated Switches for Next-Generation Pulsed-Power Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisher, Matthew Louis; Johns, Owen M.; Breden, Eric Wayne

    We have developed two advanced designs of a field-distortion air-insulated spark-gap switch that reduce the size of a linear-transformer-driver (LTD) brick. Both designs operate at 200 kV and a peak current of ~50 kA. At these parameters, both achieve a jitter of less than 2 ns and a prefire rate of ~0.1% over 5000 shots. We have reduced the number of switch parts and assembly steps, which has resulted in a more uniform, design-driven assembly process. We will characterize the performance of tungsten-copper and graphite electrodes, and two different electrode geometries. The new switch designs will substantially improve the electricalmore » and operational performance of next-generation pulsed-power accelerators.« less

  6. Gonadotropin-Releasing Hormone Pulse Sensitivity of Follicle-Stimulating Hormone-β Gene Is Mediated by Differential Expression of Positive Regulatory Activator Protein 1 Factors and Corepressors SKIL and TGIF1

    PubMed Central

    Mistry, Devendra S.; Tsutsumi, Rie; Fernandez, Marina; Sharma, Shweta; Cardenas, Steven A.; Lawson, Mark A.

    2011-01-01

    Gonadotropin synthesis and release is dependent on pulsatile stimulation by the hypothalamic neuropeptide GnRH. Generally, slow GnRH pulses promote FSH production, whereas rapid pulses favor LH, but the molecular mechanism underlying this pulse sensitivity is poorly understood. In this study, we developed and tested a model for FSHβ regulation in mouse LβT2 gonadotropes. By mining a previous microarray data set, we found that mRNA for positive regulators of Fshb expression, such as Fos and Jun, were up-regulated at slower pulse frequencies than a number of potential negative regulators, such as the corepressors Skil, Crem, and Tgif1. These latter corepressors reduced Fshb promoter activity whether driven by transfection of individual transcription factors or by treatment with GnRH and activin. Overexpression of binding or phosphorylation-defective ski-oncogene-like protein (SKIL) and TG interacting factor (TGIF1) mutants, however, failed to repress Fshb promoter activity. Knockdown of the endogenous repressors SKIL and TGIF1, but not cAMP response element-modulator, increased Fshb promoter activity driven by constant GnRH or activin. Chromatin immunoprecipitation analysis showed that FOS, SKIL, and TGIF1 occupy the FSHβ promoter in a cyclical manner after GnRH stimulation. Overexpression of corepressors SKIL or TGIF1 repressed induction of the Fshb promoter at the slow GnRH pulse frequency but had little effect at the fast pulse frequency. In contrast, knockdown of endogenous SKIL or TGIF1 selectively increased Fshb mRNA at the fast GnRH pulse frequency. Therefore, we propose a potential mechanism by which production of gonadotropin Fshb is modulated by positive transcription factors and negative corepressors with different pulse sensitivities. PMID:21659477

  7. A wireless wearable surface functional electrical stimulator

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Peng; Guo, Ai-Wen; Zhou, Yu-Xuan; Xia, Yang; Huang, Jia; Xu, Chong-Yao; Huang, Zong-Hao; Lü, Xiao-Ying; Wang, Zhi-Gong

    2017-09-01

    In this paper, a wireless wearable functional electrical stimulator controlled by Android phone with real-time-varying stimulation parameters for multichannel surface functional electrical stimulation application has been developed. It can help post-stroke patients using more conveniently. This study focuses on the prototype design, including the specific wristband concept, circuits and stimulation pulse-generation algorithm. A novel stimulator circuit with a driving stage using a complementary current source technique is proposed to achieve a high-voltage compliance, a large output impedance and an accurate linear voltage-to-current conversion. The size of the prototype has been significantly decreased to 17 × 7.5 × 1 cm3. The performance of the prototype has been tested with a loaded resistor and wrist extension/flexion movement of three hemiplegic patients. According to the experiments, the stimulator can generate four-channel charge-balanced biphasic stimulation with a voltage amplitude up to 60 V, and the pulse frequency and width can be adjusted in real time with a range of 100-600 μs and 20-80 Hz, respectively.

  8. Influence of waveform and current direction on short-interval intracortical facilitation: a paired-pulse TMS study.

    PubMed

    Delvendahl, Igor; Lindemann, Hannes; Jung, Nikolai H; Pechmann, Astrid; Siebner, Hartwig R; Mall, Volker

    2014-01-01

    Transcranial magnetic stimulation (TMS) of the human primary motor hand area (M1-HAND) can produce multiple descending volleys in fast-conducting corticospinal neurons, especially so-called indirect waves (I-waves) resulting from trans-synaptic excitation. Facilitatory interaction between these I-waves can be studied non-invasively using a paired-pulse paradigm referred to as short-interval intracortical facilitation (SICF). We examined whether SICF depends on waveform and current direction of the TMS pulses. In young healthy volunteers, we applied single- and paired-pulse TMS to M1-HAND. We probed SICF by pairs of monophasic or half-sine pulses at suprathreshold stimulation intensity and inter-stimulus intervals (ISIs) between 1.0 and 5.0 ms. For monophasic paired-pulse stimulation, both pulses had either a posterior-anterior (PA) or anterior-posterior (AP) current direction (AP-AP or PA-PA), whereas current direction was reversed between first and second pulse for half-sine paired-pulse stimulation (PA-AP and AP-PA). Monophasic AP-AP stimulation resulted in stronger early SICF at 1.4 ms relative to late SICF at 2.8 and 4.4 ms, whereas monophasic PA-PA stimulation produced SICF of comparable size at all three peaks. With half-sine stimulation the third SICF peak was reduced for PA-AP current orientation compared with AP-PA. SICF elicited using monophasic as well as half-sine pulses is affected by current direction at clearly suprathreshold intensities. The impact of current orientation is stronger for monophasic compared with half-sine pulses. The direction-specific effect of paired-pulse TMS on the strength of early versus late SICF shows that different cortical circuits mediate early and late SICF. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  10. Caloric stimulation

    MedlinePlus

    ... differences in temperature to diagnose damage to the acoustic nerve. This is the nerve that is involved ... This test stimulates your acoustic nerve by delivering cold or warm water or air into your ear canal. When cold water or air enters your ...

  11. Development of 600 kV triple resonance pulse transformer.

    PubMed

    Li, Mingjia; Zhang, Faqiang; Liang, Chuan; Xu, Zhou

    2015-06-01

    In this paper, a triple-resonance pulse transformer based on an air-core transformer is introduced. The voltage across the high-voltage winding of the air-core transformer is significantly less than the output voltage; instead, the full output voltage appears across the tuning inductor. The maximum ratio of peak load voltage to peak transformer voltage is 2.77 in theory. By analyzing pulse transformer's lossless circuit, the analytical expression for the output voltage and the characteristic equation of the triple-resonance circuit are presented. Design method for the triple-resonance pulse transformer (iterated simulation method) is presented, and a triple-resonance pulse transformer is developed based on the existing air-core transformer. The experimental results indicate that the maximum ratio of peak voltage across the load to peak voltage across the high-voltage winding of the air-core transformer is approximately 2.0 and the peak output voltage of the triple-resonance pulse transformer is approximately 600 kV.

  12. Broadband stimulated Raman spectroscopy in the deep ultraviolet region

    NASA Astrophysics Data System (ADS)

    Kuramochi, Hikaru; Fujisawa, Tomotsumi; Takeuchi, Satoshi; Tahara, Tahei

    2017-09-01

    We report broadband stimulated Raman measurements in the deep ultraviolet (DUV) region, which enables selective probing of the aromatic amino acid residues inside proteins through the resonance enhancement. We combine the narrowband DUV Raman pump pulse (<10 cm-1) at wavelengths as short as 240 nm and the broadband DUV probe pulse (>1000 cm-1) to realize stimulated Raman measurements covering a >1500 cm-1 spectral window. The stimulated Raman measurements for neat solvents, tryptophan, tyrosine, and glucose oxidase are performed using 240- and 290-nm Raman pump, highlighting the high potential of the DUV stimulated Raman probe for femtosecond time-resolved study of proteins.

  13. Effect of Fixed Versus Adjusted Transcutaneous Electrical Nerve Stimulation Amplitude on Chronic Mechanical Low Back Pain.

    PubMed

    Elserty, Noha; Kattabei, Omaima; Elhafez, Hytham

    2016-07-01

    This study aimed to investigate the effect of adjusting pulse amplitude of transcutaneous electrical nerve stimulation versus fixed pulse amplitude in treatment of chronic mechanical low back pain. Randomized clinical trial. El-sahel Teaching Hospital, Egypt. Forty-five patients with chronic low back pain assigned to three equal groups. Their ages ranged from 20 to 50 years. The three groups received the same exercise program. Group A received transcutaneous electrical nerve stimulation with fixed pulse amplitude for 40 minutes. Group B received transcutaneous electrical nerve stimulation with adjusted pulse amplitude for 40 minutes, with the pulse amplitude adjusted every 5 minutes. Group C received exercises only. Treatment sessions were applied three times per week for 4 weeks for the three groups. A visual analogue scale was used to assess pain severity, the Oswestry Disability Index was used to assess functional level, and a dual inclinometer was used to measure lumbar range of motion. Evaluations were performed before and after treatment. Visual analogue scale, Oswestry Disability Index, and back range of motion significantly differed between the two groups that received transcutaneous electrical nerve stimulation and the control group and did not significantly differ between fixed and adjusted pulse amplitude of transcutaneous electrical nerve stimulation. Adjusting pulse amplitude of transcutaneous electrical nerve stimulation does not produce a difference in the effect of transcutaneous electrical nerve stimulation used to treat chronic low back pain.

  14. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp; Micro System Integration Center; Isobe, Shigehito

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  15. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation

    NASA Astrophysics Data System (ADS)

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L.

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180° for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  16. Fluid volume displacement at the oval and round windows with air and bone conduction stimulation.

    PubMed

    Stenfelt, Stefan; Hato, Naohito; Goode, Richard L

    2004-02-01

    The fluids in the cochlea are normally considered incompressible, and the fluid volume displacement of the oval window (OW) and the round window (RW) should be equal and of opposite phase. However, other channels, such as the cochlear and vestibular aqueducts, may affect the fluid flow. To test if the OW and RW fluid flows are equal and of opposite phase, the volume displacement was assessed by multiple point measurement at the windows with a laser Doppler vibrometer. This was done during air conduction (AC) stimulation in seven fresh human temporal bones, and with bone conduction (BC) stimulation in eight temporal bones and one human cadaver head. With AC stimulation, the average volume displacement of the two windows is within 3 dB, and the phase difference is close to 180 degrees for the frequency range 0.1 to 10 kHz. With BC stimulation, the average volume displacement difference between the two windows is greater: below 2 kHz, the volume displacement at the RW is 5 to 15 dB greater than at the OW and above 2 kHz more fluid is displaced at the OW. With BC stimulation, lesions at the OW caused only minor changes of the fluid flow at the RW.

  17. Analysis of compound action potentials elicited with specific current stimulating pulses in an isolated rat sciatic nerve.

    PubMed

    Žužek, Monika C; Rozman, Janez; Pečlin, Polona; Vrecl, Milka; Frangež, Robert

    2017-02-01

    The ability to selectively stimulate Aα, Aβ-fibers and Aδ-fibers in an isolated rat sciatic nerve (SNR) was assessed. The stimulus used was a current, biphasic pulse with a quasitrapezoidal cathodic phase and rectangular anodic phase where parameters were systematically varied: intensity of the cathodic phase (ic); width of the cathodic phase (tc); width of the cathodic exponential decay (texp) and time constant of the exponential decay (τexp). A SNR was stimulated using a pair of hook electrodes while conduction velocity (CV) and compound action potentials (CAP) were measured at two sites along the SNR using another two pairs of electrodes. Results showed that the highest CAP1 (8.5-9 mV), shall be expected when parameters of the stimulus were within the following range: ic=3.8-4 mA, tc=350-400 μs and texp=330-440 μs. Results also showed that with ascending tc and texp, CV of the corresponding superficial region of the SNR was reduced in both, conduction velocity of CAP1 and conduction velocity of CAP2. It was concluded that action potentials (APs) were activated in the Aβ-fibers and Aδ-fibers along with a slight AP inhibition in the Aβ-fibers. The obtained results, could serve as a tool for developing multi-electrode systems that potentially enable fiber-type selective stimulation of nerve fibers.

  18. Effects of combined pulse electromagnetic field stimulation plus glutamine on the healing of colonic anastomosis in rats.

    PubMed

    Girgin, Sadullah; Gedik, Ercan; Ozturk, Hayrettin; Akpolat, Veysi; Akbulut, Veysi; Kale, Ebru; Buyukbayram, Huseyin; Celik, Salih

    2009-04-01

    An experimental study was designed to investigate the effect of combined pulse electromagnetic field (PEMF) stimulation plus glutamine administration on colonic anastomosis. Anastomosis of the left colon was performed in 28 rats, which were divided into four groups; Group 1: normal resection anastomosis plus oral 50 mg/kg/day glutamine; Group 2: normal resection anastomosis plus PEMF stimulation plus oral 50 mg/kg/day glutamine; Group 3: normal resection anastomosis plus PEMF stimulation; Group 4: normal resection anastomosis. On the seventh postoperative day, the animals were killed and the bursting pressure and tissue hydroxyproline concentration of the anastomosis were analyzed and compared. The mean anastomotic bursting pressure in Group 2 was significantly higher than in Groups 1 and 4. On the other hand, the mean anastomotic bursting pressure in Group 1 was significantly higher than in Group 4. The collagen deposition and the fibroblast infiltration were significantly increased on the seventh day in Group 3 compared the other groups. On the other hand, Groups 1 and 2 had higher scores for collagen deposition and fibroblast infiltration than Group 4. In conclusion, burst pressures, hydroxyproline, and histologic features (fibroblast infiltration and collagen deposition) were improved in the PEMF group, and both PEMF and glutamine-enriched nutrition provide a significant gain in the strength of colonic anastomoses in rats.

  19. Ultrasound-Guided Pulsed Radiofrequency Stimulation of Posterior Tibial Nerve: A Potential Novel Intervention for Recalcitrant Plantar Fasciitis.

    PubMed

    Wu, Yung-Tsan; Chang, Chih-Ya; Chou, Yu-Ching; Yeh, Chun-Chang; Li, Tsung-Ying; Chu, Heng-Yi; Chen, Liang-Cheng

    2017-05-01

    To evaluate the therapeutic benefit of ultrasound-guided pulsed radiofrequency (PRF) stimulation at the posterior tibial nerve (PTN) in patients with recalcitrant plantar fasciitis (PF). A prospective, randomized, double-blinded, placebo-controlled trial (12-wk follow-up). Outpatient local medical center settings. Patients (N=36) with recalcitrant PF underwent randomization, and all were included in the final data analysis. Patients in the PRF group were treated with 1 dose of ultrasound-guided PRF stimulation at the PTN, and those in the control group received 1 dose of 2% lidocaine, 0.5mL, injected at the PTN under ultrasound guidance. The visual analog scale (first-step and overall pain), American Orthopedic Foot-Ankle Society (AOFAS) ankle-hindfoot scale, and ultrasonographic thickness of the plantar fascia were evaluated at 1, 4, 8, and 12 weeks after treatment. Thirty-six patients (20 feet per group) completed the study. The PRF group had a significantly larger improvement in first-step pain, overall pain, and AOFAS score (all P<.001), as well as plantar fascia thickness (P<.05), compared with those of the control group at all observed time points. This study shows that ultrasound-guided PRF stimulation at the PTN is effective for treating recalcitrant PF. This simple, reproducible method could be a novel strategy for managing recalcitrant PF. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Assisting people with attention deficit hyperactivity disorder by actively reducing limb hyperactive behavior with a gyration air mouse through a controlled environmental stimulation.

    PubMed

    Shih, Ching-Hsiang

    2011-01-01

    The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing limb hyperactive behavior to assess whether two persons with attention deficit hyperactivity disorder (ADHD) would be able to actively reduce their limb hyperactive behavior by controlling their favorite stimulation on/off using a gyration air mouse with a newly developed actively limb hyperactive behavior reducing program (ALHBRP). The study was performed according to an ABAB design, in which A represented the baseline and B represented intervention phases. Data showed that both participants significantly increased their time duration of maintaining a static limb posture (TDMSLP) to activate the control system in order to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Self-synchronization of the modulation of energy-levels population with electrons in GaAs induced by picosecond pulses of probe radiation and intrinsic stimulated emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ageeva, N. N.; Bronevoi, I. L., E-mail: bil@cplire.ru; Zabegaev, D. N.

    Picosecond optical pumping leads to the initiation of intrinsic picosecond stimulated emission in GaAs. As was established previously, due to the interaction of pulses of probe radiation with those of intrinsic emission, the dependence of the absorption α of the probe pulse on its delay τ with respect to the pump pulse is modulated with oscillations. It is found that the oscillatory dependences α(τ) have a similar shape only in the case of certain combinations of energies of the interacting pulses. As a result, it is assumed that the above interaction is, in fact, a synchronization of modulations (formed bymore » pulses) of charge-carrier populations at energy levels; this synchronization occurs in the direction of the reconstruction of detailed equilibrium. The real-time picosecond self-modulation of the absorption α is measured for the first time. The characteristics of this self-modulation as well as absorption α and intrinsic emission self-modulation characteristics measured previously by correlation methods are now accounted for by the concept of synchronization.« less

  2. Method for pulse control in a laser including a stimulated brillouin scattering mirror system

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd; Harris, Fritz B.

    2007-10-23

    A laser system, such as a master oscillator/power amplifier system, comprises a gain medium and a stimulated Brillouin scattering SBS mirror system. The SBS mirror system includes an in situ filtered SBS medium that comprises a compound having a small negative non-linear index of refraction, such as a perfluoro compound. An SBS relay telescope having a telescope focal point includes a baffle at the telescope focal point which blocks off angle beams. A beam splitter is placed between the SBS mirror system and the SBS relay telescope, directing a fraction of the beam to an alternate beam path for an alignment fiducial. The SBS mirror system has a collimated SBS cell and a focused SBS cell. An adjustable attenuator is placed between the collimated SBS cell and the focused SBS cell, by which pulse width of the reflected beam can be adjusted.

  3. Burst stimulation improves hemodynamics during resuscitation after prolonged ventricular fibrillation.

    PubMed

    Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond

    2009-02-01

    Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Six swine were studied that underwent 6-7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3-4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean+/-SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2+/-2.5 min. Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above prestimulation levels.

  4. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  5. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  6. Assisting people with disabilities in actively performing physical activities by controlling the preferred environmental stimulation with a gyration air mouse.

    PubMed

    Shih, Ching-Tien; Shih, Ching-Hsiang; Luo, Ching-Hsing

    2013-12-01

    The latest researchers have employed software technology to turn gyration air mice into a high performance limb detector to detect specific limb movement, and to further collaborate using the preferred environmental stimulation to help people with disabilities to suppress unwanted behaviors or habits and to reward good behaviors. This study extended the functionality of a gyration air mouse, and used the mouse as a precise physical activity detector integrated with the preferred environmental stimulation to assess if this integrated set can be used to help two disabled people who are overweight and lacking in exercise to actively perform physical activities. The study was conducted based on an A-B-A-B design. The results showed that both participants increased significantly the time duration required for them to maintain their physical activity status so that they could obtain their favorite environmental stimulation during the intervention phases. Both the practical and developmental implications of the findings are then discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Stimulated parametric emission microscopy.

    PubMed

    Isobe, Keisuke; Kataoka, Shogo; Murase, Rena; Watanabe, Wataru; Higashi, Tsunehito; Kawakami, Shigeki; Matsunaga, Sachihiro; Fukui, Kiichi; Itoh, Kazuyoshi

    2006-01-23

    We propose a novel microscopy technique based on the four-wave mixing (FWM) process that is enhanced by two-photon electronic resonance induced by a pump pulse along with stimulated emission induced by a dump pulse. A Ti:sapphire laser and an optical parametric oscillator are used as light sources for the pump and dump pulses, respectively. We demonstrate that our proposed FWM technique can be used to obtain a one-dimensional image of ethanol-thinned Coumarin 120 solution sandwiched between a hole-slide glass and a cover slip, and a two-dimensional image of a leaf of Camellia sinensis.

  8. Transformative Pulsed Power Science and Technology

    DTIC Science & Technology

    2014-12-16

    Lin, D. Singleton, J. Sanders, A. Kuthi and M.A. Gundersen, “Experimental study of pulsed corona discharge in air at high pressures”, 65th Annual...Kastner, E. Gutmark, and M. A. Gundersen. “Surface Streamer Discharge for Plasma Flow Control Using Nanosecond Pulsed Power.” Plasma Sciences, IEEE... discharge in atmospheric pressure fuel/air mixtures”, J. Phys. D: Appl. Phys. 45 495401 (2012). 28. S. J. Pendleton, S. Bowman, C. Carter, M. A. Gundersen

  9. Evaluation of stimulation parameters on aortomyoplasty, using Latissimus Dorsi muscle in a goat model: an acute study.

    PubMed

    Hakami, A; Santamore, W P; Stremel, R W; Tobin, G; Hjortdal, V E

    1999-08-01

    Dynamic aortomyoplasty using Latissimus Dorsi muscle (LDM) has been shown to improve myocardial function. However, systematic examination of the effects of stimulation parameters on aortic wrap function has not been done. Thus, the present study measures the direct effect of stimulation voltage, pulse train duration, frequency of the pulses, and the duration of the stimulation delay from R wave on the aortic wrap function. In eight female goats, the left LDM was wrapped around the descending aorta. The muscle was then subjected to electrical stimulation, altering frequency of stimulation pulses (16.6, 20, 25, 33 and 50 Hz), amplitude (2, 4, 6, 8 and 10 V), and number of pulses (2, 4, 6, 8 and 10 pulses) in a train stimulation. Left ventricular, aortic pressure, and pressure generated by LDM on aorta (wrap pressure) was measured. The changes in hemodynamic parameters mentioned above were calculated and compared for different stimulation parameters during unassisted and assisted cardiac cycles. Aortomyoplasty counterpulsation using LDM provided significant improvement in wrap pressure (78 mmHg +/- 2), aortic diastolic pressure, and changes in aortic diastolic pressure from 2 to 4 V (P < 0.05). Further increase in amplitude did not make any significant improvements of the above mentioned parameters. Significant augmentation of wrap pressure (82 mmHg +/- 2), aortic diastolic pressure (79 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) occurred at 6 pulses (P < 0.05). Other changes in number of pulses did not show any significant improvements. Significant improvement of wrap pressure (80 mmHg +/- 2), aortic diastolic pressure (73 mmHg +/- 3) and changes in aortic diastolic pressure (12 mmHg +/- 1) was observed with a frequency of 33 Hz. To examine a wide range of delays from the onset of the QRS complex to LDM stimulation, stimulation was delivered randomly. The exact delay was determined from the ECG signal and superimposed LDM stimulation pulses

  10. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  11. Slow-Frequency Pulsed Transcranial Electrical Stimulation for Modulation of Cortical Plasticity Based on Reciprocity Targeting with Precision Electrical Head Modeling

    PubMed Central

    Luu, Phan; Essaki Arumugam, Easwara Moorthy; Anderson, Erik; Gunn, Amanda; Rech, Dennis; Turovets, Sergei; Tucker, Don M.

    2016-01-01

    In pain management as well as other clinical applications of neuromodulation, it is important to consider the timing parameters influencing activity-dependent plasticity, including pulsed versus sustained currents, as well as the spatial action of electrical currents as they polarize the complex convolutions of the cortical mantle. These factors are of course related; studying temporal factors is not possible when the spatial resolution of current delivery to the cortex is so uncertain to make it unclear whether excitability is increased or decreased with anodal vs. cathodal current flow. In the present study we attempted to improve the targeting of specific cortical locations by applying current through flexible source-sink configurations of 256 electrodes in a geodesic array. We constructed a precision electric head model for 12 healthy individuals. Extraction of the individual’s cortical surface allowed computation of the component of the induced current that is normal to the target cortical surface. In an effort to replicate the long-term depression (LTD) induced with pulsed protocols in invasive animal research and transcranial magnetic stimulation studies, we applied 100 ms pulses at 1.9 s intervals either in cortical-surface-anodal or cortical-surface-cathodal directions, with a placebo (sham) control. The results showed significant LTD of the motor evoked potential as a result of the cortical-surface-cathodal pulses in contrast to the placebo control, with a smaller but similar LTD effect for anodal pulses. The cathodal LTD after-effect was sustained over 90 min following current injection. These results support the feasibility of pulsed protocols with low total charge in non-invasive neuromodulation when the precision of targeting is improved with a dense electrode array and accurate head modeling. PMID:27531976

  12. Optical stimulation of the hearing and deaf cochlea under thermal and stress confinement condition

    NASA Astrophysics Data System (ADS)

    Schultz, M.; Baumhoff, P.; Kallweit, N.; Sato, M.; Krüger, A.; Ripken, T.; Lenarz, T.; Kral, A.

    2014-03-01

    There is a controversy, to which extend cochlear stimulation with near infrared laser pulses at a wavelength of 1860 nm is based on optoacoustic stimulation of intact hair cells or -in contrast- is based on direct stimulation of the nerve cells in absence of functional hair cells. Thermal and stress confinement conditions apply, because of the pulse duration range (5 ns, 10 μs-20 ms) of the two lasers used. The dependency of the signal characteristics on pulse peak power and pulse duration was investigated in this study. The compound action potential (CAP) was measured during stimulation of the cochlea of four anaesthetized guinea pigs, which were hearing at first and afterwards acutely deafened using intracochlear neomycin-rinsing. For comparison hydrophone measurements in a water tank were performed to investigate the optoacoustic signals at different laser interaction regimes. With rising pulse peak power CAPs of the hearing animals showed first a threshold, then a positively correlated and finally a saturating dependency. CAPs also showed distinct responses at laser onset and offset separated with the pulse duration. At pulse durations shorter than physiological response times the signals merged. Basically the same signal characteristics were observed in the optoacoustic hydrophone measurements, scaled with the sensitivity and response time of the hydrophone. Taking together the qualitative correspondence in the signal response and the absence of any CAPs in deafened animals our results speak in favor of an optoacoustic stimulation of intact hair cells rather than a direct stimulation of nerve cells.

  13. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  14. Laser Stimulation of Single Auditory Nerve Fibers

    PubMed Central

    Littlefield, Philip D.; Vujanovic, Irena; Mundi, Jagmeet; Matic, Agnella Izzo; Richter, Claus-Peter

    2011-01-01

    Objectives/Hypothesis One limitation with cochlear implants is the difficulty stimulating spatially discrete spiral ganglion cell groups because of electrode interactions. Multipolar electrodes have improved on this some, but also at the cost of much higher device power consumption. Recently, it has been shown that spatially selective stimulation of the auditory nerve is possible with a mid-infrared laser aimed at the spiral ganglion via the round window. However, these neurons must be driven at adequate rates for optical radiation to be useful in cochlear implants. We herein use single-fiber recordings to characterize the responses of auditory neurons to optical radiation. Study Design In vivo study using normal-hearing adult gerbils. Methods Two diode lasers were used for stimulation of the auditory nerve. They operated between 1.844 μm and 1.873 μm, with pulse durations of 35 μs to 1,000 μs, and at repetition rates up to 1,000 pulses per second (pps). The laser outputs were coupled to a 200-μm-diameter optical fiber placed against the round window membrane and oriented toward the spiral ganglion. The auditory nerve was exposed through a craniotomy, and recordings were taken from single fibers during acoustic and laser stimulation. Results Action potentials occurred 2.5 ms to 4.0 ms after the laser pulse. The latency jitter was up to 3 ms. Maximum rates of discharge averaged 97 ± 52.5 action potentials per second. The neurons did not strictly respond to the laser at stimulation rates over 100 pps. Conclusions Auditory neurons can be stimulated by a laser beam passing through the round window membrane and driven at rates sufficient for useful auditory information. Optical stimulation and electrical stimulation have different characteristics; which could be selectively exploited in future cochlear implants. Level of Evidence Not applicable. PMID:20830761

  15. Remote air lasing for trace detection

    NASA Astrophysics Data System (ADS)

    Dogariu, Arthur; Michael, James B.; Miles, Richard B.

    2011-05-01

    We demonstrate coherent light propagating backwards from a remotely generated high gain air laser. A short ultraviolet laser pulse tuned to a two-photon atomic oxygen electronic resonance at 226 nm simultaneously dissociates the oxygen molecules in air and excites the resulting atomic oxygen fragments. Due to the focal depth of the pumping laser, a millimeter long region of high gain is created in air for the atomic oxygen stimulated emission at 845nm. We demonstrate that the gain in excess of 60 cm-1 is responsible for both forward and backwards emission of a strong, collimated, coherent laser beam. We present evidence for coherent emission and characterize the backscattered laser beam while varying the pumping conditions. The optical gain and directional emission allows for six orders of magnitude enhancement for the backscattered emission when compared with the fluorescence emission collected into the same solid angle. . This opens new opportunities for the remote detection capabilities of trace species, and provides much greater range for the detection of optical molecular and atomic features from a distant target.

  16. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  17. Burst Stimulation Improves Hemodynamics During Resuscitation after Prolonged Ventricular Fibrillation

    PubMed Central

    Walcott, Gregory; Melnick, Sharon; Killingsworth, Cheryl; Ideker, Raymond

    2009-01-01

    Background Although return of spontaneous circulation (ROSC) is frequently achieved during resuscitation for sudden cardiac arrest, systolic blood pressure can then decrease, requiring additional myocardial support. Previous studies have shown that a series of 1-ms electrical pulses delivered through the defibrillation patches during ventricular fibrillation (VF) can stimulate the autonomic nervous system to increase myocardial function following defibrillation. We hypothesized that a similar series of electrical pulses could increase myocardial function and blood pressure during the early post-resuscitation period. Methods and Results Six swine were studied that underwent 6–7 min. Each animal received 5, 10, 15, or 20 pulse packets consisting of 6 10 A, 1-ms pulses every 3–4 s in random order whenever systolic blood pressure became less than 50 mmHg. All four sets of pulse packets were delivered to each animal. Systolic blood pressure and cardiac function (left ventricular +dP/dt) were increased to pre-stimulation levels or above by all four sets of pulse packets. The increases were significantly greater for the longer than the shorter number of pulse packets. The mean±SD duration of the time that the systolic pressure remained above 50 mmHg following pulse delivery was 4.2±2.5 min. Conclusions Electrical stimulation during regular rhythm following prolonged VF and resuscitation can increase blood pressure and cardiac function to above pre-arrest levels. PMID:19655042

  18. Energy efficient neural stimulation: coupling circuit design and membrane biophysics.

    PubMed

    Foutz, Thomas J; Ackermann, D Michael; Kilgore, Kevin L; McIntyre, Cameron C

    2012-01-01

    The delivery of therapeutic levels of electrical current to neural tissue is a well-established treatment for numerous indications such as Parkinson's disease and chronic pain. While the neuromodulation medical device industry has experienced steady clinical growth over the last two decades, much of the core technology underlying implanted pulse generators remain unchanged. In this study we propose some new methods for achieving increased energy-efficiency during neural stimulation. The first method exploits the biophysical features of excitable tissue through the use of a centered-triangular stimulation waveform. Neural activation with this waveform is achieved with a statistically significant reduction in energy compared to traditional rectangular waveforms. The second method demonstrates energy savings that could be achieved by advanced circuitry design. We show that the traditional practice of using a fixed compliance voltage for constant-current stimulation results in substantial energy loss. A portion of this energy can be recuperated by adjusting the compliance voltage to real-time requirements. Lastly, we demonstrate the potential impact of axon fiber diameter on defining the energy-optimal pulse-width for stimulation. When designing implantable pulse generators for energy efficiency, we propose that the future combination of a variable compliance system, a centered-triangular stimulus waveform, and an axon diameter specific stimulation pulse-width has great potential to reduce energy consumption and prolong battery life in neuromodulation devices.

  19. Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.

    2016-10-01

    As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.

  20. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation.

    PubMed

    Andrews, Russell J

    2003-05-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  1. Neuroprotection trek--the next generation: neuromodulation I. Techniques--deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation

    NASA Technical Reports Server (NTRS)

    Andrews, Russell J.

    2003-01-01

    Neuromodulation denotes controlled electrical stimulation of the central or peripheral nervous system. The three forms of neuromodulation described in this paper-deep brain stimulation, vagus nerve stimulation, and transcranial magnetic stimulation-were chosen primarily for their demonstrated or potential clinical usefulness. Deep brain stimulation is a completely implanted technique for improving movement disorders, such as Parkinson's disease, by very focal electrical stimulation of the brain-a technique that employs well-established hardware (electrode and pulse generator/battery). Vagus nerve stimulation is similar to deep brain stimulation in being well-established (for the treatment of refractory epilepsy), completely implanted, and having hardware that can be considered standard at the present time. Vagus nerve stimulation differs from deep brain stimulation, however, in that afferent stimulation of the vagus nerve results in diffuse effects on many regions throughout the brain. Although use of deep brain stimulation for applications beyond movement disorders will no doubt involve placing the stimulating electrode(s) in regions other than the thalamus, subthalamus, or globus pallidus, the use of vagus nerve stimulation for applications beyond epilepsy-for example, depression and eating disorders-is unlikely to require altering the hardware significantly (although stimulation protocols may differ). Transcranial magnetic stimulation is an example of an external or non-implanted, intermittent (at least given the current state of the hardware) stimulation technique, the clinical value of which for neuromodulation and neuroprotection remains to be determined.

  2. Qualities of Single Electrode Stimulation as a Function of Rate and Place of Stimulation with a Cochlear Implant

    PubMed Central

    Landsberger, David M.; Vermeire, Katrien; Claes, Annes; Van Rompaey, Vincent; Van de Heyning, Paul

    2015-01-01

    Objectives Although it has been previously shown that changes in temporal coding produce changes in pitch in all cochlear regions, research has suggested that temporal coding might be best encoded in relatively apical locations. We hypothesized that although temporal coding may provide useable information at any cochlear location, low rates of stimulation might provide better sound quality in apical regions that are more likely to encode temporal information in the normal ear. In the present study, sound qualities of single electrode pulse trains were scaled to provide insight into the combined effects of cochlear location and stimulation rate on sound quality. Design Ten long term users of MED-EL cochlear implants with 31 mm electrode arrays (Standard or FLEXSOFT) were asked to scale the sound quality of single electrode pulse trains in terms of how “Clean”, “Noisy”, “High”, and “Annoying” they sounded. Pulse trains were presented on most electrodes between 1 and 12 representing the entire range of the long electrode array at stimulation rates of 100, 150, 200, 400, or 1500 pulses per second. Results While high rates of stimulation are scaled as having a “Clean” sound quality across the entire array, only the most apical electrodes (typically 1 through 3) were considered “Clean” at low rates. Low rates on electrodes 6 through 12 were not rated as “Clean” while the low rate quality of electrodes 4 and 5 were typically in between. Scaling of “Noisy” responses provided an approximately inverse pattern as “Clean” responses. “High” responses show the trade-off between rate and place of stimulation on pitch. Because “High” responses did not correlate with “Clean” responses, subjects were not rating sound quality based on pitch. Conclusions If explicit temporal coding is to be provided in a cochlear implant, it is likely to sound better when provided apically. Additionally, the finding that low rates sound clean only at

  3. Transient finite element modeling of functional electrical stimulation.

    PubMed

    Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J

    2011-03-01

    Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.

  4. Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high-power erbium-doped fiber amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura, K.; Yoshida, E.; Sugawa, T.

    1995-08-01

    It is shown for the first time to our knowledge that short-pulse amplification in high-power erbium-doped fiber amplifiers, simultaneously accompanied by stimulated Raman scattering, generates a broadband optical spectrum at high output power (270 mW). At 20 dB down from the peak the continuum extended over 329 nm, from 1427 to 1756 nm. The FWHM bandwidth was 125 nm, centered at 1650 nm. The coherence was measured to be 15 fringes, which corresponds to a 25-{mu}m coherence length. {copyright} {ital 1995} {ital Optical} {ital Society} {ital of} {ital America}.

  5. Wirelessly powering miniature implants for optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Yeh, Alexander J.; Ho, John S.; Tanabe, Yuji; Neofytou, Evgenios; Beygui, Ramin E.; Poon, Ada S. Y.

    2013-10-01

    Conventional methods for in vivo optogenetic stimulation require optical fibers or mounted prosthesis. We present an approach for wirelessly powering implantable stimulators using electromagnetic midfield. By exploiting the properties of the midfield, we demonstrate the ability to generate high intensity light pulses in a freely moving animal.

  6. Fundamentals of Transcranial Electric and Magnetic Stimulation Dose: Definition, Selection, and Reporting Practices

    PubMed Central

    Peterchev, Angel V.; Wagner, Timothy A.; Miranda, Pedro C.; Nitsche, Michael A.; Paulus, Walter; Lisanby, Sarah H.; Pascual-Leone, Alvaro; Bikson, Marom

    2011-01-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. The biological effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biological effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. This paper provides fundamental definition and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. PMID:22305345

  7. Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices.

    PubMed

    Peterchev, Angel V; Wagner, Timothy A; Miranda, Pedro C; Nitsche, Michael A; Paulus, Walter; Lisanby, Sarah H; Pascual-Leone, Alvaro; Bikson, Marom

    2012-10-01

    The growing use of transcranial electric and magnetic (EM) brain stimulation in basic research and in clinical applications necessitates a clear understanding of what constitutes the dose of EM stimulation and how it should be reported. This paper provides fundamental definitions and principles for reporting of dose that encompass any transcranial EM brain stimulation protocol. The biologic effects of EM stimulation are mediated through an electromagnetic field injected (via electric stimulation) or induced (via magnetic stimulation) in the body. Therefore, transcranial EM stimulation dose ought to be defined by all parameters of the stimulation device that affect the electromagnetic field generated in the body, including the stimulation electrode or coil configuration parameters: shape, size, position, and electrical properties, as well as the electrode or coil current (or voltage) waveform parameters: pulse shape, amplitude, width, polarity, and repetition frequency; duration of and interval between bursts or trains of pulses; total number of pulses; and interval between stimulation sessions and total number of sessions. Knowledge of the electromagnetic field generated in the body may not be sufficient but is necessary to understand the biologic effects of EM stimulation. We believe that reporting of EM stimulation dose should be guided by the principle of reproducibility: sufficient information about the stimulation parameters should be provided so that the dose can be replicated. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. The Catalytic Effect of Electronegative Additives on Removal of Perchloroethylene Vapor from Air by Pulsed Corona Discharge

    NASA Astrophysics Data System (ADS)

    Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.

    2017-12-01

    It is established that electronegative additives (CCl4, freon-113) produce a catalytic effect on the conversion of volatile organic compounds (VOCs) under the action of atmospheric-pressure nonequilibrium plasma generated in pulsed corona discharge. At concentrations below 0.1%, these additives significantly decrease the discharge current, but the energy efficiency of the process of VOC removal from air increases. The catalytic effect of electronegative additives on the VOC conversion in air and nitrogen is quantitatively demonstrated in the case of perchloroethylene C2Cl4 (PCE) vapor removal. The addition of 0.085% CCl4 to air reduces the energy consumption for PCE removal at initial concentration of 0.09% by half (from 12 to 6 eV per molecule) at a 63% degree of cleaning. Mechanisms explaining the active inf luence of electronegative additives on the discharge current and the process of impurity removal are suggested.

  9. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  10. Comparison between Trichel pulse in negative corona and self-pulsing in other configurations

    NASA Astrophysics Data System (ADS)

    Xia, Qing; Zhang, Yu; He, Feng; Qin, Yu; Jiang, Zhaorui; Ouyang, Jiting

    2018-02-01

    We present here a comparison study on self-pulsing phenomena in negative corona, hollow cathode discharges (HCD) and parallel-plate discharge in air. The voltage-current (V-I) curve, the waveforms of self-pulsed currents, and the time-resolved images of the pulsed discharge are measured under various operating conditions. It is experimentally evidenced that the Trichel pulse in a negative corona and the self-pulsing in HCD and/or parallel-plate discharge have similar features as well as spatial-temporal developing process. It is suggested that they should have a similar mechanism that the pulsing reflects the mode transition of discharge between the low-current Townsend and the high-current normal glow. The pulse rising corresponds to the breakdown and formation of temporal glow discharge in a background of low-current Townsend discharge, while the decay edge relates to the transition back to Townsend discharge. The pulse interval is the re-building process of the space charge layer of high density to ensure the glow breakdown.

  11. Effect of renal nerve stimulation on responsiveness of the rat renal vasculature.

    PubMed

    DiBona, Gerald F; Sawin, Linda L

    2002-11-01

    When the renal nerves are stimulated with sinusoidal stimuli over the frequency range 0.04-0.8 Hz, low (< or =0.4 Hz)- but not high (> or =0.4 Hz)-frequency oscillations appear in renal blood flow (RBF) and are proposed to increase responsiveness of the renal vasculature to stimuli. This hypothesis was tested in anesthetized rats in which RBF responses to intrarenal injection of norepinephrine and angiotensin and to reductions in renal arterial pressure (RAP) were determined during conventional rectangular pulse and sinusoidal renal nerve stimulation. Conventional rectangular pulse renal nerve stimulation decreased RBF at 2 Hz but not at 0.2 or 1.0 Hz. Sinusoidal renal nerve stimulation elicited low-frequency oscillations (< or =0.4 Hz) in RBF only when the basal carrier signal frequency produced renal vasoconstriction, i.e., at 5 Hz but not at 1 Hz. Regardless of whether renal vasoconstriction occurred, neither conventional rectangular pulse nor sinusoidal renal nerve stimulation altered renal vasoconstrictor responses to norepinephrine and angiotensin. The RBF response to reduction in RAP was altered by both conventional rectangular pulse and sinusoidal renal nerve stimulation only when renal vasoconstriction occurred: the decrease in RBF during reduced RAP was greater. Sinusoidal renal nerve stimulation with a renal vasoconstrictor carrier frequency results in a decrease in RBF with superimposed low-frequency oscillations. However, these low-frequency RBF oscillations do not alter renal vascular responsiveness to vasoconstrictor stimuli.

  12. Prediction and control of neural responses to pulsatile electrical stimulation

    NASA Astrophysics Data System (ADS)

    Campbell, Luke J.; Sly, David James; O'Leary, Stephen John

    2012-04-01

    This paper aims to predict and control the probability of firing of a neuron in response to pulsatile electrical stimulation of the type delivered by neural prostheses such as the cochlear implant, bionic eye or in deep brain stimulation. Using the cochlear implant as a model, we developed an efficient computational model that predicts the responses of auditory nerve fibers to electrical stimulation and evaluated the model's accuracy by comparing the model output with pooled responses from a group of guinea pig auditory nerve fibers. It was found that the model accurately predicted the changes in neural firing probability over time to constant and variable amplitude electrical pulse trains, including speech-derived signals, delivered at rates up to 889 pulses s-1. A simplified version of the model that did not incorporate adaptation was used to adaptively predict, within its limitations, the pulsatile electrical stimulus required to cause a desired response from neurons up to 250 pulses s-1. Future stimulation strategies for cochlear implants and other neural prostheses may be enhanced using similar models that account for the way that neural responses are altered by previous stimulation.

  13. Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.

    PubMed

    Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying

    2017-02-01

    Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.

  14. Ocular vestibular evoked myogenic potentials in response to air-conducted 500 Hz short tones: Effect of stimulation procedure (monaural or binaural), age and gender.

    PubMed

    Versino, Maurizio; Colnaghi, Silvia; Ranzani, Marina; Alloni, Roberto; Bolis, Carlotta; Sacco, Simone; Moglia, Arrigo; Callieco, Roberto

    2015-01-01

    The ocular vestibular myogenic potentials (oVEMP) can be elicited by monaural air-conducted sound stimulation, and are usually recorded from the contralateral eye. In clinical setting a binaural stimulation would save time and require less effort from the subjects. We evaluated the differences between monaural and binaural stimulation, and the possible effect of age and gender on oVEMP parameters. Air-conducted oVEMP were recorded by binaural and by monaural stimulation in a group of 54 normal subjects, aged from 12 to 83 years, and in 50 vestibular patients. From each side, we measured the latency of the N1 component, and the peak-to-peak N1-P1 amplitude. For both parameters we also computed the asymmetry ratio. In normal subjects binaural stimulation produced slightly larger responses than monaural stimulation; detectability, latency and amplitude ratio were the same for the two techniques. We found no differences related to gender, and the age-induced amplitude decline was likely to be negligible.oVEMP recorded not in an acute phase of their disorder, proved to be abnormal in about 20% of the patients, and the normal or abnormal findings obtained either with monaural or with binaural stimulation were always concordant. The oVEMP obtained after binaural and monaural stimulation are very similar, and they are largely independent from age and gender.

  15. Pulsed Corona Discharge Generated By Marx Generator

    NASA Astrophysics Data System (ADS)

    Sretenovic, G. B.; Obradovic, B. M.; Kovacevic, V. V.; Kuraica, M. M.; Puric J.

    2010-07-01

    The pulsed plasma has a significant role in new environmental protection technologies. As a part of a pulsed corona system for pollution control applications, Marx type repetitive pulse generator was constructed and tested in arrangement with wire-plate corona reactor. We performed electrical measurements, and obtained voltage and current signals, and also power and energy delivered per pulse. Ozone formation by streamer plasma in air was chosen to monitor chemical activity of the pulsed corona discharge.

  16. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine

    PubMed Central

    Andreou, Anna P.; Holland, Philip R.; Akerman, Simon; Summ, Oliver; Fredrick, Joe

    2016-01-01

    Abstract A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. PMID:27246325

  17. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    DTIC Science & Technology

    2013-01-01

    Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow Jonathan Poggie∗and Nicholas J. Bisek† Air Force Research Laboratory, Wright...was developed for nanosecond- pulse discharges , including real- istic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced...shock waves originating near the sheath edge, consistent with experimental observations. I. Introduction In a nanosecond- pulse discharge , the input

  18. 21 CFR 882.5880 - Implanted spinal cord stimulator for pain relief.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Implanted spinal cord stimulator for pain relief. (a) Identification. An implanted spinal cord stimulator for pain relief is a device that is used to stimulate electrically a patient's spinal cord to relieve... on the patient's spinal cord and an external transmitter for transmitting the stimulating pulses...

  19. A microprocessor-based multichannel subsensory stochastic resonance electrical stimulator.

    PubMed

    Chang, Gwo-Ching

    2013-01-01

    Stochastic resonance electrical stimulation is a novel intervention which provides potential benefits for improving postural control ability in the elderly, those with diabetic neuropathy, and stroke patients. In this paper, a microprocessor-based subsensory white noise electrical stimulator for the applications of stochastic resonance stimulation is developed. The proposed stimulator provides four independent programmable stimulation channels with constant-current output, possesses linear voltage-to-current relationship, and has two types of stimulation modes, pulse amplitude and width modulation.

  20. The evaluation of clinical therapy effects of oral western medicine combined with magnetic pulse acupoint stimulation in treating elderly patients with coronary heart disease.

    PubMed

    Fu, Xin; Guo, Li; Jiang, Zheng-Ming; Xu, Ai-Guo

    2015-01-01

    Treat the patients suffered from coronary heart disease with oral western medicine, combining with magnetic pulse acupoint stimulation, and observe the therapeutic effects of such combination therapy method. 56 old people with coronary heart disease are randomly divided into a treatment group and a control group. Both groups of patients are treated by the routine drugs, in addition, the patients of the treatment group are treated by magnetic pulse therapy additionally. Compare clinical symptoms, blood lipid and blood rheological indexes of the patients in the two groups when they are selected and after 30 days' treatment. after 30 days' treatment, it is found that clinical symptoms, blood lipid and blood rheological indexes of the patients in the treatment group are significantly improved compared with those when they are selected and those of the control group (P<0.05). patients with coronary heart disease, treated by pulsed magnetic therapy and the conventional drug intervention, had relieved synptom, improve blood lipid and heart blood supply function.

  1. A New Limb Movement Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Swing with a Gyration Air Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…

  2. Evaluation of Intradural Stimulation Efficiency and Selectivity in a Computational Model of Spinal Cord Stimulation

    PubMed Central

    Howell, Bryan; Lad, Shivanand P.; Grill, Warren M.

    2014-01-01

    Spinal cord stimulation (SCS) is an alternative or adjunct therapy to treat chronic pain, a prevalent and clinically challenging condition. Although SCS has substantial clinical success, the therapy is still prone to failures, including lead breakage, lead migration, and poor pain relief. The goal of this study was to develop a computational model of SCS and use the model to compare activation of neural elements during intradural and extradural electrode placement. We constructed five patient-specific models of SCS. Stimulation thresholds predicted by the model were compared to stimulation thresholds measured intraoperatively, and we used these models to quantify the efficiency and selectivity of intradural and extradural SCS. Intradural placement dramatically increased stimulation efficiency and reduced the power required to stimulate the dorsal columns by more than 90%. Intradural placement also increased selectivity, allowing activation of a greater proportion of dorsal column fibers before spread of activation to dorsal root fibers, as well as more selective activation of individual dermatomes at different lateral deviations from the midline. Further, the results suggest that current electrode designs used for extradural SCS are not optimal for intradural SCS, and a novel azimuthal tripolar design increased stimulation selectivity, even beyond that achieved with an intradural paddle array. Increased stimulation efficiency is expected to increase the battery life of implantable pulse generators, increase the recharge interval of rechargeable implantable pulse generators, and potentially reduce stimulator volume. The greater selectivity of intradural stimulation may improve the success rate of SCS by mitigating the sensitivity of pain relief to malpositioning of the electrode. The outcome of this effort is a better quantitative understanding of how intradural electrode placement can potentially increase the selectivity and efficiency of SCS, which, in turn

  3. Assisting People with Attention Deficit Hyperactivity Disorder by Actively Reducing Limb Hyperactive Behavior with a Gyration Air Mouse through a Controlled Environmental Stimulation

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing…

  4. Laser pulse power transmission limits of silica fibers with antireflective coating

    NASA Astrophysics Data System (ADS)

    Meister, St.; Wosniok, A.; Seewald, G.; Scharfenorth, Ch.; Eichler, H. J.

    2005-04-01

    Multimode optical fibers are used for the transmission of high power laser pulses and as phase conjugated mirrors by stimulated Brillouin scattering. Both applications are enhanced by antireflection coatings on the fiber end-faces. Fiber transmissions reach more than 99.5% for pulse energies below the threshold of stimulated Brillouin scattering. Laser-induced damage thresholds of the fibers coated with Ta2O5 / SiO2 were measured at 1064 nm and 24 ns pulse duration. A damage threshold of up to 101 J/cm2 could be achieved. The damage morphology was investigated using atomic force microscopy and scanning electron microscopy.

  5. Rapid ultrasonic stimulation of inflamed tissue with diagnostic intent

    PubMed Central

    McClintic, Abbi M.; Dickey, Trevor C.; Gofeld, Michael; Ray Illian, P.; Kliot, Michel; Kucewicz, John C.; Loeser, John D.; Richebe, Philippe G.; Mourad, Pierre D.

    2013-01-01

    Previous studies have observed that individual pulses of intense focused ultrasound (iFU) applied to inflamed and normal tissue can generate sensations, where inflamed tissue responds at a lower intensity than normal tissue. It was hypothesized that successively applied iFU pulses will generate sensation in inflamed tissue at a lower intensity and dose than application of a single iFU pulse. This hypothesis was tested using an animal model of chronic inflammatory pain, created by injecting an irritant into the rat hind paw. Ultrasound pulses were applied in rapid succession or individually to rats' rear paws beginning at low peak intensities and progressing to higher peak intensities, until the rats withdrew their paws immediately after iFU application. Focused ultrasound protocols consisting of successively and rapidly applied pulses elicited inflamed paw withdrawal at lower intensity and estimated tissue displacement values than single pulse protocols. However, both successively applied pulses and single pulses produced comparable threshold acoustic dose values and estimates of temperature increases. This raises the possibility that temperature increase contributed to paw withdrawal after rapid iFU stimulation. While iFU-induction of temporal summation may also play a role, electrophysiological studies are necessary to tease out these potential contributors to iFU stimulation. PMID:23927192

  6. Flight behavior of the rhinoceros beetle Trypoxylus dichotomus during electrical nerve stimulation.

    PubMed

    Van Truong, Tien; Byun, Doyoung; Lavine, Laura Corley; Emlen, Douglas J; Park, Hoon Cheol; Kim, Min Jun

    2012-09-01

    Neuronal stimulation is an intricate part of understanding insect flight behavior and control insect itself. In this study, we investigated the effects of electrical pulses applied to the brain and basalar muscle of the rhinoceros beetle (Trypoxylus dichotomus). To understand specific neuronal stimulation mechanisms, responses and flight behavior of the beetle, four electrodes were implanted into the two optic lobes, the brain's central complex and the ventral nerve cord in the posterior pronotum. We demonstrated flight initiation, turning and cessation by stimulating the brain. The change undergone by the wing flapping in response to the electrical signal was analyzed from a sequence of images captured by a high-speed camera. Here, we provide evidence to distinguish the important differences between neuronal and muscular flight stimulations in beetles. We found that in the neural potential stimulation, both the hind wing and the elytron were suppressed. Interestingly, the beetle stopped flying whenever a stimulus potential was applied between the pronotum and one side of the optic lobe, or between the ventral nerve cord in the posterior pronotum and the central complex. In-depth experimentation demonstrated the effective of neural stimulation over muscle stimulation for flight control. During electrical stimulation of the optic lobes, the beetle performed unstable flight, resulting in alternating left and right turns. By applying the electrical signal into both the optic lobes and the central complex of the brain, we could precisely control the direction of the beetle flight. This work provides an insight into insect flight behavior for future development of insect-micro air vehicle.

  7. Low-intensity pulsed ultrasound stimulation for mandibular condyle osteoarthritis lesions in rats.

    PubMed

    Kanaguchi Arita, A; Yonemitsu, I; Ikeda, Y; Miyazaki, M; Ono, T

    2018-05-01

    This study evaluated low-intensity pulsed ultrasound effects for temporomandibular joint osteoarthritis in adult rats. Osteoarthritis-like lesions were induced in 24 adult rats' temporomandibular joints with low-dose mono-iodoacetate injections. The rats were divided into four groups: control and mono-iodoacetate groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks and observed until 20 weeks; and low-intensity pulsed ultrasound and mono-iodoacetate + low-intensity pulsed ultrasound groups, injected with contrast media and mono-iodoacetate, respectively, at 12 weeks with low-intensity pulsed ultrasound performed from 16 to 20 weeks. Condylar bone mineral density, bone mineral content and bone volume were evaluated weekly with microcomputed tomography. Histological and immunohistochemical staining for matrix metalloproteinases-13 was performed at 20 weeks. At 20 weeks, the mono-iodoacetate + low-intensity pulsed ultrasound group showed significantly higher bone mineral density, bone mineral content and bone volume than the mono-iodoacetate group; however, these values remained lower than those in the other two groups. On histological and immunohistochemical analysis, the chondrocytes were increased, and fewer matrix metalloproteinases-13 immunopositive cells were identified in the mono-iodoacetate + low-intensity pulsed ultrasound group than mono-iodoacetate group. Low-intensity pulsed ultrasound for 2 weeks may have therapeutic potential for treating temporomandibular joint osteoarthritis lesions. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Spectral dynamics of THz pulses generated by two-color laser filaments in air: the role of Kerr nonlinearities and pump wavelength.

    PubMed

    Nguyen, A; González de Alaiza Martínez, P; Déchard, J; Thiele, I; Babushkin, I; Skupin, S; Bergé, L

    2017-03-06

    We theoretically and numerically study the influence of both instantaneous and Raman-delayed Kerr nonlinearities as well as a long-wavelength pump in the terahertz (THz) emissions produced by two-color femtosecond filaments in air. Although the Raman-delayed nonlinearity induced by air molecules weakens THz generation, four-wave mixing is found to impact the THz spectra accumulated upon propagation via self-, cross-phase modulations and self-steepening. Besides, using the local current theory, we show that the scaling of laser-to-THz conversion efficiency with the fundamental laser wavelength strongly depends on the relative phase between the two colors, the pulse duration and shape, rendering a universal scaling law impossible. Scaling laws in powers of the pump wavelength may only provide a rough estimate of the increase in the THz yield. We confront these results with comprehensive numerical simulations of strongly focused pulses and of filaments propagating over meter-range distances.

  9. Modulation of the cortical silent period elicited by single- and paired-pulse transcranial magnetic stimulation

    PubMed Central

    2013-01-01

    Background The cortical silent period (CSP) elicited by transcranial magnetic stimulation (TMS) is affected by changes in TMS intensity. Some studies have shown that CSP is shortened or prolonged by short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), Those studies, however, used different TMS intensities to adjust the amplitude of the motor evoked potential (MEP). Therefore, it is unclear whether changes in CSP duration are induced by changes in TMS intensities or by SICI and ICF. The purpose of this study was to confirm the effects of muscle contractions and stimulus intensities on MEP amplitude and the duration of CSP induced by single-pulse TMS and to clarify the effects of SICI and ICF on CSP duration. MEP evoked by TMS was detected from the right first dorsal interosseous muscle in 15 healthy subjects. First, MEP and CSP were induced by single-pulse TMS with an intensity of 100% active motor threshold (AMT) at four muscle contraction levels [10%, 30%, 50%, and 70% electromyogram (EMG)]. Next, MEP and CSP were induced by seven TMS intensities (100%, 110%, 120%, 130%, 140%, 150%, and 160% AMT) during muscle contraction of 10% EMG. Finally, SICI and ICF were recorded at the four muscle contraction levels (0%, 10%, 30%, and 50% EMG). Results MEP amplitudes increased with increases in muscle contraction and stimulus intensity. However, CSP duration did not differ at different muscle contraction levels and was prolonged with increases in stimulus intensity. CSP was shortened with SICI compared with CSP induced by single-pulse TMS and with ICF at all muscle contraction levels, whereas CSP duration was not significantly changed with ICF. Conclusions We confirmed that CSP duration is affected by TMS intensity but not by the muscle contraction level. This study demonstrated that CSP is shortened with SICI, but it is not altered with ICF. These results indicate that after SICI, CSP duration is affected by the activity of inhibitory

  10. Experimental gas-fired pulse-combustion studies

    NASA Technical Reports Server (NTRS)

    Blomquist, C. A.

    1982-01-01

    Experimental studies conducted at Argonne National Laboratory on a gas-fired, water-cooled, Helmholtz-type pulse combustion burner are discussed. In addition to the experimental work, information is presented on the evolution of pulse combustion, the types of pulse combustion burners and their applications, and the types of fuels used. Also included is a survey of other pertinent studies of gas-fired pulse combustion. The burner used in the Argonne research effort was equipped with adjustable air and gas flapper valves and was operated stably over a heat-input range of 30,000 to 200,000 Btu/h. The burner's overall heat transfer in the pulsating mode was 22 to 31% higher than when the unit was operated in the steady mode. Important phenomena discussed include (1) effects on performance produced by inserting a corebustor to change tailpipe diameter, (2) effects observed following addition of an air-inlet decoupling chamber to the unit, and (3) occurrence of carbon monoxide in the exhaust gas.

  11. Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Azuero, Andres

    2012-01-01

    A fundamental barrier to using electrical stimulation in the clinical setting is an inability to maintain torque production secondary to muscle fatigue. Electrical stimulation parameters are manipulated to influence muscle torque production, and they may also influence fatigability during repetitive stimulation. Our purpose was to determine the response of the quadriceps femoris to three different fatigue protocols using the same initial torque obtained by altering stimulator parameter settings. Participants underwent fatigue protocols in which either pulse frequency (lowHz), pulse duration (lowPD), or voltage (lowV) was manipulated to obtain an initial torque that equaled 25% of maximum voluntary isometric contraction. Muscle soreness was reported on a visual analog scale 48 h after each fatigue test. The lowHz protocol resulted in the least fatigue (25% +/- 14%); the lowPD (50% +/- 13%) and lowV (48% +/- 14%) protocols had similar levels of fatigue. The lowHz protocol resulted in significantly less muscle soreness than the higher frequency protocols. Stimulation protocols that use a lower frequency coupled with long pulse durations and high voltages result in lesser amounts of muscle fatigue and perceived soreness. The identification of optimal stimulation patterns to maximize muscle performance will reduce the effect of muscle fatigue and potentially improve clinical efficacy.

  12. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.

    PubMed

    Walckiers, Grégoire; Fuchs, Benjamin; Thiran, Jean-Philippe; Mosig, Juan R; Pollo, Claudio

    2010-01-30

    Electrical deep brain stimulation (DBS) is an efficient method to treat movement disorders. Many models of DBS, based mostly on finite elements, have recently been proposed to better understand the interaction between the electrical stimulation and the brain tissues. In monopolar DBS, clinically widely used, the implanted pulse generator (IPG) is used as reference electrode (RE). In this paper, the influence of the RE model of monopolar DBS is investigated. For that purpose, a finite element model of the full electric loop including the head, the neck and the superior chest is used. Head, neck and superior chest are made of simple structures such as parallelepipeds and cylinders. The tissues surrounding the electrode are accurately modelled from data provided by the diffusion tensor magnetic resonance imaging (DT-MRI). Three different configurations of RE are compared with a commonly used model of reduced size. The electrical impedance seen by the DBS system and the potential distribution are computed for each model. Moreover, axons are modelled to compute the area of tissue activated by stimulation. Results show that these indicators are influenced by the surface and position of the RE. The use of a RE model corresponding to the implanted device rather than the usually simplified model leads to an increase of the system impedance (+48%) and a reduction of the area of activated tissue (-15%). (c) 2009 Elsevier B.V. All rights reserved.

  13. Dual-pulse laser ignition of ethylene-air mixtures in a supersonic combustor.

    PubMed

    Yang, Leichao; An, Bin; Liang, Jianhan; Li, Xipeng; Wang, Zhenguo

    2018-04-02

    To reduce the energy of an individual laser pulse, dual-pulse laser ignitions (LIs) at various pulse intervals were investigated in a Mach 2.92 scramjet engine fueled with ethylene. For comparison, experiments on a single-pulse LI were also performed. Schlieren visualization and high-speed photography were employed to observe the ignition processes simultaneously. The results indicate that the energy of an individual laser pulse can be reduced by half via a dual-pulse LI method as compared with a single-pulse LI with the same total energy. The reduction of the individual laser pulse energy degrades the requirements on the laser source and the beam delivery system, which facilitates the practical application of LI in hypersonic vehicles. A pulse interval shorter than 40 μs is suggested for dual-pulse LI in the present study. Because of the intense heat loss and radical dissipation in high-speed flows, the pulse interval for dual-pulse LI should be short enough to narrow the spatial distribution of the initial flame kernel.

  14. The development and modeling of devices and paradigms for transcranial magnetic stimulation

    PubMed Central

    Goetz, Stefan M.; Deng, Zhi-De

    2017-01-01

    Magnetic stimulation is a noninvasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modeling. PMID:28443696

  15. The development and modelling of devices and paradigms for transcranial magnetic stimulation.

    PubMed

    Goetz, Stefan M; Deng, Zhi-De

    2017-04-01

    Magnetic stimulation is a non-invasive neurostimulation technique that can evoke action potentials and modulate neural circuits through induced electric fields. Biophysical models of magnetic stimulation have become a major driver for technological developments and the understanding of the mechanisms of magnetic neurostimulation and neuromodulation. Major technological developments involve stimulation coils with different spatial characteristics and pulse sources to control the pulse waveform. While early technological developments were the result of manual design and invention processes, there is a trend in both stimulation coil and pulse source design to mathematically optimize parameters with the help of computational models. To date, macroscopically highly realistic spatial models of the brain, as well as peripheral targets, and user-friendly software packages enable researchers and practitioners to simulate the treatment-specific and induced electric field distribution in the brains of individual subjects and patients. Neuron models further introduce the microscopic level of neural activation to understand the influence of activation dynamics in response to different pulse shapes. A number of models that were designed for online calibration to extract otherwise covert information and biomarkers from the neural system recently form a third branch of modelling.

  16. Transcranial electric and magnetic stimulation: technique and paradigms.

    PubMed

    Paulus, Walter; Peterchev, Angel V; Ridding, Michael

    2013-01-01

    Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.

  17. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine.

    PubMed

    Andreou, Anna P; Holland, Philip R; Akerman, Simon; Summ, Oliver; Fredrick, Joe; Goadsby, Peter J

    2016-07-01

    A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  18. Electrode contact configuration and energy consumption in spinal cord stimulation.

    PubMed

    de Vos, Cecile C; Hilgerink, Marjolein P; Buschman, Hendrik P J; Holsheimer, Jan

    2009-12-01

    To test the hypothesis that in spinal cord stimulation, an increase in the number of cathodes increases the energy per pulse, contrary to an increase in the number of anodes, which decreases energy consumption per pulse. Patients with an Itrel III (7425; Medtronic, Inc., Minneapolis, MN) implantable pulse generator and a Pisces-Quad (3487A; Medtronic, Inc.) implantable quadripolar lead were selected for this study. A set of 7 standard contact configurations was used for each patient. Resistor network models mimicking these configurations were constructed. The University of Twente's Spinal Cord Stimulation software was used to simulate the effect of these contact configurations on large spinal nerve fibers. To allow a comparison of the measured and modeled energy per pulse, all values were normalized. Both the empirical and the modeling results showed an increase in energy consumption with an increasing number of cathodes. Although the patient data with 1 and 2 cathodes did not differ significantly, energy consumption was significantly higher when 3 cathodes were used instead of 1 or 2 cathodes. The average energy consumption was significantly higher when bipolar stimulation was used instead of monopolar cathodal stimulation. An increasing number of anodes caused a decrease in energy consumption. When the paresthesia area can be covered with several configurations, it will be beneficial for the patient to program a configuration with 1 cathode and either no or multiple anodes.

  19. A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai; Rao, Jian

    2018-01-01

    The relationship between continental-scale cold air outbreaks (CAOs) in the mid-latitudes and pulse signals in the stratospheric mass circulation in Northern Hemisphere winter (December-February) is investigated using ERA-Interim data for the 32 winters from 1979 to 2011. Pulse signals in the stratospheric mass circulation include "PULSE_TOT", "PULSE_W1", and "PULSE_W2" events, defined as a period of stronger meridional mass transport into the polar stratosphere by total flow, wavenumber-1, and wavenumber-2, respectively. Each type of PULSE event occurs on average 4-6 times per winter. A robust relationship is found between two dominant patterns of winter CAOs and PULSE_W1 and PULSE_W2 events. Cold temperature anomalies tend to occur over Eurasia with the other continent anomalously warm during the 2 weeks before the peak dates of PULSE_W1 events, while the opposite temperature anomaly pattern can be found after the peak dates; and during the 1-2 weeks centered on the peak dates of PULSE_W2 events, a higher probability of occurrence of CAOs is found over both continents. These relationships become more robust for PULSE_W1 and PULSE_W2 events of larger peak intensity. PULSE_TOT events are classified into five types, which have a distinct coupling relationship with PULSE_W1 and PULSE_W2 events. The specific pattern of CAOs associated with each type of PULSE_TOT event is found to be a combination of the CAO patterns associated with PULSE_W1 and PULSE_W2 events. The percentage of PULSE_TOT events belonging to the types that are dominated by PULSE_W2 events increases with the peak intensity of PULSE_TOT events. Accordingly, the related CAO pattern is close to that associated with PULSE_W1 for PULSE_TOT events with small-to-medium intensity, but tends to resemble that associated with PULSE_W2 events as the peak intensity of PULSE_TOT events increases.

  20. Pulse compression using a tapered microstructure optical fiber.

    PubMed

    Hu, Jonathan; Marks, Brian S; Menyuk, Curtis R; Kim, Jinchae; Carruthers, Thomas F; Wright, Barbara M; Taunay, Thierry F; Friebele, E J

    2006-05-01

    We calculate the pulse compression in a tapered microstructure optical fiber with four layers of holes. We show that the primary limitation on pulse compression is the loss due to mode leakage. As a fiber's diameter decreases due to the tapering, so does the air-hole diameter, and at a sufficiently small diameter the guided mode loss becomes unacceptably high. For the four-layer geometry we considered, a compression factor of 10 can be achieved by a pulse with an initial FWHM duration of 3 ps in a tapered fiber that is 28 m long. We find that there is little difference in the pulse compression between a linear taper profile and a Gaussian taper profile. More layers of air-holes allows the pitch to decrease considerably before losses become unacceptable, but only a moderate increase in the degree of pulse compression is obtained.

  1. Degradation of pentachlorophenol in soil by pulsed corona discharge plasma.

    PubMed

    Wang, Tie Cheng; Lu, Na; Li, Jie; Wu, Yan

    2010-08-15

    The remediation of pentachlorophenol (PCP) contaminated soil using pulsed corona discharge plasma was reported in this study. The effect of practical run parameters such as peak pulse voltage, pulse frequency, gas atmospheres (air, O(2), Ar and N(2)), air flow rate and pollution time on PCP degradation was investigated, and the intermediate products were also studied. The results indicated that PCP degradation efficiency increased with an increase in peak pulse voltage or pulse frequency, due to the enhancement of energy input. There existed a maximal PCP degradation efficiency with the change of air flow rate. PCP degradation efficiencies under oxygen and air atmospheres were achieved 92% and 77% after 45 min of discharge treatment at 14.0 kV, respectively, which were only 19% and 8% under argon and nitrogen atmospheres, respectively. O(3) played an important role in PCP degradation. However, other processes also contributed to PCP degradation, such as N, N(2)(+), N(+) and OH. The pollution time evidenced slight influence on PCP degradation. The main intermediate products produced during the treatment process were identified as tetrachlorocatechol, tetrachlorohydroquinone, acetic acid, formic acid and oxalic acid by HPLC/MS and ion chromatography. This study is expected to provide reference for the application of pulsed corona discharge in soil remediation. Copyright 2010 Elsevier B.V. All rights reserved.

  2. Development of a Specific Impulse Balance for a Pulsed Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-13

    thrust stand [rad/s] I. Introduction A capillary discharge based coaxial , electrothermal pulsed plasma thruster (PPT) is currently under...20-23 July 2008. 14. ABSTRACT A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research...Edwards AFB, CA 93524 A capillary discharge based pulsed plasma thruster is currently under development at the Air Force Research Laboratory. A

  3. Electrical and spectroscopic analysis of mono- and multi-tip pulsed corona discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Mraihi, A.; Merbahi, N.; Yousfi, M.; Abahazem, A.; Eichwald, O.

    2011-12-01

    This work is devoted to the analysis of experimental results obtained in dry air at atmospheric pressure in a positive point-to-plane corona discharge under a pulsed applied voltage in the cases of anodic mono- and multi-tips. In the mono-tip case, the peak corona current is analysed as a function of several experimental parameters such as magnitude, frequency and duration of pulsed voltage and gap distance. The variation of the corona discharge current is correlated with the ozone production. Then in the multi-tip case, the electrical behaviour is analysed as a function of the distance between two contiguous tips and the tip number in order to highlight the region of creation active species for the lowest dissipated power. Intensified charge-coupled device pictures and electric field calculations as a function of inter-tip distance are performed to analyse the mutual effect between two contiguous tips. The optical emission spectra are measured in the UV-visible-NIR wavelength range between 200 nm and 800 nm, in order to identify the main excited species formed in an air corona discharge such as the usual first and second positive systems with first negative systems of molecular nitrogen. The identification of atomic species (O triplet and N) and the quenching of NOγ emission bands are also emphasized.

  4. Changes in cell death of peripheral blood lymphocytes isolated from children with acute lymphoblastic leukemia upon stimulation with 7 Hz, 30 mT pulsed electromagnetic field.

    PubMed

    Kaszuba-Zwoińska, Jolanta; Ćwiklińska, Magdalena; Balwierz, Walentyna; Chorobik, Paulina; Nowak, Bernadeta; Wójcik-Piotrowicz, Karolina; Ziomber, Agata; Malina-Novak, Kinga; Zaraska, Wiesław; Thor, Piotr J

    2015-03-01

    Pulsed electromagnetic field (PEMF) influenced the viability of proliferating in vitro peripheral blood mononuclear cells (PBMCs) isolated from Crohn's disease patients as well as acute myeloblastic leukemia (AML) patients by induction of cell death, but did not cause any vital changes in cells from healthy donors. Experiments with lymphoid U937 and monocytic MonoMac6 cell lines have shown a protective effect of PEMF on the death process in cells treated with death inducers. The aim of the current study was to investigate the influence of PEMF on native proliferating leukocytes originating from newly diagnosed acute lymphoblastic leukemia (ALL) patients. The effects of exposure to PEMF were studied in PBMCs from 20 children with ALL. PBMCs were stimulated with three doses of PEMF (7 Hz, 30 mT) for 4 h each with 24 h intervals. After the last stimulation, the cells were double stained with annexin V and propidium iodide dye to estimate viability by flow cytometric analysis. The results indicated an increase of annexin V positive as well as double stained annexin V and propidium iodide positive cells after exposure to threefold PEMF stimulation. A low-frequency pulsed electromagnetic field induces cell death in native proliferating cells isolated from ALL patients. The increased vulnerability of proliferating PBMCs to PEMF-induced interactions may be potentially applied in the therapy of ALL. The analysis of expression of apoptosis-related genes revealed changes in mRNA of some genes engaged in the intrinsic apoptotic pathway belonging to the Bcl-2 family and the pathway with apoptosis-inducing factor (AIF) abundance upon PEMF stimulation of PBMCs.

  5. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  6. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source

    PubMed Central

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-01-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634

  7. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  8. Randomized, Blinded Pilot Testing of Nonconventional Stimulation Patterns and Shapes in Parkinson's Disease and Essential Tremor: Evidence for Further Evaluating Narrow and Biphasic Pulses.

    PubMed

    Akbar, Umer; Raike, Robert S; Hack, Nawaz; Hess, Christopher W; Skinner, Jared; Martinez-Ramirez, Daniel; DeJesus, Sol; Okun, Michael S

    2016-06-01

    Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically-optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically-relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically-optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up. © 2016 The Authors. Neuromodulation: Technology at the Neural Interface published by Wiley Periodicals, Inc. on behalf of International Neuromodulation Society.

  9. Laser stimulation for pain research

    NASA Astrophysics Data System (ADS)

    Clark, Stuart; Dickinson, Mark R.; King, Terence A.; Jones, Anthony; Chen, Andrew; Derbyshire, Stuart; Townsend, D. W.; Kinahan, Paul E.; Mintun, M. A.; Nichols, T.

    1996-01-01

    Pain is a serious medical problem; it inflicts huge economic loss and personal suffering. Pain signals are conducted via small, non- and partially myelinated A-delta and C nerve fibers and lasers are particularly well suited to stimulating these fibers. Large myelinated fibers convey touch and vibration information and these fibers are also discharged when contact thermodes and other touch pain stimuli are used and this would give a more muddled signal for functional imaging experiments. The advantages of lasers over conventional methods of pain stimulation are good temporal resolution, no variable parameters are involved such as contact area and they give very reproducible results. Accurate inter-stimulus changes can be achieved by computer control of the laser pulse duration, pulse height and repetition rate and this flexibility enables complex stimulation paradigms to be realized. We present a flexible carbon dioxide laser system designed to generate these stimuli for the study of human cerebral pain responses. We discuss the advantages within research of this system over other methods of pain stimulation such as thermal, electrical and magnetic. The stimulator is used in conjunction with functional magnetic resonance imaging, positron emission tomography and electrophysiological methods of imaging the brain's activity. This combination is a powerful tool for the study of pain-induced activity in different areas of the brain. An accurate understanding of the brain's response to pain will help in research into the areas of rheumatoid arthritis and chronic back pain.

  10. Electrical and optical co-stimulation in the deaf white cat

    NASA Astrophysics Data System (ADS)

    Cao, Zhiping; Xu, Yingyue; Tan, Xiaodong; Suematsu, Naofumi; Robinson, Alan; Richter, Claus-Peter

    2018-02-01

    Spatial selectivity of neural stimulation with photons, such as infrared neural stimulation (INS) is higher than the selectivity obtained with electrical stimulation. To obtain more independent channels for stimulation in neural prostheses, INS may be implemented to better restore the fidelity of the damaged neural system. However, irradiation with infrared light also bares the risk of heat accumulation in the target tissue with subsequent neural damage. Lowering the threshold for stimulation could reduce the amount of heat delivered to the tissue and the risk for subsequent tissue damage. It has been shown in the rat sciatic nerve that simultaneous irradiation with infrared light and the delivery of biphasic sub-threshold electrical pulses can reduce the threshold for INS [1]. In this study, deaf white cats have been used to test whether opto-electrical co-stimulation can reduce the stimulation threshold for INS in the auditory system too. The cochleae of the deaf white cats have largely reduced spiral ganglion neuron counts and significant degeneration of the organ of Corti and do not respond to acoustic stimuli. Combined electrical and optical stimulation was used to demonstrate that simultaneous stimulation with infrared light and biphasic electrical pulses can reduce the threshold for stimulation.

  11. Low-intensity pulsed ultrasound (LIPUS) stimulates mineralization of MC3T3-E1 cells through calcium and phosphate uptake.

    PubMed

    Tassinary, João Alberto Fioravante; Lunardelli, Adroaldo; Basso, Bruno de Souza; Dias, Henrique Bregolin; Catarina, Anderson Velasque; Stülp, Simone; Haute, Gabriela Viegas; Martha, Bianca Andrade; Melo, Denizar Alberto da Silva; Nunes, Fernanda Bordignon; Donadio, Márcio Vinícius Fagundes; Oliveira, Jarbas Rodrigues de

    2018-03-01

    The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1 MHz frequency, 0.2 W/cm 2 intensity and 20% duty cycle for 30 min. The analyses were carried out up to 336 h (14 days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-β1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192 h after LIPUS exposure. However, alkaline phosphatase and TGF-β1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. [Which colours can we hear?: light stimulation of the hearing system].

    PubMed

    Wenzel, G I; Lenarz, T; Schick, B

    2014-02-01

    The success of conventional hearing aids and electrical auditory prostheses for hearing impaired patients is still limited in noisy environments and for sounds more complex than speech (e. g. music). This is partially due to the difficulty of frequency-specific activation of the auditory system using these devices. Stimulation of the auditory system using light pulses represents an alternative to mechanical and electrical stimulation. Light is a source of energy that can be very exactly focused and applied with little scattering, thus offering perspectives for optimal activation of the auditory system. Studies investigating light stimulation of sectors along the auditory pathway have shown stimulation of the auditory system is possible using light pulses. However, further studies and developments are needed before a new generation of light stimulation-based auditory prostheses can be made available for clinical application.

  13. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans.

    PubMed

    Batsikadze, G; Moliadze, V; Paulus, W; Kuo, M-F; Nitsche, M A

    2013-04-01

    Transcranial direct current stimulation (tDCS) of the human motor cortex at an intensity of 1 mA with an electrode size of 35 cm(2) has been shown to induce shifts of cortical excitability during and after stimulation. These shifts are polarity-specific with cathodal tDCS resulting in a decrease and anodal stimulation in an increase of cortical excitability. In clinical and cognitive studies, stronger stimulation intensities are used frequently, but their physiological effects on cortical excitability have not yet been explored. Therefore, here we aimed to explore the effects of 2 mA tDCS on cortical excitability. We applied 2 mA anodal or cathodal tDCS for 20 min on the left primary motor cortex of 14 healthy subjects. Cathodal tDCS at 1 mA and sham tDCS for 20 min was administered as control session in nine and eight healthy subjects, respectively. Motor cortical excitability was monitored by transcranial magnetic stimulation (TMS)-elicited motor-evoked potentials (MEPs) from the right first dorsal interosseous muscle. Global corticospinal excitability was explored via single TMS pulse-elicited MEP amplitudes, and motor thresholds. Intracortical effects of stimulation were obtained by cortical silent period (CSP), short latency intracortical inhibition (SICI) and facilitation (ICF), and I wave facilitation. The above-mentioned protocols were recorded both before and immediately after tDCS in randomized order. Additionally, single-pulse MEPs, motor thresholds, SICI and ICF were recorded every 30 min up to 2 h after stimulation end, evening of the same day, next morning, next noon and next evening. Anodal as well as cathodal tDCS at 2 mA resulted in a significant increase of MEP amplitudes, whereas 1 mA cathodal tDCS decreased corticospinal excitability. A significant shift of SICI and ICF towards excitability enhancement after both 2 mA cathodal and anodal tDCS was observed. At 1 mA, cathodal tDCS reduced single-pulse TMS-elicited MEP amplitudes and shifted SICI

  14. Randomized, Blinded Pilot Testing of Nonconventional Stimulation Patterns and Shapes in Parkinson's Disease and Essential Tremor: Evidence for Further Evaluating Narrow and Biphasic Pulses

    PubMed Central

    Akbar, Umer; Raike, Robert S.; Hack, Nawaz; Hess, Christopher W.; Skinner, Jared; Martinez‐Ramirez, Daniel; DeJesus, Sol

    2016-01-01

    Objectives Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse‐generators (IPGs). Materials and Methods A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically‐optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. Results Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically‐relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically‐optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. Conclusions It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up. PMID:27000764

  15. Generation of multi-millijoule red-shifted pulses for seeding stimulated Raman backscattering amplifiers.

    PubMed

    Landgraf, Björn; Hoffmann, Andreas; Kartashov, Daniil; Gärtner, Felix; Samsonova, Zhanna; Polynkin, Pavel; Jacoby, Joachim; Kühl, Thomas; Spielmann, Christian

    2015-03-23

    The efficient generation of redshifted pulses from chirped femtosecond joule level Bessel beam pulses in gases is studied. The redshift spans from a few 100 cm⁻¹ to several 1000 cm⁻¹ corresponding to a shift of 50-500 nm for Nd:glass laser systems. The generated pulses have an almost perfect Gaussian beam profile insensitive of the pump beam profile, and are much shorter than the pump pulses. The highest measured energy is as high as 30 mJ, which is significantly higher than possible with solid state nonlinear frequency shifters.

  16. Vibrotactile sensory substitution for object manipulation: amplitude versus pulse train frequency modulation.

    PubMed

    Stepp, Cara E; Matsuoka, Yoky

    2012-01-01

    Incorporating sensory feedback with prosthetic devices is now possible, but the optimal methods of providing such feedback are still unknown. The relative utility of amplitude and pulse train frequency modulated stimulation paradigms for providing vibrotactile feedback for object manipulation was assessed in 10 participants. The two approaches were studied during virtual object manipulation using a robotic interface as a function of presentation order and a simultaneous cognitive load. Despite the potential pragmatic benefits associated with pulse train frequency modulated vibrotactile stimulation, comparison of the approach with amplitude modulation indicates that amplitude modulation vibrotactile stimulation provides superior feedback for object manipulation.

  17. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  18. 9 CFR 307.7 - Safety requirements for electrical stimulating (EST) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... requirements for electrical stimulating (EST) equipment. (a) General. Electrical stimulating (EST) equipment is... of facilitating blood removal. These provisions do not apply to electrical equipment used to stun and... generate pulsed DC or AC voltage for stimulation and is separate from the equipment used to apply the...

  19. The evaluation of clinical therapy effects of oral western medicine combined with magnetic pulse acupoint stimulation in treating elderly patients with coronary heart disease

    PubMed Central

    Fu, Xin; Guo, Li; Jiang, Zheng-Ming; Xu, Ai-Guo

    2015-01-01

    Objective: Treat the patients suffered from coronary heart disease with oral western medicine, combining with magnetic pulse acupoint stimulation, and observe the therapeutic effects of such combination therapy method. Methods: 56 old people with coronary heart disease are randomly divided into a treatment group and a control group. Both groups of patients are treated by the routine drugs, in addition, the patients of the treatment group are treated by magnetic pulse therapy additionally. Compare clinical symptoms, blood lipid and blood rheological indexes of the patients in the two groups when they are selected and after 30 days’ treatment. Results: after 30 days’ treatment, it is found that clinical symptoms, blood lipid and blood rheological indexes of the patients in the treatment group are significantly improved compared with those when they are selected and those of the control group (P<0.05). Conclusion: patients with coronary heart disease, treated by pulsed magnetic therapy and the conventional drug intervention, had relieved synptom, improve blood lipid and heart blood supply function. PMID:26309664

  20. Pulse combustor with controllable oscillations

    DOEpatents

    Richards, George A.; Welter, Michael J.; Morris, Gary J.

    1992-01-01

    A pulse combustor having thermally induced pulse combustion in a continuously flowing system is described. The pulse combustor is fitted with at lease one elongated ceramic body which significantly increases the heat transfer area in the combustion chamber of the combustor. The ceramic body or bodies possess sufficient mass and heat capacity to ignite the fuel-air charge once the ceramic body or bodies are heated by conventional spark plug initiated combustion so as to provide repetitive ignition and combustion of sequentially introduced fuel-air charges without the assistance of the spark plug and the rapid quenching of the flame after each ignition in a controlled manner so as to provide a selective control over the oscillation frequency and amplitude. Additional control over the heat transfer in the combustion chamber is provided by employing heat exchange mechanisms for selectively heating or cooling the elongated ceramic body or bodies and/or the walls of the combustion chamber.

  1. Effects of cochlear-implant pulse rate and inter-channel timing on channel interactions and thresholds

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John C.

    2004-07-01

    Interactions among the multiple channels of a cochlear prosthesis limit the number of channels of information that can be transmitted to the brain. This study explored the influence on channel interactions of electrical pulse rates and temporal offsets between channels. Anesthetized guinea pigs were implanted with 2-channel scala-tympani electrode arrays, and spike activity was recorded from the auditory cortex. Channel interactions were quantified as the reduction of the threshold for pulse-train stimulation of the apical channel by sub-threshold stimulation of the basal channel. Pulse rates were 254 or 4069 pulses per second (pps) per channel. Maximum threshold reductions averaged 9.6 dB when channels were stimulated simultaneously. Among nonsimultaneous conditions, threshold reductions at the 254-pps rate were entirely eliminated by a 1966-μs inter-channel offset. When offsets were only 41 to 123 μs, however, maximum threshold shifts averaged 3.1 dB, which was comparable to the dynamic ranges of cortical neurons in this experimental preparation. Threshold reductions at 4069 pps averaged up to 1.3 dB greater than at 254 pps, which raises some concern in regard to high-pulse-rate speech processors. Thresholds for various paired-pulse stimuli, pulse rates, and pulse-train durations were measured to test possible mechanisms of temporal integration.

  2. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Generation of currents and propagation of plasma fronts in the case of two-pulse interaction with a target in air

    NASA Astrophysics Data System (ADS)

    Barkhudarov, É. M.; Gelashvili, G. V.; Gumberidze, G. G.; Taktakishvili, M. I.

    1990-06-01

    An investigation was made of the enhancement in the efficiency of generation of currents when a target in air was subjected to two consecutive CO2 laser radiation pulses. Preliminary interaction with a low-energy (1.5-5 J) pulse increased by more than one order of magnitude the currents generated by the second pulse and this was true in a wide range of energies of the latter pulse. The energy conversion efficiency was practically unaffected. The results were in qualitative agreement with the proposed pattern of plasma formation and propagation of shock waves near a target.

  3. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  4. Mechanical Stimulation (Pulsed Electromagnetic Fields “PEMF” and Extracorporeal Shock Wave Therapy “ESWT”) and Tendon Regeneration: A Possible Alternative

    PubMed Central

    Rosso, Federica; Bonasia, Davide E.; Marmotti, Antonio; Cottino, Umberto; Rossi, Roberto

    2015-01-01

    The pathogenesis of tendon degeneration and tendinopathy is still partially unclear. However, an active role of metalloproteinases (MMP), growth factors, such as vascular endothelial growth factor (VEGF) and a crucial role of inflammatory elements and cytokines was demonstrated. Mechanical stimulation may play a role in regulation of inflammation. In vitro studies demonstrated that both pulsed electromagnetic fields (PEMF) and extracorporeal shock wave therapy (ESWT) increased the expression of pro-inflammatory cytokine such as interleukin (IL-6 and IL-10). Moreover, ESWT increases the expression of growth factors, such as transforming growth factor β(TGF-β), (VEGF), and insulin-like growth factor 1 (IGF1), as well as the synthesis of collagen I fibers. These pre-clinical results, in association with several clinical studies, suggest a potential effectiveness of ESWT for tendinopathy treatment. Recently PEMF gained popularity as adjuvant for fracture healing and bone regeneration. Similarly to ESWT, the mechanical stimulation obtained using PEMFs may play a role for treatment of tendinopathy and for tendon regeneration, increasing in vitro TGF-β production, as well as scleraxis and collagen I gene expression. In this manuscript the rational of mechanical stimulations and the clinical studies on the efficacy of extracorporeal shock wave (ESW) and PEMF will be discussed. However, no clear evidence of a clinical value of ESW and PEMF has been found in literature with regards to the treatment of tendinopathy in human, so further clinical trials are needed to confirm the promising hypotheses concerning the effectiveness of ESWT and PEMF mechanical stimulation. PMID:26617513

  5. MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.

    PubMed

    McNair, Nicolas A

    2017-01-30

    To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Wireless Passive Stimulation of Engineered Cardiac Tissues.

    PubMed

    Liu, Shiyi; Navaei, Ali; Meng, Xueling; Nikkhah, Mehdi; Chae, Junseok

    2017-07-28

    We present a battery-free radio frequency (RF) microwave activated wireless stimulator, 25 × 42 × 1.6 mm 3 on a flexible substrate, featuring high current delivery, up to 60 mA, to stimulate engineered cardiac tissues. An external antenna shines 2.4 GHz microwave, which is modulated by an inverted pulse to directly control the stimulating waveform, to the wireless passive stimulator. The stimulator is equipped with an on-board antenna, multistage diode multipliers, and a control transistor. Rat cardiomyocytes, seeded on electrically conductive gelatin-based hydrogels, demonstrate synchronous contractions and Ca 2+ transients immediately upon stimulation. Notably, the stimulator output voltage and current profiles match the tissue contraction frequency within 0.5-2 Hz. Overall, our results indicate the promising potential of the proposed wireless passive stimulator for cardiac stimulation and therapy by induction of precisely controlled and synchronous contractions.

  7. Short infrared (IR) laser pulses can induce nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Glickman, Randolph D.; Beier, Hope T.

    2016-03-01

    Short infrared (IR) laser pulses on the order of hundreds of microseconds to single milliseconds with typical wavelengths of 1800-2100 nm, have shown the capability to reversibly stimulate action potentials (AP) in neuronal cells. While the IR stimulation technique has proven successful for several applications, the exact mechanism(s) underlying the AP generation has remained elusive. To better understand how IR pulses cause AP stimulation, we determined the threshold for the formation of nanopores in the plasma membrane. Using a surrogate calcium ion, thallium, which is roughly the same shape and charge, but lacks the biological functionality of calcium, we recorded the flow of thallium ions into an exposed cell in the presence of a battery of channel antagonists. The entry of thallium into the cell indicated that the ions entered via nanopores. The data presented here demonstrate a basic understanding of the fundamental effects of IR stimulation and speculates that nanopores, formed in response to the IR exposure, play an upstream role in the generation of AP.

  8. Effects of Acupuncture Stimulation on the Radial artery’s Pressure Pulse Wave in Healthy Young Participants: Protocol for a prospective, single-Arm, Exploratory, Clinical Study

    PubMed Central

    Shin, Jae-Young; Lee, Jun-Hwan; Ku, Boncho; Bae, Jang Han; un, Min-Ho; Kim, Jaeuk U.; Kim, Tae-Hun

    2016-01-01

    Introduction: This study aims to investigate the effects of acupuncture stimulation on the radial artery’s pressure pulse wave, along with various hemodynamic parameters, and to explore the possible underlying mechanism of pulse diagnosis in healthy participants in their twenties. Methods and analysis: This study is a prospective, single-arm, exploratory clinical study. A total of 25 healthy participants, without regard to gender, in their twenties will be recruited by physicians. Written informed consent will be obtained from all participants. The participants will receive acupuncture once at ST36 on both sides. The radial arterial pulse waves will be measured on the left arm of the subjects by using an applicable pulse tonometric device (KIOM-PAS). On the right arm (appearing twice), electrocardiogram (ECG), photoplethysmogram (PPG), respiration and cardiac output (CO) signals, will be measured using a physiological data acquisition system (Biopac module), while the velocity of blood flow, and the diameter and the depth of the blood vessel will be measured using an ultrasonogram machine on the right arm (appearing twice). All measurements will be conducted before, during, and after acupuncture. The primary outcome will be the spectral energy at high frequencies above 10 Hz (SE10-30Hz) calculated from the KIOM-PAS device signal. Secondary outcomes will be various variables obtained from the KIOM-PAS device, ECG, PPG, impedance cardiography modules, and an ultrasonogram machine. Discussion: The results of this trial will provide information regarding the physiological and the hemodynamic mechanisms underlying acupuncture stimulation and clinical evidence for the influence of acupuncture on the pressure pulse wave in the radial artery. Ethics and dissemination: This study was approved by the Institutional Review Board (IRB) of Kyung Hee University’s Oriental Medical Center, Seoul, Korea (KOMCIRB-150818-HR-030). The study findings will be published in peer

  9. Acute damage threshold for infrared neural stimulation of the cochlea: functional and histological evaluation.

    PubMed

    Goyal, Vinay; Rajguru, Suhrud; Matic, Agnella I; Stock, Stuart R; Richter, Claus-Peter

    2012-11-01

    This article provides a mini review of the current state of infrared neural stimulation (INS), and new experimental results concerning INS damage thresholds. INS promises to be an attractive alternative for neural interfaces. With this method, one can attain spatially selective neural stimulation that is not possible with electrical stimulation. INS is based on the delivery of short laser pulses that result in a transient temperature increase in the tissue and depolarize the neurons. At a high stimulation rate and/or high pulse energy, the method bears the risk of thermal damage to the tissue from the instantaneous temperature increase or from potential accumulation of thermal energy. With the present study, we determined the injury thresholds in guinea pig cochleae for acute INS using functional measurements (compound action potentials) and histological evaluation. The selected laser parameters for INS were the wavelength (λ = 1,869 nm), the pulse duration (100 μs), the pulse repetition rate (250 Hz), and the radiant energy (0-127 μJ/pulse). For up to 5 hr of continuous irradiation at 250 Hz and at radiant energies up to 25 μJ/pulse, we did not observe any functional or histological damage in the cochlea. Functional loss was observed for energies above 25 μJ/pulse and the probability of injury to the target tissue resulting in functional loss increased with increasing radiant energy. Corresponding cochlear histology from control animals and animals exposed to 98 or 127 μJ/pulse at 250 Hz pulse repetition rate did not show a loss of spiral ganglion cells, hair cells, or other soft tissue structures of the organ of Corti. Light microscopy did not reveal any structural changes in the soft tissue either. Additionally, microcomputed tomography was used to visualize the placement of the optical fiber within the cochlea. Copyright © 2012 Wiley Periodicals, Inc.

  10. WE-E-18A-04: Precision In-Vivo Dosimetry Using Optically Stimulated Luminescence Dosimeters and a Pulsed-Stimulating Dose Reader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Q; Herrick, A; Hoke, S

    Purpose: A new readout technology based on pulsed optically stimulating luminescence is introduced (microSTARii, Landauer, Inc, Glenwood, IL60425). This investigation searches for approaches that maximizes the dosimetry accuracy in clinical applications. Methods: The sensitivity of each optically stimulated luminescence dosimeter (OSLD) was initially characterized by exposing it to a given radiation beam. After readout, the luminescence signal stored in the OSLD was erased by exposing its sensing area to a 21W white LED light for 24 hours. A set of OSLDs with consistent sensitivities was selected to calibrate the dose reader. Higher order nonlinear curves were also derived from themore » calibration readings. OSLDs with cumulative doses below 15 Gy were reused. Before an in-vivo dosimetry, the OSLD luminescence signal was erased with the white LED light. Results: For a set of 68 manufacturer-screened OSLDs, the measured sensitivities vary in a range of 17.3%. A sub-set of the OSLDs with sensitivities within ±1% was selected for the reader calibration. Three OSLDs in a group were exposed to a given radiation. Nine groups were exposed to radiation doses ranging from 0 to 13 Gy. Additional verifications demonstrated that the reader uncertainty is about 3%. With an external calibration function derived by fitting the OSLD readings to a 3rd-order polynomial, the dosimetry uncertainty dropped to 0.5%. The dose-luminescence response curves of individual OSLDs were characterized. All curves converge within 1% after the sensitivity correction. With all uncertainties considered, the systematic uncertainty is about 2%. Additional tests emulating in-vivo dosimetry by exposing the OSLDs under different radiation sources confirmed the claim. Conclusion: The sensitivity of individual OSLD should be characterized initially. A 3rd-order polynomial function is a more accurate representation of the dose-luminescence response curve. The dosimetry uncertainty specified by the

  11. [Intracellular free calcium changes of mouse oocytes during activation induced by ethanol or electrical stimulations and parthenogenetic development].

    PubMed

    Deng, M Q; Fan, B Q

    1994-09-01

    Oocytes collected 18-19 h after HCG injection were stimulated with 7-8% ethanol or electrical pulses (1.7 KV/cm field strength, 80-100 microseconds duration, 3-4 times, 5-6 min interval). The parthenogenetic embryos derived from the above-mentioned methods developed to blastocyst stage just like those developed from fertilized eggs. Mouse oocytes were rather sensitive to ethanol stimulation. More than 95% of the treated oocytes were activated after stimulation of 7-8% ethanol for 5 min. Multiple electrical stimulations induced higher activation percentages of oocytes than only single electrical stimulation (71.5% vs. 63.6%). Intact oocytes were loaded with fluorescent Ca2+ indicator fura-2 and intracellular free calcium changes during artificial activation were measured by fluorescence detector. The results showed that ethanol could induce repetitive transient Ca2+ concentration increase in activated oocytes. Single electrical stimulation only induced single free calcium concentration elevation in oocyte while multiple electrical pulses could induce repetitive Ca2+ increase (each electrical pulse elicited the corresponding Ca2+ concentration peak). The pronuclei were not observed in the oocytes which had not exhibited calcium concentration rise during activation. Apart from electrical stimulation parameter, sufficient amount of Ca2+ in electric medium was crucial to mouse oocyte activation when stimulated with electrical pulses. The oocytes were hardly activated by electrical stimulations in a medium without Ca2+ even with longer pulse duration and the intracellular free calcium concentration in the oocytes showed no elevation. This indicates that the inflow of extracellular Ca2+ from tiny pores across the oocyte membrane caused by electrical stimulation is the main source of intracellular free calcium increase.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  13. FAST TRACK COMMUNICATION: Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Dedrick, J.; Boswell, R. W.; Charles, C.

    2010-09-01

    Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.

  14. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2017-01-01

    We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.

  15. [Digital signal processing of a novel neuron discharge model stimulation strategy for cochlear implants].

    PubMed

    Yang, Yiwei; Xu, Yuejin; Miu, Jichang; Zhou, Linghong; Xiao, Zhongju

    2012-10-01

    To apply the classic leakage integrate-and-fire models, based on the mechanism of the generation of physiological auditory stimulation, in the information processing coding of cochlear implants to improve the auditory result. The results of algorithm simulation in digital signal processor (DSP) were imported into Matlab for a comparative analysis. Compared with CIS coding, the algorithm of membrane potential integrate-and-fire (MPIF) allowed more natural pulse discharge in a pseudo-random manner to better fit the physiological structures. The MPIF algorithm can effectively solve the problem of the dynamic structure of the delivered auditory information sequence issued in the auditory center and allowed integration of the stimulating pulses and time coding to ensure the coherence and relevance of the stimulating pulse time.

  16. Effect of Atmosphere on Collinear Double-Pulse Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew J. Effenberger, Jr; Jill R. Scott

    2011-07-01

    Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. The DP-LIBS scheme consists of amore » 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 {micro}s after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10{sup -5} Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air. It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10{sup -5} Torr.« less

  17. EUV emission stimulated by use of dual laser pulses from continus liquid microjet targets

    NASA Astrophysics Data System (ADS)

    Higashiguchi, Takeshi; Rajyaguru, Chirag; Sasaki, Wataru; Kubodera, Shoichi

    2004-11-01

    A continuous water-jet or water-jet mixed with LiF with several tens μm diameter was formed in a vacuum chamber through a small capillary nozzle. Usage of two laser pulses is an efficient way to produce EUV emission, since a density and temperature of a plasma formed by the first laser pulse are regulated by the second laser pulse. By adjusting the delay of the second pulse, one could maximize the EUV emission. A subpicosecond Ti:Sapphire laser at a wavelength of 800 nm produced a maximum energy around 30 mJ. The beam was divided by a Michelson interferometer, which produced two laser pulses with energies of 5 mJ. The pulse duration was adjusted around 300 fs (FWHM). Both beams were focused on a micro-jet using a lens with a focal length of 15 cm. The delay time between the two pulses was varied from 100 to 800 ps by use of an optical delay line. Clear enhancement of the EUV emission yield was observed when the delay between the two pulses was around 500 ps. The experimentally observed delay agrees reasonably well with that of a plasma to expand to its critical density of 10^21 cm-3.

  18. [Electrical acupoint stimulation increases athletes' rapid strength].

    PubMed

    Yang, Hua-yuan; Liu, Tang-yi; Kuai, Le; Gao, Ming

    2006-05-01

    To search for a stimulation method for increasing athletes' performance. One hundred and fifty athletes were randomly divided into a trial group and a control group, 75 athletes in each group. Acupoints were stimulated with audio frequency pulse modulated wave and multi-blind method were used to investigate effects of the electric stimulation of acupoints on 30-meter running, standing long jumping and Cybex isokinetic testing index. The acupoint electric stimulation method could significantly increase athlete's performance (P < 0.05), and the biomechanical indexes, maximal peak moment of force (P < 0.05), force moment accelerating energy (P < 0.05) and average power (P < 0.05). Electrical acupoint stimulation can enhance athlete's rapid strength.

  19. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  20. Estimation of Qualitative and Quantitative Parameters of Air Cleaning by a Pulsed Corona Discharge Using Multicomponent Standard Mixtures

    NASA Astrophysics Data System (ADS)

    Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.

    2018-05-01

    The efficiency of removal of volatile organic impurities in air by a pulsed corona discharge is investigated using model mixtures. Based on the method of competing reactions, an approach to estimating the qualitative and quantitative parameters of the employed electrophysical technique is proposed. The concept of the "toluene coefficient" characterizing the relative reactivity of a component as compared to toluene is introduced. It is proposed that the energy efficiency of the electrophysical method be estimated using the concept of diversified yield of the removal process. Such an approach makes it possible to substantially intensify the determination of energy parameters of removal of impurities and can also serve as a criterion for estimating the effectiveness of various methods in which a nonequilibrium plasma is used for air cleaning from volatile impurities.

  1. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N 2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO 2 ) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Detection and Removal of Impurities in Nitric Oxide Generated from Air by Pulsed Electrical Discharge

    PubMed Central

    Yu, Binglan; Blaesi, Aron H.; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B.; Goldstein, Lee E.; Zapol, Warren M.

    2016-01-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (−90 µg/day) and the platinum-nickel ground electrode (−55 µg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas. PMID:27592386

  3. Few-cycle pulse laser induced damage threshold determination of ultra-broadband optics.

    PubMed

    Kafka, Kyle R P; Talisa, Noah; Tempea, Gabriel; Austin, Drake R; Neacsu, Catalin; Chowdhury, Enam A

    2016-12-12

    A systematic study of few-cycle pulse laser induced damage threshold (LIDT) determination was performed for commercially-available ultra-broadband optics, (i.e. chirped mirrors, silver mirrors, beamsplitters, etc.) in vacuum and in air, for single and multi-pulse regime (S-on-1). Multi-pulse damage morphology at fluences below the single-pulse LIDT was studied in order to investigate the mechanisms leading to the onset of damage. Stark morphological contrast was observed between multi-pulse damage sites formed in air versus those in vacuum. One effect of vacuum testing compared to air included suppression of laser-induced periodic surface structures (LIPSS) formation, possibly influenced by a reduced presence of damage debris. Another effect of vacuum was occasional lowering of LIDT, which appears to be due to the stress-strain performance of the coating design during laser irradiation and under the external stress of vacuum ambience. A fused silica substrate is also examined, and a non-LIPSS nanostructuring is observed on the surface. Possible mechanisms are discussed.

  4. flexTMS--a novel repetitive transcranial magnetic stimulation device with freely programmable stimulus currents.

    PubMed

    Gattinger, Norbert; Moessnang, Georg; Gleich, Bernhard

    2012-07-01

    Transcranial magnetic stimulation (TMS) is able to noninvasively excite neuronal populations due to brief magnetic field pulses. The efficiency and the characteristics of stimulation pulse shapes influence the physiological effect of TMS. However, commercial devices allow only a minimum of control of different pulse shapes. Basically, just sinusoidal and monophasic pulse shapes with fixed pulse widths are available. Only few research groups work on TMS devices with controllable pulse parameters such as pulse shape or pulse width. We describe a novel TMS device with a full-bridge circuit topology incorporating four insulated-gate bipolar transistor (IGBT) modules and one energy storage capacitor to generate arbitrary waveforms. This flexible TMS (flexTMS ) device can generate magnetic pulses which can be adjusted with respect to pulse width, polarity, and intensity. Furthermore, the equipment allows us to set paired pulses with a variable interstimulus interval (ISI) from 0 to 20 ms with a step size of 10  μs. All user-defined pulses can be applied continually with repetition rates up to 30 pulses per second (pps) or, respectively, up to 100 pps in theta burst mode. Offering this variety of flexibility, flexTMS will allow the enhancement of existing TMS paradigms and novel research applications.

  5. Infrared neural stimulation in the cochlea

    PubMed Central

    Richter, Claus-Peter; Rajguru, Suhrud; Bendett, Mark

    2014-01-01

    The application of photonics to manipulate and stimulate neurons and to study neural networks has gained momentum over the last decade. Two general methods have been used: the genetic expression of light or temperature sensitive ion channels in the plasma membrane of neurons (Optogenetics and Thermogenetics) and the direct stimulation of neurons using infrared radiation (Infrared Neural Stimulation, INS). Both approaches have their strengths and challenges, which are well understood with a profound understanding of the light tissue interaction(s). This paper compares the opportunities of the methods for the use in cochlear prostheses. Ample data are already available on the stimulation of the cochlea with INS. The data show that the stimulation is selective, feasible at rates that would be sufficient to encode acoustic information and may be beneficial over conventional pulsed electrical stimulation. A third approach, using lasers in stress confinement to generate pressure waves and to stimulate the functional cochlea mechanically will also be discussed. PMID:25075260

  6. Infrared neural stimulation in the cochlea

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Rajguru, Suhrud; Bendett, Mark

    2013-03-01

    The application of photonics to manipulate and stimulate neurons and to study neural networks has gained momentum over the last decade. Two general methods have been used: the genetic expression of light or temperature sensitive ion channels in the plasma membrane of neurons (Optogenetics and Thermogenetics) and the direct stimulation of neurons using infrared radiation (Infrared Neural Stimulation, INS). Both approaches have their strengths and challenges, which are well understood with a profound understanding of the light tissue interaction(s). This paper compares the opportunities of the methods for the use in cochlear prostheses. Ample data are already available on the stimulation of the cochlea with INS. The data show that the stimulation is selective, feasible at rates that would be sufficient to encode acoustic information and may be beneficial over conventional pulsed electrical stimulation. A third approach, using lasers in stress confinement to generate pressure waves and to stimulate the functional cochlea mechanically will also be discussed.

  7. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    PubMed

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension. Copyright © 2015, American Association for the Advancement of Science.

  8. A tripolar current-steering stimulator ASIC for field shaping in deep brain stimulation.

    PubMed

    Valente, Virgilio; Demosthenous, Andreas; Bayford, Richard

    2012-06-01

    A significant problem with clinical deep brain stimulation (DBS) is the high variability of its efficacy and the frequency of side effects, related to the spreading of current beyond the anatomical target area. This is the result of the lack of control that current DBS systems offer on the shaping of the electric potential distribution around the electrode. This paper presents a stimulator ASIC with a tripolar current-steering output stage, aiming at achieving more selectivity and field shaping than current DBS systems. The ASIC was fabricated in a 0.35-μ m CMOS technology occupying a core area of 0.71 mm(2). It consists of three current sourcing/sinking channels. It is capable of generating square and exponential-decay biphasic current pulses with five different time constants up to 28 ms and delivering up to 1.85 mA of cathodic current, in steps of 4 μA, from a 12 V power supply. Field shaping was validated by mapping the potential distribution when injecting current pulses through a multicontact DBS electrode in saline.

  9. Comparison of neural damage induced by electrical stimulation with faradaic and capacitor electrodes.

    PubMed

    McCreery, D B; Agnew, W F; Yuen, T G; Bullara, L A

    1988-01-01

    Arrays of platinum (faradaic) and anodized, sintered tantalum pentoxide (capacitor) electrodes were implanted bilaterally in the subdural space of the parietal cortex of the cat. Two weeks after implantation both types of electrodes were pulsed for seven hours with identical waveforms consisting of controlled-current, charge-balanced, symmetric, anodic-first pulse pairs, 400 microseconds/phase and a charge density of 80-100 microC/cm2 (microcoulombs per square cm) at 50 pps (pulses per second). One group of animals was sacrificed immediately following stimulation and a second smaller group one week after stimulation. Tissues beneath both types of pulsed electrodes were damaged, but the difference in damage for the two electrode types was not statistically significant. Tissue beneath unpulsed electrodes was normal. At the ultrastructural level, in animals killed immediately after stimulation, shrunken and hyperchromic neurons were intermixed with neurons showing early intracellular edema. Glial cells appeared essentially normal. In animals killed one week after stimulation most of the damaged neurons had recovered, but the presence of shrunken, vacuolated and degenerating neurons showed that some of the cells were damaged irreversibly. It is concluded that most of the neural damage from stimulations of the brain surface at the level used in this study derives from processes associated with passage of the stimulus current through tissue, such as neuronal hyperactivity rather than electrochemical reactions associated with current injection across the electrode-tissue interface, since such reactions occur only with the faradaic electrodes.

  10. A high-voltage cardiac stimulator for field shocks of a whole heart in a bath

    NASA Astrophysics Data System (ADS)

    Mashburn, David N.; Hinkson, Stephen J.; Woods, Marcella C.; Gilligan, Jonathan M.; Holcomb, Mark R.; Wikswo, John P.

    2007-10-01

    Defibrillators are a critical tool for treating heart disease; however, the mechanisms by which they halt fibrillation are still not fully understood and are the subject of ongoing research. Clinical defibrillators do not provide the precise control of shock timing, duration, and voltage or other features needed for detailed scientific inquiry, and there are few, if any, commercially available units designed for research applications. For this reason, we have developed a high-voltage, programmable, capacitive-discharge stimulator optimized to deliver defibrillation shocks with precise timing and voltage control to an isolated animal heart, either in air or in a bath. This stimulator is capable of delivering voltages of up to 500V and energies of nearly 100J with timing accuracy of a few microseconds and with rise and fall times of 5μs or less and is controlled only by two external timing pulses and a control computer that sets the stimulation parameters via a LABVIEW interface. Most importantly, the stimulator has circuits to protect the high-voltage circuitry and the operator from programming and input-output errors. This device has been tested and used successfully in field shock experiments on rabbit hearts as well as other protocols requiring high voltage.

  11. Effect of atmosphere on collinear double-pulse laser-induced breakdown spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew J. Effenberger, Jr.; Jill R. Scott

    2010-09-01

    Double pulse laser induced breakdown spectroscopy (DP-LIBS) has been shown to enhance LIBS spectra. Several researches have reported significant increases in signal-to-noise and or spectral intensity [1-4]. In addition to DP-LIBS, atmospheric conditions can also increase spectra intensity. For example, Iida [5] found that He and Ar both increase LIBS intensity compared to air at one 1 atm. It was also found that as the pressure was decreased to 100 Torr, LIBS intensity increased in Ar and air for single pulse (SP) LIBS. In this study, a collinear DP-LIBS scheme is used along with manipulation of the atmospheric conditions. Themore » DP-LIBS scheme consists of a 355 nm ablative pulse fired into a sample contained in a vacuum chamber. A second analytical 1064 nm pulse is then fired 100 ns to 10 µs after and along the same path of the first pulse. Ar, He and air at pressures ranging from atmospheric pressure (630 Torr at elevation) to 10-5 Torr are introduced during DP-LIBS and SP-LIBS experiments. For a brass sample, a significant increase in spectral intensity of Cu and Zn lines were observed in DP-LIBS under Ar compared to DP-LIBS in air (Figure 1). It was also found that Cu and Zn lines acquired with SP-LIBS in Ar are nearly as intense as DP-LIBS in air. Signal-to-noise for lines from various samples will be reported for both DP-LIBS and SP-LIBS in Ar, He, and air at pressures ranging from 630 Torr to 10-5 Torr.« less

  12. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    NASA Astrophysics Data System (ADS)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  13. Self-stimulation in the rat: quantitative characteristics of the reward pathway.

    PubMed

    Gallistel, C R

    1978-12-01

    Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.

  14. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  15. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  16. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants

    PubMed Central

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Background Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcome. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency, fc=90% (SEF-90) derived from EEG recordings in preterm infants. Methods Twenty two preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at around 32 weeks postmenstrual age (PMA). The SEF-90 was derived from 2-channel EEG recordings. Results Compared to the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (p = 0.005) and right (p < 0.0001) hemispheres. Notably, the left and right hemisphere showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short term cortical adaptation and a long term neural adaptation manifest as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. Conclusion This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants. PMID:24129553

  17. Modulation of EEG spectral edge frequency during patterned pneumatic oral stimulation in preterm infants.

    PubMed

    Song, Dongli; Jegatheesan, Priya; Weiss, Sunshine; Govindaswami, Balaji; Wang, Jingyan; Lee, Jaehoon; Oder, Austin; Barlow, Steven M

    2014-01-01

    Stimulation of the nervous system plays a central role in brain development and neurodevelopmental outcomes. Thalamocortical and corticocortical development is diminished in premature infants and correlated to electroencephalography (EEG) progression. The purpose of this study was to determine the effects of orocutaneous stimulation on the modulation of spectral edge frequency fc = 90% (SEF-90), which is derived from EEG recordings in preterm infants. A total of 22 preterm infants were randomized to experimental and control conditions. Pulsed orocutaneous stimulation was presented during gavage feedings begun at ~32 wk postmenstrual age. The SEF-90 was derived from two-channel EEG recordings. Compared with the control condition, the pulsed orocutaneous stimulation produced a significant reorganization of SEF-90 in the left (P = 0.005) and right (P < 0.0001) hemispheres. Notably, the left and right hemispheres showed a reversal in the polarity of frequency shift, demonstrating hemispheric asymmetry in the frequency domain. Pulsed orocutaneous stimulation also produced a significant pattern of short-term cortical adaptation and a long-term neural adaptation manifested as a 0.5 Hz elevation in SEF-90 after repeated stimulation sessions. This is the first study to demonstrate the modulating effects of a servo-controlled oral somatosensory input on the spectral features of EEG activity in preterm infants.

  18. A Fully Implantable Stimulator With Wireless Power and Data Transmission for Experimental Investigation of Epidural Spinal Cord Stimulation.

    PubMed

    Xu, Qi; Hu, Dingyin; Duan, Bingyu; He, Jiping

    2015-07-01

    Epidural spinal cord stimulation (ESCS) combined with partial weight-bearing therapy (PWBT) has been shown to facilitate recovery of functional walking for individuals after spinal cord injury (SCI). The investigation of neural mechanisms of recovery from SCI under this treatment has been conducted broadly in rodent models, yet a suitable ESCS system is still unavailable. This paper describes a practical, programmable, and fully implantable stimulator for laboratory research on rats to explore fundamental neurophysiological principles for functional recovery after SCI. The ESCS system is composed of a personal digital assistant (PDA), an external controller, an implantable pulse generator (IPG), lead extension, and stimulating electrodes. The stimulation parameters can be programmed and adjusted through a graphical user interface on the PDA. The external controller is placed on the rat back and communicates with the PDA via radio-frequency (RF) telemetry. An RF carrier from the class-E power amplifier in the external controller provides both data and power for the IPG through an inductive link. The IPG is built around a microcontroller unit to generate voltage-regulated pulses delivered to the bipolar electrode for ESCS in rats. The encapsulated IPG measures 22 mm × 23 mm × 7 mm with a mass of  ∼  3.78 g. This fully implantable batteryless stimulator provided a simplified and efficient method to carry out chronic experiments in untethered animals for medical electro-neurological research.

  19. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  20. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  1. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  2. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  3. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  4. 21 CFR 870.3600 - External pacemaker pulse generator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... power supply and electronic circuits that produce a periodic electrical pulse to stimulate the heart. This device, which is used outside the body, is used as a temporary substitute for the heart's...

  5. LH pulses and the corpus luteum: the luteal phase deficiency LPD).

    PubMed

    Wuttke, W; Pitzel, L; Seidlová-Wuttke, D; Hinney, B

    2001-01-01

    The proper function of the GnRH pulse generator in the hypothalamus is essential for normal ovarian function, hence also for proper function of the corpus luteum. During the luteal phase LH pulses stimulate progesterone release, which is essential for normal endometrial transformation. Approximately one-half of all luteal phase deficiencies (LPD) are due to improper function of the GnRH pulse generator. Obviously, following ovulation the increased serum progesterone levels oversuppress the GnRH pulse generator, resulting in too few LH pulses and therefore improper luteal function. Also, latent hyperprolactinemia may lead to an LPD which can be effectively treated with plant extracts containing dopaminergic (prolactin-suppressing) compounds. Our increasing knowledge of auto- and paracrine mechanisms between nonsteroidogenic and steroidogenic cells now allow subclassification of LPDs of ovarian origin. The so-called small luteal cells are LH-responsive. If they develop improperly the regularly occurring LH pulses are unable to stimulate progesterone secretion from the small luteal cells, which results in what we call the small luteal cell defect. In addition, there is also evidence that the large luteal cells may function improperly. Hence, basal progesterone release is too low while LH-stimulated progesterone release from the small luteal cells appears to be intact. This subclassification of luteal phase deficiency results in the suggestion of different treatments. In cases where the corpus luteum is LH-responsive, such as the hypothalamic corpus luteum insufficiency and the large luteal cell defect, HCG treatment or pulsatile treatment with GnRH is advisable. In the case of LH/hCG-unresponsive small luteal cell defect a progesterone substitution is suggested.

  6. [Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].

    PubMed

    Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li

    2017-06-25

    Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.

  7. Quantum theory of laser-stimulated desorption

    NASA Technical Reports Server (NTRS)

    Slutsky, M. S.; George, T. F.

    1978-01-01

    A quantum theory of laser-stimulated desorption (LSDE) is presented and critically analyzed. It is shown how LSDE depends on laser-pulse characteristics and surface-lattice dynamics. Predictions of the theory for a Debye model of the lattice dynamics are compared to recent experimental results.

  8. Auditory steady-state responses in cochlear implant users: Effect of modulation frequency and stimulation artifacts.

    PubMed

    Gransier, Robin; Deprez, Hanne; Hofmann, Michael; Moonen, Marc; van Wieringen, Astrid; Wouters, Jan

    2016-05-01

    Previous studies have shown that objective measures based on stimulation with low-rate pulse trains fail to predict the threshold levels of cochlear implant (CI) users for high-rate pulse trains, as used in clinical devices. Electrically evoked auditory steady-state responses (EASSRs) can be elicited by modulated high-rate pulse trains, and can potentially be used to objectively determine threshold levels of CI users. The responsiveness of the auditory pathway of profoundly hearing-impaired CI users to modulation frequencies is, however, not known. In the present study we investigated the responsiveness of the auditory pathway of CI users to a monopolar 500 pulses per second (pps) pulse train modulated between 1 and 100 Hz. EASSRs to forty-three modulation frequencies, elicited at the subject's maximum comfort level, were recorded by means of electroencephalography. Stimulation artifacts were removed by a linear interpolation between a pre- and post-stimulus sample (i.e., blanking). The phase delay across modulation frequencies was used to differentiate between the neural response and a possible residual stimulation artifact after blanking. Stimulation artifacts were longer than the inter-pulse interval of the 500pps pulse train for recording electrodes ipsilateral to the CI. As a result the stimulation artifacts could not be removed by artifact removal on the bases of linear interpolation for recording electrodes ipsilateral to the CI. However, artifact-free responses could be obtained in all subjects from recording electrodes contralateral to the CI, when subject specific reference electrodes (Cz or Fpz) were used. EASSRs to modulation frequencies within the 30-50 Hz range resulted in significant responses in all subjects. Only a small number of significant responses could be obtained, during a measurement period of 5 min, that originate from the brain stem (i.e., modulation frequencies in the 80-100 Hz range). This reduced synchronized activity of brain stem

  9. Microscopic heat pulses induce contraction of cardiomyocytes without calcium transients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Kotaro; Mizuno, Akari; Shintani, Seine A.

    Highlights: Black-Right-Pointing-Pointer Infra-red laser beam generates microscopic heat pulses. Black-Right-Pointing-Pointer Heat pulses induce contraction of cardiomyocytes. Black-Right-Pointing-Pointer Ca{sup 2+} transients during the contraction were not detected. Black-Right-Pointing-Pointer Skinned cardiomyocytes in free Ca{sup 2+} solution also contracted. Black-Right-Pointing-Pointer Heat pulses regulated the contractions without Ca{sup 2+} dynamics. -- Abstract: It was recently demonstrated that laser irradiation can control the beating of cardiomyocytes and hearts, however, the precise mechanism remains to be clarified. Among the effects induced by laser irradiation on biological tissues, temperature change is one possible effect which can alter physiological functions. Therefore, we investigated the mechanism by which heatmore » pulses, produced by infra-red laser light under an optical microscope, induce contractions of cardiomyocytes. Here we show that microscopic heat pulses induce contraction of rat adult cardiomyocytes. The temperature increase, {Delta}T, required for inducing contraction of cardiomyocytes was dependent upon the ambient temperature; that is, {Delta}T at physiological temperature was lower than that at room temperature. Ca{sup 2+} transients, which are usually coupled to contraction, were not detected. We confirmed that the contractions of skinned cardiomyocytes were induced by the heat pulses even in free Ca{sup 2+} solution. This heat pulse-induced Ca{sup 2+}-decoupled contraction technique has the potential to stimulate heart and skeletal muscles in a manner different from the conventional electrical stimulations.« less

  10. Peripheral nerve recruitment curve using near-infrared stimulation

    NASA Astrophysics Data System (ADS)

    Dautrebande, Marie; Doguet, Pascal; Gorza, Simon-Pierre; Delbeke, Jean; Nonclercq, Antoine

    2018-02-01

    In the context of near-infrared neurostimulation, we report on an experimental hybrid electrode allowing for simultaneous photonic or electrical neurostimulation and for electrical recording of evoked action potentials. The electrode includes three contacts and one optrode. The optrode is an opening in the cuff through which the tip of an optical fibre is held close to the epineurium. Two contacts provide action potential recording. The remaining contact, together with a remote subcutaneous electrode, is used for electric stimulation which allows periodical assessment of the viability of the nerve during the experiment. A 1470 nm light source was used to stimulate a mouse sciatic nerve. Neural action potentials were not successfully recorded because of the electrical noise so muscular activity was used to reflect the motor fibres stimulation. A recruitment curve was obtained by stimulating with photonic pulses of same power and increasing duration and recording the evoked muscular action potentials. Motor fibres can be recruited with radiant exposures between 0.05 and 0.23 J/cm2 for pulses in the 100 to 500 μs range. Successful stimulation at short duration and at a commercial wavelength is encouraging in the prospect of miniaturisation and practical applications. Motor fibres recruitment curve is a first step in an ongoing research work. Neural action potential acquisition will be improved, with aim to shed light on the mechanism of action potential initiation under photonic stimulation.

  11. Effects of vibratory stimulation on sexual response in women with spinal cord injury.

    PubMed

    Sipski, Marca L; Alexander, Craig J; Gomez-Marin, Orlando; Grossbard, Marissa; Rosen, Raymond

    2005-01-01

    Women with spinal cord injuries (SCIs) have predictable alterations in sexual responses. They commonly have a decreased ability to achieve genital sexual arousal. This study determined whether the use of vibratory stimulation would result in increased genital arousal as measured by vaginal pulse amplitude in women with SCIs. Subjects included 46 women with SCIs and 11 nondisabled control subjects. Results revealed vibratory clitoral stimulation resulted in increased vaginal pulse amplitude as compared with manual clitoral stimulation in both SCI and nondisabled subjects; however, these differences were not statistically significant. Subjective levels of arousal were also compared between SCI and nondisabled control subjects. Both vibratory and manual clitoral stimulation resulted in significantly increased arousal levels in both groups of subjects; however, statistically significant differences between the two conditions were only noted in nondisabled subjects. Further studies of the effects of repetitive vibratory stimulation are underway.

  12. Pedunculopontine nucleus stimulation improves akinesia in a Parkinsonian monkey.

    PubMed

    Jenkinson, Ned; Nandi, Dipankar; Miall, R Chris; Stein, John F; Aziz, Tipu Z

    2004-12-03

    We have studied the effects of stimulating the pedunculopontine nuclei through a fully implanted macroelectrode with a s.c. implantable pulse generator whose parameters can be programmed telemetrically, in a macaque before and after inducing Parkinsonian akinesia with MPTP. Our results show that in the normal monkey high frequency stimulation of the pedunculopontine nuclei reduces motor activity while low frequency stimulation increases it significantly over baseline. After making the monkey Parkinsonian with MPTP, unilateral low frequency stimulation of the pedunculopontine nuclei led to significant increases in activity. These results suggest that pedunculopontine nuclei stimulation could be clinically effective in treating advanced Parkinson's disease and other akinetic disorders.

  13. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  14. Investigation on Multiple-Pulse Propulsion Performance for a Parabolic Nozzle with Inlet Slit

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Hong, Yanji; Song, Junling

    2011-11-01

    The multiple-pulse impulse coupling coefficient Cm is lower than the single pulse one with the same laser parameters. It is always explained that air recovery in nozzle does not work on time. Three kinds of parabolic nozzles are employed to improve air recovery in the experiments and simulation. There exist inlet slits on side wall of them with width of 1 mm, 2 mm, respectively. The curves of thrust and the process of flow fluid field are presented to study the slit effects on Cm under 20 Hz pulse frequency. The results show: an inlet slit can accelerate the air breathing process in the nozzle and Cm for each pulse exhibits a little variation; the lower Cm is obtained due to the increasing energy loss by a larger size slit; the flat-roofed nozzle gets higher Cm than others.

  15. Temperature measurements of micro-droplets using pulsed 2-color laser-induced fluorescence with MDR-enhanced energy transfer

    NASA Astrophysics Data System (ADS)

    Palmer, Johannes; Reddemann, Manuel A.; Kirsch, Valeri; Kneer, Reinhold

    2016-12-01

    In this work, a new measurement system is presented for studying temperature of micro-droplets by pulsed 2-color laser-induced fluorescence. Pulsed fluorescence excitation allows motion blur suppression and thus simultaneous measurements of droplet size, velocity and temperature. However, high excitation intensities of pulsed lasers lead to morphology-dependent resonances inside micro-droplets, which are accompanied by disruptive stimulated emission. Investigations showed that stimulated emission can be avoided by enhanced energy transfer via an additional dye. The suitability and accuracy of the new pulsed method are verified on the basis of a spectroscopic analysis and comparison to continuously excited 2-color laser-induced fluorescence.

  16. Implementation of STUD Pulses at the Trident Laser and Initial Results

    NASA Astrophysics Data System (ADS)

    Johnson, R. P.; Shimada, T.; Montgomery, D. S.; Afeyan, B.; Hüller, S.

    2012-10-01

    Controlling and mitigating laser-plasma instabilities such as stimulated Brillouin scattering, stimulated Raman scattering, and crossed-beam energy transfer is important to achieve high-gain inertial fusion using laser drivers. Recent theory and simulations show that these instabilities can be largely controlled using laser pulses consisting of spike trains of uneven duration and delay (STUD) by modulating the laser on a picosecond time scale [1,2]. We have designed and implemented a STUD pulse generator at the LANL Trident Laser Facility using Fourier synthesis to produce a 0.5-ns envelope of psec-duration STUD pulses using a spatial light modulator. Initial results from laser propagation tests and measurements as well as initial laser-plasma characterization experiments will be presented.[4pt] [1] B. Afeyan and S. H"uller, ``Optimal Control of Laser Plasma Instabilities using STUD pulses,'' IFSA 2011, P.Mo.1, to appear in Euro. Phys. J. Web of Conf. (2012).[2] S. H"uller and B. Afeyan, ``Simulations of drastically reduced SBS with STUD pulses,'' IFSA 2011, O.Tu8-1, to appear in Euro. Phys. J. Web of Conf. (2012).

  17. Pulsed jet combustion generator for premixed charge engines

    DOEpatents

    Oppenheim, A. K.; Stewart, H. E.; Hom, K.

    1990-01-01

    A method and device for generating pulsed jets which will form plumes comprising eddie structures, which will entrain a fuel/air mixture from the head space of an internal combustion engine, and mixing this fuel/air mixture with a pre-ignited fuel/air mixture of the plumes thereby causing combustion of the reactants to occur within the interior of the eddie structures.

  18. Effects of pulse durations and environments on femtosecond laser ablation of stainless steel

    NASA Astrophysics Data System (ADS)

    Xu, Shizhen; Ding, Renjie; Yao, Caizhen; Liu, Hao; Wan, Yi; Wang, Jingxuan; Ye, Yayun; Yuan, Xiaodong

    2018-04-01

    The influence of pulse durations (35fs and 260 fs) and environments (air and vacuum) on the laser-induced damage thresholds (LIDTs) and ablation rates of 304 stainless steel were studied. Two distinct ablation regimes were obtained from the ablation rate curves. At low fluence regime, the ablation rates were similar in spite of the differences of pulse durations and experiment environments. At high fluence regime, the ablation rates of 35 fs pulse duration in vacuum were obviously higher than others. The ablation craters showed smooth edges, moth-eye such as structures, and laser-induced periodic surface structures (LIPSSs). At a fixed fluence, the periods of LIPSSs decreased monotonously in their mean spatial period between 700 nm (5 pulses) and 540 nm (200 pulses) with the increase of pulse numbers in air with 35 fs pulse duration. The formation mechanisms of moth-eye like structures and LIPSSs were also discussed.

  19. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.

    PubMed

    Hart, D J; Taylor, P N; Chappell, P H; Wood, D E

    2006-06-01

    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use.

  20. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Kincaid, Russell W. (Inventor); Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  1. Spectral variation of high power microwave pulse propagating in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Ren, A.; Kuo, S. P.; Kossey, Paul

    1995-01-01

    A systematic study to understand the spectral variation of a high power microwave pulse propagating in a self-generated plasma is carried out. It includes the theoretical formulation, experimental demonstration, and computer simulations and computer experiments. The experiment of pulse propagation is conducted in a vacuum chamber filled with dry air (approximately 0.2 torr); the chamber is made of a 2 ft. cube of Plexiglas. A rectangular microwave pulse (1 microsec pulse width and 3.27 GHz carrier frequency) is fed into the cube through an S band microwave horn placed at one side of the chamber. A second S-band horn placed at the opposite side of the chamber is used to receive the transmitted pulse. The spectra of the incident pulse and transmitted pulse are then compared. As the power of the incident pulse is only slightly (less than 15%) above the breakdown threshold power of the background air, the peak of the spectrum of the transmitted pulse is upshifted from the carrier frequency 3.27 GHz of the incident pulse. However, as the power of the incident pulse exceeds the breakdown threshold power of the background air by 30%, a different phenomenon appears. The spectrum of the transmitted pulse begins to have two peaks. One is upshifted and the other one downshifted from the single peak location of the incident pulse. The amount of frequency downshift is comparable to that of the upshifted frequency. A theoretical model describing the experiment of pulse propagation in a self-generated plasma is developed. There are excellent agreements between the experimental results and computer simulations based on this theoretical model, which is also used to further carry out computer experiments identifying the role of plasma introduced wave loss on the result of frequency downshift phenomenon.

  2. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge

    DTIC Science & Technology

    2016-05-16

    in ethylene–air and aviation gasoline (avgas)–air mixtures. Testing of NRP discharges in the glow and corona regimes in PDE engines has been...in further detail in Refs. [17,21–23]. NRP discharges in the pin-to-pin configuration have been shown to operate in three regimes: corona , glow, and...assisted combustion Plasma assisted ignition Aircraft propulsionA nanosecond repetitively pulsed (NRP) discharge in the spark regime has been investigated

  3. Quasi-remote Pulse Compression and Generation of Radiation and Particle Beams

    NASA Astrophysics Data System (ADS)

    Hubbard, Richard F.; Ting, Antonio; Penano, Joseph R.; Hafizi, Bahman; Gordon, Daniel F.; Sprangle, Phillip; Zigler, Arie

    2013-10-01

    Using chirped pulse amplification (CPA), laser pulses are routinely compressed to pulse lengths below 50 femtoseconds and focused to spot sizes of a few microns. These intense pulses may be focused onto a solid, gas, or plasma converter to produce penetrating electromagnetic radiation (e.g., x-rays, terahertz) or energetic particles. However, nonlinear effects and plasma generation place severe restrictions on the intensity of the pulse that can be propagated through the air to a distant target or object. This paper describes a quasi-remote laser pulse compression architecture in which the pulse compression apparatus, focusing system, and radiation or particle beam converter are placed at a substantial distance from the rest of the CPA system. By propagating a radially-expanded, chirped/stretched pulse through the air at a sufficiently low intensity, the stretched pulse can be compressed and focused onto the converter while keeping the largest and most expensive components of the CPA system far from the object to be irradiated. Analytical and simulation models are used to determine how axial compression and focused spot size degrade as the standoff distance to the compressor/focusing/converter assembly is increased. The implications of these results for proof-of-concept experiments and various potential applications will be discussed. Supported by the NRL Base Program

  4. Influence of humidity on the characteristics of negative corona discharge in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pengfei, E-mail: xpftsh@126.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn

    Detailed negative corona discharge characteristics, such as the pulse amplitude, repetition frequency, average corona current, rise time, and half-wave time, are systematically studied under various air humidities with a single artificial defect electrode. The experimental result reveals that the pulse amplitude increases with the increase of air humidity; meanwhile, the repetition frequency deceases as the air humidity increases. Empirical formulae are first established for the pulse amplitude and repetition frequency with the humidity factor taken into consideration. The effective ionization integral is calculated and a positive correlation is found between the integral and the pulse amplitude. Furthermore, a simplified negative-ionmore » cloud model is built up to investigate the mechanism of the humidity's influence on negative corona discharge. Based on the theoretical analyses, the correlation between pulse amplitude, repetition frequency, and air humidity is well explained.« less

  5. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.

    PubMed

    Parkins, C W; Colombo, J

    1987-12-31

    Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by

  6. Electrical stimulation of the epidural space using a catheter with a removable stylet.

    PubMed

    Charghi, Roshanak; Chan, Sher Yi; Kardash, Kenneth J; Finlayson, Roderick J; Tran, De Q H

    2007-01-01

    Electrical stimulation can be used to verify the location of epidural catheters. With the traditional technique, the latter must be primed with saline to allow for electrical conduction: any air lock will, thus, hinder the flow of current. Therefore, we set out to explore an alternative mode of stimulation by use of a catheter containing a removable stylet. This study examines the reliability of this new technique. In 71 patients undergoing surgery, a thoracic epidural catheter was inserted preoperatively. Loss of resistance was used to identify the epidural space. The TheraCath was introduced 5 cm into the space and connected to a neurostimulator via a 2-headed alligator clip. The intensity, pulse width, and level of myotomal contractions were recorded upon stimulation of the epidural space. A bolus of lidocaine was then injected and the patient assessed for sensory block to ice. The failure rate in proper epidural catheter placement was 8.5%. Epidural stimulation yielded a mean threshold of 1.90 +/- 1.80 nanocoulombs. A total of 37 catheters produced a unilateral muscular response; however, block to ice was bilateral. When compared with the ice test, the sensitivity, specificity, positive predictive value, and negative predictive value of epidural stimulation with the TheraCath were 92%, 83%, 98%, and 50%, respectively. We conclude that the TheraCath, because of the removable stylet, provides effective electrostimulation of the epidural space. Its use was simple and devoid of complications. Nonetheless, further studies are required before implementing its routine use in clinical settings.

  7. Dissociation and Recombination Effects on the Performance of Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2003-01-01

    This paper summarizes major theoretical results for pulse detonation engine performance taking into account real gas chemistry, as well as significant performance differences resulting from the presence of ram and compression heating. An unsteady CFD analysis, as well as a thermodynamic cycle analysis, was conducted in order to determine the actual and the ideal performance for an air-breathing pulse detonation engine (PDE) using either a hydrogen-air or ethylene-air mixture over a flight Mach number range from 0 to 4. The results clearly elucidate the competitive regime of PDE application relative to ramjets and gas turbines.

  8. Effect of Pulse Rate on Loudness Discrimination in Cochlear Implant Users.

    PubMed

    Azadpour, Mahan; McKay, Colette M; Svirsky, Mario A

    2018-03-12

    Stimulation pulse rate affects current amplitude discrimination by cochlear implant (CI) users, indicated by the evidence that the JND (just noticeable difference) in current amplitude delivered by a CI electrode becomes larger at higher pulse rates. However, it is not clearly understood whether pulse rate would affect discrimination of speech intensities presented acoustically to CI processors, or what the size of this effect might be. Intensity discrimination depends on two factors: the growth of loudness with increasing sound intensity and the loudness JND (or the just noticeable loudness increment). This study evaluated the hypothesis that stimulation pulse rate affects loudness JND. This was done by measuring current amplitude JNDs in an experiment design based on signal detection theory according to which loudness discrimination is related to internal noise (which is manifested by variability in loudness percept in response to repetitions of the same physical stimulus). Current amplitude JNDs were measured for equally loud pulse trains of 500 and 3000 pps (pulses per second) by increasing the current amplitude of the target pulse train until it was perceived just louder than a same-rate or different-rate reference pulse train. The JND measures were obtained at two presentation levels. At the louder level, the current amplitude JNDs were affected by the rate of the reference pulse train in a way that was consistent with greater noise or variability in loudness perception for the higher pulse rate. The results suggest that increasing pulse rate from 500 to 3000 pps can increase loudness JND by 60 % at the upper portion of the dynamic range. This is equivalent to a 38 % reduction in the number of discriminable steps for acoustic and speech intensities.

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Channeling of microwave radiation in a double line containing a plasma filament produced by intense femtosecond laser pulses in air

    NASA Astrophysics Data System (ADS)

    Bogatov, N. A.; Kuznetsov, A. I.; Smirnov, A. I.; Stepanov, A. N.

    2009-10-01

    The channeling of microwave radiation is demonstrated experimentally in a double line in which a plasma filament produced in air by intense femtosecond laser pulses serves as one of the conductors. It is shown that during the propagation of microwave radiation in this line, ultrashort pulses are formed, their duration monotonically decreasing with increasing the propagation length (down to the value comparable with the microwave field period). These effects can be used for diagnostics of plasma in a filament.

  10. Air and water cooled modulator

    DOEpatents

    Birx, D.L.; Arnold, P.A.; Ball, D.G.; Cook, E.G.

    1995-09-05

    A compact high power magnetic compression apparatus and method are disclosed for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air. 9 figs.

  11. Air and water cooled modulator

    DOEpatents

    Birx, Daniel L.; Arnold, Phillip A.; Ball, Don G.; Cook, Edward G.

    1995-01-01

    A compact high power magnetic compression apparatus and method for delivering high voltage pulses of short duration at a high repetition rate and high peak power output which does not require the use of environmentally unacceptable fluids such as chlorofluorocarbons either as a dielectric or as a coolant, and which discharges very little waste heat into the surrounding air. A first magnetic switch has cooling channels formed therethrough to facilitate the removal of excess heat. The first magnetic switch is mounted on a printed circuit board. A pulse transformer comprised of a plurality of discrete electrically insulated and magnetically coupled units is also mounted on said printed board and is electrically coupled to the first magnetic switch. The pulse transformer also has cooling means attached thereto for removing heat from the pulse transformer. A second magnetic switch also having cooling means for removing excess heat is electrically coupled to the pulse transformer. Thus, the present invention is able to provide high voltage pulses of short duration at a high repetition rate and high peak power output without the use of environmentally unacceptable fluids and without discharging significant waste heat into the surrounding air.

  12. Explosive Pulsed Power Experiments At The Phillips Laboratory

    DTIC Science & Technology

    1997-06-01

    Weapons and Survivability Directorate Phillips Laboratory Kirtland AFB, NM 87117 J. Graham, W. Sornrnars Albuquerque Division Maxwell Technologies... Phillips Laboratory Kirtland AFB, NM 87117 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10...pulse shaping/impedance matching systems are discussed. Introduction Air Force missions utilizing pulsed power technology increasingly require the

  13. Nonlinear Stimulated Raman Exact Passage by Resonance-Locked Inverse Engineering

    NASA Astrophysics Data System (ADS)

    Dorier, V.; Gevorgyan, M.; Ishkhanyan, A.; Leroy, C.; Jauslin, H. R.; Guérin, S.

    2017-12-01

    We derive an exact and robust stimulated Raman process for nonlinear quantum systems driven by pulsed external fields. The external fields are designed with closed-form expressions from the inverse engineering of a given efficient and stable dynamics. This technique allows one to induce a controlled population inversion which surpasses the usual nonlinear stimulated Raman adiabatic passage efficiency.

  14. A wideband wireless neural stimulation platform for high-density microelectrode arrays.

    PubMed

    Myers, Frank B; Simpson, Jim A; Ghovanloo, Maysam

    2006-01-01

    We describe a system that allows researchers to control an implantable neural microstimulator from a PC via a USB 2.0 interface and a novel dual-carrier wireless link, which provides separate data and power transmission. Our wireless stimulator, Interestim-2B (IS-2B), is a modular device capable of generating controlled-current stimulation pulse trains across 32 sites per module with support for a variety of stimulation schemes (biphasic/monophasic, bipolar/monopolar). We have developed software to generate multi-site stimulation commands for the IS-2B based on streaming data from artificial sensory devices such as cameras and microphones. For PC interfacing, we have developed a USB 2.0 microcontroller-based interface. Data is transmitted using frequency-shift keying (FSK) at 6/12 MHz to achieve a data rate of 3 Mb/s via a pair of rectangular coils. Power is generated using a class-E power amplifier operating at 1 MHz and transmitted via a separate pair of spiral planar coils which are oriented perpendicular to the data coils to minimize cross-coupling. We have successfully demonstrated the operation of the system by applying it as a visual prosthesis. Pulse-frequency modulated stimuli are generated in real-time based on a grayscale image from a webcam. These pulses are projected onto an 11x11 LED matrix that represents a 2D microelectrode array.

  15. Formation of nanosecond SBS-compressed pulses for pumping an ultra-high power parametric amplifier

    NASA Astrophysics Data System (ADS)

    Kuz’min, A. A.; Kulagin, O. V.; Rodchenkov, V. I.

    2018-04-01

    Compression of pulsed Nd : glass laser radiation under stimulated Brillouin scattering (SBS) in perfluorooctane is investigated. Compression of 16-ns pulses at a beam diameter of 30 mm is implemented. The maximum compression coefficient is 28 in the optimal range of laser pulse energies from 2 to 4 J. The Stokes pulse power exceeds that of the initial laser pulse by a factor of about 11.5. The Stokes pulse jitter (fluctuations of the Stokes pulse exit time from the compressor) is studied. The rms spread of these fluctuations is found to be 0.85 ns.

  16. Artificial voice modulation in dogs by recurrent laryngeal nerve stimulation: electrophysiological confirmation of anatomic data.

    PubMed

    Broniatowski, Michael; Grundfest-Broniatowski, Sharon; Tucker, Harvey M; Tyler, Dustin J

    2007-02-01

    We hypothesized that voice may be artificially manipulated to ameliorate dystonias considered to be a failure in dynamic integration between competing neuromuscular systems. Orderly intrinsic laryngeal muscle recruitment by anodal block via the recurrent laryngeal and vagus nerves has allowed us to define specific values based on differential excitabilities, but has precluded voice fluency because of focused breaks during stimulation and the need to treat several neural conduits. Such problems may be obviated by a circuit capable of stimulating some axons while simultaneously blocking others in the recurrent laryngeal nerve, which carries innervation to all intrinsic laryngeal muscles, including the arguably intrinsic cricothyroideus. In 5 dogs, both recurrent laryngeal nerves received 40-Hz quasi-trapezoidal pulses (0 to 2000 microA, 0 to 2000 micros, 0 to 500 micros decay) via tripolar electrodes. Electromyograms were matched with audio intensities and fundamental frequencies recorded under a constant flow of humidified air. Data were digitized and evaluated for potential correlations. Orderly recruitment of the thyroarytenoideus, posterior cricoarytenoideus, and cricothyroideus was correlated with stimulating intensities (p < .001), and posterior cricoarytenoideus opposition to the thyroarytenoideus and cricothyroideus was instrumental in manipulating audio intensities and fundamental frequencies. Manipulation of canine voice parameters appears feasible via the sole recurrent laryngeal nerve within appropriate stimulation envelopes, and offers promise in human laryngeal dystonias.

  17. Frequency domain tailoring for intra-pulse frequency mixing.

    PubMed

    Ernotte, G; Lassonde, P; Légaré, F; Schmidt, B E

    2016-10-17

    Generating mid infrared (MIR) pulses by difference frequency generation (DFG) is often a trade-off between the maximum stability given by all-inline intra-pulse arrangements and the independent control of pulse parameters with inter-pulse pump-probe like scenarios. We propose a coalescence between both opposing approaches by realizing an all-inline inter-pulse DFG scheme employing a 4-f setup. This allows independent manipulation of the amplitude, delay and polarization of the two corresponding spectral side bands of a supercontinuum source while maintaining 20 attoseconds jitter without any feedback stabilization. After filamentation in air, the broadened Ti:Sa spectrum is tailored in a 4-f setup to generate tunable MIR pulses. In this manner, 2 µm, 4.8 µJ, 26.5 fs and carrier-envelope-phase (CEP) stabilized pulses are generated in a single DFG stage.

  18. Battery Longevity Comparison of Two Commonly Available Dual Channel Implantable Pulse Generators Used for Subthalamic Nucleus Stimulation in Parkinson's Disease.

    PubMed

    Fisher, Benjamin; Kausar, Jamilla; Garratt, Hayley; Hodson, James; White, Anwen; Ughratdar, Ismail; Mitchell, Rosalind

    2018-06-19

    Deep brain stimulation for Parkinson's disease (PD) utilises an implantable pulse generator (IPG) whose finite lifespan in non-rechargeable systems necessitates their periodic replacement. We wish to determine if there is any significant difference in longevity of 2 commonly used IPG systems; the Medtronic Kinetra, and the Medtronic Activa Primary Cell (PC), which has come to replace it. All patients with bilateral Subthalamic Nucleus stimulators for PD performed in our centre were included. Battery life was then assessed using a Kaplan-Meier approach and comparisons between the Kinetra and Activa PC batteries were performed using log-rank tests. Complete data was available for 183 patients. There was a significant difference in the average battery duration with an estimated median battery life in the Kinetra cohort of 6.6 years (95% CI 6.4-6.7), compared to 4.5 years (95% CI 4.4-4.5) in the Activa PC cohort (p < 0.001). The Activa PC IPG demonstrates a significantly reduced battery life of 2.1 years, with a median battery life of 4.5 years in comparison to 6.6 years in the Kinetra IPG. Future technology developments should therefore be focused on improving the battery life of the newer IPG systems. © 2018 S. Karger AG, Basel.

  19. Upregulation of Integrin-α6 and Integrin-β1 Gene Expressions in Mouse Spermatogonial Stem Cells after Continues and Pulsed Low Intensity Ultrasound Stimulation

    PubMed Central

    Mohaqiq, Mahdi; Movahedin, Mansoureh; Mokhtari Dizaji, Manijhe; Mazaheri, Zohreh

    2018-01-01

    Objective low intensity ultrasound (continues and pulsed) is a form of energy. Spermatogonial stem cells (SSCs) are at the base of male fertility. This study investigated the effects of low intensity ultrasound stimulation (LIUS) and low intensity pulsed ultrasound stimulation (LIUPS) on the expression of germ cell-specific and pluripotency genes in SSCs in vitro. Materials and Methods In this experimental study, isolated SSCs from neonatal male mice were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with 10% fetal bovine serum (FBS). In addition, to confirm identification of SSCs, PLZF protein was detected positively in SSCs derived colonies. SSCs were stimulated by LIUS and LIUPS for 5 days, followed by assessment of expression of integrin-α6 (Itga6) and β1 (Itgβ1), as two germ cell-specific genes, and Oct- 4, as a pluripotency gene, on day 21st by quantitive reverse transcriptase-polymerase chain reaction (qRT-PCR). To investigate the proliferation rate and colonization of SSCs in different groups, counting whole number of the cells and colonies as well as analysis of the respective diameters were performed on days 7th, 14th and 21st. Data was analyzed by ANOVA test. Results LIUS and LIUPS treatment of mouse SSCs increased expression of Itga6 and Itgβ1 genes in the experimental groups, compared to the control group (P<0.05), whereas there was no significant difference between the groups, regarding the expression of Oct-4 gene. These treatments maintained survival rate, while they increased proliferation rate and colonization of SSCs during the first week of culture. However, within the second week, proliferation rate and colonization were decreased in the experimental groups. Conclusion These results suggested that LIUS and LIUPS treatment had good effect on SSCs proliferation and colonization, based on the gene-specific marker expression during 21 days culture in vitro. PMID:29105399

  20. PCF based high power narrow line width pulsed fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yan, P.; Xiao, Q.; Wang, Y.; Gong, M.

    2012-09-01

    Based on semiconductor diode seeded multi-stage cascaded fiber amplifiers, we have obtained 88-W average power of a 1063-nm laser with high repetition rate of up to 1.5 MHz and a constant 2-ns pulse duration. No stimulated Brillouin scattering pulse or optical damage occurred although the maximum pulse peak power has exceeded 112 kW. The output laser exhibits excellent beam quality (M2x = 1.24 and M2y = 1.18), associated with a spectral line width as narrow as 0.065 nm (FWHM). Additionally, we demonstrate high polarization extinction ratio of 18.4 dB and good pulse stabilities superior to 1.6 % (RMS).

  1. Stochastic stimulated electronic x-ray Raman spectroscopy

    PubMed Central

    Kimberg, Victor; Rohringer, Nina

    2016-01-01

    Resonant inelastic x-ray scattering (RIXS) is a well-established tool for studying electronic, nuclear, and collective dynamics of excited atoms, molecules, and solids. An extension of this powerful method to a time-resolved probe technique at x-ray free electron lasers (XFELs) to ultimately unravel ultrafast chemical and structural changes on a femtosecond time scale is often challenging, due to the small signal rate in conventional implementations at XFELs that rely on the usage of a monochromator setup to select a small frequency band of the broadband, spectrally incoherent XFEL radiation. Here, we suggest an alternative approach, based on stochastic spectroscopy, which uses the full bandwidth of the incoming XFEL pulses. Our proposed method is relying on stimulated resonant inelastic x-ray scattering, where in addition to a pump pulse that resonantly excites the system a probe pulse on a specific electronic inelastic transition is provided, which serves as a seed in the stimulated scattering process. The limited spectral coherence of the XFEL radiation defines the energy resolution in this process and stimulated RIXS spectra of high resolution can be obtained by covariance analysis of the transmitted spectra. We present a detailed feasibility study and predict signal strengths for realistic XFEL parameters for the CO molecule resonantly pumped at the O1s→π* transition. Our theoretical model describes the evolution of the spectral and temporal characteristics of the transmitted x-ray radiation, by solving the equation of motion for the electronic and vibrational degrees of freedom of the system self consistently with the propagation by Maxwell equations. PMID:26958585

  2. Optical stimulation of the facial nerve: a surgical tool?

    NASA Astrophysics Data System (ADS)

    Richter, Claus-Peter; Teudt, Ingo Ulrik; Nevel, Adam E.; Izzo, Agnella D.; Walsh, Joseph T., Jr.

    2008-02-01

    One sequela of skull base surgery is the iatrogenic damage to cranial nerves. Devices that stimulate nerves with electric current can assist in the nerve identification. Contemporary devices have two main limitations: (1) the physical contact of the stimulating electrode and (2) the spread of the current through the tissue. In contrast to electrical stimulation, pulsed infrared optical radiation can be used to safely and selectively stimulate neural tissue. Stimulation and screening of the nerve is possible without making physical contact. The gerbil facial nerve was irradiated with 250-μs-long pulses of 2.12 μm radiation delivered via a 600-μm-diameter optical fiber at a repetition rate of 2 Hz. Muscle action potentials were recorded with intradermal electrodes. Nerve samples were examined for possible tissue damage. Eight facial nerves were stimulated with radiant exposures between 0.71-1.77 J/cm2, resulting in compound muscle action potentials (CmAPs) that were simultaneously measured at the m. orbicularis oculi, m. levator nasolabialis, and m. orbicularis oris. Resulting CmAP amplitudes were 0.3-0.4 mV, 0.15-1.4 mV and 0.3-2.3 mV, respectively, depending on the radial location of the optical fiber and the radiant exposure. Individual nerve branches were also stimulated, resulting in CmAP amplitudes between 0.2 and 1.6 mV. Histology revealed tissue damage at radiant exposures of 2.2 J/cm2, but no apparent damage at radiant exposures of 2.0 J/cm2.

  3. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    PubMed Central

    Medina, Leonel E.; Grill, Warren M.

    2014-01-01

    Objective Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES. PMID:25380254

  4. Volume conductor model of transcutaneous electrical stimulation with kilohertz signals

    NASA Astrophysics Data System (ADS)

    Medina, Leonel E.; Grill, Warren M.

    2014-12-01

    Objective. Incorporating high-frequency components in transcutaneous electrical stimulation (TES) waveforms may make it possible to stimulate deeper nerve fibers since the impedance of tissue declines with increasing frequency. However, the mechanisms of high-frequency TES remain largely unexplored. We investigated the properties of TES with frequencies beyond those typically used in neural stimulation. Approach. We implemented a multilayer volume conductor model including dispersion and capacitive effects, coupled to a cable model of a nerve fiber. We simulated voltage- and current-controlled transcutaneous stimulation, and quantified the effects of frequency on the distribution of potentials and fiber excitation. We also quantified the effects of a novel transdermal amplitude modulated signal (TAMS) consisting of a non-zero offset sinusoidal carrier modulated by a square-pulse train. Main results. The model revealed that high-frequency signals generated larger potentials at depth than did low frequencies, but this did not translate into lower stimulation thresholds. Both TAMS and conventional rectangular pulses activated more superficial fibers in addition to the deeper, target fibers, and at no frequency did we observe an inversion of the strength-distance relationship. Current regulated stimulation was more strongly influenced by fiber depth, whereas voltage regulated stimulation was more strongly influenced by skin thickness. Finally, our model reproduced the threshold-frequency relationship of experimentally measured motor thresholds. Significance. The model may be used for prediction of motor thresholds in TES, and contributes to the understanding of high-frequency TES.

  5. Pulsed laser fluorometry for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Saunders, G. C.; Martin, J. C.; Jett, J. H.; Wilder, M. E.; Martinez, A.; Bentley, B. F.; Lopez, J.; Hutson, L.

    A compact pulsed laser fluorometer has been incorporated into a continuous flow system developed to detect acetylcholinesterase (AChE) inhibitors and/or primary amine compounds in air and water. A pulsed nitrogen laser pumped dye laser excites fluorescent reactants which flow continuously through a quartz flow cell. Data are collected, analyzed, and displayed using a Macintosh II personal computer. For detection of cholinesterase inhibitors the fluorogenic substrate N methylindoxyl acetate is used to monitor the activity of immobilized enzyme. Presence of inhibitors results in a decrease of steady state fluorescence. Detection of compounds containing primary amines is based on their reaction with fluorescamine to rapidly produce intensely fluorescent products. Compounds of interest to our research were amino acids, peptides, and proteins. An increase in steady state fluorescence could be cause to evaluate the reasons for the change. The detection limit of the protein, bovine serum albumin (BSA) in water, is 10 ppT. Nebulized BSA concentrated by the LANL air sampler can be detected at sub ppT original air concentration.

  6. PEDOT-CNT coated electrodes stimulate retinal neurons at low voltage amplitudes and low charge densities

    NASA Astrophysics Data System (ADS)

    Samba, R.; Herrmann, T.; Zeck, G.

    2015-02-01

    Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.

  7. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  8. C2 subcutaneous stimulation for failed back surgery syndrome: a case report.

    PubMed

    De Ridder, Dirk; Plazier, Mark; Menovsky, Tomas; Kamerling, Niels; Vanneste, Sven

    2013-01-01

    Failed back surgery syndrome (FBSS) is a term embracing a constellation of conditions that describes persistent or recurring low back pain, with or without sciatica following one or more spine surgeries. It has been shown in animals that electrical stimulation of the high cervical C2 area can suppress pain stimuli derived from the L5-S1 dermatome. It is unknown whether C2 electrical stimulation in humans can be used to treat pain derived from the L5-S1 area, and a case is reported in which subcutaneous C2 is applied to treat FBSS. A patient presents to the neuromodulation clinic because of FBSS (after three lumbar diskectomies) and noninvasive neuromodulation is performed consisting of transcutaneous electrical nerve stimulation (TENS) at C2. The C2 TENS stimulation is successful in improving pain. It induces paresthesias in the C2 dermatome above a certain amplitude threshold, but does not generate paresthesias in the pain area. However, the patient becomes allergic to the skin-applied TENS electrodes and therefore a new treatment strategy is discussed with the patient. A subcutaneous C2 electrode is inserted under local anesthesia, and attached to an external pulse generator. Three stimulation designs are tested: a classical tonic stimulation, consisting of 40 Hz stimulation, a placebo, and a burst stimulation, consisting of 40 Hz burst mode, with five spikes delivered at 500 Hz at 1000 μsec pulse width and 1000 μsec interspike interval. The patient's stimulation results demonstrate that burst mode is superior to placebo and tonic mode, and she receives a fully implanted C2 electrode connected to an internal pulse generator via an extension wire. The burst design is capable of both suppressing the least and worst pain effectively, and she has remained almost pain-free for over three years. © 2012 International Neuromodulation Society.

  9. Pudendal nerve stimulation and block by a wireless-controlled implantable stimulator in cats.

    PubMed

    Yang, Guangning; Wang, Jicheng; Shen, Bing; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-07-01

    The study aims to determine the functionality of a wireless-controlled implantable stimulator designed for stimulation and block of the pudendal nerve. In five cats under α-chloralose anesthesia, the stimulator was implanted underneath the skin on the left side in the lower back along the sacral spine. Two tripolar cuff electrodes were implanted bilaterally on the pudendal nerves in addition to one bipolar cuff electrode that was implanted on the left side central to the tripolar cuff electrode. The stimulator provided high-frequency (5-20 kHz) biphasic stimulation waveforms to the two tripolar electrodes and low-frequency (1-100 Hz) rectangular pulses to the bipolar electrode. Bladder and urethral pressures were measured to determine the effects of pudendal nerve stimulation (PNS) or block. The maximal (70-100 cmH2O) urethral pressure generated by 20-Hz PNS applied via the bipolar electrode was completely eliminated by the pudendal nerve block induced by the high-frequency stimulation (6-15 kHz, 6-10 V) applied via the two tripolar electrodes. In a partially filled bladder, 20-30 Hz PNS (2-8 V, 0.2 ms) but not 5 Hz stimulation applied via the bipolar electrode elicited a large sustained bladder contraction (45.9 ± 13.4 to 52.0 ± 22 cmH2O). During cystometry, the 5 Hz PNS significantly (p < 0.05) increased bladder capacity to 176.5 ± 27.1% of control capacity. The wireless-controlled implantable stimulator successfully generated the required waveforms for stimulation and block of pudendal nerve, which will be useful for restoring bladder functions after spinal cord injury. © 2013 International Neuromodulation Society.

  10. Note: A rectangular pulse generator for 50 kV voltage, 0.8 ns rise time, and 10 ns pulse width based on polymer-film switch.

    PubMed

    Wu, Hanyu; Zhang, Xinjun; Sun, Tieping; Zeng, Zhengzhong; Cong, Peitian; Zhang, Shaoguo

    2015-10-01

    In this article, we describe a rectangular pulse generator, consisting of a polymer-film switch, a tri-plate transmission line, and parallel post-shaped ceramic resistor load, for 50-kV voltage, 0.8-ns rise time, and 10-ns width. The switch and resistors are arranged in atmospheric air and the transmission line can work in atmospheric air or in transformer oil to change the pulse width from 6.7 ns to 10 ns. The fast switching and low-inductance characteristics of the polymer-film switch ensure the fast rising wavefront of <1 ns. This generator can be applied in the calibration of nanosecond voltage dividers and used for electromagnetic pulse tests as a fast-rising current injection source.

  11. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  12. Does sacral pulsed electromagnetic field therapy have a better effect than transcutaneous electrical nerve stimulation in patients with neurogenic overactive bladder?

    PubMed

    Fergany, Lamyaa A; Shaker, Husain; Arafa, Magdy; Elbadry, Mohamed S

    2017-06-01

    To compare the effectiveness of pulsed electromagnetic field therapy (PEMFT) and transcutaneous electrical nerve stimulation (TENS) on neurogenic overactive bladder dysfunction (OAB) in patients with spinal cord injury (SCI). In all, 80 patients [50 men and 30 women, with a mean (SD) age of 40.15 (8.76) years] with neurogenic OAB secondary to suprasacral SCI were included. They underwent urodynamic studies (UDS) before and after treatment. Patients were divided into two equal groups: Group A, comprised 40 patients who received 20 min of TENS (10 Hz with a 700 s generated pulse), three times per week for 20 sessions; Group B, comprised 40 patients who received PEMFT (15 Hz with 50% intensity output for 5 s/min for 20 min), three times per week for 20 sessions. In Group B, there was a significant increase in the maximum cystometric capacity ( P  < 0.001), volume at first uninhibited detrusor contraction ( P  < 0.002), and maximum urinary flow rate ( P  < 0.02). The UDS showed that the effects of PEMFT in patients with neurogenic OAB secondary to suprasacral SCI was better than TENS for inducing an inhibitory effect on neurogenic detrusor overactivity.

  13. Nano-Pulse Stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response

    PubMed Central

    Skeate, Joseph G.; Da Silva, Diane M.; Chavez-Juan, Elena; Anand, Snjezana; Nuccitelli, Richard; Kast, W. Martin

    2018-01-01

    Nano-Pulse Stimulation (NPS) is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16)-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS) to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s) associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence. PMID:29324830

  14. Nano-Pulse Stimulation induces immunogenic cell death in human papillomavirus-transformed tumors and initiates an adaptive immune response.

    PubMed

    Skeate, Joseph G; Da Silva, Diane M; Chavez-Juan, Elena; Anand, Snjezana; Nuccitelli, Richard; Kast, W Martin

    2018-01-01

    Nano-Pulse Stimulation (NPS) is a non-thermal pulsed electric field modality that has been shown to have cancer therapeutic effects. Here we applied NPS treatment to the human papillomavirus type 16 (HPV 16)-transformed C3.43 mouse tumor cell model and showed that it is effective at eliminating primary tumors through the induction of immunogenic cell death while subsequently increasing the number of tumor-infiltrating lymphocytes within the tumor microenvironment. In vitro NPS treatment of C3.43 cells resulted in a doubling of activated caspase 3/7 along with the translocation of phosphatidylserine (PS) to the outer leaflet of the plasma membrane, indicating programmed cell death activity. Tumor-bearing mice receiving standard NPS treatment showed an initial decrease in tumor volume followed by clearing of tumors in most mice, and a significant increase in overall survival. Intra-tumor analysis of mice that were unable to clear tumors showed an inverse correlation between the number of tumor infiltrating lymphocytes and the size of the tumor. Approximately half of the mice that cleared established tumors were protected against tumor re-challenge on the opposite flank. Selective depletion of CD8+ T cells eliminated this protection, suggesting that NPS treatment induces an adaptive immune response generating CD8+ T cells that recognize tumor antigen(s) associated with the C3.43 tumor model. This method may be utilized in the future to not only ablate primary tumors, but also to induce an anti-tumor response driven by effector CD8+ T cells capable of protecting individuals from disease recurrence.

  15. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  16. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release

    PubMed Central

    Melchior, James R.; Ferris, Mark J.; Stuber, Garret D.; Riddle, David R.; Jones, Sara R.

    2015-01-01

    The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-β-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation. PMID:26011081

  17. OH Production Enhancement in Bubbling Pulsed Discharges

    NASA Astrophysics Data System (ADS)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-01

    The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  18. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  19. Assessing the changes in the spatial stiffness of the posterior sclera as a function of IOP with air-pulse OCE

    NASA Astrophysics Data System (ADS)

    Singh, Manmohan; Nair, Achuth; Aglyamov, Salavat R.; Wu, Chen; Han, Zhaolong; Lafon, Ericka; Larin, Kirill V.

    2017-02-01

    The mechanophysiology of tissues in the posterior eye have been implicated for diseases such as myopia and glaucoma. For example, the eye-globe shape, and consequently optical axial length, can be affected by scleral stiffness. In glaucoma, an elevated intraocular pressure is the primary risk factor for glaucoma, which is the 2nd most prevalent known cause of blindness. Recent work has shown that biomechanical properties of the optic nerve are critical for the onset and progression of glaucoma because weak tissues cause large displacements in the optic nerve, causing tissue damage. In this work, we utilize air-pulse optical coherence elastography (OCE) to quantify the spatial distribution of biomechanical properties of the optic nerve, its surrounding tissues, and the posterior sclera. Air-pulse measurements were made in a grid on in situ porcine eyes in the whole eye-globe configuration as various IOPs. The OCE-measured displacement process was linked to tissue stiffness by a simple kinematic equation. The results show that the optic nerve and peripapillary sclera are much stiffer than the surrounding sclera, and the stiffness of the optic nerve and peripapillary sclera increased as a function of IOP. However, the stiffness of the surrounding sclera did not dramatically increase. Our results show that understanding the dynamics of the biomechanical properties of the eye are critical to understand the aforementioned diseases and may provide additional information for assessing visual health and integrity.

  20. 21 CFR 882.5870 - Implanted peripheral nerve stimulator for pain relief.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882... the stimulating pulses across the patient's skin to the implanted receiver. (b) Classification. Class...

  1. Impact of pumping configuration on all-fibered femtosecond chirped pulse amplification

    NASA Astrophysics Data System (ADS)

    Lecourt, Jean-Bernard; Duterte, Charles; Bertrand, Anthony; Liégeois, Flavien; Hernandez, Yves; Giannone, Domenico

    2008-04-01

    We experimentally compared the co- and counter-propagative pumping scheme for the amplification of ultra-short optical pulses. According to pumping direction we show that optical pulses with a duration of 75 fs and 100mW of average output power can be obtained for co-propagative pumping, while pulse duration is never shorter than 400 fs for the counter-propagative case. We show that the impact of non-linear effects on pulse propagation is different for the two pumping configurations. We assume that Self Phase Modulation (SPM) is the main effect in the copropagative case, whereas the impact of Stimulated Raman Scattering is bigger for the counter-propagative case.

  2. Laser pulses for coherent xuv Raman excitation

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Koch, Christiane P.; Whaley, K. Birgitta

    2015-07-01

    We combine multichannel electronic structure theory with quantum optimal control to derive femtosecond-time-scale Raman pulse sequences that coherently populate a valence excited state. For a neon atom, Raman target populations of up to 13% are obtained. Superpositions of the ground and valence Raman states with a controllable relative phase are found to be reachable with up to 4.5% population and arbitrary phase control facilitated by the pump pulse carrier-envelope phase. Analysis of the optimized pulse structure reveals a sequential mechanism in which the valence excitation is reached via a fast (femtosecond) population transfer through an intermediate resonance state in the continuum rather than avoiding intermediate-state population with simultaneous or counterintuitive (stimulated Raman adiabatic passage) pulse sequences. Our results open a route to coupling valence excitations and core-hole excitations in molecules and aggregates that locally address specific atoms and represent an initial step towards realization of multidimensional spectroscopy in the xuv and x-ray regimes.

  3. Microwave Triggered Laser Ionization of Air

    NASA Astrophysics Data System (ADS)

    Vadiee, Ehsan; Prasad, Sarita; Jerald Buchenauer, C.; Schamiloglu, Edl

    2012-10-01

    The goal of this work is to study the evolution and dynamics of plasma expansion when a high power microwave (HPM) pulse is overlapped in time and space on a very small, localized region of plasma formed by a high energy laser pulse. The pulsed Nd:YAG laser (8 ns, 600mJ, repetition rate 10 Hz) is focused to generate plasma filaments in air with electron density of 10^17/cm^3. When irradiated with a high power microwave pulse these electrons would gain enough kinetic energy and further escalate avalanche ionization of air due to elastic electron-neutral collisions thereby causing an increased volumetric discharge region. An X-band relativistic backward wave oscillator(RBWO) at the Pulsed Power,Beams and Microwaves laboratory at UNM is constructed as the microwave source. The RBWO produces a microwave pulse of maximum power 400 MW, frequency of 10.1 GHz, and energy of 6.8 Joules. Special care is being given to synchronize the RBWO and the pulsed laser system in order to achieve a high degree of spatial and temporal overlap. A photodiode and a microwave waveguide detector will be used to ensure the overlap. Also, a new shadowgraph technique with a nanosecond time resolution will be used to detect changes in the shock wave fronts when the HPM signal overlaps the laser pulse in time and space.

  4. Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.

    PubMed

    Jastreboff, P J; Keller, O; Zieliński, K

    1977-01-01

    In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.

  5. Low-Frequency Repetitive Transcranial Magnetic Stimulation Targeted to Premotor Cortex Followed by Primary Motor Cortex Modulates Excitability Differently Than Premotor Cortex or Primary Motor Cortex Stimulation Alone.

    PubMed

    Chen, Mo; Deng, Huiqiong; Schmidt, Rebekah L; Kimberley, Teresa J

    2015-12-01

    The excitability of primary motor cortex (M1) can be modulated by applying low-frequency repetitive transcranial magnetic stimulation (rTMS) over M1 or premotor cortex (PMC). A comparison of inhibitory effect between the two locations has been reported with inconsistent results. This study compared the response secondary to rTMS applied over M1, PMC, and a combined PMC + M1 stimulation approach which first targets stimulation over PMC then M1. Ten healthy participants were recruited for a randomized, cross-over design with a one-week washout between visits. Each visit consisted of a pretest, an rTMS intervention, and a post-test. Outcome measures included short interval intracortical inhibition (SICI), intracortical facilitation (ICF), and cortical silent period (CSP). Participants received one of the three interventions in random order at each visit including: 1-Hz rTMS at 90% of resting motor threshold to: M1 (1200 pulses), PMC (1200 pulses), and PMC + M1 (600 pulses each, 1200 total). PMC + M1 stimulation resulted in significantly greater inhibition than the other locations for ICF (P = 0.005) and CSP (P < 0.001); for SICI, increased inhibition (group effect) was not observed after any of the three interventions, and there was no significant difference between the three interventions. The results indicate that PMC + M1 stimulation may modulate brain excitability differently from PMC or M1 alone. CSP was the assessment measure most sensitive to changes in inhibition and was able to distinguish between different inhibitory protocols. This work presents a novel procedure that may have positive implications for therapeutic interventions. © 2015 International Neuromodulation Society.

  6. A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine

    DTIC Science & Technology

    2006-12-01

    Experiments were performed in the Air Force Research Laboratory (AFRL) Pulsed Detonation Research Facility at Wright Patterson AFB, Ohio. The PDE ...AFRL-MN-EG-TP-2006-7420 A HYDROCARBON FUEL FLASH VAPORIZATION SYSTEM FOR A PULSED DETONATION ENGINE (PREPRINT) K. Colin Tucker...85,7<&/$66,),&$7,212) E7(/(3+21(180%(5 ,QFOXGHDUHDFRGH A Hydrocarbon Fuel Flash Vaporization System for a Pulsed Detonation Engine K

  7. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  8. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  9. Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas

    NASA Astrophysics Data System (ADS)

    Goo, Yong Sook; Ye, Jang Hee; Lee, Seokyoung; Nam, Yoonkey; Ryu, Sang Baek; Kim, Kyung Hwan

    2011-06-01

    Retinal prostheses are being developed to restore vision for those with retinal diseases such as retinitis pigmentosa or age-related macular degeneration. Since neural prostheses depend upon electrical stimulation to control neural activity, optimal stimulation parameters for successful encoding of visual information are one of the most important requirements to enable visual perception. In this paper, we focused on retinal ganglion cell (RGC) responses to different stimulation parameters and compared threshold charge densities in wild-type and rd1 mice. For this purpose, we used in vitro retinal preparations of wild-type and rd1 mice. When the neural network was stimulated with voltage- and current-controlled pulses, RGCs from both wild-type and rd1 mice responded; however the temporal pattern of RGC response is very different. In wild-type RGCs, a single peak within 100 ms appears, while multiple peaks (approximately four peaks) with ~10 Hz rhythm within 400 ms appear in RGCs in the degenerated retina of rd1 mice. We find that an anodic phase-first biphasic voltage-controlled pulse is more efficient for stimulation than a biphasic current-controlled pulse based on lower threshold charge density. The threshold charge densities for activation of RGCs both with voltage- and current-controlled pulses are overall more elevated for the rd1 mouse than the wild-type mouse. Here, we propose the stimulus range for wild-type and rd1 retinas when the optimal modulation of a RGC response is possible.

  10. Short infrared laser pulses block action potentials in neurons

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Tolstykh, Gleb P.; Martens, Stacey L.; Ibey, Bennett L.; Beier, Hope T.

    2017-02-01

    Short infrared laser pulses have many physiological effects on cells including the ability to stimulate action potentials in neurons. Here we show that short infrared laser pulses can also reversibly block action potentials. Primary rat hippocampal neurons were transfected with the Optopatch2 plasmid, which contains both a blue-light activated channel rhodopsin (CheRiff) and a red-light fluorescent membrane voltage reporter (QuasAr2). This optogenetic platform allows robust stimulation and recording of action potential activity in neurons in a non-contact, low noise manner. For all experiments, QuasAr2 was imaged continuously on a wide-field fluorescent microscope using a Krypton laser (647 nm) as the excitation source and an EMCCD camera operating at 1000 Hz to collect emitted fluorescence. A co-aligned Argon laser (488 nm, 5 ms at 10Hz) provided activation light for CheRiff. A 200 mm fiber delivered infrared light locally to the target neuron. Reversible action potential block in neurons was observed following a short infrared laser pulse (0.26-0.96 J/cm2; 1.37-5.01 ms; 1869 nm), with the block persisting for more than 1 s with exposures greater than 0.69 J/cm2. Action potential block was sustained for 30 s with the short infrared laser pulsed at 1-7 Hz. Full recovery of neuronal activity was observed 5-30s post-infrared exposure. These results indicate that optogenetics provides a robust platform for the study of action potential block and that short infrared laser pulses can be used for non-contact, reversible action potential block.

  11. A microcontroller-based implantable nerve stimulator used for rats.

    PubMed

    Sha, Hong; Zheng, Zheng; Wang, Yan; Ren, Chaoshi

    2005-01-01

    A microcontroller-based stimulator that can be flexible programmed after it has been implanted into a rat was studied. Programmability enables implanted stimulators to generate customized, complex protocols for experiments. After implantation, a coded light pulse train that contains information of specific identification will unlock a certain stimulator. If a command that changing the parameters is received, the microcontroller will update its flash memory after it affirms the commands. The whole size of it is only 1.6 cubic centimeters, and it can work for a month. The devices have been successfully used in animal behavior experiments, especially on rats.

  12. A multiscale, hierarchical model of pulse dynamics in arid-land ecosystems

    USGS Publications Warehouse

    Collins, Scott L.; Belnap, Jayne; Grimm, N. B.; Rudgers, J. A.; Dahm, Clifford N.; D'Odorico, P.; Litvak, M.; Natvig, D. O.; Peters, Douglas C.; Pockman, W. T.; Sinsabaugh, R. L.; Wolf, B. O.

    2014-01-01

    Ecological processes in arid lands are often described by the pulse-reserve paradigm, in which rain events drive biological activity until moisture is depleted, leaving a reserve. This paradigm is frequently applied to processes stimulated by one or a few precipitation events within a growing season. Here we expand the original framework in time and space and include other pulses that interact with rainfall. This new hierarchical pulse-dynamics framework integrates space and time through pulse-driven exchanges, interactions, transitions, and transfers that occur across individual to multiple pulses extending from micro to watershed scales. Climate change will likely alter the size, frequency, and intensity of precipitation pulses in the future, and arid-land ecosystems are known to be highly sensitive to climate variability. Thus, a more comprehensive understanding of arid-land pulse dynamics is needed to determine how these ecosystems will respond to, and be shaped by, increased climate variability.

  13. Effects of Transcranial Direct Current Stimulation, Transcranial Pulsed Current Stimulation, and Their Combination on Brain Oscillations in Patients with Chronic Visceral Pain: A Pilot Crossover Randomized Controlled Study.

    PubMed

    Thibaut, Aurore; Russo, Cristina; Hurtado-Puerto, Aura Maria; Morales-Quezada, Jorge Leon; Deitos, Alícia; Petrozza, John Christopher; Freedman, Steven; Fregni, Felipe

    2017-01-01

    Chronic visceral pain (CVP) syndromes are persistently painful disorders with a remarkable lack of effective treatment options. This study aimed at evaluating the effects of different neuromodulation techniques in patients with CVP on cortical activity, through electreocephalography (EEG) and on pain perception, through clinical tests. A pilot crossover randomized controlled study. Out-patient. Adults with CVP (>3 months). Participants received four interventions in a randomized order: (1) transcranial pulsed current stimulation (tPCS) and active transcranial direct current stimulation (tDCS) combined, (2) tPCS alone, (3) tDCS alone, and (4) sham condition. Resting state quantitative electroencephalography (qEEG) and pain assessments were performed before and after each intervention. Results were compared with a cohort of 47 healthy controls. We enrolled six patients with CVP for a total of 21 visits completed. Compared with healthy participants, patients with CVP showed altered cortical activity characterized by increased power in theta, alpha and beta bands, and a significant reduction in the alpha/beta ratio. Regarding tES, the combination of tDCS with tPCS had no effect on power in any of the bandwidths, nor brain regions. Comparing tPCS with tDCS alone, we found that tPCS induced higher increase in power within the theta and alpha bandwidths. This study confirms that patients with CVP present abnormal EEG-indexed cortical activity compared with healthy controls. Moreover, we showed that combining two types of neurostimulation techniques had no effect, whereas the two interventions, when applied individually, have different neural signatures.

  14. OH Production Enhancement in Bubbling Pulsed Discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut

    2010-10-13

    The generation of active species, such as H{sub 2}O{sub 2}, O{sup *}, OH*, HO{sub 2}*, O{sub 3}, N{sub 2}{sup *}, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active speciesmore » were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).« less

  15. A nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle.

    PubMed

    van Bolhuis, A I; Holsheimer, J; Savelberg, H H

    2001-05-30

    Electrical stimulation of peripheral nerve results in a motor-unit recruitment order opposite to that attained by natural neural control, i.e. from large, fast-fatiguing to progressively smaller, fatigue-resistant motor-units. Yet animal studies involving physiological exercise protocols of low intensity and long duration require minimal fatigue. The present study sought to apply a nerve stimulation method to selectively recruit smaller motor-units in rat skeletal muscle. Two pulse generators were used, independently supplying short supramaximal cathodal stimulating pulses (0.5 ms) and long subthreshold cathodal inactivating pulses (1.5 s) to the sciatic nerve. Propagation of action potentials was selectively blocked in nerve fibres of different diameter by adjusting the strength of the inactivating current. A tensile-testing machine was used to gauge isometric muscle force of the plantaris and both heads of the gastrocnemius muscle. The order of motor-unit recruitment was estimated from twitch characteristics, i.e. peak force and relaxation time. The results showed prolonged relaxation at lower twitch peak forces as the intensity of the inactivating current increased, indicating a reduction of the number of large motor-units to force production. It is shown that the nerve stimulation method described is effective in mimicking physiological muscle control.

  16. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-balanced, biphasic pulses for 0.566  ⩽  k  ⩽  2.3 in rat subcutaneous tissues

    NASA Astrophysics Data System (ADS)

    Kumsa, Doe W.; Bhadra, Narendra; Hudak, Eric M.; Mortimer, J. Thomas

    2017-10-01

    Objective. Our mission is twofold: (1) find a way to safely inject more charge through platinum electrodes than the Shannon limit (k  =  1.75) permits and (2) nurture an interest in the neural stimulation community to understand the electron transfer process occurring on neural stimulating electrodes. Approach. We report here on measurements of the electrode potential, performed on platinum neural stimulating electrodes in the subcutaneous space of an anesthetized rat under neural stimulation conditions. Main results. The results for six platinum electrodes with areas ranging from 0.2 mm2 to 12.7 mm2 were similar to prior results in sulfuric acid, except that the measured potentials were shifted negative 0.36 V because of the pH difference between the two media. The anodic ‘end’ potential, measured at t  =  20 ms after the onset of the biphasic current pulse, was the primary focus of the data collected because previous results had shown that as charge injection crosses the Shannon limit (k  =  1.75), this potential moves into a range where platinum surface oxidation and dissolution is likely to occur. The behavior of V e(t  =  20 ms) over a range of electrode surface areas studied was consistent with our sulfuric acid study. Implicit, but little noticed, in Shannon’s formulation is that small and large platinum electrodes behave the same in terms of k value; our data supports this idea. Significance. We hypothesize that the k  =  1.75 Shannon limit for safe stimulation designates a charge-injection boundary above which platinum toxicity becomes a relevant consideration for living cells around an electrode, a possibility that can be directly tested, and is a vital step forward in mission (1).

  17. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first, charge-balanced, biphasic pulses for 0.566  ⩽  k  ⩽  2.3 in rat subcutaneous tissues.

    PubMed

    Kumsa, Doe W; Bhadra, Narendra; Hudak, Eric M; Mortimer, J Thomas

    2017-10-01

    Our mission is twofold: (1) find a way to safely inject more charge through platinum electrodes than the Shannon limit (k  =  1.75) permits and (2) nurture an interest in the neural stimulation community to understand the electron transfer process occurring on neural stimulating electrodes. We report here on measurements of the electrode potential, performed on platinum neural stimulating electrodes in the subcutaneous space of an anesthetized rat under neural stimulation conditions. The results for six platinum electrodes with areas ranging from 0.2 mm 2 to 12.7 mm 2 were similar to prior results in sulfuric acid, except that the measured potentials were shifted negative 0.36 V because of the pH difference between the two media. The anodic 'end' potential, measured at t  =  20 ms after the onset of the biphasic current pulse, was the primary focus of the data collected because previous results had shown that as charge injection crosses the Shannon limit (k  =  1.75), this potential moves into a range where platinum surface oxidation and dissolution is likely to occur. The behavior of V e (t  =  20 ms) over a range of electrode surface areas studied was consistent with our sulfuric acid study. Implicit, but little noticed, in Shannon's formulation is that small and large platinum electrodes behave the same in terms of k value; our data supports this idea. We hypothesize that the k  =  1.75 Shannon limit for safe stimulation designates a charge-injection boundary above which platinum toxicity becomes a relevant consideration for living cells around an electrode, a possibility that can be directly tested, and is a vital step forward in mission (1).

  18. [Research advances of anti-tumor immune response induced by pulse electric field ablation].

    PubMed

    Cui, Guang-ying; Diao, Hong-yan

    2015-11-01

    As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.

  19. Interventional repetitive I-wave transcranial magnetic stimulation (TMS): the dimension of stimulation duration.

    PubMed

    Murray, Lynda M; Nosaka, Kazunori; Thickbroom, Gary W

    2011-10-01

    A range of transcranial magnetic stimulation (TMS) techniques are now available to modulate human corticomotor excitability and plasticity. One presumably critical aspect of these interventions is their duration of application. In the current study, we investigated whether doubling the duration of an intervention would offer any additional benefit, or invoke self-limiting mechanisms controlling corticomotor excitability or synaptic plasticity. We compared (in a cross-over design) corticomotor excitability (to the first dorsal interosseous muscle) during and after a 15-minute (I15) and 30-minute (I30) TMS intervention targeting indirect (I-) wave interaction (iTMS). The interventions consisted of equi-intensity paired stimuli with an interpulse interval (IPI) of 1.5 milliseconds, corresponding to I-wave periodicity, delivered at a frequency of 0.2 Hz. During both the I15 and I30 interventions, paired-pulse (I-wave) motor evoked potential (iMEP) amplitude significantly increased (by 98.3% and 120.6%, respectively, last versus first minute, P = .001). The increase for I30 occurred in the first 15 minutes, and there was no further change during the remainder of the intervention. Both interventions were equally effective overall. Postintervention, single-pulse MEP amplitude increased by a mean of 91% and 106% (I15 and I30, respectively, P < .01) with no significant difference between interventions. We conclude that repetitive iTMS can increase corticomotor excitability after a relatively short intervention period of stimulation, and that a longer stimulation period has no additional benefit or detriment, perhaps as a result of the action of regulatory mechanisms. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  1. A comparison between spectra of runaway electron beams in SF6 and air

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor; Gu, Jianwei; Baksht, Evgenii; Wang, Ruexue; Yan, Ping; Shao, Tao

    2015-12-01

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF6 and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ˜1.6 ns and a full width at half maximum of 3-5 ns is used to produce RAE beams. The SAEBs in SF6 and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF6 and air at pressures of 7.5 Torr, 75 Torr, and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF6 was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF6 in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF6 decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF6 decreased when the rise time of the voltage pulse increased.

  2. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C. Brent; Hackel, Lloyd A.

    1997-01-01

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  3. Long-pulse-width narrow-bandwidth solid state laser

    DOEpatents

    Dane, C.B.; Hackel, L.A.

    1997-11-18

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  4. Peculiarities of the Short-Pulse Dielectric Strength of Vacuum Insulation

    NASA Astrophysics Data System (ADS)

    Nefedtsev, E. V.; Onischenko, S. A.; Batrakov, A. V.

    2017-12-01

    Results of a study of the short-pulse dielectric strength of millimeter plane vacuum gaps with electrodes that have been treated with an electron beam are presented. It is shown that the electric field strength of the first breakdown of vacuum gaps with pure metal electrodes is determined to a significant extent by the crystal structure of the metal. The development of the first short-pulse breakdown is accompanied by a very abrupt growth of the electric current. The short duration of the test pulses rules out the influence of all well-known inertial mechanisms of breakdown with characteristic action times greater than 20 ns. Some general assumptions regarding the nature of the factors stimulating the short-pulse breakdown of vacuum gaps are considered.

  5. Twiddler's syndrome in spinal cord stimulation.

    PubMed

    Al-Mahfoudh, Rafid; Chan, Yuen; Chong, Hsu Pheen; Farah, Jibril Osman

    2016-01-01

    The aims are to present a case series of Twiddler's syndrome in spinal cord stimulators with analysis of the possible mechanism of this syndrome and discuss how this phenomenon can be prevented. Data were collected retrospectively between 2007 and 2013 for all patients presenting with failure of spinal cord stimulators. The diagnostic criterion for Twiddler's syndrome is radiological evidence of twisting of wires in the presence of failure of spinal cord stimulation. Our unit implants on average 110 spinal cord stimulators a year. Over the 5-year study period, all consecutive cases of spinal cord stimulation failure were studied. Three patients with Twiddler's syndrome were identified. Presentation ranged from 4 to 228 weeks after implantation. Imaging revealed repeated rotations and twisting of the wires of the spinal cord stimulators leading to hardware failure. To the best of our knowledge this is the first reported series of Twiddler's syndrome with implantable pulse generators (IPGs) for spinal cord stimulation. Hardware failure is not uncommon in spinal cord stimulation. Awareness and identification of Twiddler's syndrome may help prevent its occurrence and further revisions. This may be achieved by implanting the IPG in the lumbar region subcutaneously above the belt line. Psychological intervention may have a preventative role for those who are deemed at high risk of Twiddler's syndrome from initial psychological screening.

  6. Systematic study of the effects of stimulus parameters and stimulus location on afterdischarges elicited by electrical stimulation in the rat.

    PubMed

    Shigeto, Hiroshi; Boongird, Atthaporn; Baker, Kenneth; Kellinghaus, Christoph; Najm, Imad; Lüders, Hans

    2013-03-01

    Electrical brain stimulation is used in a variety of clinical situations, including cortical mapping for epilepsy surgery, cortical stimulation therapy to terminate seizure activity in the cortex, and in deep brain stimulation therapy. However, the effects of stimulus parameters are not fully understood. In this study, we systematically tested the impact of various stimulation parameters on the generation of motor symptoms and afterdischarges (ADs). Focal electrical stimulation was delivered at subdural cortical, intracortical, and hippocampal sites in a rat model. The effects of stimulus parameter on the generation of motor symptoms and on the occurrence of ADs were examined. The effect of stimulus irregularity was tested using random or regular 50Hz stimulation through subdural electrodes. Hippocampal stimulation produced ADs at lower thresholds than neocortical stimulation. Hippocampal stimulation also produced significantly longer ADs. Both in hippocampal and cortical stimulation, when the total current was kept constant with changing pulse width, the threshold for motor symptom or AD was lowest between 50 and 100Hz and higher at both low and high frequencies. However, if the pulse width was fixed, the threshold did not increase above 100Hz and it apparently continued to decrease through 800Hz even if the difference did not reach statistical significance. There was no significant difference between random and regular stimulation. Overall, these results indicate that electrode location and several stimulus parameters including frequency, pulse width, and total electricity are important in electrical stimulation to produce motor symptoms and ADs. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields

    NASA Astrophysics Data System (ADS)

    Castellví, Quim; Mercadal, Borja; Moll, Xavier; Fondevila, Dolors; Andaluz, Anna; Ivorra, Antoni

    2018-02-01

    Electroporation-based treatments typically consist of the application of high-voltage dc pulses. As an undesired side effect, these dc pulses cause electrical stimulation of excitable tissues such as motor nerves. The present in vivo study explores the use of bursts of sinusoidal voltage in a frequency range from 50 kHz to 2 MHz, to induce irreversible electroporation (IRE) whilst avoiding neuromuscular stimulation. A series of 100 dc pulses or sinusoidal bursts, both with an individual duration of 100 µs, were delivered to rabbit liver through thin needles in a monopolar electrode configuration, and thoracic movements were recorded with an accelerometer. Tissue samples were harvested three hours after treatment and later post-processed to determine the dimensions of the IRE lesions. Thermal damage due to Joule heating was ruled out via computer simulations. Sinusoidal bursts with a frequency equal to or above 100 kHz did not cause thoracic movements and induced lesions equivalent to those obtained with conventional dc pulses when the applied voltage amplitude was sufficiently high. IRE efficacy dropped with increasing frequency. For 100 kHz bursts, it was estimated that the electric field threshold for IRE is about 1.4 kV cm-1 whereas that of dc pulses is about 0.5 kV cm-1.

  8. Stimulated resonant x-ray Raman scattering with incoherent radiation

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Rohringer, Nina

    2013-11-01

    We present a theoretical study on stimulated electronic Raman scattering in neon by resonant excitation with an x-ray free electron laser (XFEL). This study is in support of the recent experimental demonstration [C. Weninger , Phys. Rev. Lett. (to be published)] of stimulated x-ray Raman scattering. Focusing the broadband XFEL pulses into a cell of neon gas at atmospheric pressure a strong inelastic x-ray scattering signal in the forward direction was observed, as the x-ray energy was varied across the region of core-excited Rydberg states and the K edge. The broadband and intrinsically incoherent x-ray pulses from the XFEL lead to a rich, structured line shape of the scattered radiation. We present a generalized Maxwell-Liouville-von Neumann approach to self-consistently solve for the amplification of the scattered radiation along with the time evolution of the density matrix of the atomic and residual ionic system. An in-depth analysis of the evolution of the emission spectra as a function of the Raman gain is presented. Furthermore, we propose the use of statistical methods to obtain high-resolution scattering data beyond the lifetime broadening despite pumping with incoherent x-ray pulses.

  9. Quadrupole distribution generated by a laser induced plasma (LIP) in air in earliest instants using pulses of 532 or 355 nm

    NASA Astrophysics Data System (ADS)

    Paulin-Fuentes, J. Mauricio; Sánchez-Aké, C.; Bredice, Fausto O.; Villagrán-Muniz, Mayo

    2015-07-01

    The self-generated electric and magnetic fields in laser induced plasmas (LIPs) in air during the first 40 ns are experimentally investigated using different electric, magnetic and optical techniques. To produce LIPs we used the second and third harmonics (532 and 355 nm) of a Nd:YAG nanosecond pulsed laser with a range of irradiance from {{10}11} to {{10}12} W \\text{c}{{\\text{m}}-2} . The variation in time of the electric field was detected using the tip of a coaxial cable, and the spontaneous magnetic field (SMF) was measured using a \\dot{B} probe. The spatial and temporal evolution of the plasma was studied using shadowgraphy and fast photography. It was observed that produced LIPs using pulses of 532 and 355 nm, generate plasmas of double core over the laser axis, while we observed that produced LIPs by pulses of 1064 nm are composed of a single core plasma. We found that the double-core plasmas have a quadrupole distribution of the charge, consisting of two oppositely directed dipoles which in turn correspond to each plasma core. The magnetic diagnostic showed an oscillating magnetic field azimuthal to the main axis of the double-plasma.

  10. Autocrine effect of Zn²⁺ on the glucose-stimulated insulin secretion.

    PubMed

    Slepchenko, Kira G; Daniels, Nigel A; Guo, Aili; Li, Yang V

    2015-09-01

    It is well known that zinc (Zn(2+)) is required for the process of insulin biosynthesis and the maturation of insulin secretory granules in pancreatic beta (β)-cells, and that changes in Zn(2+) levels in the pancreas have been found to be associated with diabetes. Glucose-stimulation causes a rapid co-secretion of Zn(2+) and insulin with similar kinetics. However, we do not know whether Zn(2+) regulates insulin availability and secretion. Here we investigated the effect of Zn(2+) on glucose-stimulated insulin secretion (GSIS) in isolated mouse pancreatic islets. Whereas Zn(2+) alone (control) had no effect on the basal secretion of insulin, it significantly inhibited GSIS. The application of CaEDTA, by removing the secreted Zn(2+) from the extracellular milieu of the islets, resulted in significantly increased GSIS, suggesting an overall inhibitory role of secreted Zn(2+) on GSIS. The inhibitory action of Zn(2+) was mostly mediated through the activities of KATP/Ca(2+) channels. Furthermore, during brief paired-pulse glucose-stimulated Zn(2+) secretion (GSZS), Zn(2+) secretion following the second pulse was significantly attenuated, probably by the secreted endogenous Zn(2+) after the first pulse. Such an inhibition on Zn(2+) secretion following the second pulse was completely reversed by Zn(2+) chelation, suggesting a negative feedback mechanism, in which the initial glucose-stimulated Zn(2+) release inhibits subsequent Zn(2+) secretion, subsequently inhibiting insulin co-secretion as well. Taken together, these data suggest a negative feedback mechanism on GSZS and GSIS by Zn(2+) secreted from β-cells, and the co-secreted Zn(2+) may act as an autocrine inhibitory modulator.

  11. Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.

    PubMed

    Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik

    2014-08-01

    Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.

  12. Effects of pulse duration on magnetostimulation thresholds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saritas, Emine U., E-mail: saritas@ee.bilkent.edu.tr; Department of Electrical and Electronics Engineering, Bilkent University, Bilkent, Ankara 06800; National Magnetic Resonance Research Center

    Purpose: Medical imaging techniques such as magnetic resonance imaging and magnetic particle imaging (MPI) utilize time-varying magnetic fields that are subject to magnetostimulation limits, which often limit the speed of the imaging process. Various human-subject experiments have studied the amplitude and frequency dependence of these thresholds for gradient or homogeneous magnetic fields. Another contributing factor was shown to be number of cycles in a magnetic pulse, where the thresholds decreased with longer pulses. The latter result was demonstrated on two subjects only, at a single frequency of 1.27 kHz. Hence, whether the observed effect was due to the number ofmore » cycles or due to the pulse duration was not specified. In addition, a gradient-type field was utilized; hence, whether the same phenomenon applies to homogeneous magnetic fields remained unknown. Here, the authors investigate the pulse duration dependence of magnetostimulation limits for a 20-fold range of frequencies using homogeneous magnetic fields, such as the ones used for the drive field in MPI. Methods: Magnetostimulation thresholds were measured in the arms of six healthy subjects (age: 27 ± 5 yr). Each experiment comprised testing the thresholds at eight different pulse durations between 2 and 125 ms at a single frequency, which took approximately 30–40 min/subject. A total of 34 experiments were performed at three different frequencies: 1.2, 5.7, and 25.5 kHz. A solenoid coil providing homogeneous magnetic field was used to induce stimulation, and the field amplitude was measured in real time. A pre-emphasis based pulse shaping method was employed to accurately control the pulse durations. Subjects reported stimulation via a mouse click whenever they felt a twitching/tingling sensation. A sigmoid function was fitted to the subject responses to find the threshold at a specific frequency and duration, and the whole procedure was repeated at all relevant frequencies and pulse

  13. Raman Amplification and Tunable Pulse Delays in Silicon Waveguides

    NASA Astrophysics Data System (ADS)

    Rukhlenko, Ivan D.; Garanovich, Ivan L.; Premaratne, Malin; Sukhorukov, Andrey A.; Agrawal, Govind P.

    2010-10-01

    The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. However, generally employed numerical approaches provide very little insight into the contribution of different silicon Raman amplifier (SRA) parameters. In this paper, we solve the coupled pump-signal equations analytically and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.

  14. Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.

    PubMed

    Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J

    2011-10-01

    A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Coupling of Gaussian electromagnetic pulse into a muscle-bone model of biological structure.

    PubMed

    Lin, J C; Lam, C K

    1976-03-01

    The effect of angle of incidence on the transmission electromagnetic pulse with Gaussion character in biological material is studied. The model assumed is a layer of soft tissue over a semi-infinite medium of boney structure governed by alpha dispersion. The numerical results demonstrate that the transmitted pulse strength is the greatest when the pulse is incident normally on the air-tissue interface. The coupling efficiency for a one microsecond pulse is three times as big as that for a ten microsecond pulse.

  16. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  17. Stimulated Electronic X-Ray Raman Scattering

    NASA Astrophysics Data System (ADS)

    Weninger, Clemens; Purvis, Michael; Ryan, Duncan; London, Richard A.; Bozek, John D.; Bostedt, Christoph; Graf, Alexander; Brown, Gregory; Rocca, Jorge J.; Rohringer, Nina

    2013-12-01

    We demonstrate strong stimulated inelastic x-ray scattering by resonantly exciting a dense gas target of neon with femtosecond, high-intensity x-ray pulses from an x-ray free-electron laser (XFEL). A small number of lower energy XFEL seed photons drive an avalanche of stimulated resonant inelastic x-ray scattering processes that amplify the Raman scattering signal by several orders of magnitude until it reaches saturation. Despite the large overall spectral width, the internal spiky structure of the XFEL spectrum determines the energy resolution of the scattering process in a statistical sense. This is demonstrated by observing a stochastic line shift of the inelastically scattered x-ray radiation. In conjunction with statistical methods, XFELs can be used for stimulated resonant inelastic x-ray scattering, with spectral resolution smaller than the natural width of the core-excited, intermediate state.

  18. Fiber-array based optogenetic prosthetic system for stimulation therapy

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  19. Electrically evoked compound action potentials are different depending on the site of cochlear stimulation.

    PubMed

    van de Heyning, Paul; Arauz, Santiago L; Atlas, Marcus; Baumgartner, Wolf-Dieter; Caversaccio, Marco; Chester-Browne, Ronel; Estienne, Patricia; Gavilan, Javier; Godey, Benoit; Gstöttner, Wolfgang; Han, Demin; Hagen, Rudolph; Kompis, Martin; Kuzovkov, Vlad; Lassaletta, Luis; Lefevre, Franc; Li, Yongxin; Müller, Joachim; Parnes, Lorne; Kleine Punte, Andrea; Raine, Christopher; Rajan, Gunesh; Rivas, Adriana; Rivas, José Antonio; Royle, Nicola; Sprinzl, Georg; Stephan, Kurt; Walkowiak, Adam; Yanov, Yuri; Zimmermann, Kim; Zorowka, Patrick; Skarzynski, Henryk

    2016-11-01

    One of the many parameters that can affect cochlear implant (CI) users' performance is the site of presentation of electrical stimulation, from the CI, to the auditory nerve. Evoked compound action potential (ECAP) measurements are commonly used to verify nerve function by stimulating one electrode contact in the cochlea and recording the resulting action potentials on the other contacts of the electrode array. The present study aimed to determine if the ECAP amplitude differs between the apical, middle, and basal region of the cochlea, if double peak potentials were more likely in the apex than the basal region of the cochlea, and if there were differences in the ECAP threshold and recovery function across the cochlea. ECAP measurements were performed in the apical, middle, and basal region of the cochlea at fixed sites of stimulation with varying recording electrodes. One hundred and forty one adult subjects with severe to profound sensorineural hearing loss fitted with a Standard or FLEX SOFT electrode were included in this study. ECAP responses were captured using MAESTRO System Software (MED-EL). The ECAP amplitude, threshold, and slope were determined using amplitude growth sequences. The 50% recovery rate was assessed using independent single sequences that have two stimulation pulses (a masker and a probe pulse) separated by a variable inter-pulse interval. For all recordings, ECAP peaks were annotated semi-automatically. ECAP amplitudes were greater upon stimulation of the apical region compared to the basal region of the cochlea. ECAP slopes were steeper in the apical region compared to the basal region of the cochlea and ECAP thresholds were lower in the middle region compared to the basal region of the cochlea. The incidence of double peaks was greater upon stimulation of the apical region compared to the basal region of the cochlea. This data indicates that the site and intensity of cochlear stimulation affect ECAP properties.

  20. Experimental approach to interaction physics challenges of the shock ignition scheme using short pulse lasers.

    PubMed

    Goyon, C; Depierreux, S; Yahia, V; Loisel, G; Baccou, C; Courvoisier, C; Borisenko, N G; Orekhov, A; Rosmej, O; Labaune, C

    2013-12-06

    An experimental program was designed to study the most important issues of laser-plasma interaction physics in the context of the shock ignition scheme. In the new experiments presented in this Letter, a combination of kilojoule and short laser pulses was used to study the laser-plasma coupling at high laser intensities for a large range of electron densities and plasma profiles. We find that the backscatter is dominated by stimulated Brillouin scattering with stimulated Raman scattering staying at a limited level. This is in agreement with past experiments using long pulses but laser intensities limited to 2×10(15)  W/cm2, or short pulses with intensities up to 5×10(16)  W/cm2 as well as with 2D particle-in-cell simulations.

  1. Injectable microstimulator for functional electrical stimulation.

    PubMed

    Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R

    1991-11-01

    A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.

  2. Programmable wireless light-emitting diode stimulator for chronic stimulation of optogenetic molecules in freely moving mice

    PubMed Central

    Hashimoto, Mitsuhiro; Hata, Akihiro; Miyata, Takaki; Hirase, Hajime

    2014-01-01

    Abstract. We produced a miniaturized, multicode, multiband, and programmable light-emitting diode (LED) stimulator for wireless control of optogenetic experiments. The LED stimulator is capable of driving three independent LEDs upon reception of an infrared (IR) signal generated by a custom-made IR transmitter. Individual LED photopulse patterns are assigned to different codes of the IR signals (up to 256 codes). The photopulse patterns can be programmed in the on-board microcontroller by specifying the parameters of duration (>1  ms), frequency (<500  Hz), and pulse width (>1  ms). The IR signals were modulated at multiple carrier frequencies to establish multiband IR transmission. Using these devices, we could remotely control the moving direction of a Thy1-ChR2-YFP transgenic mouse by transcranially illuminating the corresponding hemisphere of the primary motor cortex. IR transmitter and LED stimulator will be particularly useful in experiments where free movement or patterned concurrent stimulation is desired, such as testing social communication of rodents. PMID:26157963

  3. Transverse tripolar spinal cord stimulation: results of an international multicenter study.

    PubMed

    Oakley, John C; Espinosa, Francisco; Bothe, Hans; McKean, John; Allen, Peter; Burchiel, Kim; Quartey, Gilbert; Spincemaille, Geert; Nuttin, Bart; Gielen, Frans; King, Gary; Holsheimer, Jan

    2006-07-01

    Experienced neurosurgeons at eight spinal cord stimulation centers in the United States, Canada, and Europe participated in a study from 1997 to 2000 investigating the safety, performance, and efficacy of a Transverse Tripolar Stimulation (TTS) system invented at the University of Twente, the Netherlands. This device was proposed to improve the ability of spinal cord stimulation to adequately overlap paresthesia to perceived areas of pain. Fifty-six patients with chronic, intractable neuropathic pain of the trunk and/or limbs more than three months' duration (average 105 months) were enrolled with follow-up periods at 4, 12, 26, and 52 weeks. All patients had a new paddle-type lead implanted with four electrodes, three of them aligned in a row perpendicular to the cord. Fifteen of these patients did not undergo permanent implantation. Of the 41 patients internalized, 20 patients chose conventional programming using an implanted pulse generator to drive four electrodes, while 21 patients chose a tripole stimulation system, which used radiofrequency power and signal transmission and an implanted dual-channel receiver to drive three electrodes using simultaneous pulses of independently variable amplitude. On average, the visual analog scale scores dropped more for patients with TTS systems (32%) than for conventional polarity systems (16%). Conventional polarity systems were using higher frequencies on average, while usage range was similar. Most impressive was the well-controlled "steering" of the paresthesias according to the dermatomal topography of the dorsal columns when using the TTS-balanced pulse driver. The most common complication was lead migration. While the transverse stimulation system produced acceptable outcomes for overall pain relief, an analysis of individual pain patterns suggests that it behaves like spinal cord stimulation in general with the best control of extremity neuropathic pain. This transverse tripole lead and driving system introduced

  4. A train of electrical pulses applied to the primary auditory cortex evokes a conditioned response in guinea pigs.

    PubMed

    Okuda, Yuji; Shikata, Hiroshi; Song, Wen-Jie

    2011-09-01

    As a step to develop auditory prosthesis by cortical stimulation, we tested whether a single train of pulses applied to the primary auditory cortex could elicit classically conditioned behavior in guinea pigs. Animals were trained using a tone as the conditioned stimulus and an electrical shock to the right eyelid as the unconditioned stimulus. After conditioning, a train of 11 pulses applied to the left AI induced the conditioned eye-blink response. Cortical stimulation induced no response after extinction. Our results support the feasibility of auditory prosthesis by electrical stimulation of the cortex. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  5. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    PubMed

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  6. Vagus nerve stimulation for the treatment of depression and other neuropsychiatric disorders.

    PubMed

    George, Mark S; Nahas, Ziad; Borckardt, Jeffrey J; Anderson, Berry; Burns, Carol; Kose, Samet; Short, E Baron

    2007-01-01

    Vagus nerve stimulation is an interesting new approach to treating neuropsychiatric diseases within the class of brain-stimulation devices sometimes labeled 'neuromodulators'. With vagus nerve stimulation, a battery-powered generator implanted in the chest wall connects to a wire wrapped around the vagus nerve in the neck, and sends intermittent pulses of electricity along the nerve directly into the brain. This mechanism takes advantage of the natural role of the vagus nerve in conveying information into the brain concerning homeostatic information (e.g., hunger, chest pain and respirations). Vagus nerve stimulation therapy is US FDA approved for the adjunctive treatment of epilepsy and has recently been FDA approved for the treatment of medication-resistant depression. Owing to its novel route into the brain, it has no drug-drug interactions or systemic side effects. This treatment also appears to have high long-term tolerability in patients, with low rates of patients relapsing on vagus nerve stimulation or becoming tolerant. However, alongside the excitement and enthusiasm for this new treatment, a lack of Class I evidence of efficacy in treating depression is currently slowing down adoption by psychiatrists. Much more research is needed regarding exactly how to refine and deliver the electrical pulses and how this differentially affects brain function in health and disease.

  7. Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation.

    PubMed

    Kukke, Sahana N; Paine, Rainer W; Chao, Chi-Chao; de Campos, Ana C; Hallett, Mark

    2014-06-01

    The purpose of this study is to develop a method to reliably characterize multiple features of the corticospinal system in a more efficient manner than typically done in transcranial magnetic stimulation studies. Forty transcranial magnetic stimulation pulses of varying intensity were given over the first dorsal interosseous motor hot spot in 10 healthy adults. The first dorsal interosseous motor-evoked potential size was recorded during rest and activation to create recruitment curves. The Boltzmann sigmoidal function was fit to the data, and parameters relating to maximal motor-evoked potential size, curve slope, and stimulus intensity leading to half-maximal motor-evoked potential size were computed from the curve fit. Good to excellent test-retest reliability was found for all corticospinal parameters at rest and during activation with 40 transcranial magnetic stimulation pulses. Through the use of curve fitting, important features of the corticospinal system can be determined with fewer stimuli than typically used for the same information. Determining the recruitment curve provides a basis to understand the state of the corticospinal system and select subject-specific parameters for transcranial magnetic stimulation testing quickly and without unnecessary exposure to magnetic stimulation. This method can be useful in individuals who have difficulty in maintaining stillness, including children and patients with motor disorders.

  8. Spread of cochlear excitation during stimulation with pulsed infrared radiation: inferior colliculus measurements

    NASA Astrophysics Data System (ADS)

    Richter, C.-P.; Rajguru, S. M.; Matic, A. I.; Moreno, E. L.; Fishman, A. J.; Robinson, A. M.; Suh, E.; Walsh, J. T., Jr.

    2011-10-01

    Infrared neural stimulation (INS) has received considerable attention over the last few years. It provides an alternative method to artificially stimulate neurons without electrical current or the introduction of exogenous chromophores. One of the primary benefits of INS could be the improved spatial selectivity when compared with electrical stimulation. In the present study, we have evaluated the spatial selectivity of INS in the acutely damaged cochlea of guinea pigs and compared it to stimulation with acoustic tone pips in normal-hearing animals. The radiation was delivered via a 200 µm diameter optical fiber, which was inserted through a cochleostomy into the scala tympani of the basal cochlear turn. The stimulated section along the cochlear spiral ganglion was estimated from the neural responses recorded from the central nucleus of the inferior colliculus (ICC). ICC responses were recorded in response to cochlear INS using a multichannel penetrating electrode array. Spatial tuning curves (STCs) were constructed from the responses. For INS, approximately 55% of the activation profiles showed a single maximum, ~22% had two maxima and ~13% had multiple maxima. The remaining 10% of the profiles occurred at the limits of the electrode array and could not be classified. The majority of ICC STCs indicated that the spread of activation evoked by optical stimuli is comparable to that produced by acoustic tone pips.

  9. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.

    PubMed

    Fraczek, Michael; Behrendt, Andreas; Schmitt, Nikolaus

    2013-07-15

    A first laboratory prototype of a novel concept for a short-range optical air data system for aircraft control and safety was built. The measurement methodology was introduced in [Appl. Opt. 51, 148 (2012)] and is based on techniques known from lidar detecting elastic and Raman backscatter from air. A wide range of flight-critical parameters, such as air temperature, molecular number density and pressure can be measured as well as data on atmospheric particles and humidity can be collected. In this paper, the experimental measurement performance achieved with the first laboratory prototype using 532 nm laser radiation of a pulse energy of 118 mJ is presented. Systematic measurement errors and statistical measurement uncertainties are quantified separately. The typical systematic temperature, density and pressure measurement errors obtained from the mean of 1000 averaged signal pulses are small amounting to < 0.22 K, < 0.36% and < 0.31%, respectively, for measurements at air pressures varying from 200 hPa to 950 hPa but constant air temperature of 298.95 K. The systematic measurement errors at air temperatures varying from 238 K to 308 K but constant air pressure of 946 hPa are even smaller and < 0.05 K, < 0.07% and < 0.06%, respectively. A focus is put on the system performance at different virtual flight altitudes as a function of the laser pulse energy. The virtual flight altitudes are precisely generated with a custom-made atmospheric simulation chamber system. In this context, minimum laser pulse energies and pulse numbers are experimentally determined, which are required using the measurement system, in order to meet measurement error demands for temperature and pressure specified in aviation standards. The aviation error margins limit the allowable temperature errors to 1.5 K for all measurement altitudes and the pressure errors to 0.1% for 0 m and 0.5% for 13000 m. With regard to 100-pulse-averaged temperature measurements, the pulse energy using 532 nm

  10. MEMS technologies for epiretinal stimulation of the retina

    NASA Astrophysics Data System (ADS)

    Mokwa, W.

    2004-09-01

    It has been shown that electrical stimulation of retinal ganglion cells yields visual sensations. Therefore, a retina implant for blind humans suffering from retinitis pigmentosa based on this concept seems to be feasible. In Germany, there are two projects funded by the government working on different approaches namely the subretinal and the epiretinal approaches. This paper describes the epiretinal approach for such a system. The extraocular part of this system records visual images. The images are transformed by a neural net into corresponding signals for stimulation of the retinal ganglion cells. These signals are transmitted to a receiver unit of an intraocular implant, the retina stimulator. Integrated circuitry of this unit decodes the signals and transfers the data to a stimulation circuitry that selects stimulation electrodes placed onto the retina and generates current pulses to the electrodes. By this, action potentials in retinal ganglion cells are evoked, causing a visual sensation. This paper concentrates on the MEMS part of this implant.

  11. Induction of functional tissue-engineered skeletal muscle constructs by defined electrical stimulation.

    PubMed

    Ito, Akira; Yamamoto, Yasunori; Sato, Masanori; Ikeda, Kazushi; Yamamoto, Masahiro; Fujita, Hideaki; Nagamori, Eiji; Kawabe, Yoshinori; Kamihira, Masamichi

    2014-04-24

    Electrical impulses are necessary for proper in vivo skeletal muscle development. To fabricate functional skeletal muscle tissues in vitro, recapitulation of the in vivo niche, including physical stimuli, is crucial. Here, we report a technique to engineer skeletal muscle tissues in vitro by electrical pulse stimulation (EPS). Electrically excitable tissue-engineered skeletal muscle constructs were stimulated with continuous electrical pulses of 0.3 V/mm amplitude, 4 ms width, and 1 Hz frequency, resulting in a 4.5-fold increase in force at day 14. In myogenic differentiation culture, the percentage of peak twitch force (%Pt) was determined as the load on the tissue constructs during the artificial exercise induced by continuous EPS. We optimized the stimulation protocol, wherein the tissues were first subjected to 24.5%Pt, which was increased to 50-60%Pt as the tissues developed. This technique may be a useful approach to fabricate tissue-engineered functional skeletal muscle constructs.

  12. The role of membrane dynamics in electrical and infrared neural stimulation

    NASA Astrophysics Data System (ADS)

    Moen, Erick K.; Beier, Hope T.; Ibey, Bennett L.; Armani, Andrea M.

    2016-03-01

    We recently developed a nonlinear optical imaging technique based on second harmonic generation (SHG) to identify membrane disruption events in live cells. This technique was used to detect nanoporation in the plasma membrane following nanosecond pulsed electric field (nsPEF) exposure. It has been hypothesized that similar poration events could be induced by the thermal gradients generated by infrared (IR) laser energy. Optical pulses are a highly desirable stimulus for the nervous system, as they are capable of inhibiting and producing action potentials in a highly localized but non-contact fashion. However, the underlying mechanisms involved with infrared neural stimulation (INS) are not well understood. The ability of our method to non-invasively measure membrane structure and transmembrane potential via Two Photon Fluorescence (TPF) make it uniquely suited to neurological research. In this work, we leverage our technique to understand what role membrane structure plays during INS and contrast it with nsPEF stimulation. We begin by examining the effect of IR pulses on CHO-K1 cells before progressing to primary hippocampal neurons. The use of these two cell lines allows us to directly compare poration as a result of IR pulses to nsPEF exposure in both a neuron-derived cell line, and one likely lacking native channels sensitive to thermal stimuli.

  13. Stimulated Raman photoacoustic imaging

    PubMed Central

    Yakovlev, Vladislav V.; Zhang, Hao F.; Noojin, Gary D.; Denton, Michael L.; Thomas, Robert J.; Scully, Marlan O.

    2010-01-01

    Achieving label-free, molecular-specific imaging with high spatial resolution in deep tissue is often considered the grand challenge of optical imaging. To accomplish this goal, significant optical scattering in tissues has to be overcome while achieving molecular specificity without resorting to extrinsic labeling. We demonstrate the feasibility of developing such an optical imaging modality by combining the molecularly specific stimulated Raman excitation with the photoacoustic detection. By employing two ultrashort excitation laser pulses, separated in frequency by the vibrational frequency of a targeted molecule, only the specific vibrational level of the target molecules in the illuminated tissue volume is excited. This targeted optical absorption generates ultrasonic waves (referred to as stimulated Raman photoacoustic waves) which are detected using a traditional ultrasonic transducer to form an image following the design of the established photoacoustic microscopy. PMID:21059930

  14. Nonlinear scattering of ultrashort laser pulses on two-level system

    NASA Astrophysics Data System (ADS)

    Astapenko, Valery A.; Sakhno, Sergey V.

    2015-05-01

    The presentation is devoted to the theoretical investigation of nonlinear scattering of ultrashort electromagnetic pulses (USP) on two-level quantum system. We consider the scattering of several types of USP, namely, so called corrected Gaussian pulse (CGP) and cosine wavelet pulse. Such pulses have no constant component in their spectrum in contrast with traditional Gaussian pulse. It should be noted that the presence of constant component in the limit of ultrashort pulse durations leads to unphysical results. The main purpose of the present work is the investigation of the change of pulse temporal shape after scattering as a function of initial phase at different distances from the target. Numerical calculations are based on the solution of Bloch equations and expression for scattering field strength via dipole moment of two-level system exposed by the action of incident USP. In our calculation we also account for the influence of refracting index of the air on electric field strength in the pulse after scattering.

  15. Effects of High-Rate Pulse Trains on Electrode Discrimination in Cochlear Implant Users

    PubMed Central

    Runge-Samuelson, Christina L.

    2009-01-01

    Overcoming issues related to abnormally high neural synchrony in response to electrical stimulation is one aspect in improving hearing with a cochlear implant. Desynchronization of electrical stimuli have shown benefits in neural encoding of electrical signals and improvements in psychophysical tasks. In the present study, 10 participants with either CII or HiRes 90k Advanced Bionics devices were tested for the effects of desynchronizing constant-amplitude high-rate (5,000 Hz) pulse trains on electrode discrimination of sinusoidal stimuli (1,000 Hz). When averaged across the sinusoidal dynamic range, overall improvements in electrode discrimination with high-rate pulses were found for 8 of 10 participants. This effect was significant for the group (p = .003). Nonmonotonic patterns of electrode discrimination as a function of sinusoidal stimulation level were observed. By providing additional spectral channels, it is possible that clinical implementation of constant-amplitude high-rate pulse trains in a signal processing strategy may improve performance with the device. PMID:19447763

  16. EMPTAC (Electromagnetic Pulse Test Aircraft) user's guide

    NASA Astrophysics Data System (ADS)

    Cleaveland, Dale R.; Burkhard, Avery

    1988-04-01

    This guide was established to give test managers a way to familiarize themselves with the Air Force Weapons Laboratory's electromagnetic pulse (EMP) test aircraft program located at Kirtland Air Force Base (KAFB), New Mexico. Brief descriptions of the available EMP test facilities at KAFB are also included. This guide should give prospective customers (users) adequate information to scope the magnitude of their test effort and to accomplish general planning without extensive involvement in test execution details.

  17. Free-beam soliton self-compression in air

    NASA Astrophysics Data System (ADS)

    Voronin, A. A.; Mitrofanov, A. V.; Sidorov-Biryukov, D. A.; Fedotov, A. B.; Pugžlys, A.; Panchenko, V. Ya; Shumakova, V.; Ališauskas, S.; Baltuška, A.; Zheltikov, A. M.

    2018-02-01

    We identify a physical scenario whereby soliton transients generated in freely propagating laser beams within the regions of anomalous dispersion in air can be compressed as a part of their free-beam spatiotemporal evolution to yield few-cycle mid- and long-wavelength-infrared field waveforms, whose peak power is substantially higher than the peak power of the input pulses. We show that this free-beam soliton self-compression scenario does not require ionization or laser-induced filamentation, enabling high-throughput self-compression of mid- and long-wavelength-infrared laser pulses within a broad range of peak powers from tens of gigawatts up to the terawatt level. We also demonstrate that this method of pulse compression can be extended to long-range propagation, providing self-compression of high-peak-power laser pulses in atmospheric air within propagation ranges as long as hundreds of meters, suggesting new ways towards longer-range standoff detection and remote sensing.

  18. Chirped pulse Raman amplification in warm plasma: towards controlling saturation

    PubMed Central

    Yang, X.; Vieux, G.; Brunetti, E.; Ersfeld, B.; Farmer, J. P.; Hur, M. S.; Issac, R. C.; Raj, G.; Wiggins, S. M.; Welsh, G. H.; Yoffe, S. R.; Jaroszynski, D. A.

    2015-01-01

    Stimulated Raman backscattering in plasma is potentially an efficient method of amplifying laser pulses to reach exawatt powers because plasma is fully broken down and withstands extremely high electric fields. Plasma also has unique nonlinear optical properties that allow simultaneous compression of optical pulses to ultra-short durations. However, current measured efficiencies are limited to several percent. Here we investigate Raman amplification of short duration seed pulses with different chirp rates using a chirped pump pulse in a preformed plasma waveguide. We identify electron trapping and wavebreaking as the main saturation mechanisms, which lead to spectral broadening and gain saturation when the seed reaches several millijoules for durations of 10’s – 100’s fs for 250 ps, 800 nm chirped pump pulses. We show that this prevents access to the nonlinear regime and limits the efficiency, and interpret the experimental results using slowly-varying-amplitude, current-averaged particle-in-cell simulations. We also propose methods for achieving higher efficiencies. PMID:26290153

  19. Intracochlear electrical stimulation suppresses apoptotic signaling in rat spiral ganglion neurons after deafening in vivo.

    PubMed

    Kopelovich, Jonathan C; Cagaanan, Alain P; Miller, Charles A; Abbas, Paul J; Green, Steven H

    2013-11-01

    To establish the intracellular consequences of electrical stimulation to spiral ganglion neurons after deafferentation. Here we use a rat model to determine the effect of both low and high pulse rate acute electrical stimulation on activation of the proapoptotic transcription factor Jun in deafferented spiral ganglion neurons in vivo. Experimental animal study. Hearing research laboratories of the University of Iowa Departments of Biology and Otolaryngology. A single electrode was implanted through the round window of kanamycin-deafened rats at either postnatal day 32 (P32, n = 24) or P60 (n = 22) for 4 hours of stimulation (monopolar, biphasic pulses, amplitude twice electrically evoked auditory brainstem response [eABR] threshold) at either 100 or 5000 Hz. Jun phosphorylation was assayed by immunofluorescence to quantitatively assess the effect of electrical stimulation on proapoptotic signaling. Jun phosphorylation was reliably suppressed by 100 Hz stimuli in deafened cochleae of P32 but not P60 rats. This effect was not significant in the basal cochlear turns. Stimulation frequency may be consequential: 100 Hz was significantly more effective than was 5 kHz stimulation in suppressing phospho-Jun. Suppression of Jun phosphorylation occurs in deafferented spiral ganglion neurons after only 4 hours of electrical stimulation. This finding is consistent with the hypothesis that electrical stimulation can decrease spiral ganglion neuron death after deafferentation.

  20. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  1. Non-Gaussian statistics and optical rogue waves in stimulated Raman scattering.

    PubMed

    Monfared, Yashar E; Ponomarenko, Sergey A

    2017-03-20

    We explore theoretically and numerically optical rogue wave formation in stimulated Raman scattering inside a hydrogen filled hollow core photonic crystal fiber. We assume a weak noisy Stokes pulse input and explicitly construct the input Stokes pulse ensemble using the coherent mode representation of optical coherence theory, thereby providing a link between optical coherence and rogue wave theories. We show that the Stokes pulse peak power probability distribution function (PDF) acquires a long tail in the limit of nearly incoherent input Stokes pulses. We demonstrate a clear link between the PDF tail magnitude and the source coherence time. Thus, the latter can serve as a convenient parameter to control the former. We explain our findings qualitatively using the concepts of statistical granularity and global degree of coherence.

  2. Effects of Bilateral Repetitive Transcranial Magnetic Stimulation on Post-Stroke Dysphagia.

    PubMed

    Park, Eunhee; Kim, Min Su; Chang, Won Hyuk; Oh, Su Mi; Kim, Yun Kwan; Lee, Ahee; Kim, Yun-Hee

    Optimal protocol of repetitive transcranial magnetic stimulation (rTMS) on post-stroke dysphagia remains uncertain with regard to its clinical efficacy. The aim of the present study is to investigate the effects of high-frequency rTMS at the bilateral motor cortices over the cortical representation of the mylohyoid muscles in the patients with post-stroke dysphagia. This study was a single-blind, randomized controlled study with a blinded observer. Thirty-five stroke patients were randomly divided into three intervention groups: the bilateral stimulation group, the unilateral stimulation group, and the sham stimulation group. For the bilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional and 500 pulses of 10 Hz rTMS over the contralesional motor cortices over the cortical areas that project to the mylohyoid muscles were administered daily for 2 consecutive weeks. For the unilateral stimulation group, 500 pulses of 10 Hz rTMS over the ipsilesional motor cortex over the cortical representation of the mylohyoid muscle and the same amount of sham rTMS over the contralesional hemisphere were applied. For the sham stimulation group, sham rTMS was applied at the bilateral motor cortices. Clinical swallowing function and videofluoroscopic swallowing studies were assessed before the intervention (T0), immediately after the intervention (T1) and 3 weeks after the intervention (T2) using Clinical Dysphagia Scale (CDS), Dysphagia Outcome and Severity Scale (DOSS), Penetration Aspiration Scale (PAS), and Videofluoroscopic Dysphagia Scale (VDS). There were significant time and intervention interaction effects in the CDS, DOSS, PAS, and VDS scores (p < 0.05). In the direct comparison of the changes in the swallowing parameters among the three groups, the change in CDS scores at T1 and T2 showed a significantly higher improvement in the bilateral simulation group than in two other groups (p < 0.05). There was a significantly larger change in the

  3. A comparison between spectra of runaway electron beams in SF{sub 6} and air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Wang, Ruexue; Yan, Ping

    2015-12-15

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF{sub 6} and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ∼1.6 ns and a full width at half maximum of 3–5 ns is used to produce RAE beams. The SAEBs in SF{sub 6} and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF{sub 6} and air at pressures of 7.5 Torr, 75 Torr,more » and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF{sub 6} was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF{sub 6} in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF{sub 6} decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF{sub 6} decreased when the rise time of the voltage pulse increased.« less

  4. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  5. Compression of Intense Laser Pulses in Plasma

    NASA Astrophysics Data System (ADS)

    Fisch, Nathaniel J.; Malkin, Vladimir M.; Shvets, Gennady

    2001-10-01

    A counterpropagating short pulse can absorb the energy of a long laser pulse in plasma, resulting in pulse compression. For processing very high power and very high total energy, plasma is an ideal medium. Thus, in plasma one can contemplate the compression of micron light pulses to exawatts per square cm or fluences to kilojoules per square cm, prior to the vacuum focus. Two nonlinear plasma effects have recently been proposed to accomplish compression at very high power in counterpropagating geometry: One is compression by means of Compton or so-called superradiant scattering, where the nonlinear interaction of the plasma electrons with the lasers dominates the plasma restoring motion due to charge imbalance [G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, Phys. Rev. Lett. v. 81, 4879 (1998)]. The second is fast compression by means of stimulated backward Raman scattering (SBRS), where the amplification process outruns deleterious processes associated with the ultraintense pulse [V. M. Malkin, G. Shvets, N. J. Fisch, Phys. Rev. Lett., v. 82, 4448 (1999)]. In each of these regimes, in a realistic plasma, there are technological challenges that must be met and competing effects that must be kept smaller than the desired interaction.

  6. Power pulsing of the CMOS sensor Mimosa 26

    NASA Astrophysics Data System (ADS)

    Kuprash, Oleg

    2013-12-01

    Mimosa 26 is a monolithic active pixel sensor developed by IPHC (Strasbourg) & IRFU (Saclay) as a prototype for the ILC vertex detector studies. The resolution requirements for the ILC tracking detector are very extreme, demanding very low material in the detector, thus only air cooling can be considered. Power consumption has to be reduced as far as possible. The beam structure of the ILC allows the possibility of power pulsing: only for about the 1 ms long bunch train full power is required, and during the 199 ms long pauses between the bunch trains the power can be reduced to a minimum. Not being adapted for the power pulsing, the sensor shows in laboratory tests a good performance under power pulsing. The power pulsing allows to significantly reduce the heating of the chip and divides power consumption approximately by a factor of 6. In this report a summary of power pulsing studies using the digital readout of Mimosa 26 is given.

  7. Generation of 360 ps laser pulse with 3 J energy by stimulated Brillouin scattering with a nonfocusing scheme.

    PubMed

    Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang

    2015-09-07

    A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.

  8. Modulation of dendrodendritic interactions and mitral cell excitability in the mouse accessory olfactory bulb by vaginocervical stimulation.

    PubMed

    Otsuka, T; Ishii, K; Osako, Y; Okutani, F; Taniguchi, M; Oka, T; Kaba, H

    2001-05-01

    When female mice are mated, they form a memory to the pheromonal signal of their male partner. The neural changes underlying this memory occur in the accessory olfactory bulb, depend upon vaginocervical stimulation at mating and involve changes at the reciprocal synapses between mitral and granule cells. However, the action of vaginocervical stimulation on the reciprocal interactions between mitral and granule cells remains to be elucidated. We have examined the effects of vaginocervical stimulation on paired-pulse depression of amygdala-evoked field potentials recorded in the external plexiform layer of the accessory olfactory bulb (AOB) and the single-unit activity of mitral cells antidromically stimulated from the amygdala in urethane-anaesthetized female mice. Artificial vaginocervical stimulation reduced paired-pulse depression (considered to be due to feedback inhibition of the mitral cell dendrites from the granule cells via reciprocal dendrodendritic synapses) recorded in the AOB external plexiform layer. As would be expected from this result, vaginocervical stimulation also enhanced the spontaneous activity of a proportion of the mitral cells tested. These results suggest that vaginocervical stimulation reduces dendrodendritic feedback inhibition to mitral cells and enhances their activity.

  9. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  10. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  11. Lead paint removal with high-intensity light pulses.

    PubMed

    Grapperhaus, Michael J; Schaefer, Raymond B

    2006-12-15

    This paper presents the results of an initial investigation into using high-intensity incoherent light pulses to strip paint. Measurements of light pulse characteristics, the reflectivity of different paints and initial experiments on the threshold for paint removal, and paint removal are presented, along with an approximate model consistent with experimental results. Paint removal tests include lead paint, the reduction of lead levels to below levels required for lead abatement, as well as air and light emissions measurements that are within regulatory guidelines.

  12. New methods of generation of ultrashort laser pulses for ranging

    NASA Technical Reports Server (NTRS)

    Jelinkova, Helena; Hamal, Karel; Kubecek, V.; Prochazka, Ivan

    1993-01-01

    To reach the millimeter satellite laser ranging accuracy, the goal for nineties, new laser ranging techniques have to be applied. To increase the laser ranging precision, the application of the ultrashort laser pulses in connection with the new signal detection and processing techniques, is inevitable. The two wavelength laser ranging is one of the ways to measure the atmospheric dispersion to improve the existing atmospheric correction models and hence, to increase the overall system ranging accuracy to the desired value. We are presenting a review of several nonstandard techniques of ultrashort laser pulses generation, which may be utilized for laser ranging: compression of the nanosecond pulses using stimulated Brillouin and Raman backscattering; compression of the mode-locked pulses using Raman backscattering; passive mode-locking technique with nonlinear mirror; and passive mode-locking technique with the negative feedback.

  13. Stimulation artifact correction method for estimation of early cortico-cortical evoked potentials.

    PubMed

    Trebaul, Lena; Rudrauf, David; Job, Anne-Sophie; Mălîia, Mihai Dragos; Popa, Irina; Barborica, Andrei; Minotti, Lorella; Mîndruţă, Ioana; Kahane, Philippe; David, Olivier

    2016-05-01

    Effective connectivity can be explored using direct electrical stimulations in patients suffering from drug-resistant focal epilepsies and investigated with intracranial electrodes. Responses to brief electrical pulses mimic the physiological propagation of signals and manifest as cortico-cortical evoked potentials (CCEP). The first CCEP component is believed to reflect direct connectivity with the stimulated region but the stimulation artifact, a sharp deflection occurring during a few milliseconds, frequently contaminates it. In order to recover the characteristics of early CCEP responses, we developed an artifact correction method based on electrical modeling of the electrode-tissue interface. The biophysically motivated artifact templates are then regressed out of the recorded data as in any classical template-matching removal artifact methods. Our approach is able to make the distinction between the physiological responses time-locked to the stimulation pulses and the non-physiological component. We tested the correction on simulated CCEP data in order to quantify its efficiency for different stimulation and recording parameters. We demonstrated the efficiency of the new correction method on simulations of single trial recordings for early responses contaminated with the stimulation artifact. The results highlight the importance of sampling frequency for an accurate analysis of CCEP. We then applied the approach to experimental data. The model-based template removal was compared to a correction based on the subtraction of the averaged artifact. This new correction method of stimulation artifact will enable investigators to better analyze early CCEP components and infer direct effective connectivity in future CCEP studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

    PubMed

    Jung, JeYoung; Bungert, Andreas; Bowtell, Richard; Jackson, Stephen R

    2016-01-01

    A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in most experimental tasks, however there has been little attempt to measure neural changes linked to vertex TMS. Here we directly test this assumption by using a concurrent TMS/fMRI paradigm in which we investigate fMRI blood-oxygenation-level-dependent (BOLD) signal changes across the whole brain linked to vertex stimulation. Thirty-two healthy participants to part in this study. Twenty-one were stimulated at the vertex, at 120% of resting motor threshold (RMT), with short bursts of 1 Hz TMS, while functional magnetic resonance imaging (fMRI) BOLD images were acquired. As a control condition, we delivered TMS pulses over the left primary motor cortex using identical parameters to 11 other participants. Vertex stimulation did not evoke increased BOLD activation at the stimulated site. By contrast we observed widespread BOLD deactivations across the brain, including regions within the default mode network (DMN). To examine the effects of vertex stimulation a functional connectivity analysis was conducted. The results demonstrated that stimulating the vertex with suprathreshold TMS reduced neural activity in brain regions related to the DMN but did not influence the functional connectivity of this network. Our findings provide brain imaging evidence in support of the use of vertex simulation as a control condition in TMS but confirm that vertex TMS induces regional widespread decreases in BOLD activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Application of describing function analysis to a model of deep brain stimulation.

    PubMed

    Davidson, Clare Muireann; de Paor, Annraoi M; Lowery, Madeleine M

    2014-03-01

    Deep brain stimulation effectively alleviates motor symptoms of medically refractory Parkinson's disease, and also relieves many other treatment-resistant movement and affective disorders. Despite its relative success as a treatment option, the basis of its efficacy remains elusive. In Parkinson's disease, increased functional connectivity and oscillatory activity occur within the basal ganglia as a result of dopamine loss. A correlative relationship between pathological oscillatory activity and the motor symptoms of the disease, in particular bradykinesia, rigidity, and tremor, has been established. Suppression of the oscillations by either dopamine replacement or DBS also correlates with an improvement in motor symptoms. DBS parameters are currently chosen empirically using a "trial and error" approach, which can be time-consuming and costly. The work presented here amalgamates concepts from theories of neural network modeling with nonlinear control engineering to describe and analyze a model of synchronous neural activity and applied stimulation. A theoretical expression for the optimum stimulation parameters necessary to suppress oscillations is derived. The effect of changing stimulation parameters (amplitude and pulse duration) on induced oscillations is studied in the model. Increasing either stimulation pulse duration or amplitude enhanced the level of suppression. The predicted parameters were found to agree well with clinical measurements reported in the literature for individual patients. It is anticipated that the simplified model described may facilitate the development of protocols to aid optimum stimulation parameter choice on a patient by patient basis.

  16. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 6. Production of NO Using Pulsed Arc Discharges and Its Medical Applications

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori; Okamoto, Kazufumi

    Nitric monoxide (NO) is increasingly being used in medical applications. Current applications use a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially dangerous, given the possibility of an accidental leak of NO from the cylinder. The presence of NO in air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore on-site generation of NO would be very desirable to treat patients with acute respiratory distress syndrome and other related illnesses. Recently, pure NO was generated using a pulsed arc discharge in dry air with an NO2-NO converter and charcoal. The concentration of NO was easily controlled by controlling pulse repetition rate and gas flow rate. This system is already under investigation in an animal experiment.

  17. Nonpainful remote electrical stimulation alleviates episodic migraine pain.

    PubMed

    Yarnitsky, David; Volokh, Lana; Ironi, Alon; Weller, Boaz; Shor, Merav; Shifrin, Alla; Granovsky, Yelena

    2017-03-28

    To evaluate the efficacy of remote nonpainful electrical upper arm skin stimulation in reducing migraine attack pain. This is a prospective, double-blinded, randomized, crossover, sham-controlled trial. Migraineurs applied skin electrodes to the upper arm soon after attack onset for 20 minutes, at various pulse widths, and refrained from medications for 2 hours. Patients were asked to use the device for up to 20 attacks. In 71 patients (299 treatments) with evaluable data, 50% pain reduction was obtained for 64% of participants based on best of 200-μs, 150-μs, and 100-μs pulse width stimuli per individual vs 26% for sham stimuli. Greater pain reduction was found for active stimulation vs placebo; for those starting at severe or moderate pain, reduction (1) to mild or no pain occurred in 58% (25/43) of participants (66/134 treatments) for the 200-μs stimulation protocol and 24% (4/17; 8/29 treatments) for placebo ( p = 0.02), and (2) to no pain occurred in 30% (13/43) of participants (37/134 treatments) and 6% (1/17; 5/29 treatments), respectively ( p = 0.004). Earlier application of the treatment, within 20 minutes of attack onset, yielded better results: 46.7% pain reduction as opposed to 24.9% reduction when started later ( p = 0.02). Nonpainful remote skin stimulation can significantly reduce migraine pain, especially when applied early in an attack. This is presumably by activating descending inhibition pathways via the conditioned pain modulation effect. This treatment may be proposed as an attractive nonpharmacologic, easy to use, adverse event free, and inexpensive tool to reduce migraine pain. NCT02453399. This study provides Class III evidence that for patients with an acute migraine headache, remote nonpainful electrical stimulation on the upper arm skin reduces migraine pain. © 2017 American Academy of Neurology.

  18. Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF.

    PubMed

    Chugreev, Alexey; Nazarkin, Alexander; Abdolvand, Amir; Nold, Johannes; Podlipensky, Alexander; Russell, Philip St J

    2009-05-25

    Transient stimulated Raman scattering is investigated in methane-filled hollow-core photonic crystal fiber. Using frequency-chirped ps-pulses at 1.06 microm as pump and tunable CW-radiation as Stokes seed, the vibrational excitation of the CH(4) molecules can be controlled on the sub T(2) time-scale. In this way the generated Stokes pulse can be phase-locked to the pump pulse and its spectrum manipulated.

  19. Efficacy of pulsed low-intensity electric neuromuscular stimulation in reducing pain and disability in patients with myofascial syndrome.

    PubMed

    Iodice, P; Lessiani, G; Franzone, G; Pezzulo, G

    2016-01-01

    Myofascial pain syndrome (MPS) is characterized by chronic pain in multiple myofascial trigger points and fascial constrictions. In recent years, the scientific literature has recognized the need to include the patient with MPS in a multidimensional rehabilitation project. At the moment, the most widely recognized therapeutic methods for the treatment of myofascial syndrome include the stretch and spray pressure massage. Microcurrent electric neuromuscular stimulation was proposed in pain management for its effects on normalizing bioelectricity of cells and for its sub-sensory application. In this study, we tested the efficacy of low-intensity pulsed electric neuromuscular stimulus (PENS) on pain in patients with MPS of cervical spine muscles. We carried out a prospective-analytic longitudinal study at an outpatient clinic during two weeks. Forty subjects (mean age 42±13 years) were divided into two groups: treatment (TrGr, n=20) and control group (CtrlGr, n=20). Visual-analog scale (VAS) values, concerning the spontaneous and movement-related pain in the cervical-dorsal region at baseline (T0) and at the end of the study (T1), showed a reduction from 7 to 3.81 (p < 0.001) in TrGr. In the CtrlGr, VAS was reduced from 8.2 to 7.2 (n.s.). Moreover, the pressure pain threshold at T0 was 2.1 vs 4.2 at T1 (p < 0.001) in TrG. In the CtrlGR we observed no significant changes. Modulated low-intensity PENS is an innovative therapy permitting to act on the transmission of pain and on the restoration of tissue homeostasis. It seems to affect the transmission of pain through the stimulation of A-beta fibers. The above results show that low-intensity PENS can be considered as an effective treatment to reduce pain and disability in patients with MPS.

  20. Direct regulatory immune activity of lactic acid bacteria on Der p 1-pulsed dendritic cells from allergic patients.

    PubMed

    Pochard, Pierre; Hammad, Hamida; Ratajczak, Céline; Charbonnier-Hatzfeld, Anne-Sophie; Just, Nicolas; Tonnel, André-Bernard; Pestel, Joël

    2005-07-01

    Lactic acid bacteria (LAB) are suggested to play a regulatory role in the development of allergic reactions. However, their potential effects on dendritic cells (DCs) directing the immune polarization remain unclear. The immunologic effect of Lactobacillus plantarum NCIMB 8826 (LAB1) on monocyte-derived dendritic cells (MD-DCs) from patients allergic to house dust mite was evaluated. MD-DCs were stimulated for 24 hours with the related allergen Der p 1 in the presence or absence of LAB1. Cell-surface markers were assessed by means of FACS analysis, and the key polarizing cytokines IL-12 and IL-10 were quantified. The subsequent regulatory effect of pulsed MD-DCs on naive or memory T cells was evaluated by determining the T-cell cytokine profile. LAB1 induced the maturation of MD-DCs, even if pulsed with Der p 1. Interestingly, after incubation with LAB1 and Der p 1, MD-DCs produced higher amounts of IL-12 than Der p 1-pulsed DCs. Indeed, the T H 2 cytokine (IL-4 and IL-5) production observed when naive or memory autologous T cells were cocultured with Der p 1-pulsed MD-DCs was highly reduced in the presence of LAB1. Finally, in contrast to naive or memory T cells exposed once to Der p 1-pulsed DCs, T cells stimulated by MD-DCs pulsed with Der p 1 and LAB1 failed to produce T H 2 cytokines in response to a new stimulation with Der p 1-pulsed DCs. Thus in the presence of LAB1, MD-DCs from allergic patients tend to reorientate the T-cell response toward a beneficial T H 1 profile.