Sample records for air sampling techniques

  1. Novel sample preparation technique with needle-type micro-extraction device for volatile organic compounds in indoor air samples.

    PubMed

    Ueta, Ikuo; Mizuguchi, Ayako; Fujimura, Koji; Kawakubo, Susumu; Saito, Yoshihiro

    2012-10-09

    A novel needle-type sample preparation device was developed for the effective preconcentration of volatile organic compounds (VOCs) in indoor air before gas chromatography-mass spectrometry (GC-MS) analysis. To develop a device for extracting a wide range of VOCs typically found in indoor air, several types of particulate sorbents were tested as the extraction medium in the needle-type extraction device. To determine the content of these VOCs, air samples were collected for 30min with the packed sorbent(s) in the extraction needle, and the extracted VOCs were thermally desorbed in a GC injection port by the direct insertion of the needle. A double-bed sorbent consisting of a needle packed with divinylbenzene and activated carbon particles exhibited excellent extraction and desorption performance and adequate extraction capacity for all the investigated VOCs. The results also clearly demonstrated that the proposed sample preparation method is a more rapid, simpler extraction/desorption technique than traditional sample preparation methods. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A new technique for preliminary estimates of TRU activity on air sample filters and radiological smears.

    PubMed

    Hayes, Robert

    2004-10-01

    In most nuclear facilities, fixed air samplers and sometimes portable air samplers are used where some probability of a release exists but is not expected, and so the added expense and effort of using a continuous air monitor is not deemed justified. When a release is suspected, naturally occurring radioactive material buildup on the filter typically prevents any quantitative measurements within the first day or so. Likewise, outdoor air measurements suffer from the same limitations (such as those taken during the Los Alamos fires) and so any rapid quantifiable measurements of fixed air sampler/portable air sampler filters which are technically defendable (even though conservative) are of use. The technique presented here is only intended for use in routine health physics survey applications and does not presently appear to be appropriate for sub pico Curie activity determinations. This study evaluates the utility of using a portable continuous air monitor as an alpha spectrometer to make transuranic activity determinations of samples using both the built in algorithm for air monitoring and a simple region of interest analysis. All samples evaluated were from air sample filters taken using a portable air sampler. Samples were taken over many months to quantify effects from natural variation in radon progeny activity distributions.

  3. Evaluation of Urban Air Quality By Passive Sampling Technique

    NASA Astrophysics Data System (ADS)

    Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.

    Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many

  4. Predictive Techniques for Spacecraft Cabin Air Quality Control

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Cromes, Scott D. (Technical Monitor)

    2001-01-01

    As assembly of the International Space Station (ISS) proceeds, predictive techniques are used to determine the best approach for handling a variety of cabin air quality challenges. These techniques use equipment offgassing data collected from each ISS module before flight to characterize the trace chemical contaminant load. Combined with crew metabolic loads, these data serve as input to a predictive model for assessing the capability of the onboard atmosphere revitalization systems to handle the overall trace contaminant load as station assembly progresses. The techniques for predicting in-flight air quality are summarized along with results from early ISS mission analyses. Results from groundbased analyses of in-flight air quality samples are compared to the predictions to demonstrate the technique's relative conservatism.

  5. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  6. Detection of the urban release of a bacillus anthracis simulant by air sampling.

    PubMed

    Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M

    2014-01-01

    In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.

  7. Volatile organic compounds: sampling methods and their worldwide profile in ambient air.

    PubMed

    Kumar, Anuj; Víden, Ivan

    2007-08-01

    The atmosphere is a particularly difficult analytical system because of the very low levels of substances to be analysed, sharp variations in pollutant levels with time and location, differences in wind, temperature and humidity. This makes the selection of an efficient sampling technique for air analysis a key step to reliable results. Generally, methods for volatile organic compounds sampling include collection of the whole air or preconcentration of samples on adsorbents. All the methods vary from each other according to the sampling technique, type of sorbent, method of extraction and identification technique. In this review paper we discuss various important aspects for sampling of volatile organic compounds by the widely used and advanced sampling methods. Characteristics of various adsorbents used for VOCs sampling are also described. Furthermore, this paper makes an effort to comprehensively review the concentration levels of volatile organic compounds along with the methodology used for analysis, in major cities of the world.

  8. New technique to prevent prolonged air leak: use of 'Tachosuture' technique.

    PubMed

    Nishida, Tatsuya; Mikami, Iwao; Fujii, Yoshitaka

    2017-02-01

    Prolonged air leak (defined as air leak >7 days), caused by pulmonary resection or alveolar-pleural fistula, increases postoperative morbidity, prolongs hospital stay and increases healthcare costs. We describe a new technique ('Tachosuture' technique) to prevent prolonged air leak. The key point of this new technique is that air leak is classified into three types and an absorbable suture is added to a TachoSil ® patch in each type to prevent detachment from the lung parenchyma. Between August 2013 and March 2016, 40 patients underwent thoracoscopic surgery using 'Tachosuture' technique. Postoperative air leak always stopped within 3 days (95% confidence interval for the absence of prolonged air leak: 92.5-100%). It is considered that this simple technique is useful to prevent prolonged air leak.

  9. Curve fitting air sample filter decay curves to estimate transuranic content.

    PubMed

    Hayes, Robert B; Chiou, Hung Cheng

    2004-01-01

    By testing industry standard techniques for radon progeny evaluation on air sample filters, a new technique is developed to evaluate transuranic activity on air filters by curve fitting the decay curves. The industry method modified here is simply the use of filter activity measurements at different times to estimate the air concentrations of radon progeny. The primary modification was to not look for specific radon progeny values but rather transuranic activity. By using a method that will provide reasonably conservative estimates of the transuranic activity present on a filter, some credit for the decay curve shape can then be taken. By carrying out rigorous statistical analysis of the curve fits to over 65 samples having no transuranic activity taken over a 10-mo period, an optimization of the fitting function and quality tests for this purpose was attained.

  10. GAS CHROMATOGRAPHIC TECHNIQUES FOR THE MEASUREMENT OF ISOPRENE IN AIR

    EPA Science Inventory

    The chapter discusses gas chromatographic techniques for measuring isoprene in air. Such measurement basically consists of three parts: (1) collection of sufficient sample volume for representative and accurate quantitation, (2) separation (if necessary) of isoprene from interfer...

  11. Use of alpha spectroscopy for conducting rapid surveys of transuranic activity on air sample filters and smears.

    PubMed

    Hayes, Robert B; Peña, Adan M; Goff, Thomas E

    2005-08-01

    This paper demonstrates the utility of a portable alpha Continuous Air Monitor (CAM) as a bench top scalar counter for multiple sample types. These include using the CAM to count fixed air sample filters and radiological smears. In counting radiological smears, the CAM is used very much like a gas flow proportional counter (GFPC), albeit with a lower efficiency. Due to the typically low background in this configuration, the minimum detectable activity for a 5-min count should be in the range of about 10 dpm which is acceptably below the 20 dpm limit for transuranic isotopes. When counting fixed air sample filters, the CAM algorithm along with other measurable characteristics can be used to identify and quantify the presence of transuranic isotopes in the samples. When the radiological control technician wants to take some credit from naturally occurring radioactive material contributions due to radon progeny producing higher energy peaks (as in the case with a fixed air sample filter), then more elaborate techniques are required. The techniques presented here will generate a decision level of about 43 dpm for such applications. The calibration for this application should alternatively be done using the default values of channels 92-126 for region of interest 1. This can be done within 10 to 15 min resulting in a method to rapidly evaluate air filters for transuranic activity. When compared to the 1-h count technique described by , the technique presented in the present work demonstrates a technique whereby more than two thirds of samples can be rapidly shown (within 10 to 15 min) to be within regulatory compliant limits. In both cases, however, spectral quality checks are required to insure sample self attenuation is not a significant bias in the activity estimates. This will allow the same level of confidence when using these techniques for activity quantification as is presently available for air monitoring activity quantification using CAMs.

  12. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Air sampling. 61.34 Section 61.34... sampling. (a) Stationary sources subject to § 61.32(b) shall locate air sampling sites in accordance with a... concentrations calculated within 30 days after filters are collected. Records of concentrations at all sampling...

  13. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  14. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  15. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  16. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  17. Can car air filters be useful as a sampling medium for air pollution monitoring purposes?

    PubMed

    Katsoyiannis, Athanasios; Birgul, Askin; Ratola, Nuno; Cincinelli, Alessandra; Sweetman, Andy J; Jones, Kevin C

    2012-11-01

    availability of very high amounts of "sample", and the "retroactivity" render it very useful and complementary to existing passive sampling techniques. This approach yields estimated air concentrations that reflect the pollutant concentrations to which taxi drivers, pedestrians, cyclists and road-related professionals are exposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  19. Diagnosing AIRS Sampling with CloudSat Cloud Classes

    NASA Technical Reports Server (NTRS)

    Fetzer, Eric; Yue, Qing; Guillaume, Alexandre; Kahn, Brian

    2011-01-01

    AIRS yield and sampling vary with cloud state. Careful utilization of collocated multiple satellite sensors is necessary. Profile differences between AIRS and ECMWF model analyses indicate that AIRS has high sampling and excellent accuracy for certain meteorological conditions. Cloud-dependent sampling biases may have large impact on AIRS L2 and L3 data in climate research. MBL clouds / lower tropospheric stability relationship is one example. AIRS and CloudSat reveal a reasonable climatology in the MBL cloud regime despite limited sampling in stratocumulus. Thermodynamic parameters such as EIS derived from AIRS data map these cloud conditions successfully. We are working on characterizing AIRS scenes with mixed cloud types.

  20. Air sampling workshop: October 24-25, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-06-01

    A two-day workshop was held in October 1978 on air sampling strategies for the occupational environment. Strategies comprise the elements of implementing an air sampling program including deciding on the extent of sampling, selecting appropriate types of measurement, placing sampling instruments properly, and interpreting sample results correctly. All of these elements are vital in the reliable assessment of occupational exposures yet their coverage in the industrial hygiene literature is meager. Although keyed to a few introductory topics, the agenda was sufficiently informal to accommodate extemporaneous discussion on any subject related to sampling strategies. Questions raised during the workshop mirror themore » status of air sampling strategy as much as the factual information that was presented. It may be concluded from the discussion and questions that air sampling strategy is an elementary state and urgently needs concerted attention from the industrial hygiene profession.« less

  1. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  2. 40 CFR 61.34 - Air sampling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Air sampling. 61.34 Section 61.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Beryllium § 61.34 Air...

  3. Development of one-step hollow fiber supported liquid phase sampling technique for occupational workplace air analysis using high performance liquid chromatography with ultra-violet detector.

    PubMed

    Yan, Cheing-Tong; Chien, Hai-Ying

    2012-07-13

    In this study, a simple and novel one-step hollow-fiber supported liquid-phase sampling (HF-LPS) technique was developed for enriched sampling of gaseous toxic species prior to chemical analysis for workplace air monitoring. A lab-made apparatus designed with a gaseous sample generator and a microdialysis sampling cavity (for HF-LPS) was utilized and evaluated to simulate gaseous contaminant air for occupational workplace analysis. Gaseous phenol was selected as the model toxic species. A polyethersulfone hollow fiber dialysis module filled with ethylene glycol in the shell-side was applied as the absorption solvent to collect phenol from a gas flow through the tube-side, based on the concentration distribution of phenol between the absorption solvent and the gas flow. After sampling, 20 μL of the extractant was analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). Factors that influence the generation of gaseous standards and the HF-LPS were studied thoroughly. Results indicated that at 25 °C the phenol (2000 μg/mL) standard solution injected at 15-μL/min can be vaporized into sampling cavity under nitrogen flow at 780 mL/min, to generate gaseous phenol with concentration approximate to twice the permissible exposure limit. Sampling at 37.3 mL/min for 30 min can meet the requirement of the workplace air monitoring. The phenol in air ranged between 0.7 and 10 cm³/m³ (shows excellent linearity) with recovery between 98.1 and 104.1%. The proposed method was identified as a one-step sampling for workplace monitoring with advantages of convenience, rapidity, sensitivity, and usage of less-toxic solvent. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Air-coupled ultrasound: a novel technique for monitoring the curing of thermosetting matrices.

    PubMed

    Lionetto, Francesca; Tarzia, Antonella; Maffezzoli, Alfonso

    2007-07-01

    A custom-made, air-coupled ultrasonic device was applied to cure monitoring of thick samples (7-10 mm) of unsaturated polyester resin at room temperature. A key point was the optimization of the experimental setup in order to propagate compression waves during the overall curing reaction by suitable placement of the noncontact transducers, placed on the same side of the test material, in the so-called pitch-catch configuration. The progress of polymerization was monitored through the variation of the time of flight of the propagating longitudinal waves. The exothermic character of the polymerization was taken into account by correcting the measured value of time of flight with that one in air, obtained by sampling the air velocity during the experiment. The air-coupled ultrasonic results were compared with those obtained from conventional contact ultrasonic measurements. The good agreement between the air-coupled ultrasonic results and those obtained by the rheological analysis demonstrated the reliability of air-coupled ultrasound in monitoring the changes of viscoelastic properties at gelation and vitrification. The position of the transducers on the same side of the sample makes this technique suitable for on-line cure monitoring during several composite manufacturing technologies.

  5. Characterization of Air Plane Soot Surrogates using Raman spectroscopy and laser ablation techniques

    NASA Astrophysics Data System (ADS)

    Chazallon, Bertrand; Ortega, Ismael Kenneth; Ikhenazene, Raouf; Pirim, Claire; Carpentier, Yvain; Irimiea, Cornelia; Focsa, Cristian; Ouf, François-Xavier

    2016-04-01

    Aviation alters the composition of the atmosphere globally and can thus drive climate change and ozone depletion [1]. Aircraft exhaust plumes contain species (gases and soot particles) produced by the combustion of kerosene with ambient air in the combustion chamber of the engine. Soot particles emitted by air-planes produce persistent contrails in the upper troposphere in ice-supersaturated air masses that contribute to cloudiness and impact the radiative properties of the atmosphere. These aerosol-cloud interactions represent one of the largest sources of uncertainty in global climate models [2]. Though the formation of atmospheric ice particles has been studied for many years [3], there are still numerous opened questions on nucleation properties of soot particles [4], as the ice nucleation experiments showed a large spread in results depending on the nucleation mode chosen and origin of the soot produced. The reasons behind these discrepancies reside in the different physico-chemical properties (composition, structure) of soot particles produced in different conditions, e.g., with respect to fuel or combustion techniques. In this work, we use Raman microscopy (514 and 785 nm excitation wavelengths) and ablation techniques (Secondary Ions Mass Spectrometry, and Laser Desorption Mass Spectrometry) to characterize soot particle surrogates produced from a CAST generator (propane fuel, four different global equivalence ratios). They are produced as analogues of air-plane soot collected at different engine regimes (PowerJet SaM-146 turbofan) simulating a landing and take-off (LTO) cycle (MERMOSE project (http://mermose.onera.fr/)) [6]. The spectral parameters of the first-order Raman bands of these soot samples are analyzed using a de-convolution approach described by Sadezky et al. (2005) [5]. A systematic Raman analysis is carried out to select a number of parameters (laser wavelength, irradiance at sample, exposure time) that will alter the sample and the

  6. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study.

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-06-22

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.

  7. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study

    PubMed Central

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-01-01

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202

  8. Adaptive Sampling for Urban Air Quality through Participatory Sensing

    PubMed Central

    Zeng, Yuanyuan; Xiang, Kai

    2017-01-01

    Air pollution is one of the major problems of the modern world. The popularization and powerful functions of smartphone applications enable people to participate in urban sensing to better know about the air problems surrounding them. Data sampling is one of the most important problems that affect the sensing performance. In this paper, we propose an Adaptive Sampling Scheme for Urban Air Quality (AS-air) through participatory sensing. Firstly, we propose to find the pattern rules of air quality according to the historical data contributed by participants based on Apriori algorithm. Based on it, we predict the on-line air quality and use it to accelerate the learning process to choose and adapt the sampling parameter based on Q-learning. The evaluation results show that AS-air provides an energy-efficient sampling strategy, which is adaptive toward the varied outside air environment with good sampling efficiency. PMID:29099766

  9. Survey of air cargo forecasting techniques

    NASA Technical Reports Server (NTRS)

    Kuhlthan, A. R.; Vermuri, R. S.

    1978-01-01

    Forecasting techniques currently in use in estimating or predicting the demand for air cargo in various markets are discussed with emphasis on the fundamentals of the different forecasting approaches. References to specific studies are cited when appropriate. The effectiveness of current methods is evaluated and several prospects for future activities or approaches are suggested. Appendices contain summary type analyses of about 50 specific publications on forecasting, and selected bibliographies on air cargo forecasting, air passenger demand forecasting, and general demand and modalsplit modeling.

  10. Visual air quality simulation techniques

    NASA Astrophysics Data System (ADS)

    Molenar, John V.; Malm, William C.; Johnson, Christopher E.

    Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both

  11. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  12. Determination of methyl bromide in air samples by headspace gas chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodrow, J.E.; McChesney, M.M.; Seiber, J.N.

    1988-03-01

    Methyl bromide is extensively used in agriculture (4 x 10/sup 6/ kg for 1985 in California alone as a fumigant to control nematodes, weeds, and fungi in soil and insect pests in harvested grains and nuts. Given its low boiling point (3.8/sup 0/C) and high vapor pressure (approx. 1400 Torr at 20/sup 0/C), methyl bromide will readily diffuse if not rigorously contained. Methods for determining methyl bromide and other halocarbons in air vary widely. A common practice is to trap the material from air on an adsorbent, such as polymeric resins, followed by thermal desorption either directly into the analyticalmore » instrumentation or after intermediary cryofocusing. While in some cases analytical detection limits were reasonable (parts per million range), many of the published methods were labor intensive and required special handling techniques that precluded high sample throughput. They describe here a method for the sampling and analysis of airborne methyl bromide that was designed to handle large numbers of samples through automating some critical steps of the analysis. The result was a method that allowed around-the-clock operation with a minimum of operator attention. Furthermore, the method was not specific to methyl bromide and could be used to determine other halocarbons in air.« less

  13. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  14. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  15. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine

  16. Double-layer Tedlar bags: a means to limit humidity evolution of air samples and to dry humid air samples.

    PubMed

    Cariou, Stephane; Guillot, Jean-Michel

    2006-01-01

    Tedlar bags, which are widely used to collect air samples, especially VOCs and odorous atmospheres, can allow humidity to diffuse when relative humidity levels differ between the inside and outside. Starting with dry air inside the bag and humid air outside, we monitored equilibrium times under several conditions showing the evolution and influence of collected volumes and exposed surfaces. A double-film Tedlar bag was made, to limit the impact of external humidity on a sample at low humidity level. With the addition of a drying agent between both films, the evolution of humidity of a sample can be stopped for several hours. When a VOC mixture was monitored in a humid atmosphere, humidity was decreased but no significant evolution of VOC concentrations was observed.

  17. Two sampling techniques for game meat.

    PubMed

    van der Merwe, Maretha; Jooste, Piet J; Hoffman, Louw C; Calitz, Frikkie J

    2013-03-20

    A study was conducted to compare the excision sampling technique used by the export market and the sampling technique preferred by European countries, namely the biotrace cattle and swine test. The measuring unit for the excision sampling was grams (g) and square centimetres (cm2) for the swabbing technique. The two techniques were compared after a pilot test was conducted on spiked approved beef carcasses (n = 12) that statistically proved the two measuring units correlated. The two sampling techniques were conducted on the same game carcasses (n = 13) and analyses performed for aerobic plate count (APC), Escherichia coli and Staphylococcus aureus, for both techniques. A more representative result was obtained by swabbing and no damage was caused to the carcass. Conversely, the excision technique yielded fewer organisms and caused minor damage to the carcass. The recovery ratio from the sampling technique improved 5.4 times for APC, 108.0 times for E. coli and 3.4 times for S. aureus over the results obtained from the excision technique. It was concluded that the sampling methods of excision and swabbing can be used to obtain bacterial profiles from both export and local carcasses and could be used to indicate whether game carcasses intended for the local market are possibly on par with game carcasses intended for the export market and therefore safe for human consumption.

  18. Techniques for Forecasting Air Passenger Traffic

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The basic techniques of forecasting the air passenger traffic are outlined. These techniques can be broadly classified into four categories: judgmental, time-series analysis, market analysis and analytical. The differences between these methods exist, in part, due to the degree of formalization of the forecasting procedure. Emphasis is placed on describing the analytical method.

  19. Road traffic air and noise pollution exposure assessment - A review of tools and techniques.

    PubMed

    Khan, Jibran; Ketzel, Matthias; Kakosimos, Konstantinos; Sørensen, Mette; Jensen, Steen Solvang

    2018-09-01

    Road traffic induces air and noise pollution in urban environments having negative impacts on human health. Thus, estimating exposure to road traffic air and noise pollution (hereafter, air and noise pollution) is important in order to improve the understanding of human health outcomes in epidemiological studies. The aims of this review are (i) to summarize current practices of modelling and exposure assessment techniques for road traffic air and noise pollution (ii) to highlight the potential of existing tools and techniques for their combined exposure assessment for air and noise together with associated challenges, research gaps and priorities. The study reviews literature about air and noise pollution from urban road traffic, including other relevant characteristics such as the employed dispersion models, Geographic Information System (GIS)-based tool, spatial scale of exposure assessment, study location, sample size, type of traffic data and building geometry information. Deterministic modelling is the most frequently used assessment technique for both air and noise pollution of short-term and long-term exposure. We observed a larger variety among air pollution models as compared to the applied noise models. Correlations between air and noise pollution vary significantly (0.05-0.74) and are affected by several parameters such as traffic attributes, building attributes and meteorology etc. Buildings act as screens for the dispersion of pollution, but the reduction effect is much larger for noise than for air pollution. While, meteorology has a greater influence on air pollution levels as compared to noise, although also important for noise pollution. There is a significant potential for developing a standard tool to assess combined exposure of traffic related air and noise pollution to facilitate health related studies. GIS, due to its geographic nature, is well established and has a significant capability to simultaneously address both exposures. Copyright

  20. Spectral fingerprinting of polycyclic aromatic hydrocarbons in high-volume ambient air samples by constant energy synchronous luminescence spectroscopy

    USGS Publications Warehouse

    Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.

    1985-01-01

    A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.

  1. Development of a robust field technique to quantify the air-void distribution in fresh concrete.

    DOT National Transportation Integrated Search

    2013-07-01

    In order to make concrete frost durable it is common to provide a small and well distributed air void system. Current measuring techniques require weeks to complete on hardened and polished samples of concrete. This report presents the results of a n...

  2. Innovations in air sampling to detect plant pathogens

    PubMed Central

    West, JS; Kimber, RBE

    2015-01-01

    Many innovations in the development and use of air sampling devices have occurred in plant pathology since the first description of the Hirst spore trap. These include improvements in capture efficiency at relatively high air-volume collection rates, methods to enhance the ease of sample processing with downstream diagnostic methods and even full automation of sampling, diagnosis and wireless reporting of results. Other innovations have been to mount air samplers on mobile platforms such as UAVs and ground vehicles to allow sampling at different altitudes and locations in a short space of time to identify potential sources and population structure. Geographical Information Systems and the application to a network of samplers can allow a greater prediction of airborne inoculum and dispersal dynamics. This field of technology is now developing quickly as novel diagnostic methods allow increasingly rapid and accurate quantifications of airborne species and genetic traits. Sampling and interpretation of results, particularly action-thresholds, is improved by understanding components of air dispersal and dilution processes and can add greater precision in the application of crop protection products as part of integrated pest and disease management decisions. The applications of air samplers are likely to increase, with much greater adoption by growers or industry support workers to aid in crop protection decisions. The same devices are likely to improve information available for detection of allergens causing hay fever and asthma or provide valuable metadata for regional plant disease dynamics. PMID:25745191

  3. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms.

    PubMed

    Marinozzi, Franco; Bini, Fabiano; Marinozzi, Andrea; Zuppante, Francesca; De Paolis, Annalisa; Pecci, Raffaella; Bedini, Rossella

    2013-01-01

    Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a) gray levels produced by the bone x-ray absorption, b) the portions of the image occupied by air and c) voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.

  4. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. © The Author 2015

  5. An Improved Extraction and Analysis Technique for Determination of Carbon Monoxide Stable Isotopes and Mixing Ratios from Ice Core and Atmospheric Air Samples.

    NASA Astrophysics Data System (ADS)

    Place, P., Jr.; Petrenko, V. V.; Vimont, I.

    2017-12-01

    Carbon Monoxide (CO) is an important atmospheric trace gas that affects the oxidative capacity of the atmosphere and contributes indirectly to anthropogenic radiative forcing. Carbon monoxide stable isotopes can also serve as a tracer for variations in biomass burning, particularly in the preindustrial atmosphere. A good understanding of the past variations in CO mole fractions and isotopic composition can help improve the skill of chemical transport models and constrain biomass burning changes. Ice cores may preserve a record of past atmospheric CO for analysis and interpretation. To this end, a new extraction system has been developed for analysis of stable isotopes (δ13CO and δC18O) of atmospheric carbon monoxide from ice core and atmospheric air samples. This system has been designed to measure relatively small sample sizes (80 cc STP of air) to accommodate the limited availability of ice core samples. Trapped air is extracted from ice core samples via melting in a glass vacuum chamber. This air is expanded into a glass expansion loop and then compressed into the sample loop of a Reducing Gas Detector (Peak Laboratories, Peak Performer 1 RCP) for the CO mole fraction measurement. The remaining sample gas will be expelled from the melt vessel into a larger expansion loop via headspace compression for isotopic analysis. The headspace compression will be accomplished by introduction of clean degassed water into the bottom of the melt vessel. Isotopic analysis of the sample gas is done utilizing the Schütze Reagent to convert the carbon monoxide to carbon dioxide (CO2) which is then measured using continuous-flow isotope ratio mass spectrometry (Elementar Americas, IsoPrime 100). A series of cryogenic traps are used to purify the sample air, capture the converted sample CO2, and cryofocus the sample CO2 prior to injection.

  6. Residues of 2, 4-D in air samples from Saskatchewan: 1966-1975.

    PubMed

    Grover, R; Kerr, L A; Wallace, K; Yoshida, K; Maybank, J

    1976-01-01

    Residues of 2,4-D (2,4-dichlorophenoxyacetic acid) in air samples from several sampling sites in central and southern Saskatchewan during the spraying seasons in the 1966-68 and 1970-75 periods were determined by gas-liquid chromatographic techniques. Initially, individual esters of 2,4-D were characterized by retention times and confirmed further by co-injection and dual column procedures. Since 1973, however, only total 2,4-D acid levels in air samples have been determined after esterification to the methyl ester and confirmed by gc/ms techniques whenever possible. Up to 50% of the daily samples collected during the spraying season at any of the locations and during any given year contained 2,4-D, with butyl esters being found most frequently. The daily 24-hr mean atmospheric concentrations of 2,4-D ranged from 0.01 to 1.22 mug/m3, 0.01 to 13.50 mug/m3, and 0.05 to 0.59 mug/m3 for the iso-propyl, mixed butyl and iso-octyl esters, respectively. Even when the samples were analysed for the total 2,4-D content, i.e. from 1973 onwards, the maximum level of the total acid reached only 23.14 mug/m3. In any given year and at any of the sampling sites, about 30% of the samples contained less than 0.01 mug/m3 of 2,4-D. In another 40% of the samples, the levels of 2,4-D ranged from 0.01 to 0.099 mug/m3. Only about 30% of the samples contained 2,4-D concentrations higher than 0.1 mug/m3, with only 10% or less exceeding 1 mug/m3. None of the samples, obtained with the high volume particulate sampler, showed any detectable levels of 2,4-D, indicating little or no transport of 2,4-D adsorbed on dust particles or as crystals of amine salts.

  7. Atmospheric Carbon Dioxide Mixing Ratios from the NOAA CMDL Carbon Cycle Cooperative Global Air Sampling Network (2009)

    DOE Data Explorer

    Conway, Thomas [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA); Tans, Pieter [NOAA Climate Monitoring and Diagnostics Laboratory, Boulder, CO (USA)

    2009-01-01

    The National Oceanic and Atmospheric Administration's Climate Monitoring and Diagnostics Laboratory (NOAA/CMDL) has measured CO2 in air samples collected weekly at a global network of sites since the late 1960s. Atmospheric CO2 mixing ratios reported in these files were measured by a nondispersive infrared absorption technique in air samples collected in glass flasks. All CMDL flask samples are measured relative to standards traceable to the World Meteorological Organization (WMO) CO2 mole fraction scale. These measurements constitute the most geographically extensive, carefully calibrated, internally consistent atmospheric CO2 data set available and are essential for studies aimed at better understanding the global carbon cycle budget.

  8. Development of a syringe pump assisted dynamic headspace sampling technique for needle trap device.

    PubMed

    Eom, In-Yong; Niri, Vadoud H; Pawliszyn, Janusz

    2008-07-04

    This paper describes a new approach that combines needle trap devices (NTDs) with a dynamic headspace sampling technique (purge and trap) using a bidirectional syringe pump. The needle trap device is a 22-G stainless steel needle 3.5-in. long packed with divinylbenzene sorbent particles. The same sized needle, without packing, was used for purging purposes. We chose an aqueous mixture of benzene, toluene, ethylbenzene, and p-xylene (BTEX) and developed a sequential purge and trap (SPNT) method, in which sampling (trapping) and purging cycles were performed sequentially by the use of syringe pump with different distribution channels. In this technique, a certain volume (1 mL) of headspace was sequentially sampled using the needle trap; afterwards, the same volume of air was purged into the solution at a high flow rate. The proposed technique showed an effective extraction compared to the continuous purge and trap technique, with a minimal dilution effect. Method evaluation was also performed by obtaining the calibration graphs for aqueous BTEX solutions in the concentration range of 1-250 ng/mL. The developed technique was compared to the headspace solid-phase microextraction method for the analysis of aqueous BTEX samples. Detection limits as low as 1 ng/mL were obtained for BTEX by NTD-SPNT.

  9. Ambient air contamination: Characterization and detection techniques

    NASA Technical Reports Server (NTRS)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  10. Presence of organophosphorus pesticide oxygen analogs in air samples

    NASA Astrophysics Data System (ADS)

    Armstrong, Jenna L.; Fenske, Richard A.; Yost, Michael G.; Galvin, Kit; Tchong-French, Maria; Yu, Jianbo

    2013-02-01

    A number of recent toxicity studies have highlighted the increased potency of oxygen analogs (oxons) of several organophosphorus (OP) pesticides. These findings were a major concern after environmental oxons were identified in environmental samples from air and surfaces following agricultural spray applications in California and Washington State. This paper reports on the validity of oxygen analog measurements in air samples for the OP pesticide, chlorpyrifos. Controlled environmental and laboratory experiments were used to examine artificial formation of chlorpyrifos-oxon using OSHA Versatile Sampling (OVS) tubes as recommended by NIOSH method 5600. Additionally, we compared expected chlorpyrifos-oxon attributable to artificial transformation to observed chlorpyrifos-oxon in field samples from a 2008 Washington State Department of Health air monitoring study using non-parametric statistical methods. The amount of artificially transformed oxon was then modeled to determine the amount of oxon present in the environment. Toxicity equivalency factors (TEFs) for chlorpyrifos-oxon were used to calculate chlorpyrifos-equivalent air concentrations. The results demonstrate that the NIOSH-recommended sampling matrix (OVS tubes with XAD-2 resin) was found to artificially transform up to 30% of chlorpyrifos to chlorpyrifos-oxon, with higher percentages at lower concentrations (<30 ng m-3) typical of ambient or residential levels. Overall, the 2008 study data had significantly greater oxon than expected by artificial transformation, but the exact amount of environmental oxon in air remains difficult to quantify with the current sampling method. Failure to conduct laboratory analysis for chlorpyrifos-oxon may result in underestimation of total pesticide concentration when using XAD-2 resin matrices for occupational or residential sampling. Alternative methods that can accurately measure both OP pesticides and their oxygen analogs should be used for air sampling, and a toxicity

  11. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  12. Analysis of EPA and DOE WIPP Air Sampling Data

    EPA Pesticide Factsheets

    During the April 2014 EPA visit to WIPP, EPA co-located four ambient air samplers with existing Department of Energy (DOE) ambient air samplers to independently corroborate DOE's reported air sampling results.

  13. Nonuniform sampling techniques for antenna applications

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Yahya; Cheung, Rudolf Lap-Tung

    1987-01-01

    A two-dimensional sampling technique, which can employ irregularly spaced samples (amplitude and phase) in order to generate the complete far-field patterns is presented. The technique implements a matrix inversion algorithm, which depends only on the nonuniform sampled data point locations and with no dependence on the actual field values at these points. A powerful simulation algorithm is presented to allow a real-life simulation of many reflector/feed configurations and to determine the usefulness of the nonuniform sampling technique for the copolar and cross-polar patterns. Additionally, an overlapped window concept and a generalized error simulation model are discussed to identify the stability of the technique for recovering the field data among the nonuniform sampled data. Numerical results are tailored for the pattern reconstruction of a 20-m offset reflector antenna operating at L-band. This reflector is planned to be used in a proposed measurement concept of large antenna aboard the Space Shuttle, whereby it would be almost impractical to accurately control the movement of the Shuttle with respect to the RF source in prescribed directions in order to generate uniform sampled points. Also, application of the nonuniform sampling technique to patterns obtained using near-field measured data is demonstrated. Finally, results of an actual far-field measurement are presented for the construction of patterns of a reflector antenna from a set of nonuniformly distributed measured amplitude and phase data.

  14. [Microbial air monitoring in operating theatre: active and passive samplings].

    PubMed

    Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L

    2004-01-01

    Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.

  15. Assessment of air quality in Haora River basin using fuzzy multiple-attribute decision making techniques.

    PubMed

    Singh, Ajit Pratap; Chakrabarti, Sumanta; Kumar, Sumit; Singh, Anjaney

    2017-08-01

    This paper deals with assessment of air quality in Haora River basin using two techniques. Initially, air quality indices were evaluated using a modified EPA method. The indices were also evaluated using a fuzzy comprehensive assessment (FCA) method. The results obtained from the fuzzy comprehensive assessment method were compared to that obtained from the modified EPA method. To illustrate the applicability of the methodology proposed herein, a case study has been presented. Air samples have been collected at 10 sampling sites located along Haora River. Six important air pollutants, namely, carbon monoxide, sulfur dioxide, nitrogen dioxide, suspended particulate matter (SPM), PM 10 , and lead, were monitored continuously, and air quality maps were generated on the GIS platform. Comparison of the methodologies has clearly highlighted superiority and robustness of the fuzzy comprehensive assessment method in determining air quality indices under study. It has effectively addressed the inherent uncertainties involved in the evaluation, modeling, and interpretation of sampling data, which was beyond the scope of the traditional weighted approaches employed otherwise. The FCA method is robust and prepares a credible platform of air quality evaluation and identification, in face of the uncertainties that remain eclipsed in the traditional approaches like the modified EPA method. The insights gained through the present study are believed to be of pivotal significance in guiding the development and implementation of effective environmental remedial action plans in the study area.

  16. Detection of peroxyl radicals from polluted air by free radical reaction combined with liquid chromatography signal amplification technique.

    PubMed

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Liu, Yanrong; Tian, Haoqi; Chen, Xuefu; Shi, Gaofeng

    2018-01-22

    Free radicals play an important role in the oxidizing power of polluted air, the development of aging-related diseases, the formation of ozone, and the production of secondary particulate matter. The high variability of peroxyl radical concentration has prevented the detection of possible trends or distributions in the concentration of free radicals. We present a new method, free radical reaction combined with liquid chromatography photodiode array detection, for identifying and quantifying peroxyl radicals in polluted air. Functionalized graphene was used for loading peroxyl radicals and reactive molecules in air sampling system, which can facilitate reaction kinetics (charge transfers) between peroxyl radicals and reaction molecules. Separation was performed with and without a preliminary exposure of the polluted air sample to reactive molecule(s) system. The integral chromatographic peak areas before and after air sampling are used to quantify the atmospheric peroxyl radicals in polluted air. The utility of the new technique was tested with measurements carried out in the field. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A simple novel device for air sampling by electrokinetic capture.

    PubMed

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; Frazier, Angel; Hampton-Marcell, Jarrad; Gilbert, Jack A

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrode assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87 %, with the reference filter taken as "gold standard." Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. The performance of the device is

  18. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  19. 30 CFR 90.205 - Approved sampling devices; operation; air flowrate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved sampling devices; operation; air... LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.205 Approved sampling devices; operation; air flowrate...

  20. Control Techniques for Particulate Air Pollutants.

    ERIC Educational Resources Information Center

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Included is a comprehensive review of the approaches commonly recommended for controlling the sources of particulate air pollution. Not all possible combinations of control techniques that might bring about more stringent control of each individual source are reviewed. The many agricultural, commercial, domestic, industrial, and municipal…

  1. Convair F-106B Delta Dart with Air Sampling Equipment

    NASA Image and Video Library

    1974-04-21

    The National Aeronautics and Space Administration (NASA) Lewis Research Center’s Convair F-106B Delta Dart equipped with air sampling equipment in the mid-1970s. NASA Lewis created and managed the Global Air Sampling Program (GASP) in 1972 in partnership with several airline companies. NASA researchers used the airliners’ Boeing 747 aircraft to gather air samples to determine the amount of pollution present in the stratosphere. Private companies developed the air sampling equipment for the GASP program, and Lewis created a particle collector. The collector was flight tested on NASA Lewis’ F-106B in the summer of 1973. The sampling equipment was automatically operated once the proper altitude was achieved. The sampling instruments collected dust particles in the air so their chemical composition could be analyzed. The equipment analyzed one second’s worth of data at a time. The researchers also monitored carbon monoxide, monozide, ozone, and water vapor. The 747 flights began in December 1974 and soon included four airlines flying routes all over the globe. The F-106B augmented the airline data with sampling of its own, seen here. It gathered samples throughout this period from locations such as New Mexico, Texas, Michigan, and Ohio. In July 1977 the F-106B flew eight GASP flights in nine days over Alaska to supplement the earlier data gathered by the airlines.

  2. Systematic Evaluation of Aggressive Air Sampling for Bacillus ...

    EPA Pesticide Factsheets

    Report The primary objectives of this project were to evaluate the Aggressive Air Sampling (AAS) method compared to currently used surface sampling methods and to determine if AAS is a viable option for sampling Bacillus anthracis spores.

  3. Critical evaluation of sample pretreatment techniques.

    PubMed

    Hyötyläinen, Tuulia

    2009-06-01

    Sample preparation before chromatographic separation is the most time-consuming and error-prone part of the analytical procedure. Therefore, selecting and optimizing an appropriate sample preparation scheme is a key factor in the final success of the analysis, and the judicious choice of an appropriate procedure greatly influences the reliability and accuracy of a given analysis. The main objective of this review is to critically evaluate the applicability, disadvantages, and advantages of various sample preparation techniques. Particular emphasis is placed on extraction techniques suitable for both liquid and solid samples.

  4. A simple novel device for air sampling by electrokinetic capture

    DOE PAGES

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra; ...

    2015-12-27

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  5. A simple novel device for air sampling by electrokinetic capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, Julian; Gandhi, Prasanthi; Shekhawat, Gajendra

    A variety of different sampling devices are currently available to acquire air samples for the study of the microbiome of the air. All have a degree of technical complexity that limits deployment. Here, we evaluate the use of a novel device, which has no technical complexity and is easily deployable. An air-cleaning device powered by electrokinetic propulsion has been adapted to provide a universal method for collecting samples of the aerobiome. Plasma-induced charge in aerosol particles causes propulsion to and capture on a counter-electrode. The flow of ions creates net bulk airflow, with no moving parts. A device and electrodemore » assembly have been re-designed from air-cleaning technology to provide an average air flow of 120 lpm. This compares favorably with current air sampling devices based on physical air pumping. Capture efficiency was determined by comparison with a 0.4 μm polycarbonate reference filter, using fluorescent latex particles in a controlled environment chamber. Performance was compared with the same reference filter method in field studies in three different environments. For 23 common fungal species by quantitative polymerase chain reaction (qPCR), there was 100 % sensitivity and apparent specificity of 87%, with the reference filter taken as “gold standard.” Further, bacterial analysis of 16S RNA by amplicon sequencing showed equivalent community structure captured by the electrokinetic device and the reference filter. Unlike other current air sampling methods, capture of particles is determined by charge and so is not controlled by particle mass. We analyzed particle sizes captured from air, without regard to specific analyte by atomic force microscopy: particles at least as low as 100 nM could be captured from ambient air. This work introduces a very simple plug-and-play device that can sample air at a high-volume flow rate with no moving parts and collect particles down to the sub-micron range. In conclusion, the performance of

  6. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Trick, S.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-11-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  7. Intercomparison of four different in-situ techniques for ambient formaldehyde measurements in urban air

    NASA Astrophysics Data System (ADS)

    Hak, C.; Pundt, I.; Kern, C.; Platt, U.; Dommen, J.; Ordóñez, C.; Prévôt, A. S. H.; Junkermann, W.; Astorga-Lloréns, C.; Larsen, B. R.; Mellqvist, J.; Strandberg, A.; Yu, Y.; Galle, B.; Kleffmann, J.; Lörzer, J. C.; Braathen, G. O.; Volkamer, R.

    2005-05-01

    Results from an intercomparison of several currently used in-situ techniques for the measurement of atmospheric formaldehyde (CH2O) are presented. The measurements were carried out at Bresso, an urban site in the periphery of Milan (Italy) as part of the FORMAT-I field campaign. Eight instruments were employed by six independent research groups using four different techniques: Differential Optical Absorption Spectroscopy (DOAS), Fourier Transform Infra Red (FTIR) interferometry, the fluorimetric Hantzsch reaction technique (five instruments) and a chromatographic technique employing C18-DNPH-cartridges (2,4-dinitrophenylhydrazine). White type multi-reflection systems were employed for the optical techniques in order to avoid spatial CH2O gradients and ensure the sampling of nearly the same air mass by all instruments. Between 23 and 31 July 2002, up to 13 ppbv of CH2O were observed. The concentrations lay well above the detection limits of all instruments. The formaldehyde concentrations determined with DOAS, FTIR and the Hantzsch instruments were found to agree within ±11%, with the exception of one Hantzsch instrument, which gave systematically higher values. The two hour integrated samples by DNPH yielded up to 25% lower concentrations than the data of the continuously measuring instruments averaged over the same time period. The consistency between the DOAS and the Hantzsch method was better than during previous intercomparisons in ambient air with slopes of the regression line not significantly differing from one. The differences between the individual Hantzsch instruments could be attributed in part to the calibration standards used. Possible systematic errors of the methods are discussed.

  8. Comparative study of nail sampling techniques in onychomycosis.

    PubMed

    Shemer, Avner; Davidovici, Batya; Grunwald, Marcelo H; Trau, Henri; Amichai, Boaz

    2009-07-01

    Onychomycosis is a common problem. Obtaining accurate laboratory test results before treatment is important in clinical practice. The purpose of this study was to compare results of curettage and drilling techniques of nail sampling in the diagnosis of onychomycosis, and to establish the best technique and location of sampling. We evaluated 60 patients suffering from distal and lateral subungual onychomycosis and lateral subungual onychomycosis using curettage and vertical and horizontal drilling sampling techniques from three different sites of the infected nail. KOH examination and fungal culture were used for detection and identification of fungal infection. At each sample site, the horizontal drilling technique has a better culture sensitivity than curettage. Trichophyton rubrum was by far the most common pathogen detected by both techniques from all sampling sites. The drilling technique was found to be statistically better than curettage at each site of sampling, furthermore vertical drilling from the proximal part of the affected nail was found to be the best procedure for nail sampling. With each technique we found that the culture sensitivity improved as the location of the sample was more proximal. More types of pathogens were detected in samples taken by both methods from proximal parts of the affected nails.

  9. Early Detection of Foot-And-Mouth Disease Virus from Infected Cattle Using A Dry Filter Air Sampling System.

    PubMed

    Pacheco, J M; Brito, B; Hartwig, E; Smoliga, G R; Perez, A; Arzt, J; Rodriguez, L L

    2017-04-01

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to the aerogenous nature of the virus. In the current study, air from rooms housing individual (n = 17) or two groups (n = 4) of cattle experimentally infected with FDMV A24 Cruzeiro of different virulence levels was sampled to assess the feasibility of applying air sampling as a non-invasive, screening tool to identify sources of FMDV infection. Detection of FMDV RNA in air was compared with first detection of clinical signs and FMDV RNA levels in serum and oral fluid. FMDV RNA was detected in room air samples 1-3 days prior (seven animals) or on the same day (four animals) as the appearance of clinical signs in 11 of 12 individually housed cattle. Only in one case clinical signs preceded detection in air samples by one day. Overall, viral RNA in oral fluid or serum preceded detection in air samples by 1-2 days. Six individually housed animals inoculated with attenuated strains did not show clinical signs, but virus was detected in air in one of these cases 3 days prior to first detection in oral fluid. In groups of four cattle housed together, air detection always preceded appearance of clinical signs by 1-2 days and coincided more often with viral shedding in oral fluid than virus in blood. These data confirm that air sampling is an effective non-invasive screening method for detecting FMDV infection in confined to enclosed spaces (e.g. auction barns, milking parlours). This technology could be a useful tool as part of a surveillance strategy during FMD prevention, control or eradication efforts. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  10. An evaluation of analytical methods, air sampling techniques, and airborne occupational exposure of metalworking fluids.

    PubMed

    Verma, Dave K; Shaw, Don S; Shaw, M Lorraine; Julian, Jim A; McCollin, Shari-Ann; des Tombe, Karen

    2006-02-01

    This article summarizes an assessment of air sampling and analytical methods for both oil and water-based metalworking fluids (MWFs). Three hundred and seventy-four long-term area and personal airborne samples were collected at four plants using total (closed-face) aerosol samplers and thoracic samplers. A direct-reading device (DustTrak) was also used. The processes sampled include steel tube making, automotive component manufacturing, and small part manufacturing in a machine shop. The American Society for Testing and Materials (ASTM) Method PS42-97 of analysis was evaluated in the laboratory. This evaluation included sample recovery, determination of detection limits, and stability of samples during storage. Results of the laboratory validation showed (a) the sample recovery to be about 87%, (b) the detection limit to be 35 microg, and (c) sample stability during storage at room temperature to decline rapidly within a few days. To minimize sample loss, the samples should be stored in a freezer and analyzed within a week. The ASTM method should be the preferred method for assessing metalworking fluids (MWFs). The ratio of thoracic aerosol to total aerosol ranged from 0.6 to 0.7. A similar relationship was found between the thoracic extractable aerosol and total extractable aerosol. The DustTrak, with 10-microm sampling head, was useful in pinpointing the areas of potential exposure. MWF exposure at the four plants ranged from 0.04 to 3.84 mg/m3 with the geometric mean ranging between 0.22 to 0.59 mg/m3. Based on this data and the assumption of log normality, MWF exposures are expected to exceed the National Institute for Occupational Safety and Health recommended exposure limit of 0.5 mg/m3 as total mass and 0.4 mg/m3 as thoracic mass about 38% of the time. In addition to controlling airborne MWF exposure, full protection of workers would require the institution of programs for fluid management and dermal exposure prevention.

  11. Air Sample Conditioner Helps the Waste Treatment Plant Meet Emissions Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glissmeyer, John A.; Flaherty, Julia E.; Pekour, Mikhail S.

    2014-12-02

    The air in three of the Hanford Site Waste Treatment and Immobilization Plant (WTP) melter off-gas discharge stacks will be hot and humid after passing through the train of emission abatement equipment. The off-gas temperature and humidity levels will be incompatible with the airborne emissions monitoring equipment required for this type of stack. To facilitate sampling from these facilities, an air sample conditioner system will be installed to introduce cool, dry air into the sample stream to reduce the temperature and dew point. This will avoid thermal damage to the instrumentation and problematic condensation. The complete sample transport system mustmore » also deliver at least 50% of the particles in the sample airstream to the sample collection and on-line analysis equipment. The primary components of the sample conditioning system were tested in a laboratory setting. The sample conditioner itself is based on a commercially-available porous tube filter design. It consists of a porous sintered metal tube inside a coaxial metal jacket. The hot gas sample stream passes axially through the porous tube, and the dry, cool air is injected into the jacket and through the porous wall of the inner tube, creating an effective sample diluter. The dilution and sample air mix along the entire length of the porous tube, thereby simultaneously reducing the dew point and temperature of the mixed sample stream. Furthermore, because the dilution air enters through the porous tube wall, the sample stream does not come in contact with the porous wall and particle deposition is reduced in this part of the sampling system. Tests were performed with an environmental chamber to supply air with the temperature and humidity needed to simulate the off-gas conditions. Air from the chamber was passed through the conditioning system to test its ability to reduce the temperature and dew point of the sample stream. To measure particle deposition, oil droplets in the range of 9 to 11

  12. Determination of polybrominated diphenyl ethers (PBDEs) in dust samples collected in air conditioning filters of different usage - method development.

    PubMed

    Śmiełowska, M; Zabiegała, B

    2018-06-19

    This study presents the results of studies aimed at the development of an analytical procedure for separation, identification, and determination of PBDEs compounds in dust samples collected from automotive cabin air filters and samples collected from filters installed as part of the air purification system in academic facilities. Ultrasound-assisted dispersive solid phase extraction (UA-dSPE) was found to perform better in terms of extract purification than the conventional SPE technique. GC-EIMS was used for final determination of analytes. The concentrations of PBDEs in car filters ranged from < LOD to 688 ng/g while from < LOD to 247 ng/g in dust from air conditioning filters. BDE-47 and BDE-100 were reported the dominating congeners. The estimated exposure to PBDEs via ingestion of dust from car filters varied from 0.00022 to 0.012 ng/day in toddlers and from 0.000036 to 0.0029 ng/day in adults; dust from air conditioning filters: from 0.017 to 0.25 ng/day in toddlers and from 0.0029 to 0.042 ng/day. In addition, an attempt was made at extracting PBDEs from a dust samples using the matrix solid-phase dispersion (MSPD) technique as a promising alternative to conventional SPE separations. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Venturi Air-Jet Vacuum Ejector For Sampling Air

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Burney, L. Garland; Wade, Larry O.

    1990-01-01

    Venturi air-jet vacuum ejector pump light in weight, requires no electrical power, does not contribute heat to aircraft, and provides high pumping speeds at moderate suctions. High-pressure motive gas required for this type of pump bled from compressor of aircraft engine with negligible effect on performance of engine. Used as source of vacuum for differential-absorption CO-measurement (DACOM), modified to achieve in situ measurements of CO at frequency response of 10 Hz. Provides improvement in spatial resolution and potentially leads to capability to measure turbulent flux of CO by use of eddy-correlation technique.

  14. A new device for dynamic sampling of radon in air

    NASA Astrophysics Data System (ADS)

    Lozano, J. C.; Escobar, V. Gómez; Tomé, F. Vera

    2000-08-01

    A new system is proposed for the active sampling of radon in air, based on the well-known property of activated charcoal to retain radon. Two identical carbon-activated cartridges arranged in series remove the radon from the air being sampled. The air passes first through a desiccant cell and then the carbon cartridges for short sampling times using a low-flow pump. The alpha activity for each cartridge is determined by a liquid scintillation counting system. The cartridge is placed in a holder into a vial that also contains the appropriate amount of scintillation cocktail, in a way that avoids direct contact between cocktail and charcoal. Once dynamic equilibrium between the phases has been reached, the vials can be counted. Optimum sampling conditions concerning flow rates and sampling times are determined. Using those conditions, the method was applied to environmental samples, straightforwardly providing good results for very different levels of activity.

  15. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    PubMed

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (p<0.01), LD (p<0.01), and potassium (p<0.02) in plasma. Removing air space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (p<0.02 vs conventionally filled collection tube). Clotted blood developed less foaming during PTS transport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (p<0.03) in serum than in plasma after PTS sample transport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Novel air-injection technique to locate the medial cut end of lacerated canaliculus.

    PubMed

    Liu, Bingqian; Li, Yonghao; Long, Chongde; Wang, Zhonghao; Liang, Xuanwei; Ge, Jian; Wang, Zhichong

    2013-12-01

    Locating the medial cut end of the severed canaliculus is the most difficult aspect of canalicular repair, especially in patients with more medial laceration, severe oedema, persistent errhysis and a narrow canaliculus. Irrigation is a widely used technique to identify the cut end; however, we found that air injected through the intact canaliculus with a straight needle failed to reflux when the common canaliculus or lacrimal sac was not blocked. We describe a simple, safe and efficient air-injection technique to identify the medial cut edge of a lacerated canaliculus. In this method, we initially submersed the medial canthus under normal saline, then injected filtered air through the intact canaliculus using a side port stainless steel probe with a closed round tip. The tip was designed to block the common canaliculus to form a relatively closed system. The efficiency of this novel air-injection technique was equivalent to the traditional technique but does not require the cooperation of the patient to blow air. Using this technique, the medial cut end was successfully identified by locating the air-bubble exit within minutes in 19 cases of mono-canalicular laceration without any complication.

  17. Development of a particle-trap preconcentration-soft ionization mass spectrometric technique for the quantification of mercury halides in air.

    PubMed

    Deeds, Daniel A; Ghoshdastidar, Avik; Raofie, Farhad; Guérette, Élise-Andrée; Tessier, Alain; Ariya, Parisa A

    2015-01-01

    Measurement of oxidized mercury, Hg(II), in the atmosphere poses a significant analytical challenge as Hg(II) is present at ultra-trace concentrations (picograms per cubic meter air). Current technologies are sufficiently sensitive to measure the total Hg present as Hg(II) but cannot determine the chemical speciation of Hg(II). We detail here the development of a soft ionization mass spectrometric technique coupled with preconcentration onto nano- or microparticle-based traps prior to analysis for the measurement of mercury halides in air. The current methodology has comparable detection limits (4-11 pg m(-3)) to previously developed techniques for the measurement of total inorganic mercury in air while allowing for the identification of HgX2 in collected samples. Both mercury chloride and mercury bromide have been sporadically detected in Montreal urban and indoor air using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). We discuss limitations and advantages of the current technique and discuss potential avenues for future research including quantitative trace measurements of a larger range of mercury compounds.

  18. Soil Sampling Techniques For Alabama Grain Fields

    NASA Technical Reports Server (NTRS)

    Thompson, A. N.; Shaw, J. N.; Mask, P. L.; Touchton, J. T.; Rickman, D.

    2003-01-01

    Characterizing the spatial variability of nutrients facilitates precision soil sampling. Questions exist regarding the best technique for directed soil sampling based on a priori knowledge of soil and crop patterns. The objective of this study was to evaluate zone delineation techniques for Alabama grain fields to determine which method best minimized the soil test variability. Site one (25.8 ha) and site three (20.0 ha) were located in the Tennessee Valley region, and site two (24.2 ha) was located in the Coastal Plain region of Alabama. Tennessee Valley soils ranged from well drained Rhodic and Typic Paleudults to somewhat poorly drained Aquic Paleudults and Fluventic Dystrudepts. Coastal Plain s o i l s ranged from coarse-loamy Rhodic Kandiudults to loamy Arenic Kandiudults. Soils were sampled by grid soil sampling methods (grid sizes of 0.40 ha and 1 ha) consisting of: 1) twenty composited cores collected randomly throughout each grid (grid-cell sampling) and, 2) six composited cores collected randomly from a -3x3 m area at the center of each grid (grid-point sampling). Zones were established from 1) an Order 1 Soil Survey, 2) corn (Zea mays L.) yield maps, and 3) airborne remote sensing images. All soil properties were moderately to strongly spatially dependent as per semivariogram analyses. Differences in grid-point and grid-cell soil test values suggested grid-point sampling does not accurately represent grid values. Zones created by soil survey, yield data, and remote sensing images displayed lower coefficient of variations (8CV) for soil test values than overall field values, suggesting these techniques group soil test variability. However, few differences were observed between the three zone delineation techniques. Results suggest directed sampling using zone delineation techniques outlined in this paper would result in more efficient soil sampling for these Alabama grain fields.

  19. Comparison of stationary and personal air sampling with an ...

    EPA Pesticide Factsheets

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to assess exposure for children enrolled in the Communities Actively Researching Exposure Study in Marietta, OH. Ambient air Mn concentration values were modeled using US Environmental Protection Agency’s Air Dispersion Model AERMOD based on emissions from the ferromanganese refinery located in Marietta. Modeled Mn concentrations were compared with Mn concentrations from a nearby stationary air monitor. The Index of Agreement for modeled versus monitored data was 0.34 (48 h levels) and 0.79 (monthly levels). Fractional bias was 0.026 for 48 h levels and −0.019 for monthly levels. The ratio of modeled ambient air Mn to measured ambient air Mn at the annual time scale was 0.94. Modeled values were also time matched to personal air samples for 19 children. The modeled values explained a greater degree of variability in personal exposures compared with time-weighted distance from the emission source. Based on these results modeled Mn concentrations provided a suitable approach for assessing airborne Mn exposure in this cohort. The purpose of the study was to investigate the use of air-dispersion modeling as an approach to exposure assessment for ambient manganese.

  20. Early detection of foot-and-mouth disease virus from infected cattle using a dry filter air sampling system

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...

  1. Photon and neutron interrogation techniques for chemical explosives detection in air cargo: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runkle, Robert C.; White, Timothy A.; Miller, Erin A.

    Scanning cargo transported via aircraft ("air cargo") for explosive threats is a problem that, at present, lacks a comprehensive technical solution. While explosives detection in the baggage-scanning domain has a rich history that sheds light on potential solutions for air cargo, baggage scanning differs in several ways and thus one cannot look to the present array of technologies. Some contemporary solutions, like trace analysis, are not readily applied to cargo due to sampling challenges while the larger geometry of air cargo makes others less effective. This review article examines an array of interrogation techniques using photons and neutrons as incidentmore » particles. We first present a summary of the signatures and observables explosives provide and review how they have been exploited in baggage scanning. Following this is a description of the challenges posed by the air cargo application space. After considering interrogation sources, methods focused on transmission imaging, sub-surface examination and elemental characterization are described. It is our goal to shed light on the technical promise of each method while largely deferring questions that revolve around footprint, safety and conduct of operations. Our overarching intent is that a comprehensive understanding of potential techniques will foster development of a comprehensive solution.« less

  2. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  3. Optimization of sampling parameters for collection and preconcentration of alveolar air by needle traps.

    PubMed

    Filipiak, Wojciech; Filipiak, Anna; Ager, Clemens; Wiesenhofer, Helmut; Amann, Anton

    2012-06-01

    The approach for breath-VOCs' collection and preconcentration by applying needle traps was developed and optimized. The alveolar air was collected from only a few exhalations under visual control of expired CO(2) into a large gas-tight glass syringe and then warmed up to 45 °C for a short time to avoid condensation. Subsequently, a specially constructed sampling device equipped with Bronkhorst® electronic flow controllers was used for automated adsorption. This sampling device allows time-saving collection of expired/inspired air in parallel onto three different needle traps as well as improvement of sensitivity and reproducibility of NT-GC-MS analysis by collection of relatively large (up to 150 ml) volume of exhaled breath. It was shown that the collection of alveolar air derived from only a few exhalations into a large syringe followed by automated adsorption on needle traps yields better results than manual sorption by up/down cycles with a 1 ml syringe, mostly due to avoided condensation and electronically controlled stable sample flow rate. The optimal profile and composition of needle traps consists of 2 cm Carbopack X and 1 cm Carboxen 1000, allowing highly efficient VOCs' enrichment, while injection by a fast expansive flow technique requires no modifications in instrumentation and fully automated GC-MS analysis can be performed with a commercially available autosampler. This optimized analytical procedure considerably facilitates the collection and enrichment of alveolar air, and is therefore suitable for application at the bedside of critically ill patients in an intensive care unit. Due to its simplicity it can replace the time-consuming sampling of sufficient breath volume by numerous up/down cycles with a 1 ml syringe.

  4. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples

    NASA Astrophysics Data System (ADS)

    Baranov, Dmitry; Hill, Robert J.; Ryu, Jisu; Park, Samuel D.; Huerta-Viga, Adriana; Carollo, Alexa R.; Jonas, David M.

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  5. Interferometrically stable, enclosed, spinning sample cell for spectroscopic experiments on air-sensitive samples.

    PubMed

    Baranov, Dmitry; Hill, Robert J; Ryu, Jisu; Park, Samuel D; Huerta-Viga, Adriana; Carollo, Alexa R; Jonas, David M

    2017-01-01

    In experiments with high photon flux, it is necessary to rapidly remove the sample from the beam and to delay re-excitation until the sample has returned to equilibrium. Rapid and complete sample exchange has been a challenge for air-sensitive samples and for vibration-sensitive experiments. Here, a compact spinning sample cell for air and moisture sensitive liquid and thin film samples is described. The principal parts of the cell are a copper gasket sealed enclosure, a 2.5 in. hard disk drive motor, and a reusable, chemically inert glass sandwich cell. The enclosure provides an oxygen and water free environment at the 1 ppm level, as demonstrated by multi-day tests with sodium benzophenone ketyl radical. Inside the enclosure, the glass sandwich cell spins at ≈70 Hz to generate tangential speeds of 7-12 m/s that enable complete sample exchange at 100 kHz repetition rates. The spinning cell is acoustically silent and compatible with a ±1 nm rms displacement stability interferometer. In order to enable the use of the spinning cell, we discuss centrifugation and how to prevent it, introduce the cycle-averaged resampling rate to characterize repetitive excitation, and develop a figure of merit for a long-lived photoproduct buildup.

  6. Comparative performance of three sampling techniques to detect airborne Salmonella species in poultry farms.

    PubMed

    Adell, Elisa; Moset, Verónica; Zhao, Yang; Jiménez-Belenguer, Ana; Cerisuelo, Alba; Cambra-López, María

    2014-01-01

    Sampling techniques to detect airborne Salmonella species (spp.) in two pilot scale broiler houses were compared. Broilers were inoculated at seven days of age with a marked strain of Salmonella enteritidis. The rearing cycle lasted 42 days during the summer. Airborne Salmonella spp. were sampled weekly using impaction, gravitational settling, and impingement techniques. Additionally, Salmonella spp. were sampled on feeders, drinkers, walls, and in the litter. Environmental conditions (temperature, relative humidity, and airborne particulate matter (PM) concentration) were monitored during the rearing cycle. The presence of Salmonella spp. was determined by culture-dependent and molecular methods. No cultivable Salmonella spp. were recovered from the poultry houses' surfaces, the litter, or the air before inoculation. After inoculation, cultivable Salmonella spp. were recovered from the surfaces and in the litter. Airborne cultivable Salmonella spp. Were detected using impaction and gravitational settling one or two weeks after the detection of Salmonella spp. in the litter. No cultivable Salmonella spp. were recovered using impingement based on culture-dependent techniques. At low airborne concentrations, the use of impingement for the quantification or detection of cultivable airborne Salmonella spp. is not recommended. In these cases, a combination of culture-dependent and culture-independent methods is recommended. These data are valuable to improve current measures to control the transmission of pathogens in livestock environments and for optimising the sampling and detection of airborne Salmonella spp. in practical conditions.

  7. 75 FR 59180 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control Technique...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control Technique Guidelines for Paper, Film, and... Technique Guidelines (CTG) for paper, film, and foil coatings. These amendments will reduce volatile organic... Promulgation of Air Quality Implementation Plans; Maryland; Control Technique Guidelines for Paper, Film, and...

  8. Sampling, storage, and analysis of C2-C7 non-methane hydrocarbons from the US National Oceanic and Atmospheric Administration Cooperative Air Sampling Network glass flasks.

    PubMed

    Pollmann, Jan; Helmig, Detlev; Hueber, Jacques; Plass-Dülmer, Christian; Tans, Pieter

    2008-04-25

    An analytical technique was developed to analyze light non-methane hydrocarbons (NMHC), including ethane, propane, iso-butane, n-butane, iso-pentane, n-pentane, n-hexane, isoprene, benzene and toluene from whole air samples collected in 2.5l-glass flasks used by the National Oceanic and Atmospheric Administration, Earth System Research Laboratory, Global Monitoring Division (NOAA ESRL GMD, Boulder, CO, USA) Cooperative Air Sampling Network. This method relies on utilizing the remaining air in these flasks (which is at below-ambient pressure at this stage) after the completion of all routine greenhouse gas measurements from these samples. NMHC in sample aliquots extracted from the flasks were preconcentrated with a custom-made, cryogen-free inlet system and analyzed by gas chromatography (GC) with flame ionization detection (FID). C2-C7 NMHC, depending on their ambient air mixing ratios, could be measured with accuracy and repeatability errors of generally < or =10-20%. Larger deviations were found for ethene and propene. Hexane was systematically overestimated due to a chromatographic co-elution problem. Saturated NMHC showed less than 5% changes in their mixing ratios in glass flask samples that were stored for up to 1 year. In the same experiment ethene and propene increased at approximately 30% yr(-1). A series of blank experiments showed negligible contamination from the sampling process and from storage (<10 pptv yr(-1)) of samples in these glass flasks. Results from flask NMHC analyses were compared to in-situ NMHC measurements at the Global Atmospheric Watch station in Hohenpeissenberg, Germany. This 9-months side-by-side comparison showed good agreement between both methods. More than 94% of all data comparisons for C2-C5 alkanes, isoprene, benzene and toluene fell within the combined accuracy and precision objectives of the World Meteorological Organization Global Atmosphere Watch (WMO-GAW) for NMHC measurements.

  9. Air sampling unit for breath analyzers

    NASA Astrophysics Data System (ADS)

    Szabra, Dariusz; Prokopiuk, Artur; Mikołajczyk, Janusz; Ligor, Tomasz; Buszewski, Bogusław; Bielecki, Zbigniew

    2017-11-01

    The paper presents a portable breath sampling unit (BSU) for human breath analyzers. The developed unit can be used to probe air from the upper airway and alveolar for clinical and science studies. The BSU is able to operate as a patient interface device for most types of breath analyzers. Its main task is to separate and to collect the selected phases of the exhaled air. To monitor the so-called I, II, or III phase and to identify the airflow from the upper and lower parts of the human respiratory system, the unit performs measurements of the exhaled CO2 (ECO2) in the concentration range of 0%-20% (0-150 mm Hg). It can work in both on-line and off-line modes according to American Thoracic Society/European Respiratory Society standards. A Tedlar bag with a volume of 5 dm3 is mounted as a BSU sample container. This volume allows us to collect ca. 1-25 selected breath phases. At the user panel, each step of the unit operation is visualized by LED indicators. This helps us to regulate the natural breathing cycle of the patient. There is also an operator's panel to ensure monitoring and configuration setup of the unit parameters. The operation of the breath sampling unit was preliminarily verified using the gas chromatography/mass spectrometry (GC/MS) laboratory setup. At this setup, volatile organic compounds were extracted by solid phase microextraction. The tests were performed by the comparison of GC/MS signals from both exhaled nitric oxide and isoprene analyses for three breath phases. The functionality of the unit was proven because there was an observed increase in the signal level in the case of the III phase (approximately 40%). The described work made it possible to construct a prototype of a very efficient breath sampling unit dedicated to breath sample analyzers.

  10. Non-terminal blood sampling techniques in guinea pigs.

    PubMed

    Birck, Malene M; Tveden-Nyborg, Pernille; Lindblad, Maiken M; Lykkesfeldt, Jens

    2014-10-11

    Guinea pigs possess several biological similarities to humans and are validated experimental animal models(1-3). However, the use of guinea pigs currently represents a relatively narrow area of research and descriptive data on specific methodology is correspondingly scarce. The anatomical features of guinea pigs are slightly different from other rodent models, hence modulation of sampling techniques to accommodate for species-specific differences, e.g., compared to mice and rats, are necessary to obtain sufficient and high quality samples. As both long and short term in vivo studies often require repeated blood sampling the choice of technique should be well considered in order to reduce stress and discomfort in the animals but also to ensure survival as well as compliance with requirements of sample size and accessibility. Venous blood samples can be obtained at a number of sites in guinea pigs e.g., the saphenous and jugular veins, each technique containing both advantages and disadvantages(4,5). Here, we present four different blood sampling techniques for either conscious or anaesthetized guinea pigs. The procedures are all non-terminal procedures provided that sample volumes and number of samples do not exceed guidelines for blood collection in laboratory animals(6). All the described methods have been thoroughly tested and applied for repeated in vivo blood sampling in studies within our research facility.

  11. Quantitative filter forensics for indoor particle sampling.

    PubMed

    Haaland, D; Siegel, J A

    2017-03-01

    Filter forensics is a promising indoor air investigation technique involving the analysis of dust which has collected on filters in central forced-air heating, ventilation, and air conditioning (HVAC) or portable systems to determine the presence of indoor particle-bound contaminants. In this study, we summarize past filter forensics research to explore what it reveals about the sampling technique and the indoor environment. There are 60 investigations in the literature that have used this sampling technique for a variety of biotic and abiotic contaminants. Many studies identified differences between contaminant concentrations in different buildings using this technique. Based on this literature review, we identified a lack of quantification as a gap in the past literature. Accordingly, we propose an approach to quantitatively link contaminants extracted from HVAC filter dust to time-averaged integrated air concentrations. This quantitative filter forensics approach has great potential to measure indoor air concentrations of a wide variety of particle-bound contaminants. Future studies directly comparing quantitative filter forensics to alternative sampling techniques are required to fully assess this approach, but analysis of past research suggests the enormous possibility of this approach. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Configurations and calibration methods for passive sampling techniques.

    PubMed

    Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-10-19

    Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.

  13. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  14. Air and smear sample calculational tool for Fluor Hanford Radiological control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BAUMANN, B.L.

    2003-07-11

    A spreadsheet calculation tool was developed to automate the calculations performed for determining the concentration of airborne radioactivity and smear counting as outlined in HNF-13536, Section 5.2.7, ''Analyzing Air and Smear Samples''. This document reports on the design and testing of the calculation tool. Radiological Control Technicians (RCTs) will save time and reduce hand written and calculation errors by using an electronic form for documenting and calculating work place air samples. Current expectations are RCTs will perform an air sample and collect the filter or perform a smear for surface contamination. RCTs will then survey the filter for gross alphamore » and beta/gamma radioactivity and with the gross counts utilize either hand calculation method or a calculator to determine activity on the filter. The electronic form will allow the RCT with a few key strokes to document the individual's name, payroll, gross counts, instrument identifiers; produce an error free record. This productivity gain is realized by the enhanced ability to perform mathematical calculations electronically (reducing errors) and at the same time, documenting the air sample.« less

  15. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  16. Compressed air injection technique to standardize block injection pressures.

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  17. Wastewater Sampling Methodologies and Flow Measurement Techniques.

    ERIC Educational Resources Information Center

    Harris, Daniel J.; Keffer, William J.

    This document provides a ready source of information about water/wastewater sampling activities using various commercial sampling and flow measurement devices. The report consolidates the findings and summarizes the activities, experiences, sampling methods, and field measurement techniques conducted by the Environmental Protection Agency (EPA),…

  18. A new analysis system for whole air sampling: description and results from 2013 SENEX

    NASA Astrophysics Data System (ADS)

    Lerner, B. M.; Gilman, J.; Dumas, M.; Hughes, D.; Jaksich, A.; Hatch, C. D.; Graus, M.; Warneke, C.; Apel, E. C.; Hornbrook, R. S.; Holloway, J. S.; De Gouw, J. A.

    2014-12-01

    Accurate measurement of volatile organic compounds (VOCs) in the troposphere is critical for the understanding of emissions and physical and chemical processes that can impact both air quality and climate. Airborne VOC measurements have proven especially challenging due to the requirement of both high sensitivity (pptv) and short sample collection times (≤15 s) to maximize spatial resolution and sampling frequency for targeted plume analysis. The use of stainless steel canisters to collect whole air samples (WAS) for post-flight analysis has been pioneered by the groups of D. Blake and E. Atlas [Blake et al., 1992; Atlas et al., 1993]. For the 2013 Southeast Nexus Study (SENEX), the NOAA ESRL CSD laboratory undertook WAS measurements for the first time. This required the construction of three new, highly-automated, and field-portable instruments designed to sample, analyze, and clean the canisters for re-use. Analysis was performed with a new custom-built gas chromatograph-mass spectrometer system. The instrument pre-concentrates analyte cryostatically into two parallel traps by means of a Stirling engine, a novel technique which obviates the need for liquid nitrogen to reach trapping temperatures of -175C. Here we present an evaluation of the retrieval of target VOC species from WAS canisters. We discuss the effects of humidity and sample age on the analyte, particularly upon C8+ alkane and aromatic species and biogenic species. Finally, we present results from several research flights during SENEX that targeted emissions from oil/natural gas production.

  19. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  20. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE PAGES

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...

    2018-03-03

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  1. Commander De Winne poses for a photo during Air Sampling

    NASA Image and Video Library

    2009-11-11

    ISS021-E-024700 (11 Nov. 2009) --- European Space Agency astronaut Frank De Winne, Expedition 21 commander, uses the Microbial Air Sampler kit (floating freely near De Winne) to obtain microbiology (bacterial & fungal) air samples in the Kibo laboratory of the International Space Station.

  2. Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay

    PubMed Central

    Stärk, Katharina D. C.; Nicolet, Jacques; Frey, Joachim

    1998-01-01

    This article describes the first successful detection of airborne Mycoplasma hyopneumoniae under experimental and field conditions with a new nested PCR assay. Air was sampled with polyethersulfone membranes (pore size, 0.2 μm) mounted in filter holders. Filters were processed by dissolution and direct extraction of DNA for PCR analysis. For the PCR, two nested pairs of oligonucleotide primers were designed by using an M. hyopneumoniae-specific DNA sequence of a repeated gene segment. A nested PCR assay was developed and used to analyze samples collected in eight pig houses where respiratory problems had been common. Air was also sampled from a mycoplasma-free herd. The nested PCR was highly specific and 104 times as sensitive as a one-step PCR. Under field conditions, the sampling system was able to detect airborne M. hyopneumoniae on 80% of farms where acute respiratory disease was present. No airborne M. hyopneumoniae was detected on infected farms without acute cases. The chance of successful detection was increased if air was sampled at several locations within a room and at a lower air humidity. PMID:9464391

  3. Monitoring airborne fungal spores in an experimental indoor environment to evaluate sampling methods and the effects of human activity on air sampling.

    PubMed Central

    Buttner, M P; Stetzenbach, L D

    1993-01-01

    Aerobiological monitoring was conducted in an experimental room to aid in the development of standardized sampling protocols for airborne microorganisms in the indoor environment. The objectives of this research were to evaluate the relative efficiencies of selected sampling methods for the retrieval of airborne fungal spores and to determine the effect of human activity on air sampling. Dry aerosols containing known concentrations of Penicillium chrysogenum spores were generated, and air samples were taken by using Andersen six-stage, Surface Air System, Burkard, and depositional samplers. The Andersen and Burkard samplers retrieved the highest numbers of spores compared with the measurement standard, an aerodynamic particle sizer located inside the room. Data from paired samplers demonstrated that the Andersen sampler had the highest levels of sensitivity and repeatability. With a carpet as the source of P. chrysogenum spores, the effects of human activity (walking or vacuuming near the sampling site) on air sampling were also examined. Air samples were taken under undisturbed conditions and after human activity in the room. Human activity resulted in retrieval of significantly higher concentrations of airborne spores. Surface sampling of the carpet revealed moderate to heavy contamination despite relatively low airborne counts. Therefore, in certain situations, air sampling without concomitant surface sampling may not adequately reflect the level of microbial contamination in indoor environments. PMID:8439150

  4. An Intelligent Harmonic Synthesis Technique for Air-Gap Eccentricity Fault Diagnosis in Induction Motors

    NASA Astrophysics Data System (ADS)

    Li, De Z.; Wang, Wilson; Ismail, Fathy

    2017-11-01

    Induction motors (IMs) are commonly used in various industrial applications. To improve energy consumption efficiency, a reliable IM health condition monitoring system is very useful to detect IM fault at its earliest stage to prevent operation degradation, and malfunction of IMs. An intelligent harmonic synthesis technique is proposed in this work to conduct incipient air-gap eccentricity fault detection in IMs. The fault harmonic series are synthesized to enhance fault features. Fault related local spectra are processed to derive fault indicators for IM air-gap eccentricity diagnosis. The effectiveness of the proposed harmonic synthesis technique is examined experimentally by IMs with static air-gap eccentricity and dynamic air-gap eccentricity states under different load conditions. Test results show that the developed harmonic synthesis technique can extract fault features effectively for initial IM air-gap eccentricity fault detection.

  5. Contemporary-use pesticides in personal air samples during pregnancy and blood samples at delivery among urban minority mothers and newborns.

    PubMed Central

    Whyatt, Robin M; Barr, Dana B; Camann, David E; Kinney, Patrick L; Barr, John R; Andrews, Howard F; Hoepner, Lori A; Garfinkel, Robin; Hazi, Yair; Reyes, Andria; Ramirez, Judyth; Cosme, Yesenia; Perera, Frederica P

    2003-01-01

    We have measured 29 pesticides in plasma samples collected at birth between 1998 and 2001 from 230 mother and newborn pairs enrolled in the Columbia Center for Children's Environmental Health prospective cohort study. Our prior research has shown widespread pesticide use during pregnancy among this urban minority cohort from New York City. We also measured eight pesticides in 48-hr personal air samples collected from the mothers during pregnancy. The following seven pesticides were detected in 48-83% of plasma samples (range, 1-270 pg/g): the organophosphates chlorpyrifos and diazinon, the carbamates bendiocarb and 2-isopropoxyphenol (metabolite of propoxur), and the fungicides dicloran, phthalimide (metabolite of folpet and captan), and tetrahydrophthalimide (metabolite of captan and captafol). Maternal and cord plasma levels were similar and, except for phthalimide, were highly correlated (p < 0.001). Chlorpyrifos, diazinon, and propoxur were detected in 100% of personal air samples (range, 0.7-6,010 ng/m(3)). Diazinon and propoxur levels were significantly higher in the personal air of women reporting use of an exterminator, can sprays, and/or pest bombs during pregnancy compared with women reporting no pesticide use or use of lower toxicity methods only. A significant correlation was seen between personal air level of chlorpyrifos, diazinon, and propoxur and levels of these insecticides or their metabolites in plasma samples (maternal and/or cord, p < 0.05). The fungicide ortho-phenylphenol was also detected in 100% of air samples but was not measured in plasma. The remaining 22 pesticides were detected in 0-45% of air or plasma samples. Chlorpyrifos, diazinon, propoxur, and bendiocarb levels in air and/or plasma decreased significantly between 1998 and 2001. Findings indicate that pesticide exposures are frequent but decreasing and that the pesticides are readily transferred to the developing fetus during pregnancy. PMID:12727605

  6. Profiling quinones in ambient air samples collected from the Athabasca region (Canada).

    PubMed

    Wnorowski, Andrzej; Charland, Jean-Pierre

    2017-12-01

    This paper presents new findings on polycyclic aromatic hydrocarbon oxidation products-quinones that were collected in ambient air samples in the proximity of oil sands exploration. Quinones were characterized for their diurnal concentration variability, phase partitioning, and molecular size distribution. Gas-phase (GP) and particle-phase (PM) ambient air samples were collected separately in the summer; a lower quinone content was observed in the PM samples from continuous 24-h sampling than from combined 12-h sampling (day and night). The daytime/nocturnal samples demonstrated that nighttime conditions led to lower concentrations and some quinones not being detected. The highest quinone levels were associated with wind directions originating from oil sands exploration sites. The statistical correlation with primary pollutants directly emitted from oil sands industrial activities indicated that the bulk of the detected quinones did not originate directly from primary emission sources and that quinone formation paralleled a reduction in primary source NO x levels. This suggests a secondary chemical transformation of primary pollutants as the origin of the determined quinones. Measurements of 19 quinones included five that have not previously been reported in ambient air or in Standard Reference Material 1649a/1649b and seven that have not been previously measured in ambient air in the underivatized form. This is the first paper to report on quinone characterization in secondary organic aerosols originating from oil sands activities, to distinguish chrysenequinone and anthraquinone positional isomers in ambient air, and to report the requirement of daylight conditions for benzo[a]pyrenequinone and naphthacenequinone to be present in ambient air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  7. Nose biopsy: a comparison between two sampling techniques.

    PubMed

    Segal, Nili; Osyntsov, Lidia; Olchowski, Judith; Kordeluk, Sofia; Plakht, Ygal

    2016-06-01

    Pre operative biopsy is important in obtaining preliminary information that may help in tailoring the optimal treatment. The aim of this study was to compare two sampling techniques of obtaining nasal biopsy-nasal forceps and nasal scissors in terms of pathological results. Biopsies of nasal lesions were taken from patients undergoing nasal surgery by two techniques- with nasal forceps and with nasal scissors. Each sample was examined by a senior pathologist that was blinded to the sampling method. A grading system was used to rate the crush artifact in every sample (none, mild, moderate, severe). A comparison was made between the severity of the crush artifact and the pathological results of the two techniques. One hundred and forty-four samples were taken from 46 patients. Thirty-one were males and the mean age was 49.6 years. Samples taken by forceps had significantly higher grades of crush artifacts compared to those taken by scissors. The degree of crush artifacts had a significant influence on the accuracy of the pre operative biopsy. Forceps cause significant amount of crush artifacts compared to scissors. The degree of crush artifact in the tissue sample influences the accuracy of the biopsy.

  8. Composition Alteration of Stratospheric Air Due to Sampling through a Flow Tube.

    DTIC Science & Technology

    1984-02-03

    C. C. , Forsberg, C. A. , and Pieri , H. V. (19)83) Stratospheric N 20 CF2 Cl and CFCI3 composition studies utilizing in situ cryogenic whole air...Gas-Surface Interactions in Cryogenic Whole Air Sampling, AFGL-TR-81-0162, AD A108255. 19. Gallagher, C. C., Forsberg, C. A., and Pieri , R. V. (1983...Gallagher, C. C., Forsberg, C. A., Pieri , R. V., and Faucher, G. A. (1983a) Oxides of Nitrogen Content of Whole Air Samples Obtained at Altitudes From 12

  9. Using Candy Samples to Learn about Sampling Techniques and Statistical Data Evaluation

    ERIC Educational Resources Information Center

    Canaes, Larissa S.; Brancalion, Marcel L.; Rossi, Adriana V.; Rath, Susanne

    2008-01-01

    A classroom exercise for undergraduate and beginning graduate students that takes about one class period is proposed and discussed. It is an easy, interesting exercise that demonstrates important aspects of sampling techniques (sample amount, particle size, and the representativeness of the sample in relation to the bulk material). The exercise…

  10. Carter Carburetor Weekly Air Monitoring & Sampling Report - March 7, 2013 - March 13, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  11. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.

    PubMed

    Patts, Justin R; Barone, Teresa L

    2017-05-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may

  12. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Lindberg, Michael J.

    Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less

  13. Laboratory Testing of Volcanic Gas Sampling Techniques

    NASA Astrophysics Data System (ADS)

    Kress, V. C.; Green, R.; Ortiz, M.; Delmelle, P.; Fischer, T.

    2003-12-01

    A series of laboratory experiments were performed designed to calibrate several commonly used methods for field measurement of volcanic gas composition. H2, CO2, SO2 and CHCl2F gases were mixed through carefully calibrated rotameters to form mixtures representative of the types of volcanic compositions encountered at Kilauea and Showa-Shinzan. Gas mixtures were passed through a horizontal furnace at 700oC to break down CHCl2F and form an equilibrium high-temperature mixture. With the exception of Giggenbach bottle samples, all gas sampling was performed adjacent to the furnace exit in order to roughly simulate the air-contaminated samples encountered in Nature. Giggenbach bottle samples were taken from just beyond the hot-spot 10cm down the furnace tube to minimize atmospheric contamination. Alkali-trap measurements were performed by passing gases over or bubbling gases through 6N KOH, NaOH or LiOH solution for 10 minutes. Results were highly variable with errors in measured S/Cl varying from +1600% to -19%. In general reduced Kilauea compositions showed smaller errors than the more oxidized Showa-Shinzan compositions. Results were not resolvably different in experiments where gas was bubbled through the alkaline solution. In a second set of experiments, 25mm circles of Whatman 42 filter paper were impregnated with NaHCO3or KHCO3 alkaline solutions stabilized with glycerol. Some filters also included Alizarin (5.6-7.2) and neutral red (6.8-8.0) Ph indicator to provide a visual monitor of gas absorption. Filters were mounted in individual holders and used in stacks of 3. Durations were adjusted to maximize reaction in the first filter in the stack and minimize reaction in the final filter. Errors in filter pack measurements were smaller and more systematic than the alkali trap measurements. S/Cl was overestimated in oxidized gas mixtures and underestimated in reduced mixtures. Alkali-trap methods allow extended unattended monitoring of volcanic gasses, but our

  14. A New Fast, Reliable Technique for the Sampling of Dissolved Inorganic Carbon in Sea Ice

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Wang, F.; Rysgaard, S.; Barber, D. G.

    2015-12-01

    For a long time, sea ice was considered to act as a lid over seawater preventing CO2 exchange between the atmosphere and ocean. Recent observations suggest that sea ice can be an active source or a sink for CO2, although its magnitude is not very clear. The direct measurements on CO2 flux based on the chamber method and eddy covariance often do not agree with each other. It is therefore important to measure the dissolved inorganic carbon (DIC) stock in sea ice precisely in order to better understand the CO2 flux through sea ice. The challenges in sea ice DIC sampling is how to melt the ice core without being exposed to the air gaining or losing CO2. A common practice is to seal the ice core in a self-prepared gas-tight plastic bag and suck the air out of the bag gently using a syringe (together with a needle) through a valve mounted on one side of the bag. However, this method is time consuming (takes up to several minutes to suck the air out) and very often there is large headspace found in the bag after the ice melts due to the imperfect bag-preparation, which might affect the DIC concentration in melt ice-water. We developed a new technique by using a commercially available plastic bag with a vacuum sealer to seal the ice core. In comparison to syringe-based method, this technique is fast and easy to operate; it takes less than 10 seconds to vacuum and seal the bag all in one button with no headspace left in the bag. Experimental tests with replicate ice cores sealed by those two methods showed that there is no difference in the DIC concentration measured after these two methods, suggesting that there is no loss of DIC during the course of vacuum sealing. In addition, a time series experiment on DIC in melt ice-water stored in the new bag shows that when the samples were not poisoned, the DIC concentration remains unchanged for at least 3 days in the bag; while poisoned by HgCl2, there is no change in DIC for at least 21 days, indicating that this new bag is

  15. Can Particulate Air Sampling Predict Microbial Load in Operating Theatres for Arthroplasty?

    PubMed Central

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m3; the mean particle count was 4,194,569 no./m3 for particles of diameter ≥0.5 µm and 13,519 no./m3 for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of

  16. Can particulate air sampling predict microbial load in operating theatres for arthroplasty?

    PubMed

    Cristina, Maria Luisa; Spagnolo, Anna Maria; Sartini, Marina; Panatto, Donatella; Gasparini, Roberto; Orlando, Paolo; Ottria, Gianluca; Perdelli, Fernanda

    2012-01-01

    Several studies have proposed that the microbiological quality of the air in operating theatres be indirectly evaluated by means of particle counting, a technique derived from industrial clean-room technology standards, using airborne particle concentration as an index of microbial contamination. However, the relationship between particle counting and microbiological sampling has rarely been evaluated and demonstrated in operating theatres. The aim of the present study was to determine whether particle counting could predict microbiological contamination of the air in an operating theatre during 95 surgical arthroplasty procedures. This investigation was carried out over a period of three months in 2010 in an orthopedic operating theatre devoted exclusively to prosthetic surgery. During each procedure, the bacterial contamination of the air was determined by means of active sampling; at the same time, airborne particulate contamination was assessed throughout the entire procedure. On considering the total number of surgical operations, the mean value of the total bacterial load in the center of the operating theatre proved to be 35 CFU/m(3); the mean particle count was 4,194,569 no./m(3) for particles of diameter ≥0.5 µm and 13,519 no./m(3) for particles of diameter ≥5 µm. No significant differences emerged between the median values of the airborne microbial load recorded during the two types of procedure monitored. Particulates with a diameter of ≥0.5 µm were detected in statistically higher concentrations (p<0.001) during knee-replacement procedures. By contrast, particulates with a diameter of ≥5 µm displayed a statistically higher concentration during hip-replacement procedures (p<0.05). The results did not reveal any statistically significant correlation between microbial loads and particle counts for either of the particle diameters considered (≥0.5 µm and ≥5 µm). Consequently, microbiological monitoring remains the most suitable method of

  17. Study of sample drilling techniques for Mars sample return missions

    NASA Technical Reports Server (NTRS)

    Mitchell, D. C.; Harris, P. T.

    1980-01-01

    To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.

  18. The Importance of Introductory Statistics Students Understanding Appropriate Sampling Techniques

    ERIC Educational Resources Information Center

    Menil, Violeta C.

    2005-01-01

    In this paper the author discusses the meaning of sampling, the reasons for sampling, the Central Limit Theorem, and the different techniques of sampling. Practical and relevant examples are given to make the appropriate sampling techniques understandable to students of Introductory Statistics courses. With a thorough knowledge of sampling…

  19. [Application of laminar air flow techniques in burn treatment].

    PubMed

    Chen, Hua-de; Lai, Wen; Zheng, Shao-yi; Gao, Hui; Xiong, Bing; Bian, Hui-ning; Liu, Zuo-An; Wei, Li-jun

    2005-12-01

    To evaluate the value of laminar flow in the treatment of burns. The air in the laminar flow chamber and the wound tissues of the patients were sampled for bacterial detection. The number and stains of bacterial colony from different classes of laminar air flow chambers at different time points were inspected and compared. The bacterial number was 0 in the laminar flow chamber of 1000 grade, which was obviously different from that in the public area. The mortality was obviously decreased in the laminar air flow chamber with shorter treatment time and hospitalization. No wound infection occurred and the wounds healed smoothly in all these patients. The application of laminar air flow can be helpful for the treatment of severe burns.

  20. Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy.

    PubMed

    Gibb-Snyder, Emily; Gullett, Brian; Ryan, Shawn; Oudejans, Lukas; Touati, Abderrahmane

    2006-08-01

    Size-selective sampling of Bacillus anthracis surrogate spores from realistic, common aerosol mixtures was developed for analysis by laser-induced breakdown spectroscopy (LIBS). A two-stage impactor was found to be the preferential sampling technique for LIBS analysis because it was able to concentrate the spores in the mixtures while decreasing the collection of potentially interfering aerosols. Three common spore/aerosol scenarios were evaluated, diesel truck exhaust (to simulate a truck running outside of a building air intake), urban outdoor aerosol (to simulate common building air), and finally a protein aerosol (to simulate either an agent mixture (ricin/anthrax) or a contaminated anthrax sample). Two statistical methods, linear correlation and principal component analysis, were assessed for differentiation of surrogate spore spectra from other common aerosols. Criteria for determining percentages of false positives and false negatives via correlation analysis were evaluated. A single laser shot analysis of approximately 4 percent of the spores in a mixture of 0.75 m(3) urban outdoor air doped with approximately 1.1 x 10(5) spores resulted in a 0.04 proportion of false negatives. For that same sample volume of urban air without spores, the proportion of false positives was 0.08.

  1. Enhanced sampling techniques in biomolecular simulations.

    PubMed

    Spiwok, Vojtech; Sucur, Zoran; Hosek, Petr

    2015-11-01

    Biomolecular simulations are routinely used in biochemistry and molecular biology research; however, they often fail to match expectations of their impact on pharmaceutical and biotech industry. This is caused by the fact that a vast amount of computer time is required to simulate short episodes from the life of biomolecules. Several approaches have been developed to overcome this obstacle, including application of massively parallel and special purpose computers or non-conventional hardware. Methodological approaches are represented by coarse-grained models and enhanced sampling techniques. These techniques can show how the studied system behaves in long time-scales on the basis of relatively short simulations. This review presents an overview of new simulation approaches, the theory behind enhanced sampling methods and success stories of their applications with a direct impact on biotechnology or drug design. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section

    PubMed Central

    Patts, Justin R.; Barone, Teresa L.

    2017-01-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may

  3. Herbal Extract Incorporated Nanofiber Fabricated by an Electrospinning Technique and its Application to Antimicrobial Air Filtration.

    PubMed

    Choi, Jeongan; Yang, Byeong Joon; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-18

    Recently, with the increased attention to indoor air quality, antimicrobial air filtration techniques have been studied widely to inactivate hazardous airborne microorganisms effectively. In this study, we demonstrate herbal extract incorporated (HEI) nanofibers synthesized by an electrospinning technique and their application to antimicrobial air filtration. As an antimicrobial herbal material, an ethanolic extract of Sophora flavescens, which exhibits great antibacterial activity against pathogens, was mixed with the polymer solution for the electrospinning process. We measured various characteristics of the synthesized HEI nanofibers, such as fiber morphology, fiber size distribution, and thermal stability. For application of the electrospun HEI nanofibers, we made highly effective air filters with 99.99% filtration efficiency and 99.98% antimicrobial activity against Staphylococcus epidermidis. The pressure drop across the HEI nanofiber air filter was 4.75 mmH2O at a face air velocity of 1.79 cm/s. These results will facilitate the implementation of electrospun HEI nanofiber techniques to control air quality and protect against hazardous airborne microorganisms.

  4. High-throughput liquid-absorption air-sampling apparatus and methods

    DOEpatents

    Zaromb, Solomon

    2000-01-01

    A portable high-throughput liquid-absorption air sampler [PHTLAAS] has an asymmetric air inlet through which air is drawn upward by a small and light-weight centrifugal fan driven by a direct current motor that can be powered by a battery. The air inlet is so configured as to impart both rotational and downward components of motion to the sampled air near said inlet. The PHTLAAS comprises a glass tube of relatively small size through which air passes at a high rate in a swirling, highly turbulent motion, which facilitates rapid transfer of vapors and particulates to a liquid film covering the inner walls of the tube. The pressure drop through the glass tube is <10 cm of water, usually <5 cm of water. The sampler's collection efficiency is usually >20% for vapors or airborne particulates in the 2-3.mu. range and >50% for particles larger than 4.mu.. In conjunction with various analyzers, the PHTLAAS can serve to monitor a variety of hazardous or illicit airborne substances, such as lead-containing particulates, tritiated water vapor, biological aerosols, or traces of concealed drugs or explosives.

  5. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 30, 2015 – December 6, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  6. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 26, 2015 – November 1, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  7. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 15, 2016 – February 21, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  8. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 12, 2015 – October 18, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  9. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 23, 2015 – November 29, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  10. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 5, 2015 – October 11, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  11. Carter Carburetor Weekly Air Monitoring & Sampling Report - February 1, 2016 – February 7, 2016

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  12. Carter Carburetor Weekly Air Monitoring & Sampling Report - September 28, 2015 – October 4, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  13. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 16, 2015 – November 22, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  14. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 9, 2015 – November 15, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  15. Carter Carburetor Weekly Air Monitoring & Sampling Report - October 19, 2015 – October 25, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  16. Carter Carburetor Weekly Air Monitoring & Sampling Report - November 2, 2015 – November 8, 2015

    EPA Pesticide Factsheets

    Carter Carburetor Daily Weather Conditions, Dairly Work Activities, Daily Air Monitoring and Samplying Results, Air Monitoring/Samplying Results –Station 2 Linc 126, Air Monitoring/Sampling Results- Sation 3 Linc 123, Air Monitoring/Samplying Results-Stati

  17. Differences in sampling techniques on total post-mortem tryptase.

    PubMed

    Tse, R; Garland, J; Kesha, K; Elstub, H; Cala, A D; Ahn, Y; Stables, S; Palmiere, C

    2018-05-01

    The measurement of mast cell tryptase is commonly used to support the diagnosis of anaphylaxis. In the post-mortem setting, the literature recommends sampling from peripheral blood sources (femoral blood) but does not specify the exact sampling technique. Sampling techniques vary between pathologists, and it is unclear whether different sampling techniques have any impact on post-mortem tryptase levels. The aim of this study is to compare the difference in femoral total post-mortem tryptase levels between two sampling techniques. A 6-month retrospective study comparing femoral total post-mortem tryptase levels between (1) aspirating femoral vessels with a needle and syringe prior to evisceration and (2) femoral vein cut down during evisceration. Twenty cases were identified, with three cases excluded from analysis. There was a statistically significant difference (paired t test, p < 0.05) between mean post-mortem tryptase by aspiration (10.87 ug/L) and by cut down (14.15 ug/L). The mean difference between the two methods was 3.28 ug/L (median, 1.4 ug/L; min, - 6.1 ug/L; max, 16.5 ug/L; 95% CI, 0.001-6.564 ug/L). Femoral total post-mortem tryptase is significantly different, albeit by a small amount, between the two sampling methods. The clinical significance of this finding and what factors may contribute to it are unclear. When requesting post-mortem tryptase, the pathologist should consider documenting the exact blood collection site and method used for collection. In addition, blood samples acquired by different techniques should not be mixed together and should be analyzed separately if possible.

  18. Ultimate detectability of volatile organic compounds: how much further can we reduce their ambient air sample volumes for analysis?

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2012-10-02

    To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.

  19. The radiocarbon hydroxyl technique

    NASA Technical Reports Server (NTRS)

    Campbell, Malcolm J.; Sheppard, John C.

    1994-01-01

    The Radiocarbon Technique depends upon measuring the rate of oxidation of CO in an essentially unperturbed sample of air. The airborne technique is slightly different. Hydroxyl concentrations can be calculated directly; peroxyl concentrations can be obtained by NO doping.

  20. Air Sampling Logbook of Region 4 Yellow Bluff Air Study Wilcox County, Alabama SESD Project Identification Number:11-0068

    EPA Pesticide Factsheets

    Contains the Air Sampling Logbook between 1-24-2011 thru 1-28-2011 from the Region 4 Yellow Bluff Air Study Wilcox County, Alabama SESD Project Identification Number:11-0068 November 2010-December 2010

  1. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Implementation of Satellite Techniques in the Air Transport

    NASA Astrophysics Data System (ADS)

    Fellner, Andrzej; Jafernik, Henryk

    2016-06-01

    The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.

  3. A visual training tool for the Photoload sampling technique

    Treesearch

    Violet J. Holley; Robert E. Keane

    2010-01-01

    This visual training aid is designed to provide Photoload users a tool to increase the accuracy of fuel loading estimations when using the Photoload technique. The Photoload Sampling Technique (RMRS-GTR-190) provides fire managers a sampling method for obtaining consistent, accurate, inexpensive, and quick estimates of fuel loading. It is designed to require only one...

  4. Chemical reactivities of ambient air samples in three Southern California communities

    PubMed Central

    Eiguren-Fernandez, Arantza; Di Stefano, Emma; Schmitz, Debra A.; Guarieiro, Aline Lefol Nani; Salinas, Erika M.; Nasser, Elina; Froines, John R.; Cho, Arthur K.

    2015-01-01

    The potential adverse health effects of PM2.5 and vapor samples from three communities that neighbor railyards, Commerce (CM), Long Beach (LB), and San Bernardino (SB), were assessed by determination of chemical reactivities attributed to the induction of oxidative stress by air pollutants. The assays used were dithiothreitol (DTT) and dihydrobenzoic acid (DHBA) based procedures for prooxidant content and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) assay for electrophiles. Prooxidants and electrophiles have been proposed as the reactive chemical species responsible for the induction of oxidative stress by air pollution mixtures. The PM2.5 samples from CM and LB sites showed seasonal differences in reactivities with higher levels in the winter whereas the SB sample differences were reversed. The reactivities in the vapor samples were all very similar, except for the summer SB samples, which contained higher levels of both prooxidants and electrophiles. The results suggest the observed reactivities reflect general geographical differences rather than direct effects of the railyards. Distributional differences in reactivities were also observed with PM2.5 fractions containing most of the prooxidants (74–81%) and the vapor phase most of the electrophiles (82–96%). The high levels of the vapor phase electrophiles and their potential for adverse biological effects point out the importance of the vapor phase in assessing the potential health effects of ambient air. PMID:25947123

  5. Simultaneous sampling and analysis of indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device.

    PubMed

    Eom, In-Yong; Risticevic, Sanja; Pawliszyn, Janusz

    2012-02-24

    Air in a room infested by Cimex lectularius L. (Hemiptera: Cimicidae) was sampled simultaneously by three different sampling devices including solid phase microextraction (SPME) fiber coatings, thin film microextraction (TFME) devices, and needle trap devices (NTDs) and then analyzed by gas chromatography-mass spectrometry (GC-MS). The main focus of this study was to fully characterize indoor air by identifying compounds extracted by three different microextraction formats and, therefore, perform both the device comparison and more complete characterization of C. lectularius pheromone. The NTD technique was capable of extracting both (E)-2-hexenal and (E)-2-octenal, which were previously identified as alarm pheromones of bedbugs, and superior NTD recoveries for these two components allowed reliable identification based on mass spectral library searching and linear temperature programmed retention index (LTPRI) technique. While the use of DVB/CAR/PDMS SPME fiber coatings provided complementary sample fingerprinting and profiling results, TFME sampling devices provided discriminative extraction coverage toward highly volatile analytes. In addition to two alarm pheromones, relative abundances of all other analytes were recorded for all three devices and aligned across all examined samples, namely, highly infested area, less infested area, and control samples which were characterized by different bedbug populations. The results presented in the current study illustrate comprehensive characterization of infested indoor air samples through the use of three different non-invasive SPME formats and identification of novel components comprising C. lectularius pheromone, therefore, promising future alternatives for use of potential synthetic pheromones for detection of infestations. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Atmospheric Methane Mixing Ratios--The NOAA/CMDL Global Cooperative Air Sampling Network\\, 1983-1993

    DOE Data Explorer

    Dlugokencky, E. J. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Lang, P. M. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Masarie, K. A. [National Oceanic and Atmospheric Administration, Boulder, Colorado (USA); Steele, L. P. [Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria, Australia

    1994-01-01

    This data base presents atmospheric methane (CH4) mixing ratios from flask air samples collected over the period 1983-1993 by the National Oceanic and Atmospheric Administration, Climate Monitoring and Diagnostics Laboratory's (NOAA/CMDL's) global cooperative air sampling network. Air samples were collected approximately once per week at 44 fixed sites (37 of which were still active at the end of 1993). Samples were also collected at 5 degree latitude intervals along shipboard cruise tracks in the Pacific Ocean between North America and New Zealand (or Australia) and at 3 degree latitude intervals along cruise tracks in the South China Sea between Singapore and Hong Kong. The shipboard measurements were made approximately every 3 weeks per latitude zone by each of two ships in the Pacific Ocean and approximately once every week per latitude zone in the South China Sea. All samples were analyzed for CH4 at the NOAA/CMDL laboratory in Boulder, Colorado, by gas chromatography with flame ionization detection, and each aliquot was referenced to the NOAA/CMDL methane standard scale. In addition to providing the complete set of atmospheric CH4 measurements from flask air samples collected at the NOAA/CMDL network sites, this data base also includes files which list monthly mean mixing ratios derived from the individual flask air measurements. These monthly summary data are available for 35 of the fixed sites and 21 of the shipboard sampling sites.

  7. Investigation of spectral analysis techniques for randomly sampled velocimetry data

    NASA Technical Reports Server (NTRS)

    Sree, Dave

    1993-01-01

    It is well known that velocimetry (LV) generates individual realization velocity data that are randomly or unevenly sampled in time. Spectral analysis of such data to obtain the turbulence spectra, and hence turbulence scales information, requires special techniques. The 'slotting' technique of Mayo et al, also described by Roberts and Ajmani, and the 'Direct Transform' method of Gaster and Roberts are well known in the LV community. The slotting technique is faster than the direct transform method in computation. There are practical limitations, however, as to how a high frequency and accurate estimate can be made for a given mean sampling rate. These high frequency estimates are important in obtaining the microscale information of turbulence structure. It was found from previous studies that reliable spectral estimates can be made up to about the mean sampling frequency (mean data rate) or less. If the data were evenly samples, the frequency range would be half the sampling frequency (i.e. up to Nyquist frequency); otherwise, aliasing problem would occur. The mean data rate and the sample size (total number of points) basically limit the frequency range. Also, there are large variabilities or errors associated with the high frequency estimates from randomly sampled signals. Roberts and Ajmani proposed certain pre-filtering techniques to reduce these variabilities, but at the cost of low frequency estimates. The prefiltering acts as a high-pass filter. Further, Shapiro and Silverman showed theoretically that, for Poisson sampled signals, it is possible to obtain alias-free spectral estimates far beyond the mean sampling frequency. But the question is, how far? During his tenure under 1993 NASA-ASEE Summer Faculty Fellowship Program, the author investigated from his studies on the spectral analysis techniques for randomly sampled signals that the spectral estimates can be enhanced or improved up to about 4-5 times the mean sampling frequency by using a suitable

  8. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  9. Analytical techniques and method validation for the measurement of selected semivolatile and nonvolatile organofluorochemicals in air.

    PubMed

    Reagen, William K; Lindstrom, Kent R; Thompson, Kathy L; Flaherty, John M

    2004-09-01

    The widespread use of semi- and nonvolatile organofluorochemicals in industrial facilities, concern about their persistence, and relatively recent advancements in liquid chromatography/mass spectrometry (LC/MS) technology have led to the development of new analytical methods to assess potential worker exposure to airborne organofluorochemicals. Techniques were evaluated for the determination of 19 organofluorochemicals and for total fluorine in ambient air samples. Due to the potential biphasic nature of most of these fluorochemicals when airborne, Occupational Safety and Health Administration (OSHA) versatile sampler (OVS) tubes were used to simultaneously trap fluorochemical particulates and vapors from workplace air. Analytical methods were developed for OVS air samples to quantitatively analyze for total fluorine using oxygen bomb combustion/ion selective electrode and for 17 organofluorochemicals using LC/MS and gas chromatography/mass spectrometry (GC/MS). The experimental design for this validation was based on the National Institute of Occupational Safety and Health (NIOSH) Guidelines for Air Sampling and Analytical Method Development and Evaluation, with some revisions of the experimental design. The study design incorporated experiments to determine analytical recovery and stability, sampler capacity, the effect of some environmental parameters on recoveries, storage stability, limits of detection, precision, and accuracy. Fluorochemical mixtures were spiked onto each OVS tube over a range of 0.06-6 microg for each of 12 compounds analyzed by LC/MS and 0.3-30 microg for 5 compounds analyzed by GC/MS. These ranges allowed reliable quantitation at 0.001-0.1 mg/m3 in general for LC/MS analytes and 0.005-0.5 mg/m3 for GC/MS analytes when 60 L of air are sampled. The organofluorochemical exposure guideline (EG) is currently 0.1 mg/m3 for many analytes, with one exception being ammonium perfluorooctanoate (EG is 0.01 mg/m3). Total fluorine results may be used

  10. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  11. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  12. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR.

    PubMed

    Cox, Jennie; Indugula, Reshmi; Vesper, Stephen; Zhu, Zheng; Jandarov, Roman; Reponen, Tiina

    2017-10-18

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample collected with a Button™ inhalable aerosol sampler and four types of dust samples: a vacuumed floor dust sample, newly settled dust collected for four weeks onto two types of electrostatic dust cloths (EDCs) in trays, and a wipe sample of dust from above floor surfaces. The samples were obtained in the bedrooms of asthmatic children (n = 14). Quantitative polymerase chain reaction (qPCR) was used to analyze the dust and air samples for the 36 fungal species that make up the Environmental Relative Moldiness Index (ERMI). The results from the samples were compared by four matrices: total concentration of fungal cells, concentration of fungal species associated with indoor environments, concentration of fungal species associated with outdoor environments, and ERMI values (or ERMI-like values for air samples). The ERMI values for the dust samples and the ERMI-like values for the 48 hour air samples were not significantly different. The total cell concentrations of the 36 species obtained with the four dust collection methods correlated significantly (r = 0.64-0.79, p < 0.05), with the exception of the vacuumed floor dust and newly settled dust. In addition, fungal cell concentrations of indoor associated species correlated well between all four dust sampling methods (r = 0.68-0.86, p < 0.01). No correlation was found between the fungal concentrations in the air and dust samples primarily because of differences in concentrations of Cladosporium cladosporioides Type 1 and Epicoccum nigrum. A representative type of dust sample and a 48 hour air sample might both provide useful information about fungal exposures.

  13. Applicability of canisters for sample storage in the determination of hazardous air pollutants

    NASA Astrophysics Data System (ADS)

    Kelly, Thomas J.; Holdren, Michael W.

    This paper evaluates the applicability of canisters for storage of air samples containing volatile organic compounds listed among the 189 hazardous air pollutants (HAPs) in the 1990 U.S. Clean Air Act Amendments. Nearly 100 HAPs have sufficient vapor pressure to be considered volatile compounds. Of those volatile organic HAPs, 52 have been tested previously for stability during storage in canisters. The published HAP stability studies are reviewed, illustrating that for most of the 52 HAPs tested, canisters are an effective sample storage approach. However, the published stability studies used a variety of canister types and test procedures, and generally considered only a few compounds in a very small set of canisters. A comparison of chemical and physical properties of the HAPs has also been conducted, to evaluate the applicability of canister sampling for other HAPs, for which canister stability testing has never been conducted. Of 45 volatile HAPs never tested in canisters, this comparison identifies nine for which canisters should be effective, and 17 for which canisters are not likely to be effective. For the other 19 HAPs, no clear decision can be reached on the likely applicability of air sample storage in canisters.

  14. Sampling techniques for thrips (Thysanoptera: Thripidae) in preflowering tomato.

    PubMed

    Joost, P Houston; Riley, David G

    2004-08-01

    Sampling techniques for thrips (Thysanoptera: Thripidae) were compared in preflowering tomato plants at the Coastal Plain Experiment Station in Tifton, GA, in 2000 and 2003, to determine the most effective method of determining abundance of thrips on tomato foliage early in the growing season. Three relative sampling techniques, including a standard insect aspirator, a 946-ml beat cup, and an insect vacuum device, were compared for accuracy to an absolute method and to themselves for precision and efficiency of sampling thrips. Thrips counts of all relative sampling methods were highly correlated (R > 0.92) to the absolute method. The aspirator method was the most accurate compared with the absolute sample according to regression analysis in 2000. In 2003, all sampling methods were considered accurate according to Dunnett's test, but thrips numbers were lower and sample variation was greater than in 2000. In 2000, the beat cup method had the lowest relative variation (RV) or best precision, at 1 and 8 d after transplant (DAT). Only the beat cup method had RV values <25 for all sampling dates. In 2003, the beat cup method had the lowest RV value at 15 and 21 DAT. The beat cup method also was the most efficient method for all sample dates in both years. Frankliniella fusca (Pergande) was the most abundant thrips species on the foliage of preflowering tomato in both years of study at this location. Overall, the best thrips sampling technique tested was the beat cup method in terms of precision and sampling efficiency.

  15. Determination of formaldehyde by HPLC as the DNPH derivative following high-volume air sampling onto bisulfite-coated cellulose filters

    NASA Astrophysics Data System (ADS)

    de Andrade, Jailson B.; Tanner, Roger L.

    A method is described for the specific collection of formaldehyde as hydroxymethanesulfonate on bisulfate-coated cellulose filters. Following extraction in aqueous acid and removal on unreacted bisulfite, the hydroxymethanesulfonate is decomposed by base, and HCHO is determined by DNPH (2,4-dinitrophenylhydrazine) derivatization and HPLC. Since the collection efficiency for formaldehyde is moderately high even when sampling ambient air at high-volume flow rates, a limit of detection of 0.2 ppbv is achieved with 30 min sampling times. Interference from acetaldehyde co-collected as 1-hydroxyethanesulfonate is <5% using this procedure. The technique shows promise for both short-term airborne sampling, and as a means of collecting mg-sized samples of HCHO on an inorganic matrix for carbon isotopic analyses.

  16. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.

    PubMed

    Tuduri, Ludovic; Harner, Tom; Hung, Hayley

    2006-11-01

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.

  17. Permeability of gypsum samples dehydrated in air

    NASA Astrophysics Data System (ADS)

    Milsch, Harald; Priegnitz, Mike; Blöcher, Guido

    2011-09-01

    We report on changes in rock permeability induced by devolatilization reactions using gypsum as a reference analog material. Cylindrical samples of natural alabaster were dehydrated in air (dry) for up to 800 h at ambient pressure and temperatures between 378 and 423 K. Subsequently, the reaction kinetics, so induced changes in porosity, and the concurrent evolution of sample permeability were constrained. Weighing the heated samples in predefined time intervals yielded the reaction progress where the stoichiometric mass balance indicated an ultimate and complete dehydration to anhydrite regardless of temperature. Porosity showed to continuously increase with reaction progress from approximately 2% to 30%, whilst the initial bulk volume remained unchanged. Within these limits permeability significantly increased with porosity by almost three orders of magnitude from approximately 7 × 10-19 m2 to 3 × 10-16 m2. We show that - when mechanical and hydraulic feedbacks can be excluded - permeability, reaction progress, and porosity are related unequivocally.

  18. Active sampling technique to enhance chemical signature of buried explosives

    NASA Astrophysics Data System (ADS)

    Lovell, John S.; French, Patrick D.

    2004-09-01

    Deminers and dismounted countermine engineers commonly use metal detectors, ground penetrating radar and probes to locate mines. Many modern landmines have a very low metal content, which severely limits the effectiveness of metal detectors. Canines have also been used for landmine detection for decades. Experiments have shown that canines smell the explosives which are known to leak from most types of landmines. The fact that dogs can detect landmines indicates that vapor sensing is a viable approach to landmine detection. Several groups are currently developing systems to detect landmines by "sniffing" for the ultra-trace explosive vapors above the soil. The amount of material that is available to passive vapor sensing systems is limited to no more than the vapor in equilibrium with the explosive related chemicals (ERCs) distributed in the surface soils over and near the landmine. The low equilibrium vapor pressure of TNT in the soil/atmosphere boundary layer and the limited volume of the boundary layer air imply that passive chemical vapor sensing systems require sensitivities in the picogram range, or lower. ADA is working to overcome many of the limitations of passive sampling methods, by the use of an active sampling method that employs a high-powered (1,200+ joules) strobe lamp to create a highly amplified plume of vapor and/or ERC-bearing fine particulates. Initial investigations have demonstrated that this approach can amplify the detectability of TNT by two or three orders of magnitude. This new active sampling technique could be used with any suitable explosive sensor.

  19. Surface sampling techniques for 3D object inspection

    NASA Astrophysics Data System (ADS)

    Shih, Chihhsiong S.; Gerhardt, Lester A.

    1995-03-01

    While the uniform sampling method is quite popular for pointwise measurement of manufactured parts, this paper proposes three novel sampling strategies which emphasize 3D non-uniform inspection capability. They are: (a) the adaptive sampling, (b) the local adjustment sampling, and (c) the finite element centroid sampling techniques. The adaptive sampling strategy is based on a recursive surface subdivision process. Two different approaches are described for this adaptive sampling strategy. One uses triangle patches while the other uses rectangle patches. Several real world objects were tested using these two algorithms. Preliminary results show that sample points are distributed more closely around edges, corners, and vertices as desired for many classes of objects. Adaptive sampling using triangle patches is shown to generally perform better than both uniform and adaptive sampling using rectangle patches. The local adjustment sampling strategy uses a set of predefined starting points and then finds the local optimum position of each nodal point. This method approximates the object by moving the points toward object edges and corners. In a hybrid approach, uniform points sets and non-uniform points sets, first preprocessed by the adaptive sampling algorithm on a real world object were then tested using the local adjustment sampling method. The results show that the initial point sets when preprocessed by adaptive sampling using triangle patches, are moved the least amount of distance by the subsequently applied local adjustment method, again showing the superiority of this method. The finite element sampling technique samples the centroids of the surface triangle meshes produced from the finite element method. The performance of this algorithm was compared to that of the adaptive sampling using triangular patches. The adaptive sampling with triangular patches was once again shown to be better on different classes of objects.

  20. Techniques for Teachers Section

    ERIC Educational Resources Information Center

    Tait, A., Ed.

    1973-01-01

    Includes a simple technique to demonstrate Millikan's oil drop experiment, an environmental studies experiment to measure dissolved oxygen in water samples, and a technique to demonstrate action-reaction. Science materials described are the Pol-A-Star Tomiscope, Nuffield chemistry film loops, air pucks and pH meters. (JR)

  1. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review.

    PubMed

    Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek

    2011-10-30

    The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent

  2. Monitoring Air Quality with Leaf Yeasts.

    ERIC Educational Resources Information Center

    Richardson, D. H. S.; And Others

    1985-01-01

    Proposes that leaf yeast serve as quick, inexpensive, and effective techniques for monitoring air quality. Outlines procedures and provides suggestions for data analysis. Includes results from sample school groups who employed this technique. (ML)

  3. An objective isobaric/isentropic technique for upper air analysis

    NASA Technical Reports Server (NTRS)

    Mancuso, R. L.; Endlich, R. M.; Ehernberger, L. J.

    1981-01-01

    An objective meteorological analysis technique is presented whereby both horizontal and vertical upper air analyses are performed. The process used to interpolate grid-point values from the upper-air station data is the same as for grid points on both an isobaric surface and a vertical cross-sectional plane. The nearby data surrounding each grid point are used in the interpolation by means of an anisotropic weighting scheme, which is described. The interpolation for a grid-point potential temperature is performed isobarically; whereas wind, mixing-ratio, and pressure height values are interpolated from data that lie on the isentropic surface that passes through the grid point. Two versions (A and B) of the technique are evaluated by qualitatively comparing computer analyses with subjective handdrawn analyses. The objective products of version A generally have fair correspondence with the subjective analyses and with the station data, and depicted the structure of the upper fronts, tropopauses, and jet streams fairly well. The version B objective products correspond more closely to the subjective analyses, and show the same strong gradients across the upper front with only minor smoothing.

  4. OSL technique for studies of jasper samples

    NASA Astrophysics Data System (ADS)

    Teixeira, Maria Inês; Caldas, Linda V. E.

    2014-02-01

    Jasper samples (green, red, brown, ocean and striped) were studied in relation to their optically stimulated luminescence (OSL) dosimetric properties, in this work. Since 2000, the radiation metrology group of IPEN has studied different stones as new materials for application in high-dose dosimetry. The jasper samples were exposed to different radiation doses, using the Gamma-cell 220 system (60Co) of IPEN. Calibration curves were obtained for the jasper samples between 50 Gy and 300 kGy. The reproducibility of the OSL response and the lower detection doses were determined. All five types of jasper samples showed their usefulness as irradiation indicators and as high-dose dosimeters, using the OSL technique.

  5. Veterinary extension on sampling techniques related to heartwater research.

    PubMed

    Steyn, H C; McCrindle, C M E; Du Toit, D

    2010-09-01

    Heartwater, a tick-borne disease caused by Ehrlichia ruminantium, is considered to be a significant cause of mortality amongst domestic and wild ruminants in South Africa. The main vector is Amblyomma hebraeum and although previous epidemiological studies have outlined endemic areas based on mortalities, these have been limited by diagnostic methods which relied mainly on positive brain smears. The indirect fluorescent antibody test (IFA) has a low specificity for heartwater organisms as it cross-reacts with some other species. Since the advent of biotechnology and genomics, molecular epidemiology has evolved using the methodology of traditional epidemiology coupled with the new molecular techniques. A new quantitative real-time polymerase chain reaction (qPCR) test has been developed for rapid and accurate diagnosis of heartwater in the live animal. This method can also be used to survey populations of A. hebraeum ticks for heartwater. Sampling whole blood and ticks for this qPCR differs from routine serum sampling, which is used for many serological tests. Veterinary field staff, particularly animal health technicians, are involved in surveillance and monitoring of controlled and other diseases of animals in South Africa. However, it was found that the sampling of whole blood was not done correctly, probably because it is a new sampling technique specific for new technology, where the heartwater organism is much more labile than the serum antibodies required for other tests. This qPCR technique is highly sensitive and can diagnose heartwater in the living animal within 2 hours, in time to treat it. Poor sampling techniques that decrease the sensitivity of the test will, however, result in a false negative diagnosis. This paper describes the development of a skills training programme for para-veterinary field staff, to facilitate research into the molecular epidemiology of heartwater in ruminants and eliminate any sampling bias due to collection errors. Humane

  6. An Autosampler and Field Sample Carrier for Maximizing Throughput Using an Open-Air, Surface Sampling Ion Source for MS

    EPA Science Inventory

    A recently developed, commercially available, open-air, surface sampling ion source for mass spectrometers provides individual analyses in several seconds. To realize its full throughput potential, an autosampler and field sample carrier were designed and built. The autosampler ...

  7. Development and evaluation of the photoload sampling technique

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Wildland fire managers need better estimates of fuel loading so they can accurately predict potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents the development and evaluation of a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common...

  8. Compressed air injection technique to standardize block injection pressures : [La technique d'injection d'air comprimé pour normaliser les pressions d'injection d'un blocage nerveux].

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les

  9. Survey of statistical techniques used in validation studies of air pollution prediction models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bornstein, R D; Anderson, S F

    1979-03-01

    Statistical techniques used by meteorologists to validate predictions made by air pollution models are surveyed. Techniques are divided into the following three groups: graphical, tabular, and summary statistics. Some of the practical problems associated with verification are also discussed. Characteristics desired in any validation program are listed and a suggested combination of techniques that possesses many of these characteristics is presented.

  10. Integration of biomonitoring and instrumental techniques to assess the air quality in an industrial area located in the coastal of central Asturias, Spain.

    PubMed

    Almeida, Susana Marta; Lage, Joana; Freitas, Maria do Carmo; Pedro, Ana Isabel; Ribeiro, Tiago; Silva, Alexandra Viana; Canha, Nuno; Almeida-Silva, Marina; Sitoe, Timóteo; Dionisio, Isabel; Garcia, Sílvia; Domingues, Gonçalo; de Faria, Julia Perim; Fernández, Beatriz González; Ciaparra, Diane; Wolterbeek, Hubert T

    2012-01-01

    Throughout the world, epidemiological studies were established to examine the relationship between air pollution and mortality rates and adverse respiratory health effects. However, despite the years of discussion the correlation between adverse health effects and atmospheric pollution remains controversial, partly because these studies are frequently restricted to small and well-monitored areas. Monitoring air pollution is complex due to the large spatial and temporal variations of pollution phenomena, the high costs of recording instruments, and the low sampling density of a purely instrumental approach. Therefore, together with the traditional instrumental monitoring, bioindication techniques allow for the mapping of pollution effects over wide areas with a high sampling density. In this study, instrumental and biomonitoring techniques were integrated to support an epidemiological study that will be developed in an industrial area located in Gijon in the coastal of central Asturias, Spain. Three main objectives were proposed to (i) analyze temporal patterns of PM₁₀ concentrations in order to apportion emissions sources, (ii) investigate spatial patterns of lichen conductivity to identify the impact of the studied industrial area in air quality, and (iii) establish relationships amongst lichen conductivity with some site-specific characteristics. Samples of the epiphytic lichen Parmelia sulcata were transplanted in a grid of 18 by 20 km with an industrial area in the center. Lichens were exposed for a 5-mo period starting in April 2010. After exposure, lichen samples were soaked in 18-MΩ water aimed at determination of water electrical conductivity and, consequently, lichen vitality and cell damage. A marked decreasing gradient of lichens conductivity relative to distance from the emitting sources was observed. Transplants from a sampling site proximal to the industrial area reached values 10-fold higher than levels far from it. This finding showed that

  11. Magnetic separation techniques in sample preparation for biological analysis: a review.

    PubMed

    He, Jincan; Huang, Meiying; Wang, Dongmei; Zhang, Zhuomin; Li, Gongke

    2014-12-01

    Sample preparation is a fundamental and essential step in almost all the analytical procedures, especially for the analysis of complex samples like biological and environmental samples. In past decades, with advantages of superparamagnetic property, good biocompatibility and high binding capacity, functionalized magnetic materials have been widely applied in various processes of sample preparation for biological analysis. In this paper, the recent advancements of magnetic separation techniques based on magnetic materials in the field of sample preparation for biological analysis were reviewed. The strategy of magnetic separation techniques was summarized. The synthesis, stabilization and bio-functionalization of magnetic nanoparticles were reviewed in detail. Characterization of magnetic materials was also summarized. Moreover, the applications of magnetic separation techniques for the enrichment of protein, nucleic acid, cell, bioactive compound and immobilization of enzyme were described. Finally, the existed problems and possible trends of magnetic separation techniques for biological analysis in the future were proposed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1;more » but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.« less

  13. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  14. Air exposure and sample storage time influence on hydrogen release from tungsten

    NASA Astrophysics Data System (ADS)

    Moshkunov, K. A.; Schmid, K.; Mayer, M.; Kurnaev, V. A.; Gasparyan, Yu. M.

    2010-09-01

    In investigations of hydrogen retention in first wall components the influence of the conditions of the implanted target storage prior to analysis and the storage time is often neglected. Therefore we have performed a dedicated set of experiments. The release of hydrogen from samples exposed to ambient air after irradiation was compared to samples kept in vacuum. For air exposed samples significant amounts of HDO and D 2O are detected during TDS. Additional experiments have shown that heavy water is formed by recombination of releasing D and H atoms with O on the W surface. This water formation can alter hydrogen retention results significantly, in particular - for low retention cases. In addition to the influence of ambient air exposure also the influence of storage time in vacuum was investigated. After implantation at 300 K the samples were stored in vacuum for up to 1 week during which the retained amount decreased significantly. The subsequently measured TDS spectra showed that D was lost from both the high and low energy peaks during storage at ambient temperature of ˜300 K. An attempt to simulate this release from both peaks during room temperature storage by TMAP 7 calculations showed that this effect cannot be explained by conventional diffusion/trapping models.

  15. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    PubMed

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  16. Comparing efficiency of American Fisheries Society standard snorkeling techniques to environmental DNA sampling techniques

    USGS Publications Warehouse

    Ulibarri, Roy M.; Bonar, Scott A.; Rees, Christopher B.; Amberg, Jon J.; Ladell, Bridget; Jackson, Craig

    2017-01-01

    Analysis of environmental DNA (eDNA) is an emerging technique used to detect aquatic species through water sampling and the extraction of biological material for amplification. Our study compared the efficacy of eDNA methodology to American Fisheries Society (AFS) standard snorkeling surveys with regard to detecting the presence of rare fish species. Knowing which method is more efficient at detecting target species will help managers to determine the best way to sample when both traditional sampling methods and eDNA sampling are available. Our study site included three Navajo Nation streams that contained Navajo Nation Genetic Subunit Bluehead Suckers Catostomus discobolus and Zuni Bluehead Suckers C. discobolus yarrowi. We first divided the entire wetted area of streams into consecutive 100-m reaches and then systematically selected 10 reaches/stream for snorkel and eDNA surveys. Surface water samples were taken in 10-m sections within each 100-m reach, while fish presence was noted via snorkeling in each 10-m section. Quantitative PCR was run on each individual water sample in quadruplicate to test for the presence or absence of the target species. With eDNA sampling techniques, we were able to positively detect both species in two out of the three streams. Snorkeling resulted in positive detection of both species in all three streams. In streams where the target species were detected with eDNA sampling, snorkeling detected fish at 11–29 sites/stream, whereas eDNA detected fish at 3–12 sites/stream. Our results suggest that AFS standard snorkeling is more effective than eDNA for detecting target fish species. To improve our eDNA procedures, the amount of water collected and tested should be increased. Additionally, filtering water on-site may improve eDNA techniques for detecting fish. Future research should focus on standardization of eDNA sampling to provide a widely operational sampling tool.

  17. Sampling and Analyzing Air Pollution: An Apparatus Suitable for Use in Schools.

    ERIC Educational Resources Information Center

    Rockwell, Dean M.; Hansen, Tony

    1994-01-01

    Describes two variations of an air sampler and analyzer that are inexpensive to construct, easy to operate, and designed to be used in an educational program. Variations use vacuum cleaners and aquarium pumps, and white facial tissues serve as filters. Samples of air pollution obtained by this method may be used from early grade school to advanced…

  18. Simultaneous sampling technique for two spectral sources

    NASA Technical Reports Server (NTRS)

    Jarrett, Olin, Jr.

    1987-01-01

    A technique is described that uses a bundle of fiber optics to simultaneously sample a dye laser and a spectral lamp. By the use of a real-time display with this technique, the two signals can be superimposed, and the effect of any spectral adjustments can be immediately accessed. In the NASA's CARS system used for combustion diagnostics, the dye laser mixes with a simultaneously pulsed Nd:YAG laser at 532 nm to probe the vibrational levels of nitrogen. An illustration of the oscilloscopic display of the system is presented.

  19. EVALUATION OF THE FILTER PACK FOR LONG-DURATION SAMPLING OF AMBIENT AIR

    EPA Science Inventory

    A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks...

  20. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph)more » phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.« less

  1. Manipulation of biological samples using micro and nano techniques.

    PubMed

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  2. Solid-phase microextraction fiber development for sampling and analysis of volatile organohalogen compounds in air.

    PubMed

    Attari, Seyed Ghavameddin; Bahrami, Abdolrahman; Shahna, Farshid Ghorbani; Heidari, Mahmoud

    2014-01-01

    A green, environmental friendly and sensitive method for determination of volatile organohalogen compounds was described in this paper. The method is based on a homemade sol-gel single-walled carbon nanotube/silica composite coated solid-phase microextraction to develop for sampling and analysis of Carbon tetrachloride, Benzotrichloride, Chloromethyl methyl ether and Trichloroethylene in air. Application of this method was investigated under different laboratory conditions. Predetermined concentrations of each analytes were prepared in a home-made standard chamber and the influences of experimental parameters such as temperature, humidity, extraction time, storage time, desorption temperature, desorption time and the sorbent performance were investigated. Under optimal conditions, the use of single-walled carbon nanotube/silica composite fiber showed good performance, high sensitive and fast sampling of volatile organohalogen compounds from air. For linearity test the regression correlation coefficient was more than 98% for analyte of interest and linear dynamic range for the proposed fiber and the applied Gas Chromatography-Flame Ionization Detector technique was from 1 to 100 ngmL(-1). Method detection limits ranged between 0.09 to 0.2 ngmL(-1) and method quantification limits were between 0.25 and 0.7 ngmL(-1). Single-walled carbon nanotube/silica composite fiber was highly reproducible, relative standard deviations were between 4.3 to 11.7 percent.

  3. Air data position-error calibration using state reconstruction techniques

    NASA Technical Reports Server (NTRS)

    Whitmore, S. A.; Larson, T. J.; Ehernberger, L. J.

    1984-01-01

    During the highly maneuverable aircraft technology (HiMAT) flight test program recently completed at NASA Ames Research Center's Dryden Flight Research Facility, numerous problems were experienced in airspeed calibration. This necessitated the use of state reconstruction techniques to arrive at a position-error calibration. For the HiMAT aircraft, most of the calibration effort was expended on flights in which the air data pressure transducers were not performing accurately. Following discovery of this problem, the air data transducers of both aircraft were wrapped in heater blankets to correct the problem. Additional calibration flights were performed, and from the resulting data a satisfactory position-error calibration was obtained. This calibration and data obtained before installation of the heater blankets were used to develop an alternate calibration method. The alternate approach took advantage of high-quality inertial data that was readily available. A linearized Kalman filter (LKF) was used to reconstruct the aircraft's wind-relative trajectory; the trajectory was then used to separate transducer measurement errors from the aircraft position error. This calibration method is accurate and inexpensive. The LKF technique has an inherent advantage of requiring that no flight maneuvers be specially designed for airspeed calibrations. It is of particular use when the measurements of the wind-relative quantities are suspected to have transducer-related errors.

  4. Passive air sampling of organochlorine pesticides in Mexico.

    PubMed

    Wong, Fiona; Alegria, Henry A; Bidleman, Terry F; Alvarado, Víctor; Angeles, Felipe; Galarza, Alfredo Avila; Bandala, Erick R; Hinojosa, Idolina de la Cerda; Estrada, Ignacio Galindo; Reyes, Guillermo Galindo; Gold-Bouchot, Gerardo; Zamora, Jose Vinicio Macías; Murguía-González, Joaquín; Espinoza, Elias Ramirez

    2009-02-01

    The spatial and temporal variation of organochlorine pesticides (OCs) in air across Mexico was investigated by deploying passive samplers at eleven stations across the country during 2005-2006. Integrated samples were taken over three-month periods and quantified for DDT compounds, endosulfans, toxaphenes, components of technical chlordane, hexachlorocyclohexanes (HCHs), and dieldrin. Enantiomers of chiral chlordanes and o,p'-DDT were determined on chiral stationary phase columns as an indicator of source and age. Results are discussed in combination with pumped air samples taken at four other stations in southern Mexico during 2002-2004. DDT and its metabolites, endosulfan and toxaphene were the most abundant OCs detected in all sampling sites. Atmospheric concentrations of SigmaDDT (p,p'-DDT + o,p'-DDT + p,p'-DDE + o,p'-DDE + p,p'-DDD + o,p'-DDD) ranged from 15 to 2360 pg m(-3) with the highest concentrations found in southern Mexico and the lowest found in northern and central Mexico. A fresher DDT residue was observed at sites with greater DDT use and in the southern part of the country, as shown from the higher FDDTe = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and nearly racemic o,p'-DDT. This agrees with the former heavy use of DDT in the endemic malarious area of the country. A local hotspot of endosulfan was identified at an agricultural area in Mazatlan, Sinaloa, with a annual mean concentration of SigmaENDO (endosulfans I + II + endosulfan sulfate) = 26,800 pg m(-3). At this site, higher concentrations of SigmaENDO were recorded during the winter (November to February) and spring (February to May) periods. From back trajectory analysis, this coincides with a shift in the air mass coming from the Pacific Ocean (May to November) to the inland agricultural area (November to May). The elevated SigmaENDO observed is likely due to the local agricultural usage. HCHs, chlordanes, transnonachlors, and dieldrin were more evenly distributed across the country likely due to

  5. Microbial Air and Surface Monitoring Results from International Space Station Samples

    NASA Technical Reports Server (NTRS)

    Ott, C. Mark; Bruce, Rebekah J.; Castro, Victoria A.; Novikova, Natalia D.; Pierson, D. L.

    2005-01-01

    Over the course of long-duration spaceflight, spacecraft develop a microbial ecology that directly interacts with the crew of the vehicle. While most microorganisms are harmless or beneficial to the inhabitants of the vehicle, the presence of medically significant organisms appearing in this semi-closed environment could adversely affect crew health and performance. The risk of exposure of the crew to medically significant organisms during a mission is estimated using information gathered during nominal and contingency environmental monitoring. Analysis of the air and surface microbiota in the habitable compartments of the International Space Station (ISS) over the last four years indicate a high presence of Staphylococcus species reflecting the human inhabitants of the vehicle. Generally, air and surface microbial concentrations are below system design specifications, suggesting a lower risk of contact infection or biodegradation. An evaluation of sample frequency indicates a decrease in the identification of new species, suggesting a lower potential for unknown microorganisms to be identified. However, the opportunistic pathogen, Staphylococcus aureus, has been identified in 3 of the last 5 air samples and 5 of the last 9 surface samples. In addition, 47% of the coagulase negative Staphylococcus species that were isolated from the crew, ISS, and its hardware were found to be methicillin resistance. In combination, these observations suggest the potential of methicillin resistant infectious agents over time.

  6. Air Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  7. Trace gas measurements from whole air samples collected over the Antarctic continent

    NASA Technical Reports Server (NTRS)

    Heidt, L. E.; Vedder, J. F.; Pollock, Walter H.; Henry, Bruce E.; Lueb, Richard A.

    1988-01-01

    Whole air samples collected aboard the NASA DC-8 and ER-2 aircraft as part of the Airborne Antarctic Ozone Experiment (AAOE) were analyzed in a field laboratory set up at Punta Arenas, Chile, in August and September, 1987. Mixing ratios obtained from gas chromatographic analyses of these samples are presented for N2O, CFCl3, CFCl2, C2F3Cl3, CH3CCl3, CH4, and CO. Variations in the mixing ratios of these gases along the individual flight paths of the aircraft are used as tracers to indicate the history of air masses over and near the Antarctic continent.

  8. A STRINGENT COMPARISON OF SAMPLING AND ANALYSIS METHODS FOR VOCS IN AMBIENT AIR

    EPA Science Inventory

    A carefully designed study was conducted during the summer of 1998 to simultaneously collect samples of ambient air by canisters and compare the analysis results to direct sorbent preconcentration results taken at the time of sample collection. A total of 32 1-h sample sets we...

  9. Urine sampling techniques in symptomatic primary-care patients: a diagnostic accuracy review.

    PubMed

    Holm, Anne; Aabenhus, Rune

    2016-06-08

    Choice of urine sampling technique in urinary tract infection may impact diagnostic accuracy and thus lead to possible over- or undertreatment. Currently no evidencebased consensus exists regarding correct sampling technique of urine from women with symptoms of urinary tract infection in primary care. The aim of this study was to determine the accuracy of urine culture from different sampling-techniques in symptomatic non-pregnant women in primary care. A systematic review was conducted by searching Medline and Embase for clinical studies conducted in primary care using a randomized or paired design to compare the result of urine culture obtained with two or more collection techniques in adult, female, non-pregnant patients with symptoms of urinary tract infection. We evaluated quality of the studies and compared accuracy based on dichotomized outcomes. We included seven studies investigating urine sampling technique in 1062 symptomatic patients in primary care. Mid-stream-clean-catch had a positive predictive value of 0.79 to 0.95 and a negative predictive value close to 1 compared to sterile techniques. Two randomized controlled trials found no difference in infection rate between mid-stream-clean-catch, mid-stream-urine and random samples. At present, no evidence suggests that sampling technique affects the accuracy of the microbiological diagnosis in non-pregnant women with symptoms of urinary tract infection in primary care. However, the evidence presented is in-direct and the difference between mid-stream-clean-catch, mid-stream-urine and random samples remains to be investigated in a paired design to verify the present findings.

  10. Solid Phase Microextraction and Related Techniques for Drugs in Biological Samples

    PubMed Central

    Moein, Mohammad Mahdi; Said, Rana; Bassyouni, Fatma

    2014-01-01

    In drug discovery and development, the quantification of drugs in biological samples is an important task for the determination of the physiological performance of the investigated drugs. After sampling, the next step in the analytical process is sample preparation. Because of the low concentration levels of drug in plasma and the variety of the metabolites, the selected extraction technique should be virtually exhaustive. Recent developments of sample handling techniques are directed, from one side, toward automatization and online coupling of sample preparation units. The primary objective of this review is to present the recent developments in microextraction sample preparation methods for analysis of drugs in biological fluids. Microextraction techniques allow for less consumption of solvent, reagents, and packing materials, and small sample volumes can be used. In this review the use of solid phase microextraction (SPME), microextraction in packed sorbent (MEPS), and stir-bar sorbtive extraction (SBSE) in drug analysis will be discussed. In addition, the use of new sorbents such as monoliths and molecularly imprinted polymers will be presented. PMID:24688797

  11. Measurement of formaldehyde in clean air

    NASA Astrophysics Data System (ADS)

    Neitzert, Volker; Seiler, Wolfgang

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Dinitrophenylhydrazine, forming 2.4-Dinitrophenylhydrazone, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4 - 5.0 ppbv and 0.2 - 1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO2, indicating anthropogenic HCHO sources which are estimated to be 6-11 × 1012g/year-1 on a global scale.

  12. Comparison of extraction techniques of robenidine from poultry feed samples.

    PubMed

    Wilga, Joanna; Wasik, Agata Kot-; Namieśnik, Jacek

    2007-10-31

    In this paper, effectiveness of six different commonly applied extraction techniques for the determination of robenidine in poultry feed has been compared. The sample preparation techniques included shaking, Soxhlet, Soxtec, ultrasonically assisted extraction, microwave - assisted extraction and accelerated solvent extraction. Comparison of these techniques was done with respect to the recovery extraction, temperature and time, reproducibility and solvent consumption. Every single extract was subjected to clean - up using aluminium oxide column (Pasteur pipette filled with 1g of aluminium oxide), from which robenidine was eluted with 10ml of methanol. The eluate from the clean-up column was collected in a volumetric flask, and finally it was analysed by HPLC-DAD-MS. In general, all extraction techniques were capable of isolating of robenidine from poultry feed, but the recovery obtained using modern extraction techniques was higher than that obtained using conventional techniques. In particular, accelerated solvent extraction was more superior to other techniques, which highlights the advantages of this sample preparation technique. However, in routine analysis, shaking and ultrasonically assisted extraction is still the preferred method for the solution of robenidine and other coccidiostatics.

  13. Measurements of concentrations of chlorofluoromethanes (CFMs) carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems

    NASA Technical Reports Server (NTRS)

    Itoh, T.; Kubo, H.; Honda, H.; Tominaga, T.; Makide, Y.; Yakohata, A.; Sakai, H.

    1985-01-01

    Measurements of concentrations of chlorofluoromethanes (CFMs), carbon dioxide and carbon isotope ratio in stratospheric and tropospheric air by grab-sampling systems are reported. The balloon-borne grab-sampling system has been launched from Sanriku Balloon Center three times since 1981. It consists of: (1) six sampling cylinders, (2) eight motor driven values, (3) control and monitor circuits, and (4) pressurized housing. Particular consideration is paid to the problem of contamination. Strict requirements are placed on the choice of materials and components, construction methods, cleaning techniques, vacuum integrity, and sampling procedures. An aluminum pressurized housing and a 4-m long inlet line are employed to prevent the sampling air from contamination by outgassing of sampling and control devices. The sampling is performed during the descent of the system. Vertical profiles of mixing ratios of CF2Cl2, CFCl3 and CH4 are given. Mixing ratios of CF2Cl2 and CFCl3 in the stratosphere do not show the discernible effect of the increase of those in the ground level background, and decrease with altitude. Decreasing rate of CFCl3 is larger than that of CF2Cl2. CH4 mixing ratio, on the other hand, shows diffusive equilibrium, as the photodissociation cross section of CH4 is small and concentrations of OH radical and 0(sup I D) are low.

  14. 75 FR 59084 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control Technique...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-27

    ... Promulgation of Air Quality Implementation Plans; Maryland; Control Technique Guidelines for Paper, Film, and... from paper, film, and foil coatings. Specifically, Maryland is amending its regulations by adopting the requirements of EPA's Control Technique Guidelines (CTG) for Paper, Film, and Foil Coatings. These amendments...

  15. Liquid sample delivery techniques for serial femtosecond crystallography

    PubMed Central

    Weierstall, Uwe

    2014-01-01

    X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163

  16. Inter-laboratory comparison study on measuring semi-volatile organic chemicals in standards and air samples.

    PubMed

    Su, Yushan; Hung, Hayley

    2010-11-01

    Measurements of semi-volatile organic chemicals (SVOCs) were compared among 21 laboratories from 7 countries through the analysis of standards, a blind sample, an air extract, and an atmospheric dust sample. Measurement accuracy strongly depended on analytes, laboratories, and types of standards and samples. Intra-laboratory precision was generally good with relative standard deviations (RSDs) of triplicate injections <10% and with median differences of duplicate samples between 2.1 and 22%. Inter-laboratory variability, measured by RSDs of all measurements, was in the range of 2.8-58% in analyzing standards, and 6.9-190% in analyzing blind sample and air extract. Inter-laboratory precision was poorer when samples were subject to cleanup processes, or when SVOCs were quantified at low concentrations. In general, inter-laboratory differences up to a factor of 2 can be expected to analyze atmospheric SVOCs. When comparing air measurements from different laboratories, caution should be exercised if the data variability is less than the inter-laboratory differences. 2010. Published by Elsevier Ltd. All rights reserved.

  17. The effect of the air-blowing step on the technique sensitivity of four different adhesive systems.

    PubMed

    Spreafico, Diego; Semeraro, Stefano; Mezzanzanica, Dario; Re, Dino; Gagliani, Massimo; Tanaka, Toru; Sano, Hidehiko; Sidhu, Sharanbir K

    2006-03-01

    To evaluate the technique sensitivity of four different adhesive systems using different air-blowing pressure. Four adhesive systems were employed: Clearfil SE Bond [SE] (Kuraray, Japan), G-Bond [GB] (GC Corporation, Japan), Adper Prompt L-Pop [LP] (3M ESPE, USA) and an experimental adhesive, SSB-200 [SSB] (Kuraray, Japan). Twenty-four extracted molars were used. After grinding the coronal enamel surface, the teeth were divided into two equal groups. The first group's teeth were randomly assigned for bonding with the different adhesives using gentle air-blowing (g). For the teeth of the second group, the four adhesive systems were applied using strong air-blowing (s). After storage overnight in 37 degrees C water, the bonded specimens were sectioned into sticks (1 mm x 1 mm wide), which were subjected to microtensile bond strength testing (microTBS) at a crosshead speed of 1 mm/min. The load at failure of each specimen was recorded and the data were analyzed by one-way ANOVA and Tukey HSD tests. The surfaces of the fractured specimens were observed using SEM to determine the failure mode. The results of the microTBS test showed that the highest bond strengths tended to be with SE for both gentle and strong air-blowing, and the significantly lowest for SSB with strong air streaming. Comparing the two techniques, significant differences were noted only for SSB-200 (P < 0.05). For each material, the SEM evaluation did not show distinct differences in the nature of the fractures between the two techniques, except for SSB-200. The adhesives tested are not technique sensitive, except SSB-200, with regards to the air-blowing step.

  18. Status of the radio technique for cosmic-ray induced air showers

    NASA Astrophysics Data System (ADS)

    Schröder, Frank G.

    2016-10-01

    Radio measurements yield calorimetric information on the electromagnetic shower component around the clock. However, until recently it was not clear whether radio measurements can compete in accuracy with established night-time techniques like air-Cherenkov or air-fluorescence detection. Due to recent progress in the radio technique as well as in the understanding of the emission mechanisms, the performance of current radio experiments has significantly improved. Above 100 PeV, digital, state-of-the-art antenna arrays achieve a reconstruction accuracy for the energy similar to that of other techniques, and can provide an independent measurement of the absolute energy scale. Furthermore, radio measurements are sensitive to the mass composition of the primary particles: First, the position of the shower maximum can be reconstructed from the radio signal. Second, in combination with muon detectors the measurement of the electromagnetic component provides complementary information on the primary mass. Since the radio footprint is huge for inclined showers, and the radio signal does not suffer absorption in the atmosphere, future radio arrays either focus on inclined showers at the highest energy, or on ultra-high precision measurements with extremely dense arrays. This proceeding reviews the current status of radio experiments and simulations as well as future plans.

  19. Measurements of CO2 Mole Fractionand δ13C in Archived Air Samples from Cape Meares, Oregon (USA) 1977 - 1998

    NASA Astrophysics Data System (ADS)

    Clark, O.; Rice, A. L.

    2017-12-01

    Carbon dioxide (CO2) is the most abundant, anthropogenically forced greenhouse gas (GHG) in the global atmosphere. Emissions of CO2 account for approximately 75% of the world's total GHG emissions. Atmospheric concentrations of CO2 are higher now than they've been at any other time in the past 800,000 years. Currently, the global mean concentration exceeds 400 ppm. Today, global networks regularly monitor CO2 concentrations and isotopic composition (δ13C and δ18O). However, past data is sparse. Over 200 ambient air samples from Cape Meares, Oregon (45.5°N, 124.0°W), a coastal site in Western United States, were obtained by researchers at Oregon Institute of Science and Technology (OGI, now Oregon Health & Science University), between the years of 1977 and 1998 as part of a global monitoring program of six different sites in the polar, middle, and tropical latitudes of the Northern and Southern Hemispheres. Air liquefaction was used to compress approximately 1000L of air (STP) to 30bar, into 33L electropolished (SUMMA) stainless steel canisters. Select archived air samples from the original network are maintained at Portland State University (PSU) Department of Physics. These archived samples are a valuable look at changing atmospheric concentrations of CO2 and δ13C, which can contribute to a better understanding of changes in sources during this time. CO2 concentrations and δ13C of CO2 were measured at PSU, with a Picarro Cavity Ringdown Spectrometer, model G1101-i analytical system. This study presents the analytical methods used, calibration techniques, precision, and reproducibility. Measurements of select samples from the archive show rising CO2 concentrations and falling δ13C over the 1977 to 1998 period, compatible with previous observations and rising anthropogenic sources of CO2. The resulting data set was statistically analyzed in MATLAB. Results of preliminary seasonal and secular trends from the archive samples are presented.

  20. 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2018 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  1. 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Stacy R.

    The 2017 Annual Terrestrial Sampling Plan for Sandia National Laboratories/New Mexico on Kirtland Air Force Base has been prepared in accordance with the “Letter of Agreement Between Department of Energy, National Nuclear Security Administration, Sandia Field Office (DOE/NNSA/SFO) and 377th Air Base Wing (ABW), Kirtland Air Force Base (KAFB) for Terrestrial Sampling” (signed January 2017), Sandia National Laboratories, New Mexico (SNL/NM). The Letter of Agreement requires submittal of an annual terrestrial sampling plan.

  2. The Use of Sensory Analysis Techniques to Assess the Quality of Indoor Air.

    PubMed

    Lewkowska, Paulina; Dymerski, Tomasz; Gębicki, Jacek; Namieśnik, Jacek

    2017-01-02

    The quality of indoor air is one of the significant elements that influences people's well-being and health inside buildings. Emissions of pollutants, which may cause odor nuisance, are the main reason for people's complaints regarding the quality of indoor air. As a result, it is necessary to perform tests aimed at identifying the sources of odors inside buildings. The article contains basic information on the characteristics of the sources of indoor air pollution and the influence of the odor detection threshold on people's health and comfort. An attempt was also made to classify and use sensory analysis techniques to perform tests of the quality of indoor air, which would enable identification of sensory experience and would allow for indication of the degree of their intensity.

  3. Surveillance of Endoscopes: Comparison of Different Sampling Techniques.

    PubMed

    Cattoir, Lien; Vanzieleghem, Thomas; Florin, Lisa; Helleputte, Tania; De Vos, Martine; Verhasselt, Bruno; Boelens, Jerina; Leroux-Roels, Isabel

    2017-09-01

    OBJECTIVE To compare different techniques of endoscope sampling to assess residual bacterial contamination. DESIGN Diagnostic study. SETTING The endoscopy unit of an 1,100-bed university hospital performing ~13,000 endoscopic procedures annually. METHODS In total, 4 sampling techniques, combining flushing fluid with or without a commercial endoscope brush, were compared in an endoscope model. Based on these results, sterile physiological saline flushing with or without PULL THRU brush was selected for evaluation on 40 flexible endoscopes by adenosine triphosphate (ATP) measurement and bacterial culture. Acceptance criteria from the French National guideline (<25 colony-forming units [CFU] per endoscope and absence of indicator microorganisms) were used as part of the evaluation. RESULTS On biofilm-coated PTFE tubes, physiological saline in combination with a PULL THRU brush generated higher mean ATP values (2,579 relative light units [RLU]) compared with saline alone (1,436 RLU; P=.047). In the endoscope samples, culture yield using saline plus the PULL THRU (mean, 43 CFU; range, 1-400 CFU) was significantly higher than that of saline alone (mean, 17 CFU; range, 0-500 CFU; P<.001). In samples obtained using the saline+PULL THRU brush method, ATP values of samples classified as unacceptable were significantly higher than those of samples classified as acceptable (P=.001). CONCLUSION Physiological saline flushing combined with PULL THRU brush to sample endoscopes generated higher ATP values and increased the yield of microbial surveillance culture. Consequently, the acceptance rate of endoscopes based on a defined CFU limit was significantly lower when the saline+PULL THRU method was used instead of saline alone. Infect Control Hosp Epidemiol 2017;38:1062-1069.

  4. MEASUREMENTS OF AIR POLLUTANT BIOMARKERS WITH EXHALED BREATH TECHNIQUES

    EPA Science Inventory

    Use of exhaled breath condensate (EBC) has appeal as a noninvasive surrogate sample for lung-derived fluid. Additionally, EBC can be collected multiple times over the course of a study, unlike many other lung sampling techniques which can be performed fewer times. However validat...

  5. An investigation of the source of air Ar contamination in KAr dating

    USGS Publications Warehouse

    Mussett, A.E.; Brent, Dalrymple G.

    1968-01-01

    Precision of young KAr ages is limited by air argon contamination. A series of experiments in which the exposure of basalt and sanidine samples to air argon was controlled, shows that most of the air contamination does not arise in the laboratory. Because of this, it seems unlikely that air argon contamination can be significantly reduced by special sample handling and preparation techniques. ?? 1968.

  6. Sampling of trace volatile metal(loid) compounds in ambient air using polymer bags: a convenient method.

    PubMed

    Haas, K; Feldmann, J

    2000-09-01

    The sampling of volatile metal(loid) compounds (VOMs) such as hydrides, methylated, and permethylated species of arsenic, antimony, and tin is described using Tedlar bags. Advantages as well as limitations and constraints are discussed and compared to other widely used sampling techniques within this area, namely, stainless steel canisters, cryotrapping, and solid adsorbent cartridges. To prove the suitability of Tedlar bags for the sampling of volatile metal(loid) compounds, series of stability tests have been run using both laboratory synthetic and real samples analyzed periodically after increasing periods of storage. The samples have been stored in the dark at 20 degrees C and at 50 degrees C. Various volatile arsenic species (AsH3, MeAsH2, Me2AsH, Me3As), tin species (SnH4, MeSnH3, Me2SnH2, Me3SnH, Me4Sn, BuSnH3), and antimony species (SbH3, MeSbH2, Me2SbH, Me3Sb) have been generated using hydride generation methodology and mixed with moisturized air. Three static gaseous atmospheres with concentrations of 0.3-18 ng/L for the various compounds have been generated in Tedlar bags, and the stability of the VOMs has been monitored over a period of 5 weeks. Sewage sludge digester gas samples have been stored only at 20 degrees C for a period of 48 h. Cryotrapping GC/ICPMS has been used for the determination of the VOMs with a relative standard deviation of 5% for 100 pg. After 8 h, the recovery rate of all the compounds in the air atmospheres was better than 95% at 20 and 50 degrees C, whereas the recovery after 24 h was found to be between 81 and 99% for all VOMs at 20 and 50 degrees C except for Me3Sb and Me3As. These species show a loss between 48 and 73% at both temperatures. After 5 weeks at 20 degrees C, a loss of only 25-50% for arsine and stibine and the above-mentioned tin compounds was determined. Only Me3Sb, Me3Bi, and Me2Te were present in the digester gas sample. After 24 h, losses of 44, 10, and 12%, respectively, could be determined. Given these

  7. Bioassay vs. Air Sampling: Practical Guidance and Experience at Hanford

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Carlson, Eric W.; Hill, Robin L.

    2004-02-08

    The Hanford Site has implemented a policy to guide in determining whether air sampling data or special fecal bioassay data are more appropriate for determining doses of record for low-level plutonium exposures. The basis for the policy and four years of experience in comparing DAC-hours exposure with bioassay-based dosimetry is discussed.

  8. Sample preparation techniques for the determination of trace residues and contaminants in foods.

    PubMed

    Ridgway, Kathy; Lalljie, Sam P D; Smith, Roger M

    2007-06-15

    The determination of trace residues and contaminants in complex matrices, such as food, often requires extensive sample extraction and preparation prior to instrumental analysis. Sample preparation is often the bottleneck in analysis and there is a need to minimise the number of steps to reduce both time and sources of error. There is also a move towards more environmentally friendly techniques, which use less solvent and smaller sample sizes. Smaller sample size becomes important when dealing with real life problems, such as consumer complaints and alleged chemical contamination. Optimal sample preparation can reduce analysis time, sources of error, enhance sensitivity and enable unequivocal identification, confirmation and quantification. This review considers all aspects of sample preparation, covering general extraction techniques, such as Soxhlet and pressurised liquid extraction, microextraction techniques such as liquid phase microextraction (LPME) and more selective techniques, such as solid phase extraction (SPE), solid phase microextraction (SPME) and stir bar sorptive extraction (SBSE). The applicability of each technique in food analysis, particularly for the determination of trace organic contaminants in foods is discussed.

  9. Air sampling results in relation to extent of fungal colonization of building materials in some water-damaged buildings.

    PubMed

    Miller, J D; Haisley, P D; Reinhardt, J H

    2000-09-01

    We studied the extent and nature of fungal colonization of building materials in 58 naturally ventilated apartments that had suffered various kinds of water damage in relation to air sampling done before the physical inspections. The results of air samples from each apartment were compared by rank order of species with pooled data from outdoor air. Approximately 90% of the apartments that had significant amounts of fungi in wall cavities were identified by air sampling. There was no difference in the average fungal colony forming unit values per m3 between the 15 apartments with the most fungal contamination and the 15 with the least. In contrast, the prevalence of samples with fungal species significantly different than the pooled outdoor air between the more contaminated versus the less contaminated apartments was approximately 10-fold. We provide information on methods to document fungal contamination in buildings.

  10. [Wound microbial sampling methods in surgical practice, imprint techniques].

    PubMed

    Chovanec, Z; Veverková, L; Votava, M; Svoboda, J; Peštál, A; Doležel, J; Jedlička, V; Veselý, M; Wechsler, J; Čapov, I

    2012-12-01

    The wound is a damage of tissue. The process of healing is influenced by many systemic and local factors. The most crucial and the most discussed local factor of wound healing is infection. Surgical site infection in the wound is caused by micro-organisms. This information is known for many years, however the conditions leading to an infection occurrence have not been sufficiently described yet. Correct sampling technique, correct storage, transportation, evaluation, and valid interpretation of these data are very important in clinical practice. There are many methods for microbiological sampling, but the best one has not been yet identified and validated. We aim to discuss the problem with the focus on the imprint technique.

  11. The use of a modified technique to reduce radioactive air contamination in aerosol lung ventilation imaging.

    PubMed

    Avison, M; Hart, G

    2001-06-01

    The aim of this study was to reduce airborne contamination resulting from the use of aerosols in lung ventilation scintigraphy. Lung ventilation imaging is frequently performed with 99mTc-diethylenetriaminepentaacetate aerosol (DTPA), derived from a commercial nebuliser. Airborne contamination is a significant problem with this procedure; it results in exposure of staff to radiation and can reduce gamma camera performance when the ventilation is performed in the camera room. We examined the level of airborne contamination resulting from the standard technique with one of the most popular nebuliser kits and tested a modification which significantly reduced airborne contamination. Air contamination was measured while ventilating 122 patients. The modified technique reduced air contamination by a mean value of 64% (p = 0.028) compared with the standard control technique. Additionally, differences in contamination were examined when a mask or mouthpiece was used as well as differences between operators. A simplified method of monitoring air contamination is presented using a commonly available surface contamination monitor. The index so derived was proportional to air contamination (r = 0.88). The problems and regulations associated with airborne contamination are discussed.

  12. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.

    PubMed

    Ashley, Kevin; Applegate, Gregory T; Marcy, A Dale; Drake, Pamela L; Pierce, Paul A; Carabin, Nathalie; Demange, Martine

    2009-02-01

    Because toxicities may differ for Cr(VI) compounds of varying solubility, some countries and organizations have promulgated different occupational exposure limits (OELs) for soluble and insoluble hexavalent chromium (Cr(VI)) compounds, and analytical methods are needed to determine these species in workplace air samples. To address this need, international standard methods ASTM D6832 and ISO 16740 have been published that describe sequential extraction techniques for soluble and insoluble Cr(VI) in samples collected from occupational settings. However, no published performance data were previously available for these Cr(VI) sequential extraction procedures. In this work, the sequential extraction methods outlined in the relevant international standards were investigated. The procedures tested involved the use of either deionized water or an ammonium sulfate/ammonium hydroxide buffer solution to target soluble Cr(VI) species. This was followed by extraction in a sodium carbonate/sodium hydroxide buffer solution to dissolve insoluble Cr(VI) compounds. Three-step sequential extraction with (1) water, (2) sulfate buffer and (3) carbonate buffer was also investigated. Sequential extractions were carried out on spiked samples of soluble, sparingly soluble and insoluble Cr(VI) compounds, and analyses were then generally carried out by using the diphenylcarbazide method. Similar experiments were performed on paint pigment samples and on airborne particulate filter samples collected from stainless steel welding. Potential interferences from soluble and insoluble Cr(III) compounds, as well as from Fe(II), were investigated. Interferences from Cr(III) species were generally absent, while the presence of Fe(II) resulted in low Cr(VI) recoveries. Two-step sequential extraction of spiked samples with (first) either water or sulfate buffer, and then carbonate buffer, yielded quantitative recoveries of soluble Cr(VI) and insoluble Cr(VI), respectively. Three-step sequential

  13. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres.

    PubMed

    Napoli, Christian; Marcotrigiano, Vincenzo; Montagna, Maria Teresa

    2012-08-02

    Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.

  14. Salmonella recovery following air chilling for matched neck-skin and whole carcass sampling methodologies

    USDA-ARS?s Scientific Manuscript database

    The prevalence and serogroups of Salmonella recovered following air chilling were determined for both enriched neck skin and matching enriched whole carcass samples. Commercially processed and eviscerated carcasses were air chilled to 4C before removing the neck skin (8.3 g) and stomaching in 83 mL...

  15. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 2. Sorbent selection and other aspects of optimizing air monitoring methods.

    PubMed

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Applications range from atmospheric research and ambient air monitoring (indoor and outdoor) to occupational hygiene (personal exposure assessment) and measuring chemical emission levels. Part 1 of this paper reviewed the main sorbent-based air sampling strategies including active (pumped) tube monitoring, diffusive (passive) sampling onto sorbent tubes/cartridges plus sorbent trapping/focusing of whole air samples that are either collected in containers (such as canisters or bags) or monitored online. Options for subsequent extraction and transfer to GC(MS) analysis were also summarised and the trend to thermal desorption (TD)-based methods and away from solvent extraction was explained. As a result of this trend, demand for TD-compatible sorbents (alternatives to traditional charcoal) is growing. Part 2 of this paper therefore continues with a summary of TD-compatible sorbents, their respective advantages and limitations and considerations for sorbent selection. Other analytical considerations for optimizing sorbent-based air monitoring methods are also discussed together with recent technical developments and sampling accessories which have extended the application range of sorbent trapping technology generally. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Airborne detection and quantification of swine influenza a virus in air samples collected inside, outside and downwind from swine barns.

    PubMed

    Corzo, Cesar A; Culhane, Marie; Dee, Scott; Morrison, Robert B; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m³ of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m³ of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m³. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions.

  17. Airborne Detection and Quantification of Swine Influenza A Virus in Air Samples Collected Inside, Outside and Downwind from Swine Barns

    PubMed Central

    Corzo, Cesar A.; Culhane, Marie; Dee, Scott; Morrison, Robert B.; Torremorell, Montserrat

    2013-01-01

    Airborne transmission of influenza A virus (IAV) in swine is speculated to be an important route of virus dissemination, but data are scarce. This study attempted to detect and quantify airborne IAV by virus isolation and RRT-PCR in air samples collected under field conditions. This was accomplished by collecting air samples from four acutely infected pig farms and locating air samplers inside the barns, at the external exhaust fans and downwind from the farms at distances up to 2.1 km. IAV was detected in air samples collected in 3 out of 4 farms included in the study. Isolation of IAV was possible from air samples collected inside the barn at two of the farms and in one farm from the exhausted air. Between 13% and 100% of samples collected inside the barns tested RRT-PCR positive with an average viral load of 3.20E+05 IAV RNA copies/m3 of air. Percentage of exhaust positive air samples also ranged between 13% and 100% with an average viral load of 1.79E+04 RNA copies/m3 of air. Influenza virus RNA was detected in air samples collected between 1.5 and 2.1 Km away from the farms with viral levels significantly lower at 4.65E+03 RNA copies/m3. H1N1, H1N2 and H3N2 subtypes were detected in the air samples and the hemagglutinin gene sequences identified in the swine samples matched those in aerosols providing evidence that the viruses detected in the aerosols originated from the pigs in the farms under study. Overall our results indicate that pigs can be a source of IAV infectious aerosols and that these aerosols can be exhausted from pig barns and be transported downwind. The results from this study provide evidence of the risk of aerosol transmission in pigs under field conditions. PMID:23951164

  18. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  19. Methodological integrative review of the work sampling technique used in nursing workload research.

    PubMed

    Blay, Nicole; Duffield, Christine M; Gallagher, Robyn; Roche, Michael

    2014-11-01

    To critically review the work sampling technique used in nursing workload research. Work sampling is a technique frequently used by researchers and managers to explore and measure nursing activities. However, work sampling methods used are diverse making comparisons of results between studies difficult. Methodological integrative review. Four electronic databases were systematically searched for peer-reviewed articles published between 2002-2012. Manual scanning of reference lists and Rich Site Summary feeds from contemporary nursing journals were other sources of data. Articles published in the English language between 2002-2012 reporting on research which used work sampling to examine nursing workload. Eighteen articles were reviewed. The review identified that the work sampling technique lacks a standardized approach, which may have an impact on the sharing or comparison of results. Specific areas needing a shared understanding included the training of observers and subjects who self-report, standardization of the techniques used to assess observer inter-rater reliability, sampling methods and reporting of outcomes. Work sampling is a technique that can be used to explore the many facets of nursing work. Standardized reporting measures would enable greater comparison between studies and contribute to knowledge more effectively. Author suggestions for the reporting of results may act as guidelines for researchers considering work sampling as a research method. © 2014 John Wiley & Sons Ltd.

  20. An improved sample loading technique for cellular metabolic response monitoring under pressure

    NASA Astrophysics Data System (ADS)

    Gikunda, Millicent Nkirote

    To monitor cellular metabolism under pressure, a pressure chamber designed around a simple-to-construct capillary-based spectroscopic chamber coupled to a microliter-flow perfusion system is used in the laboratory. Although cyanide-induced metabolic responses from Saccharomyces cerevisiae (baker's yeast) could be controllably induced and monitored under pressure, previously used sample loading technique was not well controlled. An improved cell-loading technique which is based on use of a secondary inner capillary into which the sample is loaded then inserted into the capillary pressure chamber, has been developed. As validation, we demonstrate the ability to measure the chemically-induced metabolic responses at pressures of up to 500 bars. This technique is shown to be less prone to sample loss due to perfusive flow than the previous techniques used.

  1. Nuts and Bolts - Techniques for Genesis Sample Curation

    NASA Technical Reports Server (NTRS)

    Burkett, Patti J.; Rodriquez, M. C.; Allton, J. H.

    2011-01-01

    The Genesis curation staff at NASA Johnson Space Center provides samples and data for analysis to the scientific community, following allocation approval by the Genesis Oversight Committee, a sub-committee of CAPTEM (Curation Analysis Planning Team for Extraterrestrial Materials). We are often asked by investigators within the scientific community how we choose samples to best fit the requirements of the request. Here we will demonstrate our techniques for characterizing samples and satisfying allocation requests. Even with a systematic approach, every allocation is unique. We are also providing updated status of the cataloging and characterization of solar wind collectors as of January 2011. The collection consists of 3721 inventoried samples consisting of a single fragment, or multiple fragments containerized or pressed between post-it notes, jars or vials of various sizes.

  2. Systematic comparison of static and dynamic headspace sampling techniques for gas chromatography.

    PubMed

    Kremser, Andreas; Jochmann, Maik A; Schmidt, Torsten C

    2016-09-01

    Six automated, headspace-based sample preparation techniques were used to extract volatile analytes from water with the goal of establishing a systematic comparison between commonly available instrumental alternatives. To that end, these six techniques were used in conjunction with the same gas chromatography instrument for analysis of a common set of volatile organic carbon (VOC) analytes. The methods were thereby divided into three classes: static sampling (by syringe or loop), static enrichment (SPME and PAL SPME Arrow), and dynamic enrichment (ITEX and trap sampling). For PAL SPME Arrow, different sorption phase materials were also included in the evaluation. To enable an effective comparison, method detection limits (MDLs), relative standard deviations (RSDs), and extraction yields were determined and are discussed for all techniques. While static sampling techniques exhibited sufficient extraction yields (approx. 10-20 %) to be reliably used down to approx. 100 ng L(-1), enrichment techniques displayed extraction yields of up to 80 %, resulting in MDLs down to the picogram per liter range. RSDs for all techniques were below 27 %. The choice on one of the different instrumental modes of operation (aforementioned classes) was thereby the most influential parameter in terms of extraction yields and MDLs. Individual methods inside each class showed smaller deviations, and the least influences were observed when evaluating different sorption phase materials for the individual enrichment techniques. The option of selecting specialized sorption phase materials may, however, be more important when analyzing analytes with different properties such as high polarity or the capability of specific molecular interactions. Graphical Abstract PAL SPME Arrow during the extraction of volatile analytes from the headspace of an aqueous sample.

  3. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  4. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres

    PubMed Central

    2012-01-01

    Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information. PMID:22853006

  5. Breakthrough of 1,3-dichloropropene and chloropicrin from 600 mg XAD-4 air sampling tubes

    USDA-ARS?s Scientific Manuscript database

    Accurately measuring air concentrations of agricultural fumigants is important for the regulation of air quality. Understanding the conditions under which sorbent tubes can effectively retain such fumigants during sampling is critical in mitigating chemical breakthrough from the tubes and facilitati...

  6. A comparison of liver sampling techniques in dogs.

    PubMed

    Kemp, S D; Zimmerman, K L; Panciera, D L; Monroe, W E; Leib, M S; Lanz, O I

    2015-01-01

    The liver sampling technique in dogs that consistently provides samples adequate for accurate histopathologic interpretation is not known. To compare histopathologic results of liver samples obtained by punch, cup, and 14 gauge needle to large wedge samples collected at necropsy. Seventy dogs undergoing necropsy. Prospective study. Liver specimens were obtained from the left lateral liver lobe with an 8 mm punch, a 5 mm cup, and a 14 gauge needle. After sample acquisition, two larger tissue samples were collected near the center of the left lateral lobe to be used as a histologic standard for comparison. Histopathologic features and numbers of portal triads in each sample were recorded. The mean number of portal triads obtained by each sampling method were 2.9 in needle samples, 3.4 in cup samples, 12 in punch samples, and 30.7 in the necropsy samples. The diagnoses in 66% of needle samples, 60% of cup samples, and 69% of punch samples were in agreement with the necropsy samples, and these proportions were not significantly different from each other. The corresponding kappa coefficients were 0.59 for needle biopsies, 0.52 for cup biopsies, and 0.62 for punch biopsies. The histopathologic interpretation of a liver sample in the dog is unlikely to vary if the liver biopsy specimen contains at least 3-12 portal triads. However, in comparison large necropsy samples, the accuracy of all tested methods was relatively low. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  7. Variables Related to Pre-Service Cannabis Use in a Sample of Air Force Enlistees.

    ERIC Educational Resources Information Center

    Mullins, Cecil J.; And Others

    This report is an attempt to add to the existing information about cannabis use, its correlates, and its effects. The sample population consisted of self-admitted abusers of various drugs, identified shortly after entering the Air Force. The subjects (N=4688) were located through the Drug Control Office at Lackland Air Force Base. Variables…

  8. Modeling and Qualification of a Modified Emission Unit for Radioactive Air Emissions Stack Sampling Compliance.

    PubMed

    Barnett, J Matthew; Yu, Xiao-Ying; Recknagle, Kurtis P; Glissmeyer, John A

    2016-11-01

    A planned laboratory space and exhaust system modification to the Pacific Northwest National Laboratory Material Science and Technology Building indicated that a new evaluation of the mixing at the air sampling system location would be required for compliance to ANSI/HPS N13.1-2011. The modified exhaust system would add a third fan, thereby increasing the overall exhaust rate out the stack, thus voiding the previous mixing study. Prior to modifying the radioactive air emissions exhaust system, a three-dimensional computational fluid dynamics computer model was used to evaluate the mixing at the sampling system location. Modeling of the original three-fan system indicated that not all mixing criteria could be met. A second modeling effort was conducted with the addition of an air blender downstream of the confluence of the three fans, which then showed satisfactory mixing results. The final installation included an air blender, and the exhaust system underwent full-scale tests to verify velocity, cyclonic flow, gas, and particulate uniformity. The modeling results and those of the full-scale tests show agreement between each of the evaluated criteria. The use of a computational fluid dynamics code was an effective aid in the design process and allowed the sampling system to remain in its original location while still meeting the requirements for sampling at a well mixed location.

  9. Improved importance sampling technique for efficient simulation of digital communication systems

    NASA Technical Reports Server (NTRS)

    Lu, Dingqing; Yao, Kung

    1988-01-01

    A new, improved importance sampling (IIS) approach to simulation is considered. Some basic concepts of IS are introduced, and detailed evolutions of simulation estimation variances for Monte Carlo (MC) and IS simulations are given. The general results obtained from these evolutions are applied to the specific previously known conventional importance sampling (CIS) technique and the new IIS technique. The derivation for a linear system with no signal random memory is considered in some detail. For the CIS technique, the optimum input scaling parameter is found, while for the IIS technique, the optimum translation parameter is found. The results are generalized to a linear system with memory and signals. Specific numerical and simulation results are given which show the advantages of CIS over MC and IIS over CIS for simulations of digital communications systems.

  10. Bioelectrographic testing of mineral samples: a comparison of techniques.

    PubMed

    Vainshelboim, Alex; Momoh, Kenneth S

    2005-04-01

    This study was initiated to determine the suitability of differing techniques to record optical properties of gemstones under electromagnetic stimulation. Such properties are of interest due to the historical use of gemstones in folkloric remedies, specifically as agents for concentrating, focusing, or otherwise conducting energy flows in the human body. The techniques researched produce a localized corona discharge around the tested material. The simplest technique, Tesla coil Kirlian photography (TCKP), uses a Tesla coil to introduce a strong electric current, and the circuit is completed by a glass electrode. The corona discharge is then photographed. The other technique used in the study is gas discharge visualization (GDV), which uses a pulsed current and a digital camera integral to the coil to produce digital images of the corona discharge. Gemstones were tested both whole and in powdered form. The sample gemstones were amethyst, aquamarine, garnet, golden citrine, pink tourmaline, and yellow topaz. Powdered gemstones were ground to a particle size of 2-5 microns; whole gemstones were roundcut to a diameter of 5 mm. In our tests, TCKP showed divergent effects for differing types of gemstone. The most extreme effects were exhibited by tourmaline, both in powdered and whole form. In addition, TCKP appeared to indicate differing effects for gemstones of the identical type but mined from differing locations. The GDV technique showed differing data among the gemstones for the measured parameters, indicating that a high relative intensity did not correspond to the size of the corona discharge. While both techniques showed promise in distinguishing differences in corona discharge behavior in gemstone samples, further work is necessary to determine the significance of differences in geographical sources or between gemstones of similar crystalline structure. The techniques explored show promise in characterizing the properties of gem materials under electromagnetic

  11. Application of drilling, coring, and sampling techniques to test holes and wells

    USGS Publications Warehouse

    Shuter, Eugene; Teasdale, Warren E.

    1989-01-01

    The purpose of this manual is to provide ground-water hydrologists with a working knowledge of the techniques of test drilling, auger drilling, coring and sampling, and the related drilling and sampling equipment. For the most part, the techniques discussed deal with drilling, sampling, and completion of test holes in unconsolidated sediments because a hydrologist is interested primarily in shallow-aquifer data in this type of lithology. Successful drilling and coring of these materials usually is difficult, and published research information on the subject is not readily available. The authors emphasize in-situ sampling of unconsolidated sediments to obtain virtually undisturbed samples. Particular attention is given to auger drilling and hydraulic-rotary methods of drilling because these are the principal means of test drilling performed by the U.S. Geological Survey during hydrologic studies. Techniques for sampling areas contaminated by solid or liquid waste are discussed. Basic concepts of well development and a detailed discussion of drilling muds, as related to hole conditioning, also are included in the report. The information contained in this manual is intended to help ground-water hydrologists obtain useful subsurface data and samples from their drilling programs.

  12. AirCore-HR: a high-resolution column sampling to enhance the vertical description of CH4 and CO2

    NASA Astrophysics Data System (ADS)

    Membrive, Olivier; Crevoisier, Cyril; Sweeney, Colm; Danis, François; Hertzog, Albert; Engel, Andreas; Bönisch, Harald; Picon, Laurence

    2017-06-01

    An original and innovative sampling system called AirCore was presented by NOAA in 2010 Karion et al.(2010). It consists of a long ( > 100 m) and narrow ( < 1 cm) stainless steel tube that can retain a profile of atmospheric air. The captured air sample has then to be analyzed with a gas analyzer for trace mole fraction. In this study, we introduce a new AirCore aiming to improve resolution along the vertical with the objectives to (i) better capture the vertical distribution of CO2 and CH4, (ii) provide a tool to compare AirCores and validate the estimated vertical resolution achieved by AirCores. This (high-resolution) AirCore-HR consists of a 300 m tube, combining 200 m of 0.125 in. (3.175 mm) tube and a 100 m of 0.25 in. (6.35 mm) tube. This new configuration allows us to achieve a vertical resolution of 300 m up to 15 km and better than 500 m up to 22 km (if analysis of the retained sample is performed within 3 h). The AirCore-HR was flown for the first time during the annual StratoScience campaign from CNES in August 2014 from Timmins (Ontario, Canada). High-resolution vertical profiles of CO2 and CH4 up to 25 km were successfully retrieved. These profiles revealed well-defined transport structures in the troposphere (also seen in CAMS-ECMWF high-resolution forecasts of CO2 and CH4 profiles) and captured the decrease of CO2 and CH4 in the stratosphere. The multi-instrument gondola also carried two other low-resolution AirCore-GUF that allowed us to perform direct comparisons and study the underlying processing method used to convert the sample of air to greenhouse gases vertical profiles. In particular, degrading the AirCore-HR derived profiles to the low resolution of AirCore-GUF yields an excellent match between both sets of CH4 profiles and shows a good consistency in terms of vertical structures. This fully validates the theoretical vertical resolution achievable by AirCores. Concerning CO2 although a good agreement is found in terms of vertical structure

  13. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

    EPA Science Inventory

    This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...

  14. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    NASA Astrophysics Data System (ADS)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  15. Comparison of efficacy of pulverization and sterile paper point techniques for sampling root canals.

    PubMed

    Tran, Kenny T; Torabinejad, Mahmoud; Shabahang, Shahrokh; Retamozo, Bonnie; Aprecio, Raydolfo M; Chen, Jung-Wei

    2013-08-01

    The purpose of this study was to compare the efficacy of the pulverization and sterile paper point techniques for sampling root canals using 5.25% NaOCl/17% EDTA and 1.3% NaOCl/MTAD (Dentsply, Tulsa, OK) as irrigation regimens. Single-canal extracted human teeth were decoronated and infected with Enterococcus faecalis. Roots were randomly assigned to 2 irrigation regimens: group A with 5.25% NaOCl/17% EDTA (n = 30) and group B with 1.3% NaOCl/MTAD (n = 30). After chemomechanical debridement, bacterial samplings were taken using sterile paper points and pulverized powder of the apical 5 mm root ends. The sterile paper point technique did not show growth in any samples. The pulverization technique showed growth in 24 of the 60 samples. The Fisher exact test showed significant differences between sampling techniques (P < .001). The sterile paper point technique showed no difference between irrigation regimens. However, 17 of the 30 roots in group A and 7 of the 30 roots in group B resulted in growth as detected by pulverization technique. Data showed a significant difference between irrigation regimens (P = .03) in pulverization technique. The pulverization technique was more efficacious in detecting viable bacteria. Furthermore, this technique showed that 1.3% NaOCl/MTAD regimen was more effective in disinfecting root canals. Published by Elsevier Inc.

  16. TECHNOLOGY EVALUATION REPORT CEREX ENVIRONMENTAL SERVICES UV HOUND POINT SAMPLE AIR MONITOR

    EPA Science Inventory

    The USEPA's National Homeland Security Research Center (NHSRC) Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle evaluated the performance of the Cerex UV Hound point sample air monitor in de...

  17. Comparison of indoor air sampling and dust collection methods for fungal exposure assessment using quantitative PCR

    EPA Science Inventory

    Evaluating fungal contamination indoors is complicated because of the many different sampling methods utilized. In this study, fungal contamination was evaluated using five sampling methods and four matrices for results. The five sampling methods were a 48 hour indoor air sample ...

  18. Scheduling whole-air samples above the Trade Wind Inversion from SUAS using real-time sensors

    NASA Astrophysics Data System (ADS)

    Freer, J. E.; Greatwood, C.; Thomas, R.; Richardson, T.; Brownlow, R.; Lowry, D.; MacKenzie, A. R.; Nisbet, E. G.

    2015-12-01

    Small Unmanned Air Systems (SUAS) are increasingly being used in science applications for a range of applications. Here we explore their use to schedule the sampling of air masses up to 2.5km above ground using computer controlled bespoked Octocopter platforms. Whole-air sampling is targeted above, within and below the Trade Wind Inversion (TWI). On-board sensors profiled the TWI characteristics in real time on ascent and, hence, guided the altitudes at which samples were taken on descent. The science driver for this research is investigation of the Southern Methane Anomaly and, more broadly, the hemispheric-scale transport of long-lived atmospheric tracers in the remote troposphere. Here we focus on the practical application of SUAS for this purpose. Highlighting the need for mission planning, computer control, onboard sensors and logistics in deploying such technologies for out of line-of-sight applications. We show how such a platform can be deployed successfully, resulting in some 60 sampling flights within a 10 day period. Challenges remain regarding the deployment of such platforms routinely and cost-effectively, particularly regarding training and support. We present some initial results from the methane sampling and its implication for exploring and understanding the Southern Methane Anomaly.

  19. New technique for calibrating hydrocarbon gas flowmeters

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; Puster, R. L.

    1984-01-01

    A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.

  20. Can groundwater sampling techniques used in monitoring wells influence methane concentrations and isotopes?

    PubMed

    Rivard, Christine; Bordeleau, Geneviève; Lavoie, Denis; Lefebvre, René; Malet, Xavier

    2018-03-06

    Methane concentrations and isotopic composition in groundwater are the focus of a growing number of studies. However, concerns are often expressed regarding the integrity of samples, as methane is very volatile and may partially exsolve during sample lifting in the well and transfer to sampling containers. While issues concerning bottle-filling techniques have already been documented, this paper documents a comparison of methane concentration and isotopic composition obtained with three devices commonly used to retrieve water samples from dedicated observation wells. This work lies within the framework of a larger project carried out in the Saint-Édouard area (southern Québec, Canada), whose objective was to assess the risk to shallow groundwater quality related to potential shale gas exploitation. The selected sampling devices, which were tested on ten wells during three sampling campaigns, consist of an impeller pump, a bladder pump, and disposable sampling bags (HydraSleeve). The sampling bags were used both before and after pumping, to verify the appropriateness of a no-purge approach, compared to the low-flow approach involving pumping until stabilization of field physicochemical parameters. Results show that methane concentrations obtained with the selected sampling techniques are usually similar and that there is no systematic bias related to a specific technique. Nonetheless, concentrations can sometimes vary quite significantly (up to 3.5 times) for a given well and sampling event. Methane isotopic composition obtained with all sampling techniques is very similar, except in some cases where sampling bags were used before pumping (no-purge approach), in wells where multiple groundwater sources enter the borehole.

  1. DEVELOPMENT OF A SUB-SLAB AIR SAMPLING PROTOCOL TO SUPPORT ASSESSMENT OF VAPOR INTRUSION

    EPA Science Inventory

    The primary purpose of this research effort is to develop a methodology for sub-slab sampling to support the EPA guidance and vapor intrusion investigations after vapor intrusion has been established at a site. Methodologies for sub-slab air sampling are currently lacking in ref...

  2. Avian influenza H9N2 virus isolated from air samples in LPMs in Jiangxi, China.

    PubMed

    Zeng, Xiaoxu; Liu, Mingbin; Zhang, Heng; Wu, Jingwen; Zhao, Xiang; Chen, Wenbing; Yang, Lei; He, Fenglan; Fan, Guoyin; Wang, Dayan; Chen, Haiying; Shu, Yuelong

    2017-07-24

    Recently, avian influenza virus has caused repeated worldwide outbreaks in humans. Live Poultry Markets (LPMs) play an important role in the circulation and reassortment of novel Avian Influenza Virus (AIVs). Aerosol transmission is one of the most important pathways for influenza virus to spread among poultry, from poultry to mammals, and among mammals. In this study, air samples were collected from LPMs in Nanchang city between April 2014 and March 2015 to investigate possible aerosol transmission of AIVs. Air samples were detected for Flu A by Real-Time Reverse Transcription-Polymerase Chain Reaction (RRT-PCR). If samples were positive for Flu A, they were inoculated into 9- to 10-day-old specific-pathogen-free embryonated eggs. If the result was positive, the whole genome of the virus was sequenced by MiSeq. Phylogenetic trees of all 8 segments were constructed using MEGA 6.05 software. To investigate the possible aerosol transmission of AIVs, 807 air samples were collected from LPMs in Nanchang city between April 2014 and March 2015. Based on RRT-PCR results, 275 samples (34.1%) were Flu A positive, and one virus was successfully isolated with embryonated eggs. The virus shared high nucleotide homology with H9N2 AIVs from South China. Our study provides further evidence that the air in LPMs can be contaminated by influenza viruses and their nucleic acids, and this should be considered when choosing and evaluating disinfection strategies in LPMs, such as regular air disinfection. Aerosolized viruses such as the H9N2 virus detected in this study can increase the risk of human infection when people are exposed in LPMs.

  3. Comparison of stationary and personal air sampling with an air dispersion model for children’s ambient exposure to manganese

    EPA Science Inventory

    Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...

  4. Cost minimization analysis for combinations of sampling techniques in bronchoscopy of endobronchial lesions.

    PubMed

    Roth, Kjetil; Hardie, Jon Andrew; Andreassen, Alf Henrik; Leh, Friedemann; Eagan, Tomas Mikal Lind

    2009-06-01

    The choice of sampling techniques in bronchoscopy with sampling from a visible lesion will depend on the expected diagnostic yields and the costs of the sampling techniques. The aim of this study was to determine the most economical combination of sampling techniques when approaching endobronchial visible lesions. A cost minimization analysis was performed. All bronchoscopies from 2003 and 2004 at Haukeland university hospital, Bergen, Norway, were reviewed retrospectively for diagnostic yields. 162 patients with endobronchial disease were included. Potential sampling techniques used were biopsy, brushing, endobronchial needle aspiration (EBNA) and washings. Costs were estimated based on registration of equipment costs and personnel costs. Sensitivity analyses were performed to determine threshold values. The combination of biopsy, brushing and EBNA was the most economical strategy with an average cost of Euro 893 (95% CI: 657, 1336). The cost of brushing had to be below Euro 83 and it had to increase the diagnostic yield more than 2.2%, for biopsy and brushing to be more economical than biopsy alone. The combination of biopsy, brushing and EBNA was more economical than biopsy and brushing when the cost of EBNA was below Euro 205 and the increase in diagnostic yield was above 5.2%. In the current study setting, biopsy, brushing and EBNA was the most economical combination of sampling techniques for endobronchial visible lesions.

  5. Simple and direct method for detecting phosphorus in air at normal pressure and temperature using a combination of LIBS and LIFS techniques

    NASA Astrophysics Data System (ADS)

    Al-Jeffery, Mohammad O.; Kondou, H.; Belenkevitch, Alexander; Azzeer, Abdallah M.

    2002-05-01

    The Environmental Protection Agency (EAP) designated phosphorus as hazardous material; it is flammable and poisonous. Phosphorus attacks the respiratory system, liver, kidneys, jaw, teeth, blood, eyes, and skin. Phosphorus is an element that has a high detection limit when using laser-induced breakdown spectroscopy (LIBS) techniques. In order to improve on detection limits, laser-induced fluorescence spectroscopy (LIFS) has been proposed, as an extension to LIBS. The ultimate goal of this work is to use the combined LIBS & LIFS techniques to detect the presence of phosphorus in air and to measure its level. In order to provide 'proof-of-concept' results, the sample used for our experiment was prepared using the 'igniting' strip of a safety match box. The spectrally and temporally resolved detection of the specific atomic emission revealed analytical information about the elemental composition of the sample. A tunable Ti: sapphire laser, at the resonance wavelength of 253.4 nm, was then used to probe the plume by exciting the phosphorus element and we measured the fluorescence from the atoms at 213.62 nm and 214.91 nm. The whole experiment was carried out in a few minutes. We have thus demonstrated for the first time, to our knowledge, the use of LIBS and LIFS in air quality monitoring and in particular for phosphorus detection.

  6. Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and air samples.

    PubMed

    Balderrama-Carmona, Ana Paola; Gortáres-Moroyoqui, Pablo; Álvarez-Valencia, Luis Humberto; Castro-Espinoza, Luciano; Mondaca-Fernández, Iram; Balderas-Cortés, José de Jesús; Chaidez-Quiroz, Cristóbal; Meza-Montenegro, María Mercedes

    2014-09-01

    Cryptosporidium oocysts and Giardia cysts can be transmitted by the fecal-oral route and may cause gastrointestinal parasitic zoonoses. These zoonoses are common in rural zones due to the parasites being harbored in fecally contaminated soil. This study assessed the risk of illness (giardiasis and cryptosporidiosis) from inhaling and/or ingesting soil and/or airborne dust in Potam, Mexico. To assess the risk of infection, Quantitative Microbial Risk Assessment (QMRA) was employed, with the following steps: (1) hazard identification, (2) hazard exposure, (3) dose-response, and (4) risk characterization. Cryptosporidium oocysts and Giardia cysts were observed in 52% and 57%, respectively, of total soil samples (n=21), and in 60% and 80%, respectively, of air samples (n=12). The calculated annual risks were higher than 9.9 × 10(-1) for both parasites in both types of sample. Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the microbial air quality around these parasites in rural zones. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  8. Airborne environmental endotoxin: a cross-validation of sampling and analysis techniques.

    PubMed Central

    Walters, M; Milton, D; Larsson, L; Ford, T

    1994-01-01

    A standard method for measurement of airborne environmental endotoxin was developed and field tested in a fiberglass insulation-manufacturing facility. This method involved sampling with a capillary-pore membrane filter, extraction in buffer using a sonication bath, and analysis by the kinetic-Limulus assay with resistant-parallel-line estimation (KLARE). Cross-validation of the extraction and assay method was performed by comparison with methanolysis of samples followed by 3-hydroxy fatty acid (3-OHFA) analysis by gas chromatography-mass spectrometry. Direct methanolysis of filter samples and methanolysis of buffer extracts of the filters yielded similar 3-OHFA content (P = 0.72); the average difference was 2.1%. Analysis of buffer extracts for endotoxin content by the KLARE method and by gas chromatography-mass spectrometry for 3-OHFA content produced similar results (P = 0.23); the average difference was 0.88%. The source of endotoxin was gram-negative bacteria growing in recycled washwater used to clean the insulation-manufacturing equipment. The endotoxin and bacteria become airborne during spray cleaning operations. The types of 3-OHFAs in bacteria cultured from the washwater, present in the washwater and in the air, were similar. Virtually all of the bacteria cultured from air and water were gram negative composed mostly of two species, Deleya aesta and Acinetobacter johnsonii. Airborne countable bacteria correlated well with endotoxin (r2 = 0.64). Replicate sampling showed that results with the standard sampling, extraction, and Limulus assay by the KLARE method were highly reproducible (95% confidence interval for endotoxin measurement +/- 0.28 log10). These results demonstrate the accuracy, precision, and sensitivity of the standard procedure proposed for airborne environmental endotoxin. PMID:8161191

  9. Standardization of proton-induced x-ray emission technique for analysis of thick samples

    NASA Astrophysics Data System (ADS)

    Ali, Shad; Zeb, Johar; Ahad, Abdul; Ahmad, Ishfaq; Haneef, M.; Akbar, Jehan

    2015-09-01

    This paper describes the standardization of the proton-induced x-ray emission (PIXE) technique for finding the elemental composition of thick samples. For the standardization, three different samples of standard reference materials (SRMs) were analyzed using this technique and the data were compared with the already known data of these certified SRMs. These samples were selected in order to cover the maximum range of elements in the periodic table. Each sample was irradiated for three different values of collected beam charges at three different times. A proton beam of 2.57 MeV obtained using 5UDH-II Pelletron accelerator was used for excitation of x-rays from the sample. The acquired experimental data were analyzed using the GUPIXWIN software. The results show that the SRM data and the data obtained using the PIXE technique are in good agreement.

  10. High-resolution real-time optical studies of radiological air sample filtration processes in an environmental continuous air monitor

    NASA Astrophysics Data System (ADS)

    Rodgers, John C.; Wasiolek, Piotr T.; Schery, Stephen D.; Alcantara, Raul E.

    1999-01-01

    The need for a continuous air monitor capable of quick and accurate measurements of airborne radioactivity in close proximity to the work environment during waste management, site restoration, and D&D operations led to the Los Alamos National Laboratory development of an environmental continuous air monitor (ECAM). Monitoring the hostile work environment of waste recovery, for example, presents unique challenges for detector design for detectors previously used for the clean room conditions of the typical plutonium laboratory. The environmental and atmospheric conditions (dust, high wind, etc.) influence aerosol particle penetration into the ECAM sampling head as well as the build-up of deposits on the ECAM filter.

  11. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  12. Determination of the elemental composition of aerosol samples in the working environment of a secondary lead smelting company in Nigeria using EDXRF technique

    NASA Astrophysics Data System (ADS)

    Obiajunwa, E. I.; Johnson-Fatokun, F. O.; Olaniyi, H. B.; Olowole, A. F.

    2002-07-01

    Energy dispersive X-ray fluorescence technique was employed to determine the concentrations of elements in aerosol samples collected in the working environment of a secondary lead smelting company in Nigeria. Sampling was done using Whatman-41 cellulose filters mounted in Negretti air samplers at 10 locations within the factory. The concentrations of eight elements (K, Ca, Ti, Mn, Fe, Cu, Zn and Pb) were determined. The TSP values ranged from 70 to 7963 μg/m 3 and the concentration of Pb was found to be between 2.98 and 538.47 μg/m 3. The high Pb concentration is a danger signal to the health of the factory workers.

  13. Ionospheric Measurements Using Environmental Sampling Techniques

    NASA Technical Reports Server (NTRS)

    Bourdeau, R. E.; Jackson, J. E.; Kane, J. A.; Serbu, G. P.

    1960-01-01

    Two rockets were flown to peak altitudes of 220 km in September 1959 to test various methods planned for future measurements of ionization parameters in the ionosphere, exosphere, and interplanetary plasma. The experiments used techniques which sample the ambient environment in the immediate vicinity of the research vehicle. Direct methods were chosen since indirect propagation techniques do not provide the temperatures of charged particles, are insensitive to ion densities, and cannot measure local electron densities under all conditions. Very encouraging results have been obtained from a preliminary analysis of data provided by one of the two flights. A new rf probe technique was successfully used to determine the electron density profile. This was indicated by its agreement with the results of a companion cw propagation experiment, particularly when the probe data were corrected for the effects of the ion sheath which surrounds the vehicle. The characteristics of this sheath were determined directly in flight by an electric field meter which provided the sheath field, and by a Langmuir probe which measured the total potential across the sheath. The electron temperatures deduced from the Langmuir probe data are greater than the neutral gas temperatures previously measured for the same location and season, but these measurements possibly were taken under different atmospheric conditions. Ion densities were calculated from the ion trap data for several altitudes ranging from 130 to 210 km and were found to be within 20 percent of the measured electron densities.

  14. Nonlinear imaging (NIM) of barely visible impact damage (BVID) in composite panels using a semi and full air-coupled linear and nonlinear ultrasound technique

    NASA Astrophysics Data System (ADS)

    Malfense Fierro, Gian Piero; Meo, Michele

    2018-03-01

    Two non-contact methods were evaluated to address the reliability and reproducibility concerns affecting industry adoption of nonlinear ultrasound techniques for non-destructive testing and evaluation (NDT/E) purposes. A semi and a fully air-coupled linear and nonlinear ultrasound method was evaluated by testing for barely visible impact damage (BVID) in composite materials. Air coupled systems provide various advantages over contact driven systems; such as: ease of inspection, no contact and lubrication issues and a great potential for non-uniform geometry evaluation. The semi air-coupled setup used a suction attached piezoelectric transducer to excite the sample and an array of low-cost microphones to capture the signal over the inspection area, while the second method focused on a purely air-coupled setup, using an air-coupled transducer to excite the structure and capture the signal. One of the issues facing nonlinear and any air-coupled systems is transferring enough energy to stimulate wave propagation and in the case of nonlinear ultrasound; damage regions. Results for both methods provided nonlinear imaging (NIM) of damage regions using a sweep excitation methodology, with the semi aircoupled system providing clearer results.

  15. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, throughmore » the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.« less

  16. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  17. A novel visually CO2 controlled alveolar breath sampling technique.

    PubMed

    Birken, Thomas; Schubert, Jochen; Miekisch, Wolfram; Nöldge-Schomburg, Gabriele

    2006-01-01

    A crucial issue in the analysis of exhaled breath is the collection of gaseous samples. The analysis of pure alveolar gas is the method of choice if contamination of samples is to be minimized. Monitoring of expired CO2 can be used to identify alveolar gas. The purpose of this study was to evaluate a bed side version of this technique using visual CO2 control by means of a capnometer. 22 mechanically ventilated patients of an ICU were enrolled into the study. Alveolar and mixed expiratory gas, and arterial blood were sampled. PCO2 in blood and gas was determined in a blood gas analyzer. End tidal PCO2 was monitored in all patients by a fast responding main stream capnometry. Taking the gaseous samples was visually synchronized with the expired CO2. Alveolar CO2 contents measured during two different respiratory cycles were identical (p 0.86). The variation of the CO2 content during 10 measurements in one patient was lower than 4%. Arterial PCO2, PCO2 in alveolar gas and end tidal PCO2 showed positive correlation. The visually CO2-controlled sampling technique of alveolar gas is a reliable and reproducible method. It represents an important step in simplifying and standardizing breath analysis.

  18. Compressed NMR: Combining compressive sampling and pure shift NMR techniques.

    PubMed

    Aguilar, Juan A; Kenwright, Alan M

    2017-12-26

    Historically, the resolution of multidimensional nuclear magnetic resonance (NMR) has been orders of magnitude lower than the intrinsic resolution that NMR spectrometers are capable of producing. The slowness of Nyquist sampling as well as the existence of signals as multiplets instead of singlets have been two of the main reasons for this underperformance. Fortunately, two compressive techniques have appeared that can overcome these limitations. Compressive sensing, also known as compressed sampling (CS), avoids the first limitation by exploiting the compressibility of typical NMR spectra, thus allowing sampling at sub-Nyquist rates, and pure shift techniques eliminate the second issue "compressing" multiplets into singlets. This paper explores the possibilities and challenges presented by this combination (compressed NMR). First, a description of the CS framework is given, followed by a description of the importance of combining it with the right pure shift experiment. Second, examples of compressed NMR spectra and how they can be combined with covariance methods will be shown. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Monte Carlo simulation of air sampling methods for the measurement of radon decay products.

    PubMed

    Sima, Octavian; Luca, Aurelian; Sahagia, Maria

    2017-08-01

    A stochastic model of the processes involved in the measurement of the activity of the 222 Rn decay products was developed. The distributions of the relevant factors, including air sampling and radionuclide collection, are propagated using Monte Carlo simulation to the final distribution of the measurement results. The uncertainties of the 222 Rn decay products concentrations in the air are realistically evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown.

  1. Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1974-01-01

    The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.

  2. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    PubMed Central

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  3. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  4. Review of online coupling of sample preparation techniques with liquid chromatography.

    PubMed

    Pan, Jialiang; Zhang, Chengjiang; Zhang, Zhuomin; Li, Gongke

    2014-03-07

    Sample preparation is still considered as the bottleneck of the whole analytical procedure, and efforts has been conducted towards the automation, improvement of sensitivity and accuracy, and low comsuption of organic solvents. Development of online sample preparation techniques (SP) coupled with liquid chromatography (LC) is a promising way to achieve these goals, which has attracted great attention. This article reviews the recent advances on the online SP-LC techniques. Various online SP techniques have been described and summarized, including solid-phase-based extraction, liquid-phase-based extraction assisted with membrane, microwave assisted extraction, ultrasonic assisted extraction, accelerated solvent extraction and supercritical fluids extraction. Specially, the coupling approaches of online SP-LC systems and the corresponding interfaces have been discussed and reviewed in detail, such as online injector, autosampler combined with transport unit, desorption chamber and column switching. Typical applications of the online SP-LC techniques have been summarized. Then the problems and expected trends in this field are attempted to be discussed and proposed in order to encourage the further development of online SP-LC techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cleaning and Cleanliness Verification Techniques for Mars Returned Sample Handling

    NASA Technical Reports Server (NTRS)

    Mickelson, E. T.; Lindstrom, D. J.; Allton, J. H.; Hittle, J. D.

    2002-01-01

    Precision cleaning and cleanliness verification techniques are examined as a subset of a comprehensive contamination control strategy for a Mars sample return mission. Additional information is contained in the original extended abstract.

  6. A simple semi-empirical technique for apportioning the impact of roadways on air quality in an urban neighbourhood

    NASA Astrophysics Data System (ADS)

    Elangasinghe, M. A.; Dirks, K. N.; Singhal, N.; Costello, S. B.; Longley, I.; Salmond, J. A.

    2014-02-01

    Air pollution from the transport sector has a marked effect on human health, so isolating the pollutant contribution from a roadway is important in understanding its impact on the local neighbourhood. This paper proposes a novel technique based on a semi-empirical air pollution model to quantify the impact from a roadway on the air quality of a local neighbourhood using ambient records of a single air pollution monitor. We demonstrate the proposed technique using a case study, in which we quantify the contribution from a major highway with respect to the local background concentration in Auckland, New Zealand. Comparing the diurnal variation of the model-separated background contribution with real measurements from a site upwind of the highway shows that the model estimates are reliable. Amongst all of the pollutants considered, the best estimations of the background were achieved for nitrogen oxides. Although the multi-pronged approach worked well for predominantly vehicle-related pollutants, it could not be used effectively to isolate emissions of PM10 due to the complex and less predictable influence of natural sources (such as marine aerosols). The proposed approach is useful in situations where ambient records from an upwind background station are not available (as required by other techniques) and is potentially transferable to situations such as intersections and arterial roads. Applying this technique to longer time series could help to understand the changes in pollutant concentrations from the road and background sources for different emission scenarios, for different years or seasons. Modelling results also show the potential of such a hybrid semi-empirical models to contribute to our understanding of the physical parameters determining air quality and to validate emissions inventory data.

  7. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    NASA Astrophysics Data System (ADS)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  8. Marine Technician's Handbook, Instructions for Taking Air Samples on Board Ship: Carbon Dioxide Project.

    ERIC Educational Resources Information Center

    Keeling, Charles D.

    This booklet is one of a series intended to provide explicit instructions for the collection of oceanographic data and samples at sea. The methods and procedures described have been used by the Scripps Institution of Oceanography and found reliable and up-to-date. Instructions are given for taking air samples on board ship to determine the…

  9. The use of multilevel sampling techniques for determining shallow aquifer nitrate profiles.

    PubMed

    Lasagna, Manuela; De Luca, Domenico Antonio

    2016-10-01

    Nitrate is a worldwide pollutant in aquifers. Shallow aquifer nitrate concentrations generally display vertical stratification, with a maximum concentration immediately below the water level. The concentration then gradually decreases with depth. Different techniques can be used to highlight this stratification. The paper aims at comparing the advantages and limitations of three open hole multilevel sampling techniques (packer system, dialysis membrane samplers and bailer), chosen on the base of a literary review, to highlight a nitrate vertical stratification under the assumption of (sub)horizontal flow in the aquifer. The sampling systems were employed at three different times of the year in a shallow aquifer piezometer in northern Italy. The optimal purge time, equilibration time and water volume losses during the time in the piezometer were evaluated. Multilevel techniques highlighted a similar vertical nitrate stratification, present throughout the year. Indeed, nitrate concentrations generally decreased with depth downwards, but with significantly different levels in the sampling campaigns. Moreover, the sampling techniques produced different degrees of accuracy. More specifically, the dialysis membrane samplers provided the most accurate hydrochemical profile of the shallow aquifer and they appear to be necessary when the objective is to detect the discontinuities in the nitrate profile. Bailer and packer system showed the same nitrate profile with little differences of concentration. However, the bailer resulted much more easier to use.

  10. Why minimally invasive skin sampling techniques? A bright scientific future.

    PubMed

    Wang, Christina Y; Maibach, Howard I

    2011-03-01

    There is increasing interest in minimally invasive skin sampling techniques to assay markers of molecular biology and biochemical processes. This overview examines methodology strengths and limitations, and exciting developments pending in the scientific community. Publications were searched via PubMed, the U.S. Patent and Trademark Office Website, the DermTech Website and the CuDerm Website. The keywords used were noninvasive skin sampling, skin stripping, skin taping, detergent method, ring method, mechanical scrub, reverse iontophoresis, glucose monitoring, buccal smear, hair root sampling, mRNA, DNA, RNA, and amino acid. There is strong interest in finding methods to access internal biochemical, molecular, and genetic processes through noninvasive and minimally invasive external means. Minimally invasive techniques include the widely used skin tape stripping, the abrasion method that includes scraping and detergent, and reverse iontophoresis. The first 2 methods harvest largely the stratum corneum. Hair root sampling (material deeper than the epidermis), buccal smear, shave biopsy, punch biopsy, and suction blistering are also methods used to obtain cellular material for analysis, but involve some degree of increased invasiveness and thus are only briefly mentioned. Existing and new sampling methods are being refined and validated, offering exciting, different noninvasive means of quickly and efficiently obtaining molecular material with which to monitor bodily functions and responses, assess drug levels, and follow disease processes without subjecting patients to unnecessary discomfort and risk.

  11. Active AirCore Sampling: Constraining Point Sources of Methane and Other Gases with Fixed Wing Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Bent, J. D.; Sweeney, C.; Tans, P. P.; Newberger, T.; Higgs, J. A.; Wolter, S.

    2017-12-01

    Accurate estimates of point source gas emissions are essential for reconciling top-down and bottom-up greenhouse gas measurements, but sampling such sources is challenging. Remote sensing methods are limited by resolution and cloud cover; aircraft methods are limited by air traffic control clearances, and the need to properly determine boundary layer height. A new sampling approach leverages the ability of unmanned aerial systems (UAS) to measure all the way to the surface near the source of emissions, improving sample resolution, and reducing the need to characterize a wide downstream swath, or measure to the full height of the planetary boundary layer (PBL). The "Active-AirCore" sampler, currently under development, will fly on a fixed wing UAS in Class G airspace, spiraling from the surface to 1200 ft AGL around point sources such as leaking oil wells to measure methane, carbon dioxide and carbon monoxide. The sampler collects a 100-meter long sample "core" of air in an 1/8" passivated stainless steel tube. This "core" is run on a high-precision instrument shortly after the UAS is recovered. Sample values are mapped to a specific geographic location by cross-referencing GPS and flow/pressure metadata, and fluxes are quantified by applying Gauss's theorem to the data, mapped onto the spatial "cylinder" circumscribed by the UAS. The AirCore-Active builds off the sampling ability and analytical approach of the related AirCore sampler, which profiles the atmosphere passively using a balloon launch platform, but will add an active pumping capability needed for near-surface horizontal sampling applications. Here, we show design elements, laboratory and field test results for methane, describe the overall goals of the mission, and discuss how the platform can be adapted, with minimal effort, to measure other gas species.

  12. Air versus saline in the loss of resistance technique for identification of the epidural space.

    PubMed

    Antibas, Pedro L; do Nascimento Junior, Paulo; Braz, Leandro G; Vitor Pereira Doles, João; Módolo, Norma S P; El Dib, Regina

    2014-07-18

    The success of epidural anaesthesia depends on correct identification of the epidural space. For several decades, the decision of whether to use air or physiological saline during the loss of resistance technique for identification of the epidural space has been governed by the personal experience of the anaesthesiologist. Epidural block remains one of the main regional anaesthesia techniques. It is used for surgical anaesthesia, obstetrical analgesia, postoperative analgesia and treatment of chronic pain and as a complement to general anaesthesia. The sensation felt by the anaesthesiologist from the syringe plunger with loss of resistance is different when air is compared with saline (fluid). Frequently fluid allows a rapid change from resistance to non-resistance and increased movement of the plunger. However, the ideal technique for identification of the epidural space remains unclear. • To evaluate the efficacy and safety of both air and saline in the loss of resistance technique for identification of the epidural space.• To evaluate complications related to the air or saline injected. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2013, Issue 9), MEDLINE, EMBASE and the Latin American and Caribbean Health Science Information Database (LILACS) (from inception to September 2013). We applied no language restrictions. The date of the most recent search was 7 September 2013. We included randomized controlled trials (RCTs) and quasi-randomized controlled trials (quasi-RCTs) on air and saline in the loss of resistance technique for identification of the epidural space. Two review authors independently assessed trial quality and extracted data. We included in the review seven studies with a total of 852 participants. The methodological quality of the included studies was generally ranked as showing low risk of bias in most domains, with the exception of one study, which did not mask participants. We were able to include data from 838

  13. ANALYSIS OF SAMPLING TECHNIQUES FOR IMBALANCED DATA: AN N=648 ADNI STUDY

    PubMed Central

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M.; Ye, Jieping

    2013-01-01

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer’s disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and under sampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1). a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2). sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. PMID:24176869

  14. Doppler ultrasound surveillance in deep tunneling compressed-air work with Trimix breathing: bounce dive technique compared to saturation-excursion technique.

    PubMed

    Vellinga, T P van Rees; Sterk, W; de Boer, A G E M; van der Beek, A J; Verhoeven, A C; van Dijk, F J H

    2008-01-01

    The Western Scheldt Tunneling Project in The Netherlands provided a unique opportunity to evaluate two deep-diving techniques with Doppler ultrasound surveillance. Divers used the bounce diving techniques for repair and maintenance of the TBM. The tunnel boring machine jammed at its deepest depth. As a result the work time was not sufficient. The saturation diving technique was developed and permitted longer work time at great depth. Thirty-one divers were involved in this project. Twenty-three divers were examined using Doppler ultrasound. Data analysis addressed 52 exposures to Trimix at 4.6-4.8 bar gauge using the bounce technique and 354 exposures to Trimix at 4.0-6.9 bar gauge on saturation excursions. No decompression incidents occurred with either technique during the described phase of the project. Doppler ultrasound revealed that the bubble loads assessed in both techniques were generally low. We find out, that despite longer working hours, shorter decompression times and larger physical workloads, the saturation-excursion technique was associated with significant lower bubble grades than in the bounce technique using Doppler Ultrasound. We conclude that the saturation-excursion technique with Trimix is a good option for deep and long exposures in caisson work. The Doppler technique proved valuable, and it should be incorporated in future compressed-air work.

  15. 77 FR 58953 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Control Technique...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... Promulgation of Air Quality Implementation Plans; Delaware; Control Technique Guidelines for Plastic Parts... categories: Plastic Parts, Metal Furniture, Large Appliances, and Miscellaneous Metal Parts. EPA is approving... Compounds, sections 2.0 ``Definitions,'' 12.0 ``Surface Coating of Plastic Parts,'' 19.0 ``Coating of Metal...

  16. NaOCl degradation of a HEMA-free all-in-one adhesive bonded to enamel and dentin following two air-blowing techniques.

    PubMed

    De Munck, Jan; Ermis, R Banu; Koshiro, Kenichi; Inoue, Satoshi; Ikeda, Takatsumi; Sano, Hidehiko; Van Landuyt, Kirsten L; Van Meerbeek, Bart

    2007-01-01

    Phase-separation within HEMA-free all-in-one dental adhesives may result in the entrapment of droplets within the adhesive resin. Strongly air-blowing prior to polymerization, can remove most of these droplets. The objective of this study was to evaluate the effect these droplets may have on the resistance of the adhesive-tooth interface to NaOCl degradation. The micro-tensile bond strength (microTBS) to enamel and dentin was determined when a HEMA-free all-in-one adhesive was applied either following a mild or strong air-blowing technique. The bonds were also exposed to an aqueous sodium hypochlorite (NaOCl) solution for 1h, following a recently introduced methodology to mimic in vivo bond degradation. This study revealed that strong air-blowing of the adhesive only resulted in a significantly higher micro-tensile bond strength (microTBS) to dentin, but not to enamel. Likewise, NaOCl only reduced the microTBS to dentin for both the mild and strong air-blowing technique, but again not the microTBS to enamel. Failure analysis by SEM clearly revealed that strong air-blowing is less effective in droplet removal when the adhesive was applied in small and narrow class-I cavities, as compared to when it was applied to flat surfaces. NaOCl did preferentially dissolve the hybrid layer at dentin, and more for the mild than for the strong air-blowing technique. A strong air-blowing procedure resulted in a more NaOCl-resistant hybrid layer, so that it can be concluded that a HEMA-free one-step adhesive definitely benefits from a strong air-blowing technique.

  17. Irreversible sorption of trace concentrations of perfluorocarboxylic acids to fiber filters used for air sampling

    NASA Astrophysics Data System (ADS)

    Arp, Hans Peter H.; Goss, Kai-Uwe

    Due to the apparent environmental omnipresence of perfluorocarboxylic acids (PFAs), an increasing number of researchers are investigating their ambient particle- and gas-phase concentrations. Typically this is done using a high-volume air sampler equipped with Quartz Fiber Filters (QFFs) or Glass Fiber Filters (GFFs) to sample the particle-bound PFAs and downstream sorbents to sample the gas-phase PFAs. This study reports that at trace, ambient concentrations gas-phase PFAs sorb to QFFs and GFFs irreversibly and hardly pass through these filters to the downstream sorbents. As a consequence, it is not possible to distinguish between particle- and gas-phase concentrations, or to distinguish concentrations on different particle size fractions, unless precautions are taken. Failure to take such precautions could have already caused reported data to be misinterpreted. Here it is also reported that deactivating QFFs and GFFs with a silylating agent renders them suitable for sampling PFAs. Based on the presented study, a series of recommendations for air-sampling PFAs are provided.

  18. A technique for extracting blood samples from mice in fire toxicity tests

    NASA Technical Reports Server (NTRS)

    Bucci, T. J.; Hilado, C. J.; Lopez, M. T.

    1976-01-01

    The extraction of adequate blood samples from moribund and dead mice has been a problem because of the small quantity of blood in each animal and the short time available between the animals' death and coagulation of the blood. These difficulties are particularly critical in fire toxicity tests because removal of the test animals while observing proper safety precautions for personnel is time-consuming. Techniques for extracting blood samples from mice were evaluated, and a technique was developed to obtain up to 0.8 ml of blood from a single mouse after death. The technique involves rapid exposure and cutting of the posterior vena cava and accumulation of blood in the peritoneal space. Blood samples of 0.5 ml or more from individual mice have been consistently obtained as much as 16 minutes after apparent death. Results of carboxyhemoglobin analyses of blood appeared reproducible and consistent with carbon monoxide concentrations in the exposure chamber.

  19. Atmospheric CO2 Records from Sites in the Main Geophysical Observatory Air Sampling Network (1983 - 1993)

    DOE Data Explorer

    Brounshtein, A. M. [Main Geophysical Observatory, St. Petersburg, Russia; Shaskov, A. A. [Main Geophysical Observatory, St. Petersburg, Russia; Paramonova, N. N. [Main Geophysical Observatory, St. Petersburg, Russia; Privalov, V. I. [Main Geophysical Observatory, St. Petersburg, Russia; Starodubtsev, Y. A. [Main Geophysical Observatory, St. Petersburg, Russia

    1997-01-01

    Air samples were collected from five sites in the Main Geophysical Observatory air sampling network to monitor the atmospheric CO2 from 1983 - 1993. Airwas collected generally four times per month in pairs of 1.5-L stainless steel electropolished flasks with one greaseless stainless steel stopcock. Sampling was performed by opening the stopcock of the flasks, which have been evacuated at the central laboratory at the Main Geophysical Observatory (MGO). The air was not dried during sample collection. Attempts were made to obtain samples when the wind speed was >5 m/s and the wind direction corresponded to the predetermined "clean air" sector. The period of record at Bering Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Bering Island rose from approximately 346 parts per million by volume (ppmv) in 1986 to 362.6 ppmv in 1993. Measurements from this station are considered indicative of maritime air masses. The period of record at Kotelny Island is too short to identify any long-term trends in atmospheric CO2 concentrations; however, the yearly mean atmospheric CO2 concentration at Kotelny Island rose from 356.08 parts per million by volume (ppmv) in 1988 to 358.8 ppmv in 1993. Because Kotelny Island is the northernmost Russian sampling site, measurements from this site serve as a useful comparison to other northern sites (e.g., Alert, Northwest Territories). In late 1989, air sampling began at the Russian site of Kyzylcha, located in the Republic of Uzbekistan. Unfortunately, the desert site at Kyzylcha has been out of operation since mid-1991 due to financial difficulties in Russia. The annual mean value of 359.02 parts per million by volume (ppmv) for 1990, the lone full year of operation, is higher than measurements from other monitoring programs at this latitude [e.g., Niwot Ridge (354.7 ppmv in 1990) and Tae-ahn Peninsula]. Station "C," an open ocean site, in the

  20. Aerosol Sampling with Low Wind Sensitivity.

    NASA Astrophysics Data System (ADS)

    Kalatoor, Suresh

    Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a

  1. Comparison of Passive and Active Air Sampling (PAAS) Methods for PCBs – A Pilot Study in New York City Schools

    EPA Science Inventory

    PCBs were used extensively in school building materials (caulk and lighting fixture ballasts) during the approximate period of 1950-1978. Most of the schools built nationwide during this period have not had indoor air sampling conducted for PCBs. Passive air sampling holds promi...

  2. 78 FR 34306 - Approval and Promulgation of Air Quality Implementation Plans: North Carolina; Control Techniques...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-07

    ... Promulgation of Air Quality Implementation Plans: North Carolina; Control Techniques Guidelines and Reasonably Available Control Technology AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... Carolina's commitment associated with the conditional approval of its reasonably available control...

  3. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  4. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  5. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  6. Mathematical estimation of the level of microbial contamination on spacecraft surfaces by volumetric air sampling

    NASA Technical Reports Server (NTRS)

    Oxborrow, G. S.; Roark, A. L.; Fields, N. D.; Puleo, J. R.

    1974-01-01

    Microbiological sampling methods presently used for enumeration of microorganisms on spacecraft surfaces require contact with easily damaged components. Estimation of viable particles on surfaces using air sampling methods in conjunction with a mathematical model would be desirable. Parameters necessary for the mathematical model are the effect of angled surfaces on viable particle collection and the number of viable cells per viable particle. Deposition of viable particles on angled surfaces closely followed a cosine function, and the number of viable cells per viable particle was consistent with a Poisson distribution. Other parameters considered by the mathematical model included deposition rate and fractional removal per unit time. A close nonlinear correlation between volumetric air sampling and airborne fallout on surfaces was established with all fallout data points falling within the 95% confidence limits as determined by the mathematical model.

  7. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    PubMed

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  8. Development of a wireless air pollution sensor package for aerial-sampling of emissions

    EPA Science Inventory

    A new sensor system for mobile and aerial emission sampling was developed for open area pollutant sources, such as prescribed forest burns. The sensor system, termed “Kolibri”, consists of multiple low-cost air quality sensors measuring CO2, CO, samplers for particulate matter wi...

  9. Evaluation of solid sorbents for the determination of fenhexamid, metalaxyl-M, pyrimethanil, malathion and myclobutanil residues in air samples: application to monitoring malathion and fenhexamid dissipation in greenhouse air using C-18 or Supelpak-2 for sampling.

    PubMed

    Tsiropoulos, Nikolaos G; Bakeas, Evangelos B; Raptis, Vasilios; Batistatou, Stavroula S

    2006-07-28

    A methodology is described for greenhouse air analysis by sampling fenhexamid, pyrimethanil, malathion, metalaxyl-M and myclobutanil in solid sorbents. Pesticides were determined by gas chromatography with NP Detector. The trapping efficiency of XAD-2, XAD-4, Supelpak-2, Florisil and C-18 at different sampling conditions (rate, time and air humidity) and pesticides concentration levels has been evaluated. No breakthrough was observed in the range of concentration studied (0.10-75 microg of each pesticide). In almost all the cases good stability results were obtained. Personal pumps have been used with selected sorbents (Supelpak-2 and C-18) in order to sample malathion and fenhexamid in air of experimental greenhouse after their application in a tomato crop. The dissipation process of the analytes in various time periods after application has been studied. Malathion concentrations varied between 20.1 microg m(-3) just after application and 1.06 microg m(-3) 3 days later. Fenhexamid concentrations, determined by high performance liquid chromatography with UV detection, fall rapidly; after 12 h post-application being below 0.50 microg m(-3).

  10. Microbial assessment of cabin air quality on commercial airliners

    NASA Technical Reports Server (NTRS)

    La Duc, Myron T.; Stuecker, Tara; Bearman, Gregory; Venkateswaran, Kasthuri

    2005-01-01

    The microbial burdens of 69 cabin air samples collected from commercial airliners were assessed via conventional culture-dependent, and molecular-based microbial enumeration assays. Cabin air samples from each of four separate flights aboard two different carriers were collected via air-impingement. Microbial enumeration techniques targeting DNA, ATP, and endotoxin were employed to estimate total microbial burden. The total viable microbial population ranged from 0 to 3.6 x10 4 cells per 100 liters of air, as assessed by the ATP-assay. When these same samples were plated on R2A minimal medium, anywhere from 2% to 80% of these viable populations were cultivable. Five of the 29 samples examined exhibited higher cultivable counts than ATP derived viable counts, perhaps a consequence of the dormant nature (and thus lower concentration of intracellular ATP) of cells inhabiting these air cabin samples. Ribosomal RNA gene sequence analysis showed these samples to consist of a moderately diverse group of bacteria, including human pathogens. Enumeration of ribosomal genes via quantitative-PCR indicated that population densities ranged from 5 x 10 1 ' to IO 7 cells per 100 liters of air. Each of the aforementioned strategies for assessing overall microbial burden has its strengths and weaknesses; this publication serves as a testament to the power of their use in concert.

  11. Mantle biopsy: a technique for nondestructive tissue-sampling of freshwater mussels

    Treesearch

    David J. Berg; Wendell R. Haag; Sheldon I. Guttman; James B. Sickel

    1995-01-01

    Mantle biopsy is a means of obtaining tissue samples for genetic, physiological, and contaminant studies of bivalves; but the effects of this biopsy on survival have not been determined. We describe a simple technique for obtaining such samples from unionacean bivalves and how we compared survival among biopsied and control organisms in field experiments. Survival was...

  12. Concentration and characteristics of depleted uranium in water, air and biological samples collected in Serbia and Montenegro.

    PubMed

    Jia, Guogang; Belli, Maria; Sansone, Umberto; Rosamilia, Silvia; Gaudino, Stefania

    2005-09-01

    During the Balkan conflicts, in 1995 and 1999, depleted uranium (DU) rounds were employed and were left in the battlefield. Health concern is related to the risk arising from contamination of the environment with DU penetrators and dust. In order to evaluate the impact of DU on the environment and population in Serbia and Montenegro, radiological surveys of DU in water, air and biological samples were carried out over the period 27 October-5 November 2001. The uranium isotopic concentrations in biological samples collected in Serbia and Montenegro, mainly lichens and barks, were found to be in the range of 0.67-704 Bqkg(-1) for (238)U, 0.48-93.9 Bqkg(-1) for (234)U and 0.02-12.2 Bqkg(-1) for (235)U, showing uranium levels to be higher than in the samples collected at the control sites. Moreover, (236)U was detectable in some of the samples. The isotopic ratios of (234)U/(238)U showed DU to be detectable in many biological samples at all examined sites, especially in Montenegro, indicating widespread ground-surface DU contamination, albeit at very low level. The uranium isotopic concentrations in air obtained from the air filter samples collected in Serbia and Montenegro were found to be in the range of 1.99-42.1 microBqm(-3) for (238)U, 0.96-38.0 microBqm(-3) for (234)U, and 0.05-1.83 microBqm(-3) for (235)U, being in the typical range of natural uranium values. Thus said, most of the air samples are DU positive, this fact agreeing well with the widespread DU contamination detected in the biological samples. The uranium concentrations in water samples collected in Serbia and Montenegro were found to be in the range of 0.40-21.9 mBql(-1) for (238)U, 0.27-28.1 mBql(-1) for (234)U, and 0.01-0.88 mBql(-1) for (235)U, these values being much lower than those in mineral water found in central Italy and below the WHO guideline for drinking water. From a radiotoxicological point of view, at this moment there is no significant radiological risk related to these investigated

  13. Multiple Replica Repulsion Technique for Efficient Conformational Sampling of Biological Systems

    PubMed Central

    Malevanets, Anatoly; Wodak, Shoshana J.

    2011-01-01

    Here, we propose a technique for sampling complex molecular systems with many degrees of freedom. The technique, termed “multiple replica repulsion” (MRR), does not suffer from poor scaling with the number of degrees of freedom associated with common replica exchange procedures and does not require sampling at high temperatures. The algorithm involves creation of multiple copies (replicas) of the system, which interact with one another through a repulsive potential that can be applied to the system as a whole or to portions of it. The proposed scheme prevents oversampling of the most populated states and provides accurate descriptions of conformational perturbations typically associated with sampling ground-state energy wells. The performance of MRR is illustrated for three systems of increasing complexity. A two-dimensional toy potential surface is used to probe the sampling efficiency as a function of key parameters of the procedure. MRR simulations of the Met-enkephalin pentapeptide, and the 76-residue protein ubiquitin, performed in presence of explicit water molecules and totaling 32 ns each, investigate the ability of MRR to characterize the conformational landscape of the peptide, and the protein native basin, respectively. Results obtained for the enkephalin peptide reflect more closely the extensive conformational flexibility of this peptide than previously reported simulations. Those obtained for ubiquitin show that conformational ensembles sampled by MRR largely encompass structural fluctuations relevant to biological recognition, which occur on the microsecond timescale, or are observed in crystal structures of ubiquitin complexes with other proteins. MRR thus emerges as a very promising simple and versatile technique for modeling the structural plasticity of complex biological systems. PMID:21843487

  14. The effect of a cannula milk sampling technique on the microbiological diagnosis of bovine mastitis.

    PubMed

    Friman, M; Hiitiö, H; Niemi, M; Holopainen, J; Pyörälä, S; Simojoki, H

    2017-08-01

    Two methods of collecting milk samples from mastitic bovine mammary quarters were compared. Samples were taken in a consistent order in which standard aseptic technique sampling was done first, followed by insertion of a sterile cannula through the teat canal and collection of a second sample. Microbiological results of those two sampling techniques were compared. Milk samples were analysed using multiplex real-time polymerase chain reaction (PCR). The cannula technique produced a reduced number of microbial species or groups of species per sample compared with conventional sampling. Staphylococcus spp. were the most common species identified and were detected more often during conventional sampling than with cannula sampling. Staphylococcus spp. identified in milk samples could also have originated from the teat canal without being present in the milk. The number of samples positive for Trueperella pyogenes or yeasts in the conventional samples was twice as high as in the cannula samples, indicating that the presence of Trueperella pyogenes and yeast species should not necessarily be interpreted as being the causative agents of bovine intra-mammary infections (IMI). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Moss Techniques for Air Pollution Study in Bulgaria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinova, S.; Marinov, A.; Frontasyeva, M.

    2010-01-21

    The paper presents new results on atmospheric deposition of 41 elements in four areas of Bulgaria during the European moss survey in 2005. The results have been obtained by the moss biomonitoring technique. Ninety seven moss samples were analyzed by instrumental neutron activation analysis (ENAA) and atomic absorption spectrometry (AAS).

  16. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less

  17. Evaluation of primary immunization coverage of infants under universal immunization programme in an urban area of bangalore city using cluster sampling and lot quality assurance sampling techniques.

    PubMed

    K, Punith; K, Lalitha; G, Suman; Bs, Pradeep; Kumar K, Jayanth

    2008-07-01

    Is LQAS technique better than cluster sampling technique in terms of resources to evaluate the immunization coverage in an urban area? To assess and compare the lot quality assurance sampling against cluster sampling in the evaluation of primary immunization coverage. Population-based cross-sectional study. Areas under Mathikere Urban Health Center. Children aged 12 months to 23 months. 220 in cluster sampling, 76 in lot quality assurance sampling. Percentages and Proportions, Chi square Test. (1) Using cluster sampling, the percentage of completely immunized, partially immunized and unimmunized children were 84.09%, 14.09% and 1.82%, respectively. With lot quality assurance sampling, it was 92.11%, 6.58% and 1.31%, respectively. (2) Immunization coverage levels as evaluated by cluster sampling technique were not statistically different from the coverage value as obtained by lot quality assurance sampling techniques. Considering the time and resources required, it was found that lot quality assurance sampling is a better technique in evaluating the primary immunization coverage in urban area.

  18. 3D Air Quality and the Clean Air Interstate Rule: Lagrangian Sampling of CMAQ Model Results to Aid Regional Accountability Metrics

    NASA Technical Reports Server (NTRS)

    Fairlie, T. D.; Szykman, Jim; Pierce, Robert B.; Gilliland, A. B.; Engel-Cox, Jill; Weber, Stephanie; Kittaka, Chieko; Al-Saadi, Jassim A.; Scheffe, Rich; Dimmick, Fred; hide

    2008-01-01

    The Clean Air Interstate Rule (CAIR) is expected to reduce transport of air pollutants (e.g. fine sulfate particles) in nonattainment areas in the Eastern United States. CAIR highlights the need for an integrated air quality observational and modeling system to understand sulfate as it moves in multiple dimensions, both spatially and temporally. Here, we demonstrate how results from an air quality model can be combined with a 3d monitoring network to provide decision makers with a tool to help quantify the impact of CAIR reductions in SO2 emissions on regional transport contributions to sulfate concentrations at surface monitors in the Baltimore, MD area, and help improve decision making for strategic implementation plans (SIPs). We sample results from the Community Multiscale Air Quality (CMAQ) model using ensemble back trajectories computed with the NASA Langley Research Center trajectory model to provide Lagrangian time series and vertical profile information, that can be compared with NASA satellite (MODIS), EPA surface, and lidar measurements. Results are used to assess the regional transport contribution to surface SO4 measurements in the Baltimore MSA, and to characterize the dominant source regions for low, medium, and high SO4 episodes.

  19. A Feasibility Study of the Collection of Unscheduled Maintenance Data Using Statistical Sampling Techniques.

    DTIC Science & Technology

    1985-09-01

    TECHNIQUES THESIS Robert A. Heinlein Captain, USAF AFIT/GLM/LSM/855-32.- _ DTIC MU’noN ’ST.,TEMENT A A-ZELECTE Approved lt public teleo*I Al \\ Z #&N0V21...343" A FEASIBILITY STUDY OF THE COLLECTION OF UNSCHEDULED MAINTENANCE DATA USING STrATISTICAL SAMPLING TECHNIQUES THESIS L .9 Robe-t A. Heinlein...a AFIT/GLM/LSM/85S-32 A FEASIBILITY STUDY OF THE COLLECTION OF UNSCHEDULED MAINTENANCE DATA USING STATISTICAL SAMPLING TECHNIQUES THESIS

  20. Whole air canister sampling coupled with preconcentration GC/MS analysis of part-per-trillion levels of trimethylsilanol in semiconductor cleanroom air.

    PubMed

    Herrington, Jason S

    2013-08-20

    The costly damage airborne trimethylsilanol (TMS) exacts on optics in the semiconductor industry has resulted in the demand for accurate and reliable methods for measuring TMS at trace levels (i.e., parts per trillion, volume per volume of air [ppt(v)] [~ng/m(3)]). In this study I developed a whole air canister-based approach for field sampling trimethylsilanol in air, as well as a preconcentration gas chromatography/mass spectrometry laboratory method for analysis. The results demonstrate clean canister blanks (0.06 ppt(v) [0.24 ng/m(3)], which is below the detection limit), excellent linearity (a calibration relative response factor relative standard deviation [RSD] of 9.8%) over a wide dynamic mass range (1-100 ppt(v)), recovery/accuracy of 93%, a low selected ion monitoring method detection limit of 0.12 ppt(v) (0.48 ng/m(3)), replicate precision of 6.8% RSD, and stability (84% recovery) out to four days of storage at room temperature. Samples collected at two silicon wafer fabrication facilities ranged from 10.0 to 9120 ppt(v) TMS and appear to be associated with the use of hexamethyldisilazane priming agent. This method will enable semiconductor cleanroom managers to monitor and control for trace levels of trimethylsilanol.

  1. Evaluation of Primary Immunization Coverage of Infants Under Universal Immunization Programme in an Urban Area of Bangalore City Using Cluster Sampling and Lot Quality Assurance Sampling Techniques

    PubMed Central

    K, Punith; K, Lalitha; G, Suman; BS, Pradeep; Kumar K, Jayanth

    2008-01-01

    Research Question: Is LQAS technique better than cluster sampling technique in terms of resources to evaluate the immunization coverage in an urban area? Objective: To assess and compare the lot quality assurance sampling against cluster sampling in the evaluation of primary immunization coverage. Study Design: Population-based cross-sectional study. Study Setting: Areas under Mathikere Urban Health Center. Study Subjects: Children aged 12 months to 23 months. Sample Size: 220 in cluster sampling, 76 in lot quality assurance sampling. Statistical Analysis: Percentages and Proportions, Chi square Test. Results: (1) Using cluster sampling, the percentage of completely immunized, partially immunized and unimmunized children were 84.09%, 14.09% and 1.82%, respectively. With lot quality assurance sampling, it was 92.11%, 6.58% and 1.31%, respectively. (2) Immunization coverage levels as evaluated by cluster sampling technique were not statistically different from the coverage value as obtained by lot quality assurance sampling techniques. Considering the time and resources required, it was found that lot quality assurance sampling is a better technique in evaluating the primary immunization coverage in urban area. PMID:19876474

  2. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  3. A Visual Evaluation Study of Graph Sampling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fangyan; Zhang, Song; Wong, Pak C.

    2017-01-29

    We evaluate a dozen prevailing graph-sampling techniques with an ultimate goal to better visualize and understand big and complex graphs that exhibit different properties and structures. The evaluation uses eight benchmark datasets with four different graph types collected from Stanford Network Analysis Platform and NetworkX to give a comprehensive comparison of various types of graphs. The study provides a practical guideline for visualizing big graphs of different sizes and structures. The paper discusses results and important observations from the study.

  4. An intercomparison of nitric oxide measurement techniques

    NASA Technical Reports Server (NTRS)

    Hoell, J. M., Jr.; Gregory, G. L.; Mcdougal, D. S.; Carroll, M. A.; Mcfarland, M.; Ridley, B. A.; Davis, D. D.; Bradshaw, J.; Rodgers, M. O.; Torres, A. L.

    1985-01-01

    Results from an intercomparison of techniques to measure tropospheric levels of nitric oxide (NO) are discussed. The intercomparison was part of the National Aeronautics and Space Administration's Global Tropospheric Experiment and was conducted at Wallops Island, VA, in July 1983. Instruments intercompared included a laser-induced fluorescence system and two chemiluminescence instruments. The intercomparisons were performed with ambient air at NO mixing ratios ranging from 10 to 60 pptv and NO-enriched ambient air at mixing ratios from 20 to 170 pptv. All instruments sampled from a common manifold. The techniques exhibited a high degree of correlation among themselves and with changes in the NO mixing ratio. Agreement among the three techniques was placed at approximately + or - 30 percent. Within this level of agreement, no artifacts or species interferences were identified.

  5. CTEPP STANDARD OPERATING PROCEDURE FOR COLLECTION OF FIXED SITE INDOOR AND OUTDOOR AIR SAMPLES FOR PERSISTENT ORGANIC POLLUTANTS (SOP-2.12)

    EPA Science Inventory

    This SOP describes the procedures to set up, calibrate, initiate and terminate air sampling for persistent organic pollutants. This method is used to sample air, indoors and outdoors, at homes and at day care centers over a 48-hr period.

  6. Using soft computing techniques to predict corrected air permeability using Thomeer parameters, air porosity and grain density

    NASA Astrophysics Data System (ADS)

    Nooruddin, Hasan A.; Anifowose, Fatai; Abdulraheem, Abdulazeez

    2014-03-01

    Soft computing techniques are recently becoming very popular in the oil industry. A number of computational intelligence-based predictive methods have been widely applied in the industry with high prediction capabilities. Some of the popular methods include feed-forward neural networks, radial basis function network, generalized regression neural network, functional networks, support vector regression and adaptive network fuzzy inference system. A comparative study among most popular soft computing techniques is presented using a large dataset published in literature describing multimodal pore systems in the Arab D formation. The inputs to the models are air porosity, grain density, and Thomeer parameters obtained using mercury injection capillary pressure profiles. Corrected air permeability is the target variable. Applying developed permeability models in recent reservoir characterization workflow ensures consistency between micro and macro scale information represented mainly by Thomeer parameters and absolute permeability. The dataset was divided into two parts with 80% of data used for training and 20% for testing. The target permeability variable was transformed to the logarithmic scale as a pre-processing step and to show better correlations with the input variables. Statistical and graphical analysis of the results including permeability cross-plots and detailed error measures were created. In general, the comparative study showed very close results among the developed models. The feed-forward neural network permeability model showed the lowest average relative error, average absolute relative error, standard deviations of error and root means squares making it the best model for such problems. Adaptive network fuzzy inference system also showed very good results.

  7. Clinical forensic sample collection techniques following consensual intercourse in volunteers - cervical canal brush compared to conventional swabs.

    PubMed

    Joki-Erkkilä, Minna; Tuomisto, Sari; Seppänen, Mervi; Huhtala, Heini; Ahola, Arja; Rainio, Juha; Karhunen, Pekka J

    2014-10-01

    The purpose of the research was to evaluate gynecological evidence collection techniques; the benefit of cervical canal brush sample compared to vaginal fornix and cervical swab samples and the time frame for detecting Y-chromosomal material QiAmp DNA Mini Kit(®) and Quantifiler Y Human Male DNA Quantification Kit(®) in adult volunteers following consensual intercourse. Eighty-four adult female volunteers following consensual intercourse were recruited for the study. By combining all sample collecting techniques, 81.0% of the volunteers were Y-DNA positive. Up to 60 h the conventional swab sampling techniques detected more Y-DNA positive samples when compared to the brush technique. However, after 60 h, the cervical canal brush sample technique showed its benefit by detecting 27.3% (6/22) of Y-DNA positive samples, which were Y-DNA negative in both conventional swab sampling techniques. By combining swab and brush techniques, 75% of the volunteers were still Y-DNA positive in 72-144 post-coital hours. The rate of measurable Y-DNA decreased approximately 3% per hour. Despite reported consensual intercourse, 6.8% (3/44) of volunteers were Y-DNA negative within 48 h. Y-DNA was not detected after 144 post-coital hours (6 days). In conclusion, the brush as a forensic evidence collection method may provide additional biological trace evidence from the cervical canal, although the best biological trace evidence collection can be obtained by combining all three sampling techniques. The time frame for gynecological forensic evidence sample collection should be considered to be at least a week if sexual violence is suspected. Copyright © 2014 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  8. Minimizing brain shift during functional neurosurgical procedures - a simple burr hole technique that can decrease CSF loss and intracranial air.

    PubMed

    Coenen, V A; Abdel-Rahman, A; McMaster, J; Bogod, N; Honey, C R

    2011-11-01

    Exact stereotactic placement of deep brain stimulation electrodes during functional stereotactic neurosurgical procedures can be impeded by intraoperative brain shift. Brain shift has been shown to correlate with the amount of intracranial (subdural) air detected on early postoperative imaging studies. We report a simple burr hole technique that reduces the loss of cerebrospinal fluid (CSF) and has the potential to significantly reduce the amount of postoperative intracranial air. A total of 16 patients were studied with half (group 2) receiving the burr hole technique designed to seal the CSF space and thereby reducing CSF loss. The other 8 patients (group 1) received the standard burr hole technique. The 2 groups were of similar age, gender, diagnosis (Parkinson's disease, n=14; cervical dystonia n=2), and surgical targets. All patients received bilateral electrodes either in the subthalamic nucleus (STN, n=14) or in the globus pallidum internus (GPi, n=2) avoiding transventricular trajectories. Early postoperative 3-dimensional computed tomography (3D CT) was used to check for possible bleeding, DBS lead location, and the amount of intracranial air. Intracranial air was assessed manually in a volumetric slice-by-slice approach in the individual postoperative CT and the groups compared by t-test. Group 2 showed significantly lower postoperative intracranial air volumes (4.86 ± 4.35cc) as compared to group 1 (27.59 ± 17.80 cc, p=0.0083*). The duration of surgery, however, was significantly longer for group 1 (435 ± 56.05 min) as compared to group 2 (316 ± 34.79 min,p=0.00015*).The time span between the conclusion of the operation and postoperative 3DCT was similar for both groups. This new and simple burr hole technique was associated with a significant reduction in postoperative intracranial air. Reduction of intracranial air will ultimately reduce brain shift. That total operation time does not influence intracranial air is discussed as well as the

  9. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2012-09-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near infrared region (∼1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs new spectroscopic analysis (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  10. Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Jams, John T.

    2010-01-01

    Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.

  11. Influence of size-fractioning techniques on concentrations of selected trace metals in bottom materials from two streams in northeastern Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Helsel, Dennis R.

    1986-01-01

    Identical stream-bottom material samples, when fractioned to the same size by different techniques, may contain significantly different trace-metal concentrations. Precision of techniques also may differ, which could affect the ability to discriminate between size-fractioned bottom-material samples having different metal concentrations. Bottom-material samples fractioned to less than 0.020 millimeters by means of three common techniques (air elutriation, sieving, and settling) were analyzed for six trace metals to determine whether the technique used to obtain the desired particle-size fraction affects the ability to discriminate between bottom materials having different trace-metal concentrations. In addition, this study attempts to assess whether median trace-metal concentrations in size-fractioned bottom materials of identical origin differ depending on the size-fractioning technique used. Finally, this study evaluates the efficiency of the three size-fractioning techniques in terms of time, expense, and effort involved. Bottom-material samples were collected at two sites in northeastern Ohio: One is located in an undeveloped forested basin, and the other is located in a basin having a mixture of industrial and surface-mining land uses. The sites were selected for their close physical proximity, similar contributing drainage areas, and the likelihood that trace-metal concentrations in the bottom materials would be significantly different. Statistically significant differences in the concentrations of trace metals were detected between bottom-material samples collected at the two sites when the samples had been size-fractioned by means of air elutriation or sieving. Statistical analyses of samples that had been size fractioned by settling in native water were not measurably different in any of the six trace metals analyzed. Results of multiple comparison tests suggest that differences related to size-fractioning technique were evident in median copper, lead, and

  12. An analytical method for trifluoroacetic Acid in water and air samples using headspace gas chromatographic determination of the methyl ester.

    PubMed

    Zehavi, D; Seiber, J N

    1996-10-01

    An analytical method has been developed for the determination of trace levels of trifluoroacetic acid (TFA), an atmospheric breakdown product of several of the hydrofluorocarbon (HFC) and hydrochlorofluorocarbon (HCFC) replacements for the chlorofluorocarbon (CFC) refrigerants, in water and air. TFA is derivatized to the volatile methyl trifluoroacetate (MTFA) and determined by automated headspace gas chromatography (HSGC) with electron-capture detection or manual HSGC using GC/MS in the selected ion monitoring (SIM) mode. The method is based on the reaction of an aqueous sample containing TFA with dimethyl sulfate (DMS) in concentrated sulfuric acid in a sealed headspace vial under conditions favoring distribution of MTFA to the vapor phase. Water samples are prepared by evaporative concentration, during which TFA is retained as the anion, followed by extraction with diethyl ether of the acidified sample and then back-extraction of TFA (as the anion) in aqueous bicarbonate solution. The extraction step is required for samples with a relatively high background of other salts and organic materials. Air samples are collected in sodium bicarbonate-glycerin-coated glass denuder tubes and prepared by rinsing the denuder contents with water to form an aqueous sample for derivatization and analysis. Recoveries of TFA from spiked water, with and without evaporative concentration, and from spiked air were quantitative, with estimated detection limits of 10 ng/mL (unconcentrated) and 25 pg/mL (concentrated 250 mL:1 mL) for water and 1 ng/m(3) (72 h at 5 L/min) for air. Several environmental air, fogwater, rainwater, and surface water samples were successfully analyzed; many showed the presence of TFA.

  13. 3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples

    NASA Technical Reports Server (NTRS)

    Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.

    2015-01-01

    In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible

  14. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    NASA Astrophysics Data System (ADS)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  15. Glyphosate–rich air samples induce IL–33, TSLP and generate IL–13 dependent airway inflammation

    PubMed Central

    Kumar, Sudhir; Khodoun, Marat; Kettleson, Eric M.; McKnight, Christopher; Reponen, Tiina; Grinshpun, Sergey A.; Adhikari, Atin

    2014-01-01

    Several low weight molecules have often been implicated in the induction of occupational asthma. Glyphosate, a small molecule herbicide, is widely used in the world. There is a controversy regarding a role of glyphosate in developing asthma and rhinitis among farmers, the mechanism of which is unexplored. The aim of this study was to explore the mechanisms of glyphosate induced pulmonary pathology by utilizing murine models and real environmental samples. C57BL/6, TLR4−/−, and IL-13−/− mice inhaled extracts of glyphosate-rich air samples collected on farms during spraying of herbicides or inhaled different doses of glyphosate and ovalbumin. The cellular response, humoral response, and lung function of exposed mice were evaluated. Exposure to glyphosate-rich air samples as well as glyphosate alone to the lungs increased: eosinophil and neutrophil counts, mast cell degranulation, and production of IL-33, TSLP, IL-13, and IL-5. In contrast, in vivo systemic IL-4 production was not increased. Co-administration of ovalbumin with glyphosate did not substantially change the inflammatory immune response. However, IL-13-deficiency resulted in diminished inflammatory response but did not have a significant effect on airway resistance upon methacholine challenge after 7 or 21 days of glyphosate exposure. Glyphosate-rich farm air samples as well as glyphosate alone were found to induce pulmonary IL-13-dependent inflammation and promote Th2 type cytokines, but not IL-4 for glyphosate alone. This study, for the first time, provides evidence for the mechanism of glyphosate-induced occupational lung disease. PMID:25172162

  16. Application of Lamendin's adult dental aging technique to a diverse skeletal sample.

    PubMed

    Prince, Debra A; Ubelaker, Douglas H

    2002-01-01

    Lamendin et al. (1) proposed a technique to estimate age at death for adults by analyzing single-rooted teeth. They expressed age as a function of two factors: translucency of the tooth root and periodontosis (gingival regression). In their study, they analyzed 306 singled rooted teeth that were extracted at autopsy from 208 individuals of known age at death, all of whom were considered as having a French ancestry. Their sample consisted of 135 males, 73 females, 198 whites, and 10 blacks. The sample ranged in age from 22 to 90 years of age. By using a simple formulae (A = 0.18 x P + 0.42 x T + 25.53, where A = Age in years, P = Periodontosis height x 100/root height, and T = Transparency height x 100/root height), Lamendin et al. were able to estimate age at death with a mean error of +/- 10 years on their working sample and +/- 8.4 years on a forensic control sample. Lamendin found this technique to work well with a French population, but did not test it outside of that sample area. This study tests the accuracy of this adult aging technique on a more diverse skeletal population, the Terry Collection housed at the Smithsonian's National Museum of Natural History. Our sample consists of 400 teeth from 94 black females, 72 white females, 98 black males, and 95 white males, ranging from 25 to 99 years. Lamendin's technique was applied to this sample to test its applicability to a population not of French origin. Providing results from a diverse skeletal population will aid in establishing the validity of this method to be used in forensic cases, its ideal purpose. Our results suggest that Lamendin's method estimates age fairly accurately outside of the French sample yielding a mean error of 8.2 years, standard deviation 6.9 years, and standard error of the mean 0.34 years. In addition, when ancestry and sex are accounted for, the mean errors are reduced for each group (black females, white females, black males, and white males). Lamendin et al. reported an inter

  17. Analysis of sampling techniques for imbalanced data: An n = 648 ADNI study.

    PubMed

    Dubey, Rashmi; Zhou, Jiayu; Wang, Yalin; Thompson, Paul M; Ye, Jieping

    2014-02-15

    Many neuroimaging applications deal with imbalanced imaging data. For example, in Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, the mild cognitive impairment (MCI) cases eligible for the study are nearly two times the Alzheimer's disease (AD) patients for structural magnetic resonance imaging (MRI) modality and six times the control cases for proteomics modality. Constructing an accurate classifier from imbalanced data is a challenging task. Traditional classifiers that aim to maximize the overall prediction accuracy tend to classify all data into the majority class. In this paper, we study an ensemble system of feature selection and data sampling for the class imbalance problem. We systematically analyze various sampling techniques by examining the efficacy of different rates and types of undersampling, oversampling, and a combination of over and undersampling approaches. We thoroughly examine six widely used feature selection algorithms to identify significant biomarkers and thereby reduce the complexity of the data. The efficacy of the ensemble techniques is evaluated using two different classifiers including Random Forest and Support Vector Machines based on classification accuracy, area under the receiver operating characteristic curve (AUC), sensitivity, and specificity measures. Our extensive experimental results show that for various problem settings in ADNI, (1) a balanced training set obtained with K-Medoids technique based undersampling gives the best overall performance among different data sampling techniques and no sampling approach; and (2) sparse logistic regression with stability selection achieves competitive performance among various feature selection algorithms. Comprehensive experiments with various settings show that our proposed ensemble model of multiple undersampled datasets yields stable and promising results. © 2013 Elsevier Inc. All rights reserved.

  18. The study of volatile organic compounds in urban and indoor air

    NASA Astrophysics Data System (ADS)

    Clarkson, Paul Jonathan

    in the air. Chapter 5 is a theoretical discussion of the ways presenting the data obtained experimentally in an easy to understand way. Instead of targeting 7 or 8 compounds as being representative of air quality it is argued that by using a technique such as Air Fingerprinting, it is possible to show data that is indicative of the whole air sample. Using actual data it is possible to show the origin of the air sample in a simple yet effective way using air fingerprints.Also discussed is the Individual Component Air Quality Index, this is a method of quantifying air quality. By taking into account compound toxicity, atmospheric lifetime and UV exposure, the ICAQI, it is argued, is a technique that presents a more accurate picture of air quality.Chapter 6 concludes the thesis by drawing together the themes and issues that were raised.

  19. Comparison of destructive and nondestructive sampling techniques of retail chicken carcasses for enumeration of hygiene indicator microorganisms.

    PubMed

    Cossi, Marcus Vinícius Coutinho; de Almeida, Michelle Vieira; Dias, Mariane Rezende; de Arruda Pinto, Paulo Sérgiode; Nero, Luís Augusto

    2012-01-01

    The type of sampling technique used to obtain food samples is fundamental to the success of microbiological analysis. Destructive and nondestructive techniques, such as tissue excision and rinsing, respectively, are widely employed in obtaining samples from chicken carcasses. In this study, four sampling techniques used for chicken carcasses were compared to evaluate their performances in the enumeration of hygiene indicator microorganisms. Sixty fresh chicken carcasses were sampled by rinsing, tissue excision, superficial swabbing, and skin excision. All samples were submitted for enumeration of mesophilic aerobes, Enterobacteriaceae, coliforms, and Escherichia coli. The results were compared to determine the statistical significance of differences and correlation (P < 0.05). Tissue excision provided the highest microbial counts compared with the other procedures, with significant differences obtained only for coliforms and E. coli (P < 0.05). Significant correlations (P < 0.05) were observed for all the sampling techniques evaluated for most of the hygiene indicators. Despite presenting a higher recovery ability, tissue excision did not present significant differences for microorganism enumeration compared with other nondestructive techniques, such as rinsing, indicating its adequacy for microbiological analysis of chicken carcasses.

  20. Role of air sampling in investigation of an outbreak of legionnaires' disease associated with exposure to aerosols from an evaporative condenser.

    PubMed

    Breiman, R F; Cozen, W; Fields, B S; Mastro, T D; Carr, S J; Spika, J S; Mascola, L

    1990-06-01

    Epidemiologic studies have suggested that legionnaires' disease can be transmitted to susceptible hosts by contaminated aerosolized water from cooling towers and evaporative condensers; however, epidemic strains of Legionella have not been isolated by air sampling at such sites during epidemiologic investigations. An outbreak of legionnaires' disease occurred at a retirement hotel; Legionella pneumophila serogroup 1 was isolated from an evaporative condenser and from potable water. A case-control study showed that the only significant exposure risk was in area A. L. pneumophila serogroup 1 was isolated during air sampling near the evaporative condenser exhaust site, the air conditioning intake vent, and an air vent in area A, but not in shower stalls. Monoclonal antibody subtype patterns of L. pneumophila serogroup 1 isolates from patients matched those from the evaporative condenser but not from shower water. Air sampling and monoclonal antibody subtyping results support epidemiologic evidence that the evaporative condenser was the source of this outbreak.

  1. Determination of air-loop volume and radon partition coefficient for measuring radon in water sample.

    PubMed

    Lee, Kil Yong; Burnett, William C

    A simple method for the direct determination of the air-loop volume in a RAD7 system as well as the radon partition coefficient was developed allowing for an accurate measurement of the radon activity in any type of water. The air-loop volume may be measured directly using an external radon source and an empty bottle with a precisely measured volume. The partition coefficient and activity of radon in the water sample may then be determined via the RAD7 using the determined air-loop volume. Activity ratios instead of absolute activities were used to measure the air-loop volume and the radon partition coefficient. In order to verify this approach, we measured the radon partition coefficient in deionized water in the temperature range of 10-30 °C and compared the values to those calculated from the well-known Weigel equation. The results were within 5 % variance throughout the temperature range. We also applied the approach for measurement of the radon partition coefficient in synthetic saline water (0-75 ppt salinity) as well as tap water. The radon activity of the tap water sample was determined by this method as well as the standard RAD-H 2 O and BigBottle RAD-H 2 O. The results have shown good agreement between this method and the standard methods.

  2. Development, enhancement, and evaluation of aircraft measurement techniques for national ambient air quality standard criteria pollutants

    NASA Astrophysics Data System (ADS)

    Brent, Lacey Cluff

    The atmospheric contaminants most harmful to human health are designated Criteria Pollutants. To help Maryland attain the national ambient air quality standards (NAAQS) for Criteria Pollutants, and to improve our fundamental understanding of atmospheric chemistry, I conducted aircraft measurements in the Regional Atmospheric Measurement Modeling Prediction Program (RAMMPP). These data are used to evaluate model simulations and satellite observations. I developed techniques for improving airborne observation of two NAAQS pollutants, particulate matter (PM) and nitrogen dioxide (NO2). While structure and composition of organic aerosol are important for understanding PM formation, the molecular speciation of organic ambient aerosol remains largely unknown. The spatial distribution of reactive nitrogen is likewise poorly constrained. To examine water-soluble organic aerosol (WSOA) during an air pollution episode, I designed and implemented a shrouded aerosol inlet system to collect PM onto quartz fiber filters from a Cessna 402 research aircraft. Inlet evaluation conducted during a side-by-side flight with the NASA P3 demonstrated agreement to within 30%. An ion chromatographic mass spectrometric method developed using the NIST Standard Reference Material (SRM) 1649b Urban Dust, as a surrogate material resulted in acidic class separation and resolution of at least 34 organic acids; detection limits approach pg/g concentrations. Analysis of aircraft filter samples resulted in detection of 8 inorganic species and 16 organic acids of which 12 were quantified. Aged, re-circulated metropolitan air showed a greater number of dicarboxylic acids compared to air recently transported from the west. While the NAAQS for NO2 is rarely exceeded, it is a precursor molecule for ozone, America's most recalcitrant pollutant. Using cavity ringdown spectroscopy employing a light emitting diode (LED), I measured vertical profiles of NO2 (surface to 2.5 km) west (upwind) of the Baltimore

  3. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  4. Air pollution source identification

    NASA Technical Reports Server (NTRS)

    Fordyce, J. S.

    1975-01-01

    Techniques for air pollution source identification are reviewed, and some results obtained with them are evaluated. Described techniques include remote sensing from satellites and aircraft, on-site monitoring, and the use of injected tracers and pollutants themselves as tracers. The use of a large number of trace elements in ambient airborne particulate matter as a practical means of identifying sources is discussed in detail. Sampling and analysis techniques are described, and it is shown that elemental constituents can be related to specific source types such as those found in the earth's crust and those associated with specific industries. Source identification sytems are noted which utilize charged particle X-ray fluorescence analysis of original field data.

  5. Airborne survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Bradburn, G.; Reinisch, R. F.; Pitts, J. N., Jr.; Behar, J. V.; Zafonte, L.

    1974-01-01

    An instrumented aircraft was used to study the chemical and transport properties of air pollution in two major urban centers in California and to survey certain aspects of air pollution within this state. State-of-the-art measurement techniques and sampling procedures are discussed. It is found that meteorological transport mechanisms are better portrayed by vertical pollutant profiles. Airborne measurements define the nature of the mixing layer for atmospheric pollutants. Results show that the pollutants are found to be concentrated in distinct layers up to at least 18,000 feet and the O3 buildup occurring in advected air masses is a result of a continuous photochemical aging of air mass.

  6. A Coordinated Focused Ion Beam/Ultramicrotomy Technique for Serial Sectioning of Hayabusa Particles and Other Returned Samples

    NASA Technical Reports Server (NTRS)

    Berger, E. L.; Keller, L. P.

    2014-01-01

    Recent sample return missions, such as NASA's Stardust mission to comet 81P/Wild 2 and JAXA's Hayabusa mission to asteroid 25143 Itokawa, have returned particulate samples (typically 5-50 µm) that pose tremendous challenges to coordinated analysis using a variety of nano- and micro-beam techniques. The ability to glean maximal information from individual particles has become increasingly important and depends critically on how the samples are prepared for analysis. This also holds true for other extraterrestrial materials, including interplanetary dust particles, micrometeorites and lunar regolith grains. Traditionally, particulate samples have been prepared using microtomy techniques (e.g., [1]). However, for hard mineral particles ?20 µm, microtome thin sections are compromised by severe chatter and sample loss. For these difficult samples, we have developed a hybrid technique that combines traditional ultramicrotomy with focused ion beam (FIB) techniques, allowing for the in situ investigation of grain surfaces and interiors. Using this method, we have increased the number of FIB-SEM prepared sections that can be recovered from a particle with dimensions on the order of tens of µms. These sections can be subsequently analyzed using a variety of electron beam techniques. Here, we demonstrate this sample preparation technique on individual lunar regolith grains in order to study their space-weathered surfaces. We plan to extend these efforts to analyses of individual Hayabusa samples.

  7. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  8. Molecular comparison of the sampling efficiency of four types of airborne bacterial samplers.

    PubMed

    Li, Kejun

    2011-11-15

    In the present study, indoor and outdoor air samples were collected using four types of air samplers often used for airborne bacterial sampling. These air samplers included two solid impactors (BioStage and RCS), one liquid impinger (BioSampler), and one filter sampler with two kinds of filters (a gelatin and a cellulose acetate filter). The collected air samples were further processed to analyze the diversity and abundance of culturable bacteria and total bacteria through standard culture techniques, denaturing gradient gel electrophoresis (DGGE) fingerprinting and quantitative polymerase chain reaction (qPCR) analysis. The DGGE analysis indicated that the air samples collected using the BioStage and RCS samplers have higher culturable bacterial diversity, whereas the samples collected using the BioSampler and the cellulose acetate filter sampler have higher total bacterial diversity. To obtain more information on the sampled bacteria, some gel bands were excised and sequenced. In terms of sampling efficiency, results from the qPCR tests indicated that the collected total bacterial concentration was higher in samples collected using the BioSampler and the cellulose acetate filter sampler. In conclusion, the sampling bias and efficiency of four kinds of air sampling systems were compared in the present study and the two solid impactors were concluded to be comparatively efficient for culturable bacterial sampling, whereas the liquid impactor and the cellulose acetate filter sampler were efficient for total bacterial sampling. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Techniques for Down-Sampling a Measured Surface Height Map for Model Validation

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    This software allows one to down-sample a measured surface map for model validation, not only without introducing any re-sampling errors, but also eliminating the existing measurement noise and measurement errors. The software tool of the current two new techniques can be used in all optical model validation processes involving large space optical surfaces

  10. Solid sorbent air sampling and analytical procedure for methyl-, dimethyl-, ethyl-, and diethylamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elskamp, C.J.; Schultz, G.R.

    1986-01-01

    A sampling and analytical procedure for methyl-, dimethyl-, ethyl-, and diethylamine was developed in order to avoid problems typically encountered in the sampling and analysis of low molecular weight aliphatic amines. Samples are collected with adsorbent tubes containing Amberlite XAD-7 resin coated with the derivatizing reagent, NBD chloride (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole). Analysis is performed by high performance liquid chromatography with the use of a fluorescence and/or UV/visible detector. All four amines can be monitored simultaneously, and neither collection nor storage is affected by humidity. Samples are stable at room temperature for at least two weeks. The methodology has been tested for eachmore » of the four amines at sample loadings equivalent to air concentration ranges of 0.5 to 30 ppm for a sample volume of 10 liters. The method shows promise for determining other airborne primary and secondary low molecular weight aliphatic amines.« less

  11. Flextime: A Modified Work Force Scheduling Technique for Selected Headquarters Air Force Logistics Command Organizations.

    ERIC Educational Resources Information Center

    Kimzey, Reed T.; Prince, Samuel M. O.

    The thesis discusses the advantages and disadvantages of one work force scheduling technique--flextime. The authors were interested in determining if a flextime schedule could be put into effect in a governmental organization such as Headquarters Air Force Logistics Command (AFLC). The study objectives were to determine the feasibility,…

  12. Breakthrough during air sampling with polyurethane foam: What do PUF 2/PUF 1 ratios mean?

    PubMed

    Bidleman, Terry F; Tysklind, Mats

    2018-02-01

    Frontal chromatography theory is applied to describe movement of gaseous semivolatile organic compounds (SVOCs) through a column of polyurethane foam (PUF). Collected mass fractions (F C ) are predicted for sample volume/breakthrough volume ratios (τ = V S /V B ) up to 6.0 and PUF bed theoretical plate numbers (N) from 2 to 16. The predictions assume constant air concentrations and temperatures. Extension of the calculations is done to relate the collection efficiency of a 2-PUF train (F C1+2 ) to the PUF 2/PUF 1 ratio. F C1+2 exceeds 0.9 for PUF 2/PUF 1 ≤ 0.5 and lengths of PUF commonly used in air samplers. As the PUF 2/PUF 1 ratio approaches unity, confidence in these predictions is limited by the analytical ability to distinguish residues on the two PUFs. Field data should not be arbitrarily discarded because some analytes broke through to the backup PUF trap. The fractional collection efficiencies can be used to estimate air concentrations from quantities retained on the PUF trap when sampling is not quantitative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cleansing technique using high-velocity steam-air micromist jet spray.

    PubMed

    Fukuda, Koichi; Ishihara, Masayuki; Murakami, Kaoru; Nakamura, Shingo; Sato, Yoko; Kuwabara, Masahiro; Fujita, Masanori; Kiyosawa, Tomoharu; Yokoe, Hidetaka

    2017-10-01

    Application of a high-velocity steam-air micromist jet spray (HVS-AMJS; micromist average diameter: 2.4 μm) for cleansing the skin is proposed. Low-pressure steam is mixed with compressed air (pH 6.5) in a nozzle, and then sprayed at a pressure of ≦0.25 MPa and a velocity of ≧0.34 m/s on the skin or surface of material located approximately 5-10 cm from the nozzle. The temperature on the sprayed surface and water flow rate could be controlled between 42 °C and 46 °C and at approximately 50 mL/min, respectively. Compared with ultrasonic cleansing with tap water and rubbing with only tap water, the HVS-AMJS successfully removed fluorescent lotion covering pieces of wood and significantly reduced both the number of coliforms and the total viable counts on pieces of wood and gauze. Furthermore, the HVS-AMJS effectively removed oily ink from the skin of hairless rats, and temporarily elevated the skin temperature and blood flow, indicating massage effects. The striking characteristics of this cleansing technique using HVS-AMJS are not only its ability to remove microbes and residue without using any chemicals or detergents but also its massage effects.

  14. Impact of sampling techniques on measured stormwater quality data for small streams

    USGS Publications Warehouse

    Harmel, R.D.; Slade, R.M.; Haney, R.L.

    2010-01-01

    Science-based sampling methodologies are needed to enhance water quality characterization for setting appropriate water quality standards, developing Total Maximum Daily Loads, and managing nonpoint source pollution. Storm event sampling, which is vital for adequate assessment of water quality in small (wadeable) streams, is typically conducted by manual grab or integrated sampling or with an automated sampler. Although it is typically assumed that samples from a single point adequately represent mean cross-sectional concentrations, especially for dissolved constituents, this assumption of well-mixed conditions has received limited evaluation. Similarly, the impact of temporal (within-storm) concentration variability is rarely considered. Therefore, this study evaluated differences in stormwater quality measured in small streams with several common sampling techniques, which in essence evaluated within-channel and within-storm concentration variability. Constituent concentrations from manual grab samples and from integrated samples were compared for 31 events, then concentrations were also compared for seven events with automated sample collection. Comparison of sampling techniques indicated varying degrees of concentration variability within channel cross sections for both dissolved and particulate constituents, which is contrary to common assumptions of substantial variability in particulate concentrations and of minimal variability in dissolved concentrations. Results also indicated the potential for substantial within-storm (temporal) concentration variability for both dissolved and particulate constituents. Thus, failing to account for potential cross-sectional and temporal concentration variability in stormwater monitoring projects can introduce additional uncertainty in measured water quality data. Copyright ?? 2010 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  15. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    NASA Astrophysics Data System (ADS)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  16. Methane mole fraction and δ13C above and below the trade wind inversion at Ascension Island in air sampled by aerial robotics

    NASA Astrophysics Data System (ADS)

    Brownlow, R.; Lowry, D.; Thomas, R. M.; Fisher, R. E.; France, J. L.; Cain, M.; Richardson, T. S.; Greatwood, C.; Freer, J.; Pyle, J. A.; MacKenzie, A. R.; Nisbet, E. G.

    2016-11-01

    Ascension Island is a remote South Atlantic equatorial site, ideal for monitoring tropical background CH4. In September 2014 and July 2015, octocopters were used to collect air samples in Tedlar bags from different heights above and below the well-defined Trade Wind Inversion (TWI), sampling a maximum altitude of 2700 m above mean sea level. Sampling captured both remote air in the marine boundary layer below the TWI and also air masses above the TWI that had been lofted by convective systems in the African tropics. Air above the TWI was characterized by higher CH4, but no distinct shift in δ13C was observed compared to the air below. Back trajectories indicate that lofted CH4 emissions from Southern Hemisphere Africa have bulk δ13CCH4 signatures similar to background, suggesting mixed emissions from wetlands, agriculture, and biomass burning. The campaigns illustrate the usefulness of unmanned aerial system sampling and Ascension's value for atmospheric measurement in an understudied region.

  17. Air and Surface Sampling Method for Assessing Exposures to Quaternary Ammonium Compounds Using Liquid Chromatography Tandem Mass Spectrometry.

    PubMed

    LeBouf, Ryan F; Virji, Mohammed Abbas; Ranpara, Anand; Stefaniak, Aleksandr B

    2017-07-01

    This method was designed for sampling select quaternary ammonium (quat) compounds in air or on surfaces followed by analysis using ultraperformance liquid chromatography tandem mass spectrometry. Target quats were benzethonium chloride, didecyldimethylammonium bromide, benzyldimethyldodecylammonium chloride, benzyldimethyltetradecylammonium chloride, and benzyldimethylhexadecylammonium chloride. For air sampling, polytetrafluoroethylene (PTFE) filters are recommended for 15-min to 24-hour sampling. For surface sampling, Pro-wipe® 880 (PW) media was chosen. Samples were extracted in 60:40 acetonitrile:0.1% formic acid for 1 hour on an orbital shaker. Method detection limits range from 0.3 to 2 ng/ml depending on media and analyte. Matrix effects of media are minimized through the use of multiple reaction monitoring versus selected ion recording. Upper confidence limits on accuracy meet the National Institute for Occupational Safety and Health 25% criterion for PTFE and PW media for all analytes. Using PTFE and PW analyzed with multiple reaction monitoring, the method quantifies levels among the different quats compounds with high precision (<10% relative standard deviation) and low bias (<11%). The method is sensitive enough with very low method detection limits to capture quats on air sampling filters with only a 15-min sample duration with a maximum assessed storage time of 103 days before sample extraction. This method will support future exposure assessment and quantitative epidemiologic studies to explore exposure-response relationships and establish levels of quats exposures associated with adverse health effects. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  18. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  19. A miniaturized counting technique for anaerobic bacteria.

    PubMed

    Sharpe, A N; Pettipher, G L; Lloyd, G R

    1976-12-01

    A miniaturized counting technique gave results as good as the pour-plate and Most Probable Number (MPN) techniques for enumeration of clostridia spp. and anaerobic isolates from the gut. Highest counts were obtained when ascorbic acid (1%) and dithiothreitol (0.015%) were added to the reinforced clostridial medium used for counting. This minimized the effect of exposure to air before incubation. The miniature technique allowed up to 40 samples to be plated and incubated in one McIntosh-Filde's-type anaerobic jar, compared with 3 or 4 by the normal pour plate.

  20. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  1. Analysis of chemical warfare agents. II. Use of thiols and statistical experimental design for the trace level determination of vesicant compounds in air samples.

    PubMed

    Muir, Bob; Quick, Suzanne; Slater, Ben J; Cooper, David B; Moran, Mary C; Timperley, Christopher M; Carrick, Wendy A; Burnell, Christopher K

    2005-03-18

    Thermal desorption with gas chromatography-mass spectrometry (TD-GC-MS) remains the technique of choice for analysis of trace concentrations of analytes in air samples. This paper describes the development and application of a method for analysing the vesicant compounds sulfur mustard and Lewisites I-III. 3,4-Dimercaptotoluene and butanethiol were used to spike sorbent tubes and vesicant vapours sampled; Lewisite I and II reacted with the thiols while sulfur mustard and Lewisite III did not. Statistical experimental design was used to optimise thermal desorption parameters and the optimum method used to determine vesicant compounds in headspace samples taken from a decontamination trial. 3,4-Dimercaptotoluene reacted with Lewisites I and II to give a common derivative with a limit of detection (LOD) of 260 microg m(-3), while the butanethiol gave distinct derivatives with limits of detection around 30 microg m(-3).

  2. Crossett Hydrogen Sulfide Air Sampling Report

    EPA Pesticide Factsheets

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  3. Cast Stone Oxidation Front Evaluation: Preliminary Results For Samples Exposed To Moist Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.; Almond, P. M.

    The rate of oxidation is important to the long-term performance of reducing salt waste forms because the solubility of some contaminants, e.g., technetium, is a function of oxidation state. TcO{sub 4}{sup -} in the salt solution is reduced to Tc(IV) and has been shown to react with ingredients in the waste form to precipitate low solubility sulfide and/or oxide phases. Upon exposure to oxygen, the compounds containing Tc(IV) oxidize to the pertechnetate ion, Tc(VII)O{sub 4}{sup -}, which is very soluble. Consequently the rate of technetium oxidation front advancement into a monolith and the technetium leaching profile as a function ofmore » depth from an exposed surface are important to waste form performance and ground water concentration predictions. An approach for measuring contaminant oxidation rate (effective contaminant specific oxidation rate) based on leaching of select contaminants of concern is described in this report. In addition, the relationship between reduction capacity and contaminant oxidation is addressed. Chromate (Cr(VI) was used as a non-radioactive surrogate for pertechnetate, Tc(VII), in Cast Stone samples prepared with 5 M Simulant. Cast Stone spiked with pertechnetate was also prepared and tested. Depth discrete subsamples spiked with Cr were cut from Cast Stone exposed to Savannah River Site (SRS) outdoor ambient temperature fluctuations and moist air. Depth discrete subsamples spiked with Tc-99 were cut from Cast Stone exposed to laboratory ambient temperature fluctuations and moist air. Similar conditions are expected to be encountered in the Cast Stone curing container. The leachability of Cr and Tc-99 and the reduction capacities, measured by the Angus-Glasser method, were determined for each subsample as a function of depth from the exposed surface. The results obtained to date were focused on continued method development and are preliminary and apply to the sample composition and curing / exposure conditions described in this

  4. A look-ahead probabilistic contingency analysis framework incorporating smart sampling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Etingov, Pavel V.; Ren, Huiying

    2016-07-18

    This paper describes a framework of incorporating smart sampling techniques in a probabilistic look-ahead contingency analysis application. The predictive probabilistic contingency analysis helps to reflect the impact of uncertainties caused by variable generation and load on potential violations of transmission limits.

  5. Air, hand wipe, and surface wipe sampling for Bisphenol A (BPA) among workers in industries that manufacture and use BPA in the United States.

    PubMed

    Hines, Cynthia J; Jackson, Matthew V; Christianson, Annette L; Clark, John C; Arnold, James E; Pretty, Jack R; Deddens, James A

    2017-11-01

    For decades, bisphenol A (BPA) has been used in making polycarbonate, epoxy, and phenolic resins and certain investment casting waxes, yet published exposure data are lacking for U.S. manufacturing workers. In 2013-2014, BPA air and hand exposures were quantified for 78 workers at six U.S. companies making BPA or BPA-based products. Exposure measures included an inhalable-fraction personal air sample on each of two consecutive work days (n = 146), pre- and end-shift hand wipe samples on the second day (n = 74 each), and surface wipe samples (n = 88). Potential determinants of BPA air and end-shift hand exposures (after natural log transformation) were assessed in univariate and multiple regression mixed models. The geometric mean (GM) BPA air concentration was 4.0 µg/m 3 (maximum 920 µg/m 3 ). The end-shift GM BPA hand level (26 µg/sample) was 10-times higher than the pre-shift level (2.6 µg/sample). BPA air and hand exposures differed significantly by industry and job. BPA air concentrations and end-shift hand levels were highest in the BPA-filled wax manufacturing/reclaim industry (GM Air = 48 µg/m 3 , GM Hand-End = 130 µg/sample) and in the job of working with molten BPA-filled wax (GM Air = 43 µg/m 3 , GM Hand-End = 180 µg/sample), and lowest in the phenolic resins industry (GM Air = 0.85 µg/m 3 , GM Hand-End = 0.43 µg/sample) and in the job of flaking phenolic resins (GM AIR = 0.62 µg/m 3 , GM Hand-End = 0.38 µg/sample). Determinants of increased BPA air concentration were industry, handling BPA containers, spilling BPA, and spending ≥50% of the shift in production areas; increasing age was associated with lower air concentrations. BPA hand exposure determinants were influenced by high values for two workers; for all other workers, tasks involving contact with BPA-containing materials and spending ≥50% of the shift in production areas were associated with increased BPA hand levels. Surface wipe BPA levels were significantly lower in

  6. Speciated arsenic in air: measurement methodology and risk assessment considerations.

    PubMed

    Lewis, Ari S; Reid, Kim R; Pollock, Margaret C; Campleman, Sharan L

    2012-01-01

    Accurate measurement of arsenic (As) in air is critical to providing a more robust understanding of arsenic exposures and associated human health risks. Although there is extensive information available on total arsenic in air, less is known on the relative contribution of each arsenic species. To address this data gap, the authors conducted an in-depth review of available information on speciated arsenic in air. The evaluation included the type of species measured and the relative abundance, as well as an analysis of the limitations of current analytical methods. Despite inherent differences in the procedures, most techniques effectively separated arsenic species in the air samples. Common analytical techniques such as inductively coupled plasma mass spectrometry (ICP-MS) and/or hydride generation (HG)- or quartz furnace (GF)-atomic absorption spectrometry (AAS) were used for arsenic measurement in the extracts, and provided some of the most sensitive detection limits. The current analysis demonstrated that, despite limited comparability among studies due to differences in seasonal factors, study duration, sample collection methods, and analytical methods, research conducted to date is adequate to show that arsenic in air is mainly in the inorganic form. Reported average concentrations of As(III) and As(V) ranged up to 7.4 and 10.4 ng/m3, respectively, with As(V) being more prevalent than As(III) in most studies. Concentrations of the organic methylated arsenic compounds are negligible (in the pg/m3 range). However because of the variability in study methods and measurement methodology, the authors were unable to determine the variation in arsenic composition as a function of source or particulate matter (PM) fraction. In this work, the authors include the implications of arsenic speciation in air on potential exposure and risks. The authors conclude that it is important to synchronize sample collection, preparation, and analytical techniques in order to generate

  7. Effects of sampling techniques on physical parameters and concentrations of selected persistent organic pollutants in suspended matter.

    PubMed

    Pohlert, Thorsten; Hillebrand, Gudrun; Breitung, Vera

    2011-06-01

    This study focusses on the effect of sampling techniques for suspended matter in stream water on subsequent particle-size distribution and concentrations of total organic carbon and selected persistent organic pollutants. The key questions are whether differences between the sampling techniques are due to the separation principle of the devices or due to the difference between time-proportional versus integral sampling. Several multivariate homogeneity tests were conducted on an extensive set of field-data that covers the period from 2002 to 2007, when up to three different sampling techniques were deployed in parallel at four monitoring stations of the River Rhine. The results indicate homogeneity for polychlorinated biphenyls, but significant effects due to the sampling techniques on particle-size, organic carbon and hexachlorobenzene. The effects can be amplified depending on the site characteristics of the monitoring stations.

  8. Autonomous unmanned air vehicles (UAV) techniques

    NASA Astrophysics Data System (ADS)

    Hsu, Ming-Kai; Lee, Ting N.

    2007-04-01

    The UAVs (Unmanned Air Vehicles) have great potentials in different civilian applications, such as oil pipeline surveillance, precision farming, forest fire fighting (yearly), search and rescue, boarder patrol, etc. The related industries of UAVs can create billions of dollars for each year. However, the road block of adopting UAVs is that it is against FAA (Federal Aviation Administration) and ATC (Air Traffic Control) regulations. In this paper, we have reviewed the latest technologies and researches on UAV navigation and obstacle avoidance. We have purposed a system design of Jittering Mosaic Image Processing (JMIP) with stereo vision and optical flow to fulfill the functionalities of autonomous UAVs.

  9. Characterization and validation of sampling and analytical methods for mycotoxins in workplace air.

    PubMed

    Jargot, Danièle; Melin, Sandrine

    2013-03-01

    Mycotoxins are produced by certain plant or foodstuff moulds under growing, transport or storage conditions. They are toxic for humans and animals, some are carcinogenic. Methods to monitor occupational exposure to seven of the most frequently occurring airborne mycotoxins have been characterized and validated. Experimental aerosols have been generated from naturally contaminated particles for sampler evaluation. Air samples were collected on foam pads, using the CIP 10 personal aerosol sampler with its inhalable health-related aerosol fraction selector. The samples were subsequently solvent extracted from the sampling media, cleaned using immunoaffinity (IA) columns and analyzed by liquid chromatography with fluorescence detection. Ochratoxin A (OTA) or fumonisin and aflatoxin derivatives were detected and quantified. The quantification limits were 0.015 ng m(-3) OTA, 1 ng m(-3) fumonisins or 0.5 pg m(-3) aflatoxins, with a minimum dust concentration level of 1 mg m(-3) and a 4800 L air volume sampling. The methods were successfully applied to field measurements, which confirmed that workers could be exposed when handling contaminated materials. It was observed that airborne particles may be more contaminated than the bulk material itself. The validated methods have measuring ranges fully adapted to the concentrations found in the workplace. Their performance meets the general requirements laid down for chemical agent measurement procedures, with an expanded uncertainty less than 50% for most mycotoxins. The analytical uncertainty, comprised between 14 and 24%, was quite satisfactory given the low mycotoxin amounts, when compared to the food benchmarks. The methods are now user-friendly enough to be adopted for personal workplace sampling. They will later allow for mycotoxin occupational risk assessment, as only very few quantitative data have been available till now.

  10. Random sampling technique for ultra-fast computations of molecular opacities for exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Min, M.

    2017-10-01

    Context. Opacities of molecules in exoplanet atmospheres rely on increasingly detailed line-lists for these molecules. The line lists available today contain for many species up to several billions of lines. Computation of the spectral line profile created by pressure and temperature broadening, the Voigt profile, of all of these lines is becoming a computational challenge. Aims: We aim to create a method to compute the Voigt profile in a way that automatically focusses the computation time into the strongest lines, while still maintaining the continuum contribution of the high number of weaker lines. Methods: Here, we outline a statistical line sampling technique that samples the Voigt profile quickly and with high accuracy. The number of samples is adjusted to the strength of the line and the local spectral line density. This automatically provides high accuracy line shapes for strong lines or lines that are spectrally isolated. The line sampling technique automatically preserves the integrated line opacity for all lines, thereby also providing the continuum opacity created by the large number of weak lines at very low computational cost. Results: The line sampling technique is tested for accuracy when computing line spectra and correlated-k tables. Extremely fast computations ( 3.5 × 105 lines per second per core on a standard current day desktop computer) with high accuracy (≤1% almost everywhere) are obtained. A detailed recipe on how to perform the computations is given.

  11. Analytical results from ground-water sampling using a direct-push technique at the Dover National Test Site, Dover Air Force Base, Delaware, June-July 2001

    USGS Publications Warehouse

    Guertal, William R.; Stewart, Marie; Barbaro, Jeffrey R.; McHale, Timthoy J.

    2004-01-01

    A joint study by the Dover National Test Site and the U.S. Geological Survey was conducted from June 27 through July 18, 2001 to determine the spatial distribution of the gasoline oxygenate additive methyl tert-butyl ether and selected water-quality constituents in the surficial aquifer underlying the Dover National Test Site at Dover Air Force Base, Delaware. The study was conducted to support a planned enhanced bio-remediation demonstration and to assist the Dover National Test Site in identifying possible locations for future methyl tert-butyl ether remediation demonstrations. This report presents the analytical results from ground-water samples collected during the direct-push ground-water sampling study. A direct-push drill rig was used to quickly collect 115 ground-water samples over a large area at varying depths. The ground-water samples and associated quality-control samples were analyzed for volatile organic compounds and methyl tert-butyl ether by the Dover National Test Site analytical laboratory. Volatile organic compounds were above the method reporting limits in 59 of the 115 ground-water samples. The concentrations ranged from below detection limits to maximum values of 12.4 micrograms per liter of cis-1,2-dichloroethene, 1.14 micrograms per liter of trichloroethene, 2.65 micrograms per liter of tetrachloroethene, 1,070 micrograms per liter of methyl tert-butyl ether, 4.36 micrograms per liter of benzene, and 1.8 micrograms per liter of toluene. Vinyl chloride, ethylbenzene, p,m-xylene, and o-xylene were not detected in any of the samples collected during this investigation. Methyl tert-butyl ether was detected in 47 of the 115 ground-water samples. The highest methyl tert-butyl ether concentrations were found in the surficial aquifer from -4.6 to 6.4 feet mean sea level, however, methyl tert-butyl ether was detected as deep as -9.5 feet mean sea level. Increased methane concentrations and decreased dissolved oxygen concentrations were found in

  12. Ram-air sample collection device for a chemical warfare agent sensor

    DOEpatents

    Megerle, Clifford A.; Adkins, Douglas R.; Frye-Mason, Gregory C.

    2002-01-01

    In a surface acoustic wave sensor mounted within a body, the sensor having a surface acoustic wave array detector and a micro-fabricated sample preconcentrator exposed on a surface of the body, an apparatus for collecting air for the sensor, comprising a housing operatively arranged to mount atop the body, the housing including a multi-stage channel having an inlet and an outlet, the channel having a first stage having a first height and width proximate the inlet, a second stage having a second lower height and width proximate the micro-fabricated sample preconcentrator, a third stage having a still lower third height and width proximate the surface acoustic wave array detector, and a fourth stage having a fourth height and width proximate the outlet, where the fourth height and width are substantially the same as the first height and width.

  13. [Development of sample pretreatment techniques-rapid detection coupling methods for food security analysis].

    PubMed

    Huang, Yichun; Ding, Weiwei; Zhang, Zhuomin; Li, Gongke

    2013-07-01

    This paper summarizes the recent developments of the rapid detection methods for food security, such as sensors, optical techniques, portable spectral analysis, enzyme-linked immunosorbent assay, portable gas chromatograph, etc. Additionally, the applications of these rapid detection methods coupled with sample pretreatment techniques in real food security analysis are reviewed. The coupling technique has the potential to provide references to establish the selective, precise and quantitative rapid detection methods in food security analysis.

  14. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-104 at the Conclusion of 7A

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-l04 (7 A) flight to the ISS is reported. ISS air samples were taken in June and July 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Atlantis using GSCs. Solid sorbent air sampler (SSAS) samples were obtained from the ISS in April, June, and July. Analytical methods have not changed from earlier reports, and all quality control measures were met.

  15. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  16. SAMPLE DESIGN CONSIDERATIONS FOR INDOOR AIR EXPOSURE SURVEYS

    EPA Science Inventory

    Recent studies have shown that the traditional practice of monitoring outdoor (ambient) air quality leads to little information regarding the exposures of people in indoor surroundings. Consequently, EPA has begun a series of studies to determine the air pollution exposures peopl...

  17. On the Applications of IBA Techniques to Biological Samples Analysis: PIXE and RBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falcon-Gonzalez, J. M.; Bernal-Alvarado, J.; Sosa, M.

    2008-08-11

    The analytical techniques based on ion beams or IBA techniques give quantitative information on elemental concentration in samples of a wide variety of nature. In this work, we focus on PIXE technique, analyzing thick target biological specimens (TTPIXE), using 3 MeV protons produced by an electrostatic accelerator. A nuclear microprobe was used performing PIXE and RBS simultaneously, in order to solve the uncertainties produced in the absolute PIXE quantifying. The advantages of using both techniques and a nuclear microprobe are discussed. Quantitative results are shown to illustrate the multielemental resolution of the PIXE technique; for this, a blood standard wasmore » used.« less

  18. Ozone Air Quality over North America: Part II-An Analysis of Trend Detection and Attribution Techniques.

    PubMed

    Porter, P Steven; Rao, S Trivikrama; Zurbenko, Igor G; Dunker, Alan M; Wolff, George T

    2001-02-01

    Assessment of regulatory programs aimed at improving ambient O 3 air quality is of considerable interest to the scientific community and to policymakers. Trend detection, the identification of statistically significant long-term changes, and attribution, linking change to specific clima-tological and anthropogenic forcings, are instrumental to this assessment. Detection and attribution are difficult because changes in pollutant concentrations of interest to policymakers may be much smaller than natural variations due to weather and climate. In addition, there are considerable differences in reported trends seemingly based on similar statistical methods and databases. Differences arise from the variety of techniques used to reduce nontrend variation in time series, including mitigating the effects of meteorology and the variety of metrics used to track changes. In this paper, we review the trend assessment techniques being used in the air pollution field and discuss their strengths and limitations in discerning and attributing changes in O 3 to emission control policies.

  19. Sampling and analysis techniques for monitoring serum for trace elements.

    PubMed

    Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W

    1986-07-01

    We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.

  20. Examining Returned Samples in their Collection Tubes Using Synchrotron Radiation-Based Techniques

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Hurowitz, J. A.; Thieme, J.; Dooryhee, E.; Fogelqvist, E.; Gregerson, J.; Farley, K. A.; Sherman, S.; Hill, J.

    2018-04-01

    Synchrotron radiation-based techniques can be leveraged for triaging and analysis of returned samples before unsealing collection tubes. Proof-of-concept measurements conducted at Brookhaven National Lab's National Synchrotron Light Source-II.

  1. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  2. Green Aspects of Techniques for the Determination of Currently Used Pesticides in Environmental Samples

    PubMed Central

    Stocka, Jolanta; Tankiewicz, Maciej; Biziuk, Marek; Namieśnik, Jacek

    2011-01-01

    Pesticides are among the most dangerous environmental pollutants because of their stability, mobility and long-term effects on living organisms. Their presence in the environment is a particular danger. It is therefore crucial to monitor pesticide residues using all available analytical methods. The analysis of environmental samples for the presence of pesticides is very difficult: the processes involved in sample preparation are labor-intensive and time-consuming. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solvent-less and solvent-minimized techniques are becoming popular. The application of Green Chemistry principles to sample preparation is primarily leading to the miniaturization of procedures and the use of solvent-less techniques, and these are discussed in the paper. PMID:22174632

  3. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  4. Cytotoxic and Inflammatory Potential of Air Samples from Occupational Settings with Exposure to Organic Dust

    PubMed Central

    Viegas, Susana; Caetano, Liliana Aranha; Korkalainen, Merja; Faria, Tiago; Pacífico, Cátia; Carolino, Elisabete; Quintal Gomes, Anita; Viegas, Carla

    2017-01-01

    Organic dust and related microbial exposures are the main inducers of several respiratory symptoms. Occupational exposure to organic dust is very common and has been reported in diverse settings. In vitro tests using relevant cell cultures can be very useful for characterizing the toxicity of complex mixtures present in the air of occupational environments such as organic dust. In this study, the cell viability and the inflammatory response, as measured by the production of pro-inflammatory cytokines tumor necrosis factor-α (TNFα) and interleukin-1 β (IL-1β), were determined in human macrophages derived from THP-1 monocytic cells. These cells were exposed to air samples from five occupational settings known to possess high levels of contamination of organic dust: poultry and swine feed industries, waste sorting, poultry production and slaughterhouses. Additionally, fungi and particle contamination of those settings was studied to better characterize the organic dust composition. All air samples collected from the assessed workplaces caused both cytotoxic and pro-inflammatory effects. The highest responses were observed in the feed industry, particularly in swine feed production. This study emphasizes the importance of measuring the organic dust/mixture effects in occupational settings and suggests that differences in the organic dust content may result in differences in health effects for exposed workers. PMID:29051440

  5. BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al-air batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlan; Wang, Jin; She, Yiyi; Hu, Jing; Tao, Pengpeng; Lv, Fucong; Lu, Zhouguang; Gu, Yingying

    2014-10-01

    BiOCl micro-assembles appearing spherical and plate-like in shape consisting of ultrafine nanoplates were successfully synthesized by a simple hydrothermal method. The obtained BiOCl micro-assembles were characterized as oxygen reduction reaction (ORR) catalyst for air electrode of aluminum air batteries by using linear polarization and constant-current discharge techniques. The effect of precursor concentration on the electrochemical properties of the air electrodes based on the synthesized BiOCl micro-assembles was intensively investigated. The results demonstrated that the BiOCl catalyst exhibited promising ORR performance. Koutecky-Levich analysis indicated that a two-electron reaction was favored for the ORR mechanism of the BiOCl (0.18) sample.

  6. US EPA Base Study Standard Operating Procedure for Sampling and Characterization of Viable and Non-Viable Bioaerosols in Indoor Air

    EPA Pesticide Factsheets

    The objective of the procedure is to collect a representative sample concentration of total airborne fungal spores (viable and non-viable) that may be present in indoor air and in the outdoor air supplied to the space tested.

  7. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-01

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH4+ strategy for ethylene and SO2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO2 from fruits. It was satisfied that trace ethylene and SO2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO2 during the entire LVCC sampling process were proved to be < 4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS.

  8. Large-volume constant-concentration sampling technique coupling with surface-enhanced Raman spectroscopy for rapid on-site gas analysis.

    PubMed

    Zhang, Zhuomin; Zhan, Yisen; Huang, Yichun; Li, Gongke

    2017-08-05

    In this work, a portable large-volume constant-concentration (LVCC) sampling technique coupling with surface-enhanced Raman spectroscopy (SERS) was developed for the rapid on-site gas analysis based on suitable derivatization methods. LVCC sampling technique mainly consisted of a specially designed sampling cell including the rigid sample container and flexible sampling bag, and an absorption-derivatization module with a portable pump and a gas flowmeter. LVCC sampling technique allowed large, alterable and well-controlled sampling volume, which kept the concentration of gas target in headspace phase constant during the entire sampling process and made the sampling result more representative. Moreover, absorption and derivatization of gas target during LVCC sampling process were efficiently merged in one step using bromine-thiourea and OPA-NH 4 + strategy for ethylene and SO 2 respectively, which made LVCC sampling technique conveniently adapted to consequent SERS analysis. Finally, a new LVCC sampling-SERS method was developed and successfully applied for rapid analysis of trace ethylene and SO 2 from fruits. It was satisfied that trace ethylene and SO 2 from real fruit samples could be actually and accurately quantified by this method. The minor concentration fluctuations of ethylene and SO 2 during the entire LVCC sampling process were proved to be <4.3% and 2.1% respectively. Good recoveries for ethylene and sulfur dioxide from fruit samples were achieved in range of 95.0-101% and 97.0-104% respectively. It is expected that portable LVCC sampling technique would pave the way for rapid on-site analysis of accurate concentrations of trace gas targets from real samples by SERS. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Accurate measurements of carbon monoxide in humid air using the cavity ring-down spectroscopy (CRDS) technique

    NASA Astrophysics Data System (ADS)

    Chen, H.; Karion, A.; Rella, C. W.; Winderlich, J.; Gerbig, C.; Filges, A.; Newberger, T.; Sweeney, C.; Tans, P. P.

    2013-04-01

    Accurate measurements of carbon monoxide (CO) in humid air have been made using the cavity ring-down spectroscopy (CRDS) technique. The measurements of CO mole fractions are determined from the strength of its spectral absorption in the near-infrared region (~1.57 μm) after removing interferences from adjacent carbon dioxide (CO2) and water vapor (H2O) absorption lines. Water correction functions that account for the dilution and pressure-broadening effects as well as absorption line interferences from adjacent CO2 and H2O lines have been derived for CO2 mole fractions between 360-390 ppm and for reported H2O mole fractions between 0-4%. The line interference corrections are independent of CO mole fractions. The dependence of the line interference correction on CO2 abundance is estimated to be approximately -0.3 ppb/100 ppm CO2 for dry mole fractions of CO. Comparisons of water correction functions from different analyzers of the same type show significant differences, making it necessary to perform instrument-specific water tests for each individual analyzer. The CRDS analyzer was flown on an aircraft in Alaska from April to November in 2011, and the accuracy of the CO measurements by the CRDS analyzer has been validated against discrete NOAA/ESRL flask sample measurements made on board the same aircraft, with a mean difference between integrated in situ and flask measurements of -0.6 ppb and a standard deviation of 2.8 ppb. Preliminary testing of CRDS instrumentation that employs improved spectroscopic model functions for CO2, H2O, and CO to fit the raw spectral data (available since the beginning of 2012) indicates a smaller water vapor dependence than the models discussed here, but more work is necessary to fully validate the performance. The CRDS technique provides an accurate and low-maintenance method of monitoring the atmospheric dry mole fractions of CO in humid air streams.

  10. Sample Containerization and Sealing Techniques for Contamination Prevention and Preservation of Science Value for Mars Sample Return

    NASA Astrophysics Data System (ADS)

    Younse, Paulo

    Four sealing methods for encapsulating samples in 1 cm diameter thin-walled sample tubes were designed, along with a set of tests for characterization and evaluation of contamination prevention and sample preservation capability for the proposed Mars Sample Return (MSR) campaign. The sealing methods include a finned shape memory alloy (SMA) plug, expanding torque plug, contracting SMA ring cap, and expanding SMA ring plug. Mechanical strength and hermeticity of the seal were measured using a helium leak detector. Robustness of the seal to Mars simulant dust, surface abrasion, and pressure differentials were tested. Survivability tests were run to simulate thermal cycles on Mars, vibration from a Mars Ascent Vehicle (MAV), and shock from Earth Entry Vehicle (EEV) landing. Material compatibility with potential sample minerals and organic molecules were studied to select proper tube and seal materials that would not lead to adverse reactions nor contaminate the sample. Cleaning and sterilization techniques were executed on coupons made from the seal materials to assess compliance with planetary protection and contamination control. Finally, a method to cut a sealed tube for sample removal was designed and tested.

  11. Sample and data processing considerations for the NIST quantitative infrared database

    NASA Astrophysics Data System (ADS)

    Chu, Pamela M.; Guenther, Franklin R.; Rhoderick, George C.; Lafferty, Walter J.; Phillips, William

    1999-02-01

    Fourier-transform infrared (FT-IR) spectrometry has become a useful real-time in situ analytical technique for quantitative gas phase measurements. In fact, the U.S. Environmental Protection Agency (EPA) has recently approved open-path FT-IR monitoring for the determination of hazardous air pollutants (HAP) identified in EPA's Clean Air Act of 1990. To support infrared based sensing technologies, the National Institute of Standards and Technology (NIST) is currently developing a standard quantitative spectral database of the HAPs based on gravimetrically prepared standard samples. The procedures developed to ensure the quantitative accuracy of the reference data are discussed, including sample preparation, residual sample contaminants, data processing considerations, and estimates of error.

  12. Development of sampling and analytical methods for concerted determination of commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand-wash, dermal-patch, and air samples.

    PubMed

    Tucker, S P; Reynolds, J M; Wickman, D C; Hines, C J; Perkins, J B

    2001-06-01

    Sampling and analytical methods were developed for commonly used chloroacetanilide, chlorotriazine, and 2,4-D herbicides in hand washes, on dermal patches, and in air. Eight herbicides selected for study were alachlor, atrazine, cyanazine, 2,4-dichlorophenoxyacetic acid (2,4-D), metolachlor, simazine, and two esters of 2,4-D, the 2-butoxyethyl ester (2,4-D, BE) and the 2-ethylhexyl ester (2,4-D, EH). The hand-wash method consisted of shaking the worker's hand in 150 mL of isopropanol in a polyethylene bag for 30 seconds. The dermal-patch method entailed attaching a 10-cm x 10-cm x 0.6-cm polyurethane foam (PUF) patch to the worker for exposure; recovery of the herbicides was achieved by extraction with 40 mL of isopropanol. The air method involved sampling with an OVS-2 tube (which contained an 11-mm quartz fiber filter and two beds of XAD-2 resin) and recovery with 2 mL of 10:90 methanol:methyl t-butyl ether. Analysis of each of the three sample types was performed by gas chromatography with an electron-capture detector. Diazomethane in solution was employed to convert 2,4-D as the free acid to the methyl ester in each of the three methods for ease of gas chromatography. Silicic acid was added to sample solutions to quench excess diazomethane. Limits of detection for all eight herbicides were matrix-dependent and, generally, less than 1 microgram per sample for each matrix. Sampling and analytical methods met NIOSH evaluation criteria for all herbicides in hand-wash samples, for seven herbicides in air samples (all herbicides except cyanazine), and for six herbicides in dermal-patch samples (all herbicides except cyanazine and 2,4-D). Speciation of 2,4-D esters and simultaneous determination of 2,4-D acid were possible without losses of the esters or of other herbicides (acetanilides and triazines) being determined.

  13. Atmospheric CO2 Records from Sites in the Atmospheric Environment Service Air Sampling Network (1975 and 1994)

    DOE Data Explorer

    Trivett, N. B.A. [Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada

    1997-01-01

    From the mid-1970s through the mid-1990s, air samples were collected for the purposes of monitoring atmospheric CO2 from four sites in the AES air sampling network. Air samples were collected approximately once per week, between 12:00 and 16:00 local time, in a pair of evacuated 2-L thick-wall borosilicate glass flasks. Samples were collected under preferred conditions of wind speed and direction (i.e., upwind of the main station and when winds are strong and steady). The flasks were evacuated to pressures of ~1 × 10-4 mbar or 0.01 Pa prior to being sent to the stations. The airwas not dried during sample collection. The flask data from Alert show an increase in the annual atmospheric CO2 concentration from 341.35 parts per million by volume (ppmv) in 1981 to 357.21 ppmv in 1991. For Cape St. James, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.43 ppmv per year. In August 1992, the weather station at Cape St. James was automated; as a result, the flask sampling program was discontinued at this site. Estevan Point, on the West Coast of Vancouver Island, was chosen as a replacement station. Sampling at Estevan Point started in 1992; thus, the monthly and annual CO2record from Estevan Point is too short to show any long-term trends. The sampling site at Sable Island, off the coast of Nova Scotia, was established in 1975. The flask data from Sable Island show an increase in the annual atmospheric CO2 concentration from 334.49 parts per million by volume (ppmv) in 1977 (the first full year of data) to 356.02 ppmv in 1990. For Sable Island, Trivett and Higuchi (1989) reported that the mean annual rate of increase, obtained from the slope of a least-squares regression line through the annual averages, was 1.48 ppmv per year.

  14. The effect of sampling techniques used in the multiconfigurational Ehrenfest method

    NASA Astrophysics Data System (ADS)

    Symonds, C.; Kattirtzi, J. A.; Shalashilin, D. V.

    2018-05-01

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  15. The effect of sampling techniques used in the multiconfigurational Ehrenfest method.

    PubMed

    Symonds, C; Kattirtzi, J A; Shalashilin, D V

    2018-05-14

    In this paper, we compare and contrast basis set sampling techniques recently developed for use in the ab initio multiple cloning method, a direct dynamics extension to the multiconfigurational Ehrenfest approach, used recently for the quantum simulation of ultrafast photochemistry. We demonstrate that simultaneous use of basis set cloning and basis function trains can produce results which are converged to the exact quantum result. To demonstrate this, we employ these sampling methods in simulations of quantum dynamics in the spin boson model with a broad range of parameters and compare the results to accurate benchmarks.

  16. Effect of Sampling Depth on Air-Sea CO2 Flux Estimates in River-Stratified Arctic Coastal Waters

    NASA Astrophysics Data System (ADS)

    Miller, L. A.; Papakyriakou, T. N.

    2015-12-01

    In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated air-sea CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated air-sea CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on air-sea fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.

  17. Air sampling methods to evaluate microbial contamination in operating theatres: results of a comparative study in an orthopaedics department.

    PubMed

    Napoli, C; Tafuri, S; Montenegro, L; Cassano, M; Notarnicola, A; Lattarulo, S; Montagna, M T; Moretti, B

    2012-02-01

    To evaluate the level of microbial contamination of air in operating theatres using active [i.e. surface air system (SAS)] and passive [i.e. index of microbial air contamination (IMA) and nitrocellulose membranes positioned near the wound] sampling systems. Sampling was performed between January 2010 and January 2011 in the operating theatre of the orthopaedics department in a university hospital in Southern Italy. During surgery, the mean bacterial loads recorded were 2232.9 colony-forming units (cfu)/m(2)/h with the IMA method, 123.2 cfu/m(3) with the SAS method and 2768.2 cfu/m(2)/h with the nitrocellulose membranes. Correlation was found between the results of the three methods. Staphylococcus aureus was detected in 12 of 60 operations (20%) with the membranes, five (8.3%) operations with the SAS method, and three operations (5%) with the IMA method. Use of nitrocellulose membranes placed near a wound is a valid method for measuring the microbial contamination of air. This method was more sensitive than the IMA method and was not subject to any calibration bias, unlike active air monitoring systems. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Whole Air Sampling During NASA's March-April 1999 Pacific Exploratory Expedition (PEM-Tropics B)

    NASA Technical Reports Server (NTRS)

    Blake, Donald R.

    2001-01-01

    University of California, Irvine (UCI) collected more than 4500 samples whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. Approximately 140 samples during a typical 8-hour DC-8 flight, and 120 canisters for each 8-hour flight aboard the P-3B. These samples were obtained roughly every 3-7 min during horizontal flight legs and 1-3 min during vertical legs. The filled canisters were analyzed in the laboratory at UCI within ten days of collection. The mixing ratios of 58 trace gases comprising hydrocarbons, halocarbons, alkyl nitrates and DMS were reported (and archived) for each sample. Two identical analytical systems sharing the same standards were operated simultaneously around the clock to improve canister turn-around time and to keep our measurement precision optimal. This report presents a summary of the results for sample collected.

  19. Comparison of diagnostic performances among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions.

    PubMed

    Boonsarngsuk, Viboon; Kanoksil, Wasana; Laungdamerongchai, Sarangrat

    2015-04-01

    There are many sampling techniques dedicated to radial endobronchial ultrasound (R-EBUS) guided flexible bronchoscopy (FB). However, data regarding the diagnostic performances among bronchoscopic sampling techniques is limited. This study was conducted to compare the diagnostic yields among bronchoscopic sampling techniques in the diagnosis of peripheral pulmonary lesions (PPLs). A prospective study was conducted on 112 patients who were diagnosed with PPLs and underwent R-EBUS-guided FB between Oct 2012 and Sep 2014. Sampling techniques-including transbronchial biopsy (TBB), brushing cell block, brushing smear, rinsed fluid of brushing, and bronchoalveolar lavage (BAL)-were evaluated for the diagnosis. The mean diameter of the PPLs was 23.5±9.5 mm. The final diagnoses included 76 malignancies and 36 benign lesions. The overall diagnostic yield of R-EBUS-guided bronchoscopy was 80.4%; TBB gave the highest yield among the 112 specimens: 70.5%, 34.8%, 62.5%, 50.0% and 42.0% for TBB, brushing cell block, brushing smear, rinsed brushing fluid, and BAL fluid (BALF), respectively (P<0.001). TBB provided high diagnostic yield irrespective of the size and etiology of the PPLs. The combination of TBB and brushing smear achieved the maximum diagnostic yield. Of 31 infectious PPLs, BALF culture gave additional microbiological information in 20 cases. TBB provided the highest diagnostic yield; however, to achieve the highest diagnostic performance, TBB, brushing smear and BAL techniques should be performed together.

  20. Attempts to develop a new nuclear measurement technique of β-glucuronidase levels in biological samples

    NASA Astrophysics Data System (ADS)

    Ünak, T.; Avcibasi, U.; Yildirim, Y.; Çetinkaya, B.

    2003-01-01

    β-Glucuronidase is one of the most important hydrolytic enzymes in living systems and plays an essential role in the detoxification pathway of toxic materials incorporated into the metabolism. Some organs, especially liver and some tumour tissues, have high level of β-glucuronidase activity. As a result the enzymatic activity of some kind of tumour cells, the radiolabelled glucuronide conjugates of cytotoxic, as well as radiotoxic compounds have potentially very valuable diagnostic and therapeutic applications in cancer research. For this reason, a sensitive measurement of β-glucuronidase levels in normal and tumour tissues is a very important step for these kinds of applications. According to the classical measurement method of β-glucuronidase activity, in general, the quantity of phenolphthalein liberated from its glucuronide conjugate, i.e. phenolphthalein-glucuronide, by β-glucuronidase has been measured by use of the spectrophotometric technique. The lower detection limit of phenolphthalein by the spectrophotometric technique is about 1-3 μg. This means that the β-glucuronidase levels could not be detected in biological samples having lower levels of β-glucuronidase activity and therefore the applications of the spectrophotometric technique in cancer research are very seriously limited. Starting from this consideration, we recently attempted to develop a new nuclear technique to measure much lower concentrations of β-glucuronidase in biological samples. To improve the detection limit, phenolphthalein-glucuronide and also phenyl-N-glucuronide were radioiodinated with 131I and their radioactivity was measured by use of the counting technique. Therefore, the quantity of phenolphthalein or aniline radioiodinated with 131I and liberated by the deglucuronidation reactivity of β-glucuronidase was used in an attempt to measure levels lower than the spectrophotometric measurement technique. The results obtained clearly verified that 0.01 pg level of

  1. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Direct measurements of sample heating by a laser-induced air plasma in pre-ablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Register, Janna; Scaffidi, Jonathan; Angel, S Michael

    2012-08-01

    Direct measurements of temperature changes were made using small thermocouples (TC), placed near a laser-induced air plasma. Temperature changes up to ~500 °C were observed. From the measured temperature changes, estimates were made of the amount of heat absorbed per unit area. This allowed calculations to be made of the surface temperature, as a function of time, of a sample heated by the air plasma that is generated during orthogonal pre-ablation spark dual-pulse (DP) LIBS measurements. In separate experiments, single-pulse (SP) LIBS emission and sample ablation rate measurements were performed on nickel at sample temperatures ranging from room temperature to the maximum surface temperature that was calculated using the TC measurement results (500 °C). A small, but real sample temperature-dependent increase in both SP LIBS emission and the rate of sample ablation was found for nickel samples heated up to 500 °C. Comparison of DP LIBS emission enhancement values for bulk nickel samples at room temperature versus the enhanced SP LIBS emission and sample ablation rates observed as a function of increasing sample temperature suggests that sample heating by the laser-induced air plasma plays only a minor role in DP LIBS emission enhancement.

  3. Dual-Mode Combined Infra Red and Air-Coupled Ultrasonic Technique for Real-Time Industrial Process Control with Special Reference to the Food Industry

    NASA Astrophysics Data System (ADS)

    Pallav, P.; Hutchins, D. A.; Diamond, G. G.; Gan, T. H.; Hellyer, J. E.

    2008-02-01

    This paper describes the use of air-coupled ultrasound and Near Infra red (NIR) as complimentary techniques for food quality assessment. A major study has been performed, in collaboration with four industrial food companies, to investigate the use of air-coupled ultrasound and NIR to both detect foreign bodies, and to measure certain parameters of interest, such as the amount of a certain additive. The research has demonstrated that air-coupled ultrasound can be used in on-line situations, measuring food materials such as chocolate and cheese. It is also capable of performing measurements on moving sealed metal cans containing food, and is able to detect foreign bodies with the top removed, as encountered just before sealing. NIR has been used as a complimentary technique to test food materials where propagation of air-coupled ultrasound was found to be difficult. This could be due to the presence of air pockets within the food material, as in the case of bread dough.

  4. A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices.

    PubMed

    Armstrong, Jenna L; Dills, Russell L; Yu, Jianbo; Yost, Michael G; Fenske, Richard A

    2014-01-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15-1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78-113% from XAD-2 active air sampling tubes and 71-108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74-94% after time periods ranging from 2-10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method.

  5. NEW APPLICATION OF PASSIVE SAMPLING DEVICES FOR ASSESSMENT OF RESPIRATORY EXPOSURE TO PESTICIDES IN INDOOR AIR

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) has long maintained an interest in potential applications of passive sampling devices (PSDs) for estimating the concentrations of various pollutants in air. Typically PSDs were designed for the workplace monitoring of vola...

  6. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; hide

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  7. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  8. Determination of biomass burning tracers in air samples by GC/MS

    NASA Astrophysics Data System (ADS)

    Janoszka, Katarzyna

    2018-01-01

    Levoglucosan (LG) as a main cellulose burning product at 300°C is a biomass burning tracer. LG characterize by relatively high molar mass and it is sorbed by particulate matter. In the study of air pollution monitoring LG is mainly analyzed in particulate matter, PM1 and PM2,5. The tracer create relatively high O-H…O bond and weaker C-H…O bond. Due to the hydrogen bond, LG dissolves very well in water. Analytical procedure of LG determination include: extraction, derivatization and analysis by gas chromatography coupled with mass spectrometry detector. In water samples levoglucosan is determined by liquid chromatography. The paper presents a methodology for particulate matter samples determination their analysis by gas chromatography coupled with a mass spectrometry detector. Determination of LG content in particulate matter was performed according to an analytical method based on simultaneous pyridine extraction and derivatization using N,O-bis (trimethylsilyl) trifluoroacetamide and trimethylchlorosilane mixture (BSTFA: TMCS, 99: 1).

  9. Stratospheric Trace Gas Composition Studies Utilizing in situ Cryogenic, Whole-Air Sampling Methods.

    DTIC Science & Technology

    1981-03-10

    C A FORSBERG, R V PIERI UNCLASSIFIED AFGL-TR-81-0071 NLEEEE..EEEEEEllllllu *Inaggol/numln ElhElhEEEEEEEI lllllllhhl , O \\ Stratospheric Trace Gas...GRANT NUJMBERr4; Charles A. Forsberg Robert V. Pieri , Capt., USAF Gerard A. Faucher B PERFORMING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT...launch site. 1 (Received for publication 10 March 1981) 1. Gallagher, C.(C., and Pieri , R. V. (1976) Cryogenic, Whole-Air Sampl1r and Program for

  10. Ionic liquid-based air-assisted liquid-liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples.

    PubMed

    You, Xiangwei; Chen, Xiaochu; Liu, Fengmao; Hou, Fan; Li, Yiqiang

    2018-01-15

    A novel and simple ionic liquid-based air-assisted liquid-liquid microextraction technique combined with high performance liquid chromatography was developed to analyze five fungicides in juice samples. In this method, ionic liquid was used instead of a volatile organic solvent as the extraction solvent. The emulsion was formed by pulling in and pushing out the mixture of aqueous sample solution and extraction solvent repeatedly using a 10mL glass syringe. No organic dispersive solvent was required. Under the optimized conditions, the limits of detection (LODs) were 0.4-1.8μgL -1 at a signal-to-noise ratio of 3. The limits of quantification (LOQs) set as the lowest spiking levels with acceptable recovery in juices were 10μgL -1 , except for fludioxonil whose LOQ was 20μgL -1 . The proposed method was applied to determine the target fungicides in juice samples, and acceptable recoveries ranging from 74.9% to 115.4% were achieved. Copyright © 2017. Published by Elsevier Ltd.

  11. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  12. Magnetic field dependent measurement techniques of surface tension of magnetic fluid at an air interface

    NASA Astrophysics Data System (ADS)

    Nair, Nishant; Virpura, Hiral; Patel, Rajesh

    2015-06-01

    We describe here two measurement techniques to determine surface tension of magnetic fluid. (i) magneti c field dependent capillary rise method and (ii) Taylor wavelength method in which the distance between the consecutive stable spikes was measured and then surface tension was calculated. The surface tension measurements from both the methods are compared. It is observed that surface tension of magnetic fluid increases with increase in magnetic field due to field dependent structure formation in magnetic fluid at an air interface. We have also measured magnetic susceptibility and surface tension for different volume fractions. The measurement of magnetic susceptibility is carried out using Quincke's experimental techniques.

  13. Analytical method validation for the determination of 2,3,3,3-tetrafluoropropene in air samples using gas chromatography with flame ionization detection.

    PubMed

    Mawn, Michael P; Kurtz, Kristine; Stahl, Deborah; Chalfant, Richard L; Koban, Mary E; Dawson, Barbara J

    2013-01-01

    A new low global warming refrigerant, 2,3,3,3-tetrafluoro propene, or HFO-1234yf, has been successfully evaluated for automotive air conditioning, and is also being evaluated for stationary refrigeration and air conditioning systems. Due to the advantageous environmental properties of HFO-1234yf versus HFC-134a, coupled with its similar physical properties and system performance, HFO-1234yf is also being evaluated to replace HFC-134a in refrigeration applications where neat HFC-134a is currently used. This study reports on the development and validation of a sampling and analytical method for the determination of HFO-1234yf in air. Different collection media were screened for desorption and simulated sampling efficiency with three-section (350/350/350 mg) Anasorb CSC showing the best results. Therefore, air samples were collected using two 3-section Anasorb CSC sorbent tubes in series at 0.02 L/min for up to 8 hr for sample volumes of up to 9.6 L. The sorbent tubes were extracted in methylene chloride, and analyzed by gas chromatography with flame ionization detection. The method was validated from 0.1× to 20× the target level of 0.5 ppm (2.3 mg/m(3)) for a 9.6 L air volume. Desorption efficiencies for HFO-1234yf were 88 to 109% for all replicates over the validation range with a mean overall recovery of 93%. Simulated sampling efficiencies ranged from 87 to 104% with a mean of 94%. No migration or breakthrough to the back tube was observed under the sampling conditions evaluated. HFO-1234yf samples showed acceptable storage stability on Anasorb CSC sorbent up to a period of 30 days when stored under ambient, refrigerated, or frozen temperature conditions.

  14. On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air.

    PubMed

    Westgate, John N; Wania, Frank

    2011-10-15

    Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ∼700 m be considered.

  15. Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds.

    PubMed

    Söderström, Hanna S; Bergqvist, Per-Anders

    2004-09-15

    Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.

  16. Validation of New Crack Monitoring Technique for Victoria Class High-Pressure Air Bottles

    DTIC Science & Technology

    2014-06-01

    technique de corrélation d’images numériques a été employée pour mesurer le champ de déforma- tion dans la zone située du côté opposé à l’entaille... la Reine en droit du Canada (Ministère de la Défense nationale), 2014 Abstract High-pressure air bottles are used in the Victoria class submarines to...charges cycliques pouvant provoquer l’apparition et favoriser la croissance de fissures de fatigue. L’ob- servation d’une marque interne semblable à une

  17. Detection of Mycobacterium avium subspecies paratuberculosis in tie-stall dairy herds using a standardized environmental sampling technique and targeted pooled samples.

    PubMed

    Arango-Sabogal, Juan C; Côté, Geneviève; Paré, Julie; Labrecque, Olivia; Roy, Jean-Philippe; Buczinski, Sébastien; Doré, Elizabeth; Fairbrother, Julie H; Bissonnette, Nathalie; Wellemans, Vincent; Fecteau, Gilles

    2016-07-01

    Mycobacterium avium ssp. paratuberculosis (MAP) is the etiologic agent of Johne's disease, a chronic contagious enteritis of ruminants that causes major economic losses. Several studies, most involving large free-stall herds, have found environmental sampling to be a suitable method for detecting MAP-infected herds. In eastern Canada, where small tie-stall herds are predominant, certain conditions and management practices may influence the survival and transmission of MAP and recovery (isolation). Our objective was to estimate the performance of a standardized environmental and targeted pooled sampling technique for the detection of MAP-infected tie-stall dairy herds. Twenty-four farms (19 MAP-infected and 5 non-infected) were enrolled, but only 20 were visited twice in the same year, to collect 7 environmental samples and 2 pooled samples (sick cows and cows with poor body condition). Concurrent individual sampling of all adult cows in the herds was also carried out. Isolation of MAP was achieved using the MGIT Para TB culture media and the BACTEC 960 detection system. Overall, MAP was isolated in 7% of the environmental cultures. The sensitivity of the environmental culture was 44% [95% confidence interval (CI): 20% to 70%] when combining results from 2 different herd visits and 32% (95% CI: 13% to 57%) when results from only 1 random herd visit were used. The best sampling strategy was to combine samples from the manure pit, gutter, sick cows, and cows with poor body condition. The standardized environmental sampling technique and the targeted pooled samples presented in this study is an alternative sampling strategy to costly individual cultures for detecting MAP-infected tie-stall dairies. Repeated samplings may improve the detection of MAP-infected herds.

  18. BIBLE A whole-air sampling as a window on Asian biogeochemistry

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Blake, Nicola J.; Dubey, Manvendra K.; Rowland, F. Sherwood; Sive, Barkley C.; Smith, Felisa A.

    2003-02-01

    Asian trace gas and aerosol emissions into carbon, nitrogen, and other elemental cycles will figure prominently in near term Earth system evolution. Atmospheric hydrocarbon measurements resolve numerous chemical species and can be used to investigate sourcing for key geocarriers. A recent aircraft study of biomass burning and lightning (BIBLE A) explored the East Asian atmosphere and was unique in centering on the Indonesian archipelago. Samples of volatile organics taken over/between the islands of Japan, Saipan, Java, and Borneo are here examined as a guide to whole-air-based studies of future Asian biogeochemistry. The midlatitude onshore/offshore pulse and tropical convection strongly influence concentration distributions. As species of increasing molecular weight are considered, rural, combustion, and industrial source regimes emerge. Methane-rich inputs such as waste treatment and rice cultivation are evidenced in the geostrophic outflow. The Indonesian atmosphere is rich in biomass burning markers and also those of vehicular activity. Complexity of air chemistry in the archipelago is a direct reflection of diverse topography, land use, and local economies in a rapidly developing nation. Conspicuous in its absence is the fingerprint for liquefied petroleum gas leakage, but it can be expected to appear as demand for clean fossil fuels rises along with per capita incomes. Combustion tracers indicate high nitrogen mobilization rates, linking regional terrestrial geocycles with open marine ecosystems. Sea to air fluxes are superimposed on continental and marine backgrounds for the methyl halides. However, ocean hot spots are not coordinated and suggest an intricate subsurface kinetics. Levels of long-lived anthropogenic halocarbons attest to the success of international environmental treaties while reactive chlorine containing species track industrial air masses. The dozens of hydrocarbons resolvable by gas chromatographic methods will enable monitoring of

  19. A contribution to reduce sampling variability in the evaluation of deoxynivalenol contamination of organic wheat grain.

    PubMed

    Hallier, Arnaud; Celette, Florian; Coutarel, Julie; David, Christophe

    2013-01-01

    Fusarium head blight caused by different varieties of Fusarium species is one of the major serious worldwide diseases found in wheat production. It is therefore important to be able to quantify the deoxynivalenol concentration in wheat. Unfortunately, in mycotoxin quantification, due to the uneven distribution of mycotoxins within the initial lot, it is difficult, or even impossible, to obtain a truly representative analytical sample. In previous work we showed that the sampling step most responsible for variability was grain sampling. In this paper, it is more particularly the step scaling down from a laboratory sample of some kilograms to an analytical sample of a few grams that is investigated. The naturally contaminated wheat lot was obtained from an organic field located in the southeast of France (Rhône-Alpes) from the year 2008-2009 cropping season. The deoxynivalenol level was found to be 50.6 ± 2.3 ng g⁻¹. Deoxynivalenol was extracted with a acetonitrile-water mix and quantified by gas chromatography-electron capture detection (GC-ECD). Three different grain sampling techniques were tested to obtain analytical samples: a technique based on manually homogenisation and division, a second technique based on the use of a rotating shaker and a third on the use of compressed air. Both the rotating shaker and the compressed air techniques enabled a homogeneous laboratory sample to be obtained, from which representative analytical samples could be taken. Moreover, the techniques did away with many repetitions and grinding. This study, therefore, contributes to sampling variability reduction in the evaluation of deoxynivalenol contamination of organic wheat grain, and then, at a reasonable cost.

  20. Isolating and identifying atmospheric ice-nucleating aerosols: a new technique

    NASA Astrophysics Data System (ADS)

    Kreidenweis, S. M.; Chen, Y.; Rogers, D. C.; DeMott, P. J.

    Laboratory studies examined two key aspects of the performance of a continuous-flow diffusion chamber (CFD) instrument that detects ice nuclei (IN) concentrations in air samples: separating IN from non-IN, and collecting IN aerosols to determine chemical composition. In the first study, submicron AgI IN particles were mixed in a sample stream with submicron non-IN salt particles, and the sample stream was processed in the CFD at -19°C and 23% supersaturation with respect to ice. Examination of the residual particles from crystals nucleated in the CFD confirmed that only AgI particles served as IN in the mixed stream. The second study applied this technique to separate and analyze IN and non-IN particles in a natural air sample. Energy-dispersive X-ray analyses (EDS) of the elemental composition of selected particles from the IN and non-IN fractions in ambient air showed chemical differences: Si and Ca were present in both, but S, Fe and K were also detected in the non-IN fraction.

  1. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    NASA Technical Reports Server (NTRS)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  2. U-series dating of impure carbonates: An isochron technique using total-sample dissolution

    USGS Publications Warehouse

    Bischoff, J.L.; Fitzpatrick, J.A.

    1991-01-01

    U-series dating is a well-established technique for age determination of Late Quaternary carbonates. Materials of sufficient purity for nominal dating, however, are not as common as materials with mechanically inseparable aluminosilicate detritus. Detritus contaminates the sample with extraneous Th. We propose that correction for contamination is best accomplished with the isochron technique using total sample dissolution (TSD). Experiments were conducted on artificial mixtures of natural detritus and carbonate and on an impure carbonate of known age. Results show that significant and unpredictable transfer of radionuclides occur from the detritus to the leachate in commonly used selective leaching procedures. The effects of correcting via leachate-residue pairs and isochron plots were assessed. Isochrons using TSD gave best results, followed by isochron plots of leachates only. ?? 1991.

  3. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  4. Calibration of polyurethane foam (PUF) disk passive air samplers for quantitative measurement of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs): factors influencing sampling rates.

    PubMed

    Hazrati, Sadegh; Harrad, Stuart

    2007-03-01

    PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.

  5. An efficient sampling technique for sums of bandpass functions

    NASA Technical Reports Server (NTRS)

    Lawton, W. M.

    1982-01-01

    A well known sampling theorem states that a bandlimited function can be completely determined by its values at a uniformly placed set of points whose density is at least twice the highest frequency component of the function (Nyquist rate). A less familiar but important sampling theorem states that a bandlimited narrowband function can be completely determined by its values at a properly chosen, nonuniformly placed set of points whose density is at least twice the passband width. This allows for efficient digital demodulation of narrowband signals, which are common in sonar, radar and radio interferometry, without the side effect of signal group delay from an analog demodulator. This theorem was extended by developing a technique which allows a finite sum of bandlimited narrowband functions to be determined by its values at a properly chosen, nonuniformly placed set of points whose density can be made arbitrarily close to the sum of the passband widths.

  6. Thermal Analysis of Brazing Seal and Sterilizing Technique to Break Contamination Chain for Mars Sample Return

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2015-01-01

    The potential to return Martian samples to Earth for extensive analysis is in great interest of the planetary science community. It is important to make sure the mission would securely contain any microbes that may possibly exist on Mars so that they would not be able to cause any adverse effects on Earth's environment. A brazing sealing and sterilizing technique has been proposed to break the Mars-to-Earth contamination chain. Thermal analysis of the brazing process was conducted for several conceptual designs that apply the technique. Control of the increase of the temperature of the Martian samples is a challenge. The temperature profiles of the Martian samples being sealed in the container were predicted by finite element thermal models. The results show that the sealing and sterilization process can be controlled such that the samples' temperature is maintained below the potentially required level, and that the brazing technique is a feasible approach to break the contamination chain.

  7. A sensitive LC-MS/MS method for measurement of organophosphorus pesticides and their oxygen analogs in air sampling matrices

    PubMed Central

    ARMSTRONG, JENNA L.; DILLS, RUSSELL L.; YU, JIANBO; YOST, MICHAEL G.; FENSKE, RICHARD A.

    2018-01-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed for determination of levels of the organophosphorus (OP) pesticides chlorpyrifos (CPF), azinphos methyl (AZM), and their oxygen analogs chlorpyrifos-oxon (CPF-O) and azinphos methyl-oxon (AZM-O) on common active air sampling matrices. XAD-2 resin and polyurethane foam (PUF) matrices were extracted with acetonitrile containing stable-isotope labeled internal standards (ISTD). Analysis was accomplished in Multiple Reaction Monitoring (MRM) mode, and analytes in unknown samples were identified by retention time (±0.1 min) and qualifier ratio (±30% absolute) as compared to the mean of calibrants. For all compounds, calibration linearity correlation coefficients were ≥0.996. Limits of detection (LOD) ranged from 0.15–1.1 ng/sample for CPF, CPF-O, AZM, and AZM-O on active sampling matrices. Spiked fortification recoveries were 78–113% from XAD-2 active air sampling tubes and 71–108% from PUF active air sampling tubes. Storage stability tests also yielded recoveries ranging from 74–94% after time periods ranging from 2–10 months. The results demonstrate that LC-MS/MS is a sensitive method for determining these compounds from two different matrices at the low concentrations that can result from spray drift and long range transport in non-target areas following agricultural applications. In an inter-laboratory comparison, the limit of quantification (LOQ) for LC-MS/MS was 100 times lower than a typical gas chromatography-mass spectrometry (GC-MS) method. PMID:24328542

  8. Sampling of atmospheric carbonyl compounds for determination by liquid chromatography after 2,4-dinitrophenylhydrazine labelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vairavamurthy, A.; Roberts, J.M.; Newman, L.

    1991-06-01

    Carbonyl compounds are both primary (directly emitted) and secondary (formed in situ) atmospheric species, which play a major role in tropospheric photochemistry. Because of trace concentrations (parts-per-billion and lower), ambient air measurements of carbonyls pose serious analytical problems. Generally, chromatographic approaches combined with chemical derivatization have been used to enhance sensitivity and selectivity in analysis. Currently, the liquid chromatographic method coupled to 2,4-dinitrophenylhydrazine derivatization (DNPH-LC) is in widespread use. Interferences arising from similar compounds are greatly minimized by chromatographic separation; however, those in the air sampling step, especially with ozone, continue to be problematic and remain to be resolved. Wemore » discuss here the different sampling techniques used for time-integrated collection of carbonyls in the DNPH-LC methods. Emphasis is placed on addressing: (1) the principles, advantages, and limitations of sampling techniques; (2) problems associated with reagent blank and sampling instrument; and (3) effects of atmospheric co-pollutants, especially ozone. 58 refs., 8 figs., 3 tabs.« less

  9. Controlling Air Pollution; A Primer on Stationary Source Control Techniques.

    ERIC Educational Resources Information Center

    Corman, Rena

    This companion document to "Air Pollution Primer" is written for the nonexpert in air pollution; however, it does assume a familiarity with air pollution problems. This work is oriented toward providing the reader with knowledge about current and proposed air quality legislation and knowledge about available technology to meet these standards for…

  10. Loss-compensation technique using a split-spectrum approach for optical fiber air-gap intensity-based sensors

    NASA Astrophysics Data System (ADS)

    Wang, Anbo; Miller, Mark S.; Gunther, Michael F.; Murphy, Kent A.; Claus, Richard O.

    1993-03-01

    A self-referencing technique compensating for fiber losses and source fluctuations in air-gap intensity-based optical fiber sensors is described and demonstrated. A resolution of 0.007 micron has been obtained over a measurement range of 0-250 microns for an intensity-based displacement sensor using this referencing technique. The sensor is shown to have minimal sensitivity to fiber bending losses and variations in the LED input power. A theoretical model for evaluation of step-index multimode optical fiber splice is proposed. The performance of the sensor as a displacement sensor agrees well with the theoretical analysis.

  11. Sampling and analytical techniques for an interim survey in the South Carolina lowcountry

    Treesearch

    Richard L. Welch; Robert A. Cathey

    1976-01-01

    Remeasurement of 675 permanent sample locations in the South Carolina Lowcountry using modified sampling techniques showed that net growth of pine for the 6 years 1968-1974 was 637.0 million cubic feet while removals were slightly over 390.6 million cubic feet. In 1974, there were 1,533.5 million cubic feet of pine in the area with that portion in sawtimber size...

  12. Comparison of Techniques for Sampling Adult Necrophilous Insects From Pig Carcasses.

    PubMed

    Cruise, Angela; Hatano, Eduardo; Watson, David W; Schal, Coby

    2018-02-06

    Studies of the pre-colonization interval and mechanisms driving necrophilous insect ecological succession depend on effective sampling of adult insects and knowledge of their diel and successional activity patterns. The number of insects trapped, their diversity, and diel periodicity were compared with four sampling methods on neonate pigs. Sampling method, time of day and decomposition age of the pigs significantly affected the number of insects sampled from pigs. We also found significant interactions of sampling method and decomposition day, time of sampling and decomposition day. No single method was superior to the other methods during all three decomposition days. Sampling times after noon yielded the largest samples during the first 2 d of decomposition. On day 3 of decomposition however, all sampling times were equally effective. Therefore, to maximize insect collections from neonate pigs, the method used to sample must vary by decomposition day. The suction trap collected the most species-rich samples, but sticky trap samples were the most diverse, when both species richness and evenness were factored into a Shannon diversity index. Repeated sampling during the noon to 18:00 hours period was most effective to obtain the maximum diversity of trapped insects. The integration of multiple sampling techniques would most effectively sample the necrophilous insect community. However, because all four tested methods were deficient at sampling beetle species, future work should focus on optimizing the most promising methods, alone or in combinations, and incorporate hand-collections of beetles. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Detection of Legionella spp. by a nested-PCR assay in air samples of a wastewater treatment plant and downwind distances in Isfahan

    PubMed Central

    Mirzaee, Seyyed Abbas; Nikaeen, Mahnaz; Hajizadeh, Yaghob; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-01-01

    Background: Wastewater contains a variety of pathogens and bio -aerosols generated during the wastewater treatment process, which could be a potential health risk for exposed individuals. This study was carried out to detect Legionella spp. in the bio -aerosols generated from different processes of a wastewater treatment plant (WWTP) in Isfahan, Iran, and the downwind distances. Materials and Methods: A total of 54 air samples were collected and analyzed for the presence of Legionella spp. by a nested- polymerase chain reaction (PCR) assay. A liquid impingement biosampler was used to capture bio -aerosols. The weather conditions were also recorded. Results: Legionella were detected in 6% of the samples, including air samples above the aeration tank (1/9), belt filter press (1/9), and 250 m downwind (1/9). Conclusion: The result of this study revealed the presence of Legionella spp. in air samples of a WWTP and downwind distance, which consequently represent a potential health risk to the exposed individuals. PMID:25802817

  14. A UAV-based active AirCore system for measurements of greenhouse gases

    NASA Astrophysics Data System (ADS)

    Andersen, Truls; Scheeren, Bert; Peters, Wouter; Chen, Huilin

    2018-05-01

    We developed and field-tested an unmanned aerial vehicle (UAV)-based active AirCore for atmospheric mole fraction measurements of CO2, CH4, and CO. The system applies an alternative way of using the AirCore technique invented by NOAA. As opposed to the conventional concept of passively sampling air using the atmospheric pressure gradient during descent, the active AirCore collects atmospheric air samples using a pump to pull the air through the tube during flight, which opens up the possibility to spatially sample atmospheric air. The active AirCore system used for this study weighs ˜ 1.1 kg. It consists of a ˜ 50 m long stainless-steel tube, a small stainless-steel tube filled with magnesium perchlorate, a KNF micropump, and a 45 µm orifice working together to form a critical flow of dried atmospheric air through the active AirCore. A cavity ring-down spectrometer (CRDS) was used to analyze the air samples on site not more than 7 min after landing for mole fraction measurements of CO2, CH4, and CO. We flew the active AirCore system on a UAV near the atmospheric measurement station at Lutjewad, located in the northwest of the city of Groningen in the Netherlands. Five consecutive flights took place over a 5 h period on the same morning, from sunrise until noon. We validated the measurements of CO2 and CH4 from the active AirCore against those from the Lutjewad station at 60 m. The results show a good agreement between the measurements from the active AirCore and the atmospheric station (N = 146; R2CO2: 0.97 and R2CH4: 0.94; and mean differences: ΔCO2: 0.18 ppm and ΔCH4: 5.13 ppb). The vertical and horizontal resolution (for CH4) at typical UAV speeds of 1.5 and 2.5 m s-1 were determined to be ±24.7 to 29.3 and ±41.2 to 48.9 m, respectively, depending on the storage time. The collapse of the nocturnal boundary layer and the buildup of the mixed layer were clearly observed with three consecutive vertical profile measurements in the early morning hours. Besides

  15. Human mixed lymphocyte cultures. Evaluation of microculture technique utilizing the multiple automated sample harvester (MASH)

    PubMed Central

    Thurman, G. B.; Strong, D. M.; Ahmed, A.; Green, S. S.; Sell, K. W.; Hartzman, R. J.; Bach, F. H.

    1973-01-01

    Use of lymphocyte cultures for in vitro studies such as pretransplant histocompatibility testing has established the need for standardization of this technique. A microculture technique has been developed that has facilitated the culturing of lymphocytes and increased the quantity of cultures feasible, while lowering the variation between replicate samples. Cultures were prepared for determination of tritiated thymidine incorporation using a Multiple Automated Sample Harvester (MASH). Using this system, the parameters that influence the in vitro responsiveness of human lymphocytes to allogeneic lymphocytes have been investigated. PMID:4271568

  16. Optimization of the tungsten oxide technique for measurement of atmospheric ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Kenneth G.

    1987-01-01

    Hollow tubes coated with tungstic acid have been shown to be of value in the determination of ammonia and nitric acid in ambient air. Practical application of this technique was demonstrated utilizing an automated sampling system for in-flight collection and analysis of atmospheric samples. Due to time constraints these previous measurements were performed on tubes that had not been well characterized in the laboratory. As a result the experimental precision could not be accurately estimated. Since the technique was being compared to other techniques for measuring these compounds, it became necessary to perform laboratory tests which would establish the reliability of the technique. This report is a summary of these laboratory experiments as they are applied to the determination of ambient ammonia concentration.

  17. [Influence of Natural Dissolved Organic Matter on the Passive Sampling Technique and its Application].

    PubMed

    Yu, Shang-yun; Zhou, Yan-mei

    2015-08-01

    This paper studied the effects of different concentrations of natural dissolved organic matter (DOM) on the passive sampling technique. The results showed that the presence of DOM affected the organic pollutant adsorption ability of the membrane. For lgK(OW), 3-5, DOM had less impact on the adsorption of organic matter by the membrane; for lgK(OW), > 5.5, DOM significantly increased the adsorption capacity of the membrane. Meanwhile, LDPE passive sampling technique was applied to monitor PAHs and PAEs in pore water of three surface sediments in Taizi River. All of the target pollutants were detected in varying degrees at each sampling point. Finally, the quotient method was used to assess the ecological risks of PAHs and PAEs. The results showed that fluoranthene exceeded the reference value of the aquatic ecosystem, meaning there was a big ecological risk.

  18. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  19. Measuring PM2.5, Ultrafine Particles, Nicotine Air and Wipe Samples Following the Use of Electronic Cigarettes.

    PubMed

    Melstrom, Paul; Koszowski, Bartosz; Thanner, Meridith Hill; Hoh, Eunha; King, Brian; Bunnell, Rebecca; McAfee, Tim

    2017-09-01

    Few studies have examined the extent of inhalation or dermal contact among bystanders following short-term, secondhand e-cigarette exposure. Measure PM2.5 (particles < 2.5 microns), UF (ultrafine particles < 100 nm), and nicotine in air and deposited on surfaces and clothing pre-/during/post- a short-term (2-hour) e-cigarette exposure. E-cigarettes were used ad libitum by three experienced users for 2 hours during two separate sessions (disposable e-cigarettes, then tank-style e-cigarettes, or "tanks") in a 1858 ft3 room. We recorded: uncorrected PM2.5 (using SidePak); UF (using P-Trak); air nicotine concentrations (using air samplers; SKC XAD-4 canisters); ambient air exchange rate (using an air capture hood). Wipe samples were taken by wiping 100 cm2 room surfaces pre- and post- both sessions, and clean cloth wipes were worn during the exposure and collected at the end. Uncorrected PM2.5 and UF were higher (p < .0001) during sessions than before or after. Median PM2.5 during exposure was higher using tanks (0.515 mg/m3) than disposables (0.035 mg/m3) (p < .0001). Median UF during exposure was higher using disposables (31 200 particles/cm3) than tanks (25 200 particles/cm3)(p < .0001). Median air nicotine levels were higher (p < .05) during both sessions (disposables = 0.697 ng/L, tanks = 1.833 ng/L) than before (disposables = 0.004 ng/L, tanks = 0.010 ng/L) or after (disposables = 0.115 ng/L, tanks = 0.147 ng/L). Median accumulation rates of nicotine on surface samples were 2.1 ng/100 cm2/h using disposables and 4.0 ng/100 cm2/h using tanks; for cloth samples, it was 44.4 ng/100 cm2/h using disposables and 69.6 ng/100 cm2/h using tanks (p < .01). Mean room ventilation rate was ~5 air changes per hour during both sessions. Short-term e-cigarette use can produce: elevated PM2.5; elevated UF; nicotine in the air; and accumulation of nicotine on surfaces and clothing. Short-term indoor e-cigarette use produced accumulation of nicotine on surfaces and clothing, which

  20. Sampling techniques for burbot in a western non-wadeable river

    USGS Publications Warehouse

    Klein, Z. B.; Quist, Michael C.; Rhea, D.T.; Senecal, A. C.

    2015-01-01

    Burbot, Lota lota (L.), populations are declining throughout much of their native distribution. Although numerous aspects of burbot ecology are well understood, less is known about effective sampling techniques for burbot in lotic systems. Occupancy models were used to estimate the probability of detection () for three gears (6.4- and 19-mm bar mesh hoop nets, night electric fishing), within the context of various habitat characteristics. During the summer, night electric fishing had the highest estimated detection probability for both juvenile (, 95% C.I.; 0.35, 0.26–0.46) and adult (0.30, 0.20–0.41) burbot. However, small-mesh hoop nets (6.4-mm bar mesh) had similar detection probabilities to night electric fishing for both juvenile (0.26, 0.17–0.36) and adult (0.27, 0.18–0.39) burbot during the summer. In autumn, a similar overlap between detection probabilities was observed for juvenile and adult burbot. Small-mesh hoop nets had the highest estimated probability of detection for both juvenile and adult burbot (0.46, 0.33–0.59), whereas night electric fishing had a detection probability of 0.39 (0.28–0.52) for juvenile and adult burbot. By using detection probabilities to compare gears, the most effective sampling technique can be identified, leading to increased species detections and more effective management of burbot.

  1. Comparison of two headspace sampling techniques for the analysis of off-flavour volatiles from oat based products.

    PubMed

    Cognat, Claudine; Shepherd, Tom; Verrall, Susan R; Stewart, Derek

    2012-10-01

    Two different headspace sampling techniques were compared for analysis of aroma volatiles from freshly produced and aged plain oatcakes. Solid phase microextraction (SPME) using a Carboxen-Polydimethylsiloxane (PDMS) fibre and entrainment on Tenax TA within an adsorbent tube were used for collection of volatiles. The effects of variation in the sampling method were also considered using SPME. The data obtained using both techniques were processed by multivariate statistical analysis (PCA). Both techniques showed similar capacities to discriminate between the samples at different ages. Discrimination between fresh and rancid samples could be made on the basis of changes in the relative abundances of 14-15 of the constituents in the volatile profiles. A significant effect on the detection level of volatile compounds was observed when samples were crushed and analysed by SPME-GC-MS, in comparison to undisturbed product. The applicability and cost effectiveness of both methods were considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Methods for Integrated Air Sampling and DNA Analysis for Detection of Airborne Fungal Spores

    PubMed Central

    Williams, Roger H.; Ward, Elaine; McCartney, H. Alastair

    2001-01-01

    Integrated air sampling and PCR-based methods for detecting airborne fungal spores, using Penicillium roqueforti as a model fungus, are described. P. roqueforti spores were collected directly into Eppendorf tubes using a miniature cyclone-type air sampler. They were then suspended in 0.1% Nonidet P-40, and counted using microscopy. Serial dilutions of the spores were made. Three methods were used to produce DNA for PCR tests: adding untreated spores to PCRs, disrupting spores (fracturing of spore walls to release the contents) using Ballotini beads, and disrupting spores followed by DNA purification. Three P. roqueforti-specific assays were tested: single-step PCR, nested PCR, and PCR followed by Southern blotting and probing. Disrupting the spores was found to be essential for achieving maximum sensitivity of the assay. Adding untreated spores to the PCR did allow the detection of P. roqueforti, but this was never achieved when fewer than 1,000 spores were added to the PCR. By disrupting the spores, with or without subsequent DNA purification, it was possible to detect DNA from a single spore. When known quantities of P. roqueforti spores were added to air samples consisting of high concentrations of unidentified fungal spores, pollen, and dust, detection sensitivity was reduced. P. roqueforti DNA could not be detected using untreated or disrupted spore suspensions added to the PCRs. However, using purified DNA, it was possible to detect 10 P. roqueforti spores in a background of 4,500 other spores. For all DNA extraction methods, nested PCR was more sensitive than single-step PCR or PCR followed by Southern blotting. PMID:11375150

  3. Heating and thermal control of brazing technique to break contamination path for potential Mars sample return

    NASA Astrophysics Data System (ADS)

    Bao, Xiaoqi; Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph; Campos, Sergio

    2017-04-01

    The potential return of Mars sample material is of great interest to the planetary science community, as it would enable extensive analysis of samples with highly sensitive laboratory instruments. It is important to make sure such a mission concept would not bring any living microbes, which may possibly exist on Mars, back to Earth's environment. In order to ensure the isolation of Mars microbes from Earth's Atmosphere, a brazing sealing and sterilizing technique was proposed to break the Mars-to-Earth contamination path. Effectively, heating the brazing zone in high vacuum space and controlling the sample temperature for integrity are key challenges to the implementation of this technique. The break-thechain procedures for container configurations, which are being considered, were simulated by multi-physics finite element models. Different heating methods including induction and resistive/radiation were evaluated. The temperature profiles of Martian samples in a proposed container structure were predicted. The results show that the sealing and sterilizing process can be controlled such that the samples temperature is maintained below the level that may cause damage, and that the brazing technique is a feasible approach to breaking the contamination path.

  4. Relative efficiencies of two air sampling methods and three culture conditions for the assessment of airborne culturable fungi in a poultry farmhouse in France.

    PubMed

    Nieguitsila, Adélaïde; Arné, Pascal; Durand, Benoît; Deville, Manjula; Benoît-Valiergue, Hélène; Chermette, René; Cottenot-Latouche, Sophie; Guillot, Jacques

    2011-02-01

    Fungal elements represent a significant part of the biological contaminants that could be detected in the air of animal facilities. The aim of this study was to assess the relative efficiencies of two air sampling methods and three culture conditions for the quantification of airborne culturable fungi in a poultry farmhouse in France. Air samples were collected every week throughout a 15-week period. Two devices were simultaneously used-a rotative cup air sampler (CIP 10-M, Arelco, France) and an air sampler based on filtration (AirPort MD8, Sartorius, Germany). Culture of airborne viable fungi was performed on malt extract agar (ME) and dichloran glycerol-18 (DG18) at 25 or 37°C. CIP 10-M and AirPort MD8 were shown to display comparable performances but significant differences were observed between culture conditions for Aspergillus spp. (p<0.01), Scopulariopsis spp. (p=0.02) and unidentified molds (p<0.01). Copyright © 2010 Elsevier Inc. All rights reserved.

  5. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING AIR SAMPLES FOR ANALYSIS OF POLAR PERSISTENT ORGANIC POLLUTANTS (SOP-5.13)

    EPA Science Inventory

    The method for extracting and preparing indoor and outdoor air samples for analysis of polar persistent organic pollutants is summarized in this SOP. It covers the preparation of samples that are to be analyzed by gas chromatography/mass spectrometry.

  6. Neuston Trawl and Whole Water Samples: A Comparison of Microplastic Sampling Techniques in The Gulf of Maine and Their Application to Citizen-Driven Science

    NASA Astrophysics Data System (ADS)

    Kautz, M.

    2016-12-01

    Microplastic research in aquatic environments has quickly evolved over the last decade. To have meaningful inter-study comparisons, it is necessary to define methodological criteria for both the sampling and sorting of microplastics. The most common sampling method used for sea surface samples has traditionally been a neuston net (NN) tow. Originally designed for plankton collection, neuston tows allow for a large volume of water to be sampled and can be coupled with phytoplankton monitoring. The widespread use of surface nets allows for easy comparison between data sets, but the units of measurement for calculating microplastic concentration vary, from surface area m2 and Km2, to volume of water sampled, m3. Contamination by the air, equipment, or sampler is a constant concern in microplastic research. Significant in-field contamination concerns for neuston tow sampling include air exposure time, microplastics in rinse water, sampler contact, and plastic net material. Seeking to overcome the lack of contamination control and the intrinsic instrumental size limitation associated with surface tow nets, we developed an alternative sampling method. The whole water (WW) method is a one-liter grab sample of surface water adapted from College of the Atlantic and Sea Education Association (SEA) student, Marina Garland. This is the only WW method that we are aware of being used to sample microplastic. The method addresses the increasing need to explore smaller size domains, to reduce potential contamination and to incorporate citizen scientists into data collection. Less water is analyzed using the WW method, but it allows for targeted sampling of point-source pollution, intertidal, and shallow areas. The WW methodology can easily be integrated into long-term or citizen science monitoring initiatives due to its simplicity and low equipment demands. The aim of our study was to demonstrate a practical and economically feasible method for sampling microplastic abundance at

  7. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  8. Language Sample Analysis and Elicitation Technique Effects in Bilingual Children With and Without Language Impairment.

    PubMed

    Kapantzoglou, Maria; Fergadiotis, Gerasimos; Restrepo, M Adelaida

    2017-10-17

    This study examined whether the language sample elicitation technique (i.e., storytelling and story-retelling tasks with pictorial support) affects lexical diversity (D), grammaticality (grammatical errors per communication unit [GE/CU]), sentence length (mean length of utterance in words [MLUw]), and sentence complexity (subordination index [SI]), which are commonly used indices for diagnosing primary language impairment in Spanish-English-speaking children in the United States. Twenty bilingual Spanish-English-speaking children with typical language development and 20 with primary language impairment participated in the study. Four analyses of variance were conducted to evaluate the effect of language elicitation technique and group on D, GE/CU, MLUw, and SI. Also, 2 discriminant analyses were conducted to assess which indices were more effective for story retelling and storytelling and their classification accuracy across elicitation techniques. D, MLUw, and SI were influenced by the type of elicitation technique, but GE/CU was not. The classification accuracy of language sample analysis was greater in story retelling than in storytelling, with GE/CU and D being useful indicators of language abilities in story retelling and GE/CU and SI in storytelling. Two indices in language sample analysis may be sufficient for diagnosis in 4- to 5-year-old bilingual Spanish-English-speaking children.

  9. A technique for sampling low shrub vegetation, by crown volume classes

    Treesearch

    Jay R. Bentley; Donald W. Seegrist; David A. Blakeman

    1970-01-01

    The effects of herbicides or other cultural treatments of low shrubs can be sampled by a new technique using crown volume as the key variable. Low shrubs were grouped in 12 crown volume classes with index values based on height times surface area of crown. The number of plants, by species, in each class is counted on quadrats. Many quadrats are needed for highly...

  10. Monitoring airborne molecular contamination: a quantitative and qualitative comparison of real-time and grab-sampling techniques

    NASA Astrophysics Data System (ADS)

    Shupp, Aaron M.; Rodier, Dan; Rowley, Steven

    2007-03-01

    Monitoring and controlling Airborne Molecular Contamination (AMC) has become essential in deep ultraviolet (DUV) photolithography for both optimizing yields and protecting tool optics. A variety of technologies have been employed for both real-time and grab-sample monitoring. Real-time monitoring has the advantage of quickly identifying "spikes" and upset conditions, while 2 - 24 hour plus grab sampling allows for extremely low detection limits by concentrating the mass of the target contaminant over a period of time. Employing a combination of both monitoring techniques affords the highest degree of control, lowest detection limits, and the most detailed data possible in terms of speciation. As happens with many technologies, there can be concern regarding the accuracy and agreement between real-time and grab-sample methods. This study utilizes side by side comparisons of two different real-time monitors operating in parallel with both liquid impingers and dry sorbent tubes to measure NIST traceable gas standards as well as real world samples. By measuring in parallel, a truly valid comparison is made between methods while verifying the results against a certified standard. The final outcome for this investigation is that a dry sorbent tube grab-sample technique produced results that agreed in terms of accuracy with NIST traceable standards as well as the two real-time techniques Ion Mobility Spectrometry (IMS) and Pulsed Fluorescence Detection (PFD) while a traditional liquid impinger technique showed discrepancies.

  11. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  12. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  13. Optimization of techniques for multiple platform testing in small, precious samples such as human chorionic villus sampling.

    PubMed

    Pisarska, Margareta D; Akhlaghpour, Marzieh; Lee, Bora; Barlow, Gillian M; Xu, Ning; Wang, Erica T; Mackey, Aaron J; Farber, Charles R; Rich, Stephen S; Rotter, Jerome I; Chen, Yii-der I; Goodarzi, Mark O; Guller, Seth; Williams, John

    2016-11-01

    Multiple testing to understand global changes in gene expression based on genetic and epigenetic modifications is evolving. Chorionic villi, obtained for prenatal testing, is limited, but can be used to understand ongoing human pregnancies. However, optimal storage, processing and utilization of CVS for multiple platform testing have not been established. Leftover CVS samples were flash-frozen or preserved in RNAlater. Modifications to standard isolation kits were performed to isolate quality DNA and RNA from samples as small as 2-5 mg. RNAlater samples had significantly higher RNA yields and quality and were successfully used in microarray and RNA-sequencing (RNA-seq). RNA-seq libraries generated using 200 versus 800-ng RNA showed similar biological coefficients of variation. RNAlater samples had lower DNA yields and quality, which improved by heating the elution buffer to 70 °C. Purification of DNA was not necessary for bisulfite-conversion and genome-wide methylation profiling. CVS cells were propagated and continue to express genes found in freshly isolated chorionic villi. CVS samples preserved in RNAlater are superior. Our optimized techniques provide specimens for genetic, epigenetic and gene expression studies from a single small sample which can be used to develop diagnostics and treatments using a systems biology approach in the prenatal period. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  14. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  15. Cryogenic separation of an oxygen-argon mixture in natural air samples for the determination of isotope and molecular ratios.

    PubMed

    Keedakkadan, Habeeb Rahman; Abe, Osamu

    2015-04-30

    The separation and purification of oxygen-argon mixtures are critical in the high-precision analysis of Δ(17) O and δ(O2 /Ar) for geochemical applications. At present, chromatographic methods are used for the separation and purification of oxygen-argon mixtures or pure oxygen, but these methods require the use of high-purity helium as a carrier gas. Considerable interest has been expressed in the development of a helium-free cryogenic separation of oxygen-argon mixtures in natural air samples. The precise and simplified cryogenic separation of oxygen-argon mixtures from natural air samples presented here was made possible using a single 5A (30/60 mesh) molecular sieve column. The method involves the trapping of eluted gases using molecular sieves at liquid nitrogen temperature, which is associated with isotopic fractionation. We tested the proposed method for the determination of isotopic fractionations during the gas exchange between water and atmospheric air at equilibrium. The dependency of fractionation was studied at different water temperatures and for different methods of equilibration (bubbling and stirring). Isotopic and molecular fractionations during gas desorption from molecular sieves were studied for different amounts and types of molecular sieves. Repeated measurements of atmospheric air yielded a reproducibility (±SD) of 0.021 ‰, 0.044 ‰, 15 per meg and 1.9 ‰ for δ(17) O, δ(18) O, Δ(17) O and δ(O2 /Ar) values, respectively. We applied the method to determine equilibrium isotope fractionation during gas exchange between air and water. Consistent δ(18) O and Δ(17) O results were obtained with the latest two studies, whereas there was a significant difference in δ(18) O values between seawater and deionized water. We have revised a helium-free, cryogenic separation of oxygen-argon mixtures in natural air samples for isotopic and molecular ratio analysis. The use of a single 13X (1/8" pellet) molecular sieve yielded the smallest isotopic

  16. A Comparison Study of Sampling and Analyzing Volatile Organic Compounds in Air in Kuwait by Using Tedlar Bags/Canisters and GC-MS with a Cryogenic Trap

    PubMed Central

    Tang, Hongmao; Beg, Khaliq R.; Al-Otaiba, Yousef

    2006-01-01

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results. PMID:16699723

  17. A comparison study of sampling and analyzing volatile organic compounds in air in Kuwait by using Tedlar bags/canisters and GC-MS with a cryogenic trap.

    PubMed

    Tang, Hongmao; Beg, Khaliq R; Al-Otaiba, Yousef

    2006-05-12

    Kuwait experiences desert climatic weather. Due to the extreme hot and dry conditions in this country, some analytical phenomena have been discovered. Therefore, a systematic study of sampling and analyzing volatile organic compounds in air by using GC-MS with a cryogenic trap is reported in this paper. This study included comparisons of using different sample containers such as Tedlar bags and SUMMA canisters, and different cryogenic freezing-out air volumes in the trap. Calibration curves for different compounds and improvement of replicated analysis results were also reported here. The study found that using different sample containers produced different results. Analysis of ambient air samples collected in Tedlar bags obtained several volatile organic compounds with large concentrations compared to using SUMMA canisters. Therefore, to choose a sample container properly is a key element for successfully completing a project. Because GC-MS with a cryogenic trap often generates replicated results with poor agreement, an internal standard added to gas standards and air samples by using a gas syringe was tested. The study results proved that it helped to improve the replicated results.

  18. Environmental Perception and Citizen Response: a Denver, Colorado Air Pollution Case Study.

    NASA Astrophysics Data System (ADS)

    Naomi, Leaura M.

    Denver, a high altitude city, suffers from air pollution. Automobile emissions, as well as wood and coal burning contribute to Denver's air pollution. In order to reduce its air pollution, Denver hosted a no-drive campaign, The Better Air Campaign. This study examined how Denver -area citizens perceived their air pollution, responded to their air pollution, and responded to their no-drive campaign. First, I conducted personal interviews of twenty Denver air pollution decision-makers to ascertain their perceptions and definitions of Denver's air pollution problem. Second, I created a theoretical model of environmental perception and behavioral response to air pollution. Third, I conducted a telephone survey of 500 Denver-area residents to examine the usefulness of the model. By segmenting a sample of 500 Denver-area residents via a modified values and lifestyles (VALS) technique included in a telephone survey, the perceptions and behaviors of residents fell into a clear pattern. This values and lifestyles pattern coincided with a conventional innovation-adoption pattern, including innovators, the bandwagon, and laggards. Thus, the research determined the population's perceptions and behavioral responses to their air pollution. The research also pointed a direction for Denver's air pollution decision-makers to follow in order to reduce use of the gasoline-powered automobile. And, for those interested in encouraging public acceptance of ecological sustainability, it suggested application of the VALS technique for reaching the public.

  19. Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms

    NASA Technical Reports Server (NTRS)

    Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.

    1992-01-01

    Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.

  20. Studying Ultradisperse Diamond Structure within Explosively Synthesized Samples via X-Ray Techniques

    NASA Astrophysics Data System (ADS)

    Sharkov, M. D.; Boiko, M. E.; Ivashevskaya, S. N.; Belyakova, N. S.

    2013-08-01

    XRD (X-Ray Diffraction) and SAXS (Small-Angle X-Ray Scattering) data have been measured for a pair of samples produced with the help of explosives. XRD peaks have shown the both samples to contain crystal diamond components as well as graphite ones. Basing on SAXS analysis, possible presence of grains with radii up to 30-50 nm within all the samples has been shown. Structure components with fractal dimension between 1 and 2 in the sample have been detected, this fact being in agreement with the assumption of diamond grain coating similarity to onion shells. In order to broad rocking curves analysis, the standard SAXS treatment technique has been complemented by a Fourier filtering procedure. For the sample #1, rocking curve components corresponding to individual interplanar distances with magnitudes from 5 nm up to 15 nm have been separated. A hypothesis relating these values to the distances between concentric onion-like shells of diamond grains has been formulated.

  1. A preliminary study of air-pollution measurement by active remote-sensing techniques

    NASA Technical Reports Server (NTRS)

    Wright, M. L.; Proctor, E. K.; Gasiorek, L. S.; Liston, E. M.

    1975-01-01

    Air pollutants are identified, and the needs for their measurement from satellites and aircraft are discussed. An assessment is made of the properties of these pollutants and of the normal atmosphere, including interactions with light of various wavelengths and the resulting effects on transmission and scattering of optical signals. The possible methods for active remote measurement are described; the relative performance capabilities of double-ended and single-ended systems are compared qualitatively; and the capabilities of the several single-ended or backscattering techniques are compared quantitatively. The differential-absorption lidar (DIAL) technique is shown to be superior to the other backscattering techniques. The lidar system parameters and their relationships to the environmental factors and the properties of pollutants are examined in detail. A computer program that models both the atmosphere (including pollutants) and the lidar system is described. The performance capabilities of present and future lidar components are assessed, and projections are made of prospective measurement capabilities for future lidar systems. Following a discussion of some important operational factors that affect both the design and measurement capabilities of airborne and satellite-based lidar systems, the extensive analytical results obtained through more than 1000 individual cases analyzed with the aid of the computer program are summarized and discussed. The conclusions are presented. Recommendations are also made for additional studies to investigate cases that could not be explored adequately during this study.

  2. Development of simulation techniques suitable for the analysis of air traffic control situations and instrumentation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A terminal area simulation is described which permits analysis and synthesis of current and advanced air traffic management system configurations including ground and airborne instrumentation and new and modified aircraft characteristics. Ground elements in the simulation include navigation aids, surveillance radars, communication links, air-route structuring, ATC procedures, airport geometries and runway handling constraints. Airborne elements include traffic samples with individual aircraft performance and operating characteristics and aircraft navigation equipment. The simulation also contains algorithms for conflict detection, conflict resolution, sequencing and pilot-controller data links. The simulation model is used to determine the sensitivities of terminal area traffic flow, safety and congestion to aircraft performance characteristics, avionics systems, and other ATC elements.

  3. From air to rubber: New techniques for measuring and replicating mouthpieces, bocals, and bores

    NASA Astrophysics Data System (ADS)

    Fuks, Leonardo

    2002-11-01

    The history of musical instruments comprises a long genealogy of models and prototypes that results from a combination of copying existing specimens with the change in constructive parameters, and the addition of new devices. In making wind instruments, several techniques have been traditionally employed for extracting the external and internal dimensions of toneholes, air columns, bells, and mouthpieces. In the twentieth century, methods such as pulse reflectometry, x-ray, magnetic resonance, and ultrasound imaging have been made available for bore measurement. Advantages and drawbacks of the existing methods are discussed and a new method is presented that makes use of the injection and coating of silicon rubber, for accurate molding of the instrument. This technique is harmless to all traditional materials, being indicated also for measurements of historical instruments. The paper presents dimensional data obtained from clarinet and saxophone mouthpieces. A set of replicas of top quality clarinet and saxophone mouthpieces, trombone bocals, and flute headjoints is shown, with comparative acoustical and performance analyses. The application of such techniques for historical and modern instrument analysis, restoration, and manufacturing is proposed.

  4. Prompt Gamma Activation Analysis (PGAA): Technique of choice for nondestructive bulk analysis of returned comet samples

    NASA Technical Reports Server (NTRS)

    Lindstrom, David J.; Lindstrom, Richard M.

    1989-01-01

    Prompt gamma activation analysis (PGAA) is a well-developed analytical technique. The technique involves irradiation of samples in an external neutron beam from a nuclear reactor, with simultaneous counting of gamma rays produced in the sample by neutron capture. Capture of neutrons leads to excited nuclei which decay immediately with the emission of energetic gamma rays to the ground state. PGAA has several advantages over other techniques for the analysis of cometary materials: (1) It is nondestructive; (2) It can be used to determine abundances of a wide variety of elements, including most major and minor elements (Na, Mg, Al, Si, P, K, Ca, Ti, Cr, Mn, Fe, Co, Ni), volatiles (H, C, N, F, Cl, S), and some trace elements (those with high neutron capture cross sections, including B, Cd, Nd, Sm, and Gd); and (3) It is a true bulk analysis technique. Recent developments should improve the technique's sensitivity and accuracy considerably.

  5. EPA's Response to the February 2014 Release of Radioactive Material from the Waste Isolation Pilot Plant (WIPP): EPA's WIPP Air Sampling Data from April 2014

    EPA Pesticide Factsheets

    In April 2014, U.S. Environmental Protection Agency (EPA) environmental monitoring and assessment team members reviewed DOE's air sampling plan, visited DOE's air samplers and placed air samplers onsite near existing DOE samplers to corroborate results.

  6. Nanocomposite bulk of mechanically milled Al-Pb samples consolidated pore-free by the high-energy rate forming technique.

    PubMed

    Csanády, Agnes; Sajó, István; Lábár, János L; Szalay, András; Papp, Katalin; Balaton, Géza; Kálmán, Erika

    2005-06-01

    It is shown that pore-free bulk samples were produced by the high-energy rate forming axis-symmetrical powder compaction method for different application purposes in case of the very different, immiscible Al and Pb metal pair. The starting Al-Pb nanocomposites were made by mechanical milling of atomized Al and Pb powders either in a SPEX 9000 or a Fritsch Pulverisette 4 mill. Due to the conditions that milling was carried out in air, the PbO layer, originally existing at the surface of the atomized Pb powder, ruptured and was also dispersed in the composite. The presence of the nano PbO particles was proven by XRD and TEM (BF, DF, SAED). When the energy of milling was high, the PbO crystallites became so small that they could hardly be seen by XRD technique. Local distribution of the PbO nanoparticles was still visible in a TEM, using the process diffraction method. Both XRD and SAED proved to be useful for the evaluation of the results of the milling process and compaction.

  7. Atmospheric CO2 Records from Sites in the Scripps Institution of Oceanography (SIO) Air Sampling Network (1985 - 2007)

    DOE Data Explorer

    Keeling, R. F. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA); Piper, S. C. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA); Bollenbacher, A. F. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA); Walker , J. S. [Scripps Institution of Oceanography (SIO) University of California, La Jolla, California (USA)

    2008-05-01

    At Alert weekly air samples are collected in 5-L evacuated glass flasks exposed in triplicate. Flasks are returned to the SIO for CO2 determinations, which are made using an Applied Physics Corporation nondispersive infrared gas analyzer. In May 1983, the CO2-in-N2 calibration gases were replaced with CO2-in-air calibration gases, which are currently used (Keeling et al. 2002). Data are in terms of the Scripps "03A" calibration scale. On the basis of flask samples collected at Alert and analyzed by SIO, the annual average of the fitted monthly concentrations CO2 rose from 348.48 ppmv in 1986 to 384.84 ppmv in 2007. This represents an average annual growth rate of 1.73 ppmv per year at Alert.

  8. Insights into organic-aerosol sources via a novel laser-desorption/ionization mass spectrometry technique applied to one year of PM10 samples from nine sites in central Europe

    NASA Astrophysics Data System (ADS)

    Daellenbach, Kaspar R.; El-Haddad, Imad; Karvonen, Lassi; Vlachou, Athanasia; Corbin, Joel C.; Slowik, Jay G.; Heringa, Maarten F.; Bruns, Emily A.; Luedin, Samuel M.; Jaffrezo, Jean-Luc; Szidat, Sönke; Piazzalunga, Andrea; Gonzalez, Raquel; Fermo, Paola; Pflueger, Valentin; Vogel, Guido; Baltensperger, Urs; Prévôt, André S. H.

    2018-02-01

    We assess the benefits of offline laser-desorption/ionization mass spectrometry in understanding ambient particulate matter (PM) sources. The technique was optimized for measuring PM collected on quartz-fiber filters using silver nitrate as an internal standard for m/z calibration. This is the first application of this technique to samples collected at nine sites in central Europe throughout the entire year of 2013 (819 samples). Different PM sources were identified by positive matrix factorization (PMF) including also concomitant measurements (such as NOx, levoglucosan, and temperature). By comparison to reference mass spectral signatures from laboratory wood burning experiments as well as samples from a traffic tunnel, three biomass burning factors and two traffic factors were identified. The wood burning factors could be linked to the burning conditions; the factors related to inefficient burns had a larger impact on air quality in southern Alpine valleys than in northern Switzerland. The traffic factors were identified as primary tailpipe exhaust and most possibly aged/secondary traffic emissions. The latter attribution was supported by radiocarbon analyses of both the organic and elemental carbon. Besides these sources, factors related to secondary organic aerosol were also separated. The contribution of the wood burning emissions based on LDI-PMF (laser-desorption/ionization PMF) correlates well with that based on AMS-PMF (aerosol mass spectrometer PMF) analyses, while the comparison between the two techniques for other components is more complex.

  9. Simple statistical bias correction techniques greatly improve moderate resolution air quality forecast at station level

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele; Falasca, Serena

    2017-04-01

    Deterministic air quality forecast is routinely carried out at many local Environmental Agencies in Europe and throughout the world by means of eulerian chemistry-transport models. The skill of these models in predicting the ground-level concentrations of relevant pollutants (ozone, nitrogen dioxide, particulate matter) a few days ahead has greatly improved in recent years, but it is not yet always compliant with the required quality level for decision making (e.g. the European Commission has set a maximum uncertainty of 50% on daily values of relevant pollutants). Post-processing of deterministic model output is thus still regarded as a useful tool to make the forecast more reliable. In this work, we test several bias correction techniques applied to a long-term dataset of air quality forecasts over Europe and Italy. We used the WRF-CHIMERE modelling system, which provides operational experimental chemical weather forecast at CETEMPS (http://pumpkin.aquila.infn.it/forechem/), to simulate the years 2008-2012 at low resolution over Europe (0.5° x 0.5°) and moderate resolution over Italy (0.15° x 0.15°). We compared the simulated dataset with available observation from the European Environmental Agency database (AirBase) and characterized model skill and compliance with EU legislation using the Delta tool from FAIRMODE project (http://fairmode.jrc.ec.europa.eu/). The bias correction techniques adopted are, in order of complexity: (1) application of multiplicative factors calculated as the ratio of model-to-observed concentrations averaged over the previous days; (2) correction of the statistical distribution of model forecasts, in order to make it similar to that of the observations; (3) development and application of Model Output Statistics (MOS) regression equations. We illustrate differences and advantages/disadvantages of the three approaches. All the methods are relatively easy to implement for other modelling systems.

  10. Use of Whole-Genome Sequencing to Link Burkholderia pseudomallei from Air Sampling to Mediastinal Melioidosis, Australia

    PubMed Central

    Price, Erin P.; Mayo, Mark; Kaestli, Mirjam; Theobald, Vanessa; Harrington, Ian; Harrington, Glenda; Sarovich, Derek S.

    2015-01-01

    The frequency with which melioidosis results from inhalation rather than percutaneous inoculation or ingestion is unknown. We recovered Burkholderia pseudomallei from air samples at the residence of a patient with presumptive inhalational melioidosis and used whole-genome sequencing to link the environmental bacteria to B. pseudomallei recovered from the patient. PMID:26488732

  11. Characterization of Macroinvertebrate Communities in the Hyporheic Zone of River Ecosystems Reflects the Pump-Sampling Technique Used

    PubMed Central

    Dole-Olivier, Marie-José; Galassi, Diana M. P.; Hogan, John-Paul; Wood, Paul J.

    2016-01-01

    The hyporheic zone of river ecosystems provides a habitat for a diverse macroinvertebrate community that makes a vital contribution to ecosystem functioning and biodiversity. However, effective methods for sampling this community have proved difficult to establish, due to the inaccessibility of subsurface sediments. The aim of this study was to compare the two most common semi-quantitative macroinvertebrate pump-sampling techniques: Bou-Rouch and vacuum-pump sampling. We used both techniques to collect replicate samples in three contrasting temperate-zone streams, in each of two biogeographical regions (Atlantic region, central England, UK; Continental region, southeast France). Results were typically consistent across streams in both regions: Bou-Rouch samples provided significantly higher estimates of taxa richness, macroinvertebrate abundance, and the abundance of all UK and eight of 10 French common taxa. Seven and nine taxa which were rare in Bou-Rouch samples were absent from vacuum-pump samples in the UK and France, respectively; no taxon was repeatedly sampled exclusively by the vacuum pump. Rarefaction curves (rescaled to the number of incidences) and non-parametric richness estimators indicated no significant difference in richness between techniques, highlighting the capture of more individuals as crucial to Bou-Rouch sampling performance. Compared to assemblages in replicate vacuum-pump samples, multivariate analyses indicated greater distinction among Bou-Rouch assemblages from different streams, as well as significantly greater consistency in assemblage composition among replicate Bou-Rouch samples collected in one stream. We recommend Bou-Rouch sampling for most study types, including rapid biomonitoring surveys and studies requiring acquisition of comprehensive taxon lists that include rare taxa. Despite collecting fewer macroinvertebrates, vacuum-pump sampling remains an important option for inexpensive and rapid sample collection. PMID:27723819

  12. Evaluation of sampling methods for measuring exposure to volatile inorganic acids in workplace air. Part 1: sampling hydrochloric acid (HCl) and nitric acid (HNO₃) from a test gas atmosphere.

    PubMed

    Howe, Alan; Musgrove, Darren; Breuer, Dietmar; Gusbeth, Krista; Moritz, Andreas; Demange, Martine; Oury, Véronique; Rousset, Davy; Dorotte, Michel

    2011-08-01

    Historically, workplace exposure to the volatile inorganic acids hydrochloric acid (HCl) and nitric acid (HNO(3)) has been determined mostly by collection on silica gel sorbent tubes and analysis of the corresponding anions by ion chromatography (IC). However, HCl and HNO(3) can be present in workplace air in the form of mist as well as vapor, so it is important to sample the inhalable fraction of airborne particles. As sorbent tubes exhibit a low sampling efficiency for inhalable particles, a more suitable method was required. This is the first of two articles on "Evaluation of Sampling Methods for Measuring Exposure to Volatile Inorganic Acids in Workplace Air" and describes collaborative sampling exercises carried out to evaluate an alternative method for sampling HCl and HNO(3) using sodium carbonate-impregnated filters. The second article describes sampling capacity and breakthrough tests. The method was found to perform well and a quartz fiber filter impregnated with 500 μL of 1 M Na(2)CO(3) (10% (m/v) Na(2)CO(3)) was found to have sufficient sampling capacity for use in workplace air measurement. A pre-filter is required to remove particulate chlorides and nitrates that when present would otherwise result in a positive interference. A GSP sampler fitted with a plastic cone, a closed face cassette, or a plastic IOM sampler were all found to be suitable for mounting the pre-filter and sampling filter(s), but care has to be taken with the IOM sampler to ensure that the sampler is tightly closed to avoid leaks. HCl and HNO(3) can react with co-sampled particulate matter on the pre-filter, e.g., zinc oxide, leading to low results, and stronger acids can react with particulate chlorides and nitrates removed by the pre-filter to liberate HCl and HNO(3), which are subsequently collected on the sampling filter, leading to high results. However, although there is this potential for both positive and negative interferences in the measurement, these are unavoidable

  13. Filter paper-assisted cell transfer (FaCT) technique: A novel cell-sampling technique for intraoperative diagnosis of central nervous system tumors.

    PubMed

    Kawamura, Jumpei; Kamoshida, Shingo; Shimakata, Takaaki; Hayashi, Yurie; Sakamaki, Kuniko; Denda, Tamami; Kawai, Kenji; Kuwao, Sadahito

    2017-04-01

    Intraoperative diagnosis of central nervous system (CNS) tumors provides critical guidance to surgeons in the determination of surgical resection margins and treatment. The techniques and preparations used for the intraoperative diagnosis of CNS tumors include frozen sectioning and cytologic methods (squash smear and touch imprint). Cytologic specimens, which do not have freezing artifacts, are important as an adjuvant tool to frozen sections. However, if the amount of submitted tissue samples is limited, then it is difficult to prepare both frozen sections and squash smears or touch imprint specimens from a single sample at the same time. Therefore, the objective of this study was to derive cells directly from filter paper on which tumor samples are placed. The authors established the filter paper-assisted cell transfer (FaCT) smear technique, in which tumor cells are transferred onto a glass slide directly from the filter paper sample spot after the biopsy is removed. Cell yields and diagnostic accuracy of the FaCT smears were assessed in 40 CNS tumors. FaCT smears had ample cell numbers and well preserved cell morphology sufficient for cytologic diagnosis, even if the submitted tissues were minimal. The overall diagnostic concordance rates between frozen sections and FaCT smears were 90% and 87.5%, respectively (no significant differences). When combining FaCT smears with frozen sections, the diagnostic concordance rate rose to 92.5%. The current results suggest that the FaCT smear technique is a simple and effective processing method that has significant value for intraoperative diagnosis of CNS tumors. Cancer Cytopathol 2017;125:277-282. © 2016 American Cancer Society. © 2017 American Cancer Society.

  14. In-air PIXE analysis by means of glass capillary optics

    NASA Astrophysics Data System (ADS)

    Nebiki, Takuya; Kabir, M. Hasnat; Narusawa, Tadashi

    2006-08-01

    A novel technique to introduce high energy ion beams to atmospheric environment is presented, which enables in-air PIXE measurements. Slightly tapered glass capillary optics is applied to work as a differential pumping orifice as well as a focusing lens. The flux intensity is enhanced by at least one order of magnitude due to the focusing effect. Using capillaries of 10-20 μm outlet diameters, we obtain several hundreds pA of 4 MeV He2+ ion beam and apply it to PIXE analysis of the seabed sludge without any sample treatments. A comparison of spectra between wet and dry sludge samples suggests the usefulness of our new technique.

  15. Does the Exposure of Urine Samples to Air Affect Diagnostic Tests for Urine Acidification?

    PubMed Central

    Yi, Joo-Hark; Shin, Hyun-Jong; Kim, Sun-Moon; Han, Sang-Woong; Oh, Man-Seok

    2012-01-01

    Summary Background and objectives For accurate measurement of pH, urine collection under oil to limit the escape of CO2 on air exposure is recommended. This study aims to test the hypothesis that urine collection under oil is not necessary in acidic urine in which bicarbonate and CO2 are minor buffers, because loss of CO2 would have little effect on its pH. Design, setting, participants, & measurements One hundred consecutive random urine samples were collected under oil and analyzed for pH, pCO2, and HCO3− immediately and after 5 minutes of vigorous shaking in uncovered flasks to allow CO2 escape. Results The pH values in 97 unshaken samples ranged from 5.03 to 6.83. With shaking, urine pCO2 decreased by 76%, whereas urine HCO3− decreased by 60%. Meanwhile, urine baseline median pH (interquartile range) of 5.84 (5.44–6.25) increased to 5.93 (5.50–6.54) after shaking (ΔpH=0.12 [0.07–0.29], P<0.001). ΔpH with pH≤6.0 was significantly lower than the ΔpH with pH>6.0 (0.08 [0.05–0.12] versus 0.36 [0.23–0.51], P<0.001). Overall, the lower the baseline pH, the smaller the ΔpH. Conclusions The calculation of buffer reactions in a hypothetical acidic urine predicted a negligible effect on urine pH on loss of CO2 by air exposure, which was empirically proven by the experimental study. Therefore, exposure of urine to air does not substantially alter the results of diagnostic tests for urine acidification, and urine collection under oil is not necessary. PMID:22700881

  16. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  17. Collection and analysis of NASA clean room air samples

    NASA Technical Reports Server (NTRS)

    Sheldon, L. S.; Keever, J.

    1985-01-01

    The environment of the HALOE assembly clean room at NASA Langley Research Center is analyzed to determine the background levels of airborne organic compounds. Sampling is accomplished by pumping the clean room air through absorbing cartridges. For volatile organics, cartridges are thermally desorbed and then analyzed by gas chromatography and mass spectrometry, compounds are identified by searching the EPA/NIH data base using an interactive operator INCOS computer search algorithm. For semivolatile organics, cartridges are solvent entracted and concentrated extracts are analyzed by gas chromatography-electron capture detection, compound identification is made by matching gas chromatogram retention times with known standards. The detection limits for the semivolatile organics are; 0.89 ng cu m for dioctylphlhalate (DOP) and 1.6 ng cu m for polychlorinated biphenyls (PCB). The detection limit for volatile organics ranges from 1 to 50 parts per trillion. Only trace quantities of organics are detected, the DOP levels do not exceed 2.5 ng cu m and the PCB levels do not exceed 454 ng cu m.

  18. Comparison of two stable hydrogen isotope-ratio measurement techniques on Antarctic surface-water and ice samples

    USGS Publications Warehouse

    Hopple, J.A.; Hannon, J.E.; Coplen, T.B.

    1998-01-01

    A comparison of the new hydrogen isotope-ratio technique of Vaughn et al. ([Vaughn, B.H., White, J.W.C., Delmotte, M., Trolier, M., Cattani, O., Stievenard, M., 1998. An automated system for hydrogen isotope analysis of water. Chem. Geol. (Isot. Geosci. Sect.), 152, 309-319]; the article immediately preceding this article) for the analysis of water samples utilizing automated on-line reduction by elemental uranium showed that 94% of 165 samples of Antarctic snow, ice, and stream water agreed with the ??2H values determined by H2-H2O platinum equilibration, exhibiting a bias of +0.5??? and a 2 - ?? variation of 1.9???. The isotopic results of 10 reduction technique samples, however, gave ??2H values that differed by 3.5??? or more, and were too negative by as much as 5.4??? and too positive by as much as 4.9??? with respect to those determined using the platinum equilibration technique.

  19. Aerosols and Particulates Workshop Sampling Procedures and Venues Working Group Summary

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter; Howard, Robert

    1999-01-01

    The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations

  20. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING AIR SAMPLES FOR ANALYSIS OF NEUTRAL PERSISTENT ORGANIC POLLUTANTS (SOP-5.12)

    EPA Science Inventory

    The method is for extracting an indoor and outdoor air sample consisting of a quartz fiber filter and an XAD-2 cartridge for analysis of neutral persistent organic pollutants. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/mass...

  1. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    PubMed

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  2. Use of X-ray diffraction technique and chemometrics to aid soil sampling strategies in traceability studies.

    PubMed

    Bertacchini, Lucia; Durante, Caterina; Marchetti, Andrea; Sighinolfi, Simona; Silvestri, Michele; Cocchi, Marina

    2012-08-30

    Aim of this work is to assess the potentialities of the X-ray powder diffraction technique as fingerprinting technique, i.e. as a preliminary tool to assess soil samples variability, in terms of geochemical features, in the context of food geographical traceability. A correct approach to sampling procedure is always a critical issue in scientific investigation. In particular, in food geographical traceability studies, where the cause-effect relations between the soil of origin and the final foodstuff is sought, a representative sampling of the territory under investigation is certainly an imperative. This research concerns a pilot study to investigate the field homogeneity with respect to both field extension and sampling depth, taking also into account the seasonal variability. Four Lambrusco production sites of the Modena district were considered. The X-Ray diffraction spectra, collected on the powder of each soil sample, were treated as fingerprint profiles to be deciphered by multivariate and multi-way data analysis, namely PCA and PARAFAC. The differentiation pattern observed in soil samples, as obtained by this fast and non-destructive analytical approach, well matches with the results obtained by characterization with other costly analytical techniques, such as ICP/MS, GFAAS, FAAS, etc. Thus, the proposed approach furnishes a rational basis to reduce the number of soil samples to be collected for further analytical characterization, i.e. metals content, isotopic ratio of radiogenic element, etc., while maintaining an exhaustive description of the investigated production areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Surface, Water and Air Biocharacterization (SWAB)

    NASA Image and Video Library

    2009-08-18

    ISS020-E-031558 (18 Aug. 2009) --- NASA astronaut Michael Barratt, Expedition 20 flight engineer, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  4. Detection limits of Legionella pneumophila in environmental samples after co-culture with Acanthamoeba polyphaga

    PubMed Central

    2013-01-01

    Background The efficiency of recovery and the detection limit of Legionella after co-culture with Acanthamoeba polyphaga are not known and so far no investigations have been carried out to determine the efficiency of the recovery of Legionella spp. by co-culture and compare it with that of conventional culturing methods. This study aimed to assess the detection limits of co-culture compared to culture for Legionella pneumophila in compost and air samples. Compost and air samples were spiked with known concentrations of L. pneumophila. Direct culturing and co-culture with amoebae were used in parallel to isolate L. pneumophila and recovery standard curves for both methods were produced for each sample. Results The co-culture proved to be more sensitive than the reference method, detecting 102-103 L. pneumophila cells in 1 g of spiked compost or 1 m3 of spiked air, as compared to 105-106 cells in 1 g of spiked compost and 1 m3 of spiked air. Conclusions Co-culture with amoebae is a useful, sensitive and reliable technique to enrich L. pneumophila in environmental samples that contain only low amounts of bacterial cells. PMID:23442526

  5. Multimedia Sampling During The Application Of Biosolids On A Land Test Site (Presentation)

    EPA Science Inventory

    The goal of this research study was to evaluate air and soil sampling methods and analytical techniques for commercial land application of biosolids. Biosolids, were surface applied at agronomic rates to an agricultural field. During the period of August 2004 to January 2005, 3...

  6. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    PubMed

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.

  7. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  8. Vector Doppler: spatial sampling analysis and presentation techniques for real-time systems

    NASA Astrophysics Data System (ADS)

    Capineri, Lorenzo; Scabia, Marco; Masotti, Leonardo F.

    2001-05-01

    The aim of the vector Doppler (VD) technique is the quantitative reconstruction of a velocity field independently of the ultrasonic probe axis to flow angle. In particular vector Doppler is interesting for studying vascular pathologies related to complex blood flow conditions. Clinical applications require a real-time operating mode and the capability to perform Doppler measurements over a defined volume. The combination of these two characteristics produces a real-time vector velocity map. In previous works the authors investigated the theory of pulsed wave (PW) vector Doppler and developed an experimental system capable of producing off-line 3D vector velocity maps. Afterwards, for producing dynamic velocity vector maps, we realized a new 2D vector Doppler system based on a modified commercial echograph. The measurement and presentation of a vector velocity field requires a correct spatial sampling that must satisfy the Shannon criterion. In this work we tackled this problem, establishing a relationship between sampling steps and scanning system characteristics. Another problem posed by the vector Doppler technique is the data representation in real-time that should be easy to interpret for the physician. With this in mine we attempted a multimedia solution that uses both interpolated images and sound to represent the information of the measured vector velocity map. These presentation techniques were experimented for real-time scanning on flow phantoms and preliminary measurements in vivo on a human carotid artery.

  9. Near-infrared spectroscopy (NIRS) as a tool to monitor exhaust air from poultry operations.

    PubMed

    Druckenmüller, Katharina; Günther, Klaus; Elbers, Gereon

    2018-07-15

    Intensive poultry operation systems emit a considerable volume of inorganic and organic matter in the surrounding environment. Monitoring cleaning properties of exhaust air cleaning systems and to detect small but significant changes in emission characteristics during a fattening cycle is important for both emission and fattening process control. In the present study, we evaluated the potential of near-infrared spectroscopy (NIRS) combined with chemometric techniques as a monitoring tool of exhaust air from poultry operation systems. To generate a high-quality data set for evaluation, the exhaust air of two poultry houses was sampled by applying state-of-the-art filter sampling protocols. The two stables were identical except for one crucial difference, the presence or absence of an exhaust air cleaning system. In total, twenty-one exhaust air samples were collected at the two sites to monitor spectral differences caused by the cleaning device, and to follow changes in exhaust air characteristics during a fattening period. The total dust load was analyzed by gravimetric determination and included as a response variable in multivariate data analysis. The filter samples were directly measured with NIR spectroscopy. Principal component analysis (PCA), linear discriminant analysis (LDA), and factor analysis (FA) were effective in classifying the NIR exhaust air spectra according to fattening day and origin. The results indicate that the dust load and the composition of exhaust air (inorganic or organic matter) substantially influence the NIR spectral patterns. In conclusion, NIR spectroscopy as a tool is a promising and very rapid way to detect differences between exhaust air samples based on still not clearly defined circumstances triggered during a fattening period and the availability of an exhaust air cleaning system. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Predictive monitoring and diagnosis of periodic air pollution in a subway station.

    PubMed

    Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo

    2010-11-15

    The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Nitrogen fluorescence in air for observing extensive air showers

    NASA Astrophysics Data System (ADS)

    Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.

    2013-06-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  12. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  13. Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and off-line GC-FID

    NASA Astrophysics Data System (ADS)

    Perraud, V.; Meinardi, S.; Blake, D. R.; Finlayson-Pitts, B. J.

    2015-12-01

    Organosulfur compounds (OSC) are naturally emitted via various processes involving phytoplankton and algae in marine regions, from animal metabolism and from biomass decomposition inland. These compounds are malodorant and reactive. Their oxidation to methanesulfonic and sulfuric acids leads to the formation and growth of atmospheric particles, which are known to have negative effects on visibility, climate and human health. In order to predict particle formation events, accurate measurements of the OSC precursors are essential. Here, two different approaches, proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and canister sampling coupled with GC-FID are compared for both laboratory standards [dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and methanethiol (MTO)] and for a complex sample. Results show that both techniques produce accurate quantification of DMS. While PTR-ToF-MS provides real-time measurements of all four OSCs individually, significant fragmentation of DMDS and DMTS occurs, which can complicate their identification in complex mixtures. Canister sampling coupled with GC-FID provides excellent sensitivity for DMS, DMDS and DMTS. However, MTO was observed to react on metal surfaces to produce DMDS and, in the presence of hydrogen sulfide, even DMTS. Avoiding metal in sampling systems seems to be necessary for measuring all but dimethyl sulfide in air.

  14. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    PubMed

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  15. Williams conducts SWAB Sampling during Expedition 22

    NASA Image and Video Library

    2010-03-15

    ISS022-E-094369 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  16. Williams conducts SWAB Sampling during Expedition 22

    NASA Image and Video Library

    2010-03-15

    ISS022-E-094374 (15 March 2010) --- NASA astronaut Jeffrey Williams, Expedition 22 commander, conducts a Surface, Water and Air Biocharacterization (SWAB) water sampling from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station. SWAB uses advanced molecular techniques to comprehensively evaluate microbes onboard the space station, including pathogens (organisms that may cause disease). This study will allow an assessment of the risk of microbes to the crew and the spacecraft.

  17. US EPA Base Study Standard Operating Procedure for Sampling Volatile Organic Compounds in Indoor Air Using Evacuated Canisters

    EPA Pesticide Factsheets

    The objective of this procedure is to collect a representative sample of air containing volatile organic compound (VOC) contaminants present in an indoor environment using an evacuated canister, and to subsequently analyze the concentration of VOCs, as selected by EPA.

  18. Large antenna experiments aboard the space shuttle: Application of nonuniform sampling techniques

    NASA Technical Reports Server (NTRS)

    Rahmatsamii, Y.

    1988-01-01

    Future satellite communication and scientific spacecraft will utilize antennas with dimensions as large as 20 meters. In order to commercially use these large, low sidelobe and multiple beam antennas, a high level of confidence must be established as to their performance in the 0-g and space environment. Furthermore, it will be desirable to demonstrate the applicability of surface compensation techniques for slowly varying surface distortions which could result from thermal effects. An overview of recent advances in performing RF measurements on large antennas is presented with emphasis given to the application of a space based far-field range utilizing the Space Shuttle and the concept of a newly developed nonuniform sampling technique.

  19. Techniques for Nonterminal Blood Sampling in Black-Tailed Prairie Dogs (Cynomys ludovicianus).

    PubMed

    Head, Valerie; Eshar, David; Nau, Melissa R

    2017-03-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are used as an animal model for research on gallbladder stones and several infectious diseases. A comprehensive, instructive resource regarding the appropriate techniques for venipuncture and collection of nonterminal blood samples in this species has not yet been published. Blood samples (1 mL or larger) were readily obtained from the jugular vein, femoral vein, or cranial vena cava, whereas peripheral sites, such as the cephalic vein, saphenous vein, and tarsal vein, mainly were useful for obtaining smaller volumes. The detailed and illustrated information presented here can aid clinicians and researchers in performing venipuncture, anesthesia, and handling of this species.

  20. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  1. Single-particle characterization of ice-nucleating particles and ice particle residuals sampled by three different techniques

    NASA Astrophysics Data System (ADS)

    Worringen, A.; Kandler, K.; Benker, N.; Dirsch, T.; Weinbruch, S.; Mertes, S.; Schenk, L.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Curtius, J.; Kupiszewski, P.; Weingartner, E.; Schneider, J.; Schmidt, S.; Ebert, M.

    2014-09-01

    In the present work, three different techniques are used to separate ice-nucleating particles (INP) and ice particle residuals (IPR) from non-ice-active particles: the Ice Selective Inlet (ISI) and the Ice Counterflow Virtual Impactor (Ice-CVI), which sample ice particles from mixed phase clouds and allow for the analysis of the residuals, as well as the combination of the Fast Ice Nucleus Chamber (FINCH) and the Ice Nuclei Pumped Virtual Impactor (IN-PCVI), which provides ice-activating conditions to aerosol particles and extracts the activated ones for analysis. The collected particles were analyzed by scanning electron microscopy and energy-dispersive X-ray microanalysis to determine their size, chemical composition and mixing state. Samples were taken during January/February 2013 at the High Alpine Research Station Jungfraujoch. All INP/IPR-separating techniques had considerable abundances (median 20-70%) of contamination artifacts (ISI: Si-O spheres, probably calibration aerosol; Ice-CVI: Al-O particles; FINCH + IN-PCVI: steel particles). Also, potential measurement artifacts (soluble material) occurred (median abundance < 20%). After removal of the contamination particles, silicates and Ca-rich particles, carbonaceous material and metal oxides were the major INP/IPR particle types separated by all three techniques. Minor types include soot and Pb-bearing particles. Sea-salt and sulfates were identified by all three methods as INP/IPR. Lead was identified in less than 10% of the INP/IPR. It was mainly present as an internal mixture with other particle types, but also external lead-rich particles were found. Most samples showed a maximum of the INP/IPR size distribution at 400 nm geometric diameter. In a few cases, a second super-micron maximum was identified. Soot/carbonaceous material and metal oxides were present mainly in the submicron range. ISI and FINCH yielded silicates and Ca-rich particles mainly with diameters above 1 μm, while the Ice-CVI also

  2. Venous leakage treatment revisited: pelvic venoablation using aethoxysclerol under air block technique and Valsalva maneuver.

    PubMed

    Herwig, Ralf; Sansalone, Salvatore

    2015-03-31

    We evaluated the effectiveness of pelvic vein embolization with aethoxysclerol in aero-block technique for the treatment of impotence due to venous leakage in men using sildenafil for intercourse. The aim of the procedure was to reduce the use of sildenafil. A total of 96 patients with veno-occlusive dysfunction, severe enough for the need of PDE5 inhibitors for vaginal penetration, underwent pelvic venoablation with aethoxysclerol. The mean patient age was 53.5 years. Venous leaks were identified by Color Doppler Ultrasound after intracavernous alprostadil injection. Under local anesthesia a 20-gauge needle was inserted into the deep dorsal penile vein. The pelvic venogram was obtained through deep dorsal venography. Aethoxysclerol 3% as sclerosing agent was injected after air-block under Valsalva manoeuver. Success was defined as the ability to achieve vaginal insertion without the aid of any drugs, vasoactive injections, penile prosthesis, or vacuum device. Additionally, a pre- and post- therapy IIEF score and a digital overnight spontaneous erections protocol (OSEP) with the NEVA™-system was performed. At 3 month follow-up 77 out of 96 patients (80.21%) reported to have erections sufficient for vaginal insertion without the use of any drug or additional device. Four (4.17%) patients did not report any improvement. Follow up with color Doppler ultrasound revealed a new or persistent venous leakage in 8 (8.33%) of the patients. No serious complications occurred. Our new pelvic venoablation technique using aethoxysclerol in air-block technique was effective, minimally invasive, and cost-effective. All patients were able to perform sexual intercourse without the previously used dosage of PDE5 inhibitor. This new method may help in patients with contra-indications against PDE5 inhibitors, in patients who cannot afford the frequent usage of expensive oral medication or those who do not fully respond to PDE5-inhibitors.

  3. Determination of Se in soil samples using the proton induced X-ray emission technique

    NASA Astrophysics Data System (ADS)

    Cruvinel, Paulo E.; Flocchini, Robert G.

    1993-04-01

    An alternative method for the direct determination of total Se in soil samples is presented. A large number of trace elements is present in soil at concentration values in the range of part per billion and tenths of parts of million. The most common are the trace elements of Al, Si, K, Ca, Ti, V, Cr, Fe, Cu, Zn, Br, Rb, Mo, Cd and Pb. As for biological samples many of these elements are of great importance for the nutrition of plants, while others are toxic and others have an unknown role. Selenium is an essential micronutrient for humans and animals but it is also known that in certain areas Se deficiency or toxicity has caused endemic disease to livestock and humans through the soil-plant-animal linkage. In this work the suitability of the proton induced X-ray emission (PIXE) technique as a fast and nondestructive technique useful to measure total the Se content in soil samples is demonstrated. To validate the results a comparison of data collected using the conventional atomic absorption spectrophotometry (AAS) method was performed.

  4. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples

    PubMed Central

    Yan, Wei; Yang, Yanlong; Tan, Yu; Chen, Xun; Li, Yang; Qu, Junle; Ye, Tong

    2018-01-01

    Stimulated emission depletion microscopy (STED) is one of far-field optical microscopy techniques that can provide sub-diffraction spatial resolution. The spatial resolution of the STED microscopy is determined by the specially engineered beam profile of the depletion beam and its power. However, the beam profile of the depletion beam may be distorted due to aberrations of optical systems and inhomogeneity of specimens’ optical properties, resulting in a compromised spatial resolution. The situation gets deteriorated when thick samples are imaged. In the worst case, the sever distortion of the depletion beam profile may cause complete loss of the super resolution effect no matter how much depletion power is applied to specimens. Previously several adaptive optics approaches have been explored to compensate aberrations of systems and specimens. However, it is hard to correct the complicated high-order optical aberrations of specimens. In this report, we demonstrate that the complicated distorted wavefront from a thick phantom sample can be measured by using the coherent optical adaptive technique (COAT). The full correction can effectively maintain and improve the spatial resolution in imaging thick samples. PMID:29400356

  5. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  6. Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample

    PubMed Central

    Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A.; Thurston, George

    2015-01-01

    The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each µg/m3 increase in PM2.5 (both P<0.0001). PM2.5 and NO2 were associated with −3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial

  7. Miniaturized sample preparation needle: a versatile design for the rapid analysis of smoking-related compounds in hair and air samples.

    PubMed

    Saito, Yoshihiro; Ueta, Ikuo; Ogawa, Mitsuhiro; Hayashida, Makiko; Jinno, Kiyokatsu

    2007-05-09

    Miniaturized needle extraction device has been developed as a versatile sample preparation device designed for the rapid and simple analysis of smoking-related compounds in smokers' hair samples and environmental tobacco smoke. Packed with polymeric particle, the resulting particle-packed needle was employed as a miniaturized sample preparation device for the analysis of typical volatile organic compounds in tobacco smoke. Introducing a bundle of polymer-coated filaments as the extraction medium, the needle was further applied as a novel sample preparation device containing simultaneous derivatization/extraction process of volatile aldehydes. Formaldehyde (FA) and acetaldehyde (AA) in smoker's breath during the smoking were successfully derivatized with two derivatization reagents in the polymer-coated fiber-packed needle device followed by the separation and determination in gas chromatography (GC). Smokers' hair samples were also packed into the needle, allowing the direct extraction of nicotine from the hair sample in a conventional GC injector. Optimizing the main experimental parameters for each technique, successful determination of several smoking-related compounds with these needle extraction methods has been demonstrated.

  8. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-102 at the Conclusion of 5A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-102 (5A.1) flight to the ISS is reported. ISS air samples were taken in late February 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges . A "first-entry" sample of the multipurpose logistics module (MPLM) atmosphere was taken with a GSC, and preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and all quality control measures were met for the data presented herein. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 contribution). Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols were also assessed in each sample. Formaldehyde is quantified separately.

  9. Multiple sensitive estimation and optimal sample size allocation in the item sum technique.

    PubMed

    Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz

    2018-01-01

    For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Study of Bacterial Samples Using Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    W, A. Farooq; M, Atif; W, Tawfik; M, S. Alsalhi; Z, A. Alahmed; M, Sarfraz; J, P. Singh

    2014-12-01

    Laser-induced breakdown spectroscopy (LIBS) technique has been applied to investigate two different types of bacteria, Escherichia coli (B1) and Micrococcus luteus (B2) deposited on glass slides using Spectrolaser 7000. LIBS spectra were analyzed using spectrolaser software. LIBS spectrum of glass substrate was compared with bacteria spectra. Ca, Mg, Na, K, P, S, Cl, Fe, Al, Mn, Cu, C, H and CN-band appeared in bacterial samples in air. Two carbon lines at 193.02 nm, 247.88 nm and one hydrogen line at 656.28 nm with intensity ratios of 1.9, 1.83 and 1.53 appeared in bacterial samples B1 and B2 respectively. Carbon and hydrogen are the important components of the bio-samples like bacteria and other cancer cells. Investigation on LIBS spectra of the samples in He and Ar atmospheres is also presented. Ni lines appeared only in B2 sample in Ar atmosphere. From the present experimental results we are able to show that LIBS technique has a potential in the identification and discrimination of different types of bacteria.

  11. A system for high-quality CO2 isotope analyses of air samples collected by the CARIBIC Airbus A340-600.

    PubMed

    Assonov, S; Taylor, P; Brenninkmeijer, C A M

    2009-05-01

    In 2007, JRC-IRMM began a series of atmospheric CO2 isotope measurements, with the focus on understanding instrumental effects, corrections as well as metrological aspects. The calibration approach at JRC-IRMM is based on use of a plain CO2 sample (working reference CO2) as a calibration carrier and CO2-air mixtures (in high-pressure cylinders) to determine the method-related correction under actual analytical conditions (another calibration carrier, in the same form as the samples). Although this approach differs from that in other laboratories, it does give a direct link to the primary reference NBS-19-CO2. It also helps to investigate the magnitude and nature for each of the instrumental corrections and allows for the quantification of the uncertainty introduced. Critical tests were focused on the instrumental corrections. It was confirmed that the use of non-symmetrical capillary crimping (an approach used here to deal with small samples) systematically modifies delta13C(CO2) and delta18O(CO2), with a clear dependence on the amount of extracted CO2. However, the calibration of CO2-air mixtures required the use of the symmetrical dual-inlet mode. As a proof of our approach, we found that delta13C(CO2) on extracts from mixtures agreed (within 0.010 per thousand) with values obtained from the 'mother' CO2 used for the mixtures. It was further found that very low levels of hydrocarbons in the pumping systems and the isotope ratio mass spectrometry (IRMS) instrument itself were critical. The m/z 46 values (consequently the calculated delta18O(CO2) values) are affected by several other effects with traces of air co-trapped with frozen CO2 being the most critical. A careful cryo-distillation of the extracted CO2 is recommended. After extensive testing, optimisation, and routine automated use, the system was found to give precise data on air samples that can be traced with confidence to the primary standards. The typical total combined uncertainty in delta13C(CO2) and

  12. Comparison of Calibration Techniques for Low-Cost Air Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Malings, C.; Ramachandran, S.; Tanzer, R.; Kumar, S. P. N.; Hauryliuk, A.; Zimmerman, N.; Presto, A. A.

    2017-12-01

    Assessing the intra-city spatial distribution and temporal variability of air quality can be facilitated by a dense network of monitoring stations. However, the cost of implementing such a network can be prohibitive if high-quality but high-cost monitoring systems are used. To this end, the Real-time Affordable Multi-Pollutant (RAMP) sensor package has been developed at the Center for Atmospheric Particle Studies of Carnegie Mellon University, in collaboration with SenSevere LLC. This self-contained unit can measure up to five gases out of CO, SO2, NO, NO2, O3, VOCs, and CO2, along with temperature and relative humidity. Responses of individual gas sensors can vary greatly even when exposed to the same ambient conditions. Those of VOC sensors in particular were observed to vary by a factor-of-8, which suggests that each sensor requires its own calibration model. To this end, we apply and compare two different calibration methods to data collected by RAMP sensors collocated with a reference monitor station. The first method, random forest (RF) modeling, is a rule-based method which maps sensor responses to pollutant concentrations by implementing a trained sequence of decision rules. RF modeling has previously been used for other RAMP gas sensors by the group, and has produced precise calibrated measurements. However, RF models can only predict pollutant concentrations within the range observed in the training data collected during the collocation period. The second method, Gaussian process (GP) modeling, is a probabilistic Bayesian technique whereby broad prior estimates of pollutant concentrations are updated using sensor responses to generate more refined posterior predictions, as well as allowing predictions beyond the range of the training data. The accuracy and precision of these techniques are assessed and compared on VOC data collected during the summer of 2017 in Pittsburgh, PA. By combining pollutant data gathered by each RAMP sensor and applying

  13. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  14. Automated liver sampling using a gradient dual-echo Dixon-based technique.

    PubMed

    Bashir, Mustafa R; Dale, Brian M; Merkle, Elmar M; Boll, Daniel T

    2012-05-01

    Magnetic resonance spectroscopy of the liver requires input from a physicist or physician at the time of acquisition to insure proper voxel selection, while in multiecho chemical shift imaging, numerous regions of interest must be manually selected in order to ensure analysis of a representative portion of the liver parenchyma. A fully automated technique could improve workflow by selecting representative portions of the liver prior to human analysis. Complete volumes from three-dimensional gradient dual-echo acquisitions with two-point Dixon reconstruction acquired at 1.5 and 3 T were analyzed in 100 subjects, using an automated liver sampling algorithm, based on ratio pairs calculated from signal intensity image data as fat-only/water-only and log(in-phase/opposed-phase) on a voxel-by-voxel basis. Using different gridding variations of the algorithm, the average correct liver volume samples ranged from 527 to 733 mL. The average percentage of sample located within the liver ranged from 95.4 to 97.1%, whereas the average incorrect volume selected was 16.5-35.4 mL (2.9-4.6%). Average run time was 19.7-79.0 s. The algorithm consistently selected large samples of the hepatic parenchyma with small amounts of erroneous extrahepatic sampling, and run times were feasible for execution on an MRI system console during exam acquisition. Copyright © 2011 Wiley Periodicals, Inc.

  15. Convergence and Efficiency of Adaptive Importance Sampling Techniques with Partial Biasing

    NASA Astrophysics Data System (ADS)

    Fort, G.; Jourdain, B.; Lelièvre, T.; Stoltz, G.

    2018-04-01

    We propose a new Monte Carlo method to efficiently sample a multimodal distribution (known up to a normalization constant). We consider a generalization of the discrete-time Self Healing Umbrella Sampling method, which can also be seen as a generalization of well-tempered metadynamics. The dynamics is based on an adaptive importance technique. The importance function relies on the weights (namely the relative probabilities) of disjoint sets which form a partition of the space. These weights are unknown but are learnt on the fly yielding an adaptive algorithm. In the context of computational statistical physics, the logarithm of these weights is, up to an additive constant, the free-energy, and the discrete valued function defining the partition is called the collective variable. The algorithm falls into the general class of Wang-Landau type methods, and is a generalization of the original Self Healing Umbrella Sampling method in two ways: (i) the updating strategy leads to a larger penalization strength of already visited sets in order to escape more quickly from metastable states, and (ii) the target distribution is biased using only a fraction of the free-energy, in order to increase the effective sample size and reduce the variance of importance sampling estimators. We prove the convergence of the algorithm and analyze numerically its efficiency on a toy example.

  16. Classification of air quality using fuzzy synthetic multiplication.

    PubMed

    Abdullah, Lazim; Khalid, Noor Dalina

    2012-11-01

    Proper identification of environment's air quality based on limited observations is an essential task to meet the goals of environmental management. Various classification methods have been used to estimate the change of air quality status and health. However, discrepancies frequently arise from the lack of clear distinction between each air quality, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated air quality conditions with respect to various pollutants. Therefore, this paper presents two fuzzy multiplication synthetic techniques to establish classification of air quality. The fuzzy multiplication technique empowers the max-min operations in "or" and "and" in executing the fuzzy arithmetic operations. Based on a set of air pollutants data carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone, and particulate matter (PM(10)) collected from a network of 51 stations in Klang Valley, East Malaysia, Sabah, and Sarawak were utilized in this evaluation. The two fuzzy multiplication techniques consistently classified Malaysia's air quality as "good." The findings indicated that the techniques may have successfully harmonized inherent discrepancies and interpret complex conditions. It was demonstrated that fuzzy synthetic multiplication techniques are quite appropriate techniques for air quality management.

  17. On evaluating compliance with air pollution levels 'not to be exceeded more than once per year'

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.

    1974-01-01

    The point of view taken is that the Environmental Protection Agency (EPA) Air Quality Standards (AQS) represent conditions which must be made to exist in the ambient environment. The statistical techniques developed should serve as tools for measuring the closeness to achieving the desired quality of air. It is shown that the sampling frequency recommended by EPA is inadequate to meet these objectives when the standard is expressed as a level not to be exceeded more than once per year and sampling frequency is once every three days or less frequent.

  18. Assessment of Air Quality in the Shuttle and International Space Station (ISS) Based on Samples Returned by STS-105 at the Conclusion of 7A.1

    NASA Technical Reports Server (NTRS)

    James, John T.

    2001-01-01

    The toxicological assessment of air samples returned at the end of the STS-105 (7 A.1) flight to the ISS is reported. ISS air samples were taken in August 2001 from the Service Module, FGB, and U.S. Laboratory using grab sample canisters (GSCs) and/or formaldehyde badges. Preflight and end-of-mission samples were obtained from Discovery using GSCs. Analytical methods have not changed from earlier reports, and surrogate standard recoveries were 64-115%. Pressure tracking indicated no leaks in the canisters.

  19. Investigation on pretreatment of centrifugal mother liquid produced in the production of polyvinyl chloride by air-Fenton technique.

    PubMed

    Sun, Yingying; Hua, Xiuyi; Ge, Rui; Guo, Aitong; Guo, Zhiyong; Dong, Deming; Sun, Wentian

    2013-08-01

    Centrifugal mother liquid (CML) is one of the main sources of wastewater produced during the production of polyvinyl chloride in chlor-alkali industry. CML is a typical poorly biodegradable organic wastewater, containing many kinds of refractory pollutants. Specifically, it contains dissolved refractory polymers, especially polyvinyl alcohol (PVA), which can pass though the biotreatment processes and clog the membranes used for further treatment. In this study, to ensure the CML applicable to biotreatment and membrane treatment, a novel efficient and mild technique, air-Fenton treatment, was employed as a pretreatment technique to improve biodegradability of the CML and to break down the polymers in the CML. Firstly, the technique was optimized for the CML treatment by optimizing the main parameters, including the dosage of ferrous sulfate, initial pH of the wastewater, [H2O2]/[Fe(2+)], aeration rate, reaction time, and temperature, based on removal efficiency of COD and PVA from the CML. Then, the optimized technique was tested and evaluated. The results indicated that under the optimized conditions, the air-Fenton treatment could remove 66, 98, and 55 % of the COD, PVA, and TOC, respectively, from the CML. After the treatment, biodegradability of the wastewater increased significantly (BOD/COD increased from 0.31 to 0.68), and almost all of the PVA polymers were removed or broken down. Meanwhile, concentration of the remaining iron ions, which were added during the treatment, was also quite low (only 2.9 mg/L). Furthermore, most of the suspended materials and ammonia nitrogen, and some of the phosphorus in the wastewater were removed simultaneously.

  20. Relative congener scaling of Polychlorinated dibenzo-p-dioxins and dibenzofurans to estimate building fire contributions in air, surface wipes, and dust samples.

    PubMed

    Pleil, Joachim D; Lorber, Matthew N

    2007-11-01

    The United States Environmental Protection Agency collected ambient air samples in lower Manhattan for about 9 months following the September 11, 2001 World Trade Center (WTC) attacks. Measurements were made of a host of airborne contaminants including volatile organic compounds, polycyclic aromatic hydrocarbons, asbestos, lead, and other contaminants of concern. The present study focuses on the broad class of polychlorinated dibenzo-p-dioxins (CDDs) and dibenzofurans (CDFs) with specific emphasis on the 17 CDD/CDF congeners that exhibit mammalian toxicity. This work is a statistical study comparing the internal patterns of CDD/CDFs using data from an unambiguous fire event (WTC) and other data sets to help identify their sources. A subset of 29 samples all taken between September 16 and October 31, 2001 were treated as a basis set known to be heavily impacted by the WTC building fire source. A second basis set was created using data from Los Angeles and Oakland, CA as published by the California Air Resources Board (CARB) and treated as the archetypical background pattern for CDD/CDFs. The CARB data had a congener profile appearing similar to background air samples from different locations in America and around the world and in different matrices, such as background soils. Such disparate data would normally be interpreted with a qualitative pattern recognition based on congener bar graphs or other forms of factor or cluster analysis that group similar samples together graphically. The procedure developed here employs aspects of those statistical methods to develop a single continuous output variable per sample. Specifically, a form of variance structure-based cluster analysis is used to group congeners within samples to reduce collinearity in the basis sets, new variables are created based on these groups, and multivariate regression is applied to the reduced variable set to determine a predictive equation. This equation predicts a value for an output variable