Sample records for air system performance

  1. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  2. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  3. Performance evaluation of radiant cooling system integrated with air system under different operational strategies

    DOE PAGES

    Khan, Yasin; Khare, Vaibhav Rai; Mathur, Jyotirmay; ...

    2015-03-26

    The paper describes a parametric study developed to estimate the energy savings potential of a radiant cooling system installed in a commercial building in India. The study is based on numerical modeling of a radiant cooling system installed in an Information Technology (IT) office building sited in the composite climate of Hyderabad. To evaluate thermal performance and energy consumption, simulations were carried out using the ANSYS FLUENT and EnergyPlus softwares, respectively. The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption of a building usingmore » a conventional all-air system to determine the proportional energy savings. For proper handling of the latent load, a dedicated outside air system (DOAS) was used as an alternative to Fan Coil Unit (FCU). A comparison of energy consumption calculated that the radiant system was 17.5 % more efficient than a conventional all-air system and that a 30% savings was achieved by using a DOAS system compared with a conventional system. Computational Fluid Dynamics (CFD) simulation was performed to evaluate indoor air quality and thermal comfort. It was found that a radiant system offers more uniform temperatures, as well as a better mean air temperature range, than a conventional system. To further enhance the energy savings in the radiant system, different operational strategies were analyzed based on thermal analysis using EnergyPlus. Lastly, the energy savings achieved in this parametric run were more than 10% compared with a conventional all-air system.« less

  4. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 5. System Performance.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the performance evaluation of the Satellite-Based Advanced Air Traffic Management System (SAATMS). The evaluation established the capacity, safety, and delay performance of the system for the Los Angeles Basin termi...

  5. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    NASA Astrophysics Data System (ADS)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  6. National Airspace System : current efforts and proposed changes to improve performance of FAA's air traffic control system

    DOT National Transportation Integrated Search

    2003-05-01

    To accelerate the modernization and improve the performance of the air traffic control system, the Wendell H. Ford Aviation Investment and Reform Act for the 21st Century (AIR-21) created the Air Traffic Services Subcommittee (subcommittee) to overse...

  7. Air Intake Performance of Air Breathing Ion Engines

    NASA Astrophysics Data System (ADS)

    Fujita, Kazuhisa

    The air breathing ion engine (ABIE) is a new type of electric propulsion system which can be used to compensate the aerodynamic drag of the satellite orbiting at extremely low altitudes. In this propulsion system, the low-density atmosphere surrounding the satellite is taken in and used as the propellant of ion engines to reduce the propellant mass for a long operation lifetime. Since feasibility and performance of the ABIE are subject to the compression ratio and the air intake efficiency, a numerical analysis has been conducted by means of the direct-simulation Monte-Carlo method to clarify the characteristics of the air-intake performance in highly rarefied flows. Influences of the flight altitude, the aspect-ratio of the air intake duct, the angle of attack, and the wall conditions are investigated.

  8. PacRIM II: A review of AirSAR operations and system performance

    NASA Technical Reports Server (NTRS)

    Moller, D.; Chu, A.; Lou, Y.; Miller, T.; O'Leary, E.

    2001-01-01

    In this paper we briefly review the AirSAR system, its expected performance, and quality of data obtained during that mission. We discuss the system hardware calibration methodologies, and present quantitative performance values of radar backscatter and interferometric height errors (random and systematic) from PACRIM II calibration data.

  9. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 3: Performance and simulation

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.

    1984-01-01

    The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.

  10. AIRS pulse tube cooler system-level and in-space performance comparison

    NASA Technical Reports Server (NTRS)

    Ross, R. G.

    2002-01-01

    This paper presents the derivation of the test and analysis techniques as well as the measured system-level performance of the flight AIRS coolers during instrument-level, spacecraft-level, and in-space operation.

  11. Working parameters affecting earth-air heat exchanger (EAHE) system performance for passive cooling: A review

    NASA Astrophysics Data System (ADS)

    Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.

    2017-07-01

    The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, air flow rate and different types of soils on the thermal performance of earth-air heat exchanger (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-air heat exchanger (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.

  12. Performance and economics of the ACES and alternative residential heating and air conditioning systems in 115 US cities

    NASA Astrophysics Data System (ADS)

    Abbatiello, L. A.; Nephew, E. A.; Ballou, M. L.

    1981-03-01

    The efficiency and life cycle costs of the brine chiller minimal annual cycle energy system (ACES) for residential space heating, air conditioning, and water heating requirements are compared with three conventional systems. The conventional systems evaluated are a high performance air-to-air heat pump with an electric resistance water heater, an electric furnace with a central air conditioner and an electric resistance water heater, and a high performance air-to-air heat pump with a superheater unit for hot water production. Monthly energy requirements for a reference single family house are calculated, and the initial cost and annual energy consumption of the systems, providing identical energy services, are computed and compared. The ACES consumes one third to one half ot the electrical energy required by the conventional systems and delivers the same annual loads at comparable costs.

  13. Human performance interfaces in air traffic control.

    PubMed

    Chang, Yu-Hern; Yeh, Chung-Hsing

    2010-01-01

    This paper examines how human performance factors in air traffic control (ATC) affect each other through their mutual interactions. The paper extends the conceptual SHEL model of ergonomics to describe the ATC system as human performance interfaces in which the air traffic controllers interact with other human performance factors including other controllers, software, hardware, environment, and organisation. New research hypotheses about the relationships between human performance interfaces of the system are developed and tested on data collected from air traffic controllers, using structural equation modelling. The research result suggests that organisation influences play a more significant role than individual differences or peer influences on how the controllers interact with the software, hardware, and environment of the ATC system. There are mutual influences between the controller-software, controller-hardware, controller-environment, and controller-organisation interfaces of the ATC system, with the exception of the controller-controller interface. Research findings of this study provide practical insights in managing human performance interfaces of the ATC system in the face of internal or external change, particularly in understanding its possible consequences in relation to the interactions between human performance factors.

  14. Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Poerschke; Beach, R.; Beggs, T.

    2016-08-26

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore themore » small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements.« less

  15. Design and research on discharge performance for aluminum-air battery

    NASA Astrophysics Data System (ADS)

    Liu, Zu; Zhao, Junhong; Cai, Yanping; Xu, Bin

    2017-01-01

    As a kind of clean energy, the research of aluminum air battery is carried out because aluminum-air battery has advantages of high specific energy, silence and low infrared. Based on the research on operating principle of aluminum-air battery, a novel aluminum-air battery system was designed composed of aluminum-air cell and the circulation system of electrolyte. A system model is established to analyze the polarization curve, the constant current discharge performance and effect of electrolyte concentration on the performance of monomer. The experimental results show that the new energy aluminum-air battery has good discharge performance, which lays a foundation for its application.

  16. Analysis of AIRS and IASI System Performance Under Clear and Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Strow, L. Larrabee

    2010-01-01

    The radiometric and spectral system performance of space-borne infrared radiometers is generally specified and analyzed under strictly cloud-free, spatially uniform and warm conditions, with the assumption that the observed performance applies to the full dynamic range under clear and cloudy conditions and that random noise cancels for the evaluation of the radiometric accuracy. Such clear conditions are found in only one percent of the data. Ninety nine percent of the data include clouds, which produce spatially highly non-uniform scenes with 11 micrometers window brightness temperatures as low as 200K. We use AIRS and IASI radiance spectra to compare system performance under clear and a wide range of cloudy conditions. Although the two instruments are in polar orbits, with the ascending nodes separated by four hours, daily averages already reveal surprisingly similar measurements. The AIRS and IASI radiometric performance based on the mean of large numbers of observation is comparable and agrees within 200 mK over a wide range of temperatures. There are also some unexpected differences at the 200 -500 mK level, which are of significance for climate applications. The results were verified with data from July 2007 through January 2010, but many can already be gleaned from the analysis of a single day of data.

  17. Comparative Cooling Season Performance of Air Distribution Systems in Multistory Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew; Beach, Rob; Beggs, Timothy

    2016-08-01

    IBACOS investigated the performance of a small-diameter high velocity heat pump system compared to a conventional system in a new construction triplex townhouse. A ductless heat pump system also was installed for comparison, but the homebuyer backed out because of aesthetic concerns about that system. In total, two buildings, having identical solar orientation and comprised of six townhomes, were monitored for comfort and energy performance. Results show that the small-diameter system provides more uniform temperatures from floor to floor in the three-story townhome. No clear energy consumption benefit was observed from either system. The builder is continuing to explore themore » small-diameter system as its new standard system to provide better comfort and indoor air quality. The homebuilder also explored the possibility of shifting its townhome product to meet the U.S. Department of Energy Challenge Home National Program Requirements. Ultimately, the builder decided that adoption of these practices would be too disruptive midstream in the construction cycle. However, the townhomes met the ENERGY STAR Version 3.0 program requirements.« less

  18. Improving the performance of air-conditioning systems in an ASEAN (Association of South East Asian Nations) climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, J.F.; Warren, M.L.

    1988-09-01

    This paper describes an analysis of air conditioning performance under hot and humid tropical climate conditions appropriate to the Association of South East Asian Nations (ASEAN) countries. This region, with over 280 million people, has one of the fastest economic and energy consumption growth rates in the world. The work reported here is aimed at estimating the conservation potential derived from good design and control of air conditioning systems in commercial buildings. To test the performance of different air conditioning system types and control options, whole building energy performance was simulated using DOE-2. The 5100 m/sup 2/ (50,000 ft/sup 2/)more » prototype office building module was previously used in earlier commercial building energy standards analysis for Malaysia and Singapore. In general, the weather pattern for ASEAN countries is uniform, with hot and humid air masses known as ''monsoons'' dictating the weather patterns. Since a concentration of cities occurs near the tip of the Malay peninsula, hourly temperature, humidity, and wind speed data for Kuala Lumpur was used for the analysis. Because of the absence of heating loads in ASEAN regions, we have limited air conditioning configurations to two pipe fan coil, constant volume, variable air volume, powered induction, and ceiling bypass configurations. Control strategies were varied to determine the conservation potential in both energy use and peak electric power demands. Sensitivities including fan control, pre-cooling and night ventilation, supply air temperature control, zone temperature set point, ventilation and infiltration, daylighting and internal gains, and system sizing were examined and compared with a base case which was a variable air volume system with no reheat or economizer. Comfort issues, such as over-cooling and space humidity, were also examined.« less

  19. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system

  20. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  1. Performance analysis of an air drier for a liquid dehumidifier solar air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Queiroz, A.G.; Orlando, A.F.; Saboya, F.E.M.

    1988-05-01

    A model was developed for calculating the operating conditions of a non-adiabatic liquid dehumidifier used in solar air conditioning systems. In the experimental facility used for obtaining the data, air and triethylene glycol circulate countercurrently outside staggered copper tubes which are the filling of an absorption tower. Water flows inside the copper tubes, thus cooling the whole system and increasing the mass transfer potential for drying air. The methodology for calculating the mass transfer coefficient is based on the Merkel integral approach, taking into account the lowering of the water vapor pressure in equilibrium with the water glycol solution.

  2. Performance Study of Salt Cavern Air Storage Based Non-Supplementary Fired Compressed Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotao; Song, Jie; Liang, Lixiao; Si, Yang; Wang, Le; Xue, Xiaodai

    2017-10-01

    Large-scale energy storage system (ESS) plays an important role in the planning and operation of smart grid and energy internet. Compressed air energy storage (CAES) is one of promising large-scale energy storage techniques. However, the high cost of the storage of compressed air and the low capacity remain to be solved. This paper proposes a novel non-supplementary fired compressed air energy storage system (NSF-CAES) based on salt cavern air storage to address the issues of air storage and the efficiency of CAES. Operating mechanisms of the proposed NSF-CAES are analysed based on thermodynamics principle. Key factors which has impact on the system storage efficiency are thoroughly explored. The energy storage efficiency of the proposed NSF-CAES system can be improved by reducing the maximum working pressure of the salt cavern and improving inlet air pressure of the turbine. Simulation results show that the electric-to-electric conversion efficiency of the proposed NSF-CAES can reach 63.29% with a maximum salt cavern working pressure of 9.5 MPa and 9 MPa inlet air pressure of the turbine, which is higher than the current commercial CAES plants.

  3. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  4. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 10. Subsystem Performance Requirements.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents the results of the subsystem performance requirements study for an Advanced Air Traffic Management System (AATMS). The study determined surveillance and navigation subsystem requirements for terminal and enroute area operations. I...

  5. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  6. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  7. Evaluation of advanced air bag deployment algorithm performance using event data recorders.

    PubMed

    Gabler, Hampton C; Hinch, John

    2008-10-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.

  8. Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders

    PubMed Central

    Gabler, Hampton C.; Hinch, John

    2008-01-01

    This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234

  9. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  10. Applicability of Performance Assessment Tools to Marine Corps Air Ground Task Force C4 System of Systems Performance Assessment

    DTIC Science & Technology

    2010-09-01

    application of existing assessment tools that may be applicable to Marine Air Ground Task Force (MAGTF) Command, Control, Communications and...of existing assessment tools that may be applicable to Marine Air Ground Task Force (MAGTF) Command, Control, Communications and Computers (C4...assessment tools and analysis concepts that may be extended to the Marine Corps’ C4 System of Systems assessment methodology as a means to obtain a

  11. The seasonal performance of a liquid-desiccant air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowenstein, A.; Novosel, D.

    1995-08-01

    Prior reports on liquid-desiccant systems have focused on their steady-state operation at ARI design conditions. By studying their performance during an entire cooling season, the computer modeling presented here shows that liquid-desiccant systems can have a very high seasonal coefficient of performance (COP). For a liquid-desiccant system that uses a double-effect boiler, COPs ranging from 1.44 in a humid location (Houston) to 2.24 in a dry location (Phoenix) are achieved by fully exploiting indirect evaporative cooling and providing only the minimum latent cooling needed to meet the loads on the building. This minimizes the amount of water absorbed by themore » desiccant and, hence, the amount of thermal energy needed to regenerate it. In applications where latent loads are very high, such as processing the high volumes of ventilation air required to maintain good indoor air quality, the liquid-desiccant air conditioner again has an advantage over vapor-compression equipment. In this study, a liquid-desiccant system is modeled that cools and dehumidifies only the ventilation air of an office building in Atlanta. Although processing an airstream that is only 25% of the total air delivered to the building, the liquid-desiccant system is able to meet 52% of the building`s seasonal cooling requirements and reduce the building`s peak electrical demand by about 47%.« less

  12. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  13. Thermodynamic Performance and Cost Optimization of a Novel Hybrid Thermal-Compressed Air Energy Storage System Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houssainy, Sammy; Janbozorgi, Mohammad; Kavehpour, Pirouz

    Compressed Air Energy Storage (CAES) can potentially allow renewable energy sources to meet electricity demands as reliably as coal-fired power plants. However, conventional CAES systems rely on the combustion of natural gas, require large storage volumes, and operate at high pressures, which possess inherent problems such as high costs, strict geological locations, and the production of greenhouse gas emissions. A novel and patented hybrid thermal-compressed air energy storage (HT-CAES) design is presented which allows a portion of the available energy, from the grid or renewable sources, to operate a compressor and the remainder to be converted and stored in themore » form of heat, through joule heating in a sensible thermal storage medium. The HT-CAES design incudes a turbocharger unit that provides supplementary mass flow rate alongside the air storage. The hybrid design and the addition of a turbocharger have the beneficial effect of mitigating the shortcomings of conventional CAES systems and its derivatives by eliminating combustion emissions and reducing storage volumes, operating pressures, and costs. Storage efficiency and cost are the two key factors, which upon integration with renewable energies would allow the sources to operate as independent forms of sustainable energy. The potential of the HT-CAES design is illustrated through a thermodynamic optimization study, which outlines key variables that have a major impact on the performance and economics of the storage system. The optimization analysis quantifies the required distribution of energy between thermal and compressed air energy storage, for maximum efficiency, and for minimum cost. This study provides a roundtrip energy and exergy efficiency map of the storage system and illustrates a trade off that exists between its capital cost and performance.« less

  14. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-tonmore » R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  15. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  16. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  17. Impact of different supply air and recirculating air filtration systems on stable climate, animal health, and performance of fattening pigs in a commercial pig farm

    PubMed Central

    Wenke, Cindy; Pospiech, Janina; Reutter, Tobias; Altmann, Bettina; Truyen, Uwe

    2018-01-01

    Biosecurity is defined as the implementation of measures that reduce the risk of disease agents being introduced and/or spread. For pig production, several of these measures are routinely implemented (e.g. cleaning, disinfection, segregation). However, air as a potential vector of pathogens has long been disregarded. Filters for incoming and recirculating air were installed into an already existing ventilation plant at a fattening piggery (3,840 pigs at maximum) in Saxony, Germany. Over a period of three consecutive fattening periods, we evaluated various parameters including air quality indices, environmental and operating parameters, and pig performance. Animal data regarding respiratory diseases, presence of antibodies against influenza A viruses, PRRSV, and Actinobacillus pleuropneumoniae and lung health score at slaughter were recorded, additionally. There were no significant differences (p = 0.824) in total bacterial counts between barns with and without air filtration. Recirculating air filtration resulted in the lowest total dust concentration (0.12 mg/m3) and lung health was best in animals from the barn equipped with recirculating air filtration modules. However, there was no difference in animal performance. Antibodies against all above mentioned pathogens were detected but mostly animals were already antibody-positive at re-stocking. We demonstrated that supply air filtration as well as recirculating air filtration technique can easily be implemented in an already existing ventilation system and that recirculating air filtration resulted in enhanced lung health compared to supply air-filtered and non-filtered barns. A more prominent effect might have been obtained in a breeding facility because of the longer life span of sows and a higher biosecurity level with air filtration as an add-on measure. PMID:29558482

  18. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 2: Design and development

    NASA Technical Reports Server (NTRS)

    Chie, C. M.; White, M. A.; Lindsey, W. C.; Davarian, F.; Dixon, R. C.

    1984-01-01

    Functional requirements and specifications are defined for an autonomous integrated receive system (AIRS) to be used as an improvement in the current tracking and data relay satellite system (TDRSS), and as a receiving system in the future tracking and data acquisition system (TDAS). The AIRS provides improved acquisition, tracking, bit error rate (BER), RFI mitigation techniques, and data operations performance compared to the current TDRSS ground segment receive system. A computer model of the AIRS is used to provide simulation results predicting the performance of AIRS. Cost and technology assessments are included.

  19. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  20. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  1. The microbiological quality of air improves when using air conditioning systems in cars.

    PubMed

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  2. Effects of oxygen partial pressure on Li-air battery performance

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk Jae; Lee, Heung Chan; Ko, Jeongsik; Jung, In Sun; Lee, Hyun Chul; Lee, Hyunpyo; Kim, Mokwon; Lee, Dong Joon; Kim, Hyunjin; Kim, Tae Young; Im, Dongmin

    2017-10-01

    For application in electric vehicles (EVs), the Li-air battery system needs an air intake system to supply dry oxygen at controlled concentration and feeding rate as the cathode active material. To facilitate the design of such air intake systems, we have investigated the effects of oxygen partial pressure (≤1 atm) on the performance of the Li-air cell, which has not been systematically examined. The amounts of consumed O2 and evolved CO2 from the Li-air cell are measured with a custom in situ differential electrochemical gas chromatography-mass spectrometry (DEGC-MS). The amounts of consumed O2 suggest that the oxygen partial pressure does not affect the reaction mechanism during discharge, and the two-electron reaction occurs under all test conditions. On the other hand, the charging behavior varies by the oxygen partial pressure. The highest O2 evolution ratio is attained under 70% O2, along with the lowest CO2 evolution. The cell cycle life also peaks at 70% O2 condition. Overall, an oxygen partial pressure of about 0.5-0.7 atm maximizes the Li-air cell capacity and stability at 1 atm condition. The findings here indicate that the appropriate oxygen partial pressure can be a key factor when developing practical Li-air battery systems.

  3. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    EPA Science Inventory

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  4. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  5. The field performance of frontal air bags: a review of the literature.

    PubMed

    Kent, Richard; Viano, David C; Crandall, Jeff

    2005-03-01

    This article presents a broad review of the literature on frontal air bag field performance, starting with the initial government and industry projections of effectiveness and concluding with the most recent assessments of depowered systems. This review includes as many relevant metrics as practicable, interprets the findings, and provides references so the interested reader can further evaluate the limitations, confounders, and utility of each metric. The evaluations presented here range from the very specific (individual case studies) to the general (statistical analyses of large databases). The metrics used to evaluate air bag performance include fatality reduction or increase; serious, moderate, and minor injury reduction or increase; harm reduction or increase; and cost analyses, including insurance costs and the cost of life years saved for various air bag systems and design philosophies. The review begins with the benefits of air bags. Fatality and injury reductions attributable to the air bag are presented. Next, the negative consequences of air bag deployment are described. Injuries to adults and children and the current trends in air bag injury rates are discussed, as are the few documented instances of inadvertent deployments or non-deployment in severe crashes. In the third section, an attempt is made to quantify the influence of the many confounding factors that affect air bag performance. The negative and positive characteristics of air bags are then put into perspective within the context of societal costs and benefits. Finally, some special topics, including risk homeostasis and the performance of face bags, are discussed.

  6. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  7. Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System

    DOE PAGES

    Peng, Xiong; Omasta, Travis; Rigdon, William; ...

    2016-11-15

    In this paper, a low cost air-assisted cylindrical liquid jets spraying (ACLJS) system was developed to prepare high-performance catalyst-coated membranes (CCMs) for proton exchange membrane fuel cells (PEMFCs). The catalyst ink was flowed from a cylindrical orifice and was atomized by an air stream fed from a coaxial slit and sprayed directly onto the membrane, which was suctioned to a heated aluminum vacuum plate. The CCM pore architecture including size, distribution and volume can be controlled using various flow parameters, and the impact of spraying conditions on electrode structure and PEMFC performance was investigated. CCMs fabricated in the fiber-type break-upmore » regime by ACLJS achieved very high performance during PEMFC testing, with the top-performing cells having a current density greater than 1900 mA/cm 2 at 0.7 V under H 2/O 2 flows and 700 mA/cm 2 under H 2/Air at 1.5 bar(absolute) pressure and 60% gas RH, and 80°C cell temperature.« less

  8. Fabrication of High Performing PEMFC Catalyst-Coated Membranes with a Low Cost Air-Assisted Cylindrical Liquid Jets Spraying System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Xiong; Omasta, Travis; Rigdon, William

    In this paper, a low cost air-assisted cylindrical liquid jets spraying (ACLJS) system was developed to prepare high-performance catalyst-coated membranes (CCMs) for proton exchange membrane fuel cells (PEMFCs). The catalyst ink was flowed from a cylindrical orifice and was atomized by an air stream fed from a coaxial slit and sprayed directly onto the membrane, which was suctioned to a heated aluminum vacuum plate. The CCM pore architecture including size, distribution and volume can be controlled using various flow parameters, and the impact of spraying conditions on electrode structure and PEMFC performance was investigated. CCMs fabricated in the fiber-type break-upmore » regime by ACLJS achieved very high performance during PEMFC testing, with the top-performing cells having a current density greater than 1900 mA/cm 2 at 0.7 V under H 2/O 2 flows and 700 mA/cm 2 under H 2/Air at 1.5 bar(absolute) pressure and 60% gas RH, and 80°C cell temperature.« less

  9. Air Force Audit Agency Management Information System

    DTIC Science & Technology

    1990-11-01

    Support Directorate. AFAA/QL performs multilocation . Air Force-wide audits and issues reports to the SAF. It, however, specializes in the multibillion...USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED NOV 90 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Air Force Audit Agency...appreciated. Mail them to: CADRE/RI, Building 1400, Maxwell AFB AL 36112-5532.• Air Force Audit Agency Management Hobbs Information System C 0* 0 0

  10. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    NASA Astrophysics Data System (ADS)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  11. Design and demonstration of a storage assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avril, F.; Irvine, T.F.

    1982-04-01

    The report describes the design and demonstration of a storage-assisted air conditioning system for residential central air conditioning applications. The system was designed to reduce peak air conditioning loads by storing coolness to fulfill daytime air conditioning requirements. The system design analyses, as well as performance data obtained from a residential installation on Long Island, are presented, along with an economic evaluation of the system. The results of the study indicate that such a system can reduce air conditioning peak load requirements while maintaining house temperature and humidity within prescribed limits. However, further system optimization is required, as well asmore » either equipment costs reduction or increased incentives, to make this system economically attractive for use in New York State.« less

  12. Preliminary evaluation of advanced air bag field performance using event data recorders

    DOT National Transportation Integrated Search

    2008-08-31

    This report describes a preliminary evaluation of the field performance of occupant restraint systems designed with advanced air bag features including those specified in the Federal Motor Vehicle Safety Standard No. 208 for advanced air bags, throug...

  13. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  14. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  15. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  16. Performance of Introducing Outdoor Cold Air for Cooling a Plant Production System with Artificial Light

    PubMed Central

    Wang, Jun; Tong, Yuxin; Yang, Qichang; Xin, Min

    2016-01-01

    The commercial use of a plant production system with artificial light (PPAL) is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15–35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W) was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each) was maintained at 25 and 20°C during photoperiod and dark period, respectively, for lettuce production. A null CO2 balance enrichment method was used in both PPALs. In one PPAL (PPALe), an air exchanger (air flow rate: 250 m3·h−1) was used along with a heat pump (cooling capacity: 3.2 kW) to maintain the indoor air temperature at the set-point. The other PPAL (PPALc) with only a heat pump (cooling capacity: 3.2 kW) was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP), electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2 to 30.0°C: (1) the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; (2) hourly electric-energy consumption for cooling in the PPALe reduced by 15.8–73.7% compared with that in the PPALc; (3) daily supply of CO2 in the PPALe reduced from 0.15 to 0.04 kg compared with that in the PPALc with the outdoor air temperature ranging from −5.6 to 2.7°C; (4) no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL. PMID:27066012

  17. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  18. Performance analysis of air conditioning system and airflow simulation in an operating theater

    NASA Astrophysics Data System (ADS)

    Alhamid, Muhammad Idrus; Budihardjo, Rahmat

    2018-02-01

    The importance of maintaining performance of a hospital operating theater is to establish an adequate circulation of clean air within the room. The parameter of air distribution in a space should be based on Air Changes per Hour (ACH) to maintain a positive room pressure. The dispersion of airborne particles in the operating theater was governed by regulating the air distribution so that the operating theater meets clean room standards ie ISO 14664 and ASHRAE 170. Here, we introduced several input parameters in a simulation environment to observe the pressure distribution in the room. Input parameters were air temperature, air velocity and volumetric flow rate entering and leaving room for existing and designed condition. In the existing operating theatre, several observations were found. It was found that the outlet air velocity at the HEPA filter above the operating table was too high thus causing a turbulent airflow pattern. Moreover, the setting temperature at 19°C was found to be too low. The supply of air into the room was observed at lower than 20 ACH which is under the standard requirement. Our simulation using FloVent 8.2™ program showed that not only airflow turbulence could be reduced but also the amount of particle contamination could also be minimized.

  19. Pilot study of high-performance air filtration for classroom applications.

    PubMed

    Polidori, A; Fine, P M; White, V; Kwon, P S

    2013-06-01

    A study was conducted to investigate the effectiveness of three air purification systems in reducing the exposure of children to air contaminants inside nine classrooms of three Southern California schools. Continuous and integrated measurements were conducted to monitor the indoor and outdoor concentrations of ultrafine particles (UFPs), fine and coarse particulate matter (PM2.5 and PM10 , respectively), black carbon (BC), and volatile organic compounds. An heating, ventilating, and air conditioning (HVAC)-based high-performance panel filter (HP-PF), a register-based air purifier (RS), and a stand-alone air cleaning system (SA) were tested alone and in different combinations for their ability to remove the monitored pollutants. The combination of a RS and a HP-PF was the most effective solution for lowering the indoor concentrations of BC, UFPs, and PM2.5 , with study average reductions between 87% and 96%. When using the HP-PF alone, reductions close to 90% were also achieved. In all cases, air quality conditions were improved substantially with respect to the corresponding baseline (preexisting) conditions. Data on the performance of the gas-absorbing media included in the RS and SA unit were inconclusive, and their effectiveness, lifetime, costs, and benefits must be further assessed before conclusions and recommendations can be made. The installation of effective air filtration devices in classrooms may be an important mitigation measure to help reduce the exposure of school children to indoor pollutants of outdoor origin including ultrafine particles and diesel particulate matter, especially at schools located near highly trafficked freeways, refineries, and other important sources of air toxics. Published 2012. This article is a US Government work and is in the public domain in the USA.

  20. New control design principles based on measured performance and energy analysis of HVAC (Heating, Ventilating, and Air-Conditioning) systems

    NASA Astrophysics Data System (ADS)

    Hittle, D. C.; Johnson, D. L.

    1985-01-01

    This report is one of a series on the development of heating, ventilating, and air-conditioning (HVAC) control systems that are simple, efficient, reliable, maintainable, and well-documented. This report identifies major problems associated with three currently used HVAC control systems. It also describes the development of a retrofit control system applicable to military buildings that will allow easy identification of component failures, facilitate repair, and minimize system failures. Evaluation of currently used controls showed that pneumatic temperature control equipment requires a very clean source of supply air and is also not very accurate. Pneumatic, rather than electronic, actuators should be used because they are cheaper and require less maintenance. Thermistor temperature detectors should not be used for HVAC applications because they require frequent calibration. It was found that enthalpy economy cycles cannot be used for control because the humidity sensors required for their use are prone to rapid drift, inaccurate, and hard to calibrate in the field. Performance of control systems greatly affects HVAC operating costs. Significant savings can be achieved if proportional-plus-integral control schemes are used. Use of the retrofit prototype control panel developed in this study on variable-air-volume systems should provide significant energy cost savings, improve comfort and reliability, and reduce maintenance costs.

  1. Air traffic control specialist performance measurement database.

    DOT National Transportation Integrated Search

    1999-06-01

    The Air Traffic Control Specialist (ATCS) Performance Measurement Database is a compilation of performance measures and : measurement techniques that researchers have used. It may be applicable to other human factor research related to air traffic co...

  2. Performance of a multiple venturi fuel-air preparation system. [fuel injection for gas turbines

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1979-01-01

    Spatial fuel-air distributions, degree of vaporization, and pressure drop were measured 16.5 cm downstream of the fuel injection plane of a multiple Venturi tube fuel injector. Tests were performed in a 12 cm tubular duct. Test conditions were: a pressure of 0.3 MPa, inlet air temperature from 400 to 800K, air velocities of 10 and 20 m/s, and fuel-air ratios of 0.010 and 0.020. The fuel was Diesel #2. Spatial fuel-air distributions were within + or - 20 percent of the mean at inlet air temperatures above 450K. At an inlet air temperature of 400K, the fuel-air distribution was measured when a 50 percent blockage plate was placed 9.2 cm upstream of the fuel injection plane to distort the inlet air velocity fuel injection plane to distort the inlet air velocity profile. Vaporization of the fuel was 50 percent complete at an inlet air temperature of 400K and the percentage increased linearly with temperature to complete vaporization at 600K. The pressure drop was 3 percent at the design point which was three times greater than the designed value and the single tube experiment value. No autoignition or flashback was observed at the conditions tested.

  3. Development of a solar-powered residential air conditioner: System optimization preliminary specification

    NASA Technical Reports Server (NTRS)

    Rousseau, J.; Hwang, K. C.

    1975-01-01

    Investigations aimed at the optimization of a baseline Rankine cycle solar powered air conditioner and the development of a preliminary system specification were conducted. Efforts encompassed the following: (1) investigations of the use of recuperators/regenerators to enhance the performance of the baseline system, (2) development of an off-design computer program for system performance prediction, (3) optimization of the turbocompressor design to cover a broad range of conditions and permit operation at low heat source water temperatures, (4) generation of parametric data describing system performance (COP and capacity), (5) development and evaluation of candidate system augmentation concepts and selection of the optimum approach, (6) generation of auxiliary power requirement data, (7) development of a complete solar collector-thermal storage-air conditioner computer program, (8) evaluation of the baseline Rankine air conditioner over a five day period simulating the NASA solar house operation, and (9) evaluation of the air conditioner as a heat pump.

  4. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  5. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1984-01-01

    The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

  6. Lithium-Air Battery: High Performance Cathodes for Lithium-Air Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-08-01

    BEEST Project: Researchers at Missouri S&T are developing an affordable lithium-air (Li-Air) battery that could enable an EV to travel up to 350 miles on a single charge. Today’s EVs run on Li-Ion batteries, which are expensive and suffer from low energy density compared with gasoline. This new Li-Air battery could perform as well as gasoline and store 3 times more energy than current Li-Ion batteries. A Li-Air battery uses an air cathode to breathe oxygen into the battery from the surrounding air, like a human lung. The oxygen and lithium react in the battery to produce electricity. Current Li-Airmore » batteries are limited by the rate at which they can draw oxygen from the air. The team is designing a battery using hierarchical electrode structures to enhance air breathing and effective catalysts to accelerate electricity production.« less

  7. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  8. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  9. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  10. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  11. Gas-phase optical fiber photocatalytic reactors for indoor air application: a preliminary study on performance indicators

    NASA Astrophysics Data System (ADS)

    Palmiste, Ü.; Voll, H.

    2017-10-01

    The development of advanced air cleaning technologies aims to reduce building energy consumption by reduction of outdoor air flow rates while keeping the indoor air quality at an acceptable level by air cleaning. Photocatalytic oxidation is an emerging technology for gas-phase air cleaning that can be applied in a standalone unit or a subsystem of a building mechanical ventilation system. Quantitative information on photocatalytic reactor performance is required to evaluate the technical and economic viability of the advanced air cleaning by PCO technology as an energy conservation measure in a building air conditioning system. Photocatalytic reactors applying optical fibers as light guide or photocatalyst coating support have been reported as an approach to address the current light utilization problems and thus, improve the overall efficiency. The aim of the paper is to present a preliminary evaluation on continuous flow optical fiber photocatalytic reactors based on performance indicators commonly applied for air cleaners. Based on experimental data, monolith-type optical fiber reactor performance surpasses annular-type optical fiber reactors in single-pass removal efficiency, clean air delivery rate and operating cost efficiency.

  12. Effects of Automation Types on Air Traffic Controller Situation Awareness and Performance

    NASA Technical Reports Server (NTRS)

    Sethumadhavan, A.

    2009-01-01

    The Joint Planning and Development Office has proposed the introduction of automated systems to help air traffic controllers handle the increasing volume of air traffic in the next two decades (JPDO, 2007). Because fully automated systems leave operators out of the decision-making loop (e.g., Billings, 1991), it is important to determine the right level and type of automation that will keep air traffic controllers in the loop. This study examined the differences in the situation awareness (SA) and collision detection performance of individuals when they worked with information acquisition, information analysis, decision and action selection and action implementation automation to control air traffic (Parasuraman, Sheridan, & Wickens, 2000). When the automation was unreliable, the time taken to detect an upcoming collision was significantly longer for all the automation types compared with the information acquisition automation. This poor performance following automation failure was mediated by SA, with lower SA yielding poor performance. Thus, the costs associated with automation failure are greater when automation is applied to higher order stages of information processing. Results have practical implications for automation design and development of SA training programs.

  13. Air quality early-warning system for cities in China

    NASA Astrophysics Data System (ADS)

    Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou

    2017-01-01

    Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.

  14. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    PubMed

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  15. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  16. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  17. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    NASA Astrophysics Data System (ADS)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  18. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  19. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  20. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    NASA Technical Reports Server (NTRS)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  1. System and method for conditioning intake air to an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellnau, Mark C.

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. Themore » valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.« less

  2. Performance analysis of the electric vehicle air conditioner by replacing hydrocarbon refrigerant

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Tjahjana, D. D. D. P.

    2017-01-01

    The thermal comfort in passenger cabins needs an automotive air-conditioning system. The electric vehicle air conditioner system is driven by an electric compressor which includes a compressor and an electric motor. Almost air-conditioning system uses CFC-12, CFC-22 and HFC-134a as refrigerant. However, CFC-12 and CFC-22 will damage the ozone layer. The extreme huge global warming potentials (GWP) values of CFC-12, CFC-22, and HFC-134a represent the serious greenhouse effect of Earth. This article shows new experimental measurements and analysis by using a mixture of HC-134 to replace HFC-134a. The result is a refrigerating effect, the coefficient of performance and energy factor increase along with cooling capacity, both for HFC-134a and HC-134. The refrigerating effect of HC-134 is almost twice higher than HFC-134a. The coefficient of performance value of HC-134 is also 36.42% greater than HFC-134a. Then, the energy factor value of HC-134 is 3.78% greater than HFC-134a.

  3. The effect of air-blowing duration on all-in-one systems.

    PubMed

    Fu, Jiale; Pan, Feng; Kakuda, Shinichi; Sharanbir, K Sidhu; Ikeda, Takatsumi; Nakaoki, Yasuko; Selimovic, Denis; Sano, Hidehiko

    2012-01-01

    The purpose of this study was to evaluate the effect of air-blowing duration on the bonding performance of all-in-one systems using the same pressure (0.25 MPa). Three all-in-one systems were: EB (Easy Bond, 3M ESPE, USA), BB (BeautiBond, Shofu Inc., Japan) and GBp (G-Bond plus, GC Corporation, Japan). After adhesive application, the 3 systems were air-blown thereafter using 7 different durations (5 s, 10 s, 15 s, 20 s, 25 s, 30 s and 35 s). Bond strengths to dentin were determined using µTBS test after 24 h water storage. In addition, evaluation of both the resin-dentin interface and the fractured surface on the dentin side were performed by SEM. The maximum µTBS for each system, BB (40.4±14.8 MPa), EB (79.8±16.5 MPa), and GBp (47.3±17.6 MPa), were recorded with 15 s, 15 s and 25 s air-blowing duration respectively. Under the same air-pressure, the air-blowing duration could affect evaporation and the thickness of the adhesive layer, which contributed to the different bond strengths.

  4. Insights into PEMFC Performance Degradation from HCl in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O Baturina; A Epshteyn; P Northrup

    2011-12-31

    The performance degradation of a proton exchange membrane fuel cell (PEMFC) is studied in the presence of HCl in the air stream. The cathode employing carbon-supported platinum nanoparticles (Pt/C) was exposed to 4 ppm HCl in air while the cell voltage was held at 0.6 V. The HCl poisoning results in generation of chloride and chloroplatinate ions on the surface of Pt/C catalyst as determined by a combination of electrochemical tests and ex-situ chlorine K-edge X-Ray absorption near-edge structure (XANES) spectroscopy. The chloride ions inhibit the oxygen reduction reaction (ORR) and likely affect the wetting properties of diffusion media/catalyst layer,more » while the chloroplatinate ions are responsible for enhanced platinum particle growth most likely due to platinum dissolution-redeposition. The chloride ions can cause corrosion of the Pt nanoparticles in the presence of aqueous HCl in air even if no potential is applied. Although the majority of chloride ions are desorbed from the Pt surface by hydrogen treatment of the cathode, they partially remain in the system and re-adsorb on platinum at cell voltages of 0.5-0.9 V. Chloride ions are removed from the system and fuel cell performance at 0.5-0.7 V is restored by multiple exposures to low potentials.« less

  5. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  6. Strategy Guideline: Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward themore » exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.« less

  7. Thermal performances of vertical hybrid PV/T air collector

    NASA Astrophysics Data System (ADS)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  8. Compressed Air System Optimization: Case Study Food Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Widayati, Endang; Nuzahar, Hasril

    2016-01-01

    Compressors and compressed air systems was one of the most important utilities in industries or factories. Approximately 10% of the cost of electricity in the industry was used to produce compressed air. Therefore the potential for energy savings in the compressors and compressed air systems had a big challenge. This field was conducted especially in Indonesia food industry or factory. Compressed air system optimization was a technique approach to determine the optimal conditions for the operation of compressors and compressed air systems that included evaluation of the energy needs, supply adjustment, eliminating or reconfiguring the use and operation of inefficient, changing and complementing some equipment and improving operating efficiencies. This technique gave the significant impact for energy saving and costs. The potential savings based on this study through measurement and optimization e.g. system that lowers the pressure of 7.5 barg to 6.8 barg would reduce energy consumption and running costs approximately 4.2%, switch off the compressor GA110 and GA75 was obtained annual savings of USD 52,947 ≈ 455 714 kWh, running GA75 light load or unloaded then obtained annual savings of USD 31,841≈ 270,685 kWh, install new compressor 2x132 kW and 1x 132 kW VSD obtained annual savings of USD 108,325≈ 928,500 kWh. Furthermore it was needed to conduct study of technical aspect of energy saving potential (Investment Grade Audit) and performed Cost Benefit Analysis. This study was one of best practice solutions how to save energy and improve energy performance in compressors and compressed air system.

  9. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  10. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  11. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  12. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2008-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  13. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  14. Performance of Radiant Heating Systems of Low-Energy Buildings

    NASA Astrophysics Data System (ADS)

    Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel

    2017-10-01

    After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.

  15. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    PubMed

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  16. Metal-air cell with performance enhancing additive

    DOEpatents

    Friesen, Cody A; Buttry, Daniel

    2015-11-10

    Systems and methods drawn to an electrochemical cell comprising a low temperature ionic liquid comprising positive ions and negative ions and a performance enhancing additive added to the low temperature ionic liquid. The additive dissolves in the ionic liquid to form cations, which are coordinated with one or more negative ions forming ion complexes. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. The ion complexes improve oxygen reduction thermodynamics and/or kinetics relative to the ionic liquid without the additive.

  17. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  18. A dedicated on-line detecting system for auto air dryers

    NASA Astrophysics Data System (ADS)

    Shi, Chao-yu; Luo, Zai

    2013-10-01

    According to the correlative automobile industry standard and the requirements of manufacturer, this dedicated on-line detecting system is designed against the shortage of low degree automatic efficiency and detection precision of auto air dryer in the domestic. Fast automatic detection is achieved by combining the technology of computer control, mechatronics and pneumatics. This system can detect the speciality performance of pressure regulating valve and sealability of auto air dryer, in which online analytical processing of test data is available, at the same time, saving and inquiring data is achieved. Through some experimental analysis, it is indicated that efficient and accurate detection of the performance of auto air dryer is realized, and the test errors are less than 3%. Moreover, we carry out the type A evaluation of uncertainty in test data based on Bayesian theory, and the results show that the test uncertainties of all performance parameters are less than 0.5kPa, which can meet the requirements of operating industrial site absolutely.

  19. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  1. Evaluating the Environmental Performance of the U.S. Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Graham, Michael; Augustine, Stephen; Ermatinger, Christopher; Difelici, John; Thompson, Terence R.; Marcolini, Michael A.; Creedon, Jeremiah F.

    2009-01-01

    The environmental impacts of several possible U.S. Next Generation Air Transportation scenarios have been quantitatively evaluated for noise, air-quality, fuel-efficiency, and CO2 impacts. Three principal findings have emerged. (1) 2025 traffic levels about 30% higher than 2006 are obtained by increasing traffic according to FAA projections while also limiting traffic at each airport using reasonable ratios of demand to capacity. NextGen operational capabilities alone enable attainment of an additional 10-15% more flights beyond that 2025 baseline level with negligible additional noise, air-quality, and fuel-efficiency impacts. (2) The addition of advanced engine and airframe technologies provides substantial additional reductions in noise and air-quality impacts, and further improves fuel efficiency. 2025 environmental goals based on projected system-wide improvement rates of about 1% per year for noise and fuel-efficiency (an air-quality goal is not yet formulated) are achieved using this new vehicle technology. (3) Overall air-transport "product", as measured by total flown distance or total payload distance, increases by about 50% relative to 2006, but total fuel consumption and CO2 production increase by only about 40% using NextGen operational capabilities. With the addition of advanced engine/airframe technologies, the increase in total fuel consumption and CO2 production can be reduced to about 30%.

  2. Numerical and experimental investigations of micro air bearings for micro systems

    NASA Astrophysics Data System (ADS)

    Zhang, Qide; Shan, X. C.

    2006-04-01

    The paper investigated performance of air bearing system in a micro device. A parametric study is carried out. The dynamic performance of a very short journal bearing (L/D < 0.1) and thrust bearing is studied. The parameters that affect the performance of the air bearing are discussed. The optimum values of the important parameters are explored, and the stability of the thrust bearing is discussed. The prototype and test result are presented.

  3. Multi-hole pressure probes to air data system for subsonic small-scale air vehicles

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Berezin, D. R.; Puzirev, L. N.; Tarasov, A. Z.; Kharitonov, A. M.; Shmakov, A. S.

    2016-10-01

    A brief review of research performed to develop multi-hole probes to measure of aerodynamic angles, dynamic head, and static pressure of a flying vehicle. The basis of these works is the application a well-known classical multi-hole pressure probe technique of measuring of a 3D flow to use in the air data system. Two multi-hole pressure probes with spherical and hemispherical head to air-data system for subsonic small-scale vehicles have been developed. A simple analytical probe model with separation of variables is proposed. The probes were calibrated in the wind tunnel, one of them is in-flight tested.

  4. Air Ground Data Link VHF Airline Communications and Reporting System (ACARS) Preliminary Test Report

    DOT National Transportation Integrated Search

    1995-02-01

    An effort was conducted to determine actual ground-to-air, and air-to-ground : performance of the Airline Communications and Reporting system (ACARS), Very : High Frequency (VHF) Data Link System. Parameters of system throughput, error : rates, and a...

  5. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    heating and cooling energy, and ranges from 7% in Los Angeles, CA to 13% in Fairbanks, AK. These results assume a leaky and uninsulated duct system. The potential for savings from cleaning decreases if duct insulation is in place or sealing has been performed. The potential for energy savings is directly related to the distribution system's thermal efficiency, with air conditioner performance also playing a minor role. Results for small commercial buildings with constant air volume HVAC systems and leaky and uninsulated duct systems span a wider range: from -12% in Miami, FL to 30% in Minneapolis, MN. However, for improved ducts or ducts in the conditioned space, small commercial HVAC source energy savings is always negative (down to -17%) for flowrates degradation in the 0--40% range. The sensitivity of these results to duct characteristics (location, leakage, and insulation) and the after-cleaning flowrate, as it varies from an ideal flowrate, was also evaluated. Energy savings can reach up to 80% for some scenarios where clean airflow is severely restricted down to 20% of ideal by poor duct layout or other obstructions not removable by cleaning. In addition, a simplified spreadsheet tool was developed for technicians to use in the field to estimate potential savings resulting from a system cleaning. Measuring the temperature rise across the furnace was found to give less uncertainty than measuring the pressure rise and assuming a fan curve. Despite the uncertainty, the tool can give a general idea of the range of savings possible under various conditions.

  6. Benchmarking the performance of fixed-image receptor digital radiography systems. Part 2: system performance metric.

    PubMed

    Lee, Kam L; Bernardo, Michael; Ireland, Timothy A

    2016-06-01

    This is part two of a two-part study in benchmarking system performance of fixed digital radiographic systems. The study compares the system performance of seven fixed digital radiography systems based on quantitative metrics like modulation transfer function (sMTF), normalised noise power spectrum (sNNPS), detective quantum efficiency (sDQE) and entrance surface air kerma (ESAK). It was found that the most efficient image receptors (greatest sDQE) were not necessarily operating at the lowest ESAK. In part one of this study, sMTF is shown to depend on system configuration while sNNPS is shown to be relatively consistent across systems. Systems are ranked on their signal-to-noise ratio efficiency (sDQE) and their ESAK. Systems using the same equipment configuration do not necessarily have the same system performance. This implies radiographic practice at the site will have an impact on the overall system performance. In general, systems are more dose efficient at low dose settings.

  7. Effect of water temperature and air stream velocity on performance of direct evaporative air cooler for thermal comfort

    NASA Astrophysics Data System (ADS)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra

    2017-01-01

    The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.

  8. Strategy Guideline. Compact Air Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balancedmore » HVAC system, and overall improved energy efficiency of the home.« less

  9. Performance and diagnostic evaluation of ozone predictions by the Eta-Community Multiscale Air Quality Forecast System during the 2002 New England Air Quality Study.

    PubMed

    Yu, Shaocai; Mathur, Rohit; Kang, Daiwen; Schere, Kenneth; Eder, Brian; Pleim, Jonathan

    2006-10-01

    A real-time air quality forecasting system (Eta-Community Multiscale Air Quality [CMAQ] model suite) has been developed by linking the National Centers for Environmental Estimation Eta model to the U.S. Environmental Protection Agency (EPA) CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting ozone (O3) over the Northeastern United States during the 2002 New England Air Quality Study (NEAQS). Spatial and temporal performance of the Eta-CMAQ model for O3 was evaluated by comparison with observations from the EPA Air Quality System (AQS) network. This study also examines the ability of the model to simulate the processes governing the distributions of tropospheric O3 on the basis of the intensive datasets obtained at the four Atmospheric Investigation, Regional Modeling, Analysis, and Estimation (AIRMAP) and Harvard Forest (HF) surface sites. The episode analysis reveals that the model captured the buildup of O3 concentrations over the northeastern domain from August 11 and reproduced the spatial distributions of observed O3 very well for the daytime (8:00 p.m.) of both August 8 and 12 with most of normalized mean bias (NMB) within +/- 20%. The model reproduced 53.3% of the observed hourly O3 within a factor of 1.5 with NMB of 29.7% and normalized mean error of 46.9% at the 342 AQS sites. The comparison of modeled and observed lidar O3 vertical profiles shows that whereas the model reproduced the observed vertical structure, it tended to overestimate at higher altitude. The model reproduced 64-77% of observed NO2 photolysis rate values within a factor of 1.5 at the AIRMAP sites. At the HF site, comparison of modeled and observed O3/nitrogen oxide (NOx) ratios suggests that the site is mainly under strongly NOx-sensitive conditions (>53%). It was found that the modeled lower limits of the O3 production efficiency values (inferred from O3-CO correlation) are close to the observations.

  10. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 3: PROGRAMMER'S MAINTENACE MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  11. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  12. Improving Process Heating System Performance v3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-04-11

    Improving Process Heating System Performance: A Sourcebook for Industry is a development of the U.S. Department of Energy (DOE) Advanced Manufacturing Office (AMO) and the Industrial Heating Equipment Association (IHEA). The AMO and IHEA undertook this project as part of an series of sourcebook publications developed by AMO on energy-consuming industrial systems, and opportunities to improve performance. Other topics in this series include compressed air systems, pumping systems, fan systems, steam systems, and motors and drives

  13. Identification and Characterization of Key Human Performance Issues and Research in the Next Generation Air Transportation System (NextGen)

    NASA Technical Reports Server (NTRS)

    Lee, Paul U.; Sheridan, Tom; Poage, james L.; Martin, Lynne Hazel; Jobe, Kimberly K.

    2010-01-01

    This report identifies key human-performance-related issues associated with Next Generation Air Transportation System (NextGen) research in the NASA NextGen-Airspace Project. Four Research Focus Areas (RFAs) in the NextGen-Airspace Project - namely Separation Assurance (SA), Airspace Super Density Operations (ASDO), Traffic Flow Management (TFM), and Dynamic Airspace Configuration (DAC) - were examined closely. In the course of the research, it was determined that the identified human performance issues needed to be analyzed in the context of NextGen operations rather than through basic human factors research. The main gaps in human factors research in NextGen were found in the need for accurate identification of key human-systems related issues within the context of specific NextGen concepts and better design of the operational requirements for those concepts. By focusing on human-system related issues for individual concepts, key human performance issues for the four RFAs were identified and described in this report. In addition, mixed equipage airspace with components of two RFAs were characterized to illustrate potential human performance issues that arise from the integration of multiple concepts.

  14. Performance Analysis of a Modular Small-Diamter Air Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew; Rudd, Armin

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air handler unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses anmore » additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.« less

  15. Natural convection liquid desiccant loop as an auxiliary air conditioning system: investigating the operational parameters

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Alemrajabi, Ali Akbar; Sedaghat, Ahmad

    2018-03-01

    Liquid desiccant air conditioning system with natural convection was presented previously as a new generation of AC systems. The system consists of two three-fluid energy exchangers namely absorber and regenerator in which the action of air dehumidifying and desiccant regeneration is done, respectively. The influence of working parameters on system performance including the heat source and heat sink temperature, concentration of desiccant solution fills the system initially and humidity content of inlet air to regenerator is investigated experimentally. The heat source temperatures of 50 °C and 60 °C, heat sink temperatures of 15 °C and 20 °C and desiccant concentrations of 30% and 34%, are examined here. The inlet air to regenerator has temperature of 38.5 °C and three relative humidity of 14%, 38% and 44%. In all experiments, the inlet air to absorber has temperature of 31 °C and relative humidity of 75%. By inspecting evaluation indexes of system, it is revealed that higher startup desiccant concentration solution is more beneficial for all study cases. It is also observed although the highest/lowest temperature heat source/heat sink is most suitable for best system operation, increasing the heat source temperature should be accompanied with decreasing heat sink temperature. Using drier air stream for regenerator inlet does not necessarily improve system performance; and the air stream with proper value of humidity content should be employed. Finally after running the system in its best working condition, the coefficient of performance (COP) reached 4.66 which verified to be higher than when the same air conditioning task done by a conventional vapor compression system, in which case the COP was 3.38.

  16. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    EPA Science Inventory

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  17. Air Force Materiel Command: A Survey of Performance Measures

    DTIC Science & Technology

    2004-03-12

    AIR FORCE MATERIEL COMMAND: A SURVEY OF PERFORMANCE MEASURES THESIS Marcia Leonard, Capt...AFIT/GLM/ENS/04-10 AIR FORCE MATERIEL COMMAND: A SURVEY OF PERFORMANCE MEASURES THESIS Presented to the Faculty...SURVEY OF PERFORMANCE MEASURES Marcia Leonard, BS Capt, USAF Approved: //signed// 12 March 2004

  18. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  19. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  20. A Cognitive-System Model for En Route Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Pisanich, Gregory; Lebacqz, J. Victor (Technical Monitor)

    1998-01-01

    NASA Ames Research Center has been engaged in the development of advanced air traffic management technologies whose basic form is cognitive aiding systems for air traffic controller and flight deck operations. In the design and evaluation of such systems the dynamic interaction between the airborne aiding system and the ground-based aiding systems forms a critical coupling for control. The human operator is an integral control element in the system and the optimal integration of human decision and performance parameters with those of the automation aiding systems offers a significant challenge to cognitive engineering. This paper presents a study in full mission simulation and the development of a predictive computational model of human performance. We have found that this combination of methodologies provide a powerful design-aiding process. We have extended the computational model Man Machine Integrated Design and Analysis System (N13DAS) to include representation of multiple cognitive agents (both human operators and intelligent aiding systems), operating aircraft airline operations centers and air traffic control centers in the evolving airspace. The demands of this application require the representation of many intelligent agents sharing world-models, and coordinating action/intention with cooperative scheduling of goals and actions in a potentially unpredictable world of operations. The operator's activity structures have been developed to include prioritization and interruption of multiple parallel activities among multiple operators, to provide for anticipation (knowledge of the intention and action of remote operators), and to respond to failures of the system and other operators in the system in situation-specific paradigms. We have exercised this model in a multi-air traffic sector scenario with potential conflict among aircraft at and across sector boundaries. We have modeled the control situation as a multiple closed loop system. The inner and outer

  1. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of ourmore » supplies and services correspond with the level of the Polish market.« less

  2. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  3. Evaluation of food drying with air dehumidification system: a short review

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Utari, F. D.; Sasongko, S. B.; Kumoro, A. C.

    2018-01-01

    Energy efficient drying for food and agriculture products resulting high quality products has been an important issue. Currently, about 50% of total energy for postharvest treatment was used for drying. This paper presents the evaluation of new approach namely air dehumidification system with zeolite for food drying. Zeolite is a material having affinity to water in which reduced the moisture in air. With low moisture content and relative humidity, the air can improve driving force for drying even at low temperature. Thus, the energy efficiency can be potentially enhanced and the product quality can be well retained. For proving the hypothesis, the paddy and onion have been dried using dehumidified air. As performance indicators, the drying time, product quality, and heat efficiency were evaluated. Results indicated that the drying with zeolite improved the performances significantly. At operating temperature ranging 50 - 60°C, the efficiency of drying system can reach 75% with reasonable product quality.

  4. Investigation of Various Novel Air-Breathing Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Wilhite, Jarred M.

    The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable

  5. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  6. Athletic performance and urban air pollution.

    PubMed Central

    Shephard, R J

    1984-01-01

    Air pollution may affect athletic performance. In Los Angeles, contaminants include carbon monoxide, ozone, peroxyacetylnitrate (PAN) and nitrogen oxides, whereas in older European cities, such as Sarajevo, "reducing smog" of sulfur dioxide is the main hazard. The carbon monoxide and ozone levels expected in Los Angeles this summer could affect the athletes' performance in endurance events at the Olympic Games. Carbon monoxide may also impair psychomotor abilities, and PAN causes visual disturbances. The only likely physiologic consequence from reducing smog is an increase in the workload of the respiratory system and thus a decrease in endurance performance. While carbon monoxide has been blamed for myocardial infarctions, nitrogen oxides for pulmonary edema and sulfur dioxide for deaths due to respiratory failure, the only illnesses that are likely to be more frequent than usual among young athletes exposed to high levels of these pollutants are upper respiratory tract infections. Therapeutic tactics include the avoidance of pollution, the administration of oxygen, vitamin C and vitamin E, and general reassurance. PMID:6744156

  7. System design and analysis of the trans-critical carbon-dioxide automotive air-conditioning system.

    PubMed

    Mu, Jing-Yang; Chen, Jiang-Ping; Chen, Zhi-Jiu

    2003-01-01

    As an environmentally harmless and feasible alternate refrigerant, CO2 has attracted worldwide attention, especially in the area of automobile air-conditioning (AAC). The thermal property of CO2 and its trans-critical refrigeration cycle is very different from that of the traditional CFC or HCFC system. The detailed process of CO2 system thermal cycle design and optimization is described in this paper. System prototype and performance test bench were developed to analyze the performance of the CO2 AAC system.

  8. Canadian Operational Air Quality Forecasting Systems: Status, Recent Progress, and Challenges

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Davignon, Didier; Ménard, Sylvain; Munoz-Alpizar, Rodrigo; Landry, Hugo; Beaulieu, Paul-André; Gilbert, Samuel; Moran, Michael; Chen, Jack

    2017-04-01

    ECCC's Canadian Meteorological Centre Operations (CMCO) division runs a number of operational air quality (AQ)-related systems that revolve around the Regional Air Quality Deterministic Prediction System (RAQDPS). The RAQDPS generates 48-hour AQ forecasts and outputs hourly concentration fields of O3, PM2.5, NO2, and other pollutants twice daily on a North-American domain with 10-km horizontal grid spacing and 80 vertical levels. A closely related AQ forecast system with near-real-time wildfire emissions, known as FireWork, has been run by CMCO during the Canadian wildfire season (April to October) since 2014. This system became operational in June 2016. The CMCO`s operational AQ forecast systems also benefit from several support systems, such as a statistical post-processing model called UMOS-AQ that is applied to enhance forecast reliability at point locations with AQ monitors. The Regional Deterministic Air Quality Analysis (RDAQA) system has also been connected to the RAQDPS since February 2013, and hourly surface objective analyses are now available for O3, PM2.5, NO2, PM10, SO2 and, indirectly, the Canadian Air Quality Health Index. As of June 2015, another version of the RDAQA has been connected to FireWork (RDAQA-FW). For verification purposes, CMCO developed a third support system called Verification for Air QUality Models (VAQUM), which has a geospatial relational database core and which enables continuous monitoring of the AQ forecast systems' performance. Urban environments are particularly subject to AQ pollution. In order to improve the services offered, ECCC has recently been investing efforts to develop a high resolution air quality prediction capability for urban areas in Canada. In this presentation, a comprehensive description of the ECCC AQ systems will be provided, along with a discussion on AQ systems performance. Recent improvements, current challenges, and future directions of the Canadian operational AQ program will also be discussed.

  9. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  10. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  11. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    NASA Technical Reports Server (NTRS)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  12. Impact of air pollutants on athletic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, W.E.

    Human controlled and observational studies both lead to the conclusion of air pollution adversely affecting athletic performance during training and competition. The dosage of various air pollutants during exercise is much higher due to the marked increase in ventilatory rate and concomitant nasal and oral breathing. This is particularly true for sulfur dioxide which is a highly water-soluble gas and is normally absorbed in the upper airway during nasal breathing. With heavy exercise, oral pharyngeal breathing is the predominant mode of breathing and much larger amounts of sulfur dioxide are delivered to the lower airway resulting in significant impact uponmore » the lower respiratory tract. More recently, several controlled human studies have shown that a combination of exercise and air pollutants such as ozone (O3) or sulfur dioxides (SO2) cause a significant increase in bronchoconstriction and air flow obstruction when compared to the same exposure at rest. In strenuous athletic competition such as the Olympic Games where small increments of time often determine the ultimate success of athletes, the impact of air pollutants and subsequent adverse ventilatory changes can affect athletic performance. 62 references.« less

  13. MATSurv: multisensor air traffic surveillance system

    NASA Astrophysics Data System (ADS)

    Yeddanapudi, Murali; Bar-Shalom, Yaakov; Pattipati, Krishna R.; Gassner, Richard R.

    1995-09-01

    This paper deals with the design and implementation of MATSurv 1--an experimental Multisensor Air Traffic Surveillance system. The proposed system consists of a Kalman filter based state estimator used in conjunction with a 2D sliding window assignment algorithm. Real data from two FAA radars is used to evaluate the performance of this algorithm. The results indicate that the proposed algorithm provides a superior classification of the measurements into tracks (i.e., the most likely aircraft trajectories) when compared to the aircraft trajectories obtained using the measurement IDs (squawk or IFF code).

  14. Effect of operating conditions on performance of silica gel-water air-fluidised desiccant cooler

    NASA Astrophysics Data System (ADS)

    Rogala, Zbigniew; Kolasiński, Piotr; Gnutek, Zbigniew

    2017-11-01

    Fluidised desiccant cooling is reported in the literature as an efficient way to provide cooling for air-conditioning purposes. The performance of this technology can be described by electric and thermal Coefficients of Performance (COP) and Specific Cooling Power (SCP). In this paper comprehensive theoretical study was carried out in order to assess the effect of operating conditions such as: superficial air velocity, desiccant particle diameter, bed switching time and desiccant filling height on the performance of fluidised desiccant cooler (FDC). It was concluded that FDC should be filled with as small as possible desiccant particles featuring diameters and should not be operated with shorter switching times than optimum. Moreover in order to efficiently run such systems superficial air velocities during adsorption and desorption should be similar. At last substantial effect of desiccant filling height on performance of FDC was presented.

  15. SIMS prototype system 4 - performance test report

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A self-contained, preassembled air type solar system, designed for installation remote from the dwelling, to provide space heating and hot water was evaluated. Data analysis is included which documents the system performance and verifies its suitability for field installation.

  16. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    NASA Astrophysics Data System (ADS)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  17. Machine & electrical double control air dryer for vehicle air braking system

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Yang, Liu; Wang, Xian Yan; Tan, Xiao Yan; Wang, Wei

    2017-09-01

    As is known to all, a vehicle air brake system, in which usually contains moisture. To solve the problem, it is common to use air dryer to dry compressed air effectively and completely remove the moisture and oil of braking system. However, the existing air dryer is not suitable for all commercial vehicles. According to the operational status of the new energy vehicles in the initial operating period, the structure design principle of the machine & electric control air dryer is expounded from the aspects of the structure and operating principle, research & development process.

  18. 2010-2011 Performance of the AirNow Satellite Data Processor

    NASA Astrophysics Data System (ADS)

    Pasch, A. N.; DeWinter, J. L.; Haderman, M. D.; van Donkelaar, A.; Martin, R. V.; Szykman, J.; White, J. E.; Dickerson, P.; Zahn, P. H.; Dye, T. S.

    2012-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program provides maps of real time hourly Air Quality Index (AQI) conditions and daily AQI forecasts nationwide (http://www.airnow.gov). The public uses these maps to make health-based decisions. The usefulness of the AirNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA, Dalhousie University, and Sonoma Technology, Inc. have been working in collaboration with the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to incorporate satellite-estimated surface PM2.5 concentrations into the maps via the AirNow Satellite Data Processor (ASDP). These satellite estimates are derived using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. GEOS-Chem is a three-dimensional chemical transport model for atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GOES). The ASDP can fuse multiple PM2.5 concentration data sets to generate AQI maps with improved spatial coverage. The goal of ASDP is to provide more detailed AQI information in monitor-sparse locations and augment monitor-dense locations with more information. We will present a statistical analysis for 2010-2011 of the ASDP predictions of PM2.5 focusing on performance at validation sites. In addition, we will present several case studies evaluating the ASDP's performance for multiple regions and seasons, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impact were observed.

  19. Air Quality System (AQS) Metadata

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal

  20. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system--a human response study in hot and humid climate.

    PubMed

    Yang, B; Sekhar, S C; Melikov, A K

    2010-08-01

    The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient temperatures of 26 and 23.5 degrees C and PV air temperatures of 26, 23.5, and 21 degrees C were employed. The local and whole body thermal sensations were reduced when PV airflow rates were increased. Inhaled air temperature was perceived cooler and perceived air quality and air freshness improved when PV airflow rate was increased or temperature was reduced. The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation. By remotely locating the PV ATDs on the ceiling directly above the occupants and under their control, the conditioned outdoor air is now provided to the occupants through the downward momentum of the air. A secondary air-conditioning and air distribution system offers additional cooling in the room and maintains a higher ambient temperature, thus offering significant benefits in conserving energy. The results of this study provide designers and consultants with needed knowledge for design of PV systems.

  1. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone...Systems Energy and Water Projects Project Number: EW-201152 ERDC-CERL 26 October 2017 2 TABLE OF CONTENTS ACKNOWLEDGEMENTS...16 3.2.1 Energy Usage (Quantitative

  2. Report on Lincoln Electric System gas turbine inlet air cooling. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebeling, J.A.; Buecker, B.J.; Kitchen, B.J.

    1993-12-01

    As a result of increased electric power demand, the Lincoln Electric System (LES) of Lincoln, Nebraska (USA) decided to upgrade the generating capacity of their system. Based on capacity addition studies, the utility elected to improve performance of a GE MS7001B combustion turbine located at their Rokeby station. The turbine is used to meet summer-time peak loads, and as is common among combustion turbines, capacity declines as ambient air temperature rises. To improve the turbine capacity, LES decided to employ the proven technique of inlet air cooling, but with a novel approach: off-peak ice generation to be used for peak-loadmore » air cooling. EPRI contributed design concept definition and preliminary engineering. The American Public Power Association provided co-funding. Burns & McDonnell Engineering Company, under contract to Lincoln Electric System, provided detailed design and construction documents. LES managed the construction, start-up, and testing of the cooling system. This report describes the technical basis for the cooling system design, and it discusses combustion turbine performance, project economics, and potential system improvements. Control logic and P&ID drawings are also included. The inlet air cooling system has been available since the fall of 1991. When in use, the cooling system has increased turbine capacity by up to 17% at a cost of less than $200 per increased kilowatt of generation.« less

  3. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  4. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    NASA Astrophysics Data System (ADS)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  5. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    NASA Technical Reports Server (NTRS)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  6. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  7. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2014-10-01 2014-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  8. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  9. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2012-10-01 2012-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  10. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pressure drop in psi per minute with brakes released and with brakes fully applied. (d) Air-over-hydraulic... 49 Transportation 6 2013-10-01 2013-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic...

  11. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to hazardous...

  12. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to hazardous...

  13. Mach 6.5 air induction system design for the Beta 2 two-stage-to-orbit booster vehicle

    NASA Technical Reports Server (NTRS)

    Midea, Anthony C.

    1991-01-01

    A preliminary, two-dimensional, mixed compression air induction system is designed for the Beta II Two Stage to Orbit booster vehicle to minimize installation losses and efficiently deliver the required airflow. Design concepts, such as an external isentropic compression ramp and a bypass system were developed and evaluated for performance benefits. The design was optimized by maximizing installed propulsion/vehicle system performance. The resulting system design operating characteristics and performance are presented. The air induction system design has significantly lower transonic drag than similar designs and only requires about 1/3 of the bleed extraction. In addition, the design efficiently provides the integrated system required airflow, while maintaining adequate levels of total pressure recovery. The excellent performance of this highly integrated air induction system is essential for the successful completion of the Beta II booster vehicle mission.

  14. Method and graphs for the evaluation of air-induction systems

    NASA Technical Reports Server (NTRS)

    Brajnikoff, George B

    1953-01-01

    Graphs have been developed for rapid evaluation of air-induction systems from considerations of their aerodynamic-performance parameters in combination with power-plant characteristics. The graphs cover the range of supersonic Mach numbers to 3.0. Examples are presented for an air-induction system and engine combination of two Mach numbers and two altitudes in order to illustrate the method and application of the graphs. The examples show that jet-engine characteristics impose restrictions on the use of fixed inlets if the maximum net thrusts are to be realized at all flight conditions. (author)

  15. Validation of the Fully-Coupled Air-Sea-Wave COAMPS System

    NASA Astrophysics Data System (ADS)

    Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.

    2017-12-01

    A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.

  16. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems

    PubMed Central

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  17. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    PubMed

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  18. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    PubMed

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Performance Charts for a Turbojet System

    NASA Technical Reports Server (NTRS)

    Karp, Irving M.

    1947-01-01

    Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.

  20. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  1. Development concerns for satellite-based air traffic control surveillance systems

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. D.

    1985-01-01

    Preliminary results of an investigation directed toward the configuration of a practical system design which can form the baseline for assessing the applications and value of a satellite based air traffic surveillance system for future use in the National Airspace System (NAS) are described. This work initially studied the characteristics and capabilities of a satellite configuration which would operate compatibly with the signal structure and avionics of the next generation air traffic control secondary surveillance radar system, the Mode S system. A compatible satellite surveillance system concept is described and an analysis is presented of the link budgets for the various transmission paths. From this, the satellite characteristics are established involving a large multiple feed L band antenna of approximately 50 meter aperture dimension. Trade offs involved in several of the alternative large aperture antennas considered are presented as well as the influence of various antenna configurations on the performance capabilities of the surveillance system. The features and limitations of the use of large aperture antenna systems for air traffic surveillance are discussed. Tentative results of this continuing effort are summarized with a brief description of follow on investigations involving other space based antenna systems concepts.

  2. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipmentmore » (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.« less

  3. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  4. Pure Air`s Bailly scrubber: A four-year retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manavi, G.B.; Vymazal, D.C.; Sarkus, T.A.

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A projectmore » company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.« less

  5. Some factors affecting the use of lighter than air systems. [economic and performance estimates for dirigibles and semi-buoyant hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Havill, C. D.

    1974-01-01

    The uses of lighter-than-air vehicles are examined in the present day transportation environment. Conventional dirigibles were found to indicate an undesirable economic risk due to their low speeds and to uncertainties concerning their operational use. Semi-buoyant hybrid vehicles are suggested as an alternative which does not have many of the inferior characteristics of conventional dirigibles. Economic and performance estimates for hybrid vehicles indicate that they are competitive with other transportation systems in many applications, and unique in their ability to perform some highly desirable emergency missions.

  6. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  7. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    DOEpatents

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  8. Solar energy system performance evaluation - Seasonal Report for Seeco Lincoln, Lincoln, Nebraska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    The SEECO Lincoln Solar Energy System was designed to provide 60 percent of the space heating for the 50 seat Hyde Memorial Observatory in Lincoln, Nebraska. The system consists of nine SEECO Mod 1 flat plate air collectors (481 square feet), a 347 cubic foot rock storage bin, blowers, controls and air ducting. An auxiliary natural gas furnace provides additional energy when the solar energy is not adequate to meet the space heating demand. The system has five modes of operation. System description, typical system operation, system operating sequence, performance assessment, system performance, subsystem performance (collector array, storage, space heating),more » operating energy, energy savings and maintenance are discussed.« less

  9. Systems engineering for Air Force C3I systems

    NASA Astrophysics Data System (ADS)

    Monahan, John H.

    1993-06-01

    Each day, sophisticated information systems provide the U.S. with crucial capabilities both to understand the world situation and to react effectively as required by our nation's decision makers. These systems attest to the success of the cooperative efforts of government and industry. Over the last 35 years, to help provide those capabilities, The MITRE Corporation has been privileged to fulfill the role of systems engineer on more than 100 different command, control, communications, and intelligence (C3I) systems for the Air Force and other elements of the Department of Defense (DOD). A long history of successful performance in this broad role provides MITRE with detailed knowledge of the systems' operational capabilities and needs, proficiency in their systems engineering, and a C3I-related corporate memory unmatched by any other organization. That background is the foundation of this book on systems engineering at MITRE.

  10. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  11. Improving the aluminum-air battery system for use in electrical vehicles

    NASA Astrophysics Data System (ADS)

    Yang, Shaohua

    The objectives of this study include improvement of the efficiency of the aluminum/air battery system and demonstration of its ability for vehicle applications. The aluminum/air battery system can generate enough energy and power for driving ranges and acceleration similar to that of gasoline powered cars. Therefore has the potential to be a power source for electrical vehicles. Aluminum/air battery vehicle life cycle analysis was conducted and compared to that of lead/acid and nickel-metal hydride vehicles. Only the aluminum/air vehicles can be projected to have a travel range comparable to that of internal combustion engine vehicles (ICE). From this analysis, an aluminum/air vehicle is a promising candidate compared to ICE vehicles in terms of travel range, purchase price, fuel cost, and life cycle cost. We have chosen two grades of Al alloys (Al alloy 1350, 99.5% and Al alloy 1199, 99.99%) in our study. Only Al 1199 was studied extensively using Na 2SnO3 as an electrolyte additive. We then varied concentration and temperature, and determined the effects on the parasitic (corrosion) current density and open circuit potential. We also determined cell performance and selectivity curves. To optimize the performance of the cell based on our experiments, the recommended operating conditions are: 3--4 N NaOH, about 55°C, and a current density of 150--300 mA/cm2. We have modeled the cell performance using the equations we developed. The model prediction of cell performance shows good agreement with experimental data. For better cell performance, our model studies suggest use of higher electrolyte flow rate, smaller cell gap, higher conductivity and lower parasitic current density. We have analyzed the secondary current density distributions in a two plane, parallel Al/air cell and a wedge-type Al/air cell. The activity of the cathode has a large effect on the local current density. With increases in the cell gap, the local current density increases, but the increase is

  12. Development of an environmental chamber for evaluating the performance of low-cost air quality sensors under controlled conditions

    NASA Astrophysics Data System (ADS)

    Papapostolou, Vasileios; Zhang, Hang; Feenstra, Brandon J.; Polidori, Andrea

    2017-12-01

    A state-of-the-art integrated chamber system has been developed for evaluating the performance of low-cost air quality sensors. The system contains two professional grade chamber enclosures. A 1.3 m3 stainless-steel outer chamber and a 0.11 m3 Teflon-coated stainless-steel inner chamber are used to create controlled aerosol and gaseous atmospheres, respectively. Both chambers are temperature and relative humidity controlled with capability to generate a wide range of environmental conditions. The system is equipped with an integrated zero-air system, an ozone and two aerosol generation systems, a dynamic dilution calibrator, certified gas cylinders, an array of Federal Reference Method (FRM), Federal Equivalent Method (FEM), and Best Available Technology (BAT) reference instruments and an automated control and sequencing software. Our experiments have demonstrated that the chamber system is capable of generating stable and reproducible aerosol and gas concentrations at low, medium, and high levels. This paper discusses the development of the chamber system along with the methods used to quantitatively evaluate sensor performance. Considering that a significant number of academic and research institutions, government agencies, public and private institutions, and individuals are becoming interested in developing and using low-cost air quality sensors, it is important to standardize the procedures used to evaluate their performance. The information discussed herein provides a roadmap for entities who are interested in characterizing air quality sensors in a rigorous, systematic and reproducible manner.

  13. An online air pollution forecasting system using neural networks.

    PubMed

    Kurt, Atakan; Gulbagci, Betul; Karaca, Ferhat; Alagha, Omar

    2008-07-01

    In this work, an online air pollution forecasting system for Greater Istanbul Area is developed. The system predicts three air pollution indicator (SO(2), PM(10) and CO) levels for the next three days (+1, +2, and +3 days) using neural networks. AirPolTool, a user-friendly website (http://airpol.fatih.edu.tr), publishes +1, +2, and +3 days predictions of air pollutants updated twice a day. Experiments presented in this paper show that quite accurate predictions of air pollutant indicator levels are possible with a simple neural network. It is shown that further optimizations of the model can be achieved using different input parameters and different experimental setups. Firstly, +1, +2, and +3 days' pollution levels are predicted independently using same training data, then +2 and +3 days are predicted cumulatively using previously days predicted values. Better prediction results are obtained in the cumulative method. Secondly, the size of training data base used in the model is optimized. The best modeling performance with minimum error rate is achieved using 3-15 past days in the training data set. Finally, the effect of the day of week as an input parameter is investigated. Better forecasts with higher accuracy are observed using the day of week as an input parameter.

  14. Performance status of the AIRS instrument thirteen years after launch

    NASA Astrophysics Data System (ADS)

    Elliott, Denis A.; Pagano, Thomas S.; Aumann, Hartmut H.; Broberg, Steven E.

    2015-09-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 μm to 15.4 μm and a 13.5 km footprint at nadir. AIRS is a "facility" instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles and trace gas amounts for CO2 , CO, SO2 , O3 and CH4. AIRS data are used for weather forecasting, climate process studies and validating climate models. The AIRS instrument has far exceeded its required design life of 5 years, with nearly 13 years of routine science operations that began on August 31, 2002. While the instrument has performed exceptionally well, with little sign of wear, the AIRS Project continues to monitor and maintain the health of AIRS, characterize its behavior and improve performance where possible. Radiometric stability has been monitored and trending shows better than 16 mK/year stability. Spectral calibration stability is better than 1 ppm/year. At this time we expect the AIRS to continue to perform well into the next decade. This paper contains updates to previous instrument status reports, with emphasis on the last three years.

  15. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  16. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  17. Thermodynamic characteristics of a novel wind-solar-liquid air energy storage system

    NASA Astrophysics Data System (ADS)

    Ji, W.; Zhou, Y.; Sun, Y.; Zhang, W.; Pan, C. Z.; Wang, J. J.

    2017-12-01

    Due to the nature of fluctuation and intermittency, the utilization of wind and solar power will bring a huge impact to the power grid management. Therefore a novel hybrid wind-solar-liquid air energy storage (WS-LAES) system was proposed. In this system, wind and solar power are stored in the form of liquid air by cryogenic liquefaction technology and thermal energy by solar thermal collector, respectively. Owing to the high density of liquid air, the system has a large storage capacity and no geographic constraints. The WS-LAES system can store unstable wind and solar power for a stable output of electric energy and hot water. Moreover, a thermodynamic analysis was carried out to investigate the best system performance. The result shows that the increases of compressor adiabatic efficiency, turbine inlet pressure and inlet temperature all have a beneficial effect.

  18. Physical Profiling Performance of Air Force Primary Care Providers

    DTIC Science & Technology

    2017-08-09

    AFRL-SA-WP-TR-2017-0014 Physical Profiling Performance of Air Force Primary Care Providers Anthony P. Tvaryanas1; William P...COVERED (From – To) September 2016 – January 2017 4. TITLE AND SUBTITLE Physical Profiling Performance of Air Force Primary Care Providers...encounter with their primary care team. An independent medical standards subject matter expert (SME) reviewed encounters in the electronic health record

  19. Transient performance and temperature field of a natural convection air dehumidifier loop

    NASA Astrophysics Data System (ADS)

    Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar

    2017-07-01

    In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.

  20. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air... contamination following any probable failure of the turbocharger or its lubrication system. (b) The turbocharger...

  1. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air... contamination following any probable failure of the turbocharger or its lubrication system. (b) The turbocharger...

  2. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air... contamination following any probable failure of the turbocharger or its lubrication system. (b) The turbocharger...

  3. Dynamic evaluation of airflow rates for a variable air volume system serving an open-plan office.

    PubMed

    Mai, Horace K W; Chan, Daniel W T; Burnett, John

    2003-09-01

    In a typical air-conditioned office, the thermal comfort and indoor air quality are sustained by delivering the amount of supply air with the correct proportion of outdoor air to the breathing zone. However, in a real office, it is not easy to measure these airflow rates supplied to space, especially when the space is served by a variable air volume (VAV) system. The most accurate method depends on what is being measured, the details of the building and types of ventilation system. The constant concentration tracer gas method as a means to determine ventilation system performance, however, this method becomes more complicated when the air, including the tracer gas is allowed to recirculate. An accurate measurement requires significant resource support in terms of instrumentation set up and also professional interpretation. This method deters regular monitoring of the performance of an airside systems by building managers, and hence the indoor environmental quality, in terms of thermal comfort and indoor air quality, may never be satisfactory. This paper proposes a space zone model for the calculation of all the airflow parameters based on tracer gas measurements, including flow rates of outdoor air, VAV supply, return space, return and exfiltration. Sulphur hexafluoride (SF6) and carbon dioxide (CO2) are used as tracer gases. After using both SF6 and CO2, the corresponding results provide a reference to justify the acceptability of using CO2 as the tracer gas. The validity of using CO2 has the significance that metabolic carbon dioxide can be used as a means to evaluate real time airflow rates. This approach provides a practical protocol for building managers to evaluate the performance of airside systems.

  4. Fully Articulating Air Bladder System (FAABS) Noise Attenuation Performance in the HGU-56/P and HGU-55/P Flight Helmets

    DTIC Science & Technology

    2013-10-01

    EFFECTIVENESS DIRECTORATE, WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 AIR FORCE MATERIEL COMMAND UNITED STATES AIR FORCE NOTICE AND SIGNATURE...Division //signed// William E. Russell, Acting Chief Warfighter Interface Division Human Effectiveness Directorate 711 Human Performance...Wing Human Effectiveness Directorate Warfighter Interface Division Battlespace Acoustics Branch Wright-Patterson AFB OH 45433

  5. Air carrier operations system model

    DOT National Transportation Integrated Search

    2001-03-01

    Representatives from the Federal Aviation Administration (FAA) and several 14 Code of Federal Regulations (CFR) Part 121 air carriers met several times during 1999-2000 to develop a system engineering model of the generic functions of air carrier ope...

  6. Examination of the Community Multiscale Air Quality (CMAQ) Model Performance over the North American and European Domains

    EPA Science Inventory

    The CMAQ modeling system has been used to simulate the air quality for North America and Europe for the entire year of 2006 as part of the Air Quality Model Evaluation International Initiative (AQMEII) and the operational model performance of O3, fine particulate matte...

  7. Airport Information Retrieval System (AIRS) System Design

    DOT National Transportation Integrated Search

    1974-07-01

    This report presents the system design for a prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The design was directed toward the immediate automation of airport data for use in traffic load predicti...

  8. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  9. The Data Acquisition System of the Stockholm Educational Air Shower Array

    NASA Astrophysics Data System (ADS)

    Hofverberg, P.; Johansson, H.; Pearce, M.; Rydstrom, S.; Wikstrom, C.

    2005-12-01

    The Stockholm Educational Air Shower Array (SEASA) project is deploying an array of plastic scintillator detector stations on school roofs in the Stockholm area. Signals from GPS satellites are used to time synchronise signals from the widely separated detector stations, allowing cosmic ray air showers to be identified and studied. A low-cost and highly scalable data acquisition system has been produced using embedded Linux processors which communicate station data to a central server running a MySQL database. Air shower data can be visualised in real-time using a Java-applet client. It is also possible to query the database and manage detector stations from the client. In this paper, the design and performance of the system are described

  10. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Caldwell, Loren M. (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  11. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Bleed air system. 33.66 Section 33.66... STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...

  12. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  13. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure.

    PubMed

    Razak, Nasrul Anuar Abd; Osman, Noor Azuan Abu; Gholizadeh, Hossein; Ali, Sadeeq

    2014-08-01

    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. The subject's dynamic pressure on the socket that's applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics.

  14. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  15. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  16. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  17. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped in...

  18. Hard metal exposures. Part 1: Observed performance of three local exhaust ventilation systems.

    PubMed

    Guffey, S E; Simcox, N; Booth, D W; Hibbard, R; Stebbins, A

    2000-04-01

    Not every ventilation system performs as intended; much can be learned when they do not. The purpose of this study was to compare observed initial performance to expected levels for three saw-reconditioning shop ventilation systems and to characterize the changes in performance of the systems over a one-year period. These three local exhaust ventilation systems were intended to control worker exposures to cobalt, cadmium, and chromium during wet grinding, dry grinding, and welding/brazing activities. Prior to installation the authors provided some design guidance based on Industrial Ventilation, a Manual of Recommended Practice. However, the authors had limited influence on the actual installation and operation and no line authority for the systems. In apparent efforts to cut costs and to respond to other perceived needs, the installed systems deviated from the specifications used in pressure calculations in many important aspects, including adding branch ducts, use of flexible ducts, the choice of fans, and the construction of some hoods. After installation of the three systems, ventilation measurements were taken to determine if the systems met design specifications, and worker exposures were measured to determine effectiveness. The results of the latter will be published as a companion article. The deviations from design and maintenance failures may have adversely affected performance. From the beginning to the end of the study period the distribution of air flow never matched the design specifications for the systems. The observed air flows measured within the first month of installation did not match the predicated design air flows for any of the systems, probably because of the differences between the design and the installed system. Over the first year of operation, hood air flow variability was high due to inadequate cleaning of the sticky process materials which rapidly accumulated in the branch ducts. Poor distribution of air flows among branch ducts

  19. Based on Artificial Neural Network to Realize K-Parameter Analysis of Vehicle Air Spring System

    NASA Astrophysics Data System (ADS)

    Hung, San-Shan; Hsu, Chia-Ning; Hwang, Chang-Chou; Chen, Wen-Jan

    2017-10-01

    In recent years, because of the air-spring control technique is more mature, that air- spring suspension systems already can be used to replace the classical vehicle suspension system. Depend on internal pressure variation of the air-spring, thestiffnessand the damping factor can be adjusted. Because of air-spring has highly nonlinear characteristic, therefore it isn’t easy to construct the classical controller to control the air-spring effectively. The paper based on Artificial Neural Network to propose a feasible control strategy. By using offline way for the neural network design and learning to the air-spring in different initial pressures and different loads, offline method through, predict air-spring stiffness parameter to establish a model. Finally, through adjusting air-spring internal pressure to change the K-parameter of the air-spring, realize the well dynamic control performance of air-spring suspension.

  20. Enhanced performance of a filter-sensor system.

    PubMed

    Sasaki, Isao; Josowicz, Mira; Janata, Jirí; Glezer, Ari

    2006-06-01

    In this paper are addressed two important, but seemingly unrelated issues: long term performance of a gas sensing array and performance of an air purification unit. It is shown that when considered together, the system can be regarded as a "smart filter". The enhancement is achieved by periodic differential sampling and measurement of the "upstream" and "downstream" gases of a filter. The correctly functioning filter supplies the "zero gas" from the downstream for the continuous sensor baseline correction. A key element in this scheme is the synthetic jet that delivers well-defined pulses of the two gases. The deterioration of the performance of the "smart filter" can be diagnosed from the response pattern of the sensor. The approach has been demonstrated on removal/sensing of ammonia gas from air.

  1. Open-cycle OTEC system performance analysis. [Claude cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewandowski, A.A.; Olson, D.A.; Johnson, D.H.

    1980-10-01

    An algorithm developed to calculate the performance of Claude-Cycle ocean thermal energy conversion (OTEC) systems is described. The algorithm treats each component of the system separately and then interfaces them to form a complete system, allowing a component to be changed without changing the rest of the algorithm. Two components that are subject to change are the evaporator and condenser. For this study we developed mathematical models of a channel-flow evaporator and both a horizontal jet and spray director contact condenser. The algorithm was then programmed to run on SERI's CDC 7600 computer and used to calculate the effect onmore » performance of deaerating the warm and cold water streams before entering the evaporator and condenser, respectively. This study indicates that there is no advantage to removing air from these streams compared with removing the air from the condenser.« less

  2. Cold air systems: Sleeping giant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCracken, C.D.

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that providedmore » inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.« less

  3. Field test and simulation evaluation of variable refrigerant flow systems performance

    DOE PAGES

    Lee, Je Hyeon; Im, Piljae; Song, Young-hak

    2017-10-24

    Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating

  4. Field test and simulation evaluation of variable refrigerant flow systems performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je Hyeon; Im, Piljae; Song, Young-hak

    Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating

  5. Performance/Design Requirements and Detailed Technical Description for a Computer-Directed Training Subsystem for Integration into the Air Force Phase II Base Level System.

    ERIC Educational Resources Information Center

    Butler, A. K.; And Others

    The performance/design requirements and a detailed technical description for a Computer-Directed Training Subsystem to be integrated into the Air Force Phase II Base Level System are described. The subsystem may be used for computer-assisted lesson construction and has presentation capability for on-the-job training for data automation, staff, and…

  6. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, themore » ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  7. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of

  8. The Air Program Information Management System (APIMS)

    DTIC Science & Technology

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  9. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  10. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  11. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  12. Validation and Improvement of Reliability Methods for Air Force Building Systems

    DTIC Science & Technology

    focusing primarily on HVAC systems . This research used contingency analysis to assess the performance of each model for HVAC systems at six Air Force...probabilistic model produced inflated reliability calculations for HVAC systems . In light of these findings, this research employed a stochastic method, a...Nonhomogeneous Poisson Process (NHPP), in an attempt to produce accurate HVAC system reliability calculations. This effort ultimately concluded that

  13. Effect of heating-ventilation-air conditioning system sanitation on airborne fungal populations in residential environments.

    PubMed

    Garrison, R A; Robertson, L D; Koehn, R D; Wynn, S R

    1993-12-01

    Commercial air duct sanitation services are advertised to the public as being effective in reducing indoor aeroallergen levels despite the absence of published supporting data. Eight residential heat-ventilation-air conditioning (HVAC) systems in six homes and seven HVAC systems in five homes in winter and summer, respectively, were sampled to determine fungal colony forming units (CFUs) prior to and after an HVAC sanitation procedure was performed by a local company. Two houses in which no sanitation procedure was performed served as controls in each study phase. Two sample sets were obtained at each HVAC system prior to cleaning in order to determine baseline CFU levels. The test HVAC systems were then cleaned, and the HVAC systems allowed to operate as desired by the residents. Posttreatment sampling was performed 48 hours and then weekly after cleaning for 8 weeks. The HVAC systems were analyzed by exposing sterile 2% malt extract media plates at a 90-degree angle to the air flow at the air supply and air return vents. The baseline CFUs were similar in the control and study houses. Eight weeks after sanitation, the study houses demonstrated an overall CFU reduction of 92% during winter and 84% during summer. No reduction in CFU values was observed over the 8-week study period for the houses selected as controls. Further, HVAC sanitation appeared to reduce the number of fungal colonies entering and leaving the HVAC system, suggesting that the HVAC contained a significant percentage of the total fungal load in these homes. These data suggest that HVAC sanitation may be an effective tool in reducing airborne fungal populations in residential environments.

  14. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  15. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    PubMed

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  16. Hybrid air revitalization system for a closed ecosystem

    NASA Technical Reports Server (NTRS)

    Lee, M. G.; Brown, Mariann F.

    1990-01-01

    An air-revitalization concept is presented with experimental results to assess the practicality and applicability of the proposed system to extended-duration manned missions. The Hybrid Air Revitalization System (HARS) uses plants in a habitat to remove metabolic CO2 and moisture and produce oxygen and food. CO2 and O2 partial pressures, temperature, and humidity are regulated by means of electrochemical CO2 and O2 chemical separators and a moisture condenser separator. A cell-test facility is described in which the electrochemical CO2 removal processes are investigated with and without using H2. Performance is optimized by using 25-30 percent Teflon in the gas-diffusion-type electrode, employing a thin electrolyte matrix, operating at higher temperatures and lower dew points. The HARS concept is found to be a feasible approach to the electrochemical separation of CO2 and O2.

  17. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudd, Armin; Bergey, Daniel

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the sourcemore » of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.« less

  18. V-TECS Guide for Automobile Air Conditioning and Electrical System Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This curriculum guide provides an outline for an eight-unit course to train automobile air conditioning and electrical system technicians. Each unit focuses on a duty that is composed of a number of performance objectives. For each objective, these materials are provided: a task, a standard of performance of task, source of standard, conditions…

  19. Coal-fired high performance power generating system. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can bemore » achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.« less

  20. Compressed Air System Upgrade Improves Production at an Automotive Glass Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2003-02-01

    In 2000, The Visteon automotive glass plant improved its compressed air system at its automotive glass plant in Nashville, Tennessee. This improvement allowed Visteon to save $711,000 annually, reduce annual energy consumption by 7.9 million kilowatt-hours, reduce maintenance, improve system performance, and avoid $800,000 in asbestos abatement costs.

  1. Computer Simulation Performed for Columbia Project Cooling System

    NASA Technical Reports Server (NTRS)

    Ahmad, Jasim

    2005-01-01

    This demo shows a high-fidelity simulation of the air flow in the main computer room housing the Columbia (10,024 intel titanium processors) system. The simulation asseses the performance of the cooling system and identified deficiencies, and recommended modifications to eliminate them. It used two in house software packages on NAS supercomputers: Chimera Grid tools to generate a geometric model of the computer room, OVERFLOW-2 code for fluid and thermal simulation. This state-of-the-art technology can be easily extended to provide a general capability for air flow analyses on any modern computer room. Columbia_CFD_black.tiff

  2. Analysis of Radio Frequency Surveillance Systems for Air Traffic Control : Volume 1. Text.

    DOT National Transportation Integrated Search

    1976-02-01

    Performance criteria that afford quantitative evaluation of a variety of current and proposed configurations of the Air Traffic Control Radar Beacon System (ATCRBS) are described in detail. Two analytic system models are developed to allow applicatio...

  3. Implications of air pollution effects on athletic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierson, W.E.; Covert, D.S.; Koenig, J.Q.

    Both controlled human studies and observational studies suggest that air pollution adversely affects athletic performance during both training and competition. The air pollution dosage during exercise is much higher than during rest because of a higher ventilatory rate and both nasal and oral breathing in the former case. For example, sulfur dioxide, which is a highly water-soluble gas, is almost entirely absorbed in the upper respiratory tract during nasal breathing. However, with oral pharyngeal breathing, the amount of sulfur dioxide that is absorbed is significantly less, and with exercise and oral pharyngeal breathing a significant decrease in upper airway absorptionmore » occurs, resulting in a significantly larger dosage of this pollutant being delivered to the tracheobronchial tree. Recently, several controlled human studies have shown that the combination of exercise and pollutant exposure (SO/sub 2/ or O/sub 3/) caused a marked bronchoconstriction and reduced ventilatory flow when compared to pollution exposure at rest. In a situation like the Olympic Games where milliseconds and millimeters often determine the success of athletes, air pollution can be an important factor in affecting their performance. This paper examines possible impacts of air pollution on athletic competition.« less

  4. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  5. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 1: USER'S GUIDE

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  6. Prosthetics socket that incorporates an air splint system focusing on dynamic interface pressure

    PubMed Central

    2014-01-01

    Background The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee’s satisfaction and comfort. This paper presents the design and performance of a new prosthetic socket that uses an air splint system. Methods The air splint prosthetic socket system was implemented by combining the air splint with a pressure sensor that the transhumeral user controls through the use of a microcontroller. The modular construction of the system developed allows the FSR pressure sensors that are placed inside the air splint socket to determine the required size and fitting for the socket used. Fifteen transhumeral amputees participated in the study. Results The subject’s dynamic pressure on the socket that’s applied while wearing the air splint systems was recorded using F-socket transducers and microcontroller analysis. The values collected by the F-socket sensor for the air splint prosthetic socket system were determined accordingly by comparing the dynamic pressure applied using statically socket. The pressure volume of the air splint fluctuated and was recorded at an average of 38 kPa (2.5) to 41 kPa (1.3) over three hours. Conclusion The air splint socket might reduce the pressure within the interface of residual limb. This is particularly important during the daily life activities and may reduce the pain and discomfort at the residual limb in comparison to the static socket. The potential development of an auto-adjusted socket that uses an air splint system as the prosthetic socket will be of interest to researchers involved in rehabilitation engineering, prosthetics and orthotics. PMID:25085005

  7. SWAN: An expert system with natural language interface for tactical air capability assessment

    NASA Technical Reports Server (NTRS)

    Simmons, Robert M.

    1987-01-01

    SWAN is an expert system and natural language interface for assessing the war fighting capability of Air Force units in Europe. The expert system is an object oriented knowledge based simulation with an alternate worlds facility for performing what-if excursions. Responses from the system take the form of generated text, tables, or graphs. The natural language interface is an expert system in its own right, with a knowledge base and rules which understand how to access external databases, models, or expert systems. The distinguishing feature of the Air Force expert system is its use of meta-knowledge to generate explanations in the frame and procedure based environment.

  8. Simulation of unsteady state performance of a secondary air system by the 1D-3D-Structure coupled method

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Li, Peng; Li, Yulong

    2016-02-01

    This paper describes the calculation method for unsteady state conditions in the secondary air systems in gas turbines. The 1D-3D-Structure coupled method was applied. A 1D code was used to model the standard components that have typical geometric characteristics. Their flow and heat transfer were described by empirical correlations based on experimental data or CFD calculations. A 3D code was used to model the non-standard components that cannot be described by typical geometric languages, while a finite element analysis was carried out to compute the structural deformation and heat conduction at certain important positions. These codes were coupled through their interfaces. Thus, the changes in heat transfer and structure and their interactions caused by exterior disturbances can be reflected. The results of the coupling method in an unsteady state showed an apparent deviation from the existing data, while the results in the steady state were highly consistent with the existing data. The difference in the results in the unsteady state was caused primarily by structural deformation that cannot be predicted by the 1D method. Thus, in order to obtain the unsteady state performance of a secondary air system more accurately and efficiently, the 1D-3D-Structure coupled method should be used.

  9. Operational air quality forecasting system for Spain: CALIOPE

    NASA Astrophysics Data System (ADS)

    Baldasano, J. M.; Piot, M.; Jorba, O.; Goncalves, M.; Pay, M.; Pirez, C.; Lopez, E.; Gasso, S.; Martin, F.; García-Vivanco, M.; Palomino, I.; Querol, X.; Pandolfi, M.; Dieguez, J. J.; Padilla, L.

    2009-12-01

    The European Commission (EC) and the United States Environmental Protection Agency (US-EPA) have shown great concerns to understand the transport and dynamics of pollutants in the atmosphere. According to the European directives (1996/62/EC, 2002/3/EC, 2008/50/EC), air quality modeling, if accurately applied, is a useful tool to understand the dynamics of air pollutants, to analyze and forecast the air quality, and to develop programs reducing emissions and alert the population when health-related issues occur. The CALIOPE project, funded by the Spanish Ministry of the Environment, has the main objective to establish an air quality forecasting system for Spain. A partnership of four research institutions composes the CALIOPE project: the Barcelona Supercomputing Center (BSC), the center of investigation CIEMAT, the Earth Sciences Institute ‘Jaume Almera’ (IJA-CSIC) and the CEAM Foundation. CALIOPE will become the official Spanish air quality operational system. This contribution focuses on the recent developments and implementation of the integrated modelling system for the Iberian Peninsula (IP) and Canary Islands (CI) with a high spatial and temporal resolution (4x4 sq. km for IP and 2x2 sq. km for CI, 1 hour), namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM. The HERMES04 emission model has been specifically developed as a high-resolution (1x1 sq. km, 1 hour) emission model for Spain. It includes biogenic and anthropogenic emissions such as on-road and paved-road resuspension production, power plant generation, ship and plane traffic, airports and ports activities, industrial and agricultural sectors as well as domestic and commercial emissions. The qualitative and quantitative evaluation of the model was performed for a reference year (2004) using data from ground-based measurement networks. The products of the CALIOPE system will provide 24h and 48h forecasts for O3, NO2, SO2, CO, PM10 and PM2.5 at surface level. An operational evaluation system has been developed

  10. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  11. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  12. Automation in future air traffic management: effects of decision aid reliability on controller performance and mental workload.

    PubMed

    Metzger, Ulla; Parasuraman, Raja

    2005-01-01

    Future air traffic management concepts envisage shared decision-making responsibilities between controllers and pilots, necessitating that controllers be supported by automated decision aids. Even as automation tools are being introduced, however, their impact on the air traffic controller is not well understood. The present experiments examined the effects of an aircraft-to-aircraft conflict decision aid on performance and mental workload of experienced, full-performance level controllers in a simulated Free Flight environment. Performance was examined with both reliable (Experiment 1) and inaccurate automation (Experiment 2). The aid improved controller performance and reduced mental workload when it functioned reliably. However, detection of a particular conflict was better under manual conditions than under automated conditions when the automation was imperfect. Potential or actual applications of the results include the design of automation and procedures for future air traffic control systems.

  13. High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.

    PubMed

    Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng

    2016-03-24

    The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone Systems

    DTIC Science & Technology

    2017-10-26

    30. Energy Information Agency Natural Gas Price Data ..................................................................................... 65 Figure...different market sectors (residential, commercial, and industrial). Figure 30. Energy Information Agency Natural Gas Price Data 7.2.3 AHU Size...1 FINAL REPORT Converting Constant Volume, Multizone Air Handling Systems to Energy Efficient Variable Air Volume Multizone

  15. Solar energy system performance evaluaton: Seasonal report for Solaron-Akron, Akron, Ohio

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of the solar energy system by Solaron Corporation is described. The system was designed to provide an 1940 square foot floor area with space heating and domestic hot water for a dual-level single family residence in Akron, Ohio. The solar energy system uses air as the heat transport medium, has a 546 square foot flat plate collector array subsystem, a 270 cubic foot rock thermal storage bin subsystem, a domestic hot water preheat tank, pumps, controls and transport lines. In general, the performance of the Solaron Akron solar energy system was somewhat difficult to assess for the November 1978 through October 1979 time period. The problems relating to the control systems, various solar energy leakages, air flow correction factors and instrumentation cause a significant amount of subjectivity to be involved in the performance assessment for this solar energy system. Had these problems not been present, it is felt that this system would have exhibited a resonably high level of measured performance.

  16. [Study on emission standard system of air pollutants].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  17. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  18. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct...

  19. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system ducts and air duct systems. 25.1103 Section 25.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Induction System § 25.1103 Induction system ducts and air duct...

  20. Pan Air Geometry Management System (PAGMS): A data-base management system for PAN AIR geometry data

    NASA Technical Reports Server (NTRS)

    Hall, J. F.

    1981-01-01

    A data-base management system called PAGMS was developed to facilitate the data transfer in applications computer programs that create, modify, plot or otherwise manipulate PAN AIR type geometry data in preparation for input to the PAN AIR system of computer programs. PAGMS is composed of a series of FORTRAN callable subroutines which can be accessed directly from applications programs. Currently only a NOS version of PAGMS has been developed.

  1. Air Force Integrated Personnel and Pay System (AFIPPS)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Air Force Integrated Personnel and Pay System (AFIPPS) Defense Acquisition Management...DSN Fax: 665-1207 Date Assigned: February 1, 2016 Program Information Program Name Air Force Integrated Personnel and Pay System (AFIPPS) DoD...therefore, no Original Estimate has been established. AFIPPS 2016 MAR UNCLASSIFIED 4 Program Description Air Force Integrated Personnel and Pay

  2. Solar energy system performance evaluation report for IBM System 4 at Clinton, Mississippi

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The IBM System 4 Solar Energy System is described and evaluated. The system was designed to provide 35 percent of the space heating and 63 percent of the domestic hot water preheating for a single family residence located within the United States. The system consists of 259 square feet of flat plate air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing. In general, the performance of the system did not meet design expectations, since the overall design solar fraction was 48 percent and the measured value was 32 percent. Although the measured space heating solar fraction at 32 percent did agree favorably with the design space heating solar fraction at 35 percent, the hot water measured solar fraction at 33 percent did not agree favorably with the design hot water solar fraction of 63 percent. In particular collector array air leakage, dust covered collectors, abnormal hot water demand, and the preheat tank by pass valve problem are main reasons for the lower performance.

  3. Human performance modeling for system of systems analytics :soldier fatigue.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawton, Craig R.; Campbell, James E.; Miller, Dwight Peter

    2005-10-01

    The military has identified Human Performance Modeling (HPM) as a significant requirement and challenge of future systems modeling and analysis initiatives as can be seen in the Department of Defense's (DoD) Defense Modeling and Simulation Office's (DMSO) Master Plan (DoD 5000.59-P 1995). To this goal, the military is currently spending millions of dollars on programs devoted to HPM in various military contexts. Examples include the Human Performance Modeling Integration (HPMI) program within the Air Force Research Laboratory, which focuses on integrating HPMs with constructive models of systems (e.g. cockpit simulations) and the Navy's Human Performance Center (HPC) established in Septembermore » 2003. Nearly all of these initiatives focus on the interface between humans and a single system. This is insufficient in the era of highly complex network centric SoS. This report presents research and development in the area of HPM in a system-of-systems (SoS). Specifically, this report addresses modeling soldier fatigue and the potential impacts soldier fatigue can have on SoS performance.« less

  4. Variable volume combustor with an air bypass system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  5. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE PAGES

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    2017-12-30

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  6. Smart ventilation energy and indoor air quality performance in residential buildings: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guyot, Gaelle; Sherman, Max H.; Walker, Iain S.

    To better address energy and indoor air quality issues, ventilation needs to become smarter. A key smart ventilation concept is to use controls to ventilate more at times it provides either an energy or indoor air quality (IAQ) advantage (or both) and less when it provides a disadvantage. A favorable context exists in many countries to include some of the existing smart ventilation strategies in codes and standards. As a result, demand-controlled ventilation (DCV) systems are widely and easily available on the market, with more than 20 DCV systems approved and available in countries such as Belgium, France and themore » Netherlands. This paper provides a literature review on smart ventilation used in residential buildings, based on energy and indoor air quality performance. This meta-analysis includes 38 studies of various smart ventilation systems with control based on CO 2, humidity, combined CO 2 and total volatile organic compounds (TVOC), occupancy, or outdoor temperature. In conclusion, these studies show that ventilation energy savings up to 60% can be obtained without compromising IAQ, even sometimes improving it. However, the meta-analysis included some less than favorable results, with 26% energy overconsumption in some cases.« less

  7. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, J.

    2001-07-09

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations--a college dormitory and a research laboratory--during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systemsmore » were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pilot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous

  8. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  9. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  10. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  11. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  12. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  13. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems, the...

  14. The effect of air entrapment on the performance of squeeze film dampers: Experiments and analysis

    NASA Astrophysics Data System (ADS)

    Diaz Briceno, Sergio Enrique

    Squeeze film dampers (SFDs) are an effective means to introduce the required damping in rotor-bearing systems. They are a standard application in jet engines and are commonly used in industrial compressors. Yet, lack of understanding of their operation has confined the design of SFDs to a costly trial and error process based on prior experience. The main factor deterring the success of analytical models for the prediction of SFDs' performance lays on the modeling of the dynamic film rupture. Usually, the cavitation models developed for journal bearings are applied to SFDs. Yet, the characteristic motion of the SFD results in the entrapment of air into the oil film, thus producing a bubbly mixture that can not be represented by these models. In this work, an extensive experimental study establishes qualitatively and---for the first time---quantitatively the differences between operation with vapor cavitation and with air entrainment. The experiments show that most operating conditions lead to air entrainment and demonstrate the paramount effect it has on the performance of SFDs, evidencing the limitation of currently available models. Further experiments address the operation of SFDs with controlled bubbly mixtures. These experiments bolster the possibility of modeling air entrapment by representing the lubricant as a homogeneous mixture of air and oil and provide a reliable data base for benchmarking such a model. An analytical model is developed based on a homogeneous mixture assumption and where the bubbles are described by the Rayleigh-Plesset equation. Good agreement is obtained between this model and the measurements performed in the SFD operating with controlled mixtures. A complementary analytical model is devised to estimate the amount of air entrained from the balance of axial flows in the film. A combination of the analytical models for prediction of the air volume fraction and of the hydrodynamic pressures renders promising results for prediction of the

  15. Performance Optimization of Irreversible Air Heat Pumps Considering Size Effect

    NASA Astrophysics Data System (ADS)

    Bi, Yuehong; Chen, Lingen; Ding, Zemin; Sun, Fengrui

    2018-06-01

    Considering the size of an irreversible air heat pump (AHP), heating load density (HLD) is taken as thermodynamic optimization objective by using finite-time thermodynamics. Based on an irreversible AHP with infinite reservoir thermal-capacitance rate model, the expression of HLD of AHP is put forward. The HLD optimization processes are studied analytically and numerically, which consist of two aspects: (1) to choose pressure ratio; (2) to distribute heat-exchanger inventory. Heat reservoir temperatures, heat transfer performance of heat exchangers as well as irreversibility during compression and expansion processes are important factors influencing on the performance of an irreversible AHP, which are characterized with temperature ratio, heat exchanger inventory as well as isentropic efficiencies, respectively. Those impacts of parameters on the maximum HLD are thoroughly studied. The research results show that HLD optimization can make the size of the AHP system smaller and improve the compactness of system.

  16. A piloted simulation of helicopter air combat to investigate effects of variations in selected performance and control response characteristics

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.; Mansur, M. Hossein; Chen, Robert T. N.

    1987-01-01

    A piloted simulation study investigating handling qualities and flight characteristics required for helicopter air to air combat is presented. The Helicopter Air Combat system was used to investigate this role for Army rotorcraft. Experimental variables were the maneuver envelope size (load factor and sideslip), directional axis handling qualities, and pitch and roll control-response type. Over 450 simulated, low altitude, one-on-one engagements were conducted. Results from the experiment indicate that a well damped directional response, low sideforce caused by sideslip, and some effective dihedral are all desirable for weapon system performance, good handling qualities, and low pilot workload. An angular rate command system was favored over the attitude type pitch and roll response for most applications, and an enhanced maneuver envelope size over that of current generation aircraft was found to be advantageous. Pilot technique, background, and experience are additional factors which had a significant effect on performance in the air combat tasks investigated. The implication of these results on design requirements for future helicopters is presented.

  17. Airport Information Retrieval System (AIRS) System Support Manual

    DOT National Transportation Integrated Search

    1973-01-01

    This handbook is a support manual for prototype air traffic flow control automation system developed for the FAA's Systems Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load prediction...

  18. Cold Climate and Retrofit Applications for Air-to-Air Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Van D

    2015-01-01

    Air source heat pumps (ASHP) including air-to-air ASHPs are easily applied to buildings almost anywhere for new construction as well as retrofits or renovations. They are widespread in milder climate regions but their use in cold regions is hampered due to low heating efficiency and capacity at cold outdoor temperatures. Retrofitting air-to-air ASHPs to existing buildings is relatively easy if the building already has an air distribution system. For buildings without such systems alternative approaches are necessary. Examples are ductless, minisplit heat pumps or central heat pumps coupled to small diameter, high velocity (SDHV) air distribution systems. This article presentsmore » two subjects: 1) a summary of R&D investigations aimed at improving the cold weather performance of ASHPs, and 2) a brief discussion of building retrofit options using air-to-air ASHP systems.« less

  19. Implementation of a WRF-CMAQ Air Quality Modeling System in Bogotá, Colombia

    NASA Astrophysics Data System (ADS)

    Nedbor-Gross, R.; Henderson, B. H.; Pachon, J. E.; Davis, J. R.; Baublitz, C. B.; Rincón, A.

    2014-12-01

    Due to a continuous economic growth Bogotá, Colombia has experienced air pollution issues in recent years. The local environmental authority has implemented several strategies to curb air pollution that have resulted in the decrease of PM10 concentrations since 2010. However, more activities are necessary in order to meet international air quality standards in the city. The University of Florida Air Quality and Climate group is collaborating with the Universidad de La Salle to prioritize regulatory strategies for Bogotá using air pollution simulations. To simulate pollution, we developed a modeling platform that combines the Weather Research and Forecasting Model (WRF), local emissions, and the Community Multi-scale Air Quality model (CMAQ). This platform is the first of its kind to be implemented in the megacity of Bogota, Colombia. The presentation will discuss development and evaluation of the air quality modeling system, highlight initial results characterizing photochemical conditions in Bogotá, and characterize air pollution under proposed regulatory strategies. The WRF model has been configured and applied to Bogotá, which resides in a tropical climate with complex mountainous topography. Developing the configuration included incorporation of local topography and land-use data, a physics sensitivity analysis, review, and systematic evaluation. The threshold, however, was set based on synthesis of model performance under less mountainous conditions. We will evaluate the impact that differences in autocorrelation contribute to the non-ideal performance. Air pollution predictions are currently under way. CMAQ has been configured with WRF meteorology, global boundary conditions from GEOS-Chem, and a locally produced emission inventory. Preliminary results from simulations show promising performance of CMAQ in Bogota. Anticipated results include a systematic performance evaluation of ozone and PM10, characterization of photochemical sensitivity, and air

  20. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  1. Dynamic Analysis of a Rotor System Supported on Squeeze Film Damper with Air Entrainment

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Han, Bingbing; Zhang, Kunpeng; Ding, Qian

    2017-12-01

    Squeeze film dampers (SFDs) are widely used in compressors and turbines to suppress the vibration while traversing critical speeds. In practical applications, air ingestion from the outside environment and cavitation may lead to a foamy lubricant that weakens oil film damping and dynamic performance of rotor system. In this paper, a rigid rotor model is established considering both lateral and pitching vibration under different imbalance excitations to evaluate the effect of air entrainment on rotor system. Tests with three different imbalances are carried out on a rotor-SFD apparatus. Volume controlled air in mixture ranging from pure oil to all air are supplied to the SFD. The transient response of rotor is measured in the experiments. The results show that two-phase flow produces significant influence on the system stability and dynamical response. The damping properties are weakened by entrained air, such as the damping on high frequency components of rolling ball bearing. Super-harmonic resonance and bifurcation are observed, as well as the low frequency components due to air entrainment.

  2. Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1991-01-01

    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).

  3. Target Acquisition Performance of a Satellite Based Multiple Access Surveillance System

    DOT National Transportation Integrated Search

    1975-03-01

    A quantitative description of the detection performance of a satellite-based surveillance system is presented. This system is one which has been proposed for CONUS coverage in an advanced air traffic control system. In addition, the computer program ...

  4. Effect of vehicle type on the performance of second generation air bags for child occupants.

    PubMed

    Arbogast, Kristy B; Durbin, Dennis R; Kallan, Michael J; Winston, Flaura K

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars - those children exposed to second-generation air bags were half as likely to sustain a serious injury - and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs.

  5. Effect of Vehicle type on the Performance of Second Generation Air Bags for Child Occupants

    PubMed Central

    Arbogast, Kristy B.; Durbin, Dennis R.; Kallan, Michael J.; Winston, Flaura K.

    2003-01-01

    Passenger air bags experienced considerable design modification in the late 1990s, principally to mitigate risks to child passengers. This study utilized Data from the Partners for Child Passenger Safety study, a large-scale child-focused crash surveillance system, to examine the effect of vehicle type on the differential performance of first and second generation air bags on injuries to restrained children in frontal impact crashes. Our results show that the benefit of second-generation air bags was seen in passenger cars – those children exposed to second-generation air bags were half as likely to sustain a serious injury – and minivans. However, in SUVs the data suggest no reduction in injury risk with the new designs. This field data provides crucial real-world experience to the automotive industry as they work towards the next generation of air bag designs. PMID:12941218

  6. The study of operating an air conditioning system using Maisotsenko-Cycle

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  7. Variable speed gas engine-driven air compressor system

    NASA Astrophysics Data System (ADS)

    Morgan, J. R.; Ruggles, A. E.; Chen, T. N.; Gehret, J.

    1992-11-01

    Tecogen Inc. and Ingersoll-Rand Co. as a subcontractor have designed a nominal 150-hp gas engine-driven air compressor utilizing the TECODRIVE 8000 engine and the Ingersoll-Rand 178.5-mm twin screw compressor. Phase 1 included the system engineering and design, economic and applications studies, and a draft commercialization plan. Phase 2 included controls development, laboratory prototype construction, and performance testing. The testing conducted verified that the compressor meets all design specifications.

  8. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand

  9. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  10. A PERFORMANCE EVALUATION OF THE ETA- CMAQ AIR QUALITY FORECAST SYSTEM FOR THE SUMMER OF 2005

    EPA Science Inventory

    This poster presents an evaluation of the Eta-CMAQ Air Quality Forecast System's experimental domain using O3 observations obtained from EPA's AIRNOW program and a suite of statistical metrics examining both discrete and categorical forecasts.

  11. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  12. Transportation Air Pollution Studies (TAPS) System

    DOT National Transportation Integrated Search

    1974-03-01

    This report describes the Transportation Air Pollution Studies (TAPS) Data Base and the Software System which has been developed in association with it. : The TAPS Data Base will be used to store the transportation air pollution data (including emiss...

  13. The Aviation Performance Measuring System (APMS): An Integrated Suite of Tools for Measuring Performance and Safety

    NASA Technical Reports Server (NTRS)

    Statler, Irving C.; Connor, Mary M. (Technical Monitor)

    1998-01-01

    This is a report of work in progress. In it, I summarize the status of the research and development of the Aviation Performance Measuring System (APMS) for managing, processing, and analyzing digital flight-recorded data, The objectives of the NASA-FAA APMS research project are to establish a sound scientific and technological basis for flight-data analysis, to define an open and flexible architecture for flight-data analysis systems, and to articulate guidelines for a standardized database structure on which to continue to build future flight-data-analysis extensions. APMS offers to the air transport community an open, voluntary standard for flight-data-analysis software; a standard that will help to ensure suitable functionality and data interchangeability among competing software programs. APMS will develop and document the methodologies, algorithms, and procedures for data management and analyses to enable users to easily interpret the implications regarding safety and efficiency of operations. APMS does not entail the implementation of a nationwide flight-data-collection system. It is intended to provide technical tools to ease the large-scale implementation of flight-data analyses at both the air-carrier and the national-airspace levels in support of their Flight Operations and Quality Assurance (FOQA) Programs and Advanced Qualifications Programs (AQP). APMS cannot meet its objectives unless it develops tools that go substantially beyond the capabilities of the current commercially available software and supporting analytic methods that are mainly designed to count special events. These existing capabilities, while of proven value, were created primarily with the needs-of aircrews in mind. APMS tools must serve the needs of the government and air carriers, as well as aircrews, to fully support the FOQA and AQP programs. They must be able to derive knowledge not only through the analysis of single flights (special-event detection), but also through

  14. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The...

  15. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The...

  16. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  17. High performance dash on warning air mobile, missile system. [intercontinental ballistic missiles - systems analysis

    NASA Technical Reports Server (NTRS)

    Levin, A. D.; Castellano, C. R.; Hague, D. S.

    1975-01-01

    An aircraft-missile system which performs a high acceleration takeoff followed by a supersonic dash to a 'safe' distance from the launch site is presented. Topics considered are: (1) technological feasibility to the dash on warning concept; (2) aircraft and boost trajectory requirements; and (3) partial cost estimates for a fleet of aircraft which provide 200 missiles on airborne alert. Various aircraft boost propulsion systems were studied such as an unstaged cryogenic rocket, an unstaged storable liquid, and a solid rocket staged system. Various wing planforms were also studied. Vehicle gross weights are given. The results indicate that the dash on warning concept will meet expected performance criteria, and can be implemented using existing technology, such as all-aluminum aircraft and existing high-bypass-ratio turbofan engines.

  18. An analysis of radio frequency surveillance systems for air traffic control volume II: appendixes

    DOT National Transportation Integrated Search

    1976-02-01

    Performance criteria that afford quantitative evaluation of a variety of current and proposed configurations of the Air Traffic Control Radar Beacon System (ATCRBS) are described in detail. Two analytic system models are developed to allow applicatio...

  19. Study toward high-performance thermally driven air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru

    2017-01-01

    The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.

  20. Solar air heating system: design and dynamic simulation

    NASA Astrophysics Data System (ADS)

    Bououd, M.; Hachchadi, O.; Janusevicius, K.; Martinaitis, V.; Mechaqrane, A.

    2018-05-01

    The building sector is one of the big energy consumers in Morocco, accounting for about 23% of the country’s total energy consumption. Regarding the population growth, the modern lifestyle requiring more comfort and the increase of the use rate of electronic devices, the energy consumption will continue to increase in the future. In this context, the introduction of renewable energy systems, along with energy efficiency, is becoming a key factor in reducing the energy bill of buildings. This study focuses on the design and dynamic simulation of an air heating system for the mean categories of the tertiary sector where the area exceeds 750 m3. Heating system has been designed via a dynamic simulation environment (TRNSYS) to estimate the produced temperature and airflow rate by one system consisting of three essential components: vacuum tube solar collector, storage tank and water-to-air finned heat exchanger. The performances estimation of this system allows us to evaluate its capacity to meet the heating requirements in Ifrane city based on the prescriptive approach according to the Moroccan Thermal Regulation. The simulation results show that in order to maintain a comfort temperature of 20°C in a building of 750m3, the places requires a thermal powers of approximately 21 kW, 29 kW and 32 kW, respectively, for hotels, hospitals, administrative and public-school. The heat generation is ensured by a solar collector areas of 5 m², 7 m² and 10 m², respectively, for hotels, hospitals, administrative and public-school spaces, a storage tank of 2 m3 and a finned heat exchanger with 24 tubes. The finned tube bundles have been modelled and integrated into the system design via a Matlab code. The heating temperature is adjusted via two controllers to ensure a constant air temperature of 20°C during the heating periods.

  1. Integrated air stream micromixer for performing bioanalytical assays on a plastic chip.

    PubMed

    Geissler, Matthias; Li, Kebin; Zhang, Xuefeng; Clime, Liviu; Robideau, Gregg P; Bilodeau, Guillaume J; Veres, Teodor

    2014-10-07

    This paper describes the design, functioning and use of an integrated mixer that relies on air flux to agitate microliter entities of fluid in an embedded microfluidic cavity. The system was fabricated from multiple layers of a thermoplastic elastomer and features circuits for both liquid and air supply along with pneumatic valves for process control. Internally-dyed polymer particles have been used to visualize flow within the fluid phase during agitation. Numerical modelling of the micromixer revealed an overall efficacy of 10(-1) to 10(-2) for momentum transfer at the air-water interface. Simulation of air vortex dynamics showed dependency of the flow pattern on the velocity of the flux entering the cavity. Three bioanalytical assays have been performed as proof-of-concept demonstrations. In a first assay, cells of Listeria monocytogenes were combined with magnetic nanoparticles (NPs), resulting in high-density coverage of the bacteria's surface with NPs after 1 min of agitation. This finding is contrasted by a control experiment without agitation for which interaction between bacteria and NPs remains low. In a second one, capture and release of genomic DNA from fungi through adsorption onto magnetic beads was tested and shown to be improved by agitation compared to non-agitated controls. A third assay finally involved fluorescently-labelled target oligonucleotide strands and polystyrene particles modified with DNA capture probes to perform detection of nucleic acids on beads. Excellent selectivity was obtained in a competitive hybridization process using a multiplexed micromixer chip design.

  2. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  3. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 3: PROGRAMMER'S MAINTENANCE MANUAL

    EPA Science Inventory

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  4. Air conditioning system and component therefore distributing air flow from opposite directions

    NASA Technical Reports Server (NTRS)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  5. Data on performance of air stripping tower- PAC integrated system for removing of odor, taste, dye and organic materials from drinking water-A case study in Saqqez, Iran.

    PubMed

    Pirsaheb, Meghdad; Mohammadi, Jalil; Khosravi, Touba; Sharafi, Hooshmnd; Moradi, Masoud

    2018-06-01

    Unpleasant taste or smell are more importantly constituents of drinking-water, lead to complaints from consumers. Dye and organic matter as well change in disinfection practice may generate taste and an odorous compound in treated water. According to low efficiency of conventional methods to remove taste and odor compounds, present study was aimed to evaluate the performance of air stripping tower- Poly Aluminum Chloride (PAC) integrated system to remove odor and taste, dye and organic materials from drinking water. Different air to water ratio and PAC doses were used to remove considered parameters in certain condition. The results of this study indicated that the maximum removal efficiency of 86.2, 76.47, 58.46 and 41.27% of taste and odor, dye, COD and TOC were achieved by the air stripping tower- PAC integrated system, respectively. However, the physico-chemical characteristics of water and adsorbent effect on the of substances removal efficiency considerably. It can be stated that the air striping tower - PAC integrated system is able to reduce the odor and taste-causing substances and organic matter to a level which is recommended by the Institute of Standards and Industrial Research of Iran.

  6. PERFORMANCE AND DIAGNOSTIC EVALUATION OF OZONE PREDICTIONS BY THE ETA-COMMUNITY MULTISCALE AIR QUALITY FORECAST SYSTEM DURING THE 2002 NEW ENGLAND AIR QUALITY STUDY

    EPA Science Inventory

    A real-time air quality forecasting system (Eta-CMAQ model suite) has been developed by linking the NCEP Eta model to the U.S. EPA CMAQ model. This work presents results from the application of the Eta-CMAQ modeling system for forecasting O3 over the northeastern U.S d...

  7. Technology options for an enhanced air cargo system

    NASA Technical Reports Server (NTRS)

    Winston, M. M.

    1979-01-01

    A view of potential enhancements to the air cargo system through technology application is provided. NASA's role in addressing deficiencies of the current civil and military air cargo systems is outlined. The evolution of conventional airfreighter design is traced and projected through the 1990's. Also, several advanced airfreighter concepts incorporating unconventional design features are described to show their potentials benefits. A number of ongoing NASA technology programs are discussed to indicate the wide range of advanced technologies offering potential benefits to the air cargo system. The promise of advanced airfreighters is then viewed in light of the future air cargo infrastructure predicted by extensive systems studies. The derived outlook concludes that the aircraft technology benefits may be offset somewhat by adverse economic, environmental, and institutional constraints.

  8. Computer-Assisted Performance Evaluation for Navy Anti-Air Warfare Training: Concepts, Methods, and Constraints.

    ERIC Educational Resources Information Center

    Chesler, David J.

    An improved general methodological approach for the development of computer-assisted evaluation of trainee performance in the computer-based simulation environment is formulated in this report. The report focuses on the Tactical Advanced Combat Direction and Electronic Warfare system (TACDEW) at the Fleet Anti-Air Warfare Training Center at San…

  9. Air Force Systems Command Research Planning Guide (Research Objectives).

    DTIC Science & Technology

    1987-07-15

    potential for producing alloys with superior properties. Titanium and Iron Aluminides - Basic research to identify approaches leading to the formation...performance of ni’.kel, aluminumr,, and titanium alloys and ceramics are required to provide future Air Force weapon systems components with structural...seriously block full exploitat,on. Aluminum and Titanium Alloys - Three generic families of Pylie-,7 alloys are being investigated for both alloy

  10. Performance Confirmation Data Aquisition System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.W. Markman

    2000-10-27

    The purpose of this analysis is to identify and analyze concepts for the acquisition of data in support of the Performance Confirmation (PC) program at the potential subsurface nuclear waste repository at Yucca Mountain. The scope and primary objectives of this analysis are to: (1) Review the criteria for design as presented in the Performance Confirmation Data Acquisition/Monitoring System Description Document, by way of the Input Transmittal, Performance Confirmation Input Criteria (CRWMS M&O 1999c). (2) Identify and describe existing and potential new trends in data acquisition system software and hardware that would support the PC plan. The data acquisition softwaremore » and hardware will support the field instruments and equipment that will be installed for the observation and perimeter drift borehole monitoring, and in-situ monitoring within the emplacement drifts. The exhaust air monitoring requirements will be supported by a data communication network interface with the ventilation monitoring system database. (3) Identify the concepts and features that a data acquisition system should have in order to support the PC process and its activities. (4) Based on PC monitoring needs and available technologies, further develop concepts of a potential data acquisition system network in support of the PC program and the Site Recommendation and License Application.« less

  11. Performance, Performance System, and High Performance System

    ERIC Educational Resources Information Center

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  12. Compressed Air System Overhaul Improves Production at a Powdered Metal Manufacturing Plant (GKN Sinter Metals in Salem, IN)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 1998, GKN Sinter Metals completed a successful compressed air system improvement project at its Salem, Indiana manufacturing facility. The project was performed after GKN undertook a survey of its system in order to solve air quality problems and to evaluate whether the capacity of their compressed air system would meet their anticipated plant expansion. Once the project was implemented, the plant was able to increase production by 31% without having to add any additional compressor capacity.

  13. Unmanned Aerial Systems: Further Actions Needed to Fully Address Air Force and Army Pilot Workforce Challenges

    DTIC Science & Technology

    2016-03-16

    UNMANNED AERIAL SYSTEMS Further Actions Needed to Fully Address Air Force and Army Pilot Workforce Challenges...Armed Services, U.S. Senate March 16, 2016 UNMANNED AERIAL SYSTEMS Further Actions Needed to Fully Address Air Force and Army Pilot Workforce ...High-performing organizations use complete and current data to inform their strategic human capital planning and remain open to reevaluating workforce

  14. Positioning and Microvibration Control by Electromagnets of an Air Spring Vibration Isolation System

    NASA Technical Reports Server (NTRS)

    Watanabe, Katsuhide; Cui, Weimin; Haga, Takahide; Kanemitsu, Yoichi; Yano, Kenichi

    1996-01-01

    Active positioning and microvibration control has been attempted by electromagnets equipped in a bellows-type, air-spring vibration isolation system. Performance tests have been carried out to study the effects. The main components of the system's isolation table were four electromagnetic actuators and controllers. The vibration isolation table was also equipped with six acceleration sensors for detecting microvibration of the table. The electromagnetic actuators were equipped with bellows-type air springs for passive support of the weight of the item placed on the table, with electromagnets for active positioning, as well as for microvibration control, and relative displacement sensors. The controller constituted a relative feedback system for positioning control and an absolute feedback system for vibration isolation control. In the performance test, a 1,490 kg load (net weight of 1,820 kg) was placed on the vibration isolation table, and both the positioning and microvibration control were carried out electromagnetically. Test results revealed that the vibration transmission was reduced by 95%.

  15. Air-Bearing-Piston Suspension System

    NASA Technical Reports Server (NTRS)

    Mullen, Donald; Bishop, Stephen J.

    1992-01-01

    Suspension system based on air-bearing piston holds up steel ball against gravitation while allowing ball to translate vertically and rotate freely. System designed to simulate effect of microgravity on ball. Applicable to suppression of vibrations and delicate machining processes.

  16. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  17. Boeing engineers perform air flow balance testing.

    NASA Image and Video Library

    2017-10-05

    Boeing engineers, Chris Chapman, left, Greg Clark, center, and Ashesh Patel, right, perform air flow balance testing on NASA's new Basic Express Racks. The racks, developed at Marshall, will expand the capabilities for science research aboard the International Space Station. Delivery to the station is scheduled for late 2018.

  18. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.

    PubMed

    Ghaemi, Z; Alimohammadi, A; Farnaghi, M

    2018-04-20

    Due to critical impacts of air pollution, prediction and monitoring of air quality in urban areas are important tasks. However, because of the dynamic nature and high spatio-temporal variability, prediction of the air pollutant concentrations is a complex spatio-temporal problem. Distribution of pollutant concentration is influenced by various factors such as the historical pollution data and weather conditions. Conventional methods such as the support vector machine (SVM) or artificial neural networks (ANN) show some deficiencies when huge amount of streaming data have to be analyzed for urban air pollution prediction. In order to overcome the limitations of the conventional methods and improve the performance of urban air pollution prediction in Tehran, a spatio-temporal system is designed using a LaSVM-based online algorithm. Pollutant concentration and meteorological data along with geographical parameters are continually fed to the developed online forecasting system. Performance of the system is evaluated by comparing the prediction results of the Air Quality Index (AQI) with those of a traditional SVM algorithm. Results show an outstanding increase of speed by the online algorithm while preserving the accuracy of the SVM classifier. Comparison of the hourly predictions for next coming 24 h, with those of the measured pollution data in Tehran pollution monitoring stations shows an overall accuracy of 0.71, root mean square error of 0.54 and coefficient of determination of 0.81. These results are indicators of the practical usefulness of the online algorithm for real-time spatial and temporal prediction of the urban air quality.

  19. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  20. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  1. Selecting HVAC Systems for Schools To Balance the Needs for Indoor Air Quality, Energy Conservation and Maintenance. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.; Kunz, Walter S., Jr.

    Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…

  2. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  3. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  4. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and

  5. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and their accessories must supply the air required by that engine and auxiliary power unit and their... cowling if the emergence of backfire flames will result in a hazard. (3) The supplying of air to the engine through the alternate air intake system may not result in a loss of excessive power in addition to...

  6. Highly integrated system solutions for air conditioning.

    PubMed

    Bartz, Horst

    2002-08-01

    Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

  7. HF Propagation sensitivity study and system performance analysis with the Air Force Coverage Analysis Program (AFCAP)

    NASA Astrophysics Data System (ADS)

    Caton, R. G.; Colman, J. J.; Parris, R. T.; Nickish, L.; Bullock, G.

    2017-12-01

    The Air Force Research Laboratory, in collaboration with NorthWest Research Associates, is developing advanced software capabilities for high fidelity simulations of high frequency (HF) sky wave propagation and performance analysis of HF systems. Based on the HiCIRF (High-frequency Channel Impulse Response Function) platform [Nickisch et. al, doi:10.1029/2011RS004928], the new Air Force Coverage Analysis Program (AFCAP) provides the modular capabilities necessary for a comprehensive sensitivity study of the large number of variables which define simulations of HF propagation modes. In this paper, we report on an initial exercise of AFCAP to analyze the sensitivities of the tool to various environmental and geophysical parameters. Through examination of the channel scattering function and amplitude-range-Doppler output on two-way propagation paths with injected target signals, we will compare simulated returns over a range of geophysical conditions as well as varying definitions for environmental noise, meteor clutter, and sea state models for Bragg backscatter. We also investigate the impacts of including clutter effects due to field-aligned backscatter from small scale ionization structures at varied levels of severity as defined by the climatologically WideBand Model (WBMOD). In the absence of additional user provided information, AFCAP relies on International Reference Ionosphere (IRI) model to define the ionospheric state for use in 2D ray tracing algorithms. Because the AFCAP architecture includes the option for insertion of a user defined gridded ionospheric representation, we compare output from the tool using the IRI and ionospheric definitions from assimilative models such as GPSII (GPS Ionospheric Inversion).

  8. Cavity Enhanced Spectrometer performance assessment for greenhouse gas dry mole fraction measurement in humid air.

    NASA Astrophysics Data System (ADS)

    Laurent, Olivier; Yver Kwok, Camille; Guemri, Ali; Philippon, Carole; Rivier, Leonard; Ramonet, Michel

    2017-04-01

    Due to the high variability of the water vapor content in the atmosphere, the mole fraction of trace gas such as greenhouse gas (GHG) in the atmosphere is usually presented as mole fraction in dry air. In consequence, the first technology used for GHG measurement, gas chromatography or non-dispersive infra-red spectroscopy, required to dry the air sample prior to analysis at a dew point lower than -50°C. The emergence of new GHG analyzers using infrared Enhanced Cavity Spectroscopy which measure the water vapor content in the air sample, allows providing the dry mole fraction of GHG without any drying system upstream by applying appropriate correction of the water vapor effects (dilution, pressure broadening…). In the framework of ICOS, a European research infrastructure aiming to provide harmonized high precision data for advanced research on carbon cycle and GHG budgets over Europe, the Metrology Lab of the Atmosphere Thematic Centre (ATC), located at LSCE in France, is mainly dedicated to elaborating measurement protocols and evaluating performance of GHG analyzers. Among the different tests conducted to characterize the metrological performance, the Metrology Lab focuses on the water vapor correction to apply on the GHG measurement. Most of the analyzers tested at the Metrology Lab are based on Cavity Enhanced Spectroscopy measuring the ICOS mandatory species, CO2, CH4 and CO. This presentation presents the results of the performance assessment of the manufacturer built-in water vapor correction and the possible improvement. Thanks to the large number of instrument tested, the presentation provides a performance overview of the GHG analyzers deployed in the ICOS atmospheric station network. Finally the performance of the water vapor correction will be discussed in regard of the performance obtained by using a drying system.

  9. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  10. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  11. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  12. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  13. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Incumbent commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.859 Incumbent commercial aviation air-ground systems. This section contains rules concerning...

  14. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 5. System Description

    DTIC Science & Technology

    1976-03-01

    ORGANIZATION AIR FORCE SYSTEMS COMMAND LOS ANGELES, CALIFORNIA 90009 339 /* nr ■■■■’ ■■ - -— MkteÄä^HlÜtilÜ • i T-^-’-^w^:—v-T^^-vwr-« -.— ^■.».,𔃾...NUMBER T CONTRACT OR CHANT NUMBER,«) F04701-75-C-0n4 9 PERFORMING ORGANIZATION NAM« AND ADDRESS SYSTEM DEVELOPMENT CORPORATION 2500 Colorado...22 Current AFGWC Organizational Structure 68 23 Operations Staff Organization 70 24 Satellite Data Processing Branch Organization 71 25 Data

  15. Development and Validation of a UAV Based System for Air Pollution Measurements

    PubMed Central

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-01-01

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection. PMID:28009820

  16. Development and Validation of a UAV Based System for Air Pollution Measurements.

    PubMed

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-12-21

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  17. Small photovoltaic setup for the air conditioning system

    NASA Astrophysics Data System (ADS)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  18. Air pollution control system research: An iterative approach to developing affordable systems

    NASA Technical Reports Server (NTRS)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  19. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  20. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben; Bohac, Dave; McAlpine, Jack

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loadsmore » for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.« less

  1. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenbauer, Ben; Bohac, Dave; McAlpine, Jake

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loadsmore » for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.« less

  2. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performancemore » of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  3. Measured Performance of a Varied Airflow Small-Diameter Duct System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew

    2017-03-01

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measuremore » of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.« less

  4. Measured Performance of a Varied Airflow Small-Diameter Duct System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poerschke, Andrew

    This study tests the performance of a variable airflow small-diameter duct heating, ventilation, and air conditioning (HVAC) system in a new construction unoccupied low-load test house in Pittsburgh, Pennsylvania. The duct system was installed entirely in conditioned space and was operated from the winter through summer seasons. Measurements were collected on the in-room temperatures and energy consumed by the air handler and heat pump unit. Operation modes with three different volumes of airflow were compared to determine the ideal airflow scenario that maximizes room-to-room thermal uniformity while minimizing fan energy consumption. Black felt infrared imagery was used as a measuremore » of diffuser throw and in-room air mixing. Measured results indicate the small-diameter, high velocity airflow system can provide comfort under some conditions. Solar heat gains resulted in southern rooms drifting beyond acceptable temperature limits. Insufficient airflow to some bedrooms also resulted in periods of potential discomfort. Homebuilders or HVAC contractors can use these results to assess whether this space conditioning strategy is an attractive alternative to a traditional duct system. The team performed a cost analysis of two duct system configurations: (1) a conventional diameter and velocity duct system, and (2) the small-diameter duct system. This work applies to both new and retrofit homes that have achieved a low heating and cooling density either by energy conservation or by operation in a mild climate with few heating or cooling degree days. Guidance is provided on cost trade-offs between the conventional duct system and the small-diameter duct system.« less

  5. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  6. Application of AirCell Cellular AMPS Network and Iridium Satellite System Dual Mode Service to Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Shamma, Mohammed A.

    2004-01-01

    The AirCell/Iridium dual mode service is evaluated for potential applications to Air Traffic Management (ATM) communication needs. The AirCell system which is largely based on the Advanced Mobile Phone System (AMPS) technology, and the Iridium FDMA/TDMA system largely based on the Global System for Mobile Communications(GSM) technology, can both provide communication relief for existing or future aeronautical communication links. Both have a potential to serve as experimental platforms for future technologies via a cost effective approach. The two systems are well established in the entire CONUS and globally hence making it feasible to utilize in all regions, for all altitudes, and all classes of aircraft. Both systems have been certified for air usage. The paper summarizes the specifications of the AirCell/Iridium system, as well as the ATM current and future links, and application specifications. the paper highlights the scenarios, applications, and conditions under which the AirCell/Iridium technology can be suited for ATM Communication.

  7. Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance

    DTIC Science & Technology

    2017-04-26

    AFRL-SA-WP-SR-2017-0008 Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance Dina...July 2014 – November 2016 4. TITLE AND SUBTITLE Impact of Hypobarism During Simulated Transport on Critical Care Air Transport Team Performance 5a...During Critical Care Air Transport Team Advanced Course validation, three-member teams consisting of a physician, nurse, and respiratory therapist

  8. Thermal performance of complex fenestration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carpenter, S.C.; Elmahdy, A.H.

    1994-12-31

    The thermal performance (i.e., U-factor) of four complex fenestration systems is examined using computer simulation tools and guarded hot box testing. The systems include a flat glazed skylight, a domed or bubble skylight, a greenhouse window, and a curtain wall. The extra care required in performing simulation and testing of these complex products is described. There was good agreement (within 10%) between test and simulation for two of the four products. The agreement was slightly poorer (maximum difference of 16%) for the two high-heat-transfer products: the domed skylight and the greenhouse window. Possible causes for the larger discrepancy in thesemore » projecting window products are uncertainties in the inside and outside film coefficients and lower warm-side air temperatures because of stagnant airflow.« less

  9. THE EMISSION PROCESSING SYSTEM FOR THE ETA/CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of th...

  10. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  11. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  12. Low-cost inflatable lighter-than-air surveillance system for civilian applications

    NASA Astrophysics Data System (ADS)

    Kiddy, Jason S.; Chen, Peter C.; Niemczuk, John B.

    2002-08-01

    Today's society places an extremely high price on the value of human life and injury. Whenever possible, police and paramilitary actions are always directed towards saving as many lives as possible, whether it is the officer, perpetrator, or innocent civilians. Recently, the advent of robotic systems has enable law enforcement agencies to perform many of the most dangerous aspects of their jobs from relative safety. This is especially true to bomb disposal units but it is also gaining acceptance in other areas. An area where small, remotely operated machines may prove effective is in local aerial surveillance. Currently, the only aerial surveillance assets generally available to law enforcement agencies are costly helicopters. Unfortunately, most of the recently developed unmanned air vehicles (UAVs) are directed towards military applications and have limited civilian use. Systems Planning and Analysis, Inc. (SPA) has conceived and performed a preliminary analysis of a low-cost, inflatable, lighter- than-air surveillance system that may be used in a number of military and law enforcement surveillance situations. The preliminary analysis includes the concept definition, a detailed trade study to determine the optimal configuration of the surveillance system, high-pressure inflation tests, and a control analysis. This paper will provide the details in these areas of the design and provide an insight into the feasibility of such a system.

  13. Air Pollution and Its Effects on an Individual's Health and Exercise Performance.

    ERIC Educational Resources Information Center

    Singh, A. I. Clifford

    1988-01-01

    Air Pollution is a common environmental stressor affecting the training and competitive performance of athletes, commonly irritating the eyes, nose, and throat. The health and exercise effects of such primary and secondary air pollutants as carbon monoxide, sulfur dioxide, air particulates, ozone, and nitrogen dioxide are discussed. (CB)

  14. Ultraclean air for prevention of postoperative infection after posterior spinal fusion with instrumentation: a comparison between surgeries performed with and without a vertical exponential filtered air-flow system.

    PubMed

    Gruenberg, Marcelo F; Campaner, Gustavo L; Sola, Carlos A; Ortolan, Eligio G

    2004-10-15

    This study retrospectively compared infection rates between adult patients after posterior spinal instrumentation procedures performed in a conventional versus an ultraclean air operating room. To evaluate if the use of ultraclean air technology could decrease the infection rate after posterior spinal arthrodesis with instrumentation. Postoperative wound infection after posterior arthrodesis remains a feared complication in spinal surgery. Although this frequent complication results in a significant problem, the employment of ultraclean air technology, as it is commonly used for arthroplasty, has not been reported as a possible alternative to reduce the infection rate after complex spine surgery. One hundred seventy-nine patients having posterior spinal fusion with instrumentation were divided into 2 groups: group I included 139 patients operated in a conventional operating room, and group II included 40 patients operated in a vertical laminar flow operating room. Patient selection was performed favoring ultraclean air technology for elective cases in which high infection risk was considered. A statistical analysis of the infection rate and its associated risk factors between both groups was assessed. We observed 18 wound infections in group I and 0 in group II. Comparison of infection rates using the chi-squared test showed a statistically significant difference (P <0.017). The use of ultraclean air technology reduced the infection rate after complex spinal procedures and appears to be an interesting alternative that still needs to be prospectively studied with a randomized protocol.

  15. Defect detection performance of the UCSD non-contact air-coupled ultrasonic guided wave inspection of rails prototype

    NASA Astrophysics Data System (ADS)

    Mariani, Stefano; Nguyen, Thompson V.; Sternini, Simone; Lanza di Scalea, Francesco; Fateh, Mahmood; Wilson, Robert

    2016-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype using an ultrasonic air-coupled guided wave signal generation and air-coupled signal detection, paired with a real-time statistical analysis algorithm, has been realized. This system requires a specialized filtering approach based on electrical impedance matching due to the inherently poor signal-to-noise ratio of air-coupled ultrasonic measurements in rail steel. Various aspects of the prototype have been designed with the aid of numerical analyses. In particular, simulations of ultrasonic guided wave propagation in rails have been performed using a Local Interaction Simulation Approach (LISA) algorithm. The system's operating parameters were selected based on Receiver Operating Characteristic (ROC) curves, which provide a quantitative manner to evaluate different detection performances based on the trade-off between detection rate and false positive rate. The prototype based on this technology was tested in October 2014 at the Transportation Technology Center (TTC) in Pueblo, Colorado, and again in November 2015 after incorporating changes based on lessons learned. Results from the 2015 field test are discussed in this paper.

  16. Airborne rotary air separator study

    NASA Technical Reports Server (NTRS)

    Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.

    1990-01-01

    Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.

  17. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototypemore » measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s -1 (12.6 km h -1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.« less

  18. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  19. 75 FR 23589 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA AGENCY: Coast Guard, DHS... Washington, WA for the annual Seafair Blue Angels Air Show from 10 a.m. on August 5, 2010 to 6 p.m. on August... Washington for the annual Seafair Blue Angels Air Show Performance. The Coast Guard will enforce the safety...

  20. Monitoring Air Quality over China: Evaluation of the modeling system of the PANDA project

    NASA Astrophysics Data System (ADS)

    Bouarar, Idir; Katinka Petersen, Anna; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Xuemei; Fan, Qi; Wang, Lili

    2015-04-01

    Air pollution has become a pressing problem in Asia and specifically in China due to rapid increase in anthropogenic emissions related to growth of China's economic activity and increasing demand for energy in the past decade. Observed levels of particulate matter and ozone regularly exceed World Health Organization (WHO) air quality guidelines in many parts of the country leading to increased risk of respiratory illnesses and other health problems. The EU-funded project PANDA aims to establish a team of European and Chinese scientists to monitor air pollution over China and elaborate air quality indicators in support of European and Chinese policies. PANDA combines state-of-the-art air pollution modeling with space and surface observations of chemical species to improve methods for monitoring air quality. The modeling system of the PANDA project follows a downscaling approach: global models such as MOZART and MACC system provide initial and boundary conditions to regional WRF-Chem and EMEP simulations over East Asia. WRF-Chem simulations at higher resolution (e.g. 20km) are then performed over a smaller domain covering East China and initial and boundary conditions from this run are used to perform simulations at a finer resolution (e.g. 5km) over specific megacities like Shanghai. Here we present results of model simulations for January and July 2010 performed during the first year of the project. We show an intercomparison of the global (MACC, EMEP) and regional (WRF-Chem) simulations and a comprehensive evaluation with satellite measurements (NO2, CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) at several surface stations. Using the WRF-Chem model, we demonstrate that model performance is influenced not only by the resolution (e.g. 60km, 20km) but also the emission inventories used (MACCity, HTAPv2), their resolution and diurnal variation, and the choice of initial and boundary conditions (e.g. MOZART, MACC analysis).

  1. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Bing; Ge, Xiaoming; Goh, F. W. Thomas; Hor, T. S. Andy; Geng, Dongsheng; Du, Guojun; Liu, Zhaolin; Zhang, Jie; Liu, Xiaogang; Zong, Yun

    2015-01-01

    An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization and a post annealing process in air at a moderate temperature. Electrochemical studies suggest that the nanohybrid material effectively catalyzes oxygen reduction reaction via an ideal 4-electron transfer process and outperforms Pt/C in catalyzing oxygen evolution reactions. Accordingly, the prototype ZnABs exhibit a low discharge-charge voltage gap (e.g. 0.7 V, discharge-charge at 2 mA cm-2) with higher stability and longer cycle life compared to their counterparts constructed using Pt/C in air-cathode. Importantly, the hybrid nanofiber mat readily serves as an integrated air-cathode without the need of any further modification. Benefitting from its efficient catalytic activities and structural advantages, particularly the 3D architecture of highly conductive CNFs and the high loading density of strongly attached Co3O4 NPs on their surfaces, the resultant ZnABs show significantly improved performance with respect to the rate capability, cycling stability and current density, promising good potential in practical applications.An efficient, durable and low cost air-cathode is essential for a high performance metal-air battery for practical applications. Herein, we report a composite bifunctional catalyst, Co3O4 nanoparticles-decorated carbon nanofibers (CNFs), working as an efficient air-cathode in high performance rechargeable Zn-air batteries (ZnABs). The particles-on-fibers nanohybrid materials were derived from electrospun metal-ion containing polymer fibers followed by thermal carbonization

  2. How New National Air Data System Affects ECHO Data ...

    EPA Pesticide Factsheets

    The ECHO website is displaying Clean Air Act stationary source data from the modernized national data management system, ICIS-Air. The old system, AFS was retired in October 2014. Answers to frequently asked questions about the data system transition are presented on this page.

  3. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    PubMed

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  4. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...

  5. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or power...

  6. Performance data for a desuperheater integrated to a thermal energy storage system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.H.W.; Jones, J.W.

    1995-11-01

    Desuperheaters are heat exchangers that recover heat from the compressor discharge gas to heat domestic hot water. The objective of this project was to conduct performance tests for a desuperheater in the cooling and heating modes of a thermal energy storage system so as to form a data base on the steady state performance of a residential desuperheater unit. The desuperheater integrated to a thermal energy storage system was installed in the Dual-Air Loop Test Facility at The Center for Energy Studies, the University of Texas at Austin. The major components of the system consist of the refrigerant compressor, domesticmore » hot water (DHW) desuperheater, thermal storage tank with evaporator/condenser coil, outdoor air coil, DHW storage tank, DHW circulating pump, space conditioning water circulation pump, and indoor heat exchanger. Although measurements were made to quantity space heating, space cooling, and domestic water heating, this paper only emphasizes the desuperheater performance of the unit. Experiments were conducted to study the effects of various outdoor temperature and entering water temperature on the performance of the desuperheater/TES system. In the cooling and heating modes, the desuperheater captured 5 to 18 percent and 8 to 17 percent, respectively, of the heat that would be normally rejected through the air coil condenser. At higher outdoor temperature, the desuperheater captured more heat. it was also noted that the heating and cooling COPs decreased with entering water temperature. The information generated in the experimental efforts could be used to form a data base on the steady state performance of a residential desuperheater unit.« less

  7. Business Case Analysis of the Towed Gilder Air Launched System (TGALS)

    NASA Technical Reports Server (NTRS)

    Webb, Darryl W.; Nguyen, McLinton B.; Seibold, Robert W.; Wong, Frank C.; Budd, Gerald D.

    2017-01-01

    The Aerospace Corporation developed an integrated Business Case Analysis (BCA) model on behalf of the NASA Armstrong Flight Research Center (AFRC). This model evaluated the potential profitability of the Towed Glider Air Launched System (TGALS) concept, under development at AFRC, identifying potential technical, programmatic, and business decisions that could improve its business viability. The model addressed system performance metrics; development, production and operation cost estimates; market size and product service positioning; pricing alternatives; and market share.

  8. Development and performance evaluation of air fine bubbles on water quality of thai catfish rearing

    NASA Astrophysics Data System (ADS)

    Subhan, Ujang; Muthukannan, Vanitha; Azhary, Sundoro Yoga; Mulhadi, Muhammad Fakhri; Rochima, Emma; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    The efficiency and productivity of aquaculture strongly depends on the development of advanced technology for water quality management system. The most important factor for the success of intensive aquaculture system is controlling the water quality of fish rearing media. This paper reports the design of fine bubbles (FBs) generator and performance evaluation of the system to improve water quality in thai catfish media (10 g/ind) with density (16.66 ind./L). The FBs generator was designed to control the size distribution of bubble by controlling its air flow rate entry to the mixing chamber of the generator. The performance of the system was evaluated based on the produced debit, dissolved oxygen rate and ammonia content in the catfish medium. The size distribution was observed by using a high speed camera image followed by processing using ImageJ. freeware application. The results show that air flow rate 0.05 L/min and 0.1 L/min received average bubble size of 29 µm and 31 µm respectively. The generator produced bubbles with capacity of 6 L/min and dissolved oxygen rate 0.2 ppm/min/L. The obtained DO growth was 0.455 ppm/second/L while the average decay rate was 0.20 ppm/second/L. (0.011/0.005 fold). In contrast, the recieved DO growth rate is faster compared to the DO consumption rate of the Thai catfish. This results indicated that the potential application of FBs enhanced the density of thai catfish seed rearing. In addition, ammonia can be reduced at 0.0358 ppm/hour/L and it is also observed that the inhibition of bacterial growth of air FBs is postive to Aeromonas hydrophila bacteria compared to the negative control. It is concluded that as-developed FBs system can be potentially applied for intensive thai catfish culture and expected to improve the feeding efficiency rate.

  9. 76 FR 34867 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA AGENCY: Coast Guard, DHS... Blue Angels Air Show safety zone on Lake Washington, Seattle, WA from 9 a.m. on August 4, 2011 to 4 p.m... Seafair Blue Angels Air Show Performance safety zone in 33 CFR 165.1319 daily from 9 a.m. until 4 p.m...

  10. Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons.

    PubMed

    Schiavon, S; Yang, B; Donner, Y; Chang, V W-C; Nazaroff, W W

    2017-05-01

    In a warm and humid climate, increasing the temperature set point offers considerable energy benefits with low first costs. Elevated air movement generated by a personally controlled fan can compensate for the negative effects caused by an increased temperature set point. Fifty-six tropically acclimatized persons in common Singaporean office attire (0.7 clo) were exposed for 90 minutes to each of five conditions: 23, 26, and 29°C and in the latter two cases with and without occupant-controlled air movement. Relative humidity was maintained at 60%. We tested thermal comfort, perceived air quality, sick building syndrome symptoms, and cognitive performance. We found that thermal comfort, perceived air quality, and sick building syndrome symptoms are equal or better at 26°C and 29°C than at the common set point of 23°C if a personally controlled fan is available for use. The best cognitive performance (as indicated by task speed) was obtained at 26°C; at 29°C, the availability of an occupant-controlled fan partially mitigated the negative effect of the elevated temperature. The typical Singaporean indoor air temperature set point of 23°C yielded the lowest cognitive performance. An elevated set point in air-conditioned buildings augmented with personally controlled fans might yield benefits for reduced energy use and improved indoor environmental quality in tropical climates. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Energy savings potential in air conditioners and chiller systems

    DOE PAGES

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  12. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  13. 77 FR 44470 - Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... 1625-AA00 Safety Zone; Seafair Blue Angels Air Show Performance, Seattle, WA AGENCY: Coast Guard, DHS... the safety hazards associated with the Seafair Blue Angels Air Show Performance which include low... Coast Guard is establishing this rule because the current regulation associated with the Seafair Blue...

  14. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  15. Air quality in passenger cars of the ground railway transit system in Beijing, China.

    PubMed

    Li, Tian-Tian; Bai, Yu-Hua; Liu, Zhao-Rong; Liu, Jin-Feng; Zhang, Guang-Shan; Li, Jin-Long

    2006-08-15

    This study examined the concentrations of carbon monoxide, carbon dioxide, TVOC, TSP, PM(10), PM(2.5), PM(1), benzene, toluene and xylene in passenger cars of the Beijing Ground Railway Transit System (Line No. 13). This system connects the northern suburb and downtown, and is equipped with air-conditioned passenger cars. In-train air quality monitoring was performed in both summer (July and August) and winter (December). To obtain representative data, the sampling design considered both rush and regular hours, urban and suburban areas, as well as the number of passengers. Meanwhile, questionnaires were distributed to the passengers. The monitoring results indicated that, overall, the air quality in the passenger cars was acceptable with a few exceptions, which is consistent with the passengers' perception. Concentrations of some air pollutants showed significant seasonal variations and had the significant difference between rush hour and regular hour. Furthermore, the in-train air quality was greatly influenced by the number of passengers. This paper describes the experimental design, and presents the preliminary results.

  16. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  17. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    NASA Astrophysics Data System (ADS)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  18. Towards a Functionally-Formed Air Traffic System-of-Systems

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria C.

    2005-01-01

    Incremental improvements to the national aviation infrastructure have not resulted in sufficient increases in capacity and flexibility to meet emerging demand. Unfortunately, revolutionary changes capable of substantial and rapid increases in capacity have proven elusive. Moreover, significant changes have been difficult to implement, and the operational consequences of such change, difficult to predict due to the system s complexity. Some research suggests redistributing air traffic control functions through the system, but this work has largely been dismissed out of hand, accused of being impractical. However, the case for functionally-based reorganization of form can be made from a theoretical, systems perspective. This paper investigates Air Traffic Management functions and their intrinsic biases towards centralized/distributed operations, grounded in systems engineering and information technology theories. Application of these concepts to a small airport operations design is discussed. From this groundwork, a robust, scalable system transformation plan may be made in light of uncertain demand.

  19. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  20. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  1. Design and demonstration of a storage-assisted air conditioning system

    NASA Astrophysics Data System (ADS)

    Rizzuto, J. E.

    1981-03-01

    The system is a peak-shaving system designed to provide a levelized air conditioning load. The system also requires minimum air conditioner and thermal storage capacity. The storage-assisted air conditioning system uses a Glauber's salt-based phase change material in sausage like containers called CHUBS. The CHUBS are two (2) inches in diameter and 20 inches long. They are stacked in modules of 64 CHUBS which are appropriately spaced and oriented in the storage system so that air may pass perpendicular to the long axis of the CHUBS. The phase change material, has a thermal storage capacity in the range of 45 to 50 Btu/lb and a transition temperature of approximately 55 F.

  2. The promise of air cargo-system aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    A review of the current operation of the air cargo system is presented and the prospects for the future are discussed. Attention is given to air cargo demand forecasts, the economics of air cargo transport, the development of an integrated air cargo system, and the evolution of airfreighter design. Particular emphasis is placed on the span-distributed load concept, examining the Boeing, Douglas, and Lockheed spanloaders.

  3. Network Theory: A Primer and Questions for Air Transportation Systems Applications

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.

  4. Solar energy system performance evaluation: Seasonal report for fern, Tunkhannock, Pennsylvania

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The operational and thermal performance of a variety of solar systems installed in operational test sites are described. The analysis is based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is reported, and technical contributions to the definition of techniques and requirements for solar energy system design are made. The solar energy system was designed to supply space heating and domestic hot water for single-family residences. The system consists of air flat plate collectors, storage tank, pumps, heat exchangers, associated plumbing, and controls.

  5. Perpetual factors involved in performance of air traffic controllers using a microwave landing system

    NASA Technical Reports Server (NTRS)

    Gershzohn, G.

    1978-01-01

    The task involved the control of two simulated aircraft targets per trial, in a 37.0 -km radius terminal area, by means of conventional radar vectoring and/or speed control. The goal was to insure that the two targets crossed the Missed Approach Point (MAP) at the runway threshold exactly 60 sec apart. The effects on controller performance of the MLS configuration under wind and no-wind conditions were examined. The data for mean separation time between targets at the MAP and the range about that mean were analyzed by appropriate analyses of variance. Significant effects were found for mean separation times as a result of the configuration of the MLS and for interaction between the configuration and wind conditions. The analysis of variance for range indicated significantly poorer performance under the wind condition. These findings are believed to be a result of certain perceptual factors involved in radar air traffic control (ATC) using the MLS with separation of targets in time.

  6. Integration of a photocatalytic multi-tube reactor for indoor air purification in HVAC systems: a feasibility study.

    PubMed

    van Walsem, Jeroen; Roegiers, Jelle; Modde, Bart; Lenaerts, Silvia; Denys, Siegfried

    2018-04-24

    This work is focused on an in-depth experimental characterization of multi-tube reactors for indoor air purification integrated in ventilation systems. Glass tubes were selected as an excellent photocatalyst substrate to meet the challenging requirements of the operating conditions in a ventilation system in which high flow rates are typical. Glass tubes show a low-pressure drop which reduces the energy demand of the ventilator, and additionally, they provide a large exposed surface area to allow interaction between indoor air contaminants and the photocatalyst. Furthermore, the performance of a range of P25-loaded sol-gel coatings was investigated, based on their adhesion properties and photocatalytic activities. Moreover, the UV light transmission and photocatalytic reactor performance under various operating conditions were studied. These results provide vital insights for the further development and scaling up of multi-tube reactors in ventilation systems which can provide a better comfort, improved air quality in indoor environments, and reduced human exposure to harmful pollutants.

  7. Modeling and optimization of the air system in polymer exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Bao, Cheng; Ouyang, Minggao; Yi, Baolian

    Stack and air system are the two most important components in the fuel cell system (FCS). It is meaningful to study their properties and the trade-off between them. In this paper, a modified one-dimensional steady-state analytical fuel cell model is used. The logarithmic mean of the inlet and the outlet oxygen partial pressure is adopted to avoid underestimating the effect of air stoichiometry. And the pressure drop model in the grid-distributed flow field is included in the stack analysis. Combined with the coordinate change preprocessing and analog technique, neural network is used to treat the MAP of compressor and turbine in the air system. Three kinds of air system topologies, the pure screw compressor, serial booster and exhaust expander are analyzed in this article. A real-code genetic algorithm is programmed to obtain the global optimum air stoichiometric ratio and the cathode outlet pressure. It is shown that the serial booster and expander with the help of exhaust recycling, can improve more than 3% in the FCS efficiency comparing to the pure screw compressor. As the net power increases, the optimum cathode outlet pressure keeps rising and the air stoichiometry takes on the concave trajectory. The working zone of the proportional valve is also discussed. This presented work is helpful to the design of the air system in fuel cell system. The steady-state optimum can also be used in the dynamic control.

  8. Thermal environmental case study of an existing underfloor air distribution (UFAD) system in a high-rise building in the tropics

    NASA Astrophysics Data System (ADS)

    Ya, Y. H.; Poh, K. S.

    2015-09-01

    The performance of an existing underfloor air distribution (UFAD) system in a renowned high-rise office tower in Malaysia was studied to identify the root cause issues behind the poor indoor air quality. Occupants are the best thermal sensor. The building was detected with the sick building syndrome (SBS) that causes runny noses, flu-like symptoms, irritated skin, and etc. Long period of exposure to indoor air pollutants may increase the occupant's health risk. The parameters such as the space temperature, relative humidity, air movement, air change, fresh air flow rate, chilled water supply and return are evaluated at three stories that consist of five open offices. A full traverse study was carried out at one of the fresh air duct. A simplified duct flow measurement method using pitot-tubes was developed. The results showed that the diffusers were not effective in creating the swirl effect to the space. Internal heat gain from human and office electrical equipment were not drawn out effectively. Besides, relative humidity has exceeded the recommended level. These issues were caused by the poor maintenance of the building. The energy efficiency strategy of the UFAD system comes from the higher supply air temperature. It may leads to insufficient cooling load for the latent heat gained under improper system performance. Special care and considerations in design, construction and maintenance are needed to ensure the indoor air quality to be maintained. Several improvements were recommended to tackle the existing indoor air quality issues. Solar system was studied as one of the innovative method for retrofitting.

  9. Danger in the Air: Air Pollution and Cognitive Dysfunction.

    PubMed

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Borin, Gemma

    2018-01-01

    Clean air is considered to be a basic requirement for human health and well-being. To examine the relationship between cognitive performance and ambient pollution exposure. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Air pollution is a multifaceted toxic chemical mixture capable of assaulting the central nervous system. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on cognitive function in both adults and children. Consistent evidence showed that exposure to air pollution, specifically exposure to particulate matter, caused poor age-related cognitive performance. Living in areas with high levels of air pollution has been linked to markers of neuroinflammation and neuropathology that are associated with neurodegenerative conditions such as Alzheimer's disease-like brain pathologies.

  10. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH-PERFORMANCE POWER SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unknown

    1999-02-01

    A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalentmore » size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately, and after each experimental program has been completed, a larger scale pyrolyzer will be tested at the Power Systems Development Facility (PSDF) in Wilsonville, AL. The facility is equipped with a gas turbine and a topping combustor, and as such, will provide an opportunity to evaluate integrated pyrolyzer and turbine operation. This report addresses the areas of technical progress for this quarter. A general arrangement drawing of the char transfer system was forwarded to SCS for their review. Structural steel drawings were used to generate a three-dimensional model of the

  11. Diagnosis of diabetes diseases using an Artificial Immune Recognition System2 (AIRS2) with fuzzy K-nearest neighbor.

    PubMed

    Chikh, Mohamed Amine; Saidi, Meryem; Settouti, Nesma

    2012-10-01

    The use of expert systems and artificial intelligence techniques in disease diagnosis has been increasing gradually. Artificial Immune Recognition System (AIRS) is one of the methods used in medical classification problems. AIRS2 is a more efficient version of the AIRS algorithm. In this paper, we used a modified AIRS2 called MAIRS2 where we replace the K- nearest neighbors algorithm with the fuzzy K-nearest neighbors to improve the diagnostic accuracy of diabetes diseases. The diabetes disease dataset used in our work is retrieved from UCI machine learning repository. The performances of the AIRS2 and MAIRS2 are evaluated regarding classification accuracy, sensitivity and specificity values. The highest classification accuracy obtained when applying the AIRS2 and MAIRS2 using 10-fold cross-validation was, respectively 82.69% and 89.10%.

  12. Development of Air Supply System for Gas Turbine Combustor Test Rig

    NASA Astrophysics Data System (ADS)

    Kamarudin, Norhaimi Izlan; Hanafi, Muhammad; Mantari, Asril Rajo; Jaafar, Mohammad Nazri Mohd

    2010-06-01

    Complete combustion process occurs when the air and fuel burns at their stoichiometric ratio, which determines the appropriate amount of air needed to be supplied to the combustion chamber. Thus, designing an appropriate air supply system is important, especially for multi-fuel combustion. Each type of fuel has different molecular properties and structures which influence the stoichiometric ratio. Therefore, the designed air supply system must be operable for different types of fuels. Basically, the design of the air supply system is at atmospheric pressure. It is important that the air which enters the combustion chamber is stable and straight. From the calculation, the maximum required mass flow rate of air is 0.1468kg/s.

  13. Problems in air traffic management. VII., Job training performance of air traffic control specialists - measurement, structure, and prediction.

    DOT National Transportation Integrated Search

    1965-07-01

    A statistical study of training- and job-performance measures of several hundred Air Traffic Control Specialists (ATCS) representing Enroute, Terminal, and Flight Service Station specialties revealed that training-performance measures reflected: : 1....

  14. Computational Models of Human Performance: Validation of Memory and Procedural Representation in Advanced Air/Ground Simulation

    NASA Technical Reports Server (NTRS)

    Corker, Kevin M.; Labacqz, J. Victor (Technical Monitor)

    1997-01-01

    The Man-Machine Interaction Design and Analysis System (MIDAS) under joint U.S. Army and NASA cooperative is intended to assist designers of complex human/automation systems in successfully incorporating human performance capabilities and limitations into decision and action support systems. MIDAS is a computational representation of multiple human operators, selected perceptual, cognitive, and physical functions of those operators, and the physical/functional representation of the equipment with which they operate. MIDAS has been used as an integrated predictive framework for the investigation of human/machine systems, particularly in situations with high demands on the operators. We have extended the human performance models to include representation of both human operators and intelligent aiding systems in flight management, and air traffic service. The focus of this development is to predict human performance in response to aiding system developed to identify aircraft conflict and to assist in the shared authority for resolution. The demands of this application requires representation of many intelligent agents sharing world-models, coordinating action/intention, and cooperative scheduling of goals and action in an somewhat unpredictable world of operations. In recent applications to airborne systems development, MIDAS has demonstrated an ability to predict flight crew decision-making and procedural behavior when interacting with automated flight management systems and Air Traffic Control. In this paper, we describe two enhancements to MIDAS. The first involves the addition of working memory in the form of an articulatory buffer for verbal communication protocols and a visuo-spatial buffer for communications via digital datalink. The second enhancement is a representation of multiple operators working as a team. This enhanced model was used to predict the performance of human flight crews and their level of compliance with commercial aviation communication

  15. 77 FR 59023 - Preoperational Testing of Instrument and Control Air Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0065] Preoperational Testing of Instrument and Control Air..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address... instrument and control air systems (ICAS) to meet seismic requirement, ICAS air- dryer testing to meet dew...

  16. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  17. The adverse effects of air pollution on the nervous system.

    PubMed

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  18. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    PubMed

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  19. Towards the Next Generation Air Quality Modeling System ...

    EPA Pesticide Factsheets

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis

  20. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  1. Air data system optimization using a genetic algorithm

    NASA Technical Reports Server (NTRS)

    Deshpande, Samir M.; Kumar, Renjith R.; Seywald, Hans; Siemers, Paul M., III

    1992-01-01

    An optimization method for flush-orifice air data system design has been developed using the Genetic Algorithm approach. The optimization of the orifice array minimizes the effect of normally distributed random noise in the pressure readings on the calculation of air data parameters, namely, angle of attack, sideslip angle and freestream dynamic pressure. The optimization method is applied to the design of Pressure Distribution/Air Data System experiment (PD/ADS) proposed for inclusion in the Aeroassist Flight Experiment (AFE). Results obtained by the Genetic Algorithm method are compared to the results obtained by conventional gradient search method.

  2. Evaluation of Air Force and Navy Demand Forecasting Systems

    DTIC Science & Technology

    1994-01-01

    forecasting approach, the Air Force Material Command is questioning the adoption of the Navy’s Statistical Demand Forecasting System ( Gitman , 1994). The...Recoverable Item Process in the Requirements Data Bank System is to manage reparable spare parts ( Gitman , 1994). Although RDB will have the capability of...D062) ( Gitman , 1994). Since a comparison is made to address Air Force concerns, this research only limits its analysis to the range of Air Force

  3. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies.

    PubMed

    Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob

    2010-11-23

    People's time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people's time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. The battery life of our tested instruments ranged from <9 hours to 48 hours. The acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%-95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%-80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. All the tested GPS devices had limitations, but we identified several devices which showed promising performance for tracking subjects' time

  4. Performances of Different Global Positioning System Devices for Time-Location Tracking in Air Pollution Epidemiological Studies

    PubMed Central

    Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob

    2010-01-01

    Background: People’s time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people’s time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. Methods: We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. Results: The battery life of our tested instruments ranged from <9 hours to 48 hours. The acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%–95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%–80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. Conclusions: All the tested GPS devices had limitations, but we identified several devices which showed

  5. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  6. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  7. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  8. 47 CFR 22.873 - Construction requirements for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... aviation air-ground systems. 22.873 Section 22.873 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Aviation Air-Ground Systems § 22.873 Construction requirements for commercial aviation air-ground systems. Licensees authorized to use more than one megahertz (1 MHz) of the 800 MHz commercial aviation air-ground...

  9. Experimental study of air delivery into water-conveyance system of the radial-axial turbine

    NASA Astrophysics Data System (ADS)

    Maslennikova, Alexandra; Platonov, Dmitry; Minakov, Andrey; Dekterev, Dmitry

    2017-10-01

    The paper presents an experimental study of oscillatory response in the Francis turbine of hydraulic unit. The experiment was performed on large-scale hydrodynamic test-bench with impeller diameter of 0.3 m. The effect of air injection on the intensity of pressure pulsations was studied at the maximum pressure pulsations in the hydraulic unit. It was revealed that air delivery into the water-conveyance system of the turbine results in almost two-fold reduction of pressure pulsations.

  10. Preliminary analysis of problem of determining experimental performance of air-cooled turbine II : methods for determining cooling-air-flow characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr

    1950-01-01

    In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.

  11. 75 FR 37711 - Automatic Dependent Surveillance-Broadcast (ADS-B) Out Performance Requirements To Support Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... Performance Requirements To Support Air Traffic Control (ATC) Service; Correction AGENCY: Federal Aviation... performance standards for Automatic Dependent Surveillance--Broadcast (ADS-B) Out avionics on aircraft... entitled, ``Automatic Dependent Surveillance--Broadcast (ADS-B) Out Performance Requirements To Support Air...

  12. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  13. Hemodialysis dialyzers contribute to contamination of air microemboli that bypass the alarm system in the air trap.

    PubMed

    Stegmayr, C; Jonsson, P; Forsberg, U; Stegmayr, B

    2008-04-01

    Previous studies have shown that micrometer-sized air bubbles are introduced into the patient during hemodialysis. The aim of this study was to investigate, in vitro, the influence of dialysis filters on the generation of air bubbles. Three different kind of dialyzers were tested: one high-flux FX80 dry filter (Fresenius Medical Care AG&Co. KGaA, Bad Homburg, Germany), one low-flux F8HPS dry filter (Fresenius Medical Care AG&Co. KGaA, Bad Homburg, Germany) and a wet-stored APS-18u filter (Asahi Kasei Medical, Tokyo, Japan). The F8HPS was tested with pump flow ranging between 100 to 400 ml/min. The three filters were compared using a constant pump flow of 300 ml/min. Measurements were performed using an ultrasound Doppler instrument. In 90% of the series, bubbles were measured after the outlet line of the air trap without triggering an alarm. There were significantly more bubbles downstream than upstream of the filters F8HPS and FX80, while there was a significant reduction using the APS-18u. There was no reduction in the number of bubbles after passage through the air trap versus before the air trap (after the dialyzer). Increased priming volume reduced the extent of bubbles in the system. Data indicate that the air trap does not prevent air microemboli from entering the venous outlet part of the dialysis tubing (entry to the patient). More extended priming of the dialysis circuit may reduce the extent of microemboli that originate from dialysis filters. A wet filter may be favorable instead of dry-steam sterilized filters.

  14. Space propulsion systems. Present performance limits and application and development trends

    NASA Technical Reports Server (NTRS)

    Buehler, R. D.; Lo, R. E.

    1981-01-01

    Typical spaceflight programs and their propulsion requirements as a comparison for possible propulsion systems are summarized. Chemical propulsion systems, solar, nuclear, or even laser propelled rockets with electrical or direct thermal fuel acceleration, nonrockets with air breathing devices and solar cells are considered. The chemical launch vehicles have similar technical characteristics and transportation costs. A possible improvement of payload by using air breathing lower stages is discussed. The electrical energy supply installations which give performance limits of electrical propulsion and the electrostatic ion propulsion systems are described. The development possibilities of thermal, magnetic, and electrostatic rocket engines and the state of development of the nuclear thermal rocket and propulsion concepts are addressed.

  15. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    PubMed

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  16. Development of the Next Generation Air Quality Modeling System

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  17. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  18. Multiple-Agent Air/Ground Autonomous Exploration Systems

    NASA Technical Reports Server (NTRS)

    Fink, Wolfgang; Chao, Tien-Hsin; Tarbell, Mark; Dohm, James M.

    2007-01-01

    Autonomous systems of multiple-agent air/ground robotic units for exploration of the surfaces of remote planets are undergoing development. Modified versions of these systems could be used on Earth to perform tasks in environments dangerous or inaccessible to humans: examples of tasks could include scientific exploration of remote regions of Antarctica, removal of land mines, cleanup of hazardous chemicals, and military reconnaissance. A basic system according to this concept (see figure) would include a unit, suspended by a balloon or a blimp, that would be in radio communication with multiple robotic ground vehicles (rovers) equipped with video cameras and possibly other sensors for scientific exploration. The airborne unit would be free-floating, controlled by thrusters, or tethered either to one of the rovers or to a stationary object in or on the ground. Each rover would contain a semi-autonomous control system for maneuvering and would function under the supervision of a control system in the airborne unit. The rover maneuvering control system would utilize imagery from the onboard camera to navigate around obstacles. Avoidance of obstacles would also be aided by readout from an onboard (e.g., ultrasonic) sensor. Together, the rover and airborne control systems would constitute an overarching closed-loop control system to coordinate scientific exploration by the rovers.

  19. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 4. Operational Description and Qualitative Assessment.

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a description of how the Satellite-Based Advanced Air Traffic Management System (SAATMS) operates and a qualitative assessment of the system. The operational description includes the services, functions, and tasks performed by the...

  20. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  1. Air Defense: A Computer Game for Research in Human Performance.

    DTIC Science & Technology

    1981-07-01

    warfare (ANW) threat analysis. M’ajor elements of the threat analysis problem \\\\,erc eoibedded in an interactive air detoense game controlled by a...The game requires sustained attention to a complex and interactive "hostile" environment, provides proper experimental control of relevant variables...AD-A102 725 NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DETC F/6 5/10 AIR DEFENSE: A COMPUTER GAME FOR RESEARCH IN HUMAN PERFORMANCE.(U) JUL

  2. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  3. An Integrated Framework for Modeling Air Carrier Behavior, Policy, and Impacts in the U.S. Air Transportation System

    NASA Technical Reports Server (NTRS)

    Horio, Brant M.; Kumar, Vivek; DeCicco, Anthony H.; Hasan, Shahab; Stouffer, Virginia L.; Smith, Jeremy C.; Guerreiro, Nelson M.

    2015-01-01

    The implementation of the Next Generation Air Transportation System (NextGen) in the United States is an ongoing challenge for policymakers due to the complexity of the air transportation system (ATS) with its broad array of stakeholders and dynamic interdependencies between them. The successful implementation of NextGen has a hard dependency on the active participation of U.S. commercial airlines. To assist policymakers in identifying potential policy designs that facilitate the implementation of NextGen, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework called the Air Transportation System Evolutionary Simulation (ATS-EVOS). This framework integrates large empirical data sets with multiple specialized models to simulate the evolution of the airline response to potential future policies and explore consequential impacts on ATS performance and market dynamics. In the ATS-EVOS configuration presented here, we leverage the Transportation Systems Analysis Model (TSAM), the Airline Evolutionary Simulation (AIRLINE-EVOS), the Airspace Concept Evaluation System (ACES), and the Aviation Environmental Design Tool (AEDT), all of which enable this research to comprehensively represent the complex facets of the ATS and its participants. We validated this baseline configuration of ATS-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments that explored potential implementations of a carbon tax, congestion pricing policy, and the dynamics for equipage of new technology by airlines. These experiments demonstrated ATS-EVOS's capabilities in responding to a wide range of potential NextGen-related policies and utility for decision makers to gain insights for effective policy design.

  4. Simulation of a solar-assisted absorption air conditioning system for applications in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.Y.; Hernandez, H.R.; Gonzalez, J.E.

    1995-11-01

    Regions without conventional fuel sources have felt the need for the development of new technologies for air conditioning applications as cost of electrical energy production has continually risen the cost of air conditioning by conventional means. This paper deals with the simulation of a solar-assisted absorption system for air conditioning application in Puerto Rico. A simple thermodynamic model for the solar assisted absorption system has been developed. A solar energy based thermal storage system along with an auxiliary heater is used to provide the required energy in the generator of this absorption system. Results from a parametric analysis to studymore » the influence of the absorber, generator, condenser and evaporator temperatures, on the COP of the system are presented in this paper. The influence of two different refrigerant/absorbent pairs, water/lithium bromide and water/lithium-chloride have also been studied. A sub-system consisting of an array of flat plate solar collectors along with a hot water storage is modeled and verified with the data from an already existing system operating in Sacramento. Finally, off-design performance of a 35 kW solar-assisted absorption system is simulated to report the auxiliary heating requirement for a typical summer day operation in southern Puerto Rico.« less

  5. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  6. Human-model hybrid Korean air quality forecasting system.

    PubMed

    Chang, Lim-Seok; Cho, Ara; Park, Hyunju; Nam, Kipyo; Kim, Deokrae; Hong, Ji-Hyoung; Song, Chang-Keun

    2016-09-01

    The Korean national air quality forecasting system, consisting of the Weather Research and Forecasting, the Sparse Matrix Operator Kernel Emissions, and the Community Modeling and Analysis (CMAQ), commenced from August 31, 2013 with target pollutants of particulate matters (PM) and ozone. Factors contributing to PM forecasting accuracy include CMAQ inputs of meteorological field and emissions, forecasters' capacity, and inherent CMAQ limit. Four numerical experiments were conducted including two global meteorological inputs from the Global Forecast System (GFS) and the Unified Model (UM), two emissions from the Model Intercomparison Study Asia (MICS-Asia) and the Intercontinental Chemical Transport Experiment (INTEX-B) for the Northeast Asia with Clear Air Policy Support System (CAPSS) for South Korea, and data assimilation of the Monitoring Atmospheric Composition and Climate (MACC). Significant PM underpredictions by using both emissions were found for PM mass and major components (sulfate and organic carbon). CMAQ predicts PM2.5 much better than PM10 (NMB of PM2.5: -20~-25%, PM10: -43~-47%). Forecasters' error usually occurred at the next day of high PM event. Once CMAQ fails to predict high PM event the day before, forecasters are likely to dismiss the model predictions on the next day which turns out to be true. The best combination of CMAQ inputs is the set of UM global meteorological field, MICS-Asia and CAPSS 2010 emissions with the NMB of -12.3%, the RMSE of 16.6μ/m(3) and the R(2) of 0.68. By using MACC data as an initial and boundary condition, the performance skill of CMAQ would be improved, especially in the case of undefined coarse emission. A variety of methods such as ensemble and data assimilation are considered to improve further the accuracy of air quality forecasting, especially for high PM events to be comparable to for all cases. The growing utilization of the air quality forecast induced the public strongly to demand that the accuracy of the

  7. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  8. Comparison of three distinct surgical clothing systems for protection from air-borne bacteria: A prospective observational study

    PubMed Central

    2012-01-01

    Background To prevent surgical site infection it is desirable to keep bacterial counts low in the operating room air during orthopaedic surgery, especially prosthetic surgery. As the air-borne bacteria are mainly derived from the skin flora of the personnel present in the operating room a reduction could be achieved by using a clothing system for staff made from a material fulfilling the requirements in the standard EN 13795. The aim of this study was to compare the protective capacity between three clothing systems made of different materials – one mixed cotton/polyester and two polyesters - which all had passed the tests according to EN 13795. Methods Measuring of CFU/m3 air was performed during 21 orthopaedic procedures performed in four operating rooms with turbulent, mixing ventilation with air flows of 755 – 1,050 L/s. All staff in the operating room wore clothes made from the same material during each surgical procedure. Results The source strength (mean value of CFU emitted from one person per second) calculated for the three garments were 4.1, 2.4 and 0.6 respectively. In an operating room with an air flow of 755 L/s both clothing systems made of polyester reduced the amount of CFU/m3 significantly compared to the clothing system made from mixed material. In an operating room with air intake of 1,050 L/s a significant reduction was only achieved with the polyester that had the lowest source strength. Conclusions Polyester has a better protective capacity than cotton/polyester. There is need for more discriminating tests of the protective efficacy of textile materials intended to use for operating garment. PMID:23068884

  9. Modeling of coupled thermodynamic and geomechanical performance of underground compressed air energy storage in lined rock caverns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutqvist, Jonny; Kim, Hyung-Mok; Ryu, Dong-Woo

    We applied coupled nonisothermal, multiphase fluid flow and geomechanical numerical modeling to study the coupled thermodynamic and geomechanical performance of underground compressed air energy storage (CAES) in concrete-lined rock caverns. The paper focuses on CAES in lined caverns at relatively shallow depth (e.g., 100 m depth) in which a typical CAES operational pressure of 5 to 8 MPa is significantly higher than both ambient fluid pressure and in situ stress. We simulated a storage operation that included cyclic compression and decompression of air in the cavern, and investigated how pressure, temperature and stress evolve over several months of operation. Wemore » analyzed two different lining options, both with a 50 cm thick low permeability concrete lining, but in one case with an internal synthetic seal such as steel or rubber. For our simulated CAES system, the thermodynamic analysis showed that 96.7% of the energy injected during compression could be recovered during subsequent decompression, while 3.3% of the energy was lost by heat conduction to the surrounding media. Our geomechanical analysis showed that tensile effective stresses as high as 8 MPa could develop in the lining as a result of the air pressure exerted on the inner surface of the lining, whereas thermal stresses were relatively smaller and compressive. With the option of an internal synthetic seal, the maximum effective tensile stress was reduced from 8 to 5 MPa, but was still in substantial tension. We performed one simulation in which the tensile tangential stresses resulted in radial cracks and air leakage though the lining. This air leakage, however, was minor (about 0.16% of the air mass loss from one daily compression) in terms of CAES operational efficiency, and did not significantly impact the overall energy balance of the system. However, despite being minor in terms of energy balance, the air leakage resulted in a distinct pressure increase in the surrounding rock that could

  10. Airport Information Retrieval System (AIRS) User's Guide

    DOT National Transportation Integrated Search

    1973-08-01

    The handbook is a user's guide for a prototype air traffic flow control automation system developed for the FAA's System Command Center. The system is implemented on a time-sharing computer and is designed to provide airport traffic load predictions ...

  11. The effects of bedroom air quality on sleep and next-day performance.

    PubMed

    Strøm-Tejsen, P; Zukowska, D; Wargocki, P; Wyon, D P

    2016-10-01

    The effects of bedroom air quality on sleep and next-day performance were examined in two field-intervention experiments in single-occupancy student dormitory rooms. The occupants, half of them women, could adjust an electric heater to maintain thermal comfort but they experienced two bedroom ventilation conditions, each maintained for 1 week, in balanced order. In the initial pilot experiment (N = 14), bedroom ventilation was changed by opening a window (the resulting average CO2 level was 2585 or 660 ppm). In the second experiment (N = 16), an inaudible fan in the air intake vent was either disabled or operated whenever CO2 levels exceeded 900 ppm (the resulting average CO2 level was 2395 or 835 ppm). Bedroom air temperatures varied over a wide range but did not differ between ventilation conditions. Sleep was assessed from movement data recorded on wristwatch-type actigraphs and subjects reported their perceptions and their well-being each morning using online questionnaires. Two tests of next-day mental performance were applied. Objectively measured sleep quality and the perceived freshness of bedroom air improved significantly when the CO2 level was lower, as did next-day reported sleepiness and ability to concentrate and the subjects' performance of a test of logical thinking. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  12. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. Rudd and D. Bergey

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, andmore » filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.« less

  13. Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round

    EPA Science Inventory

    Test/QA Plan for Verification of Semi-Continuous Ambient Air Monitoring Systems - Second Round. Changes reflect performance of second round of testing at new location and with various changes to personnel. Additional changes reflect general improvements to the Version 1 test/QA...

  14. Indoor air quality in 24 California residences designed as high-performance homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Less, Brennan; Mullen, Nasim; Singer, Brett

    2015-01-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California. Although the mechanically vented homes were six times as airtight as non-mechanically ventilated homes (medians of 1.1 and 6.1 ACH 50, n=11 and n=8, respectively), their use of mechanical ventilation systems and possiblymore » window operation meant their median air exchange rates were almost the same (0.30 versus 0.32 hr -1, n=8 and n=8, respectively). Pollutant levels were also similar in vented and unvented homes. In addition, these similarities were achieved despite numerous observed faults in complex mechanical ventilation systems. More rigorous commissioning is still recommended. Cooking exhaust systems were used inconsistently and several suffered from design flaws. Failure to follow best practices led to IAQ problems in some cases. Ambient nitrogen dioxide standards were exceeded or nearly so in four homes that either used gas ranges with standing pilots, or in Passive House-style homes that used gas cooking burners without venting range hoods. Homes without active particle filtration had particle count concentrations approximately double those in homes with enhanced filtration. The majority of homes reported using low-emitting materials; consistent with this, formaldehyde levels were approximately half those in conventional, new CA homes built before 2008. Emissions of ultrafine particles (with diameters <100 nm) were dramatically lower on induction electric cooktops, compared with either gas or resistance electric models. These results indicate that high performance homes can achieve acceptable

  15. Performance and stability of a liquid anode high-temperature metal-air battery

    NASA Astrophysics Data System (ADS)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  16. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  17. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  18. Dynamic Model of the BIO-Plex Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Meyers, Karen; Duffield, Bruce; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The BIO-Plex facility will need to support a variety of life support system designs and operation strategies. These systems will be tested and evaluated in the BIO-Plex facility. An important goal of the life support program is to identify designs that best meet all size and performance constraints for a variety of possible future missions. Integrated human testing is a necessary step in reaching this goal. System modeling and analysis will also play an important role in this endeavor. Currently, simulation studies are being used to estimate air revitalization buffer and storage requirements in order to develop the infrastructure requirements of the BIO-Plex facility. Simulation studies are also being used to verify that the envisioned operation strategy will be able to meet all performance criteria. In this paper, a simulation study is presented for a nominal BIO-Plex scenario with a high-level of crop growth. A general description of the dynamic mass flow model is provided, along with some simulation results. The paper also discusses sizing and operations issues and describes plans for future simulation studies.

  19. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiss, T.; Chaney, L.; Meyer, J.

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less

  20. Modeling and Simulation of the Second-Generation Orion Crew Module Air Bag Landing System

    NASA Technical Reports Server (NTRS)

    Timmers, Richard B.; Welch, Joseph V.; Hardy, Robin C.

    2009-01-01

    Air bags were evaluated as the landing attenuation system for earth landing of the Orion Crew Module (CM). An important element of the air bag system design process is proper modeling of the proposed configuration to determine if the resulting performance meets requirements. Analysis conducted to date shows that airbags are capable of providing a graceful landing of the CM in nominal and off-nominal conditions such as parachute failure, high horizontal winds, and unfavorable vehicle/ground angle combinations. The efforts presented here surround a second generation of the airbag design developed by ILC Dover, and is based on previous design, analysis, and testing efforts. In order to fully evaluate the second generation air bag design and correlate the dynamic simulations, a series of drop tests were carried out at NASA Langley's Landing and Impact Research (LandIR) facility. The tests consisted of a full-scale set of air bags attached to a full-scale test article representing the Orion Crew Module. The techniques used to collect experimental data, construct the simulations, and make comparisons to experimental data are discussed.

  1. Air Combat Maneuvering Performance Measurement

    DTIC Science & Technology

    1979-09-01

    John C. Reed Flying Training Division, Air rorce Human Resources Laboratory September 1979 NOTICE When-IU.S. Government drawings,, speci1fication,s, or...Technol’ogy Departmenit CommandeO,, ’Naval’ Trainin 7 Eqfuipieht Center A rdre_, Human Rsuce Ua~~tr <FGOVERNMENT RIGHTS IN dATfASThTEMENT’.- RoproddVctioh tff...91361 1 1231206.. . SCONTROLLING OFFICE NAME AND ADDRESS 12.82EI3ORLATE.) HQ Air Force Human Resources Laboratory (AFSC) V Stbpi 979J . /- Brooks Air

  2. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  3. Surveillance and Datalink Communication Performance Analysis for Distributed Separation Assurance System Architectures

    NASA Technical Reports Server (NTRS)

    Chung, William W.; Linse, Dennis J.; Alaverdi, Omeed; Ifarraguerri, Carlos; Seifert, Scott C.; Salvano, Dan; Calender, Dale

    2012-01-01

    This study investigates the effects of two technical enablers: Automatic Dependent Surveillance - Broadcast (ADS-B) and digital datalink communication, of the Federal Aviation Administration s Next Generation Air Transportation System (NextGen) under two separation assurance (SA) system architectures: ground-based SA and airborne SA, on overall separation assurance performance. Datalink performance such as successful reception probability in both surveillance and communication messages, and surveillance accuracy are examined in various operational conditions. Required SA performance is evaluated as a function of subsystem performance, using availability, continuity, and integrity metrics to establish overall required separation assurance performance, under normal and off-nominal conditions.

  4. Air traffic control resource management strategies and the small aircraft transportation system: A system dynamics perspective

    NASA Astrophysics Data System (ADS)

    Galvin, James J., Jr.

    The National Aeronautics and Space Administration (NASA) is leading a research effort to develop a Small Aircraft Transportation System (SATS) that will expand air transportation capabilities to hundreds of underutilized airports in the United States. Most of the research effort addresses the technological development of the small aircraft as well as the systems to manage airspace usage and surface activities at airports. The Federal Aviation Administration (FAA) will also play a major role in the successful implementation of SATS, however, the administration is reluctant to embrace the unproven concept. The purpose of the research presented in this dissertation is to determine if the FAA can pursue a resource management strategy that will support the current radar-based Air Traffic Control (ATC) system as well as a Global Positioning Satellite (GPS)-based ATC system required by the SATS. The research centered around the use of the System Dynamics modeling methodology to determine the future behavior of the principle components of the ATC system over time. The research included a model of the ATC system consisting of people, facilities, equipment, airports, aircraft, the FAA budget, and the Airport and Airways Trust Fund. The model generated system performance behavior used to evaluate three scenarios. The first scenario depicted the base case behavior of the system if the FAA continued its current resource management practices. The second scenario depicted the behavior of the system if the FAA emphasized development of GPS-based ATC systems. The third scenario depicted a combined resource management strategy that supplemented radar systems with GPS systems. The findings of the research were that the FAA must pursue a resource management strategy that primarily funds a radar-based ATC system and directs lesser funding toward a GPS-based supplemental ATC system. The most significant contribution of this research was the insight and understanding gained of how

  5. Air flow quality analysis of modenas engine exhaust system

    NASA Astrophysics Data System (ADS)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  6. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  7. Objective vs. Subjective Evaluation of Cognitive Performance During 0.4-MPa Dives Breathing Air or Nitrox.

    PubMed

    Germonpré, Peter; Balestra, Costantino; Hemelryck, Walter; Buzzacott, Peter; Lafère, Pierre

    2017-05-01

    Divers try to limit risks associated with their sport, for instance by breathing enriched air nitrox (EANx) instead of air. This double blinded, randomized trial was designed to see if the use of EANx could effectively improve cognitive performance while diving. Eight volunteers performed two no-decompression dry dives breathing air or EANx for 20 min at 0.4 MPa. Cognitive functions were assessed with a computerized test battery, including MathProc and Ptrail. Measurements were taken before the dive, upon arrival and after 15 min at depth, upon surfacing, and at 30 min postdive. After each dive subjects were asked to identify the gas they had just breathed. Identification of the breathing gas was not possible on subjective assessment alone, while cognitive assessments showed significantly better performance while breathing EANx. Before the dives, breathing air, mean time to complete the task was 1795 ms for MathProc and 1905 ms for Ptrail. When arriving at depth MathProc took 1616 ms on air and 1523 ms on EANx, and Ptrail took 1318 ms on air and and 1356 ms on EANx, followed 15 min later by significant performance inhibition while breathing air during the ascent and the postdive phase, supporting the concept of late dive/postdive impairment. The results suggest that EANx could protect against decreased neuro-cognitive performance induced by inert gas narcosis. It was not possible for blinded divers to identify which gas they were breathing and differences in postdive fatigue between air and EANx diving deserve further investigation.Germonpré P, Balestra C, Hemelryck W, Buzzacott P, Lafère P. Objective vs. subjective evaluation of cognitive performance during 0.4-MPa dives breathing air or nitrox. Aerosp Med Hum Perform. 2017; 88(5):469-475.

  8. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  9. Performance of school bus retrofit systems: ultrafine particles and other vehicular pollutants.

    PubMed

    Zhang, Qunfang; Zhu, Yifang

    2011-08-01

    This study evaluated the performance of retrofit systems for diesel-powered school buses, a diesel oxidation catalyst (DOC) muffler and a spiracle crankcase filtration system (CFS), regarding ultrafine particles (UFPs) and other air pollutants from tailpipe emissions and inside bus cabins. Tailpipe emissions and in-cabin air pollutant levels were measured before and after retrofitting when the buses were idling and during actual pick-up/drop off routes. Retrofit systems significantly reduced tailpipe emissions with a reduction of 20-94% of total particles with both DOC and CFS installed. However, no unequivocal decrease was observed for in-cabin air pollutants after retrofitting. The AC/fan unit and the surrounding air pollutant concentrations played more important roles for determining the in-cabin air quality of school buses than did retrofit technologies. Although current retrofit systems reduce children's exposure while waiting to board at a bus station, retrofitting by itself does not protect children satisfactorily from in-cabin particle exposures. Turning on the bus engine increased in-cabin UFP levels significantly only when the wind blew from the bus' tailpipe toward its hood with its windows open. This indicated that wind direction and window position are significant factors determining how much self-released tailpipe emissions may penetrate into the bus cabin. The use of an air purifier was found to remove in-cabin particles by up to 50% which might be an alternative short-to-medium term strategy to protect children's health.

  10. Compressed-air flow control system.

    PubMed

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  11. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  12. Pressure Distribution and Air Data System for the Aeroassist Flight Experiment

    NASA Technical Reports Server (NTRS)

    Gibson, Lorelei S.; Siemers, Paul M., III; Kern, Frederick A.

    1989-01-01

    The Aeroassist Flight Experiment (AFE) is designed to provide critical flight data necessary for the design of future Aeroassist Space Transfer Vehicles (ASTV). This flight experiment will provide aerodynamic, aerothermodynamic, and environmental data for verification of experimental and computational flow field techniques. The Pressure Distribution and Air Data System (PD/ADS), one of the measurement systems incorporated into the AFE spacecraft, is designed to provide accurate pressure measurements on the windward surface of the vehicle. These measurements will be used to determine the pressure distribution and air data parameters (angle of attack, angle of sideslip, and free-stream dynamic pressure) encountered by the blunt-bodied vehicle over an altitude range of 76.2 km to 94.5 km. Design and development data are presented and include: measurement requirements, measurement heritage, theoretical studies to define the vehicle environment, flush-mounted orifice configuration, pressure transducer selection and performance evaluation data, and pressure tubing response analysis.

  13. Vertical Navigation Control Laws and Logic for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Khong, Thuan H.

    2013-01-01

    A vertical navigation (VNAV) outer-loop control system was developed to capture and track the vertical path segments of energy-efficient trajectories that are being developed for high-density operations in the evolving Next Generation Air Transportation System (NextGen). The VNAV control system has a speed-on-elevator control mode to pitch the aircraft for tracking a calibrated airspeed (CAS) or Mach number profile and a path control mode for tracking the VNAV altitude profile. Mode control logic was developed for engagement of either the speed or path control modes. The control system will level the aircraft to prevent it from flying through a constraint altitude. A stability analysis was performed that showed that the gain and phase margins of the VNAV control system significantly exceeded the design gain and phase margins. The system performance was assessed using a six-deg-of-freedom non-linear transport aircraft simulation and the performance is illustrated with time-history plots of recorded simulation data.

  14. An improved high-performance lithium-air battery.

    PubMed

    Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum; Sun, Yang-Kook; Scrosati, Bruno

    2012-06-10

    Although dominating the consumer electronics markets as the power source of choice for popular portable devices, the common lithium battery is not yet suited for use in sustainable electrified road transport. The development of advanced, higher-energy lithium batteries is essential in the rapid establishment of the electric car market. Owing to its exceptionally high energy potentiality, the lithium-air battery is a very appealing candidate for fulfilling this role. However, the performance of such batteries has been limited to only a few charge-discharge cycles with low rate capability. Here, by choosing a suitable stable electrolyte and appropriate cell design, we demonstrate a lithium-air battery capable of operating over many cycles with capacity and rate values as high as 5,000 mAh g(carbon)(-1) and 3 A g(carbon)(-1), respectively. For this battery we estimate an energy density value that is much higher than those offered by the currently available lithium-ion battery technology.

  15. Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.

  16. A Management System for Computer Performance Evaluation.

    DTIC Science & Technology

    1981-12-01

    AD-AIlS 538 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/6 S/1 MANAGEMENT SYSTEM FOR COMPUTER PERFORMANCE EVALUATION. (U DEC 81 H K...release; distribution unlimited. AFIT/GCS/1,Y/81 D)-i PREFACE As an installation manager of a Burroughs 3500 1 erncountered many problems concerning its...techniques to select, and finally, how do I organize the effort. As a manager I felt that I needed a reference or tool that would broaden my OPE

  17. Distribution System Audits, Leak Detection, and Repair: Kirtland Air Force Base Leak Detection and Repair Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Water Best Management Practice #3 Fact Seet: Outlines how a leak detection and repair program helped Kirtland Air Force Base perform distribution system audits, leak detection, and repair to conserve water site-wide.

  18. Identification of Communication and Coordination Issues in the US Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John

    2001-01-01

    Today's air traffic control system is approaching the point of saturation, as evidenced by increasing delays across the National Airspace System (NAS). There exists an opportunity to enhance NAS efficiency and reduce delays by improving strategic communication throughout the ATC system. Although several measures have been taken to improve communication (e.g., Collaborative Decision Making tools), communication issues between ATC facilities remain. It is hypothesized that by identifying the key issues plaguing inter-facility strategic communication, steps can be taken to enhance these communications, and therefore ATC system efficiency. In this report, a series of site visits were performed at Boston and New York ATC facilities as well as at the Air Traffic Control System Command Center. The results from these site visits were used to determine the current communication and coordination structure of Traffic Management Coordinators, who hold a pivotal role in inter-facility communications. Several themes emerged from the study, including: ambiguity of organizational structure in the current ATC system, awkward coordination between ATC facilities, information flow issues, organizational culture issues, and negotiation behaviors used to cope with organizational culture issues.

  19. Evaluation of auto incident recording system (AIRS).

    DOT National Transportation Integrated Search

    2005-05-01

    The Auto Incident Recording System (AIRS) is a sound-actuated video recording system. It automatically records potential incidents when activated by sound (horns, clashing metal, squealing tires, etc.). The purpose is to detect patterns of crashes at...

  20. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    PubMed

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  1. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  2. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 9. System and Subsystem Performance Models.

    DOT National Transportation Integrated Search

    1973-02-01

    The volume presents the models used to analyze basic features of the system, establish feasibility of techniques, and evaluate system performance. The models use analytical expressions and computer simulations to represent the relationship between sy...

  3. Air cargo: An Integrated Systems View. 1978 Summer Faculty Fellowship Program in Engineering Systems Design

    NASA Technical Reports Server (NTRS)

    Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)

    1978-01-01

    The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.

  4. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season

    PubMed Central

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D.; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-01-01

    ABSTRACT Environment and Climate Change Canada’s FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2–July 15, and August 15–31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of –7.3 µg m−3 and 3.1 µg m−3), it showed better forecast skill than the RAQDPS (MB of –11.7 µg m−3 and –5.8 µg m−3) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m−3 also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR

  5. The FireWork air quality forecast system with near-real-time biomass burning emissions: Recent developments and evaluation of performance for the 2015 North American wildfire season.

    PubMed

    Pavlovic, Radenko; Chen, Jack; Anderson, Kerry; Moran, Michael D; Beaulieu, Paul-André; Davignon, Didier; Cousineau, Sophie

    2016-09-01

    Environment and Climate Change Canada's FireWork air quality (AQ) forecast system for North America with near-real-time biomass burning emissions has been running experimentally during the Canadian wildfire season since 2013. The system runs twice per day with model initializations at 00 UTC and 12 UTC, and produces numerical AQ forecast guidance with 48-hr lead time. In this work we describe the FireWork system, which incorporates near-real-time biomass burning emissions based on the Canadian Wildland Fire Information System (CWFIS) as an input to the operational Regional Air Quality Deterministic Prediction System (RAQDPS). To demonstrate the capability of the system we analyzed two forecast periods in 2015 (June 2-July 15, and August 15-31) when fire activity was high, and observed fire-smoke-impacted areas in western Canada and the western United States. Modeled PM2.5 surface concentrations were compared with surface measurements and benchmarked with results from the operational RAQDPS, which did not consider near-real-time biomass burning emissions. Model performance statistics showed that FireWork outperformed RAQDPS with improvements in forecast hourly PM2.5 across the region; the results were especially significant for stations near the path of fire plume trajectories. Although the hourly PM2.5 concentrations predicted by FireWork still displayed bias for areas with active fires for these two periods (mean bias [MB] of -7.3 µg m(-3) and 3.1 µg m(-3)), it showed better forecast skill than the RAQDPS (MB of -11.7 µg m(-3) and -5.8 µg m(-3)) and demonstrated a greater ability to capture temporal variability of episodic PM2.5 events (correlation coefficient values of 0.50 and 0.69 for FireWork compared to 0.03 and 0.11 for RAQDPS). A categorical forecast comparison based on an hourly PM2.5 threshold of 30 µg m(-3) also showed improved scores for probability of detection (POD), critical success index (CSI), and false alarm rate (FAR). Smoke from wildfires

  6. RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing Systems

    PubMed Central

    Yu, Ruiyun; Yang, Yu; Yang, Leyou; Han, Guangjie; Move, Oguti Ann

    2016-01-01

    Air quality information such as the concentration of PM2.5 is of great significance for human health and city management. It affects the way of traveling, urban planning, government policies and so on. However, in major cities there is typically only a limited number of air quality monitoring stations. In the meantime, air quality varies in the urban areas and there can be large differences, even between closely neighboring regions. In this paper, a random forest approach for predicting air quality (RAQ) is proposed for urban sensing systems. The data generated by urban sensing includes meteorology data, road information, real-time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction. The performance of RAQ is evaluated with real city data. Compared with three other algorithms, this approach achieves better prediction precision. Exciting results are observed from the experiments that the air quality can be inferred with amazingly high accuracy from the data which are obtained from urban sensing. PMID:26761008

  7. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  8. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  9. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  10. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channel plan for commercial aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz...

  11. Air Traffic Services Performance Plan for Fiscal Years 2000-2002

    DOT National Transportation Integrated Search

    1999-10-01

    Each year, Air Traffic Services (ATS) executives and staff assess the : organization's performance and actions taken to improve aviation services : during the previous 12 months, and evaluate the current and future challenges : facing its customers. ...

  12. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    DTIC Science & Technology

    2010-06-18

    Research Laboratory (NRL) has developed a proton exchange membrane fuel cell ( PEMFC ) powered unmanned air vehicle (UAV) called the Ion Tiger. The Ion Tiger...to design a cooling system for the Ion Tiger and investigate cooling approaches that may be suitable for future PEMFC powered air vehicles. The...modifications) to other PEMFC systems utilizing a CHE for cooling. 18-06-2010 Memorandum Report Unmanned Air Vehicle UAV Fuel cell PEM Cooling Radiator January

  13. New research on bioregenerative air/water purification systems

    NASA Technical Reports Server (NTRS)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  14. Advanced Air Traffic Management System Study Overview

    DOT National Transportation Integrated Search

    1975-06-01

    This report summarizes the U.S. Department of Transportation study and development plans for the air traffic management system of the late 1980's and beyond. The plans are presented in the framework of an evolutionary system concept of traffic manage...

  15. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air courses and trolley haulage systems. 75.327... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.327 Air courses and... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to...

  16. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air courses and trolley haulage systems. 75.327... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.327 Air courses and... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to...

  17. 30 CFR 75.327 - Air courses and trolley haulage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air courses and trolley haulage systems. 75.327... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.327 Air courses and... enough entries or rooms as intake air courses to limit the velocity of air currents in the haulageways to...

  18. Advanced Air Bag Technology Assessment

    NASA Technical Reports Server (NTRS)

    Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.

    1998-01-01

    As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the

  19. 21. DETAIL OF AIR HANDLER 1 (MST AIRCONDITIONING SYSTEM) INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF AIR HANDLER 1 (MST AIR-CONDITIONING SYSTEM) INTERIOR, SOUTHEAST CORNER, STATION 30, SLC-3W MST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  20. The Aviation System Analysis Capability Air Carrier Cost-Benefit Model

    NASA Technical Reports Server (NTRS)

    Gaier, Eric M.; Edlich, Alexander; Santmire, Tara S.; Wingrove, Earl R.., III

    1999-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. Therefore, NASA is developing the ability to evaluate the potential impact of various advanced technologies. By thoroughly understanding the economic impact of advanced aviation technologies and by evaluating how the new technologies will be used in the integrated aviation system, NASA aims to balance its aeronautical research program and help speed the introduction of high-leverage technologies. To meet these objectives, NASA is building the Aviation System Analysis Capability (ASAC). NASA envisions ASAC primarily as a process for understanding and evaluating the impact of advanced aviation technologies on the U.S. economy. ASAC consists of a diverse collection of models and databases used by analysts and other individuals from the public and private sectors brought together to work on issues of common interest to organizations in the aviation community. ASAC also will be a resource available to the aviation community to analyze; inform; and assist scientists, engineers, analysts, and program managers in their daily work. The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. Commercial air carriers, in particular, are an important stakeholder in this community. Therefore, to fully evaluate the implications of advanced aviation technologies, ASAC requires a flexible financial analysis tool that credibly links the technology of flight with the financial performance of commercial air carriers. By linking technical and financial information, NASA ensures that its technology programs will continue to benefit the user community. In addition, the analysis tool must be capable of being incorporated into the

  1. Does the air condition system in busses spread allergic fungi into driver space?

    PubMed

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  2. Cyber-Threat Assessment for the Air Traffic Management System: A Network Controls Approach

    NASA Technical Reports Server (NTRS)

    Roy, Sandip; Sridhar, Banavar

    2016-01-01

    Air transportation networks are being disrupted with increasing frequency by failures in their cyber- (computing, communication, control) systems. Whether these cyber- failures arise due to deliberate attacks or incidental errors, they can have far-reaching impact on the performance of the air traffic control and management systems. For instance, a computer failure in the Washington DC Air Route Traffic Control Center (ZDC) on August 15, 2015, caused nearly complete closure of the Centers airspace for several hours. This closure had a propagative impact across the United States National Airspace System, causing changed congestion patterns and requiring placement of a suite of traffic management initiatives to address the capacity reduction and congestion. A snapshot of traffic on that day clearly shows the closure of the ZDC airspace and the resulting congestion at its boundary, which required augmented traffic management at multiple locations. Cyber- events also have important ramifications for private stakeholders, particularly the airlines. During the last few months, computer-system issues have caused several airlines fleets to be grounded for significant periods of time: these include United Airlines (twice), LOT Polish Airlines, and American Airlines. Delays and regional stoppages due to cyber- events are even more common, and may have myriad causes (e.g., failure of the Department of Homeland Security systems needed for security check of passengers, see [3]). The growing frequency of cyber- disruptions in the air transportation system reflects a much broader trend in the modern society: cyber- failures and threats are becoming increasingly pervasive, varied, and impactful. In consequence, an intense effort is underway to develop secure and resilient cyber- systems that can protect against, detect, and remove threats, see e.g. and its many citations. The outcomes of this wide effort on cyber- security are applicable to the air transportation infrastructure

  3. 47 CFR 22.859 - Incumbent commercial aviation air-ground systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Incumbent commercial aviation air-ground systems. 22.859 Section 22.859 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air-Ground...

  4. Stirling Air Conditioner for Compact Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less

  5. Cold-air performance of a tip turbine designed to drive a lift fan. 1: Baseline performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.; Hotz, G. M.; Futral, S. M., Jr.

    1976-01-01

    Full admission baseline performance was obtained for a 0.4 linear scale of the LF460 lift fan turbine over a range of speeds and pressure ratios without leakage air. These cold-air tests covered a range of speeds from 40 to 140 percent of design equivalent speed and a range of scroll inlet to diffuser exit static pressure ratios from 2.0 to 4.2. Results are presented in terms of specific work, torque, mass flow, efficiency, and total pressure drop.

  6. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  7. Vein-style air pumping tube and tire system and method of assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is thenmore » cured.« less

  8. Method of Matching Performance of Compressor Systems with that of Aircraft Power Sections

    NASA Technical Reports Server (NTRS)

    Bullock, Robert O.; Keetch, Robert C.; Moses, Jason J.

    1945-01-01

    A method is developed of easily determining the performance of a compressor system relative to that of the power section for a given altitude. Because compressors, reciprocating engines, and turbines are essentially flow devices, the performance of each of these power-plant components is presented in terms of similar dimensionless ratios. The pressure and temperature changes resulting from restrictions of the charge-air flow and from heat transfer in the ducts connecting the components of the power plant are also expressed by the same dimensionless ratios and the losses are included in the performance of the compressor. The performance of a mechanically driven, single-stage compressor in relation to the performance of a conventional air-cooled engine operating at sea-level conditions is presented as an example of the application of the method.

  9. Webinar: Clean Air in the Classroom: Improve Air Quality, Extend HVAC System Life with Preventive Maintenance

    EPA Pesticide Factsheets

    A page to register to view the May 17, 2018, webinar in the IAQ Knowledge-to-Action Professional Training Webinar Series: Clean Air in the Classroom: Improve Air Quality, Extend HVAC System Life with Preventive Maintenance

  10. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  11. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  12. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  13. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  14. Performance Summary of the 2006 Community Multiscale Air Quality (CMAQ) Simulation for the AQMEII Project: North American Application

    EPA Science Inventory

    The CMAQ modeling system has been used to simulate the CONUS using 12-km by 12-km horizontal grid spacing for the entire year of 2006 as part of the Air Quality Model Evaluation International initiative (AQMEII). The operational model performance for O3 and PM2.5<...

  15. Storage battery aspects of air-electrode research

    NASA Astrophysics Data System (ADS)

    Buzelli, E. S.; Berk, L. B.; Demczyk, B. G.; Zuckerbrod, D.

    The use of air electrodes in secondary, alkaline energy storage systems offers several significant advantages over other conventional cathode systems. The oxygen, required for operation, is not stored or carried within the battery system. The weight of the air electrode is significantly lower than alternative cathode couples for the same mission. The cost of the air electrode is potentially low. As a result of these characteristics, alkaline electrolyte energy storage systems with air electrodes have the potential for achieving energy density levels in excess of 150 Whr/kg at low costs, $30-$40/kWh. The primary key to a successful metal-air secondary battery for an EV application is the development of a bifunctinal air electrode. This paper discusses the various aspects of air electrode research for this application, as well as the physical and performance requirements of the air electrode in this advanced technology battery system.

  16. Lithium-Air Cell Development

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  17. Discussion on fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolong; Liu, Jinxiang; Wang, Yu; Yuan, Xiaolei; Jin, Hui

    2018-05-01

    The fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System(THIC) of a typical office was comfirmed, under the premise of adopting the refrigeration dehumidifying fresh air unit(7°C/12°C). By detailed calculating the space moisture load and the fresh air volume required for dehumidification in 120 selected major cities in China, it can be inferred that the minimum fresh air volume required for dehumidification in THIC is mainly determined by the local outdoor air moisture and the outdoor wind speed; Then the mathematical fitting software Matlab was used to fit the three parameters, and a simplified formula for calculating the minimum per capita fresh air volume required for dehumidification was obtained; And the indoor relative humidity was simulated by the numerical software Airpak and the results by using the formula data and the data for hygiene were compared to verify the relibility of the simplified formula.

  18. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  19. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to

  20. Merging Air Quality and Public Health Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Bales, C. L.

    2003-12-01

    The New Mexico Air Quality Mapper (NMAQM) is a Web-based, open source GIS prototype application that Earth Data Analysis Center is developing under a NASA Cooperative Agreement. NMAQM enhances and extends existing data and imagery delivery systems with an existing Public Health system called the Rapid Syndrome Validation Project (RSVP). RSVP is a decision support system operating in several medical and public health arenas. It is evolving to ingest remote sensing data as input to provide early warning of human health threats, especially those related to anthropogenic atmospheric pollutants and airborne pathogens. The NMAQM project applies measurements of these atmospheric pollutants, derived from both remotely sensed data as well as from in-situ air quality networks, to both forecasting and retrospective analyses that influence human respiratory health. NMAQM provides a user-friendly interface for visualizing and interpreting environmentally-linked epidemiological phenomena. The results, and the systems made to provide the information, will be applicable not only to decision-makers in the public health realm, but also to air quality organizations, demographers, community planners, and other professionals in information technology, and social and engineering sciences. As an accessible and interactive mapping and analysis application, it allows environment and health personnel to study historic data for hypothesis generation and trend analysis, and then, potentially, to predict air quality conditions from daily data acquisitions. Additional spin off benefits to such users include the identification of gaps in the distribution of in-situ monitoring stations, the dissemination of air quality data to the public, and the discrimination of local vs. more regional sources of air pollutants that may bear on decisions relating to public health and public policy.

  1. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  2. Multi-hole pressure probes to wind tunnel experiments and air data systems

    NASA Astrophysics Data System (ADS)

    Shevchenko, A. M.; Shmakov, A. S.

    2017-10-01

    The problems to develop a multihole pressure system to measure flow angularity, Mach number and dynamic head for wind tunnel experiments or air data systems are discussed. A simple analytical model with separation of variables is derived for the multihole spherical pressure probe. The proposed model is uniform for small subsonic and supersonic speeds. An error analysis was performed. The error functions are obtained, allowing to estimate the influence of the Mach number, the pitch angle, the location of the pressure ports on the uncertainty of determining the flow parameters.

  3. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  4. Defining Human-Centered System Issues for Verifying and Validating Air Traffic Control Systems

    DOT National Transportation Integrated Search

    1993-01-01

    Over the past 40 years, the application of automation to the U.S. air traffic : control (ATC) system has grown enormously to meet significant increases in air : traffic volume. The next ten years will witness a dramatic overhaul of computer : hardwar...

  5. Laboratory investigation of air-void systems produced by air-entraining admixtures in fresh and hardened mortar.

    DOT National Transportation Integrated Search

    2006-01-01

    The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...

  6. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers.

  7. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.

    PubMed

    Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D

    2018-03-01

    The effect of groundwater viscosity control on the performance of surfactant-enhanced air sparging (SEAS) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the air saturation for sand-packed columns achieved by air sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum air pressure necessary for air sparging processes increased, which is considered to be responsible for the increased air saturation. The extent of the sparging influence zone achieved during the air sparging process using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to air injection) were observed for the air sparging processes using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced air saturations using SCMC for the 1-D air sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during air sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to air sparging increased the degree of air saturation and the sparging influence zone, and enhanced the remedial potential of SEAS for contaminated aquifers. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Heave-pitch-roll analysis and testing of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Boghani, A. B.; Captain, K. M.; Wormley, D. N.

    1978-01-01

    The analytical tools (analysis and computer simulation) needed to explain and predict the dynamic operation of air cushion landing systems (ACLS) is described. The following tasks were performed: the development of improved analytical models for the fan and the trunk; formulation of a heave pitch roll analysis for the complete ACLS; development of a general purpose computer simulation to evaluate landing and taxi performance of an ACLS equipped aircraft; and the verification and refinement of the analysis by comparison with test data obtained through lab testing of a prototype cushion. Demonstration of simulation capabilities through typical landing and taxi simulation of an ACLS aircraft are given. Initial results show that fan dynamics have a major effect on system performance. Comparison with lab test data (zero forward speed) indicates that the analysis can predict most of the key static and dynamic parameters (pressure, deflection, acceleration, etc.) within a margin of a 10 to 25 percent.

  9. 33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...

  10. 33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...

  11. 33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...

  12. 33 CFR 165.1319 - Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Safety Zone Regulations, Seafair Blue Angels Air Show Performance, Seattle, WA. 165.1319 Section 165.1319 Navigation and Navigable... Thirteenth Coast Guard District § 165.1319 Safety Zone Regulations, Seafair Blue Angels Air Show Performance...

  13. A parallel expert system for the control of a robotic air vehicle

    NASA Technical Reports Server (NTRS)

    Shakley, Donald; Lamont, Gary B.

    1988-01-01

    Expert systems can be used to govern the intelligent control of vehicles, for example the Robotic Air Vehicle (RAV). Due to the nature of the RAV system the associated expert system needs to perform in a demanding real-time environment. The use of a parallel processing capability to support the associated expert system's computational requirement is critical in this application. Thus, algorithms for parallel real-time expert systems must be designed, analyzed, and synthesized. The design process incorporates a consideration of the rule-set/face-set size along with representation issues. These issues are looked at in reference to information movement and various inference mechanisms. Also examined is the process involved with transporting the RAV expert system functions from the TI Explorer, where they are implemented in the Automated Reasoning Tool (ART), to the iPSC Hypercube, where the system is synthesized using Concurrent Common LISP (CCLISP). The transformation process for the ART to CCLISP conversion is described. The performance characteristics of the parallel implementation of these expert systems on the iPSC Hypercube are compared to the TI Explorer implementation.

  14. Performance evaluation of radiant cooling system application on a university building in Indonesia

    NASA Astrophysics Data System (ADS)

    Satrio, Pujo; Sholahudin, S.; Nasruddin

    2017-03-01

    The paper describes a study developed to estimate the energy savings potential of a radiant cooling system installed in an institutional building in Indonesia. The simulations were carried out using IESVE to evaluate thermal performance and energy consumption The building model was calibrated using the measured data for the installed radiant system. Then this calibrated model was used to simulate the energy consumption and temperature distribution to determine the proportional energy savings and occupant comfort under different systems. The result was radiant cooling which integrated with a Dedicated Outside Air System (DOAS) could make 41,84% energy savings compared to the installed cooling system. The Computational Fluid Dynamics (CFD) simulation showed that a radiant system integrated with DOAS provides superior human comfort than a radiant system integrated with Variable Air Volume (VAV). Percentage People Dissatisfied was kept below 10% using the proposed system.

  15. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 8. System Specification

    DTIC Science & Technology

    1976-03-01

    Service , CSE, Scott AFB, IL 62225. aws, usaf ltr dtd 8 jul 1976 >- a. CD SYSTEM DEVELOPMENT CORPORATION 1/ 2500 Colorado Avenue Santa Monica...Government Agen-TfAf* 17 MAR 1976 cies only. Other requests for this document ’-^ must be referred to Air Weather Service /CSi^,, Scott Air Force...Air Force Communica- tions Service must be clear’y defined. The appropriate Air Force Conmunications Service Agency should be responsible for the

  16. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase,more » and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.« less

  17. Preliminary performance estimates of an oblique, all-wing, remotely piloted vehicle for air-to-air combat

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Bailey, R. O.

    1974-01-01

    A computerized aircraft synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of an oblique, all-wing, remotely piloted vehicle (RPV) for the highly maneuverable, air-to-air combat role. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. The results are presented in terms of both the required vehicle weight to accomplish this mission and the combat effectiveness as measured by turning and acceleration capability. This report describes the synthesis program, the mission, the vehicle, and results from sensitivity studies. An optimization process has been used to establish the nominal RPV configuration of the oblique, all-wing concept for the specified mission. In comparison to a previously studied conventional wing-body canard design for the same mission, this oblique, all-wing nominal vehicle is lighter in weight and has higher performance.

  18. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... fully develop improved brake systems and also to ensure vehicle control and stability while braking... [Docket No. NHTSA 2009-0175] RIN 2127-AK62 Federal Motor Vehicle Safety Standards; Air Brake Systems... Federal motor vehicle safety standard for air brake systems by requiring substantial improvements in...

  19. Department of Defense Air Traffic Control and Airspace Management Systems

    DTIC Science & Technology

    1989-08-08

    service. The potential near-term impacts of incompatible and non- interoperable systems on the Air Force are described in terms of safety and...impacts of incompatible and non-interoperable systems on the Air Force are described in terms of safety and operational effectiveness and probable...derogation of safety , from the standpoint of aircraft collision avoidance, is probable where service specific systems are operating in adjacent or

  20. Sara Lee: Improved Compressed Air System Increases Efficiency and Saves Energy at an Industrial Bakery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This case study was prepared for the Industrial Technologies Program of the U.S. Department of Energy (DOE); it describes the energy and costs savings resulting from improving the compressed air system of a large Sara Lee bakery in Sacramento, California. The compressed air system supports many operations of the bread-making machines, and it had been performing poorly. A specialist from Draw Professional Services, a DOE Allied Partner, evaluated the system, and his suggestions included repairing a controller, fixing leaks, and replacing a compressor with a new one fitted with an energy-saving variable-speed drive. As a result, the bakery has reducedmore » its energy use by 471,000 kilowatt-hours annually and is saving $50,000 per year in operating and maintenance costs.« less