Science.gov

Sample records for air transported particles

  1. Effect of single silica gel particle adsorption on the transport processes in a humid air stream

    NASA Astrophysics Data System (ADS)

    Sanyal, Apratim; Basu, Saptarshi; Kumar, Pramod

    2013-11-01

    The effect of adsorption due to a single silica gel particle on a convective field consisting of humid air has been investigated numerically. The adsorption is incorporated as a sink term in the transport equation for species (water vapor) and has been modeled using Linear Driving Force model, while the heat released due to adsorption is taken as source term in the energy equation and proportional to the amount of water vapor adsorbed. The heat released creates a coupling between the species and the temperature field as the adsorption characteristics are directly influenced by particle temperature. The extent of species and temperature boundary layer show the diffusion of the adsorption effects into the free stream. Surface adsorption is found to decrease with Reynolds no. The particle surface temperature increases from forward stagnation point till downstream. This work provides a model for understanding the adsorption kinetics in convective stream for other adsorbate-adsorbent pair. Further more complex scenarios can be modeled such as presence of multiple adsorbent particles, the interaction of species and temperature boundary layers setup due to individual particles and their influence on the overall adsorption characteristics.

  2. Transport, deposition, and liftoff in laboratory density currents composed of hot particles in air

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.; Manga, M.

    2010-12-01

    Understanding the dynamics of transport, deposition, and air entrainment in pyroclastic density currents (PDCs) is required for accurate predictions of future current behaviors and interpretations of ancient deposits, but directly observing the interiors of natural PDCs is effectively impossible. We model PDCs with scaled, hot, particle-laden density currents generated in a 6 m long, 0.6 m wide, 1.8 m tall air-filled tank. Comparison of relevant scaling between our experiments and natural PDCs indicates that we are accurately capturing much of the dynamics of dilute PDCs: * Reynolds numbers of our experiments are lower than natural currents, 10^3 compared to 10^6, but still fully turbulent; * Densimetric and Thermal Richardson numbers are of O(1) in both natural and modeled currents; * Stokes and settling numbers for particles in the experiments fall within the expected range for natural PDCs. Conditions within the tank are monitored with temperature and humidity probes. Experiments are illuminated with sheet lighting, and recorded with high-definition video cameras. In general, currents have average velocities of 10-20 cm/s, initial thicknesses of 10-20 cm (although thickness greatly increases as currents entrain and expand air), and run out or lift off distances of 3-5 m. Large Kelvin-Helmholtz type eddies usually form along the top of the current immediately behind the head; these vortices are similar in size to the total current thickness. In currents that lift off, the distal current end typically retreats with time. Preliminary results suggest that lift off distance decreases with increasing thermal Richardson number. Analysis of turbulent structures indicates that the current heads are dominated by large coherent structures with length scales, L, comparable to the current thickness. Within 5-10 L of the current fronts, sequences of similar large eddies often occur. At greater distances behind the current fronts, turbulent structures become smaller and less

  3. Intercontinental Transport of Air Pollution

    NASA Technical Reports Server (NTRS)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  4. New particle formation under the influence of the long-range transport of air pollutants in East Asia

    NASA Astrophysics Data System (ADS)

    Chandra, Indra; Kim, Seyoung; Seto, Takafumi; Otani, Yoshio; Takami, Akinori; Yoshino, Ayako; Irei, Satoshi; Park, Kihong; Takamura, Tamio; Kaneyasu, Naoki; Hatakeyama, Shiro

    2016-09-01

    Field observations to investigate the correlation between New Particle Formation (NPF) and the long-range transport of air pollutants in the East Asia region were carried out on a rural Island of Japan in the East-China Sea (Fukue Island, 32.8°N, 128.7°E) over three periods (February 23 to March 7, 2013; November 7 to 20, 2013; and November 2 to 24, 2014). Frequent NPF events were identified (16 events in 50 days), typically in association with sudden increases in particle number concentrations and the successive growth of particles to mobility diameters of several tens of nanometers. The NPF events were classified into two types (A and B) according to the initially detected particle sizes (onset diameters). Type-A consisted of strong NPF events with onset diameters as small as 5 nm. Type-B consisted of NPF events whose onset (<10 nm) was not clearly identifiable. The correlations of SO2 concentrations, solar radiation, PM2.5 concentrations, and chemical composition were analyzed based on the types of NPF events.

  5. Air transportation energy efficiency

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1977-01-01

    The energy efficiency of air transportation, results of the recently completed RECAT studies on improvement alternatives, and the NASA Aircraft Energy Efficiency Research Program to develop the technology for significant improvements in future aircraft were reviewed.

  6. Air agglomeration of hydrophobic particles

    SciTech Connect

    Drzymala, J.; Wheelock, T.D.

    1995-12-31

    The agglomeration of hydrophobic particles in an aqueous suspension was accomplished by introducing small amounts of air into the suspension while it was agitated vigorously. The extent of aggregation was proportional both to the air to solids ratio and to the hydrophobicity of the solids. For a given air/solids ratio, the extent of aggregation of different materials increased in the following order: graphite, gilsonite, coal coated with heptane, and Teflon. The structure of agglomerates produced from coarse Teflon particles differed noticeably from the structure of bubble-particle aggregates produced from smaller, less hydrophobic particles.

  7. Measurement of aerosol particles, gases and flux radiation in the Pico de Orizaba National Park, and its relationship to air pollution transport

    NASA Astrophysics Data System (ADS)

    Márquez, C.; Castro, T.; Muhlia, A.; Moya, M.; Martínez-Arroyo, A.; Báez, A.

    Continuous atmospheric measurements were carried out at the Pico de Orizaba National Park (PONP), Mexico, in order to evaluate the characteristics and sources of air quality. This action allowed one to identify specific threats for the effective protection of natural resources and biodiversity. Results show the presence of particles and polluted gases transported by winds from the urban zones nearby (cities of Mexico, Puebla and Tlaxcala), as well as their measurable influence on the optical properties of the park environment. Nitrogen dioxide, carbon monoxide and sulfur dioxide show a daily pattern suggesting an influence of pollution generated by anthropogenic processes. Average concentration of SO 2 was higher than recorded at the southern part of Mexico City. Ozone concentrations ranging from 0.035 to 0.06 ppm suggest residual or background ozone character. Back trajectory analysis of air parcels arriving at the site confirm pollution caused by biomass burning and mass transport from urban zones. The SO 42-/TC ratio exhibited values (0.88±0.33) similar to urban areas. Ratios BC/TC and OC/BC for PONP are similar to those reported as influenced by burning emissions of fossil fuels. Typical rural aerosols were also found at the site, and sulfate and ammonium concentrations were correlated. The most predominating mode in surface particles size distribution was at 0.32 μm with no significant presence of coarse particles. Total carbon (OC+BC) content of fine particle mass (PM less than 1 μm) comprised, on average, 75%. Optical properties retrieved from photometric data show intermittent influence from urban pollution. Time periods with low absorbing particles, great visibility and abundance of small particles alternating with short times with bigger particles and high turbidity indicated by the optical depth.

  8. The particles in town air

    PubMed Central

    Ellison, J. McK.

    1965-01-01

    Particles constitute an important part of air pollution, and their behaviour when suspended in air is very different from that of gas molecules: in particular, the mechanisms by which they become deposited on surfaces are different, and consequently the methods normally used for removing particles from the air, either for sampling or for cleaning it, rely mainly on mechanisms that do not enter into the behaviour of gas molecules. These mechanisms are described, and the ways in which they affect the problems of air pollution and its measurement are discussed. ImagesFIG. 8 PMID:14315713

  9. Air transportation noise technology overview

    NASA Technical Reports Server (NTRS)

    Maggin, B.; Chestnutt, D.

    1973-01-01

    The NASA and DOT technology program planning for quieter air transportation systems is reviewed. To put this planning in context, the nature of the noise problem and the projected nature of the air transportation fleet are identified. The technology program planning reviewed here is discussed in relation to the following areas of activity: systems analysis, community acceptance, basic research and technology, and the various classes of civil aircraft, i.e. existing and advanced transports, powered-lift transports, and general aviation.

  10. Summary of Alpha Particle Transport

    SciTech Connect

    Medley, S.S.; White, R.B.; Zweben, S.J.

    1998-08-19

    This paper summarizes the talks on alpha particle transport which were presented at the 5th International Atomic Energy Agency's Technical Committee Meeting on "Alpha Particles in Fusion Research" held at the Joint European Torus, England in September 1997.

  11. Particle transport and deposition: basic physics of particle kinetics

    PubMed Central

    Tsuda, Akira; Henry, Frank S.; Butler, James P.

    2015-01-01

    The human body interacts with the environment in many different ways. The lungs interact with the external environment through breathing. The enormously large surface area of the lung with its extremely thin air-blood barrier is exposed to particles suspended in the inhaled air. Whereas the particle-lung interaction may cause deleterious effects on health if the inhaled pollutant aerosols are toxic, this interaction can be beneficial for disease treatment if the inhaled particles are therapeutic aerosolized drug. In either case, an accurate estimation of dose and sites of deposition in the respiratory tract is fundamental to understanding subsequent biological response, and the basic physics of particle motion and engineering knowledge needed to understand these subjects is the topic of this chapter. A large portion of this chapter deals with three fundamental areas necessary to the understanding of particle transport and deposition in the respiratory tract. These are: 1) the physical characteristics of particles, 2) particle behavior in gas flow, and 3) gas flow patterns in the respiratory tract. Other areas, such as particle transport in the developing lung and in the diseased lung are also considered. The chapter concludes with a summary and a brief discussion of areas of future research. PMID:24265235

  12. Energy conservation and air transportation

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Air transportation demand and passenger energy demand are discussed, in relation to energy conservation. Alternatives to air travel are reviewed, along with airline advertising and ticket pricing. Cargo energy demand and airline systems efficiency are also examined, as well as fuel conservation techniques. Maximum efficiency of passenger aircraft, from B-747 to V/STOL to British Concorde, is compared.

  13. Rotorcraft air transportation

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.

    1983-01-01

    Intermodal relationships and the particular ways in which they affect public transportation applications of rotorcraft are addressed. Some aspects of integrated services and general comparisons with other transportation modes are reviewed. Two potential application scenarios are discussed: down-to-downtown rotorcraft service and urban public transport rotorcraft service. It is concluded that to integrate well with ground access modes community rotorcraft service should be limited stop service with published schedules, and operate on a few specific routes between a few specific destinations. For downtown-to-downtown service, time savings favorable to rotorcraft are benefits that reflect its more direct access, relatively higher line-haul travel speeds, and less circuitous travel. For the scenario of public transport within urban areas, first, improving cruise speeds has a limited potential due to allowing for a ""station spacing'' effect. Secondly, public acceptance of higher acceleration/deceleration rates may be just as effective as a technological innovation as achieving higher cruise speeds.

  14. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... criteria for determining when U.S. flag air carriers are unavailable. See 48 CFR 47.403-1, or USAID... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation...

  15. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... criteria for determining when U.S. flag air carriers are unavailable. See 48 CFR 47.403-1, or USAID... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 228.22 Section 228.22... for USAID Financing § 228.22 Air transportation. (a) The eligibility of air transportation...

  16. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle-component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-02-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in southern Ontario (ON), Canada, were used to evaluate Environment Canada's regional chemical transport model predictions of primary organic aerosol (POA). Environment Canada's operational numerical weather prediction model and the 2006 Canadian and 2005 US national emissions inventories were used as input to the chemical transport model (named AURAMS). Particle-component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. Co-located carbon monoxide (CO), PM2.5 black carbon (BC), and PM1 SO4 measurements were also used for evaluation and interpretation, permitting a detailed diagnostic model evaluation. At the urban site, good agreement was observed for the comparison of daytime campaign PM1 POA and HOA mean values: 1.1 μg m-3 vs. 1.2 μg m-3, respectively. However, a POA overprediction was evident on calm nights due to an overly-stable model surface layer. Biases in model POA predictions trended from positive to negative with increasing HOA values. This trend has several possible explanations, including (1) underweighting of urban locations in particulate matter (PM) spatial surrogate fields, (2) overly-coarse model grid spacing for resolving urban-scale sources, and (3) lack of a model particle POA evaporation process during dilution of vehicular POA tail-pipe emissions to urban scales. Furthermore, a trend in POA bias was observed at the urban site as a function of the BC/HOA ratio, suggesting a possible association of POA underprediction for diesel combustion sources. For several time periods, POA overprediction was also observed for sulphate-rich plumes, suggesting that our model POA fractions for the PM2.5 chemical speciation profiles may be too high for these point sources. At the rural Harrow site

  17. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGESBeta

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  18. Surface charge accumulation of particles containing radionuclides in open air

    SciTech Connect

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.

  19. Development of the Air Transport Industry

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    The major developments are outlined in the U.S. scheduled air transport industry both domestic and international, together with a brief history of the European air transport system. The role and formulation of the U.S. Civil Aeronautics Board, International Civil Aviation Organization, and International Air Transport Association are also covered.

  20. Particle transport in plasma reactors

    SciTech Connect

    Rader, D.J.; Geller, A.S.; Choi, Seung J.; Kushner, M.J.

    1995-01-01

    SEMATECH and the Department of Energy have established a Contamination Free Manufacturing Research Center (CFMRC) located at Sandia National Laboratories. One of the programs underway at the CFMRC is directed towards defect reduction in semiconductor process reactors by the application of computational modeling. The goal is to use fluid, thermal, plasma, and particle transport models to identify process conditions and tool designs that reduce the deposition rate of particles on wafers. The program is directed toward defect reduction in specific manufacturing tools, although some model development is undertaken when needed. The need to produce quantifiable improvements in tool defect performance requires the close cooperation among Sandia, universities, SEMATECH, SEMATECH member companies, and equipment manufacturers. Currently, both plasma (e.g., etch, PECVD) and nonplasma tools (e.g., LPCVD, rinse tanks) are being worked on under this program. In this paper the authors summarize their recent efforts to reduce particle deposition on wafers during plasma-based semiconductor manufacturing.

  1. Financing the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Lloyd-Jones, D. J.

    1972-01-01

    The basic characteristics of the air transportation industry are outlined and it is shown how they affect financing requirements and patterns of production. The choice of financial timing is imperative in order to get the best interest rates available and to insure a fair return to investors. The fact that the industry cannot store its products has a fairly major effect on the amount of equipment to purchase, the amount of capital investment required, and the amount of return required to offset industry depriciation.

  2. Transport solutions for cleaner air.

    PubMed

    Kelly, Frank J; Zhu, Tong

    2016-05-20

    In cities across the globe, road transport remains an important source of air pollutants that are linked with acute and chronic health effects. Decreasing vehicle emissions--while maintaining or increasing commuter journeys--remains a major challenge for city administrators. In London, congestion-charging and a citywide low-emission zone failed to bring nitrogen dioxide concentrations under control. In Beijing, controls on the purchase and use of cars have not decreased transport emissions to a sufficient extent. As cities continue to grow, not even zero-emission vehicles are the solution. Moving increasingly large numbers of people efficiently around a city can only be achieved by expanding mass transit systems. PMID:27199415

  3. Transport of sputtered neutral particles

    SciTech Connect

    Parker, G.J.; Hitchon, W.N.G.; Koch, D.J. ||

    1995-04-01

    The initial deposition rate of sputtered material along the walls of a trench is calculated numerically. The numerical scheme is a nonstatistical description of long-mean-free-path transport in the gas phase. Gas-phase collisions are included by using a ``transition matrix`` to describe the particle motion, which in the present work is from the source through a cylindrical chamber and into a rectangular trench. The method is much faster and somewhat more accurate than Monte Carlo methods. Initial deposition rates of sputtered material along the walls of the trench are presented for various physical and geometrical situations, and the deposition rates are compared to other computational and experimental results.

  4. Study of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Webb, H. M.

    1972-01-01

    Low density air transport refers to air service to sparsely populated regions. There are two major objectives. The first is to examine those characteristics of sparsely populated areas which pertain to air transportation. This involves determination of geographical, commercial and population trends, as well as those traveler characteristics which affect the viability of air transport in the region. The second objective is to analyze the technical, economic and operational characteristics of low density air service. Two representative, but diverse arenas, West Virginia and Arizona, were selected for analysis: The results indicate that Arizona can support air service under certain assumptions whereas West Virginia cannot.

  5. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  6. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  7. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... transportation of commodities subject to this part. Subpart D of 22 CFR part 228 does not apply to this provision. ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII,...

  8. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... transportation of commodities subject to this part. Subpart D of 22 CFR part 228 does not apply to this provision. ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII,...

  9. 22 CFR 228.22 - Air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... transportation of commodities subject to this part. Subpart D of 22 CFR part 228 does not apply to this provision. ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Air transportation. 228.22 Section 228.22... § 228.22 Air transportation. The Fly America Act, Title 49 of the United States Code, Subtitle VII,...

  10. Ordered transport and identification of particles

    DOEpatents

    Shera, E. Brooks

    1993-01-01

    A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.

  11. Ordered transport and identification of particles

    DOEpatents

    Shera, E.B.

    1993-05-11

    A method and apparatus are provided for application of electrical field gradients to induce particle velocities to enable particle sequence and identification information to be obtained. Particle sequence is maintained by providing electroosmotic flow for an electrolytic solution in a particle transport tube. The transport tube and electrolytic solution are selected to provide an electroosmotic radius of >100 so that a plug flow profile is obtained for the electrolytic solution in the transport tube. Thus, particles are maintained in the same order in which they are introduced in the transport tube. When the particles also have known electrophoretic velocities, the field gradients introduce an electrophoretic velocity component onto the electroosmotic velocity. The time that the particles pass selected locations along the transport tube may then be detected and the electrophoretic velocity component calculated for particle identification. One particular application is the ordered transport and identification of labeled nucleotides sequentially cleaved from a strand of DNA.

  12. Evaluation of chemical transport model predictions of primary organic aerosol for air masses classified by particle component-based factor analysis

    NASA Astrophysics Data System (ADS)

    Stroud, C. A.; Moran, M. D.; Makar, P. A.; Gong, S.; Gong, W.; Zhang, J.; Slowik, J. G.; Abbatt, J. P. D.; Lu, G.; Brook, J. R.; Mihele, C.; Li, Q.; Sills, D.; Strawbridge, K. B.; McGuire, M. L.; Evans, G. J.

    2012-09-01

    Observations from the 2007 Border Air Quality and Meteorology Study (BAQS-Met 2007) in Southern Ontario, Canada, were used to evaluate predictions of primary organic aerosol (POA) and two other carbonaceous species, black carbon (BC) and carbon monoxide (CO), made for this summertime period by Environment Canada's AURAMS regional chemical transport model. Particle component-based factor analysis was applied to aerosol mass spectrometer measurements made at one urban site (Windsor, ON) and two rural sites (Harrow and Bear Creek, ON) to derive hydrocarbon-like organic aerosol (HOA) factors. A novel diagnostic model evaluation was performed by investigating model POA bias as a function of HOA mass concentration and indicator ratios (e.g. BC/HOA). Eight case studies were selected based on factor analysis and back trajectories to help classify model bias for certain POA source types. By considering model POA bias in relation to co-located BC and CO biases, a plausible story is developed that explains the model biases for all three species. At the rural sites, daytime mean PM1 POA mass concentrations were under-predicted compared to observed HOA concentrations. POA under-predictions were accentuated when the transport arriving at the rural sites was from the Detroit/Windsor urban complex and for short-term periods of biomass burning influence. Interestingly, the daytime CO concentrations were only slightly under-predicted at both rural sites, whereas CO was over-predicted at the urban Windsor site with a normalized mean bias of 134%, while good agreement was observed at Windsor for the comparison of daytime PM1 POA and HOA mean values, 1.1 μg m-3 and 1.2 μg m-3, respectively. Biases in model POA predictions also trended from positive to negative with increasing HOA values. Periods of POA over-prediction were most evident at the urban site on calm nights due to an overly-stable model surface layer. This model behaviour can be explained by a combination of model under

  13. Air ambulance medical transport advertising and marketing.

    PubMed

    2011-01-01

    The National Association of EMS Physicians (NAEMSP), the American College of Emergency Physicians (ACEP), the Air Medical Physician Association (AMPA), the Association of Air Medical Services (AAMS), and the National Association of State EMS Officials (NASEMSO) believe that patient care and outcomes are optimized by using air medical transport services that are licensed air ambulance providers with robust physician medical director oversight and ongoing quality assessment and review. Only air ambulance medical transport services with these credentials should advertise/market themselves as air ambulance services. PMID:21226561

  14. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  15. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  16. Compressed Air/Vacuum Transportation Techniques

    NASA Astrophysics Data System (ADS)

    Guha, Shyamal

    2011-03-01

    General theory of compressed air/vacuum transportation will be presented. In this transportation, a vehicle (such as an automobile or a rail car) is powered either by compressed air or by air at near vacuum pressure. Four version of such transportation is feasible. In all versions, a ``c-shaped'' plastic or ceramic pipe lies buried a few inches under the ground surface. This pipe carries compressed air or air at near vacuum pressure. In type I transportation, a vehicle draws compressed air (or vacuum) from this buried pipe. Using turbine or reciprocating air cylinder, mechanical power is generated from compressed air (or from vacuum). This mechanical power transferred to the wheels of an automobile (or a rail car) drives the vehicle. In type II-IV transportation techniques, a horizontal force is generated inside the plastic (or ceramic) pipe. A set of vertical and horizontal steel bars is used to transmit this force to the automobile on the road (or to a rail car on rail track). The proposed transportation system has following merits: virtually accident free; highly energy efficient; pollution free and it will not contribute to carbon dioxide emission. Some developmental work on this transportation will be needed before it can be used by the traveling public. The entire transportation system could be computer controlled.

  17. Air medical transport of cardiac patients.

    PubMed

    Essebag, Vidal; Halabi, Abdul R; Churchill-Smith, Michael; Lutchmedial, Sohrab

    2003-11-01

    The air medical transport of cardiac patients is a rapidly expanding practice. For various medical, social, and economic indications, patients are being flown longer distances at commercial altitudes, including international and intercontinental flights. There are data supporting the use of short-distance helicopter flights early in the course of a cardiac event for patients needing emergent transfer for percutaneous coronary intervention or aortocoronary bypass. When considering elective long-distance air medical transport of cardiac patients for social or economic reasons, it is necessary to weigh the benefits against the potential risks of flight. A few recent studies suggest that long-distance air medical transport is safe under certain circumstances. Current guidelines for air travel after myocardial infarction do not address the use of medical escorts or air ambulances equipped with intensive care facilities. Further research using larger prospective studies is needed to better define criteria for safe long-distance air medical transport of cardiac patients. PMID:14605071

  18. The Market Demand for Air Transportation

    NASA Technical Reports Server (NTRS)

    Taneja, N.

    1972-01-01

    Although the presentation will touch upon the areas of market for air transportation, the theoretical foundations of the demand function, the demand models, and model selection and evaluation, the emphasis of the presentation will be on a qualitative description of the factors affecting the demand for air transportation. The presentation will rely heavily on the results of market surveys carried out by the Port of New York Authority, the University of Michigan, and Census of Transportation.

  19. Transport of airborne particles within a room.

    PubMed

    Richmond-Bryant, J; Eisner, A D; Brixey, L A; Wiener, R W

    2006-02-01

    The objective of this study is to test a technique used to analyze contaminant transport in the wake of a bluff body under controlled experimental conditions for application to aerosol transport in a complex furnished room. Specifically, the hypothesis tested by our work is that the dispersion of contaminants in a room is related to the turbulence kinetic energy and length scale. This turbulence is, in turn, determined by the size and shape of furnishings within the room and by the ventilation characteristics. This approach was tested for indoor dispersion through computational fluid dynamics simulations and laboratory experiments. In each, 3 mum aerosols were released in a furnished room with varied contaminant release locations (at the inlet vent or under a desk). The realizable k approximately epsilon model was employed in the simulations, followed by a Lagrangian particle trajectory simulation used as input for an in-house FORTRAN code to compute aerosol concentration. For the experiments, concentrations were measured simultaneously at seven locations by laser photometry, and air velocity was measured using laser Doppler velocimetry. The results suggest that turbulent diffusion is a significant factor in contaminant residence time in a furnished room. This procedure was then expanded to develop a simplified correlation between contaminant residence time and the number of enclosing surfaces around a point containing the contaminant. Practical Implications The work presented here provides a methodology for relating local aerosol residence time to properties of room ventilation and furniture arrangement. This technique may be used to assess probable locations of high concentration by knowing only the particle release location, furniture configuration, inlet and outlet locations, and air speeds, which are all observable features. Applications of this method include development of 'rules of thumb' for first responders entering a room where an agent has been released

  20. Air medical transportation in India: Our experience

    PubMed Central

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Background and Aims: Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Material and Methods: Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. Results: 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation. PMID:27625486

  1. Statewide air medical transports for Massachusetts.

    PubMed

    Garthe, Elizabeth; Mango, Nicholas K; Prenney, Brad

    2002-01-01

    In 1997, the Massachusetts Department of Public Health (MDPH) established a process to centralize air medical transport information. This database is one of the first statewide, population-based sources for civilian rotary-wing air medical transports (U.S. Coast Guard, police, and military missions are not included). The purpose of this database is to facilitate MDPH review of air medical transport service utilization, with input from a multidisciplinary committee. This article discusses the challenges in producing uniform data from multiple service submissions and presents aggregate "baseline" utilization information for 1996. These data served as a starting point for later studies using data linkage. This indexed article is the first to report statewide, population-based data for all types of air medical helicopter transports. The only other indexed "statewide air medical transport" paper focused on scene transports to trauma centers in Pennsylvania. A previous article by the authors in the July-September 2000 Air Medical Journal provided an overview of air medical transports for fatal motor vehicle crashes for 1 region of the state. PMID:12585073

  2. Particle transport induced by electrostatic wave fluctuations

    NASA Astrophysics Data System (ADS)

    Rosalem, K. C.; Roberto, M.; Caldas, I. L.

    2015-10-01

    Particle transport driven by electrostatic waves at the plasma edge is numerically investigated, for large aspect ratio tokamaks, by considering a kinetic model derived from guiding-center equations of motion. Initially, the transport is estimated for trajectories obtained from differential equations for a wave spectrum generated by a dominant spatial mode and three time modes. Then, in case of infinite time modes, the differential equations of motion are used to introduce a symplectic map that allows to analyze the particle transport. The particle transport barriers are observed for spatial localized dominant perturbation and infinite modes. In presence of infinite spatial modes, periodic islands arise in between chaotic trajectories at the plasma edge.

  3. Ratchet transport powered by chiral active particles

    PubMed Central

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  4. Ratchet transport powered by chiral active particles

    NASA Astrophysics Data System (ADS)

    Ai, Bao-Quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a ‘sea’ of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles.

  5. Ratchet transport powered by chiral active particles.

    PubMed

    Ai, Bao-quan

    2016-01-01

    We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a 'sea' of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of the ratchet transport, the counterclockwise and clockwise particles move to the opposite directions and can be separated. However, for the passive particle, the transport behavior becomes complicated, the direction is determined by competitions among the chirality, the self-propulsion speed, and the packing fraction. Interestingly, within certain parameters, the passive particle moves to the left, while active particles move to the right. In addition, there exist optimal parameters (the chirality, the height of the barrier, the self-propulsion speed and the packing fraction) at which the rectified efficiency takes its maximal value. Our findings could be used for the experimental pursuit of the ratchet transport powered by chiral active particles. PMID:26795952

  6. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  7. Lattice Boltzmann Simulations of Peristaltic Particle Transport

    NASA Astrophysics Data System (ADS)

    Connington, Kevin; Kang, Qinjun; Viswanathan, Hari; Chen, Shiyi; Abdel-Fattah, Amr

    2008-11-01

    A peristaltic flow occurs when a tube or channel with flexible walls transports the contained fluid by progressing a series of contraction or expansion waves along the length of those walls. It is a mechanism used to transport fluid and immersed solid particles when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two dimensional channel using the Lattice Boltzmann Method (LBM). We systematically investigate the effect of variation of the relevant non-dimensional parameters of the system on the particle transport. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid ``trapping.'' Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles.

  8. Particle transport in planetary magnetospheres

    SciTech Connect

    Birmingham, T.J.

    1984-11-01

    Particle energization in Earth's and Jupiter's magnetospheres is discussed. Understanding of the large scale magnetic and electric fields in which charged particles move is reviewed. Orbit theory in the adiabatic approximation is sketched. General conditions for adiabatic breakdown at each of three levels of periodicity are presented. High energy losses and lower energy sources argue for the existence of magnetospheric accelerations. Nonadiabatic acceleration processes are mentioned. Slow diffusive energization by particle interactions with electromagnetic fluctuations is outlined. This mechanism seems adequate at Earth but, operating alone, is unconvincing for Jupiter. Adding spatial diffusion in the radially distended Jovian magnetodisk may resolve the difficulty. (ESA)

  9. Particle Transport in Parallel-Plate Reactors

    SciTech Connect

    Rader, D.J.; Geller, A.S.

    1999-08-01

    A major cause of semiconductor yield degradation is contaminant particles that deposit on wafers while they reside in processing tools during integrated circuit manufacturing. This report presents numerical models for assessing particle transport and deposition in a parallel-plate geometry characteristic of a wide range of single-wafer processing tools: uniform downward flow exiting a perforated-plate showerhead separated by a gap from a circular wafer resting on a parallel susceptor. Particles are assumed to originate either upstream of the showerhead or from a specified position between the plates. The physical mechanisms controlling particle deposition and transport (inertia, diffusion, fluid drag, and external forces) are reviewed, with an emphasis on conditions encountered in semiconductor process tools (i.e., sub-atmospheric pressures and submicron particles). Isothermal flow is assumed, although small temperature differences are allowed to drive particle thermophoresis. Numerical solutions of the flow field are presented which agree with an analytic, creeping-flow expression for Re < 4. Deposition is quantified by use of a particle collection efficiency, which is defined as the fraction of particles in the reactor that deposit on the wafer. Analytic expressions for collection efficiency are presented for the limiting case where external forces control deposition (i.e., neglecting particle diffusion and inertia). Deposition from simultaneous particle diffusion and external forces is analyzed by an Eulerian formulation; for creeping flow and particles released from a planar trap, the analysis yields an analytic, integral expression for particle deposition based on process and particle properties. Deposition from simultaneous particle inertia and external forces is analyzed by a Lagrangian formulation, which can describe inertia-enhanced deposition resulting from particle acceleration in the showerhead. An approximate analytic expression is derived for particle

  10. Magnetotail particle dynamics and transport

    NASA Astrophysics Data System (ADS)

    Speiser, Theodore W.

    1995-06-01

    The main thrust of our research is to study the consequences of particle dynamics in the current sheet region of the magnetotail. The importance of understanding particle dynamics, in and near current sheets, cannot be over estimated, especially in light of NASA's recent interest in developing global circulation models to predict space weather. We have embarked on a long-term study to investigate the electrical resistance due to chaotic behavior, compare this resistance to inertial effects, and relate it to that resistance required in MHD modeling for reconnection to proceed. Using a single-particle model and observations, we have also found that a neutral line region can be remotely sensed. We plan to evaluate other cases of satellite observations near times of substorm onset to elucidate the relationship between the temporal development of a near-Earth neutral line and onset.

  11. Magnetotail particle dynamics and transport

    NASA Technical Reports Server (NTRS)

    Speiser, Theodore W.

    1995-01-01

    The main thrust of our research is to study the consequences of particle dynamics in the current sheet region of the magnetotail. The importance of understanding particle dynamics, in and near current sheets, cannot be over estimated, especially in light of NASA's recent interest in developing global circulation models to predict space weather. We have embarked on a long-term study to investigate the electrical resistance due to chaotic behavior, compare this resistance to inertial effects, and relate it to that resistance required in MHD modeling for reconnection to proceed. Using a single-particle model and observations, we have also found that a neutral line region can be remotely sensed. We plan to evaluate other cases of satellite observations near times of substorm onset to elucidate the relationship between the temporal development of a near-Earth neutral line and onset.

  12. A Seasonal Air Transport Climatology for Kenya

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H.; Piketh, S.; Helas, G.

    1998-01-01

    A climatology of air transport to and from Kenya has been developed using kinematic trajectory modeling. Significant months for trajectory analysis have been determined from a classification of synoptic circulation fields. Five-point back and forward trajectory clusters to and from Kenya reveal that the transport corridors to Kenya are clearly bounded and well defined. Air reaching the country originates mainly from the Saharan region and northwestern Indian Ocean of the Arabian Sea in the northern hemisphere and from the Madagascan region of the Indian Ocean in the southern hemisphere. Transport from each of these source regions show distinctive annual cycles related to the northeasterly Asian monsoon and the southeasterly trade wind maximum over Kenya in May. The Saharan transport in the lower troposphere is at a maximum when the subtropical high over northern Africa is strongly developed in the boreal winter. Air reaching Kenya between 700 and 500 hPa is mainly from Sahara and northwest India Ocean flows in the months of January and March, which gives way to southwest Indian Ocean flow in May and November. In contrast, air reaching Kenya at 400 hPa is mainly from southwest Indian Ocean in January and March, which is replaced by Saharan transport in May and November. Transport of air from Kenya is invariant, both spatially and temporally, in the tropical easterlies to the Congo Basin and Atlantic Ocean in comparison to the transport to the country. Recirculation of air has also been observed, but on a limited and often local scale and not to the extent reported in southern Africa.

  13. Particle transport in a moving corner

    NASA Astrophysics Data System (ADS)

    Laine-Pearson, F. E.; Hydon, P. E.

    2006-07-01

    This paper describes particle transport in Stokes flow in a two-dimensional corner whose walls oscillate, which is a simple model for particle transport in the pulmonary alveoli. Formally speaking, the wall motion produces a perturbation to the well-known Moffatt corner eddies. However, this ‘perturbation’ is dominant as the corner is approached. The motion of particles is regular near to the corner. Far from the corner, chaotic motion within the main part of the flow is restricted to very small regions. We deduce that there is competition between the far-field motion that generates eddies and the wall motion. The relative strengths of these two motions determines whether a given particle moves regularly or chaotically. Consequently, there is an intermediate region in which chaotic transport is maximized.

  14. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  15. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  16. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  17. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  18. [Air transport, aeronautic medicine, health].

    PubMed

    Cupa, Michel

    2009-10-01

    There were 3.2 billion airline passengers in 2006, compared to only 30 million in 1950. Intercontinental health disparities create a risk of pandemics such as SARS and so-called bird flu. Precautions are now being implemented both in airports and in aircraft, in addition to measures intended to prevent the spread of malaria and arboviral diseases, such as vector eradication, elimination of stagnant water, malaria prophylaxis, vaccination, and use of repellents. These measures are dealt with in international health regulations, which have existed since 1851 and were last updated on 15 June 2007. Flying on an airliner also carries a risk of hypobaria (cabin pressure at 2000 m), which can aggravate respiratory problems. Other problems include relative hypoxia, gas expansion, air dryness, ozone, cosmic rays, airsickness, jet lag, the effects of alcohol and tobacco, and, more recently, deep vein thrombosis (DVT) and pulmonary embolism (PE), collectively known as "coach class syndrome". A new type of medicine has appeared, in the form of on-board medical assistance. The European Civil Aviation Committee has recommended first-aid training for cabin crews and onboard medical equipment such as first-aid kits and defibrillators. Airline statistics show that one in-flight medical incident occurs per 20 000 passengers, as well as one death per 5 million passengers and one medical reroute per 20 000 flights (40% of reroutes turn out to be unjustified). More than 80% of long-haul flights have a physician travelling on board. However, depending on his or her specialty, problems of competence and legal responsibility may arise. Ground-based medical centers can provide help via satellite telephone, but this implies the need for airline staff training. International cooperation is the only way to minimize the health risks associated with the growth in global air travel. PMID:20669640

  19. Turbulence driven particle transport in Texas Helimak

    SciTech Connect

    Toufen, D. L.; Guimaraes-Filho, Z. O.; Marcus, F. A.; Caldas, I. L.; Gentle, K. W.

    2012-01-15

    We analyze the turbulence driven particle transport in Texas Helimak [K. W. Gentle and H. He, Plasma Sci. Technol. 10, 284 (2008)], a toroidal plasma device with a one-dimensional equilibrium with magnetic curvature and shear. Alterations on the radial electric field, through an external voltage bias, change the spectral plasma characteristics inducing a dominant frequency for negative bias values and a broad band frequency spectrum for positive bias values. When applying a negative bias, the transport is high where the waves propagate with phase velocities near the plasma flow velocity, an indication that the transport is strongly affected by a wave particle resonant interaction. On the other hand, for positive bias values, the plasma has a reversed shear flow, and we observe that the transport is almost zero in the shearless radial region, an evidence of a transport barrier in this region.

  20. Kinetic transport simulation of energetic particles

    NASA Astrophysics Data System (ADS)

    Sheng, He; Waltz, R. E.

    2016-05-01

    A kinetic transport code (EPtran) is developed for the transport of the energetic particles (EPs). The EPtran code evolves the EP distribution function in radius, energy, and pitch angle phase space (r, E, λ) to steady state with classical slowing down, pitch angle scattering, as well as radial and energy transport of the injected EPs (neutral beam injection (NBI) or fusion alpha). The EPtran code is illustrated by treating the transport of NBI fast ions from high-n ITG/TEM micro-turbulence and EP driven unstable low-n Alfvén eigenmodes (AEs) in a well-studied DIII-D NBI heated discharge with significant AE central core loss. The kinetic transport code results for this discharge are compared with previous study using a simple EP density moment transport code ALPHA (R.E. Waltz and E.M. Bass 2014 Nucl. Fusion 54 104006). The dominant EP-AE transport is treated with a local stiff critical EP density (or equivalent pressure) gradient radial transport model modified to include energy-dependence and the nonlocal effects EP drift orbits. All previous EP transport models assume that the EP velocity space distribution function is not significantly distorted from the classical ‘no transport’ slowing down distribution. Important transport distortions away from the slowing down EP spectrum are illustrated by a focus on the coefficient of convection: EP energy flux divided by the product of EP average energy and EP particle flux.

  1. Transport of particles across continental shelves

    SciTech Connect

    Nittrouer, C.A. ); Wright, L.D. College of William and Mary, Gloucester Point, VA )

    1994-02-01

    Transport of particulate material across continental shelves is well demonstrated by the distributions on the seabed and in the water column of geological, chemical, or biological components, whose sources are found farther landward or farther seaward. This paper addresses passive (incapable of swimming) particles and their transport across (not necessarily off) continental shelves during high stands of sea level. Among the general factors that influence across-shelf transport are shelf geometry, latitudinal constraints, and the timescale of interest. Research studies have investigated the physical mechanisms of transport and have made quantitative estimates of mass flux across continental shelves. Important mechanisms include wind-driven flows, internal wave, wave-orbital flows, infragravity phenomena, buoyant plumes, and surf zone processes. Most particulate transport occurs in the portion of the water column closest to the seabed. Therefore physical processes are effective where and when they influence the bottom boundary layer, causing shear stresses sufficient to erode and transport particulate material. Biological and geological processes at the seabed play important roles within the boundary layer. The coupling of hydrodynamic forces from currents and surface gravity waves has a particularly strong influence on across-shelf transport; during storm events, the combined effect can transport particles tens of kilometers seaward. Several important mechanisms can cause bidirectional (seaward and landward) transport, and estimates of the net flux are difficult to obtain. Also, measurements of across-shelf transport are made difficult by the dominance of along-shelf transport. Geological parameters are often the best indicators of net across-shelf transport integrated over time scales longer than a month. For example, fluvially discharged particles with distinct composition commonly accumulate in the midshelf region. 47 refs., 16 figs.

  2. Technology for future air transports

    NASA Technical Reports Server (NTRS)

    Klineberg, J. M.

    1979-01-01

    The requirements and opportunities for technological development in transport aircraft of the next generation are reviewed, focusing primarily on conventional, subsonic aircraft. Advances in computational aerodynamics and computer-aided design and manufacturing (in numerically controlled processes) are noted as well as improved wind tunnel testing and drag reduction techniques. Advances in aeroelasticity prediction have made it possible to use flexible, high-aspect-ratio wings without large weight penalties. Weight reduction may be achieved by the use of composite aircraft structures and superplastic forming combined with diffusion bonding, however composites require improvement in manufacturing techniques and mechanical properties in order to gain general acceptance. Propulsion systems can be improved in engine fuel efficiency, control, durability, environmental compatibility (exhaust and noise emissions), and fuel specifications. In avionics, due to the growth of low-cost, miniaturized packages, opportunities exist in the fields of digital controls, navigation, guidance and communication. Applications of new technologies to various aspects of flight safety are also outlined.

  3. Deterministic particle transport in a ratchet flow

    NASA Astrophysics Data System (ADS)

    Beltrame, Philippe; Makhoul, Mounia; Joelson, Maminirina

    2016-01-01

    This study is motivated by the issue of the pumping of particle through a periodic modulated channel. We focus on a simplified deterministic model of small inertia particles within the Stokes flow framework that we call "ratchet flow." A path-following method is employed in the parameter space in order to retrace the scenario which from bounded periodic solutions leads to particle transport. Depending on whether the magnitude of the particle drag is moderate or large, two main transport mechanisms are identified in which the role of the parity symmetry of the flow differs. For large drag, transport is induced by flow asymmetry, while for moderate drag, since the full transport solution bifurcation structure already exists for symmetric settings, flow asymmetry only makes the transport effective. We analyzed the scenarios of current reversals for each mechanism as well as the role of synchronization. In particular we show that, for large drag, the particle drift is similar to phase slip in a synchronization problem.

  4. Formal Methods Applications in Air Transportation

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2009-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control system s aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Air traffic control modernization has long held the promise of a more efficient air transportation system. Part of NASA s current mission is to develop advanced automation and operational concepts that will expand the capacity of our national airspace system while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we ll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and the promise of formal methods going forward.

  5. Aeolian particle flux profiles and transport unsteadiness

    NASA Astrophysics Data System (ADS)

    Bauer, Bernard O.; Davidson-Arnott, Robin G. D.

    2014-07-01

    Vertical profiles of aeolian sediment flux are commonly modeled as an exponential decay of particle (mass) transport with height above the surface. Data from field and wind-tunnel studies provide empirical support for this parameterization, although a large degree of variation in the precise shape of the vertical flux profile has been reported. This paper explores the potential influence of wind unsteadiness and time-varying intensity of transport on the geometry (slope, curvature) of aeolian particle flux profiles. Field evidence from a complex foredune environment demonstrates that (i) the time series of wind and sediment particle flux are often extremely variable with periods of intense transport (referred to herein as sediment "flurries") separated by periods of weak or no transport; (ii) sediment flurries contribute the majority of transport in a minority of the time; (iii) the structure of a flurry includes a "ramp-up" phase lasting a few seconds, a "core" phase lasting a few seconds to many tens of seconds, and a "ramp-down" phase lasting a few seconds during which the system relaxes to a background, low-intensity transport state; and (iv) conditional averaging of flux profiles for flurry and nonflurry periods reveals differences between the geometry of the mean profiles and hence the transport states that produce them. These results caution against the indiscriminate reliance on regression statistics derived from time-averaged sediment flux profiles, especially those with significant flurry and nonflurry periods, when calibrating or assessing the validity of steady state models of aeolian saltation.

  6. Modeling Particle Acceleration and Transport at CIRs

    NASA Astrophysics Data System (ADS)

    Li, G.; Zhao, L.; Ebert, R. W.; Desai, M. I.; Dayeh, M. A.; Mason, G. M.; Chen, Y.; Wu, Z.

    2014-12-01

    CIRs are a major site for particle acceleration during solar minimum. Earlier Ulysses observations have found that particles can be accelerated at both the forward and the reverse shocks that often form at a few AUs. The accelerated particles then propagate back to the Earth along Parker's field line. Theoretical calculations predicted a modulation of the spectrum at low energies, qualitatively agreed with obsevations at 1 AU. However, this picture was recently challenged by STEREO observations, where local accelerations near 1 AU were inferred in many events. In this work, we perform a detailed numerical calculation to study particle acceleration and transport in one CIR event which was observed by both ACE and STEREO spacecraft. We obtain particle currents at different heliocentric distances and different longitudes, as well as particle anisotropy. These values are compared with observations and the implication on the acceleration site and the interplanetary turbulence spectrum is discussed.

  7. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  8. International Air Transport and Federal Policy

    NASA Technical Reports Server (NTRS)

    Binder, R. H.

    1972-01-01

    The Federal policy which establishes guidelines for future U.S. participation in the international air transportation industry is discussed. The policy issues discussed include the following: (1) aircraft hijacking, both foreign and domestic, (2) relationship of scheduled services and charter services, (3) capacity problems, and (4) rate regulation.

  9. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  10. Scalable Domain Decomposed Monte Carlo Particle Transport

    NASA Astrophysics Data System (ADS)

    O'Brien, Matthew Joseph

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation. The main algorithms we consider are: • Domain decomposition of constructive solid geometry: enables extremely large calculations in which the background geometry is too large to fit in the memory of a single computational node. • Load Balancing: keeps the workload per processor as even as possible so the calculation runs efficiently. • Global Particle Find: if particles are on the wrong processor, globally resolve their locations to the correct processor based on particle coordinate and background domain. • Visualizing constructive solid geometry, sourcing particles, deciding that particle streaming communication is completed and spatial redecomposition. These algorithms are some of the most important parallel algorithms required for domain decomposed Monte Carlo particle transport. We demonstrate that our previous algorithms were not scalable, prove that our new algorithms are scalable, and run some of the algorithms up to 2 million MPI processes on the Sequoia supercomputer.

  11. Axonal transport of ribonucleoprotein particles (vaults).

    PubMed

    Li, J Y; Volknandt, W; Dahlstrom, A; Herrmann, C; Blasi, J; Das, B; Zimmermann, H

    1999-01-01

    RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon

  12. PROJECT 4 -- TRANSPORT AND FATE PARTICLES

    EPA Science Inventory

    These experiments use size and surface-fixed charge defined ultrafine particulates to provide baseline information on the time course and extent of their systemic absorption. Understanding the nature of particle transport in blood will be important for recognizing the likeliho...

  13. FLUKA: A Multi-Particle Transport Code

    SciTech Connect

    Ferrari, A.; Sala, P.R.; Fasso, A.; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  14. Scalable Domain Decomposed Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, Matthew Joseph

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  15. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviation's ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  16. Green Propulsion Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  17. Particle simulation of transport in fusion devices

    SciTech Connect

    Procassini, R.J.; Birdsall, C.K.; Morse, E.C. . Electronics Research Lab.); Cohen, B.I. )

    1989-10-17

    Our research in the area of transport processes in fusion devices has recently been centered on the development of particle simulation models of transport in the scrape-off layer (SOL) of a diverted tokamak. As part of this research, we have been involved in the development of a suitable boundary condition for the plasma current at a floating plate that allows use of long time- and space-scale implicit simulation techniques. We have also been involved in a comparison of results from our particle-in-cell (PIC) code and a bounce-averaged Fokker-Planck (FP) code for the study of particle confinement in an auxiliary heated mirror plasma. 3 refs., 1 fig.

  18. Heavy particle transport in sputtering systems

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  19. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR SECURITY: AIR CARRIERS AND COMMERCIAL...

  20. Particle Swarm Transport in Fracture Networks

    NASA Astrophysics Data System (ADS)

    Pyrak-Nolte, L. J.; Mackin, T.; Boomsma, E.

    2012-12-01

    Colloidal particles of many types occur in fractures in the subsurface as a result of both natural and industrial processes (e.g., environmental influences, synthetic nano- & micro-particles from consumer products, chemical and mechanical erosion of geologic material, proppants used in gas and oil extraction, etc.). The degree of localization and speed of transport of such particles depends on the transport mechanisms, the chemical and physical properties of the particles and the surrounding rock, and the flow path geometry through the fracture. In this study, we investigated the transport of particle swarms through artificial fracture networks. A synthetic fracture network was created using an Objet Eden 350V 3D printer to build a network of fractures. Each fracture in the network had a rectangular cross-sectional area with a constant depth of 7 mm but with widths that ranged from 2 mm to 11 mm. The overall dimensions of the network were 132 mm by 166 mm. The fracture network had 7 ports that were used either as the inlet or outlet for fluid flow through the sample or for introducing a particle swarm. Water flow rates through the fracture were controlled with a syringe pump, and ranged from zero flow to 6 ml/min. Swarms were composed of a dilute suspension (2% by mass) of 3 μm fluorescent polystyrene beads in water. Swarms with volumes of 5, 10, 20, 30 and 60 μl were used and delivered into the network using a second syringe pump. The swarm behavior was imaged using an optical fluorescent imaging system illuminated by green (525 nm) LED arrays and captured by a CCD camera. For fracture networks with quiescent fluids, particle swarms fell under gravity and remained localized within the network. Large swarms (30-60 μl) were observed to bifurcate at shallower depths resulting in a broader dispersal of the particles than for smaller swarm volumes. For all swarm volumes studied, particle swarms tended to bifurcate at the intersection between fractures. These

  1. Computing Thermodynamic And Transport Properties Of Air

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Gupta, Roop N.; Lee, Kam-Pui

    1994-01-01

    EQAIRS computer program is set of FORTRAN 77 routines for computing thermodynamic and transport properties of equilibrium air for temperatures from 100 to 30,000 K. Computes properties from 11-species, curve-fit mathematical model. Successfully implemented on DEC VAX-series computer running VMS, Sun4-series computer running SunOS, and IBM PC-compatible computer running MS-DOS.

  2. Planning air transport network in Appalachia

    NASA Technical Reports Server (NTRS)

    Carter, E. C.; Morlok, E. K.

    1975-01-01

    Main issues to be considered in designing an air transport system are discussed, and a model for the selection of an optimal air network for a region is presented. It was desired to have the ability to consider a dense network of nodes and air routes and variations in schedules on routes, which in combination would represent virtually all conceivable alternatives. Linear and integer programming were chosen as the most promising analysis methodologies. Integer programming was found to be intractable, while linear programming provided efficient solutions. The model was applied to studying the feasibility of a STOL network in West Virginia. Based on allowable paths, an examination of intercity demands, and established growth points, desired levels of service expressed as minimum flights were determined for certain city pairs.

  3. Particle transport inferences from density sawteeth

    SciTech Connect

    Chen, J.; Li, Q.; Zhuang, G.; Liao, K.; Gentle, K. W.

    2014-05-15

    Sawtooth oscillations in tokamaks are defined by their effect on electron temperature: a rapid flattening of the core profile followed by an outward heat pulse and a slow core recovery caused by central heating. Recent high-resolution, multi-chord interferometer measurements on JTEXT extend these studies to particle transport. Sawteeth only partially flatten the core density profile, but enhanced particle diffusion on the time scale of the thermal crash occurs over much of the profile, relevant for impurities. Recovery between crashes implies an inward pinch velocity extending to the center.

  4. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 4 2014-07-01 2014-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  5. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 4 2011-07-01 2011-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  6. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 4 2012-07-01 2012-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  7. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 4 2013-07-01 2013-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  8. 29 CFR 1202.12 - National Air Transport Adjustment Board.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 4 2010-07-01 2010-07-01 false National Air Transport Adjustment Board. 1202.12 Section... § 1202.12 National Air Transport Adjustment Board. Under section 205, title II, of the Railway Labor Act... four representatives to constitute a Board known as the National Air Transport Adjustment Board....

  9. Solar energetic particle transport in the heliosphere

    NASA Astrophysics Data System (ADS)

    Pei, Chunsheng

    2007-08-01

    The transport of solar energetic particles (SEPs) in the inner heliosphere is a very important issue which can affect our daily life. For example, large SEP events can lead to the failure of power grids, interrupt communications, and may participate in global climate change. The SEPS also can harm humans in space and destroy the instruments on board spacecraft. Studying the transport of SEPs also helps us understand remote regions of space which are not visible to us because there are not enough photons in those places. The interplanetary magnetic field is the medium in which solar energetic particles travel. The Parker Model of the solar wind and its successor, the Weber and Davis model, have been the dominant models of the solar wind and the interplanetary magnetic field since 1960s. In this thesis, I have reviewed these models and applied an important correction to the Weber and Davis model Various solar wind models and their limitations are presented. Different models can affect the calculation of magnetic field direction at 1 AU by as much as about 30%. Analysis of the onset of SEP events could be used to infer the release time of solar energetic particles and to differentiate between models of particle acceleration near the Sun. It is demonstrated that because of the nature of the stochastic heliospheric magnetic field, the path length measured along the line of force can be shorter than that of the nominal Parker spiral. These results help to explain recent observations. A two dimensional model and a fully three dimensional numerical model for the transport of SEPs has been developed based on Parker's transport equation for the first time. ''Reservoir'' phenomenon, which means the inner heliosphere works like a reservoir for SEPs during large SEP events, and multi-spacecraft observation of peak intensities are explained by this numerical model.

  10. Gyrokinetic particle simulation of neoclassical transport

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-02-01

    A time varying weighting ({delta} f) scheme for gyrokinetic particle simulation is applied to a steady state, multi-species simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated in these multispecies simulations that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion-electron plasma. An important physics feature of the present scheme is the introduction of toroidal sheared flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory of Hinton and Wong. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient driven electron particle flux and the bootstrap current while reducing temperature gradient driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, the present work demonstrates a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes.

  11. Gyrokinetic particle simulation of neoclassical transport

    SciTech Connect

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-08-01

    A time varying weighting ({delta}{ital f} ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Solar energetic particle anisotropies and insights into particle transport

    NASA Astrophysics Data System (ADS)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  13. Optical system for trapping particles in air.

    PubMed

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface. PMID:24514197

  14. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  15. Proceedings of the Air Transportation Management Workshop

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard (Editor); Tashker, Michael G. (Editor); Boyle, Angela M. (Editor)

    1995-01-01

    The Air Transportation Management (ATM) Workshop was held 31 Jan. - 1 Feb. 1995 at NASA Ames Research Center. The purpose of the workshop was to develop an initial understanding of user concerns and requirements for future ATM capabilities and to initiate discussions of alternative means and technologies for achieving more effective ATM capabilities. The topics for the sessions were as follows: viewpoints of future ATM capabilities, user requirements, lessons learned, and technologies for ATM. In addition, two panel sessions discussed priorities for ATM, and potential contributions of NASA to ATM. The proceedings contain transcriptions of all sessions.

  16. 76 FR 14812 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Particle National Ambient Air Quality Standards, 110(k)(6) Correction and Technical Correction Related to... the Annual Fine Particles National Ambient Air Quality Standards Correction In rule document...

  17. Particle-bound polycyclic aromatic hydrocarbon concentrations in transportation microenvironments

    NASA Astrophysics Data System (ADS)

    Houston, Douglas; Wu, Jun; Yang, Dongwoo; Jaimes, Guillermo

    2013-06-01

    This study is one of the first case studies to characterize the exposure of urban residents to traffic-related air pollution across locations and transportation microenvironments during everyday activities. Twenty-four adult residents of Boyle Heights, a neighborhood near downtown Los Angeles, carried a portable air pollution monitor and a Global Positioning Systems (GPS) tracking device for a total of 96 days. We found significant spatial and temporal variation in the particle-bound polycyclic aromatic hydrocarbon (pPAH) concentrations in transportation microenvironments. Average pPAH concentrations were higher while walking outdoors (190 ng m-3) compared to traveling in private passenger vehicles (138-155 ng m-3) or traveling in public transportation (61-124 ng m-3). Although travel comprised 5% of participant days, it was associated with 27% of overall daily pPAH exposure. Regression models explained 40-55% of the variation in daily average pPAH concentrations, and 40-44% of the variation in 1-min interval concentrations. Important factors included time spent traveling, travel speed, meteorological and nearby land use factors, time of day, and proximity to roadways. Although future research is needed to develop stronger predictive models, our study demonstrates portable tracking devices can provide a more complete, diurnal characterization of air pollution exposures for urban populations.

  18. Particle Transport through Hydrogels Is Charge Asymmetric

    PubMed Central

    Zhang, Xiaolu; Hansing, Johann; Netz, Roland R.; DeRouchey, Jason E.

    2015-01-01

    Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks. PMID:25650921

  19. Transport of Particle Swarms Through Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  20. High Energy Particle Transport Code System.

    Energy Science and Technology Software Center (ESTSC)

    2003-12-17

    Version 00 NMTC/JAM is an upgraded version of the code CCC-694/NMTC-JAERI97, which was developed in 1982 at JAERI and is based on the CCC-161/NMTC code system. NMTC/JAM simulates high energy nuclear reactions and nuclear meson transport processes. The applicable energy range of NMTC/JAM was extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code Jet-Aa Microscopic (JAM) for the intra-nuclear cascade part. For the evaporation andmore » fission process, a new model, GEM, can be used to describe the light nucleus production from the excited residual nucleus. According to the extension of the applicable energy, the nucleon-nucleus non-elastic, elastic and differential elastic cross section data were upgraded. In addition, the particle transport in a magnetic field was implemented for beam transport calculations. Some new tally functions were added, and the format of input and output of data is more user friendly. These new calculation functions and utilities provide a tool to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than with the previous model. It implements an intranuclear cascade model taking account of the in-medium nuclear effects and the preequilibrium calculation model based on the exciton one. For treating the nucleon transport process, the nucleon-nucleus cross sections are revised to those derived by the systematics of Pearlstein. Moreover, the level density parameter derived by Ignatyuk is included as a new option for particle evaporation calculation. A geometry package based on the Combinatorial Geometry with multi-array system and the importance sampling technique is implemented in the code. Tally function is also employed for obtaining such physical quantities as neutron energy spectra, heat deposition and nuclide yield without editing a history file. The code can simulate both the primary spallation reaction and the

  1. [Long-haul intensive care transports by air].

    PubMed

    Graf, Jürgen; Seiler, Olivier; Pump, Stefan; Günther, Marion; Albrecht, Roland

    2013-03-01

    The need for inter-hospital transports over long distances aboard air ambulances or airlines has increased in recent years, both in the civil as well as the military sector. More often severely ill intensive care patients with multiple organ failure and appropriate supportive care (e.g. mechanical ventilation, catecholamines, dialysis, cardiac assist devices) are transported by air. Despite the fact that long-haul intensive care transports by air ambulance and airlines via Patient Transport Compartment (PTC) are considered established modes of transport they always provide a number of challenges. Both modes of transport have distinct logistical and medical advantages and disadvantages. These-as well as the principal risks of an air-bound long-haul intensive care transport -have to be included in the risk assessment and selection of means of transport. Very often long-haul intensive care transports are a combination of air ambulance and scheduled airlines utilizing the PTC. PMID:23504461

  2. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    NASA Technical Reports Server (NTRS)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  3. Particle transport due to magnetic fluctuations

    SciTech Connect

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T{sub e}) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product <{tilde J}{sub e}{tilde B}{sub r}>. Particle transport is small just inside the last closed flux surface ({Gamma}{sub e,mag} < 0.1 {Gamma}{sub e,total}), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity.

  4. Nonambipolar transport by trapped particles in tokamaks.

    PubMed

    Park, Jong-Kyu; Boozer, Allen H; Menard, Jonathan E

    2009-02-13

    Small nonaxisymmetric perturbations of the magnetic field can greatly change the performance of tokamaks through nonambipolar transport. A number of theories have been developed, but the predictions were not consistent with experimental observations in tokamaks. This Letter provides a resolution, with a generalized analytic treatment of the nonambipolar transport. It is shown that the discrepancy between theory and experiment can be greatly reduced by two effects: (1) the small fraction of trapped particles for which the bounce and precession rates resonate; (2) the nonaxisymmetric variation in the field strength along the perturbed magnetic field lines rather than along the unperturbed magnetic field lines. The expected sensitivity of the International Thermonuclear Experimental Reactor to nonaxisymmetries is also discussed. PMID:19257595

  5. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  6. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Air transportation advertisements and solicitations. 1510.7 Section 1510.7 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES PASSENGER CIVIL AVIATION SECURITY...

  7. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  8. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  9. 49 CFR 1510.7 - Air transportation advertisements and solicitations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 9 2014-10-01 2014-10-01 false Air transportation advertisements and solicitations. 1510.7 Section 1510.7 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY ADMINISTRATIVE AND PROCEDURAL RULES PASSENGER CIVIL AVIATION SECURITY...

  10. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  11. 49 CFR 1544.223 - Transportation of Federal Air Marshals.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Transportation of Federal Air Marshals. 1544.223 Section 1544.223 Transportation Other Regulations Relating to Transportation (Continued) TRANSPORTATION SECURITY ADMINISTRATION, DEPARTMENT OF HOMELAND SECURITY CIVIL AVIATION SECURITY AIRCRAFT OPERATOR...

  12. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  13. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  14. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  15. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Unauthorized air transportation. 221.5 Section 221.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff...

  16. Maximizing algebraic connectivity in air transportation networks

    NASA Astrophysics Data System (ADS)

    Wei, Peng

    In air transportation networks the robustness of a network regarding node and link failures is a key factor for its design. An experiment based on the real air transportation network is performed to show that the algebraic connectivity is a good measure for network robustness. Three optimization problems of algebraic connectivity maximization are then formulated in order to find the most robust network design under different constraints. The algebraic connectivity maximization problem with flight routes addition or deletion is first formulated. Three methods to optimize and analyze the network algebraic connectivity are proposed. The Modified Greedy Perturbation Algorithm (MGP) provides a sub-optimal solution in a fast iterative manner. The Weighted Tabu Search (WTS) is designed to offer a near optimal solution with longer running time. The relaxed semi-definite programming (SDP) is used to set a performance upper bound and three rounding techniques are discussed to find the feasible solution. The simulation results present the trade-off among the three methods. The case study on two air transportation networks of Virgin America and Southwest Airlines show that the developed methods can be applied in real world large scale networks. The algebraic connectivity maximization problem is extended by adding the leg number constraint, which considers the traveler's tolerance for the total connecting stops. The Binary Semi-Definite Programming (BSDP) with cutting plane method provides the optimal solution. The tabu search and 2-opt search heuristics can find the optimal solution in small scale networks and the near optimal solution in large scale networks. The third algebraic connectivity maximization problem with operating cost constraint is formulated. When the total operating cost budget is given, the number of the edges to be added is not fixed. Each edge weight needs to be calculated instead of being pre-determined. It is illustrated that the edge addition and the

  17. Experimental Test of Resonant Particle Transport Theory

    NASA Astrophysics Data System (ADS)

    Eggleston, D. L.

    1999-11-01

    It has long been suggested that the single-particle resonant transport theory developed for tandem mirrors might be able to explain asymmetry-induced transport in Malmberg-Penning traps.(C.F. Driscoll and J.H. Malmberg, Phys. Rev. Lett. 50), 167 (1983). We have recently adapted this theory to non-neutral plasmas(D.L. Eggleston and T.M. O'Neil, Phys. Plasmas 6), 2699 (1999). and are attempting an experimental test under the simplest possible conditions. The experiment(D.L. Eggleston, Phys. Plasmas 4), 1196 (1997). employs forty wall sectors in order to apply an asymmetry consisting of a single Fourier mode: φ1 =φ _nlωexp [ i( fracnπ Lz+lθ -ω t) ] . The electron density is kept low enough to avoid complications due to collective effects (shielding and waves) while the usual azimuthal E× B drift is maintained by a negatively biased central wire. We have confirmed the dominant role played by resonant particlesfootnote D.L. Eggleston, Bull. Am. Phys. Soc. 43, 1805 (1998). and here report on an absolute comparison between experimental and theoretical values for the radial particle flux. Interestingly, our initial results indicate that the experimental flux is forty times smaller than the theoretical value.

  18. Air transportation energy efficiency - Alternatives and implications

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1976-01-01

    Results from recent studies of air transportation energy efficiency alternatives are discussed, along with some of the implications of these alternatives. The fuel-saving alternatives considered include aircraft operation, aircraft modification, derivative aircraft, and new aircraft. In the near-term, energy efficiency improvements should be possible through small improvements in fuel-saving flight procedures, higher density seating, and higher load factors. Additional small near-term improvements could be obtained through aircraft modifications, such as the relatively inexpensive drag reduction modifications. Derivatives of existing aircraft could meet the requirements for new aircraft and provide energy improvements until advanced technology is available to justify the cost of a completely new design. In order to obtain significant improvements in energy efficiency, new aircraft must truly exploit advanced technology in such areas as aerodynamics, composite structures, active controls, and advanced propulsion.

  19. Weighted multiplex network of air transportation

    NASA Astrophysics Data System (ADS)

    Varga, Imre

    2016-06-01

    In several real networks large heterogeneity of links is present either in intensity or in the nature of relationships. Therefore, recent studies in network science indicate that more detailed topological information are available if weighted or multi-layer aspect is applied. In the age of globalization air transportation is a representative example of huge complex infrastructure systems, which has been analyzed from different points of view. In this paper a novel approach is applied to study the airport network as a weighted multiplex taking into account the fact that the rules and fashion of domestic and international flights differ. Restricting study to only topological features and their correlations in the system (disregarding traffic) one can see reasons why simple network approximation is not adequate.

  20. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  1. PARTICLE TRANSPORT IN YOUNG PULSAR WIND NEBULAE

    SciTech Connect

    Tang Xiaping; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2012-06-20

    The model for pulsar wind nebulae (PWNe) as a result of the magnetohydrodynamic (MHD) downstream flow from a shocked, relativistic pulsar wind has been successful in reproducing many features of the nebulae observed close to central pulsars. However, observations of well-studied young nebulae like the Crab Nebula, 3C 58, and G21.5-0.9 do not show the toroidal magnetic field on a larger scale that might be expected in the MHD flow model; in addition, the radial variation of spectral index due to synchrotron losses is smoother than expected in the MHD flow model. We find that pure diffusion models can reproduce the basic data on nebular size and spectral index variation for the Crab, 3C 58, and G21.5-0.9. Most of our models use an energy-independent diffusion coefficient; power-law variations of the coefficient with energy are degenerate with variation in the input particle energy distribution index in the steady state, transmitting boundary case. Energy-dependent diffusion is a possible reason for the smaller diffusion coefficient inferred for the Crab. Monte Carlo simulations of the particle transport allowing for advection and diffusion of particles suggest that diffusion dominates over much of the total nebular volume of the Crab. Advection dominates close to the pulsar and is likely to play a role in the X-ray half-light radius. The source of diffusion and mixing of particles is uncertain, but may be related to the Rayleigh-Taylor instability at the outer boundary of a young PWN or to instabilities in the toroidal magnetic field structure.

  2. PILOT DEMONSTRATION OF THE AIR CURTAIN SYSTEM FOR FUGITIVE PARTICLE CONTROL

    EPA Science Inventory

    The report gives results of the demonstration of the technical and economic feasibility of using an air curtain transport system to control buoyant fugitive particle emissions. (Fugitive emissions are the major source of uncontrolled emissions for many industrial plants. There ar...

  3. Mechanisms and implications of air pollution particle associations with chemokines

    SciTech Connect

    Seagrave, JeanClare

    2008-11-01

    Inflammation induced by inhalation of air pollutant particles has been implicated as a mechanism for the adverse health effects associated with exposure to air pollution. The inflammatory response is associated with upregulation of various pro-inflammatory cytokines and chemokines. We have previously shown that diesel exhaust particles (DEP), a significant constituent of air pollution particulate matter in many urban areas, bind and concentrate IL-8, an important human neutrophil-attracting chemokine, and that the chemokine remains biologically active. In this report, we examine possible mechanisms of this association and the effects on clearance of the chemokine. The binding appears to be the result of ionic interactions between negatively charged particles and positively charged chemokine molecules, possibly combined with intercalation into small pores in the particles. The association is not limited to diesel exhaust particles and IL-8: several other particle types also adsorb the chemokine and several other cytokines are adsorbed onto the diesel particles. However, there are wide ranges in the effectiveness of various particle types and various cytokines. Finally, male Fisher 344 rats were intratracheally instilled with chemokine alone or combined with diesel exhaust or silica particles under isofluorane anesthesia. In contrast to silica particles, which do not bind the chemokine, the presence of diesel exhaust particles, which bind the chemokine, prolonged the retention of the chemokine.

  4. Modeling pollutant transport using a meshless-lagrangian particle model

    SciTech Connect

    Carrington, D. B.; Pepper, D. W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  5. Transition effect of air shower particles in plastic scintillators

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Maeda, T.; Kameda, T.; Mizushima, K.; Misaki, Y.

    1985-01-01

    The transition effect of air shower particles in the plastic scintillators near the core was measured by scintillators of various thickness. The air showers selected for the measurement were of 10,000. Results obtained are as follows: (1) the multiplication of shower particles in the scintillators is less than 20% for that of 50 mm thickness; (2) dependence of the transition effect on age parameter is not recognized within the experimental errors.

  6. UK airmisses involving commercial air transport, January-April 1991

    NASA Astrophysics Data System (ADS)

    In the introduction the following are briefly discussed: origination of an airmiss; purpose of airmiss reports; investigation of airmiss reports; categorization of airmisses; involvement of commercial air transport aircraft; airmisses related to flying hours. Tabulated statistics of the following are presented: the number of incidents of commercial air transport airmisses; commercial air transport aircraft involved in airmisses; commercial air transport airmisses related to flying hours. Reports on the commercial air transport airmisses from Jan. - Apr. 1991 are presented. These contain summaries of: pilot reports, transcripts of relevant RT frequencies; radar video recordings, and reports from appropriate air traffic control and operating authorities. The working groups discussion is summarized, and the risk and cause assessed.

  7. PARTICLE-SIZE DEPENDENT EFFICIENCY OF AIR CLEANERS

    EPA Science Inventory

    The paper gives results of tests with media filters, electrostatic filters, and electronic air cleaners. t also discusses results from system qualification tests to detect system artifacts. he collection efficiency of air cleaners as a function of particle diameter must be known ...

  8. Optical Levitation of Micro-Scale Particles in Air

    NASA Technical Reports Server (NTRS)

    Wrbanek, Susan Y.; Weiland, Kenneth E.

    2004-01-01

    Success has been achieved using a radiation pressure gradient to levitate microscale particles in air for as long as four hours. This work is performed as a precursor to the development of a vacuum based optical tweezers interrogation tool for nanotechnology research. It was decided to first proceed with solving the problem of achieving optical levitation of a micro-scale particle in air before trying the same in a vacuum environment. This successful optical levitation in air confirms the work of Ashkin and Dziedzic. Levitation of 10 and 13.8 microns diameter polystyrene spheres was achieved, as well as the levitation of 10 and 100 microns diameter glass spheres. Particles were raised and lowered. A modicum of success was achieved translating particles horizontally. Trapping of multiple particles in one laser beam has been photographed. Also, it has been observed that particles, that may be conglomerates or irregular in shape, can also be trapped by a focused laser beam. Levitated glass beads were photographed using laser light scattered from the beads. The fact that there is evidence of optical traps in air containing irregular and conglomerate particles provides hope that future tool particles need not be perfect spheres.

  9. Polarization properties of aerosol particles over western Japan: classification, seasonal variation, and implications for air quality

    NASA Astrophysics Data System (ADS)

    Pan, Xiaole; Uno, Itsushi; Hara, Yukari; Osada, Kazuo; Yamamoto, Shigekazu; Wang, Zhe; Sugimoto, Nobuo; Kobayashi, Hiroshi; Wang, Zifa

    2016-08-01

    Ground-based observation of the polarization properties of aerosol particles using a polarization optical particle counter (POPC) was made from 27 October 2013, to 31 December 2015, at a suburban site in the Kyushu area of Japan. We found that the depolarization ratio (DR, the fraction of s-polarized signal in the total backward light scattering signal) of aerosol particles showed prominent seasonal variability, with peaks in spring (0.21-0.23) and winter (0.19-0.23), and a minimum value (0.09-0.14) in summer. The aerosol compositions in both fine mode (aerodynamic diameter of particle, Dp < 2.5 µm) and coarse mode (2.5 µm < Dp < 10 µm), and the size-dependent polarization characteristics were analyzed for long-range transport dust particles, sea salt, and anthropogenic pollution-dominant aerosols. The DR value increased with increasing particle size, and DR = 0.1 was a reliable threshold value to identify the sphericity of supermicron (Dp > 1 µm) particles. Occurrence of substandard air quality days in Kyushu was closely related with mixed type (coexistence of anthropogenic pollutants and dust particles in the atmosphere), especially in winter and spring, indicating that dust events in the Asian continent played a key role in the cross-boundary transport of continental pollution. Backward trajectory analysis demonstrated that air masses originating from the western Pacific contained large amounts of spherical particles due to the influence of sea salt, especially in summer; however, for air masses from the Asian continent, the dependence of number fraction of spherical particles on air relative humidity was insignificant, indicating the predominance of less-hygroscopic substances (e.g., mineral dust), although the mass concentrations of anthropogenic pollutants were elevated.

  10. 14 CFR 221.5 - Unauthorized air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Unauthorized air transportation. 221.5... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS General § 221.5 Unauthorized air transportation. Tariff publications shall not contain fares or charges, or their governing provisions, applicable to foreign...

  11. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  12. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  13. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  14. 22 CFR 226.1003 - Air transportation. [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Air transportation. 226.1003 Section 226.1003 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ADMINISTRATION OF ASSISTANCE AWARDS TO U.S. NON-GOVERNMENTAL ORGANIZATIONS USAID-Specific Requirements § 226.1003 Air transportation....

  15. Composition of 15-85 nm particles in marine air

    NASA Astrophysics Data System (ADS)

    Lawler, M. J.; Whitehead, J.; O'Dowd, C.; Monahan, C.; McFiggans, G.; Smith, J. N.

    2014-11-01

    The chemical composition of 15-85 nm diameter particles was measured at Mace Head, Ireland, during May 2011 using the TDCIMS (thermal desorption chemical ionization mass spectrometer). Measurable levels of chloride, sodium, and sulfate were present in essentially all collected samples of these particles at this coastal Atlantic site. Acetaldehyde and benzoic acid were also frequently detected. Concomitant particle hygroscopicity observations usually showed a sea-salt mode and a lower hygroscopicity mode with growth factors near to that of ammonium sulfate. There were many periods lasting from hours to about 2 days during which the 10-60 nm particle number increased dramatically in polar oceanic air. These periods were correlated with the presence of benzoic acid in the particles and an increase in the number of lower hygroscopicity mode particles. Very small (< 10 nm) particles were also present, suggesting that new particle formation contributed to these nanoparticle enhancement events.

  16. Air Cargo Transportation Route Choice Analysis

    NASA Technical Reports Server (NTRS)

    Obashi, Hiroshi; Kim, Tae-Seung; Oum, Tae Hoon

    2003-01-01

    Using a unique feature of air cargo transshipment data in the Northeast Asian region, this paper identifies the critical factors that determine the transshipment route choice. Taking advantage of the variations in the transport characteristics in each origin-destination airports pair, the paper uses a discrete choice model to describe the transshipping route choice decision made by an agent (i.e., freight forwarder, consolidator, and large shipper). The analysis incorporates two major factors, monetary cost (such as line-haul cost and landing fee) and time cost (i.e., aircraft turnaround time, including loading and unloading time, custom clearance time, and expected scheduled delay), along with other controls. The estimation method considers the presence of unobserved attributes, and corrects for resulting endogeneity by use of appropriate instrumental variables. Estimation results find that transshipment volumes are more sensitive to time cost, and that the reduction in aircraft turnaround time by 1 hour would be worth the increase in airport charges by more than $1000. Simulation exercises measures the impacts of alternative policy scenarios for a Korean airport, which has recently declared their intention to be a future regional hub in the Northeast Asian region. The results suggest that reducing aircraft turnaround time at the airport be an effective strategy, rather than subsidizing to reduce airport charges.

  17. Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter

    NASA Technical Reports Server (NTRS)

    Perry, Radford

    2011-01-01

    The particle fallout limitations and periodic allocations for the James Webb Space Telescope are very stringent. Standard prediction methods are complicated by non-linearity and monitoring methods that are insufficiently responsive. A method for dynamically predicting the particle fallout in a cleanroom using air particle counter data was determined by numerical correlation. This method provides a simple linear correlation to both time and air quality, which can be monitored in real time. The summation of effects provides the program better understanding of the cleanliness and assists in the planning of future activities. Definition of fallout rates within a cleanroom during assembly and integration of contamination-sensitive hardware, such as the James Webb Space Telescope, is essential for budgeting purposes. Balancing the activity levels for assembly and test with the particle accumulation rate is paramount. The current approach to predicting particle fallout in a cleanroom assumes a constant air quality based on the rated class of a cleanroom, with adjustments for projected work or exposure times. Actual cleanroom class can also depend on the number of personnel present and the type of activities. A linear correlation of air quality and normalized particle fallout was determined numerically. An air particle counter (standard cleanroom equipment) can be used to monitor the air quality on a real-time basis and determine the "class" of the cleanroom (per FED-STD-209 or ISO-14644). The correlation function provides an area coverage coefficient per class-hour of exposure. The prediction of particle accumulations provides scheduling inputs for activity levels and cleanroom class requirements.

  18. Modeling particle transport by bubbles for performance guidelines in airlift fermentors.

    PubMed

    Snape, J B; Thomas, N H

    1992-07-01

    A calculation method has been developed to model the statistical transport of biological particles in bubble-driven flows, with special reference to the biokinetics of environmental excursions experienced by individual cells, aggregated cells, or immobilization beads in airlift bioreactors. Interim developments on modeling the transport of such particles in concentric tube devices are reported. The calculation is driven by user-prescribed global parameters for the bioreactor geometry, bulk air flow rate, and particle parameters (size and slip speed). The algorithm calls on empirical data correlations for void fraction, bulk liquid flow rate, and bubble sizes and slip speeds, optimally selected from a large bibliographic database. The Monte Carlo algorithm concentrates on simulating particle transport in the bubbly riser flows.The packaged family of correlations and calculations represents, in effect, an expert system augmented by a transport simulation suited to characterizing the biokinetic response of cells cultured in airlift bioreactors. PMID:18601123

  19. Peristaltic particle transport using the Lattice Boltzmann method

    SciTech Connect

    Connington, Kevin William; Kang, Qinjun; Viswanathan, Hari S; Abdel-fattah, Amr; Chen, Shiyi

    2009-01-01

    Peristaltic transport refers to a class of internal fluid flows where the periodic deformation of flexible containing walls elicits a non-negligible fluid motion. It is a mechanism used to transport fluid and immersed solid particles in a tube or channel when it is ineffective or impossible to impose a favorable pressure gradient or desirous to avoid contact between the transported mixture and mechanical moving parts. Peristaltic transport occurs in many physiological situations and has myriad industrial applications. We focus our study on the peristaltic transport of a macroscopic particle in a two-dimensional channel using the lattice Boltzmann method. We systematically investigate the effect of variation of the relevant dimensionless parameters of the system on the particle transport. We find, among other results, a case where an increase in Reynolds number can actually lead to a slight increase in particle transport, and a case where, as the wall deformation increases, the motion of the particle becomes non-negative only. We examine the particle behavior when the system exhibits the peculiar phenomenon of fluid trapping. Under these circumstances, the particle may itself become trapped where it is subsequently transported at the wave speed, which is the maximum possible transport in the absence of a favorable pressure gradient. Finally, we analyze how the particle presence affects stress, pressure, and dissipation in the fluid in hopes of determining preferred working conditions for peristaltic transport of shear-sensitive particles. We find that the levels of shear stress are most hazardous near the throat of the channel. We advise that shear-sensitive particles should be transported under conditions where trapping occurs as the particle is typically situated in a region of innocuous shear stress levels.

  20. The telegraph equation in charged particle transport

    NASA Technical Reports Server (NTRS)

    Gombosi, T. I.; Jokipii, J. R.; Kota, J.; Lorencz, K.; Williams, L. L.

    1993-01-01

    We present a new derivation of the telegraph equation which modifies its coefficients. First, an infinite order partial differential equation is obtained for the velocity space solid angle-averaged phase-space distribution of particles which underwent at least a few collisions. It is shown that, in the lowest order asymptotic expansion, this equation simplifies to the well-known diffusion equation. The second-order asymptotic expansion for isotropic small-angle scattering results in a modified telegraph equation with a signal propagation speed of v(5/11) exp 1/2 instead of the usual v/3 exp 1/2. Our derivation of a modified telegraph equation follows from an expansion of the Boltzmann equation in the relevant smallness parameters and not from a truncation of an eigenfunction expansion. This equation is consistent with causality. It is shown that, under steady state conditions in a convecting plasma, the telegraph equation may be regarded as a diffusion equation with a modified transport coefficient, which describes a combination of diffusion and cosmic-ray inertia.

  1. Transport of active ellipsoidal particles in ratchet potentials

    SciTech Connect

    Ai, Bao-Quan Wu, Jian-Chun

    2014-03-07

    Rectified transport of active ellipsoidal particles is numerically investigated in a two-dimensional asymmetric potential. The out-of-equilibrium condition for the active particle is an intrinsic property, which can break thermodynamical equilibrium and induce the directed transport. It is found that the perfect sphere particle can facilitate the rectification, while the needlelike particle destroys the directed transport. There exist optimized values of the parameters (the self-propelled velocity, the torque acting on the body) at which the average velocity takes its maximal value. For the ellipsoidal particle with not large asymmetric parameter, the average velocity decreases with increasing the rotational diffusion rate, while for the needlelike particle (very large asymmetric parameter), the average velocity is a peaked function of the rotational diffusion rate. By introducing a finite load, particles with different shapes (or different self-propelled velocities) will move to the opposite directions, which is able to separate particles of different shapes (or different self-propelled velocities)

  2. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  3. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways.

    PubMed

    Farkhadnia, Fouad; Gorji, Tahereh B; Gorji-Bandpy, Mofid

    2016-03-01

    In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel's generations G3-G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers-due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation. PMID:26541595

  4. From flow and particle transport modeling to vibration isolation

    NASA Astrophysics Data System (ADS)

    Ellison, Joseph Fabian

    2001-08-01

    This thesis is composed of two parts. Part I is devoted to the analysis of particle transport and deposition. In this part, flow and particle transport and deposition in a furnace and under microgravity conditions are analyzed. In the first study of Part I, fluid flow, combustion, heat and mass transfer involved in a methane/air furnace were studied. The purpose of this study was to investigate variations in the flow field and thermal conditions in the furnace and to develop methods for improving its efficiency. The analysis of the combustor model was performed using an unstructured grid model developed with the Gambit grid generator of FLUENT version 5. In the second study of Part I, particle dispersion in a liquid filled box under orbital g-jitter excitation is analyzed. The study investigated particle motion experiments that were performed aboard the orbiting shuttle. The experiments have provided confusing data as to the nature of particle dispersion in the orbital environment. To obtain a better understanding of the dynamics involved, a series of numerical simulations are performed to study the dispersion of suspended particles subject to g-jitter excitations. Part II of the thesis is devoted to the analysis of vibration and vibration isolation problems. Following along the lines of vibration effecting system performance, a study of vibration isolation used to protect avionics equipment from adverse aircraft vibration environments was conducted. Passive isolation is the simplest means to achieve this goal. The system used here consisted of a circular steel ring with a lump mass on top and exposed to base excitation. Sinusoidal and filtered zero-mean Gaussian white noise were used to excite the structure and the acceleration response spectra at the top of the ring were computed. An experiment was performed to identify the natural frequencies and modal damping of the circular ring. The polished homogeneity measurement of large optics mounted in a vertical ring

  5. Entropic Ratchet transport of interacting active Brownian particles

    SciTech Connect

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  6. Air Transport of Spent Nuclear Fuel (SNF) Assemblies

    SciTech Connect

    Haire, M.J.; Moses, S.D.; Shapovalov, V.I.; Morenko, A.

    2007-07-01

    Sometimes the only feasible means of shipping research reactor spent nuclear fuel (SNF) among countries is via air transport because of location or political conditions. The International Atomic Energy Agency (IAEA) has established a regulatory framework to certify air transport Type C casks. However, no such cask has been designed, built, tested, and certified. In lieu of an air transport cask, research reactor SNF has been transported using a Type B cask under an exemption with special arrangements for administrative and security controls. This work indicates that it may be feasible to transport commercial power reactor SNF assemblies via air, and that the cost is only about three times that of shipping it by railway. Optimization (i.e., reduction) of this cost factor has yet to be done. (authors)

  7. Structural Properties of the Brazilian Air Transportation Network.

    PubMed

    Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício

    2015-09-01

    The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network. PMID:26312421

  8. Transport of anisotropic chiral particles in a confined structure

    NASA Astrophysics Data System (ADS)

    Hu, Cai-tian; Ou, Ya-li; Wu, Jian-chun; Ai, Bao-quan

    2016-03-01

    Directed transport of anisotropic chiral particles is numerically investigated in the presence of the regular arrays of rigid half-circle obstacles. It is found that due to the rotational-translational coupling, the transport of anisotropic particles is considerably more complicated compared to the isotropic case. For isotropic chiral particles, the transport direction is completely determined by the chirality of particles. However, for anisotropic chiral particles, the competition between the chirality and the anisotropic degree determines the transport direction. For a given chirality, by suitably tailoring parameters (the anisotropic degree and the self-propulsion speed), particles with different anisotropic degrees (or self-propulsion speed) can move in different directions and can be separated.

  9. Transport and capture of colloidal particles in single fractures

    SciTech Connect

    Bonano, E.J.; Beyeler, W.E.

    1984-01-01

    In this study, the transport and capture rates of colloidal particles were calculated for a parallel-plate channel simulating a single fracture. The steady-state convective diffusion equation was solved with the particle velocity normal to the walls of the channel being the sum of the external forces acting on the particles. The forces considered were the gravitational, London-van der Waals and electric-double layer forces. The effects of parameters governing these forces and particle production mechanism on the rates of particle capture and transport are determined. The dynamic balance between particle production and capture has a significant effect on the concentration of particles leaving the fracture. The average particle velocity, though higher than the average fluid velocity, seems to be insensitive to phenomena governing particle capture. 8 references, 5 figures.

  10. Physiology and behavior of dogs during air transport

    PubMed Central

    Bergeron, Renée; Scott, Shannon L.; Émond, Jean-Pierre; Mercier, Florent; Cook, Nigel J.; Schaefer, Al L.

    2002-01-01

    Twenty-four beagles were used to measure physiological and behavioral reactions to air transport. Each of 3 groups of 4 sedated (with 0.5 mg/kg body weight of acepromazine maleate) and 4 non-sedated (control) dogs was flown on a separate flight between Montreal, Quebec, and Toronto, Ontario, after being transported by road from Quebec City to Montreal. Saliva and blood samples were taken before ground and air transport and after air transport. The heart rate was monitored during the whole experiment except during ground transport, and behavior was monitored by video during air transport. Sedation did not affect any of the variables measured. The mean plasma cortisol concentration was significantly higher (P < 0.05) after ground transport than at baseline (225.3 vs 134.5 nmol/L); the mean salivary cortisol concentration was significantly higher (P < 0.05) after both ground and air transport than at baseline (16.2 and 14.8, respectively, vs 12.6 nmol/L). The mean neutrophil count was significantly higher (P < 0.05) after both ground and air transport than at baseline (80.6 and 81.4, respectively, vs 69.5 per 100 white blood cells), whereas the mean lymphocyte count was significantly lower (P < 0.05) (13.2 and 13.7, respectively, vs 22.4 per 100 white blood cells). Loading and unloading procedures caused the largest increase in heart rate. On average, the dogs spent more than 50% of the time lying down, and they remained inactive for approximately 75% of the time, except during take-off. These results suggest that transportation is stressful for dogs and that sedation with acepromazine, at the dosage and timing used, does not affect the physiological and behavioral stress responses of dogs to air transport. PMID:12146895

  11. Control of Respirable Particles in Indoor Air with Portable AirCleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Grimsrud, D.T.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-10-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles using in situ chamber decay tests. Following injection of cigarette smoke in a room-size chamber, decay rates for particle concentrations were obtained for total number concentration and for number concentration by particle size with and without air cleaner operation. The size distribution of the tobacco smoke particles was log normal with a count median diameter of 0.15 {micro}m and a geometric standard deviation of 2.0. Without air cleaner operation, the natural mass-averaged surface deposition rate of particles was observed to be 0.1 h{sup -1}. Air cleaning rates for particles were found to be negligible for several small panel-filter devices, a residential-sized ion-generator, and a pair of mixing fans. Electrostatic precipitators and extended surface filters removed particles at substantial rates, and a HEPA-type filter was the most efficient air cleaner studied.

  12. A particle-grid air quality modeling approach

    SciTech Connect

    Chock, D.P.; Winkler, S.L.

    1996-12-31

    A particle-grid air quality modeling approach that can incorporate chemistry is proposed as an alternative to the conventional PDF-grid air quality modeling. The particle trajectory model can accurately describe advection of air pollutants without introducing artificial diffusion, generating negative concentrations or distorting the concentration distributions. It also accurately describes the dispersion of emissions from point sources and is capable of retaining subgrid-scale information. Inhomogeneous turbulence necessitates use of a small timestep, say, 10 s to describe vertical dispersion of particles in convective conditions. A timestep as large as 200 s can be used to simulate horizontal dispersion. A time-splitting scheme can be used to couple the horizontal and vertical dispersion in a 3D simulation, and about 2000-3000 particles per cell of size 5 km x 5 km X 50 m is sufficient to yield a highly accurate simulation of 3D dispersion. Use of an hourly-averaged concentration further reduces the demand of particle per cell to 500. The particle-grid method is applied to a system of ten reacting chemical species in a two-dimensional rotating flow field with and without diffusion. A chemistry grid within which reactions are assumed to take place can be decoupled from the grid describing the flow field. Two types of chemistry grids are used to describe the chemical reactions: a fixed coarse grid and a moving (the advection case) or stationary (the advection plus diffusion case) fine grid. Two particle-number densities are also used: 256 and 576 particles per fixed coarse grid cell. The species mass redistributed back to the particle after each reaction step is assumed to be proportional to the species mass in the particle before the reaction. The simulation results are very accurate, especially in the advection-chemistry case. Accuracy improves with the use of a fine grid.

  13. Investigation of air transportation technology at MIT

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1983-01-01

    A summary of the research done by the Massachusetts Institute of Technology is addressed including Loran-C for guidance in flying approaches, an air traffic control simulator for the Manned Vehicle Simulation Research Facility, and an air traffic collision model theory.

  14. Journal of Air Transportation, Volume 11, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2007-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy

  15. Journal of Air Transportation; Volume 9, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2004-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  16. Journal of Air Transportation, Volume 10, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor); Lucas, Sarah (Editor); Scarpellini-Metz, Nanette (Editor)

    2005-01-01

    The mission of the Journal of Air Transportation (JA is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JAT will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  17. Composition of air pollution particles modifies oxidative stress in cells, tissues, and living systems

    EPA Science Inventory

    Epidemiological studies demonstrate an association between increased levels of ambient air pollution particles and human morbidity and mortality. Production of oxidants, either directly by the air pollution particles or by the host response to the particles, appears to be fundame...

  18. Ultrafine particle removal and generation by portable air cleaners

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.; Siegel, Jeffrey A.; Corsi, Richard L.

    Portable air cleaners can both remove and generate pollutants indoors. To investigate these phenomena, we conducted a two-phase investigation in a 14.75 m 3 stainless steel chamber. In the first phase, particle size-resolved (12.6-514 nm diameter) clean air delivery rates (CADR) and efficiencies were determined, as were ozone emission rates, for two high-efficiency particle arresting (HEPA) filters, one electrostatic precipitator with a fan, and two ion generators without fans. The two HEPA air cleaners had count average CADR (standard deviation) of 188 (30) and 324 (44) m 3 h -1; the electrostatic precipitator 284 (62) m 3 h -1; and the two ion generators 41 (11) and 35 (13) m 3 h -1. The electrostatic precipitator emitted ozone at a rate of 3.8±0.2 mg h -1, and the two ion generators 3.3±0.2 and 4.3±0.2 mg h -1. Ozone initiates reactions with certain unsaturated organic compounds that produce ultrafine and fine particles, carbonyls, other oxidized products, and free radicals. During the second phase, five different ion generators were operated separately in the presence of a plug-in liquid or solid air freshener, representing a strong terpene source. For air exchange rates of between 0.49 and 0.96 h -1, three ion generators acted as steady-state net particle generators in the entire measured range of 4.61-157 nm, and two generated particles in the range of approximately 10 to 39-55 nm. Terpene and aldehyde concentrations were also sampled for one ion generator, and concentrations of terpenes decreased and formaldehyde increased. Given these results, the pollutant removal benefits of ozone-generating air cleaners may be outweighed by the generation of indoor pollution.

  19. Community rotorcraft air transportation benefits and opportunities

    NASA Technical Reports Server (NTRS)

    Gilbert, G. A.; Freund, D. J.; Winick, R. M.; Cafarelli, N. J.; Hodgkins, R. F.; Vickers, T. K.

    1981-01-01

    Information about rotorcraft that will assist community planners in assessing and planning for the use of rotorcraft transportation in their communities is provided. Information useful to helicopter researchers, manufacturers, and operators concerning helicopter opportunities and benefits is also given. Three primary topics are discussed: the current status and future projections of rotorcraft technology, and the comparison of that technology with other transportation vehicles; the community benefits of promising rotorcraft transportation opportunities; and the integration and interfacing considerations between rotorcraft and other transportation vehicles. Helicopter applications in a number of business and public service fields are examined in various geographical settings.

  20. Studies in the demand for short haul air transportation

    NASA Technical Reports Server (NTRS)

    Kanafani, A.; Gosling, G.; Taghavi, S.

    1975-01-01

    Demand is analyzed in a short haul air transportation corridor. Emphasis is placed on traveler selection from available routes. Model formulations, estimation techniques, and traffic data handling are included.

  1. Two Dimensional Particle Transport in the Cct Tokamak Edge Plasma

    NASA Astrophysics Data System (ADS)

    Tynan, George Robert

    The physics of particle transport in the CCT tokamak plasma edge is studied experimentally in this dissertation. A full poloidal array of Langmuir probes is used to measure the equilibrium plasma and transport properties of the CCT edge plasma during Ohmic and H-mode discharges. During Ohmic L-mode, the equilibrium plasma density and electron temperature are found to vary on a magnetic flux surface. The equilibrium plasma distribution coincides with the distribution of particle transport. Inside the last closed flux surface, convective processes dominate particle transport. Several large convective cells are observed near the limiter radius. At and beyond the limiter radius, turbulent transport is significant. The turbulence appears to be driven by the convective plasma flows. In Ohmic L-mode-like discharges, plasma transport occurs predominantly through the low-field region of the tokamak with local bad curvature. The convective cells are destroyed at the L-H transition and replaced with a more poloidally symmetric, radially narrow jet of plasma flow at the limiter radius. The jet effectively isolates the plasma core from the scrape -off layer. The turbulence associated with the convective cells is reduced across the edge region. Radial particle transport across the limiter radius is thus inhibited and the global particle confinement is increased. The available data suggest that the residual H-mode particle transport is more poloidally symmetric.

  2. Transportation by Air-On the Ground

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A Rolair air flotation system is a spinoff of NASA/General Motors technology developed for the Apollo Program. It allows heavy loads to be moved easily by separating the load from the ground by a thin air cushion, virtually eliminating surface friction. Rolair Systems, Inc. was formed by former General Motors engineers and has successfully employed the system for both aerospace and nonaerospace industries.

  3. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  4. CARDIAC MOLECULAR EFFECTS INDUCED BY AIR POLLUTION PARTICLES

    EPA Science Inventory

    Abstract Submitted to the American Thoracic Society 98th International Conference, May 17 - 22, 2002, Atlanta, GA

    CARDIAC MOLECULAR EFFECTS INDUCED BY AIR POLLUTION PARTICLES
    K. Dreher1, R. Jaskot1, J. Richards1, and T. Knuckles2. 1U. S. Environmental Protection Agency,...

  5. The effects of realistic pancake solenoids on particle transport

    SciTech Connect

    Gu, X.; Okamura, M.; Pikin, A.; Fischer, W.; Luo, Y.

    2011-02-01

    Solenoids are widely used to transport or focus particle beams. Usually, they are assumed as being ideal solenoids with a high axial-symmetry magnetic field. Using the Vector Field Opera program, we modeled asymmetrical solenoids with realistic geometry defects, caused by finite conductor and current jumpers. Their multipole magnetic components were analyzed with the Fourier fit method; we present some possible optimized methods for them. We also discuss the effects of 'realistic' solenoids on low energy particle transport. The finding in this paper may be applicable to some lower energy particle transport system design.

  6. Joint University Program for Air Transportation Research, 1985

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    Air transportation research being carried on at the Massachusetts Institute of Technology, Princeton University, and Ohio University is discussed. Global Positioning System experiments, Loran-C monitoring, inertial navigation, the optimization of aircraft trajectories through severe microbursts, fault tolerant flight control systems, and expert systems for air traffic control are among the topics covered.

  7. In-vehicle particle air pollution and its mitigation

    NASA Astrophysics Data System (ADS)

    Tartakovsky, L.; Baibikov, V.; Czerwinski, J.; Gutman, M.; Kasper, M.; Popescu, D.; Veinblat, M.; Zvirin, Y.

    2013-01-01

    This work presents results of particle mass, number and size measurements inside passenger cars (PCs), vans and urban buses. Effects of the in-cabin air purifier on particle concentrations and average size inside a vehicle are studied. Use of the air purifier leads to a dramatic reduction, by 95-99%, in the measured ultrafine particles number concentration inside a vehicle compared with outside readings. Extremely low particle concentrations may be reached without a danger of vehicle occupants' exposure to elevated CO2 levels. The lowest values of particle concentrations inside a PC without air purifier are registered under the recirculation ventilation mode, but the issue of CO2 accumulation limits the use of this mode to very short driving events. Lower PM concentrations are found inside newer cars, if this ventilation mode is used. Great differences by a factor of 2.5-3 in PM10 concentrations are found between the PCs and the buses. Smoking inside a car leads to a dramatic increase, by approximately 90 times, in PM2.5 concentrations.

  8. Transport of Energetic Particles by Microturbulence in Magnetized Plasmas

    SciTech Connect

    Zhang Wenlu; Lin Zhihong; Chen Liu

    2008-08-29

    Transport of energetic particles by the microturbulence in magnetized plasmas is studied in gyrokinetic simulations of the ion temperature gradient turbulence. The probability density function of the ion radial excursion is found to be very close to a Gaussian, indicating a diffusive transport process. The particle diffusivity can thus be calculated from a random walk model. The diffusivity is found to decrease drastically for high energy particles due to the averaging effects of the large gyroradius and orbit width, and the fast decorrelation of the energetic particles with the waves.

  9. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  10. Particles Production in Extensive Air Showers: GEANT4 vs CORSIKA

    NASA Astrophysics Data System (ADS)

    Sabra, M. S.; Watts, J. W.; Christl, M. J.

    2014-09-01

    Air shower simulations are essential tools for the interpretation of the Extensive Air Shower (EAS) measurements. The reliability of these codes is evaluated by comparisons with equivalent simulation calculations, and with experimental data (when available). In this work, we present GEANT4 calculations of particles production in EAS induced by primary protons and Iron in the PeV (1015 eV) energy range. The calculations, using different hadronic models, are compared with the results from the well-known air shower simulation code CORSIKA, and the results of this comparison will be discussed. Air shower simulations are essential tools for the interpretation of the Extensive Air Shower (EAS) measurements. The reliability of these codes is evaluated by comparisons with equivalent simulation calculations, and with experimental data (when available). In this work, we present GEANT4 calculations of particles production in EAS induced by primary protons and Iron in the PeV (1015 eV) energy range. The calculations, using different hadronic models, are compared with the results from the well-known air shower simulation code CORSIKA, and the results of this comparison will be discussed. This work is supported by the NASA Postdoctoral Program administered by Oak Ridge Associated Universities.

  11. Environic implications of lighter than air transportation

    NASA Technical Reports Server (NTRS)

    Horsbrugh, P.

    1975-01-01

    The advent of any new system of transportation must now be reviewed in the physical context and texture of the landscape. Henceforward, all transportation systems will be considered in respect of their effects upon the environment to ensure that they afford an environic asset as well as provide an economic benefit. The obligations which now confront the buoyancy engineers are emphasized so that they may respond to these ethical and environic urgencies simultaneously with routine technical development.

  12. 10 CFR 71.88 - Air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... citation of 49 CFR chapter I, as may be applicable, the licensee shall assure that plutonium in any form... carrier, require compliance with 49 CFR 175.704, U.S. Department of Transportation regulations applicable... 10 Energy 2 2010-01-01 2010-01-01 false Air transport of plutonium. 71.88 Section 71.88...

  13. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    NASA Astrophysics Data System (ADS)

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-11-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis.

  14. Morphing Surfaces Enable Acoustophoretic Contactless Transport of Ultrahigh-Density Matter in Air

    PubMed Central

    Foresti, Daniele; Sambatakakis, Giorgio; Bottan, Simone; Poulikakos, Dimos

    2013-01-01

    The controlled contactless transport of heavy drops and particles in air is of fundamental interest and has significant application potential. Acoustic forces do not rely on special material properties, but their utility in transporting heavy matter in air has been restricted by low power and poor controllability. Here we present a new concept of acoustophoresis, based on the morphing of a deformable reflector, which exploits the low reaction forces and low relaxation time of a liquid with enhanced surface tension through the use of thin overlaid membrane. An acoustically induced, mobile deformation (dimple) on the reflector surface enhances the acoustic field emitted by a line of discretized emitters and enables the countinuos motion of heavy levitated samples. With such interplay of emitters and reflecting soft-structure, a 5 mm steel sphere (0.5 grams) was contactlessly transported in air solely by acoustophoresis. PMID:24212104

  15. Electrokinetic transport of heterogeneous particles in suspensions

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1993-01-01

    The focus of research over the past nine months had been on a theory for the electrophoresis of slender particles and on trajectory analysis of colloidal doublets rotating in electric fields. Brief summaries of the research are given.

  16. Moisture Transport in Silica Gel Particle Beds: I. Theoretical Study

    SciTech Connect

    Pesaran, A. A.; Mills, A. F.

    1986-08-01

    Diffusion mechanisms of moisture within silica gel particles are investigated. It is found that for microporous silica gel surface diffusion is the dominant mechanism of moisture transport, while for macroporous silica gel both Knudsen and surface diffusion are important.

  17. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  18. Journal of Air Transportation, Volume 10, No. 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Unal, Mehmet (Editor); Gudmundsson, Sveinn Vidar (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    Topics discussed include: Mitigation Alternatives for Carbon Dioxide Emissions by the Air Transport Industry in Brazil; Air Transport Regulation Under Transformation: The Case of Switzerland; An Estimation of Aircraft Emissions at Turkish Airports; Guide to the Implementation of Iso 14401 at Airports; The Impact of Constrained Future Scenarios on Aviation and Emissions; The Immediate Financial Impact of Transportation Deregulation on the Stockholders of the Airline Industry; Aviation Related Airport Marketing in an Overlapping Metropolitan Catchment Area: The Case of Milan's Three Airports; and Airport Pricing Systems and Airport Deregulation Effects on Welfare.

  19. Energetic particle transport and acceleration within the interplanetary medium

    NASA Astrophysics Data System (ADS)

    Dalla, Silvia

    2016-07-01

    The propagation through space of energetic particles accelerated at the Sun and in the inner heliosphere is governed by the characteristics of the interplanetary magnetic field. At large scales, the average Parker spiral configuration, on which transient magnetic structures may be superimposed, dominates the transport, while at smaller scales turbulence scatters the particles and produces field line meandering. This talk will review the classical 1D approach to interplanetary transport, mainly applied to Solar Energetic Particles (SEPs), as well as alternative models which allow for effects such as scattering perpendicular to the average magnetic field and field line meandering. The recently emphasized role of drifts in the propagation of SEPs will be discussed. The presentation will also review processes by which particle acceleration takes place within the interplanetary medium and the overall way in which acceleration and transport shape in-situ observations of energetic particles.

  20. Composition of 15-80 nm particles in marine air

    NASA Astrophysics Data System (ADS)

    Lawler, M. J.; Whitehead, J.; O'Dowd, C.; Monahan, C.; McFiggans, G.; Smith, J. N.

    2014-01-01

    The chemical composition of 15-80 nm diameter particles was measured at Mace Head, Ireland, during May 2011 using the TDCIMS (Thermal Desorption Chemical Ionization Mass Spectrometer). Measurable levels of chloride, sodium, and sulfate were present in essentially all collected samples of these particles at this coastal Atlantic site. Organic compounds were rarely detectable, but this was likely an instrumental limitation. Concomitant particle hygroscopicity observations usually showed two main modes, one which contained a large sea salt component and another which was likely dominated by sulfate. There were several occasions lasting from hours to about two days during which 10-60 nm particle number increased dramatically in polar oceanic air. During these events, the sulfate mode increased substantially in number. This observation, along with the presence of very small (<10 nm) particles during the events, suggests that the particles were formed by homogeneous nucleation, followed by subsequent growth by sulfuric acid and potentially other vapors. The frequency of the events and similarity of event particles to background particles suggest that these events are important contributors of nanoparticles in this environment.

  1. Transport and harvesting of suspended particles using modulated ultrasound.

    PubMed

    Whitworth, G; Grundy, M A; Coakley, W T

    1991-11-01

    Polystyrene particles of 9 microns diameter were acoustically concentrated along the axis of a water-filled cylindrical waveguide containing a 3 MHz standing wave field. Modulation of the acoustic field enabled transport of the concentrated particles in the axial direction. Four modulations were investigated: 1, a fixed frequency difference introduced between two transducers; 2, ramping the transducer frequency; 3, tone burst, i.e. sound that is pulsed on and off, allowing intermittent sedimentation under gravity; and 4, switching the sound off to allow continuous sedimentation. The most efficient transport (leaving the fewest particles in suspension) of clumps to one end of the container was achieved with method 1 above. In this system the maximum speed of transport of the axial clumps was 24 mm s-1. A theory developed here for the transport of particles in a pseudo (i.e. slowly moving) standing wave field predicts an upper limit, which increases with particle size, for the speed of an entrained body. For a single 9 microns diameter particle in a field with a spatial peak pressure amplitude of 0.4 MPa this speed would be 0.5 mm s-1. The higher experimental speeds observed here emphasize the value of acoustically concentrating particles into relatively large clumps prior to initiating transport. PMID:1949343

  2. New hazmat transportation regulations for air

    SciTech Connect

    Pickett, L.J.

    1994-12-31

    This presentation focuses on the eighth edition of UN recommendations on the transport of hazardous materials. The 1995--1996 edition of the ICAO technical instructions are evaluated. The author discusses the different classes of hazardous materials, focusing on flammability, combustibility, and the properties of self-reactive substances.

  3. Scalings of energetic particle transport by ion temperature gradient microturbulence

    SciTech Connect

    Zhang Wenlu; Decyk, Viktor; Holod, Ihor; Xiao Yong; Lin Zhihong; Chen Liu

    2010-05-15

    Transport scaling of energetic particles by ion temperature gradient microturbulence in magnetized plasmas is studied in massively paralleled gyrokinetic particle-in-cell simulations. It is found that the diffusivity decreases drastically at high particles energy (E) to plasma temperature (T) ratio because of the averaging effects of the large gyroradius and drift-orbit width, and the fast wave-particle decorrelation. At high energy, the diffusivity follows a (E/T){sup -1} scaling for purely passing particles, a (E/T){sup -2} scaling for deeply trapped particles and a (E/T){sup -1} scaling for particles with an isotropic velocity distribution since the diffusivity therein is contributed mostly by the passing particles.

  4. Efficiency of a statistical transport model for turbulent particle dispersion

    NASA Astrophysics Data System (ADS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-05-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.

  5. Efficiency of a statistical transport model for turbulent particle dispersion

    SciTech Connect

    Litchford, R.J.; Jeng, San-Mou )

    1992-05-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains. 2 refs.

  6. Efficiency of a statistical transport model for turbulent particle dispersion

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Jeng, San-Mou

    1992-01-01

    In developing its theory for turbulent dispersion transport, the Litchford and Jeng (1991) statistical transport model for turbulent particle dispersion took a generalized approach in which the perturbing influence of each turbulent eddy on consequent interactions was transported through all subsequent eddies. Nevertheless, examinations of this transport relation shows it to be able to decay rapidly: this implies that additional computational efficiency may be obtained via truncation of unneccessary transport terms. Attention is here given to the criterion for truncation, as well as to expected efficiency gains.

  7. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  8. Monitoring of fine particle air pollutants at FWS Class 1 air quality areas

    SciTech Connect

    Porter, E.

    1995-12-31

    Fine particle samplers have been installed at five FWS wilderness areas, all Class 1 air quality areas. The samplers are designed primarily to measure the fine particles in ambient air responsible for visibility impairment and are part of the national IMPROVE (Interagency Monitoring of Protected Visual Environments) network. Filters in the samplers are analyzed for trace elements, soil elements, sulfur, hydrogen, nitrate, chloride, organic carbon, and inorganic carbon. Several composite parameters are derived from the measured parameters and include sulfate, nitrate, organic mass, light-absorbing carbon, and soil. Data indicate that fine particle concentrations at FWS sites are consistent with geographical trends observed in the national IMPROVE network. For instance, concentrations of most parameters are higher in the eastern US than in the western US, reflecting the pattern or greater air pollution and lower visibility in the east. Of the five FWS sites, Brigantine Wilderness Area experiences the greatest air pollution, receiving polluted air masses from the Ohio Valley and eastern metropolitan areas, including Philadelphia and Washington, DC. As the data record lengthens, attributing air pollution and visibility impairment at the wilderness areas to specific source types and regions will be more accurate.

  9. Computational Modeling of Transport Limitations in Li-Air Batteries

    SciTech Connect

    Ryan, Emily M.; Ferris, Kim F.; Tartakovsky, Alexandre M.; Khaleel, Mohammad A.

    2013-02-22

    In this paper we investigate transport limitations in the electrodes of lithium-air batteries through computational modeling. We use meso-scale models to consider the effects of dendrites on the current and potential at the anode surface, and to investigate the effects of reaction and transport parameters on the formation of precipitates in the cathode. The formation of dendrites on the anode surface during cycling reduces the transport of ions and can lead to short circuits in the cell. Growth of precipitates in the cathode reduces the specific capacity of the cell due to surface passivation and pore clogging. Both of these degradation mechanisms depend on meso-scale phenomena, such as the pore-scale reactive transport in the cathode. To understand the effects of the meso-scale transport and precipitation on the performance and lifetime of Li-air batteries, meso-scale modeling is needed that is able to resolve the electrodes and their microstructures.

  10. The promise of advanced technology for future air transports

    NASA Technical Reports Server (NTRS)

    Bower, R. E.

    1978-01-01

    Progress in all weather 4-D navigation and wake vortex attenuation research is discussed and the concept of time based metering of aircraft is recommended for increased emphasis. The far term advances in aircraft efficiency were shown to be skin friction reduction and advanced configuration types. The promise of very large aircraft, possibly all wing aircraft is discussed, as is an advanced concept for an aerial relay transportation system. Very significant technological developments were identified that can improve supersonic transport performance and reduce noise. The hypersonic transport was proposed as the ultimate step in air transportation in the atmosphere. Progress in the key technology areas of propulsion and structures was reviewed. Finally, the impact of alternate fuels on future air transports was considered and shown not to be a growth constraint.

  11. Fluid enhancement of particle transport in nanochannels

    NASA Astrophysics Data System (ADS)

    Li, Zhigang; Drazer, German

    2006-11-01

    We investigate the effect that fluid density has on the mobility of a spherical nanoparticle moving through a cylindrical nanochannel. The solid nanoparticle, the channel wall, and the fluid are described at the molecular level, and we use molecular dynamics simulations to study their behavior. We consider densities ranging from a few fluid molecules to a relatively dense fluid inside the channel. The inhomogeneous distribution of the fluid molecules inside the channel results in the competition of two effects as the fluid density is increased. The fluid molecules adsorb on the channel surface, and thus reduce the friction with the wall and enhance the mobility of the particle. On the other hand, the addition of fluid molecules increases the viscous drag on the particle and thus reduces its mobility. The outcome of these competing effects depends on the strength of the interaction between the atoms in the particle and those in the wall. We examine three different cases, i.e., intermediate, strong, and weak interaction energies. For an intermediate interaction, two distinct peaks are observed in the mobility of the particle as the first two adsorbed fluid layers form. On the other hand, a monotonously increasing mobility is found for a strong interaction energy, and a nearly constant mobility is observed for a weak interaction.

  12. Sandia Computational Engine for Particle Transport for Radiation Effects.

    Energy Science and Technology Software Center (ESTSC)

    2014-09-01

    Version 00 The SCEPTRE code solves the linear Boltzmann transport equation for one-, two- and three-dimensional geometries. SCEPTRE is capable of handling any particle type for which multigroup-Legendre cross sections are available. However, the code is designed primarily to model the transport of photons, electrons, and positrons through matter. For efficiency and flexibility, SCEPTRE contains capability for both the first- and second-order forms of the Boltzmann transport equation.

  13. Emerging Climate-data Needs in the Air Transport Sector

    NASA Astrophysics Data System (ADS)

    Thompson, T. R.

    2014-12-01

    This paper addresses the nature of climate information needed within the air-transport sector. Air transport is not a single economic sector with uniform needs for climate data: airport, airline, and air-navigation services are the principal sub-sectors, each with their own particular climate-related decision contexts. For example, airports function as fixed infrastructure that is primarily affected by probabilities of extreme events that could hamper runway/taxiway operations, interfere with worker availability, or impede travel to and from the airport by passengers. Airlines, in contrast, are more concerned with changes in atmospheric conditions (upper-air turbulence, convective weather events, etc.) that might require consideration in long-term decisions related to flight-planning processes and aircraft equipage. Air-navigation service providers have needs that are primarily concerned with assurance of safe spatial separation of aircraft via sensor data and communications links. In addition to present-day commercial air transport, we discuss what climate data may be needed for new types of air transport that may emerge in the next couple of decades. These include, for example, small aircraft provided on-demand to non-pilot travelers, high-altitude supersonic business and commercial jets, and very large numbers of un-manned aircraft. Finally, we give examples relating to key technical challenges in providing decision-relevant climate data to the air-transport sector. These include: (1) identifying what types of climate data are most relevant the different decisions facing the several segments of this industry; (2) determining decision-appropriate time horizons for forecasts of this data; and (3) coupling the uncertainties inherent in these forecasts to the decision process.

  14. Parameterization of Submesoscale Particle Transport in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haza, A. C.; Ozgokmen, T. M.; Griffa, A.; Poje, A. C.; Hogan, P. J.; Jacobs, G. A.

    2014-12-01

    Submesoscale flows have a significant impact on the transport at their own scales, yet require extensive data sets and numerical computations, making them challenging to approach deterministically. A recent Lagrangian parametrization to correct particle transport at the submesoscales is implemented to an eddy permitting ocean model at 1/25 degree grid for the surface circulation of the Gulf of Mexico. It combines mesoscale transport from the deterministic Lagrangian Coherent Structures (LCS) and statistical Lagrangian subgridscale (LSGS) models over the submesoscale range. Comparison to a 1km submesoscale-permitting ocean model shows a significant improvement of the scale-dependent relative dispersion and particle distribution.

  15. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    A preliminary set of operating cost relationships are presented for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  16. Preliminary estimates of operating costs for lighter than air transports

    NASA Technical Reports Server (NTRS)

    Smith, C. L.; Ardema, M. D.

    1975-01-01

    Presented is a preliminary set of operating cost relationships for airship transports. The starting point for the development of the relationships is the direct operating cost formulae and the indirect operating cost categories commonly used for estimating costs of heavier than air commercial transports. Modifications are made to the relationships to account for the unique features of airships. To illustrate the cost estimating method, the operating costs of selected airship cargo transports are computed. Conventional fully buoyant and hybrid semi-buoyant systems are investigated for a variety of speeds, payloads, ranges, and altitudes. Comparisons are made with aircraft transports for a range of cargo densities.

  17. Dissipative particle dynamics model for colloid transport in porous media

    SciTech Connect

    Pan, W.; Tartakovsky, A. M.

    2013-08-01

    We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.

  18. Colloidal particle transport with simultaneous birth, growth, and capture

    SciTech Connect

    Bonano, E.J.; Beyeler, W.E.

    1985-01-01

    The simultaneous transport, birth, growth, and capture of colloidal particles suspended in a fluid within a parallel-plate channel was investigated. Growth and dispersion along the size axis were treated in the same fashion as convection and diffusion along a space coordinate axis. The capture and transport rates were given in terms of an average Sherwood number and average overall particle velocity relative to the fluid's velocity, respectively. The effects of changes in size dispersivity and fluid velocity on the capture and transport rates were significant. The opposite was the case for changes in the particle growth rate. Under all conditions considered here, the particle front had a higher average velocity than the fluid. 9 refs., 8 figs.

  19. Isotope effects on particle transport in the Compact Helical System

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Okamura, S.; Minami, T.; Ida, K.; Mikkelsen, D. R.; Osakabe, M.; Yoshimura, Y.; Isobe, M.; Morita, S.; Matsuoka, K.

    2016-05-01

    The hydrogen isotope effects of particle transport were studied in the hydrogen and deuterium dominant plasmas of the Compact Helical System (CHS). Longer decay time of electron density after the turning-off of the gas puffing was observed in the deuterium dominant plasma suggesting that the recycling was higher and/or the particle confinement was better in the deuterium dominant plasma. Density modulation experiments showed the quantitative difference of the particle transport coefficients. Density was scanned from 0.8  ×  1019 m-3 to 4  ×  1019 m-3 under the same magnetic field and almost the same heating power. In the low density regime (line averaged density  <  2.5  ×  1019 m-3), the lower particle diffusivity and the larger inwardly directed core convection velocity was observed in the deuterium dominant plasma, while in the high density regime (line averaged density  >2.5  ×  1019 m-3) no clear difference was observed. This result indicates that the isotope effects of particle transport exist only in the low density regime. Comparison with neoclassical transport coefficients showed that the difference of particle transport is likely to be due to the difference of turbulence driven anomalous transport. Linear character of the ion scale turbulence was studied. The smaller linear growth rate qualitatively agreed with the reduced particle transport in the deuterium dominant plasma of the low density regime.

  20. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  1. Continuous air monitor for alpha-emitting aerosol particles

    SciTech Connect

    McFarland, A.R.; Ortiz, C.A. . Dept. of Mechanical Engineering); Rodgers, J.C.; Nelson, D.C. )

    1990-01-01

    A new alpha Continuous Air Monitor (CAM) sampler is being developed for use in detecting the presence of alpha-emitting aerosol particles. The effort involves design, fabrication and evaluation of systems for the collection of aerosol and for the processing of data to speciate and quantify the alpha emitters of interest. At the present time we have a prototype of the aerosol sampling system and we have performed wind tunnel tests to characterize the performance of the device for different particle sizes, wind speeds, flow rates and internal design parameters. The results presented herein deal with the aerosol sampling aspects of the new CAM sampler. Work on the data processing, display and alarm functions is being done in parallel with the particle sampling work and will be reported separately at a later date. 17 refs., 5 figs., 3 tabs.

  2. Visualization of Air Particle Dynamics in an Engine Inertial Particle Separator

    NASA Astrophysics Data System (ADS)

    Wolf, Jason; Zhang, Wei

    2015-11-01

    Unmanned Aerial Vehicles (UAVs) are regularly deployed around the world in support of military, civilian and humanitarian efforts. Due to their unique mission profiles, these advanced UAVs utilize various internal combustion engines, which consume large quantities of air. Operating these UAVs in areas with high concentrations of sand and dust can be hazardous to the engines, especially during takeoff and landing. In such events, engine intake filters quickly become saturated and clogged with dust particles, causing a substantial decrease in the UAVs' engine performance and service life. Development of an Engine Air Particle Separator (EAPS) with high particle separation efficiency is necessary for maintaining satisfactory performance of the UAVs. Inertial Particle Separators (IPS) have been one common effective method but they experience complex internal particle-laden flows that are challenging to understand and model. This research employs an IPS test rig to simulate dust particle separation under different flow conditions. Soda lime glass spheres with a mean diameter of 35-45 microns are used in experiments as a surrogate for airborne particulates encountered during flight. We will present measurements of turbulent flow and particle dynamics using flow visualization techniques to understand the multiphase fluid dynamics in the IPS device. This knowledge can contribute to design better performing IPS systems for UAVs. Cleveland State University, Cleveland, Ohio, 44115.

  3. Forecasting the demand potential for STOL air transportation

    NASA Technical Reports Server (NTRS)

    Fan, S.; Horonjeff, R.; Kanafani, A.; Mogharabi, A.

    1973-01-01

    A process for predicting the potential demand for STOL aircraft was investigated to provide a conceptual framework, and an analytical methodology for estimating the STOL air transportation market. It was found that: (1) schedule frequency has the strongest effect on the traveler's choice among available routes, (2) work related business constitutes approximately 50% of total travel volume, and (3) air travel demand follows economic trends.

  4. An Integrated Radiation Transport Particle-in-Cell Method

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Verboncoeur, J. P.; Smith, H. B.; Parker, G. J.; Birdsall, C. K.

    2000-10-01

    The study of radiation transport is important to understand the basic physics and to calculate the efficiency in a lamp discharge or laser induced plasma. Many models neglect radiation transport effects in evolving the steady state. In this study, we established a basic model to calculate radiation transport, including the effects of nonuniform ground state density and atomic collisions in one dimensional cylindrical and planar geometries. We coupled radiation transport with the self-consistent kinetic particle-in-cell codes, XPDP1 and XPDC1[1]. We treat electrons and ions with a particle-in-cell method, and the neutral ground and excited states with a fluid model to calculate radiation transport and atomic collisions. The steady state result of this model compares well with the solution of Holstein equation[2]. [1] J. P. Verboncoeur, M. V. Alves, V. Vahedi, and C. K. Birdsall, Journal of Computational Physics 104, 321 (1993). [2] T. Holstein, Phys. Rev. 72, 1213 (1947).

  5. On-bicycle exposure to particulate air pollution: Particle number, black carbon, PM2.5, and particle size

    NASA Astrophysics Data System (ADS)

    Hankey, Steve; Marshall, Julian D.

    2015-12-01

    Inhalation of air pollution during transport is an important exposure pathway, especially for certain modes of travel and types of particles. We measured concentrations of particulate air pollution (particle number [PN], black carbon [BC], fine particles [PM2.5], particle size) using a mobile, bicycle-based monitoring platform during morning and afternoon rush-hour to explore patterns of exposure while cycling (34 days between August 14 and October 16, 2012 in Minneapolis, MN). Measurements were geo-located at 1 ​s intervals along 3 prescribed monitoring routes totaling 85 h (1426 km) of monitoring. Mean morning [afternoon] on-road concentrations were 32,500 [16,600] pt cm-3, 2.5 [0.7] μg m-3 BC, 8.7 [8.3] μg m-3 PM2.5, and 42 [39] nm particle diameter. Concentrations were correlated with street functional class and declined within small distances from a major road (e.g., for PN and BC, mean concentration decreased ∼20% by moving 1 block away from major roads to adjacent local roads). We estimate the share of on-bicycle exposure attributable to near-traffic emissions (vs. regional pollution) is ∼50% for PN and BC; ∼25% for PM2.5. Regression models of instantaneous traffic volumes, derived from on-bicycle video recordings of nearby traffic, quantify the increase in particle-concentrations associated with each passing vehicle; for example, trucks were associated with acute, high concentration exposure events (average concentration-increase per truck: 31,000 pt cm-3, 1.0 μg m-3 PM2.5, 1.6 μg m-3 BC). Our findings could be used to inform design of low-exposure bicycle networks in urban areas.

  6. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  7. Evaluation of the impact of transportation changes on air quality

    NASA Astrophysics Data System (ADS)

    Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F. J.; Močnik, G.; Alados-Arboledas, L.

    2015-08-01

    Transport regulation at local level for the abatement of air pollution has gained significant traction in the EU. In this work, we analyze the effect of different transportation changes on air quality in two similarly sized cities: Granada (Spain) and Ljubljana (Slovenia). Several air pollutants were measured at both sites before and after the implementation of the changes. In Ljubljana, a 72% reduction of local black carbon (BC), from 5.6 to 1.6 μg/m3, was observed after the restriction was implemented. In Granada, statistically significant reductions of 1.3 μg/m3 (37%) in BC and of 15 μg/m3 (33%) in PM10 concentrations were observed after the public transportation re-organization. However, the improvement observed in air quality was very local since other areas of the cities did not improve significantly. We show that closing streets to private traffic, renewal of the bus fleet and re-organization of the public transportation significantly benefit air quality.

  8. The accelerated growth of the worldwide air transportation network

    NASA Astrophysics Data System (ADS)

    Azzam, Mark; Klingauf, Uwe; Zock, Alexander

    2013-01-01

    Mobility by means of air transportation has a critical impact on the global economy. Especially against the backdrop of further growth and an aggravation of the energy crisis, it is crucial to design a sustainable air transportation system. Current approaches focus on air traffic management. Nevertheless, also the historically evolved network offers great potential for an optimized redesign. But the understanding of its complex structure and development is limited, although modern network science supplies a great set of new methods and tools. So far studies analyzing air transportation as a complex network are based on divers and poor data, which are either merely regional or strongly bounded time-wise. As a result, the current state of research is rather inconsistent regarding topological coefficients and incomplete regarding network evolution. Therefore, we use the historical, worldwide OAG flight schedules data between 1979 and 2007 for our study. Through analyzing by far the most comprehensive data base so far, a better understanding of the network, its evolution and further implications is being provided. To our knowledge we present the first study to determine that the degree distribution of the worldwide air transportation network is non-stationary and is subject to densification and accelerated growth, respectively.

  9. Air transport and the fate of pneumothorax in pleural adhesions.

    PubMed Central

    Haid, M M; Paladini, P; Maccherini, M; Di Bisceglie, M; Biagi, G; Gotti, G

    1992-01-01

    Air travel is contraindicated in patients with a pneumothorax but was necessary because of the exigencies of war in three patients. Three patients with high velocity missile injuries to the chest and pleural adhesions are reported. All had to be evacuated by air, without an intercostal drain or oxygen supplement, from the war stricken area of Northern Somalia (Horn of Africa) to Mogadishu. Two patients with a partial pneumothorax flew on military transport aeroplanes at an altitude of 3000 m in a non-pressurised cabin and recovered rapidly after a few days in hospital. One patient, transported on a small Cessna aeroplane, died after developing bilateral tension pneumothoraces. Images PMID:1481187

  10. Radiant heat test of Perforated Metal Air Transportable Package (PMATP).

    SciTech Connect

    Gronewald, Patrick James; Oneto, Robert; Mould, John; Pierce, Jim Dwight

    2003-08-01

    A conceptual design for a plutonium air transport package capable of surviving a 'worst case' airplane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A full-scale prototype, designated as the Perforated Metal Air Transport Package (PMATP) was thermally tested in the SNL Radiant Heat Test Facility. This testing, conducted on an undamaged package, simulated a regulation one-hour aviation fuel pool fire test. Finite element thermal predictions compared well with the test results. The package performed as designed, with peak containment package temperatures less than 80 C after exposure to a one-hour test in a 1000 C environment.

  11. Arrow 227: Air transport system design simulation

    NASA Technical Reports Server (NTRS)

    Bontempi, Michael; Bose, Dave; Brophy, Georgeann; Cashin, Timothy; Kanarios, Michael; Ryan, Steve; Peterson, Timothy

    1992-01-01

    The Arrow 227 is a student-designed commercial transport for use in a overnight package delivery network. The major goal of the concept was to provide the delivery service with the greatest potential return on investment. The design objectives of the Arrow 227 were based on three parameters; production cost, payload weight, and aerodynamic efficiency. Low production cost helps to reduce initial investment. Increased payload weight allows for a decrease in flight cycles and, therefore, less fuel consumption than an aircraft carrying less payload weight and requiring more flight cycles. In addition, fewer flight cycles will allow a fleet to last longer. Finally, increased aerodynamic efficiency in the form of high L/D will decrease fuel consumption.

  12. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  13. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  14. Investigation of air transportation technology at Princeton University, 1986

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  15. Effect of particle settling on lidar profiles of long-range transported Saharan aerosols

    NASA Astrophysics Data System (ADS)

    Gasteiger, Josef; Groß, Silke

    2016-04-01

    A large amount of desert aerosol is transported in the Saharan Air Layer (SAL) westwards from Africa over the Atlantic Ocean. Lidar profiles of transported Saharan aerosol may contain some information about the vertically-resolved aerosol microphysics that could be used to characterize processes that affected the measured aerosol during transport. We present modelled lidar profiles of long-range transported Saharan aerosol assuming that initially the SAL is well-mixed and that there is no vertical mixing of air within the SAL as soon as it reaches the Atlantic. We consider Stokes gravitational settling of aerosol particles over the ocean. The lidar profiles are calculated using optical models for irregularly-shaped mineral dust particles assuming settling-induced particle removal as function of distance from the SAL top. Within the SAL we find a decrease of both the backscatter coefficients and the linear depolarization ratios with decreasing distance from the SAL top. For example, the linear depolarization ratio at a wavelength of 532nm decreases from 0.289 at 1000m to 0.256 at 200m and 0.215 at 100m below SAL top. We compare the modelled backscatter coefficients and linear depolarization ratios to ground-based lidar measurements performed during the SALTRACE field campaign in Barbados (Caribbean) and find agreement within the estimated uncertainties. We discuss the uncertainties of our modeling approach in our presentation. Assumed mineral dust particle shapes, assumed particle mixture properties, and assumptions about processes in the SAL over the continent and the ocean are important aspects to be considered. Uncertainties are relevant for the potential of lidar measurements of transported Saharan dust to learn something about processes occuring in the SAL during long-range transport. We also compare our modeling results to modeling results previously published in the literature.

  16. Understanding Anthropogenic Impacts on Air Quality at Rural Locations Using High Time Resolution Particle Composition Measurements

    NASA Astrophysics Data System (ADS)

    Collett, J. L.; Lee, T.; Yu, X.; Sullivan, A.; Kreidenweis, S. M.; Malm, W.

    2006-12-01

    Many of our nation's National Parks, wilderness areas and other visually protected environments are located in regions where urban, agricultural, and other anthropogenic emissions periodically exert strong impacts on local air quality. In this presentation we will use high time resolution (15 min) measurements of particle composition to examine the frequency and magnitude of these impacts and to elucidate changes in aerosol chemistry occurring during transitions between periods of strong anthropogenic impact and periods when atmospheric composition is more strongly influenced by natural emissions and/or regional air quality. Highlights will be drawn from a series of field campaigns at locations around the U.S., including Yosemite National Park (downwind of the Central Valley of California), San Gorgonio Wilderness Area (downwind of the Los Angeles basin), Bondville, Illinois (a rural Midwestern site), Great Smoky Mountains National Park (a rural, mountain location in the polluted southeast U.S.), Brigantine National Wildlife Refuge, New Jersey (a coastal site on the U.S. eastern seaboard), and Rocky Mountain National Park, Colorado (located in the mountains west of the Colorado Front Range urban corridor). Particle composition measurements were made using a Particle Into Liquid Sampler (PILS) coupled to two on-line ion chromatographs. We will demonstrate how air quality at these locations is strongly influenced by local and regional transport phenomena and illustrate the influence of anthropogenic emissions on both fine and coarse particle concentrations and speciation.

  17. Ultrafine particles pollution in urban coastal air due to ship emissions

    NASA Astrophysics Data System (ADS)

    González, Yenny; Rodríguez, Sergio; Guerra García, Juan Carlos; Trujillo, Juan Luis; García, Rosa

    2011-09-01

    Two years of experimental data (2008-2009) of particle number (≥2.5 nm diameter) and black carbon concentrations and of gaseous pollutants recorded in the ambient air of a coastal city were analysed in order to assess the impact of ship emissions on the ultrafine particles (UFPs, diameter <100 nm) concentrations in urban ambient air. The observed relationship between particle number and the other air pollutants, allowed segregating the contribution of vehicle exhaust and of ship emissions to the UFP concentrations in the urban ambient air. Vehicle exhausts resulted in high concentrations of UFP, black carbon and NO x during the early morning, when UFPs showed concentrations 15-30 × 10 3 cm -3. Pollutants linked to this source rapidly decreased when inland sea breeze started to flow. However, this airflow resulted in inland transport of ship plumes (emitted in the harbour and in the sea) into the city and in high concentrations of SO 2, NO x and UFP from mid morning to the evening. In this context, UFPs showed concentrations 35-50 × 10 3 cm -3, being the 65-70% of these linked to ship emissions mostly related to SO 2 (gas phase precursor). UFPs pollution is a matter of concern due to adverse effects on human health. Up to the date, most of studies on urban air quality and UFPs have focused on vehicle exhaust emissions. This study shows how inland transport of ship plumes due to sea breeze blowing results in UFPs pollution in coastal cities.

  18. Modeling nitrogen transport and transformation in aquifers using a particle-tracking approach

    NASA Astrophysics Data System (ADS)

    Cui, Zhengtao; Welty, Claire; Maxwell, Reed M.

    2014-09-01

    We have integrated multispecies biodegradation and geochemical reactions into an existing particle-tracking code to simulate reactive transport in three-dimensional variably saturated media, with a focus on nitrification and denitrification processes. This new numerical model includes reactive air-phase transport so that gases such as N2 and CO2 can be tracked. Although nitrogen biodegradation is the primary problem addressed here, the method presented is also applicable to other reactive multispecies transport problems. We verified the model by comparison with (1) analytical solutions for saturated one- and two-dimensional cases; (2) a finite element model for a one-dimensional unsaturated case; and (3) laboratory observations for a one-dimensional saturated case. Good agreement between the new code and the verification problems is demonstrated. The new model can simulate nitrogen transport and transformation in a heterogeneous permeability field where sharp concentration gradients are present. An example application to nitrogen species biodegradation and transport of a plume emanating from a leaking sewer in a heterogeneous, variably saturated aquifer is presented to illustrate this capability. This example is a novel application of coupling unsaturated/saturated zone transport with nitrogen species biodegradation. The code has the computational advantages of particle-tracking algorithms, including local and global mass conservation and minimal numerical dispersion. We also present new methods for improving particle code efficiency by implementing the concept of tracking surplus/deficit particles and particle recycling in order to control the growth of particle numbers. The new model retains the advantages of the particle tracking approach such as allowing relatively low spatial and temporal resolutions to be used, while incorporating the robustness of grid-based Monod kinetics to simulate biogeochemical reactions.

  19. Monte Carlo Particle Transport Capability for Inertial Confinement Fusion Applications

    SciTech Connect

    Brantley, P S; Stuart, L M

    2006-11-06

    A time-dependent massively-parallel Monte Carlo particle transport calculational module (ParticleMC) for inertial confinement fusion (ICF) applications is described. The ParticleMC package is designed with the long-term goal of transporting neutrons, charged particles, and gamma rays created during the simulation of ICF targets and surrounding materials, although currently the package treats neutrons and gamma rays. Neutrons created during thermonuclear burn provide a source of neutrons to the ParticleMC package. Other user-defined sources of particles are also available. The module is used within the context of a hydrodynamics client code, and the particle tracking is performed on the same computational mesh as used in the broader simulation. The module uses domain-decomposition and the MPI message passing interface to achieve parallel scaling for large numbers of computational cells. The Doppler effects of bulk hydrodynamic motion and the thermal effects due to the high temperatures encountered in ICF plasmas are directly included in the simulation. Numerical results for a three-dimensional benchmark test problem are presented in 3D XYZ geometry as a verification of the basic transport capability. In the full paper, additional numerical results including a prototype ICF simulation will be presented.

  20. The transport sector as a source of air pollution

    NASA Astrophysics Data System (ADS)

    Colvile, R. N.; Hutchinson, E. J.; Mindell, J. S.; Warren, R. F.

    Transport first became a significant source of air pollution after the problems of sooty smog from coal combustion had largely been solved in western European and North American cities. Since then, emissions from road, air, rail and water transport have been partly responsible for acid deposition, stratospheric ozone depletion and climate change. Most recently, road traffic exhaust emissions have been the cause of much concern about the effects of urban air quality on human health and tropospheric ozone production. This article considers the variety of transport impacts on the atmospheric environment by reviewing three examples: urban road traffic and human health, aircraft emissions and global atmospheric change, and the contribution of sulphur emissions from ships to acid deposition. Each example has associated with it a different level of uncertainty, such that a variety of policy responses to the problems are appropriate, from adaptation through precautionary emissions abatement to cost-benefit analysis and optimised abatement. There is some evidence that the current concern for road transport contribution to urban air pollution is justified, but aircraft emissions should also give cause for concern given that air traffic is projected to continue to increase. Emissions from road traffic are being reduced substantially by the introduction of technology especially three-way catalysts and also, most recently, by local traffic reduction measures especially in western European cities. In developing countries and Eastern Europe, however, there remains the possibility of great increase in car ownership and use, and it remains to be seen whether these countries will adopt measures now to prevent transport-related air pollution problems becoming severe later in the 21st Century.

  1. Airflow and Particle Transport in the Human Respiratory System

    NASA Astrophysics Data System (ADS)

    Kleinstreuer, C.; Zhang, Z.

    2010-01-01

    Airflows in the nasal cavities and oral airways are rather complex, possibly featuring a transition to turbulent jet-like flow, recirculating flow, Dean's flow, vortical flows, large pressure drops, prevailing secondary flows, and merging streams in the case of exhalation. Such complex flows propagate subsequently into the tracheobronchial airways. The underlying assumptions for particle transport and deposition are that the aerosols are spherical, noninteracting, and monodisperse and deposit upon contact with the airway surface. Such dilute particle suspensions are typically modeled with the Euler-Lagrange approach for micron particles and in the Euler-Euler framework for nanoparticles. Micron particles deposit nonuniformly with very high concentrations at some local sites (e.g., carinal ridges of large bronchial airways). In contrast, nanomaterial almost coats the airway surfaces, which has implications of detrimental health effects in the case of inhaled toxic nanoparticles. Geometric airway features, as well as histories of airflow fields and particle distributions, may significantly affect particle deposition.

  2. Discrete elements method of neutral particle transport

    SciTech Connect

    Mathews, K.A.

    1983-01-01

    A new discrete elements (L/sub N/) transport method is derived and compared to the discrete ordinates S/sub N/ method, theoretically and by numerical experimentation. The discrete elements method is more accurate than discrete ordinates and strongly ameliorates ray effects for the practical problems studied. The discrete elements method is shown to be more cost effective, in terms of execution time with comparable storage to attain the same accuracy, for a one-dimensional test case using linear characteristic spatial quadrature. In a two-dimensional test case, a vacuum duct in a shield, L/sub N/ is more consistently convergent toward a Monte Carlo benchmark solution than S/sub N/, using step characteristic spatial quadrature. An analysis of the interaction of angular and spatial quadrature in xy-geometry indicates the desirability of using linear characteristic spatial quadrature with the L/sub N/ method.

  3. Particle transport in macropores of undisturbed soil columns

    NASA Astrophysics Data System (ADS)

    Jacobsen, O. H.; Moldrup, P.; Larsen, C.; Konnerup, L.; Petersen, L. W.

    1997-09-01

    Particle-facilitated transport may be an important process in the leaching of contaminants such as pesticides, phosphorus and heavy metals. In this work particle transport in macropores through intact soil columns was quantified. Irrigation intensities corresponding to naturally occurring storm events were used. Intact soil columns (18.3 cm inner diameter, 20 cm length) were sampled at two different depths (2-22 cm and 42-62 cm) from a structured sandy loam. Infiltration experiments, consisting of leaching of naturally occurring particles and infiltration with two types of colloidal suspensions were performed on each column. The active macroporosity was estimated in a dye experiment. A significant transport of particles (especially clay and silt) through macropores was observed at both depths. The total amount of mobilized particles at a certain amount of water outflow was found to be higher at depth 42-62 cm than at depth 2-22 cm, but unaffected by irrigation intensity. The particle size in the effluent was found to decrease over time during both the leaching of naturally occurring particles and during the subsequent leaching of colloids from the infiltration with colloidal suspensions, but seemed to stabilize at a particle size <10 μm. The decreasing particle size may be explained by differences in both the adsorption capacity and in the exposure to hydraulic forces of the different particle sizes and by mechanical entrapment of large particles in the macropores. No significant differences were found between the infiltration of the two different types of colloid suspension, probably due to their relatively small differences in zeta potential and particle size. The mass recovery of the infiltrated colloids was found to be significantly larger at depth 42-62 cm than at depth 2-22 cm, probably due to the larger size of the macropores at depth 42-62 cm. A simple advection-reaction model, which takes two different particle size fractions (< and >10 μm) into account

  4. Controlled particle transport in a plasma chamber with striped electrode

    SciTech Connect

    Jiang Ke; Li Yangfang; Shimizu, T.; Konopka, U.; Thomas, H. M.; Morfill, G. E.

    2009-12-15

    The controlled transport of micrometer size dust particles in a parallel-plate radio frequency discharge has been investigated. The lower stainless steel electrode consisted of 100 independently controllable electrical metal stripes. The voltage signals on these stripes were modulated, causing traveling plasma sheath distortions. Because the particles trapped in local potential wells moved according to the direction of the distortion, the transport velocity could be actively controlled by adjusting frequencies and phase shifts of the applied periodic voltage signals. To investigate the detailed principle of this transport, molecular dynamic simulations was performed to reproduce the observations with the plasma background conditions calculated by separated particle-in-cell simulations for the experimental parameters. The findings will help develop novel technologies for investigating large-scale complex plasma systems and techniques for achieving clean environments in plasma processing reactors.

  5. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    NASA Astrophysics Data System (ADS)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  6. Commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi.

    PubMed

    Kumar, Pramod; Gupta, N C

    2016-01-15

    A public health concern is to understand the linkages between specific pollution sources and adverse health impacts. Commuting can be viewed as one of the significant-exposure activity in high-vehicle density areas. This paper investigates the commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi, India. Air pollution levels are significantly contributed by automobile exhaust and also in-vehicle exposure can be higher sometime than ambient levels. Motorcycle, auto rickshaw, car and bus were selected to study particles concentration along two routes in Delhi between Kashmere Gate and Dwarka. The bus and auto rickshaw were running on compressed natural gas (CNG) while the car and motorcycle were operated on gasoline fuel. Aerosol spectrometer was employed to measure inhalable, thoracic and alveolic particles during morning and evening rush hours for five weekdays. From the study, we observed that the concentration levels of these particles were greatly influenced by transportation modes. Concentrations of inhalable particles were found higher during morning in auto rickshaw (332.81 ± 90.97 μg/m(3)) while the commuter of bus exhibited higher exposure of thoracic particles (292.23 ± 110.45 μg/m(3)) and car commuters were exposed to maximum concentrations of alveolic particles (222.37 ± 26.56 μg/m(3)). We observed that in evening car commuters experienced maximum concentrations of all sizes of particles among the four commuting modes. Interestingly, motorcycle commuters were exposed to lower levels of inhalable and thoracic particles during morning and evening hours as compared to other modes of transport. The mean values were found greater than the median values for all the modes of transport suggesting that positive skewed distributions are characteristics of naturally occurring phenomenon. PMID:26439646

  7. Incipient Motion and Particle Transport in Gravel - Streams

    NASA Astrophysics Data System (ADS)

    Matin, Habib

    The incipient motion of sediment particles in gravel-bed rivers is a very important process. It represents the difference between bed stability and bed mobility. A field study was conducted in Oak Creek, Oregon to investigate incipient motion of individual particles in gravel-bed streams. Investigation was also made of the incipient motion of individual gravel particles in the armor layer, using painted gravel placed on the bed of the stream and recovered after successive high flows. The effect of gravel particle shape was examined for a wide range of flow conditions to determine its significance on incipient motion. The result of analysis indicates a wide variation in particle shapes present. Incipient motion and general transport were found to be generally independent of particle shape regardless of particle sizes. A sample of bed material may contain a mixture of shapes such as well-rounded, oval, flat, disc-like, pencil-shaped, angular, and block-like. These are not likely to move in identical manners during transport nor to start motion at the same flow condition. This leads to questions about the role of shape in predicting incipient motion and equal mobility in gravel-bed streams. The study suggests that gravel particles initiate motion in a manner that is independent of particle shape. One explanation may be that for a natural bed surface many particles rest in orientations that give them the best protection against disturbance, probably a result of their coming to rest gradually during a period of decreasing flows, rather than being randomly dumped. But even when tracer particles were placed randomly in the bed surface there was no evident selectively for initiation of motion on the basis of particle shape. It can be concluded from analysis based on the methods of Parker et al. and Komar that there is room for both equal mobility and flow-competence evaluations. However, the equal mobility concept is best applied for conditions near incipient motion and

  8. Optimization of magnetic switches for single particle and cell transport

    NASA Astrophysics Data System (ADS)

    Abedini-Nassab, Roozbeh; Murdoch, David M.; Kim, CheolGi; Yellen, Benjamin B.

    2014-06-01

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  9. Optimization of magnetic switches for single particle and cell transport

    SciTech Connect

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B.; Murdoch, David M.; Kim, CheolGi

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  10. Effects of Flow Velocity and Particle Size on Transport of Ultrafine Bubbles in Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Nishimura, T.

    2015-12-01

    Potential applications of ultrafine bubbles (UFBs) have drawn more attention, especially in environmental engineering fields such as soil/groundwater remediation. Understanding a transport mechanism of UFBs in soils is essential to optimize remediation techniques using UFBs. In this study, column transport experiments using glass beads with different size fraction were conducted, where UFBs created by either air or oxygen were injected to the column with different flow conditions. Effects of particle size and flow velocities on transport characteristics of UFBs were investigated based on the column experiments. The results showed that attachments of UFBs were enhanced under lower water velocity condition, exhibiting more than 50% of UFBs injected were attached inside the column. The mobility of O2-UFBs which have lower zeta potential was higher than that of Air-UFBs. A convection-dispersion model including bubble attachment and detachment terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data.

  11. Transport of Fusion Alpha Particles in ITER Scenarios

    NASA Astrophysics Data System (ADS)

    Bass, E. M.; Waltz, R. E.

    2014-10-01

    We predict the fusion-born alpha particle density in steady-state and hybrid (reverse shear) ITER scenarios with an integrated 1D transport model. The model combines ``stiff'' critical gradient alpha-driven Alfvén eigenmode (AE) transport with a quasilinear approximation of microturbulent transport. In an ITER baseline case, AE transport is found to redistribute alphas within the core but not propagate to the loss boundary. The remaining microturbulence at the edge causes negligible alpha-channel energy flux there (neglecting ripple loss). We set the AE stiff transport critical gradient threshold at gAE =gITG , below which microturbulence can nonlinearly suppress AE transport, and the more stringent condition gAE = 0 . Work supported in part by the US DOE under GA-Grant No. DE-FG02-95ER54309 and SciDAC-GSEP Grant No DE-FC02-08ER54977.

  12. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  13. ANALYTICAL DIFFUSION MODEL FOR LONG DISTANCE TRANSPORT OF AIR POLLUTANTS

    EPA Science Inventory

    A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season, or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is de...

  14. Joint University Program for Air Transportation Research, 1982

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A summary of the research on air transportation is addressed including navigation; guidance, control and display concepts; and hardware, with special emphasis on applications to general aviation aircraft. Completed works and status reports are presented also included are annotated bibliographies of all published research sponsored on these grants since 1972.

  15. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles.

    PubMed

    Sato, T; Kataoka, R; Yasuda, H; Yashiro, S; Kuwabara, T; Shiota, D; Kubo, Y

    2014-10-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect aircrews from additional SEP exposure. PMID:24344351

  16. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    PubMed

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. PMID:27045635

  17. Transport and diffusion of overdamped Brownian particles in random potentials

    NASA Astrophysics Data System (ADS)

    Simon, Marc Suñé; Sancho, J. M.; Lindenberg, Katja

    2013-12-01

    We present a numerical study of the anomalies in transport and diffusion of overdamped Brownian particles in totally disordered potential landscapes in one and in two dimensions. We characterize and analyze the effects of three different disordered potentials. The anomalous regimes are characterized by the time exponents that exhibit the statistical moments of the ensemble of particle trajectories. The anomaly in the transport is always of the subtransport type, but diffusion presents a greater variety of anomalies: Both subdiffusion and superdiffusion are possible. In two dimensions we present a mixed anomaly: subdiffusion in the direction perpendicular to the force and superdiffusion in the parallel direction.

  18. Acoustophoretic contactless transport and handling of matter in air.

    PubMed

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-07-30

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1-10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid-liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air. PMID:23858454

  19. Acoustophoretic contactless transport and handling of matter in air

    PubMed Central

    Foresti, Daniele; Nabavi, Majid; Klingauf, Mirko; Ferrari, Aldo; Poulikakos, Dimos

    2013-01-01

    Levitation and controlled motion of matter in air have a wealth of potential applications ranging from materials processing to biochemistry and pharmaceuticals. We present a unique acoustophoretic concept for the contactless transport and handling of matter in air. Spatiotemporal modulation of the levitation acoustic field allows continuous planar transport and processing of multiple objects, from near-spherical (volume of 0.1–10 μL) to wire-like, without being limited by the acoustic wavelength. The independence of the handling principle from special material properties (magnetic, optical, or electrical) is illustrated with a wide palette of application experiments, such as contactless droplet coalescence and mixing, solid–liquid encapsulation, absorption, dissolution, and DNA transfection. More than a century after the pioneering work of Lord Rayleigh on acoustic radiation pressure, a path-breaking concept is proposed to harvest the significant benefits of acoustic levitation in air. PMID:23858454

  20. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGESBeta

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  1. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2000-04-07

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone.

  2. Recent advances in the Mercury Monte Carlo particle transport code

    SciTech Connect

    Brantley, P. S.; Dawson, S. A.; McKinley, M. S.; O'Brien, M. J.; Stevens, D. E.; Beck, B. R.; Jurgenson, E. D.; Ebbers, C. A.; Hall, J. M.

    2013-07-01

    We review recent physics and computational science advances in the Mercury Monte Carlo particle transport code under development at Lawrence Livermore National Laboratory. We describe recent efforts to enable a nuclear resonance fluorescence capability in the Mercury photon transport. We also describe recent work to implement a probability of extinction capability into Mercury. We review the results of current parallel scaling and threading efforts that enable the code to run on millions of MPI processes. (authors)

  3. Alveolar macrophage cytokine response to air pollution particles: Oxidant mechanisms

    SciTech Connect

    Imrich, Amy; Ning Yaoyu; Lawrence, Joy; Coull, Brent; Gitin, Elena; Knutson, Mitchell; Kobzik, Lester . E-mail: lkobzik@hsph.harvard.edu

    2007-02-01

    Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-Acetyl-L-cysteine (20 mM), dimethyl thiourea (20 mM) and catalase (5 {mu}M) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H{sub 2}O{sub 2} generated by glucose oxidase, 10 {mu}M/h), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H{sub 2}O{sub 2}. The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H{sub 2}O{sub 2} but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H{sub 2}O{sub 2}-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H{sub 2}O{sub 2} released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity.

  4. Alveolar macrophage cytokine response to air pollution particles: oxidant mechanisms

    PubMed Central

    Imrich, Amy; Ning, YaoYu; Lawrence, Joy; Coull, Brent; Gitin, Elena; Knutson, Mitchell; Kobzik, Lester

    2007-01-01

    Alveolar macrophages (AMs) primed with LPS and treated with concentrated ambient air particles (CAPs) showed enhanced release of tumor necrosis factor (TNF) and provide an in vitro model for the amplified effects of air pollution particles seen in people with preexisting lung disease. To investigate the mechanism(s) by which CAPs mediate TNF release in primed rat AMs, we first tested the effect of a panel of antioxidants. N-acetyl cysteine (20mM), dimethyl thiourea (20 mM) and catalase (5 uM) significantly inhibited TNF release by primed AMs incubated with CAPs. Conversely, when LPS-primed AMs were treated with CAPs in the presence of exogenous oxidants (H2O2 generated by glucose oxidase, 10 uM/hr), TNF release and cell toxicity was significantly increased. The soluble fraction of CAPs suspensions caused most of the increased bioactivity in the presence of exogenous H2O2. The metal chelator deferoxamine (DFO) strongly inhibited the interaction of the soluble fraction with H2O2 but had no effect on the bioactivity of the insoluble CAPs fraction. We conclude that CAPs can mediate their effects in primed AMs by acting on oxidant-sensitive cytokine release in at least two distinct ways. In the primed cell, insoluble components of PM mediate enhanced TNF production that is H2O2-dependent (catalase-sensitive) yet independent of iron (DFO-insensitive). In the presence of exogenous H2O2 released by AMs, PMNs, or other lung cells within an inflamed alveolar milieu, soluble iron released from air particles can also mediate cytokine release and cell toxicity. PMID:17222881

  5. Technological change and productivity growth in the air transport industry

    NASA Technical Reports Server (NTRS)

    Rosenberg, N.; Thompson, A.; Belsley, S. E.

    1978-01-01

    The progress of the civil air transport industry in the United States was examined in the light of a proposal of Enos who, after examining the growth of the petroleum industry, divided that phenomenon into two phases, the alpha and the beta; that is, the invention, first development and production, and the improvement phase. The civil air transport industry developed along similar lines with the technological progress coming in waves; each wave encompassing several new technological advances while retaining the best of the old ones. At the same time the productivity of the transport aircraft as expressed by the product of the aircraft velocity and the passenger capacity increased sufficiently to allow the direct operating cost in cents per passenger mile to continually decrease with each successive aircraft development.

  6. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  7. Experimental investigation of suspended particles transport through porous media: particle and grain size effect.

    PubMed

    Liu, Quansheng; Cui, Xianze; Zhang, Chengyuan; Huang, Shibing

    2016-01-01

    Particle and grain size may influence the transportation and deposition characteristics of particles within pollutant transport and within granular filters that are typically used in wastewater treatment. We conducted two-dimensional sandbox experiments using quartz powder as the particles and quartz sand as the porous medium to study the response of transportation and deposition formation to changes in particle diameter (ds, with median diameter 18, 41, and 82 μm) and grain diameter (dp, with median diameter 0.36, 1.25, and 2.82 mm) considering a wide range of diameter ratios (ds/dp) from 0.0064 to 0.228. Particles were suspended in deionized water, and quartz sand was used as the porous medium, which was meticulously cleaned to minimize any physicochemical and impurities effects that could result in indeterminate results. After the experiments, the particle concentration of the effluent and particle mass per gram of dry sands were measured to explore changes in transportation and deposition characteristics under different conditions. In addition, a micro-analysis was conducted to better analyse the results on a mesoscopic scale. The experimental observation analyses indicate that different diameter ratios (ds/dp) may lead to different deposit formations. As ds/dp increased, the deposit formation changed from 'Random Deposition Type' to 'Gradient Deposition Type', and eventually became 'Inlet Deposition Type'. PMID:26323505

  8. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  9. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  10. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  11. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  12. 48 CFR 47.403-2 - Air transport agreements between the United States and foreign governments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Air transport agreements....-Flag Carriers 47.403-2 Air transport agreements between the United States and foreign governments... attend, the use of a foreign-flag air carrier that provides transportation under an air...

  13. 14 CFR Sec. 19-5 - Air transport traffic and capacity elements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Air transport traffic and capacity elements... AIR CARRIERS Operating Statistics Classifications Sec. 19-5 Air transport traffic and capacity... reported as applicable to specified air transport traffic and capacity elements. (b) These reported...

  14. Transport and diffusion of underdamped Brownian particles in random potentials

    NASA Astrophysics Data System (ADS)

    Suñé Simon, Marc; Sancho, J. M.; Lindenberg, Katja

    2014-09-01

    We present numerical results for the transport and diffusion of underdamped Brownian particles in one-dimensional disordered potentials. We compare the anomalies observed with those found in the overdamped regime and with results for a periodic potential. We relate these anomalies to the time dependent probability distributions for the position and velocity of the particles. The anomalies are caused by the random character of the barrier crossing events between locked and running states which is manifested in the spatial distributions. The role of the velocities is small because the particles quickly thermalize into locked or running states.

  15. 950809 Charged particle transport updated multi-group diffusion

    SciTech Connect

    Corman, E.G.; Perkins, S.T.; Dairiki, N.T.

    1995-09-01

    In 1974, a charged particle transport scheme was introduced which utilized a multi-group diffusion method for the spatial transport and slowing down of energetic ions in a hot plasma. In this treatment a diffusion coefficient was used which was flux-limited to provide, hopefully, some degree of accuracy when the slowing down of an energetic charged particle is dominated by Coulomb collisions with thermal ions and electrons in a plasma medium. An advantage of this method was a very fast, memory-contained program for calculating the behavior of energetic charged particles which resulted in smoothly varying particle number densities and energy depositions. The main limitation of the original multi-group charged particle diffusion scheme is its constraint to a basic ten group structure; the same ten group structure for each of the five energetic ions tracked. This is regarded as a severe limitation, inasmuch as more groups would be desired to simulate more accurately the corresponding Monte Carlo results of energies deposited over spatial zones from a charged particle source. More generally, it seems preferable to have a different group structure for each particle type since they are created at inherently different energies. In this paper, the basic theory and multi-group description will be given. This is followed by the specific techniques that were used to solve the resultant equations. Finally, the modifications that were made to the cross section data as well as the methods used for energy and momentum deposition are described.

  16. [alpha]-particle transport-driven current in tokamaks

    SciTech Connect

    Heikkinen, J.A. ); Sipilae, S.K. )

    1995-03-01

    It is shown that the radial transport of fusion-born energetic [alpha] particles, induced by electrostatic waves traveling in one poloidal direction, is directly connected to a net momentum of [alpha] particles in the toroidal direction in tokamaks. Because the momentum change is almost independent of toroidal velocity, the energy required for the momentum generation remains small on an [alpha]-particle population sustained by an isotropic time-independent source. By numerical toroidal Monte Carlo calculations it is shown that the current carried by [alpha] particles in the presence of intense well penetrated waves can reach several mega-amperes in reactor-sized tokamaks. The current obtained can greatly exceed the neoclassical bootstrap current of the [alpha] particles.

  17. The persistence, transport and health effects of regional ultrafine particles

    NASA Astrophysics Data System (ADS)

    Spada, Nicholas James

    Due to the multitude of health studies that have shown the ability of ultrafine particles (UFPs, DP < 100 nm) to penetrate deep into lung tissue, diffuse into the bloodstream, and eventually cause heart and lung disease, my thesis will focus on these effectively unmonitored airborne pollutants. UFPs are commonly detected near busy roadways and other high-temperature combustion sources in the form of heavy metals (copper, lead, zinc, iron) and toxic organics (benzo{a}pyrene, coronene). Studies of UFPs during the 1970s expressed a nucleic propensity for coagulation and growth. Because many of the UFPs studied were generated from heavy-duty diesel engines operating with ≥0.3 wt % sulfur, the resulting sulfur-containing UFPs were hydrophilic and water vapor readily condensed on the generated nuclei. Due to their increased size, UFPs tend to settle out of air streams quickly; thus, limiting their impact regime to near-roadway influence and labeling them as local pollutants. By using highly size- and time-resolved impactors with TeflonRTM ultrafine after-filters (targeting DP < 90 nm), new evidence suggests the persistence of UFPs for greater periods of time and transport than previously predicted. Techniques developed during the Roseville rail yard study, refined during the Watt Ave/Arden Way study and applied across California's central valley have shown low levels of UFPs in a regional background. For cities in constrictive topography and meteorology (such as Bakersfield, Fresno and Los Angeles), winter inversions and stagnant weather can saturate the region with ultrafine heavy metals and carcinogenic organics, similar to the disasters during the middle of the last century.

  18. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    NASA Astrophysics Data System (ADS)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  19. MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    MATHEMATICAL ANALYSIS OF PARTICLE TRANSPORT AND DEPOSITION IN HUMAN LUNGS. Jung-il Choi*, Center for Environmental Medicine, University of North Carolina, Chapel Hill, NC 27599; C. S. Kim, USEPA National Health and Environmental Effects Research Lab. RTP, NC 27711

    Partic...

  20. Probing cytoskeleton dynamics by intracellular particle transport analysis

    NASA Astrophysics Data System (ADS)

    Götz, M.; Hodeck, K. F.; Witzel, P.; Nandi, A.; Lindner, B.; Heinrich, D.

    2015-07-01

    All cellular functions arise from the transport of molecules through a heterogeneous, highly dynamic cell interior for intracellular signaling. Here, the impact of intracellular architecture and cytoskeleton dynamics on transport processes is revealed by high-resolution single particle tracking within living cells, in combination with time-resolved local mean squared displacement (I-MSD) analysis. We apply the I-MSD analysis to trajectories of 200 nm silica particles within living cells of Dictyostelium discoideum obtained by high resolution spinning disc confocal microscopy with a frame rate of 100 fps and imaging in one fixed focal plane. We investigate phases of motor-driven active transport and subdiffusion, normal diffusion, as well as superdiffusion with high spatial and temporal resolution. Active directed intracellular motion is attributed to microtubule associated molecular motor driven transport with average absolute velocities of 2.8 μm s-1 for 200 nm diameter particles. Diffusion processes of these particles within wild-type cells are found to exhibit diffusion constants ranging across two orders of magnitude from subdiffusive to superdiffusive behavior. This type of analysis might prove of ample importance for medical applications, like targeted drug treatment of cells by nano-sized carriers or innovative diagnostic assays.

  1. Linear kinetic theory and particle transport in stochastic mixtures

    SciTech Connect

    Pomraning, G.C.

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  2. Thickness of the particle swarm in cosmic ray air showers

    NASA Technical Reports Server (NTRS)

    Linsley, J.

    1985-01-01

    The average dispersion in arrival time of air shower particles detected with a scintillator at an impact parameter r is described with accuracy 5-10% by the empirical formula sigma = Sigma sub to (1+r/r sub t) sup b, where Sigma sub to = 2.6 ns, r sub t = 30m and b = (1.94 + or - .08) (0.39 + or - .06) sec Theta, for r 2 km, 10 to the 8th power E 10 to the 11th power GeV, and Theta 60 deg. (E is the primary energy and theta is the zenith angle). The amount of fluctuation in sigma sub t due to fluctuations in the level of origin and shower development is less than 20%. These results provide a basis for estimating the impact parameters of very larger showers with data from very small detector arrays (mini-arrays). The energy of such showers can then be estimated from the local particle density. The formula also provides a basis for estimating the angular resolution of air shower array-telescopes.

  3. The Effect of Particle Density on Aeolian Transport

    NASA Technical Reports Server (NTRS)

    Williams, S. H.; Greeley, R.

    1985-01-01

    A set of experiments using a wide range of particle densities was performed in an open-circuit, terrestrial-atmospheric-pressure wind tunnel at Arizona State University. The results show that saltation flux equations derived for typical geologic material overpredict the flux of low-density particles. Walnut shells (approximately 1.1 g/cc) were used in the experiment and correspond to volcanic ash or ice. Less mass is transported by the wind in the case of low particle density because the style of transport is different. There is a direct, counter-intuitive relationship between particle density and transport height. Measurements of the vertical distribution of material show that the low-density walnut shells travel in a zone within 10 cm of the surface while high-density (approximately 4.5 g/cc) chromite particles travel as 50 cm. Furthermore, the overall saltation rate of the chromite is approximately four times greater than the walnut shells at the same freestream wind speed, even though the wind is much further above threshold for the walnut shells.

  4. 77 FR 53779 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ...This action extends the comment period of an NPRM on the reporting of incidents involving animals during air transport that was published in the Federal Register on June 29, 2012. See 77 FR 38747. The Department of Transportation is extending the period for interested persons to submit comments on this rulemaking from August 28, 2012, to September 27, 2012. This extension is a result of a......

  5. Vehicle expectations in air transportation for the year 2000

    NASA Technical Reports Server (NTRS)

    Hearth, D. P.

    1980-01-01

    This paper is intended to provide an overview of the air transportation system for the year 2000 in terms of vehicle expectations. Emphasis is placed on civil air transportation with the time period approached from the standpoint of evolutionary changes for the near term and also with the assumption of more revolutionary changes for the far term. The view along the evolutionary path begins with a historical review of airline market growth and the impact that technologies have had on airplane designs. Projections of the life expectancy of existing, derivative, and new airplanes are examined in terms of their productivity and fuel efficiency in view of the present and projected fuel usage and availability. The factors influencing airline growth are outlined and some views on whether another new generation of subsonic airplanes are in the offing are given along with an assessment of the economic viability of an advanced commercial supersonic transport in terms of its higher speed, higher productivity, and higher fuel usage. With regard to revolutionary changes, major technology breakthroughs are assumed to occur at a specified date. As an example, the impact of a dramatic reduction in skin friction drag is examined in terms of its effect on the airplane configuration, its propulsion systems, it projected fuel usage, and the air transportation system in which it must operate.

  6. Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size.

    PubMed

    Wang, Dengjun; Zhang, Wei; Hao, Xiuzhen; Zhou, Dongmei

    2013-01-15

    Land application of biochar is increasingly being considered for potential agronomic and environmental benefits, e.g., enhancing carbon sequestration, nutrient retention, water holding capacity, and crop productivity; and reducing greenhouse gas emissions and bioavailability of environmental contaminants. However, little is known about the transport of biochar particles in the aqueous environment, which represents a critical knowledge gap because biochar particles can facilitate the transport of adsorbed contaminants. In this study, column experiments were conducted to investigate biochar particle transport and retention in water-saturated quartz sand. Specific factors considered included biochar feedstocks (wheat straw and pine needle), pyrolysis temperature (350 and 550 °C), and particle size (micrometer-particle (MP) and nanoparticle (NP)). Greater mobility was observed for the biochars of lower pyrolysis temperatures and smaller particle sizes. Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) calculations that considered measured zeta potentials and Lewis acid-base interactions were used to better understand the influence of pyrolysis temperature on biochars particle transport. Most biochars exhibited attractive acid-base interactions that impeded their transport, whereas the biochar with the greatest mobility had repulsive acid-base interaction. Nonetheless, greater retention of the MPs than that of the NPs was in contrast with the XDLVO predictions. Straining and biochar surface charge heterogeneity were found to enhance the retention of biochar MPs, but played an insignificant role in the biochar NP retention. Experimental breakthrough curves and retention profiles were well-described using a two-site kinetic retention model that accounted for depth-dependent retention at one site. Modeled first-order retention coefficients on both sites 1 and 2 increased with increasing pyrolysis temperature and particle size. PMID:23249307

  7. Experiments on Particle Sorting and Partial Bed-load Transport

    NASA Astrophysics Data System (ADS)

    Chen, D.; Sun, H.; Zhang, Y.; Chen, L.

    2014-12-01

    This study explore the complex dynamics of partial bed-load transport in a series of well-controlled laboratory experiments. Observations show that moving particles may experience bimodal transport (i.e., coexistence of long trapping time and large jump length) related to bed coarsening and the formation of clusters on a heterogeneous gravel-bed, which is distinguished from the traditional theory of hiding-exposing interactions among mixed-size particles. A fractional derivative model is finally applied to characterize the overall behavior of partial bed-load transport, including the coexistence of the sub-diffusion and non-local feature caused by turbulence and the micro-relief within an armor layer.

  8. Origin and transport of high energy particles in the galaxy

    NASA Technical Reports Server (NTRS)

    Wefel, John P.

    1987-01-01

    The origin, confinement, and transport of cosmic ray nuclei in the galaxy was studied. The work involves interpretations of the existing cosmic ray physics database derived from both balloon and satellite measurements, combined with an effort directed towards defining the next generation of instruments for the study of cosmic radiation. The shape and the energy dependence of the cosmic ray pathlength distribution in the galaxy was studied, demonstrating that the leaky box model is not a good representation of the detailed particle transport over the energy range covered by the database. Alternative confinement methods were investigated, analyzing the confinement lifetime in these models based upon the available data for radioactive secondary isotopes. The source abundances of several isotopes were studied using compiled nuclear physics data and the detailed transport calculations. The effects of distributed particle acceleration on the secondary to primary ratios were investigated.

  9. Air transportation energy consumption - Yesterday, today, and tomorrow

    NASA Technical Reports Server (NTRS)

    Mascy, A. C.; Williams, L. J.

    1975-01-01

    The energy consumption by aviation is reviewed and projections of its growth are discussed. Forecasts of domestic passenger demand are presented, and the effect of restricted fuel supply and increased fuel prices is considered. The most promising sources for aircraft fuels, their availability and cost, and possible alternative fuels are reviewed. The energy consumption by various air and surface transportation modes is identified and compared on typical portal-to-portal trips. A measure of the indirect energy consumed by ground and air modes is defined. Historical trends in aircraft energy intensities are presented and the potential fuel savings with new technologies are discussed.

  10. Applying dispersive changes to Lagrangian particles in groundwater transport models

    USGS Publications Warehouse

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative.

  11. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    USGS Publications Warehouse

    Konikow, L.F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  12. Review of maritime transportation air emission pollution and policy analysis

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Liu, Dahai; Dai, Guilin

    2009-09-01

    The study of air emission in maritime transportation is new, and the recognition of its importance has been rising in the recent decade. The emissions of CO2, SO2, NO2 and particulate matters from maritime transportation have contributed to climate change and environmental degradation. Scientifically, analysts still have controversies regarding how to calculate the emissions and how to choose the baseline and methodologies. Three methods are generally used, namely the ‘bottom up’ approach, the ‘top down’ approach and the STEEM, which produce very different results, leading to various papers with great uncertainties. This, in turn, results in great difficulties to policy makers who attempt to regulate the emissions. A recent technique, the STEEM, is intended to combine the former two methods to reduce their drawbacks. However, the regulations based on its results may increase the costs of shipping companies and cause the competitiveness of the port states and coastal states. Quite a few papers have focused on this area and provided another fresh perspective for the air emission to be incorporated in maritime transportation regulations; these facts deserve more attention. This paper is to review the literature on the debates over air emission calculation, with particular attention given to the STEEM and the refined estimation methods. It also reviews related literature on the economic analysis of maritime transportation emission regulations, and provides an insight into such analysis. At the end of this paper, based on a review and analysis of previous literature, we conclude with the policy indications in the future and work that should be done. As the related regulations in maritime transportation emissions are still at their beginning stage in China, this paper provides specific suggestions on how China should regulate emissions in the maritime transportation sector.

  13. Measurements of Bed Load Particle Diffusion at Low Transport Rates

    NASA Astrophysics Data System (ADS)

    Ball, A. E.; Furbish, D. J.; Schmeeckle, M. W.

    2012-12-01

    High-speed imaging of coarse sand particles transported as bed load reveals how particle motions possess intrinsic periodicities associated with their start-and-stop behavior. The dominant harmonics in these motions have a primary influence on the rate at which the mean squared particle displacement R(τ) increases with the time interval τ. The mean squared displacement R(τ) is conventionally used to assess the possibility of anomalous diffusion, and over a timescale corresponding to the typical travel time of particles, calculations of R(τ) may ostensibly indicate non-Fickian behavior while actually reflecting the effects of periodicities in particle motions, not anomalous diffusion. We provide the theoretical basis for this observed behavior, and we illustrate how the effective (Fickian) particle diffusivity obtains from G. I. Taylor's classic definition involving the particle velocity autocovariance, including its relation to the ensemble-averaged particle velocity as articulated by O. M. Phillips. Cross-stream diffusivities are an order of magnitude smaller than streamwise diffusivities.

  14. Modeling reactive transport with particle tracking and kernel estimators

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  15. Investigation of air transportation technology at Princeton University, 1984

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  16. New Directions: Questions surrounding suspended particle mass used as a surrogate for air quality and for regulatory control of ambient urban air pollution

    NASA Astrophysics Data System (ADS)

    Hoare, John L.

    2014-07-01

    The original choice of particulate matter mass (PM) as a realistic surrogate for gross air pollution has gradually evolved into routine use nowadays of epidemiologically-based estimates of the monetary and other benefits expected from regulating urban air quality. Unfortunately, the statistical associations facilitating such calculations usually are based on single indices of air pollution whereas the health effects themselves are more broadly based causally. For this and other reasons the economic benefits of control tend to be exaggerated. Primarily because of their assumed inherently inferior respirability, particles ≥10 μm are generally excluded from such considerations. Where the particles themselves are chemically heterogeneous, as in an urban context, this may be inappropriate. Clearly all air-borne particles, whether coarse or fine, are susceptible to inhalation. Hence, the possibility exists for any adhering potentially harmful semi-volatile substances to be subsequently de-sorbed in vivo thereby facilitating their transport deeper into the lungs. Consequently, this alone may be a sufficient reason for including rather than rejecting during air quality monitoring the relatively coarse 10-100 μm particle fraction, ideally in conjunction with routine estimation of the gaseous co-pollutants thereby facilitating a multi-pollutant approach apropos regulation.

  17. Transport of particle-laden viscoelastic suspensions: tuning particle behavior with elasticity and geometry

    NASA Astrophysics Data System (ADS)

    Barbati, Alexander; Robisson, Agathe; Dussan, Elizabeth; McKinley, Gareth

    2015-11-01

    The transport of particle-laden viscoelastic suspensions is routine in several industrial and natural systems. Many applications, such as hydraulic fracturing in the oilfield, require the successive (and occasionally simultaneous) flow and placement or rigid particles, commonly known as proppant. Hydraulically-generated fractures are routinely less than 6 particle diameters in width. We investigate the flow of viscoelastic particle-laden suspensions in microfabricated geometries mimicking hydraulically-generated fractures under a variety of dynamic conditions to illustrate the interaction between inertia, elasticity, and geometry on particle behavior during flow. We characterize the flow in these model geometries with a combination of streakline imaging, particle image velocimetry, and direct imaging of model proppant particles embedded in the flow. We accompany these small-scale measurements with macro-scale interrogation of fluid rheology by measuring material functions of the working fluid in under shear and extension. These material functions are used in concert with imposed flow conditions and imaging results to identify dominant transport mechanisms on the channel and particle scale, which indicate overall system behavior.

  18. Joint University Program for Air Transportation Research, 1986

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1988-01-01

    The research conducted under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA and the FAA, one each with the Mass. Inst. of Tech., Ohio Univ., and Princeton Univ. Completed works, status reports, and bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of activities is presented.

  19. Journal of Air Transportation, Volume 11, No. 1

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Fink, Mary (Editor)

    2006-01-01

    Topics covered include: Analysis of System-wide Investment in the National Airspace System: A Portfolio Analytical Framework and an Example; Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion; The Development of Jomo Kenyatta International Airport as a Regional Aviation Hub; Corporate Social Responsibility in Aviation; The Competitive Effects of Airline Mergers and Acquisitions: More Capital Market Evidence; and The Competitive Position of Hub Airports in the Transatlantic Market.

  20. Joint University Program for Air Transportation Research, 1989-1990

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented.

  1. Transport of sputtered particles in capacitive sputter sources

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Mussenbrock, Thomas

    2015-07-01

    The transport of sputtered aluminum inside a multi frequency capacitively coupled plasma chamber is simulated by means of a kinetic test multi-particle approach. A novel consistent set of scattering parameters obtained for a modified variable hard sphere collision model is presented for both argon and aluminum. An angular dependent Thompson energy distribution is fitted to results from Monte Carlo simulations and used for the kinetic simulation of the transport of sputtered aluminum. For the proposed configuration, the transport of sputtered particles is characterized under typical process conditions at a gas pressure of p = 0.5 Pa. It is found that—due to the peculiar geometric conditions—the transport can be understood in a one dimensional picture, governed by the interaction of the imposed and backscattered particle fluxes. It is shown that the precise geometric features play an important role only in proximity to the electrode edges, where the effect of backscattering from the outside chamber volume becomes the governing mechanism.

  2. Development of an Air Transport Type A Fissile Package

    SciTech Connect

    Blanton, P.; Ebert, K.

    2011-07-13

    This paper presents the summary of testing by the Savannah River National Laboratory (SRNL) to support development of a light weight (<140 lbs) air transport qualified Type A Fissile Packaging. The package design incorporates features and materials specifically designed to minimize packaging weight. The light weight package is being designed to provide confinement to the contents when subjected to the normal and hypothetical conditions required of an air transportable Type A Fissile radioactive material shipping package. The objective of these tests was to provide design input to the final design for the LORX Type A Fissile Air Transport Packaging when subjected to the performance requirements of the drop, crush and puncture probe test of 10CFR71. The post test evaluation of the prototype packages indicates that all of the tested designs would satisfactorily confine the content within the packaging. The differences in the performance of the prototypes varied significantly depending on the core materials and their relative densities. Information gathered from these tests is being used to develop the final design for the Department of Homeland Security.

  3. A Novel Experiment to Investigate the Attenuation of Alpha Particles in Air

    ERIC Educational Resources Information Center

    Andrews, D. G. H.

    2008-01-01

    A simple student experiment investigating dependence on air pressure of the attenuation of alpha particles in air is described. An equation giving the pressure needed to absorb all alpha particles of a given energy is derived from the Bethe-Bloch formula. Results are presented for the attenuation of alpha particles from americium 241 and radium…

  4. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air...-share service on Internet Web sites and elsewhere by air carriers, their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C. 41712. FOR FURTHER...

  5. Advanced Air Transportation Technologies Project, Final Document Collection

    NASA Technical Reports Server (NTRS)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  6. Synthesized voice approach callouts for air transport operations

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1980-01-01

    A flight simulation experiment was performed to determine the effectiveness of synthesized voice approach callouts for air transport operations. Flight deck data was first collected on scheduled air carrier operations to describe existing pilot-not-flying callout procedures in the flight context and to document the types and amounts of other auditory cockpit information during different types of air carrier operations. A flight simulation scenario for a wide-body jet transport airline training simulator was developed in collaboration with a major U.S. air carrier and flown by three-man crews of qualified line pilots as part of their normally scheduled recurrent training. Each crew flew half their approaches using the experimental synthesized voice approach callout system (SYNCALL) and the other half using the company pilot-not-flying approach callout procedures (PNF). Airspeed and sink rate performance was better with the SYNCALL system than with the PNF system for non-precision approaches. For the one-engine approach, for which SYNCALL made inappropriate deviation callouts, airspeed performance was worse with SYNCALL than with PNF. Reliability of normal altitude approach callouts was comparable for PNF on the line and in the simulator and for SYNCALL in the simulator.

  7. Full f gyrokinetic method for particle simulation of tokamak transport

    SciTech Connect

    Heikkinen, J.A. Janhunen, S.J.; Kiviniemi, T.P.; Ogando, F.

    2008-05-10

    A gyrokinetic particle-in-cell approach with direct implicit construction of the coefficient matrix of the Poisson equation from ion polarization and electron parallel nonlinearity is described and applied in global electrostatic toroidal plasma transport simulations. The method is applicable for calculation of the evolution of particle distribution function f including as special cases strong plasma pressure profile evolution by transport and formation of neoclassical flows. This is made feasible by full f formulation and by recording the charge density changes due to the ion polarization drift and electron acceleration along the local magnetic field while particles are advanced. The code has been validated against the linear predictions of the unstable ion temperature gradient mode growth rates and frequencies. Convergence and saturation in both turbulent and neoclassical limit of the ion heat conductivity is obtained with numerical noise well suppressed by a sufficiently large number of simulation particles. A first global full f validation of the neoclassical radial electric field in the presence of turbulence for a heated collisional tokamak plasma is obtained. At high Mach number (M{sub p}{approx}1) of the poloidal flow, the radial electric field is significantly enhanced over the standard neoclassical prediction. The neoclassical radial electric field together with the related GAM oscillations is found to regulate the turbulent heat and particle diffusion levels particularly strongly in a large aspect ratio tokamak at low plasma current.

  8. Quantum interference effects in particle transport through square lattices.

    PubMed

    Cuansing, E; Nakanishi, H

    2004-12-01

    We study the transport of a quantum particle through square lattices of various sizes by employing the tight-binding Hamiltonian from quantum percolation. Input and output semi-infinite chains are attached to the lattice either by diagonal point-to-point contacts or by a busbar connection. We find resonant transmission and reflection occurring whenever the incident particle's energy is near an eigenvalue of the lattice alone (i.e., the lattice without the chains attached). We also find the transmission to be strongly dependent on the way the chains are attached to the lattice. PMID:15697469

  9. Particle acceleration, transport and turbulence in cosmic and heliospheric physics

    NASA Technical Reports Server (NTRS)

    Matthaeus, W.

    1992-01-01

    In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.

  10. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  11. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  12. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  13. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  14. 19 CFR 122.117 - Requirements for transit air cargo transport.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Requirements for transit air cargo transport. 122... Requirements for transit air cargo transport. (a) Transportation—(1) Port to port. Transit air cargo may be... cargo, a receipt shall be given. The receipt shall be made by the airline responsible for transport...

  15. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  16. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  17. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  18. 14 CFR 206.4 - Exemption of air carriers for military transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Exemption of air carriers for military transportation. 206.4 Section 206.4 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION... AUTHORIZATIONS AND EXEMPTIONS § 206.4 Exemption of air carriers for military transportation. Air...

  19. Overview of NASA's Next Generation Air Transportation System (NextGen) Research

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    2009-01-01

    This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.

  20. Age-related lung cell response to urban Buenos Aires air particle soluble fraction.

    PubMed

    Ostachuk, Agustín; Evelson, Pablo; Martin, Susana; Dawidowski, Laura; Sebastián Yakisich, J; Tasat, Deborah R

    2008-06-01

    Exposure to particulate matter (PM) may alter lung homeostasis inducing changes in fluid balance and host defense. Bioavailability of soluble PM compounds like polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and transition metals has been shown to play a key role in lung injury. We have previously characterized the size, shape, and chemical components of urban air particles from Buenos Aires (UAP-BA) and their biological impact on lungs. Herein, we evaluate the possible toxic effect of UAP-BA-soluble fraction (UAP-BAsf) on pulmonary cells obtained from young (1-2 months old) and aged (9-12 months old) Wistar rats using phagocytosis, oxidant-antioxidant generation, and apoptosis as endpoints. UAP-BA were collected in downtown BA and residual oil fly ash (ROFA), employed as a positive control, was collected from Boston Edison Co., Mystic Power Plant, Mystic, CT, USA. Both particle-soluble fractions (sf) were employed at concentrations ranging from 0 to 100 microg/mL. UAP-BAsf and ROFAsf even at the lowest dose assayed (10 microg/mL) showed in both lung cell populations the ability to stimulate phagocytosis and increase superoxide anion (O(2)(-)) generation. Both types of air particles caused a marked intracellular oxidant stress in aged pulmonary cells that may contribute to subsequent cell activation and production of proinflammatory mediators, leading to cell dysfunction. These data suggest that the impact of UAP-BAsf on phagocytosis, oxidant radical generation, and apoptosis is clearly dependent on the maturational state of the animal and might have different mechanisms of action. PMID:18313661

  1. Dust particle diffusion in ion beam transport region.

    PubMed

    Miyamoto, N; Okajima, Y; Romero, C F; Kuwata, Y; Kasuya, T; Wada, M

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region. PMID:26932116

  2. Dust particle diffusion in ion beam transport region

    NASA Astrophysics Data System (ADS)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M.

    2016-02-01

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  3. Code System to Calculate Particle Penetration Through Aerosol Transport Lines.

    Energy Science and Technology Software Center (ESTSC)

    1999-07-14

    Version 00 Distribution is restricted to US Government Agencies and Their Contractors Only. DEPOSITION1.03 is an interactive software program which was developed for the design and analysis of aerosol transport lines. Models are presented for calculating aerosol particle penetration through straight tubes of arbitrary orientation, inlets, and elbows. An expression to calculate effective depositional velocities of particles on tube walls is derived. The concept of maximum penetration is introduced, which is the maximum possible penetrationmore » through a sampling line connecting any two points in a three-dimensional space. A procedure to predict optimum tube diameter for an existing transport line is developed. Note that there is a discrepancy in this package which includes the DEPOSITION 1.03 executable and the DEPOSITION 2.0 report. RSICC was unable to obtain other executables or reports.« less

  4. A portfolio evaluation framework for air transportation improvement projects

    NASA Astrophysics Data System (ADS)

    Baik, Hyeoncheol

    This thesis explores the application of portfolio theory to the Air Transportation System (ATS) improvement. The ATS relies on complexly related resources and different stakeholder groups. Moreover, demand for air travel is significantly increasing relative to capacity of air transportation. In this environment, improving the ATS is challenging. Many projects, which are defined as technologies or initiatives, for improvement have been proposed and some have been demonstrated in practice. However, there is no clear understanding of how well these projects work in different conditions nor of how they interact with each other or with existing systems. These limitations make it difficult to develop good project combinations, or portfolios that maximize improvement. To help address this gap, a framework for identifying good portfolios is proposed. The framework can be applied to individual projects or portfolios of projects. Projects or portfolios are evaluated using four different groups of factors (effectiveness, time-to-implement, scope of applicability, and stakeholder impacts). Portfolios are also evaluated in terms of interaction-determining factors (prerequisites, co-requisites, limiting factors, and amplifying factors) because, while a given project might work well in isolation, interdependencies between projects or with existing systems could result in lower overall performance in combination. Ways to communicate a portfolio to decision makers are also introduced. The framework is unique because (1) it allows using a variety of available data, and (2) it covers diverse benefit metrics. For demonstrating the framework, an application to ground delay management projects serves as a case study. The portfolio evaluation approach introduced in this thesis can aid decision makers and researchers at universities and aviation agencies such as Federal Aviation Administration (FAA), National Aeronautics and Space Administration (NASA), and Department of Defense (DoD), in

  5. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    PubMed

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air. PMID:25966888

  6. Gyrokinetics Simulation of Energetic Particle Turbulence and Transport

    SciTech Connect

    Diamond, Patrick H.

    2011-09-21

    Progress in research during this year elucidated the physics of precession resonance and its interaction with radial scattering to form phase space density granulations. Momentum theorems for drift wave-zonal flow systems involving precession resonance were derived. These are directly generalizable to energetic particle modes. A novel nonlinear, subcritical growth mechanism was identified, which has now been verified by simulation. These results strengthen the foundation of our understanding of transport in burning plasmas

  7. NHEXAS PHASE I REGION 5 STUDY--PARTICLES IN AIR ANALYTICAL RESULTS

    EPA Science Inventory

    This data set includes analytical results for measurements of particles (aerosol mass) in 538 air samples. Samples of personal air, indoor air, and outdoor air were collected using a pump and interval timer over a period of approximately 144 hours to measure inhalation exposure t...

  8. Ambient air pollution particles and the acute exacerbation of chronic obstructive pulmonary disease

    EPA Science Inventory

    Investigation has repeatedly demonstrated an association between exposure to ambient air pollution particles and numerous indices of human morbidity and mortality. Individuals with chronic obstructive pulmonary disease (COPD) are among those with an increased sensitivity to air p...

  9. Chemically generated convective transport of micron sized particles

    NASA Astrophysics Data System (ADS)

    Shklyaev, Oleg; Das, Sambeeta; Altemose, Alicia; Shum, Henry; Balazs, Anna; Sen, Ayusman

    2015-11-01

    A variety of chemical and biological applications require manipulation of micron sized objects like cells, viruses, and large molecules. Increasing the size of particles up to a micron reduces performance of techniques based on diffusive transport. Directional transport of cargo toward detecting elements reduces the delivery time and improves performance of sensing devices. We demonstrate how chemical reactions can be used to organize fluid flows carrying particles toward the assigned destinations. Convection is driven by density variations caused by a chemical reaction occurring at a catalyst or enzyme-covered target site. If the reaction causes a reduction in fluid density, as in the case of catalytic decomposition of hydrogen peroxide, then fluid and suspended cargo is drawn toward the target along the bottom surface. The intensity of the fluid flow and the time of cargo delivery are controlled by the amount of reagent in the system. After the reagent has been consumed, the fluid pump stops and particles are found aggregated on and around the enzyme-coated patch. The pumps are reusable, being reactivated upon injection of additional reagent. The developed technique can be implemented in lab-on-a-chip devices for transportation of micro-scale object immersed in solution.

  10. Particle Tracking Model and Abstraction of Transport Processes

    SciTech Connect

    B. Robinson

    2004-10-21

    The purpose of this report is to document the abstraction model being used in total system performance assessment (TSPA) model calculations for radionuclide transport in the unsaturated zone (UZ). The UZ transport abstraction model uses the particle-tracking method that is incorporated into the finite element heat and mass model (FEHM) computer code (Zyvoloski et al. 1997 [DIRS 100615]) to simulate radionuclide transport in the UZ. This report outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the UZ at Yucca Mountain. In addition, methods for determining and inputting transport parameters are outlined for use in the TSPA for license application (LA) analyses. Process-level transport model calculations are documented in another report for the UZ (BSC 2004 [DIRS 164500]). Three-dimensional, dual-permeability flow fields generated to characterize UZ flow (documented by BSC 2004 [DIRS 169861]; DTN: LB03023DSSCP9I.001 [DIRS 163044]) are converted to make them compatible with the FEHM code for use in this abstraction model. This report establishes the numerical method and demonstrates the use of the model that is intended to represent UZ transport in the TSPA-LA. Capability of the UZ barrier for retarding the transport is demonstrated in this report, and by the underlying process model (BSC 2004 [DIRS 164500]). The technical scope, content, and management of this report are described in the planning document ''Technical Work Plan for: Unsaturated Zone Transport Model Report Integration'' (BSC 2004 [DIRS 171282]). Deviations from the technical work plan (TWP) are noted within the text of this report, as appropriate. The latest version of this document is being prepared principally to correct parameter values found to be in error due to transcription errors, changes in source data that were not captured in the report, calculation errors, and errors in interpretation of source data.

  11. Quasilinear Line Broadened Model for Energetic Particle Transport

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  12. Simulation of Cell Adhesion using a Particle Transport Model

    NASA Astrophysics Data System (ADS)

    Chesnutt, Jennifer

    2005-11-01

    An efficient computational method for simulation of cell adhesion through protein binding forces is discussed. In this method, the cells are represented by deformable elastic particles, and the protein binding is represented by a rate equation. The method is first developed for collision and adhesion of two similar cells impacting on each other from opposite directions. The computational method is then applied in a particle-transport model for a cloud of interacting and colliding cells, each of which are represented by particles of finite size. One application might include red blood cells adhering together to form rouleaux, which are chains of red blood cells that are found in different parts of the circulatory system. Other potential applications include adhesion of platelets to a blood vessel wall or mechanical heart valve, which is a precursor of thrombosis formation, or adhesion of cancer cells to organ walls in the lymphatic, circulatory, digestive or pulmonary systems.

  13. Transient Characterization of Type B Particles in a Transport Riser

    SciTech Connect

    Shadle, L.J.; Monazam, E.R.; Mei, J.S.

    2007-01-01

    Simple and rapid dynamic tests were used to evaluate fluid dynamic behavior of granular materials in the transport regime. Particles with densities ranging from 189 to 2,500 kg/m3 and Sauter mean size from 61 to 812 μm were tested in a 0.305 m diameter, 15.5 m height circulating fluidized bed (CFB) riser. The transient tests involved the abrupt stoppage of solids flow for each granular material over a wide range gas flow rates. The riser emptying time was linearly related to the Froude number in each of three different operating regimes. The flow structure along the height of the riser followed a distinct pattern as tracked through incremental pressures. These results are discussed to better understand the transformations that take place when operating over various regimes. During the transients the particle size distribution was measured. The effects of pressure, particle size, and density on test performance are also presented.

  14. Long-range transport of air pollution into the Arctic

    NASA Astrophysics Data System (ADS)

    Stohl, A.; Berg, T.; Breivik, K.; Burkhart, J. F.; Eckhardt, S.; Fjæraa, A.; Forster, C.; Herber, A.; Lunder, C.; McMillan, W. W.; None, N.; Manø, S.; Oltmans, S.; Shiobara, M.; Stebel, K.; Hirdman, D.; Stroem, J.; Tørseth, K.; Treffeisen, R.; Virkkunen, K.; Yttri, K. E.; Andrews, E.; Kowal, D.; Mefford, T.; Ogren, J. A.; Sharma, S.; Spichtinger, N.; Stone, R.; Hoch, S.; Wehrli, C.

    2007-12-01

    This paper presents an overview of air pollution transport into the Arctic. The major transport processes will be highlighted, as well as their seasonal, interannual, and spatial variability. The source regions of Arctic air pollution will be discussed, with a focus on black carbon (BC) sources, as BC can produce significant radiative forcing in the Arctic. It is found that Europe is the main source region for BC in winter, whereas boreal forest fires are the strongest source in summer, especially in years of strong burning. Two case studies of recent extreme Arctic air pollution events will be presented. In summer 2004, boreal forest fires in Alaska and Canada caused pan-Arctic enhancements of black carbon. The BC concentrations measured at Barrow (Alaska), Alert (Canada), Summit (Greenland) and Zeppelin (Spitsbergen) were all episodically elevated, as a result of the long-range transport of the biomass burning emissions. Aerosol optical depth was also episodically elevated at these stations, with an almost continuous elevation over more than a month at Summit. During the second episode in spring 2006, new records were set for all measured air pollutant species at the Zeppelin station (Spitsbergen) as well as for ozone in Iceland. At Zeppelin, BC, AOD, aerosol mass, ozone, carbon monoxide and other compounds all reached new record levels, compared to the long-term monitoring record. The episode was caused by transport of polluted air masses from Eastern Europe deep into the Arctic, a consequence of the unusual warmth in the European Arctic during the episode. While fossil fuel combustion sources certainly contributed to this episode, smoke from agricultural fires in Eastern Europe was the dominant pollution component. We also suggest a new revolatilization mechanism for persistent organic pollutants (POPs) stored in soils and vegetation by fires, as POPs were strongly elevated during both episodes. All this suggests a considerable influence of biomass burning on

  15. Particle Simulations of DARHT-II Transport System

    SciTech Connect

    Poole, B; Chen, Y J

    2001-06-11

    The DARHT-II beam line utilizes a fast stripline kicker to temporally chop a high current electron beam from a single induction LINAC and deliver multiple temporal electron beam pulses to an x-ray converter target. High beam quality needs to be maintained throughout the transport line from the end of the accelerator through the final focus lens to the x-ray converter target to produce a high quality radiographic image. Issues that will affect beam quality such as spot size and emittance at the converter target include dynamic effects associated with the stripline kicker as well as emittance growth due to the nonlinear forces associated with the kicker and various focusing elements in the transport line. In addition, dynamic effects associated with transverse resistive wall instability as well as gas focusing will affect the beam transport. A particle-in-cell code is utilized to evaluate beam transport in the downstream transport line in DARHT-II. External focusing forces are included utilizing either analytic expressions or field maps. Models for wakefields from the beam kicker, transverse resistive wall instability, and gas focusing are included in the simulation to provide a more complete picture of beam transport in DARHT-II. From these simulations, for various initial beam loads based on expected accelerator performance the temporally integrated target spot size and emittance can be estimated.

  16. Transport of Particle Swarms Through Variable Aperture Fractures

    NASA Astrophysics Data System (ADS)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  17. Measurement of particle transport coefficients on Alcator C-Mod

    SciTech Connect

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  18. PAHs loadings of particles as tracer for origin and transport dynamics of particles in river networks

    NASA Astrophysics Data System (ADS)

    Schwientek, Marc; Hermann, Rügner; Bennett, Jeremy-Paul; Grathwohl, Peter

    2015-04-01

    Transport of many urban pollutants in rivers is coupled to transport of suspended particles, potentially dominated by storm water overflows and mobilization of legacy contamination of sediments. Concentration of these pollutants depends on the mixture of "polluted" urban and "clean" background particles. In the current study, the total concentration of polycyclic aromatic hydrocarbons (PAHs) and the amount of total suspended solids (TSS) were meaured in the course of pronounced flood events in 3 catchments with contrast¬ing land use in Southwest Germany. Average PAHs loadings were calculated based on linear regressions of total PAHs concentrations versus TSS. For single samples PAHs loadings were estimated based on PAHs/TSS quotients. Average loadings are characteristic for each catchment and represent the number of inhabitants within the catchment per load of suspended sediment. The absence of significant long-term trends or pronounced changes of the catchment-specific loadings indicate that either input and output of PAHs into the stream networks are largely at steady state or that storage of PAHs in the sediments within the stream network are sufficient to smooth out larger fluctuations. Sampling at high temporal resolution during flood events revealed that loadings do show some short-term fluctuations and, additionally, that loadings show generally slightly decreasing trends during flood events. This is attributed to temporally and spatially varying contributions of particle inputs from sewer overflows and subcatchments which causes a changing proportion of urban and background particles. The decreasing trend is interpreted as the existence of a PAHs storage within the stream network and a slowly depletion therof in PAHs by the inputs of fresh particles in the course of the events. To better understand origin, transport and storage of contaminated particles, also metals, total organic carbon and carbonate content were measured for suspended particles

  19. Ice nucleating particles in the Saharan Air Layer

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Sierau, Berko; García, M. Isabel; Rodríguez, Sergio; Alastuey, Andrés; Linke, Claudia; Schnaiter, Martin; Kupiszewski, Piotr; Kanji, Zamin A.; Lohmann, Ulrike

    2016-07-01

    This study aims at quantifying the ice nucleation properties of desert dust in the Saharan Air Layer (SAL), the warm, dry and dust-laden layer that expands from North Africa to the Americas. By measuring close to the dust's emission source, before aging processes during the transatlantic advection potentially modify the dust properties, the study fills a gap between in situ measurements of dust ice nucleating particles (INPs) far away from the Sahara and laboratory studies of ground-collected soil. Two months of online INP concentration measurements are presented, which were part of the two CALIMA campaigns at the Izaña observatory in Tenerife, Spain (2373 m a.s.l.), in the summers of 2013 and 2014. INP concentrations were measured in the deposition and condensation mode at temperatures between 233 and 253 K with the Portable Ice Nucleation Chamber (PINC). Additional aerosol information such as bulk chemical composition, concentration of fluorescent biological particles as well as the particle size distribution was used to investigate observed variations in the INP concentration. The concentration of INPs was found to range between 0.2 std L-1 in the deposition mode and up to 2500 std L-1 in the condensation mode at 240 K. It correlates well with the abundance of aluminum, iron, magnesium and manganese (R: 0.43-0.67) and less with that of calcium, sodium or carbonate. These observations are consistent with earlier results from laboratory studies which showed a higher ice nucleation efficiency of certain feldspar and clay minerals compared to other types of mineral dust. We find that an increase of ammonium sulfate, linked to anthropogenic emissions in upwind distant anthropogenic sources, mixed with the desert dust has a small positive effect on the condensation mode INP per dust mass ratio but no effect on the deposition mode INP. Furthermore, the relative abundance of biological particles was found to be significantly higher in INPs compared to the ambient

  20. A model for the atmospheric transport of sea-salt particles in coastal areas

    NASA Astrophysics Data System (ADS)

    Demoisson, A.; Tedeschi, G.; Piazzola, J.

    2013-10-01

    A model for the aerosol transport in the lower atmosphere is of great interest for studies on air and water quality. One of the difficulties of such a model is to provide the accurate source terms. In particular, for maritime environment, the production of particles generated at the air-sea interface by breaking waves largely varies in time and space (Piazzola et al., 2009). More particularly, near the coastal zone, the sea-spray aerosol fluxes depend on the development of the wave field. The present paper proposes some improvement of the model MACMod, published by Tedeschi and Piazzola (2011), which is dedicated to the transport of aerosol particles in the marine atmospheric boundary layer (MABL). Taking benefit of the experimental campaign MIRAMER conducted in the French Mediterranean in 2008, a new sea-spray source function has been introduced in the latter version of the model MACMod. This consists in a revisited version of the whitecap dependant formulation established by Monahan et al. (1986). The simulations were then validated using aerosol size distributions recorded on board the ship “Atalante” for different wind speeds. Error calculations show a good performance of the model since it predicts the aerosol concentration to within a maximum factor of 3 for particle radii between 0.5 to 5 μm.

  1. Charged Particle Energization and Transport in the Magnetotail during Substorms

    NASA Astrophysics Data System (ADS)

    Pan, Qingjiang

    This dissertation addresses the problem of energization of particles (both electrons and ions) to tens and hundreds of keV and the associated transport process in the magnetotail during substorms. Particles energized in the magnetotail are further accelerated to even higher energies (hundreds of keV to MeV) in the radiation belts, causing space weather hazards to human activities in space and on ground. We develop an analytical model to quantitatively estimate flux changes caused by betatron and Fermi acceleration when particles are transported along narrow high-speed flow channels from the magnetotail to the inner magnetosphere. The model shows that energetic particle flux can be significantly enhanced by a modest compression of the magnetic field and/or shrinking of the distance between the magnetic mirror points. We use coordinated spacecraft measurements, global magnetohydrodynamic (MHD) simulations driven by measured upstream solar wind conditions, and large-scale kinetic (LSK) simulations to quantify electron local acceleration in the near-Earth reconnection region and nonlocal acceleration during plasma earthward transport. Compared to the analytical model, application of the LSK simulations is much less restrictive because trajectories of millions of test particles are calculated in the realistically determined global MHD fields and the results are statistical. The simulation results validated by the observations show that electrons following a power law distribution at high energies are generated earthward of the reconnection site, and that the majority of the energetic electrons observed in the inner magnetosphere are caused by adiabatic acceleration in association with magnetic dipolarizations and fast flows during earthward transport. We extend the global MHD+LSK simulations to examine ion energization and compare it with electron energization. The simulations demonstrate that ions in the magnetotail are first nonadiabatically accelerated in the weak

  2. Implementation of Satellite Techniques in the Air Transport

    NASA Astrophysics Data System (ADS)

    Fellner, Andrzej; Jafernik, Henryk

    2016-06-01

    The article shows process of the implementation satellite systems in Polish aviation which contributed to accomplishment Performance-Based Navigation (PBN) concept. Since 1991 authors have introduced Satellite Navigation Equipment in Polish Air Forces. The studies and researches provide to the Polish Air Force alternative approaches, modernize their navigation and landing systems and achieve compatibility with systems of the North Atlantic Treaty Organization (NATO) and International Civil Aviation Organization (ICAO). Acquired experience, conducted military tests and obtained results enabled to take up work scientifically - research in the environment of the civil aviation. Therefore in 2008 there has been launched cooperation with Polish Air Navigation Services Agency (PANSA). Thanks to cooperation, there have been compiled and fulfilled three fundamental international projects: EGNOS APV MIELEC (EGNOS Introduction in European Eastern Region - APV Mielec), HEDGE (Helicopters Deploy GNSS in Europe), SHERPA (Support ad-Hoc to Eastern Region Pre-operational in GNSS). The successful completion of these projects enabled implementation 21 procedures of the RNAV GNSS final approach at Polish airports, contributing to the implementation of PBN in Poland as well as ICAO resolution A37-11. Results of conducted research which served for the implementation of satellite techniques in the air transport constitute the meaning of this material.

  3. Dusty air masses transport between Amazon Basin and Caribbean Islands

    NASA Astrophysics Data System (ADS)

    Euphrasie-Clotilde, Lovely; Molinie, Jack; Prospero, Joseph; Feuillard, Tony; Brute, Francenor; Jeannot, Alexis

    2015-04-01

    Depend on the month, African desert dust affect different parts of the North Atlantic Ocean. From December to April, Saharan dust outbreaks are often reported over the amazon basin and from May to November over the Caribbean islands and the southern regions of USA. This annual oscillation of Saharan dust presence, related to the ITCZ position, is perturbed some time, during March. Indeed, over Guadeloupe, the air quality network observed between 2007 and 2012 several dust events during March. In this paper, using HISPLIT back trajectories, we analyzed air masses trajectories for March dust events observed in Guadeloupe, from 2007 to 2012.We observed that the high pressure positions over the Atlantic Ocean allow the transport of dusty air masses from southern region of West Africa to the Caribbean Sea with a path crossing close to coastal region of French Guyana. Complementary investigations including the relationship between PM10 concentrations recorded in two sites Pointe-a-Pitre in the Caribbean, and Cayenne in French Guyana, have been done. Moreover we focus on the mean delay observed between the times arrival. All the results show a link between pathway of dusty air masses present over amazon basin and over the Caribbean region during several event of March. The next step will be the comparison of mineral dust composition for this particular month.

  4. Transport of continental air to the subantarctic Indian Ocean

    NASA Technical Reports Server (NTRS)

    Balkanski, Yves J.; Jacob, Daniel J.

    1990-01-01

    The occurrence of high Rn-222 episodes (radonic storms) observed at three islands (Crozet, Kerguelen, and Amsterdam) in the subantarctic Indian Ocean is simulated using a three-dimensional chemical tracer model. The chemical tracer model is described and the simulated time series of Rn-222 concentrations at the three islands are compared to observations. The origin, seasonal frequencies, and periodicities of the storms are examined. It is found that the storms are due to fast boundary layer advection of air from South Africa, made possible by the conjunction of a subtropical high SE of Madagascar and a midlatitudes low off the southern tip of Africa. The implications of the results for the transport of continental air to the subantarctic Indian Ocean are discussed.

  5. Air transportation in the California Corridor of 2010

    NASA Technical Reports Server (NTRS)

    Cameron, M.; Mahaffy, K.; Yanagi, G.; Lechmanski, L.; Riddle, T.; Howard, K.; Chan, C.; Gorman, M.; Bauer, B.

    1989-01-01

    The topic of the 1988-1989 NASA/USRA Advanced Design Project at California Polytechnic State University, San Luis Obispo, was the development of an air transportation system to meet the needs of the California Corridor for the year 2010. As aircraft design is taught by two instructors having different philosophies about the teaching process, the two classes took different approaches to address the problem. The first part of this summary (California Air Transit System) represents the work done by the students of Professor A. E. Andreoli, who followed a systems approach, emphasizing the determination of the proper mission. The second part of the summary (Four Aircraft to Service the California Corridor) contains the four aircraft designed by Dr. D. R. Sandlin's class based on specifications determined from work done in previous years.

  6. Joint University Program for Air Transportation Research, 1991-1992

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1993-01-01

    This report summarizes the research conducted during the academic year 1991-1992 under the FAA/NASA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, June 18-19, 1992. The Joint University Program is a coordinated set of three grants sponsored by the Federal Aviation Administration and NASA Langley Research Center, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, intelligent flight control, flight dynamics, human factors, and air traffic control processes. An overview of the year's activities for each university is also presented.

  7. Flight Simulator Platform Motion and Air Transport Pilot Training

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.; Bussolari, Steven R.

    1989-01-01

    The influence of flight simulator platform motion on pilot training and performance was examined In two studies utilizing a B-727-200 aircraft simulator. The simulator, located at Ames Research Center, Is certified by the FAA for upgrade and transition training in air carrier operations. Subjective ratings and objective performance of experienced B-727 pilots did not reveal any reliable effects of wide variations In platform motion de- sign. Motion platform variations did, however, affect the acquisition of control skill by pilots with no prior heavy aircraft flying experience. The effect was limited to pitch attitude control inputs during the early phase of landing training. Implications for the definition of platform motion requirements in air transport pilot training are discussed.

  8. Air transportation systems for the California corridor of 2010

    NASA Technical Reports Server (NTRS)

    1988-01-01

    In 1986 NASA and USRA identified Cal Poly as one of seven 'Centers of Aircraft Design Education', and accepted a proposal from Cal Poly to conduct a three-year study of the potential for Lighter-Than-Air (LTA), Vertical Take-Off and Landing (VTOL), and Short Take-Off and landing (STOL) aircraft concepts for air transportation within the California corridor. The project emphasizes configurations that are both innovative and unconventional in design for use in the 2010 time period. The topic of LTA/VTOL/STOL aircraft was selected because it is consistent with the mission of the NASA Ames Research Center and is a broad topic that succeeding classes at Cal Poly can continue to iterate and refine to produce meaningful results for NASA. Along with studying the technical issues normally involved in any aircraft design problem, the topics of safety, noise, public acceptance, and economic viability in commercial operations are also addressed.

  9. Critical care air transport team (CCATT) nurses' deployed experience.

    PubMed

    Brewer, Theresa L; Ryan-Wenger, Nancy A

    2009-05-01

    The objective of this study was to use descriptive and phenomenological methods with Critical Care Air Transport Team (CCATT) nurses to identify knowledge and skills required to provide care for critically ill patients in a combat environment. Unstructured interviews, focus groups, written narratives, group interviews, participant observation, and review of in-flight documentation of care were used to obtain data from 23 registered nurses who had deployed with CCATT missions. Dimensions that emerged from the data included: clinical and operational competence, personal, physical, and psychosocial readiness, soldier and survival skills, leadership, administrative concerns, group identification and integration, aircraft air and evacuation familiarity, and nurse characteristics. This information should be shared with CCATT trainers and unit personnel to better prepare them for the realities of future deployments. Future research could incorporate these data into a self-assessment scale to evaluate CCATT nurses' readiness for future deployments. PMID:20731282

  10. Fuel conservative propulsion concepts for future air transports

    NASA Technical Reports Server (NTRS)

    Gray, D. E.; Witherspoon, J. W.

    1976-01-01

    The results of a feasibility study of proposed fuel conservative propulsion concepts for air transports with an assumed Mach 0.8 cruise capability are summarized. All engines considered are based on projected 1985 technology. Operating fuel requirements, propulsion operating costs, and noise characteristics are compared with those of a present technology turbofan engine. The study indicates that an advanced Brayton cycle gas generator in a turbofan engine or geared to an advanced multibladed, small diameter propeller with a projected efficiency of 80% at Mach 0.8 offers the greatest potential for energy conservation.

  11. Joint University Program for Air Transportation Research, 1984

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1984 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control and display concepts. An overview of the year's activities for each of the schools is also presented.

  12. Journal of Air Transportation, Volume 10, No. 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    2005-01-01

    The following topics are discussed: The Effects of Safety Information on Aeronautical Decision Making; Design, Development, and Validation of an Interactive Multimedia Training Simulator for Responding to Air Transportation Bomb Threats; Discovering the Regulatory Considerations of the Federal Aviation Administration: Interviewing the Aviation Rulemaking Advisory Committee; How to Control Airline Routes from the Supply Side: The Case of TAP; An Attempt to Measure the Traffic Impact of Airline Alliances; and Study Results on Knowledge Requirements for Entry-level Airport Operations and Management Personnel.

  13. Joint University Program for Air Transportation Research, 1988-1989

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1990-01-01

    The research conducted during 1988 to 1989 under the NASA/FAA-sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  14. Permanent internal pacemaker safety in air medical transport.

    PubMed

    Gordon, R S; O'Dell, K B

    1991-02-01

    Helicopter and fixed-wing air medical transportation provides an important role in the management of critically-ill patients. As the use of cardiac pacemakers continues to grow, knowledge of their expanding capabilities and sophistication is important. The environments of our "airborne intensive care units" are subject to many sources of electromagnetic and vibrational interference. Although pacemaker shielding mechanisms have become quite elaborate, further studies are needed to define their reliability in modern aircraft. Further, the possible effects of electromagnetic and vibrational interference upon inflight reprogramming require further study. PMID:10109075

  15. Joint University Program for Air Transportation Research, 1983

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1987-01-01

    The research conducted during 1983 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The material was presented at a conference held at the Federal Aviation Administration Technical Center, Altantic City, New Jersey, December 16, 1983. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology, Ohio University, and Princeton University. Completed works, status reports, and bibliographies are presented for research topics, which include navigation, guidance, control, and display concepts. An overview of the year's activities for each of the universities is also presented.

  16. Joint University Program for Air Transportation Research, 1987

    NASA Technical Reports Server (NTRS)

    Morrell, Frederick R. (Compiler)

    1989-01-01

    The research conducted during 1987 under the NASA/FAA sponsored Joint University Program for Air Transportation Research is summarized. The Joint University Program is a coordinated set of 3 grants sponsored by NASA-Langley and the FAA, one each with the MIT, Ohio Univ., and Princeton Univ. Completed works, status reports, and annotated bibliographies are presented for research topics, which include computer science, guidance and control theory and practice, aircraft performance, flight dynamics, and applied experimental psychology. An overview of the year's activities for each university is also presented.

  17. Interplanetary particle transport simulation for warning system for aviation exposure to solar energetic particles

    NASA Astrophysics Data System (ADS)

    Kubo, Yûki; Kataoka, Ryuho; Sato, Tatsuhiko

    2015-07-01

    Solar energetic particles (SEPs) are one of the extreme space weather phenomena. A huge SEP event increases the radiation dose received by aircrews, who should be warned of such events as early as possible. We developed a warning system for aviation exposure to SEPs. This article describes one component of the system, which calculates the temporal evolution of the SEP intensity and the spectrum immediately outside the terrestrial magnetosphere. To achieve this, we performed numerical simulations of SEP transport in interplanetary space, in which interplanetary SEP transport is described by the focused transport equation. We developed a new simulation code to solve the equation using a set of stochastic differential equations. In the code, the focused transport equation is expressed in a magnetic field line coordinate system, which is a non-orthogonal curvilinear coordinate system. An inverse Gaussian distribution is employed as the injection profile of SEPs at an inner boundary located near the Sun. We applied the simulation to observed SEP events as a validation test. The results show that our simulation can closely reproduce observational data for the temporal evolution of particle intensity. By employing the code, we developed the WArning System for AVIation Exposure to Solar energetic particles (WASAVIES).

  18. INHALABLE PARTICLES AND PULMONARY HOST DEFENSE: 'IN VIVO' AND 'IN VITRO' EFFECTS OF AMBIENT AIR AND COMBUSTION PARTICLES

    EPA Science Inventory

    The ability of particulate air pollutants (and possible constituents) to alter pulmonary host defenses was examined using an in vitro alveolar macrophage cytotoxicity assay and an in vivo bacterial infectivity screening test which employed intratracheal injection of the particles...

  19. TYPE A FISSILE PACKAGING FOR AIR TRANSPORT PROJECT OVERVIEW

    SciTech Connect

    Eberl, K.; Blanton, P.

    2013-10-11

    This paper presents the project status of the Model 9980, a new Type A fissile packaging for use in air transport. The Savannah River National Laboratory (SRNL) developed this new packaging to be a light weight (<150-lb), drum-style package and prepared a Safety Analysis for Packaging (SARP) for submission to the DOE/EM. The package design incorporates unique features and engineered materials specifically designed to minimize packaging weight and to be in compliance with 10CFR71 requirements. Prototypes were fabricated and tested to evaluate the design when subjected to Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC). An overview of the design details, results of the regulatory testing, and lessons learned from the prototype fabrication for the 9980 will be presented.

  20. High-Speed Civil Transport Will Revolutionize Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will allow industry to build a high-speed civil transport that will revolutionize overseas air travel. The technology challenges include developing low-cost materials and structural concepts as well as supersonic engines that can meet stringent noise and emissions standards. NASA's goal is to provide enabling technologies that will reduce the travel time to the Far East by 50 percent within 25 years, and do so at today's subsonic ticket prices. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  1. Emissions and Air Quality Impacts of Freight Transportation

    NASA Astrophysics Data System (ADS)

    Bickford, Erica

    Diesel freight vehicles (trucks + trains) are responsible for 20% of all U.S. nitrogen oxide (NOx) and 3% of fine particulate (PM2.5) emissions - pollutants that are harmful to human health. Freight tonnage is also projected to double over the next several decades, reaching 30 billion tons by 2050, increasing freight transport activity. Air quality impacts from increased activity, trade-offs between activity and vehicle technology improvements, as well as where to make infrastructure investments that encourage sustainable freight growth, are important considerations for transportation and air quality managers. To address these questions, we build a bottom-up roadway-by-roadway freight truck inventory (WIFE) and employ it to quantify emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet, and investigate emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwest. We also evaluate the spatial and seasonal freight performance of WIFE modeled in a regional photochemical model (CMAQ) against satellite retrievals of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI). Results show that spatial and seasonal distribution of biodiesel affects regional emissions impacts. Summer high-blend deployment yields a larger annual emissions reduction than year-round low-blend deployment, however, technological improvements in vehicle emissions controls between 2009 and 2018 dwarf the impacts of biodiesel. Truck-to-rail modal shift analysis found 40% of daily freight truck VMT could be shifted to rail freight, causing a 26% net reduction in NOx emissions, and 31% less carbon dioxide (CO2) emissions. Despite significant emissions impacts, air quality modeling results showed mostly localized near roadway air quality improvements, with small regional net changes; yet, federal regulation of CO2 emissions and/or rising costs of diesel fuel could motivate shifting freight to more fuel efficient rail. Evaluation of

  2. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    SciTech Connect

    O'Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  3. A concurrent vector-based steering framework for particle transport

    NASA Astrophysics Data System (ADS)

    Apostolakis, John; Brun, René; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-06-01

    High Energy Physics has traditionally been a technology-limited science that has pushed the boundaries of both the detectors collecting the information about the particles and the computing infrastructure processing this information. However, since a few years the increase in computing power comes in the form of increased parallelism at all levels, and High Energy Physics has now to optimise its code to take advantage of the new architectures, including GPUs and hybrid systems. One of the primary targets for optimisation is the particle transport code used to simulate the detector response, as it is largely experiment independent and one of the most demanding applications in terms of CPU resources. The Geant Vector Prototype project aims to explore innovative designs in particle transport aimed at obtaining maximal performance on the new architectures. This paper describes the current status of the project and its future perspectives. In particular we describe how the present design tries to expose the parallelism of the problem at all possible levels, in a design that is aimed at minimising contentions and maximising concurrency, both at the coarse granularity level (threads) and at the micro granularity one (vectorisation, instruction pipelining, multiple instructions per cycle). The future plans and perspectives will also be mentioned.

  4. Parallelization of a Monte Carlo particle transport simulation code

    NASA Astrophysics Data System (ADS)

    Hadjidoukas, P.; Bousis, C.; Emfietzoglou, D.

    2010-05-01

    We have developed a high performance version of the Monte Carlo particle transport simulation code MC4. The original application code, developed in Visual Basic for Applications (VBA) for Microsoft Excel, was first rewritten in the C programming language for improving code portability. Several pseudo-random number generators have been also integrated and studied. The new MC4 version was then parallelized for shared and distributed-memory multiprocessor systems using the Message Passing Interface. Two parallel pseudo-random number generator libraries (SPRNG and DCMT) have been seamlessly integrated. The performance speedup of parallel MC4 has been studied on a variety of parallel computing architectures including an Intel Xeon server with 4 dual-core processors, a Sun cluster consisting of 16 nodes of 2 dual-core AMD Opteron processors and a 200 dual-processor HP cluster. For large problem size, which is limited only by the physical memory of the multiprocessor server, the speedup results are almost linear on all systems. We have validated the parallel implementation against the serial VBA and C implementations using the same random number generator. Our experimental results on the transport and energy loss of electrons in a water medium show that the serial and parallel codes are equivalent in accuracy. The present improvements allow for studying of higher particle energies with the use of more accurate physical models, and improve statistics as more particles tracks can be simulated in low response time.

  5. A design methodology for evolutionary air transportation networks

    NASA Astrophysics Data System (ADS)

    Yang, Eunsuk

    The air transportation demand at large hubs in the U.S. is anticipated to double in the near future. Current runway construction plans at selected airports can relieve some capacity and delay problems, but many are doubtful that this solution is sufficient to accommodate the anticipated demand growth in the National Airspace System (NAS). With the worsening congestion problem, it is imperative to seek alternative solutions other than costly runway constructions. In this respect, many researchers and organizations have been building models and performing analyses of the NAS. However, the complexity and size of the problem results in an overwhelming task for transportation system modelers. This research seeks to compose an active design algorithm for an evolutionary airline network model so as to include network specific control properties. An airline network designer, referred to as a network architect, can use this tool to assess the possibilities of gaining more capacity by changing the network configuration. Since the Airline Deregulation Act of 1978, the airline service network has evolved into a distinct Hub-and-Spoke (H&S) network. Enplanement demand on the H&S network is the sum of Origin-Destination (O-D) demand and transfer demand. Even though the flight or enplanement demand is a function of O-D demand and passenger routings on the airline network, the distinction between enplanement and O-D demand is not often made. Instead, many demand forecast practices in current days are based on scale-ups from the enplanements, which include the demand to and from transferring network hubs. Based on this research, it was found that the current demand prediction practice can be improved by dissecting enplanements further into smaller pieces of information. As a result, enplanement demand is decomposed into intrinsic and variable parts. The proposed intrinsic demand model is based on the concept of 'true' O-D demand which includes the direction of each round trip

  6. Overview of Particle and Heavy Ion Transport Code System PHITS

    NASA Astrophysics Data System (ADS)

    Sato, Tatsuhiko; Niita, Koji; Matsuda, Norihiro; Hashimoto, Shintaro; Iwamoto, Yosuke; Furuta, Takuya; Noda, Shusaku; Ogawa, Tatsuhiko; Iwase, Hiroshi; Nakashima, Hiroshi; Fukahori, Tokio; Okumura, Keisuke; Kai, Tetsuya; Chiba, Satoshi; Sihver, Lembit

    2014-06-01

    A general purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS, is being developed through the collaboration of several institutes in Japan and Europe. The Japan Atomic Energy Agency is responsible for managing the entire project. PHITS can deal with the transport of nearly all particles, including neutrons, protons, heavy ions, photons, and electrons, over wide energy ranges using various nuclear reaction models and data libraries. It is written in Fortran language and can be executed on almost all computers. All components of PHITS such as its source, executable and data-library files are assembled in one package and then distributed to many countries via the Research organization for Information Science and Technology, the Data Bank of the Organization for Economic Co-operation and Development's Nuclear Energy Agency, and the Radiation Safety Information Computational Center. More than 1,000 researchers have been registered as PHITS users, and they apply the code to various research and development fields such as nuclear technology, accelerator design, medical physics, and cosmic-ray research. This paper briefly summarizes the physics models implemented in PHITS, and introduces some important functions useful for specific applications, such as an event generator mode and beam transport functions.

  7. Production and global transport of Titan's sand particles

    NASA Astrophysics Data System (ADS)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  8. Dust-Particle Transport in Tokamak Edge Plasmas

    SciTech Connect

    Pigarov, A Y; Krasheninnikov, S I; Soboleva, T K; Rognlien, T D

    2005-09-12

    Dust particulates in the size range of 10nm-100{micro}m are found in all fusion devices. Such dust can be generated during tokamak operation due to strong plasma/material-surface interactions. Some recent experiments and theoretical estimates indicate that dust particles can provide an important source of impurities in the tokamak plasma. Moreover, dust can be a serious threat to the safety of next-step fusion devices. In this paper, recent experimental observations on dust in fusion devices are reviewed. A physical model for dust transport simulation, and a newly developed code DUSTT, are discussed. The DUSTT code incorporates both dust dynamics due to comprehensive dust-plasma interactions as well as the effects of dust heating, charging, and evaporation. The code tracks test dust particles in realistic plasma backgrounds as provided by edge-plasma transport codes. Results are presented for dust transport in current and next-step tokamaks. The effect of dust on divertor plasma profiles and core plasma contamination is examined.

  9. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  10. Innovations in transportation and air quality: Twelve exemplary projects. Congestion mitigation and Air Quality Improvement Program

    SciTech Connect

    1996-07-01

    Since its creation, the Congestion Mitigation and Air Quality Improvement (CMAQ) Program has spurred innovation in the types of programs and projects supported by Federal transportation dollars. The projects mentioned in this brochure show that the CMAQ program has been in the forefront of ISTEA`s effort to revamp the transportation planning process toward an intermodal focus. The CMAQ program is multimodal by design; it is a virtual requirement that new players beyond the highway and transit communities be a part of its implementation. Its success in meeting the congressional mandates of ISTEA is also documented by its unprecendented flexibility and robust spending rates. CMAQ funding needs now compete on an event footing with more traditional transportation programs for congressionally set spending authority.

  11. Evaluation of Baltic Sea transport properties using particle tracking

    NASA Astrophysics Data System (ADS)

    Dargahi, Bijan; Cvetkovic, Vladimir

    2014-05-01

    Particle tracking model (PTM) is an effective tool for quantifying transport properties of large water bodies such as the Baltic Sea. We have applied PTM to our fully calibrated and validated Baltic Sea 3D hydrodynamic model for a 10-years period (2000-9). One hundred particles were released at a constant rate during an initial 10-days period from all the Baltic Sea sub-basins, the major rivers, and the open boundary in the Arkona Basin. In each basin, the particles were released at two different depths corresponding to the deep water and middle water layers. The objectives of the PTM simulations were to analyse the intra-exchange processes between the Baltic Sea basins and to estimate the arrival times and the paths of particles released from the rivers. The novel contribution of this study is determining the paths and arrival times of deeper water masses rather than the surface masses. Advective and diffusive transport processes in the Bornholm and Arkona basins are both driven by the interacting flows of the northern basins of the Baltic Sea and the North Sea. Particles released from Arkona basin flows northwards along the Stople Channel. The Gotland basins are the major contributors to the exchange process in the Baltic Sea. We find high values of the advection ratio, indicative of a forced advective transport process. The Bay of Gdansk is probably the most vulnerable region in the Baltic Sea. This is despite the fact that the main exchanging basins are the Bornholm Sea and the Easter Gotland Basin. The main reason is the intensive supply of the particles from the northern basins that normally take about 3000 days to reach the Bay of Gdansk. The process maintains a high level of particle concentration (90%) along its coastlines even after the 10-years period. Comparing the particle paths in the Western and Eastern Gotland basins two interesting features were found. Particles travelled in all four directions in the former basin and the middle layer particles

  12. Effect Of Air-Water Interface On Microorganism Transport Under Unsaturated Conditions

    NASA Astrophysics Data System (ADS)

    Torkzaban, S.; Hassanizadeh, S. M.; Schijven, J. F.

    2005-12-01

    Groundwater may become contaminated with pathogenic microorganisms from land application of treated wastewater, septic wells, and effluent from septic tanks, and leaking sewage pipes. The unsaturated zone is of special importance since it often represents the first line of natural defense against groundwater pollution. Moreover, many experimental studies have shown that contaminant removal is more significant under lower saturation levels. Interaction of microbial particles with the air-water interfaces (AWI) has been previously suggested to explain high removal of pathogenic microorganisms during transport through unsaturated soil. The objective of this research was to explore the effect of AWI on virus transport. The transport of bacteriophages MS2 and FiX174 in sand columns was studied under various conditions, such as different pH, and saturation levels. Fitting of a transport model to the breakthrough curves was performed to determine the adsorption parameters. FiX174 with isoelectric point of 6.7 exhibited high affinity to the air-water interface by decreasing pH from 7.5 to 6.2. MS2 with isoelectric point of 3.5 has lower affinity to air-water interfaces than FiX174, but has similar pH- dependence. These results show the importance of electrostatic interactions, instead of hydrophobic, between the AWI and viruses. Adsorption to AWI is strongly pH dependent, increasing as pH decreases. It was found that two-site kinetic model should be used for modeling of virus transport under unsaturated conditions Moreover, by draining the unsaturated column, we found out that the attached viruses to AWI are viable, which is in contrast with the literature where retained viruses to AWI are considered as inactivated.

  13. Size segregation in bedload sediment transport at the particle scale

    NASA Astrophysics Data System (ADS)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  14. Thermal analysis of Perforated Metal Air Transportable Package (PMATP) prototype.

    SciTech Connect

    Oneto, Robert; Levine, Howard; Mould, John; Pierce, Jim Dwight

    2003-08-01

    Sandia National Laboratories (SNL) has designed a crash-resistant container, the Perforated Metal Air Transportable Package (PMATP), capable of surviving a worst-case plane crash, including both impact and subsequent fire, for the air transport of plutonium. This report presents thermal analyses of the full-scale PMATP in its undamaged (pre-test) condition and in bounding post-accident states. The goal of these thermal simulations was to evaluate the performance of the package in a worst-case post-crash fire. The full-scale package is approximately 1.6 m long by 0.8 m diameter. The thermal analyses were performed with the FLEX finite element code. This analysis clearly predicts that the PMATP provides acceptable thermal response characteristics, both for the post-accident fire of a one-hour duration and the after-fire heat-soak condition. All predicted temperatures for the primary containment vessel are well within design limits for safety.

  15. Test Report for Perforated Metal Air Transportable Package (PMATO) Prototype.

    SciTech Connect

    Bobbe, Jeffery G.; Pierce, Jim Dwight

    2003-06-01

    A prototype design for a plutonium air transport package capable of carrying 7.6 kg of plutonium oxide and surviving a ''worst-case'' plane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A series of impact tests were conducted on half-scale models of this design for side, end, and comer orientations at speeds close to 282 m/s onto a target designed to simulate weathered sandstone. These tests were designed to evaluate the performance of the overpack concept and impact-limiting materials in critical impact orientations. The impact tests of the Perforated Metal Air Transportable Package (PMATP) prototypes were performed at SNL's 10,000-ft rocket sled track. This report describes test facilities calibration and environmental testing methods of the PMATP under specific test conditions. The tests were conducted according to the test plan and procedures that were written by the authors and approved by SNL management and quality assurance personnel. The result of these tests was that the half-scale PMATP survived the ''worst-case'' airplane crash conditions, and indicated that a full-scale PMATP, utilizing this overpack concept and these impact-limiting materials, would also survive these crash conditions.

  16. Transport coefficients of solid particles immersed in a viscous gas.

    PubMed

    Garzó, Vicente; Fullmer, William D; Hrenya, Christine M; Yin, Xiaolong

    2016-01-01

    Transport properties of a suspension of solid particles in a viscous gas are studied. The dissipation in such systems arises from two sources: inelasticity in particle collisions and viscous dissipation due to the effect of the gas phase on the particles. Here we consider a simplified case in which the mean relative velocity between the gas and solid phases is taken to be zero, such that "thermal drag" is the only remaining gas-solid interaction. Unlike the previous, more general, treatment of the drag force [Garzó et al., J. Fluid Mech. 712, 129 (2012)]JFLSA70022-112010.1017/jfm.2012.404, here we take into account contributions to the (scaled) transport coefficients η^{*} (shear viscosity), κ^{*} (thermal conductivity), and μ^{*} (Dufour-like coefficient) coming from the temperature dependence of the (dimensionless) friction coefficient γ^{*} characterizing the amplitude of the drag force. At moderate densities, the thermal drag model (which is based on the Enskog kinetic equation) is solved by means of the Chapman-Enskog method and the Navier-Stokes transport coefficients are determined in terms of the coefficient of restitution, the solid volume fraction, and the friction coefficient. The results indicate that the effect of the gas phase on η^{*} and μ^{*} is non-negligible (especially in the case of relatively dilute systems) while the form of κ^{*} is the same as the one obtained in the dry granular limit. Finally, as an application of these results, a linear stability analysis of the hydrodynamic equations is carried out to analyze the conditions for stability of the homogeneous cooling state. A comparison with direct numerical simulations shows a good agreement for conditions of practical interest. PMID:26871141

  17. Transport coefficients of solid particles immersed in a viscous gas

    NASA Astrophysics Data System (ADS)

    Garzó, Vicente; Fullmer, William D.; Hrenya, Christine M.; Yin, Xiaolong

    2016-01-01

    Transport properties of a suspension of solid particles in a viscous gas are studied. The dissipation in such systems arises from two sources: inelasticity in particle collisions and viscous dissipation due to the effect of the gas phase on the particles. Here we consider a simplified case in which the mean relative velocity between the gas and solid phases is taken to be zero, such that "thermal drag" is the only remaining gas-solid interaction. Unlike the previous, more general, treatment of the drag force [Garzó et al., J. Fluid Mech. 712, 129 (2012)], 10.1017/jfm.2012.404, here we take into account contributions to the (scaled) transport coefficients η* (shear viscosity), κ* (thermal conductivity), and μ* (Dufour-like coefficient) coming from the temperature dependence of the (dimensionless) friction coefficient γ* characterizing the amplitude of the drag force. At moderate densities, the thermal drag model (which is based on the Enskog kinetic equation) is solved by means of the Chapman-Enskog method and the Navier-Stokes transport coefficients are determined in terms of the coefficient of restitution, the solid volume fraction, and the friction coefficient. The results indicate that the effect of the gas phase on η* and μ* is non-negligible (especially in the case of relatively dilute systems) while the form of κ* is the same as the one obtained in the dry granular limit. Finally, as an application of these results, a linear stability analysis of the hydrodynamic equations is carried out to analyze the conditions for stability of the homogeneous cooling state. A comparison with direct numerical simulations shows a good agreement for conditions of practical interest.

  18. Probabilistic description of particle transport. III. Inelastic scattering

    SciTech Connect

    Goulet, T.; Keszei, E.; Jay-Gerin, J. Departement de Medecine Nucleaire et de Radiobiologie, Faculte de Medecine, Universite de Sherbrooke, Sherbrooke, PQ )

    1990-06-01

    We extend our probabilistic model of quasielastic particle transport to include possible inelastic scatterings of the particles in the bulk of the studied media. We show that this extended model can be used to describe different types of experiments involving electrons that go through or are reflected by a plane-parallel layer deposited on a substrate. In particular, we reanalyze the experimental results of low-energy ({approx lt}10 eV) electron transmission through solid xenon and solid molecular nitrogen. This analysis shows that the extended model is consistent with the quasielastic one, but is more powerful since we can now determine both the elastic and inelastic electron mean free paths. The analysis allows one to study the threshold creation of excitons that can be observed at about 8.5 and 9.5 eV in solid xenon, and around 7.5 eV in solid molecular nitrogen.

  19. Aerial observations of air masses transported from East Asia to the Western Pacific: Vertical structure of polluted air masses

    NASA Astrophysics Data System (ADS)

    Hatakeyama, Shiro; Ikeda, Keisuke; Hanaoka, Sayuri; Watanabe, Izumi; Arakaki, Takemitsu; Bandow, Hiroshi; Sadanaga, Yasuhiro; Kato, Shungo; Kajii, Yoshizumi; Zhang, Daizhou; Okuyama, Kikuo; Ogi, Takashi; Fujimoto, Toshiyuki; Seto, Takafumi; Shimizu, Atsushi; Sugimoto, Nobuo; Takami, Akinori

    2014-11-01

    There has been only limited information about the vertical chemical structure of the atmosphere, so far. We conducted aerial observations on 11, 12, and 14 December 2010 over the northern part of the East China Sea to analyze the spatial distribution of atmospheric pollutants from East Asia and to elucidate transformation processes of air pollutants during the long-range transport. On 11 December, a day on which Asian dust created hazy conditions, the average PM10 concentration was 40.69 μg m-3, and we observed high concentrations of chemical components such as Ca2+, NO3-, SO42-, Al, Ca, Fe, and Zn. The height of the boundary layer was about 1200 m, and most species of pollutants (except for dust particles and SO2) had accumulated within the boundary layer. In contrast, concentrations of pollutants were low in the boundary layer (up to 1000 m) on 12 December because clean Pacific air from the southeast had diluted the haze. However, we observed natural chemical components (Na+, Cl-, Al, Ca, and Fe) at 3000 m, the indication being that dust particles, including halite, were present in the lower free troposphere. On 14 December, peak concentrations of SO2 and black carbon were measured within the boundary layer (up to 700 m) and at 2300 m. The concentrations of anthropogenic chemical components such as NO3-, NH4+, and Zn were highest at 500 m, and concentrations of both anthropogenic and natural chemical components (SO42-, Pb, Ca2+, Ca, Al, and Fe) were highest at 2000 m. Thus, it was clearly indicated that the air above the East China Sea had a well-defined, layered structure below 3000 m.

  20. Field-aligned Transport and Acceleration of Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Borovikov, D.; Sokolov, I.; Tenishev, V.; Gombosi, T. I.

    2015-12-01

    Solar Energetic Particle (SEP) phenomena represent one of the major components of space weather. Often, but not exclusively associated with Coronal Mass Ejections (CMEs), they pose a significant scientific as well as practical interest. As these particles originate at such explosive events, they have energies up to several GeV. SEP may cause disruptions in operations of space instruments and spacecrafts and are dangerous to astronauts. For this reason, studies of SEP events and predictions of their impact are of great importance. The motion and acceleration of SEP, though kinetic in nature, is governed by Interplanetary Magnetic Field (IMF) and its disturbances. Therefore, a consistent and accurate simulation and predictive tool must include a realistic MHD model of IMF. At the same time, transport of SEP is essentially one-dimensional as at high energies particles are tied to magnetic field lines. This allows building a model that can effectively map active regions on the solar surface onto various regions of the Solar System thus predicting the affected regions of the at any distance from the Sun. We present the first attempt to construct a model that employs coupling of MHD and kinetic models. The former describes the evolution of IMF disturbed by CME, while the latter simulates particles moving along the field lines extracted from MHD model. The first results are provided.

  1. Transport and discrete particle noise in gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Lee, W. W.

    2006-10-01

    We present results from our recent investigations regarding the effects of discrete particle noise on the long-time behavior and transport properties of gyrokinetic particle-in-cell simulations. It is found that the amplitude of nonlinearly saturated drift waves is unaffected by discreteness-induced noise in plasmas whose behavior is dominated by a single mode in the saturated state. We further show that the scaling of this noise amplitude with particle count is correctly predicted by the fluctuation-dissipation theorem, even though the drift waves have driven the plasma from thermal equilibrium. As well, we find that the long-term behavior of the saturated system is unaffected by discreteness-induced noise even when multiple modes are included. Additional work utilizing a code with both total-f and δf capabilities is also presented, as part of our efforts to better understand the long- time balance between entropy production, collisional dissipation, and particle/heat flux in gyrokinetic plasmas.

  2. Quantum interference effects in particle transport through square lattices

    NASA Astrophysics Data System (ADS)

    Cuansing, E.; Nakanishi, H.

    2004-12-01

    We study the transport of a quantum particle through square lattices of various sizes by employing the tight-binding Hamiltonian from quantum percolation. Input and output semi-infinite chains are attached to the lattice either by diagonal point-to-point contacts or by a busbar connection. We find resonant transmission and reflection occurring whenever the incident particle’s energy is near an eigenvalue of the lattice alone (i.e., the lattice without the chains attached). We also find the transmission to be strongly dependent on the way the chains are attached to the lattice.

  3. Hollow-core waveguide characterization by optically induced particle transport.

    PubMed

    Measor, Philip; Kühn, Sergei; Lunt, Evan J; Phillips, Brian S; Hawkins, Aaron R; Schmidt, Holger

    2008-04-01

    We introduce a method for optical characterization of hollow-core optical waveguides. Radiation pressure exerted by the waveguide modes on dielectric microspheres is used to analyze salient properties such as propagation loss and waveguide mode profiles. These quantities were measured for quasi-single-mode and multimode propagation in on-chip liquid-filled hollow-core antiresonant reflecting optical waveguides. Excellent agreement with analytical and numerical models is found, demonstrating that optically induced particle transport provides a simple, inexpensive, and nondestructive alternative to other characterization methods. PMID:18382513

  4. Fluid flow and particle transport in mechanically ventilated airways. Part II: particle transport.

    PubMed

    Alzahrany, Mohammed; Van Rhein, Timothy; Banerjee, Arindam; Salzman, Gary

    2016-07-01

    The flow mechanisms that play a role on aerosol deposition were identified and presented in a companion paper (Timothy et al. in Med Biol Eng Comput. doi: 10.1007/s11517-015-1407-3 , 2015). In the current paper, the effects of invasive conventional mechanical ventilation waveforms and endotracheal tube (ETT) on the aerosol transport were investigated. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by jet caused by the ETT. The orientation of the ETT toward right bronchus resulted in a substantial deposition inside right lung compared to left lung. The deposition inside right lung was ~12-fold higher than left lung for all considered cases, except for the case of using pressure-controlled sinusoidal waveform where a reduction of this ratio by ~50 % was found. The total deposition during pressure constant, volume ramp, and ascending ramp waveforms was similar and ~1.44 times higher than deposition fraction when using pressure sinusoidal waveform. Varying respiratory waveform demonstrated a significant role on the deposition enhancement factors and give evidence of drug aerosol concentrations in key deposition sites, which may be significant for drugs with negative side effects in high concentrations. These observations are thought to be important for ventilation treatment strategy. PMID:26541600

  5. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Supplementary regulations of the Air Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN...

  6. 14 CFR 1300.3 - Supplementary regulations of the Air Transportation Stabilization Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Supplementary regulations of the Air Transportation Stabilization Board. 1300.3 Section 1300.3 Aeronautics and Space AIR TRANSPORTATION SYSTEM STABILIZATION OFFICE OF MANAGEMENT AND BUDGET AVIATION DISASTER RELIEF-AIR CARRIER GUARANTEE LOAN...

  7. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  8. 75 FR 12328 - Application of Charter Air Transport, Inc. for Commuter Authority

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Charter Air Transport, Inc. for Commuter Authority AGENCY... it should not issue an order finding Charter Air Transport, Inc., fit, willing, and able,...

  9. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport...

  10. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  11. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  12. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  13. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  14. Particle transport and flow modulation in particle-laden mixing layers

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Ling

    Shear flows provide a means to rapidly mix and disperse discrete solid particles and droplets in natural and industrial processes. Moderate mass loadings of particles in a gas mixing layer may also alter the gas shear flow. While the modeling of single-phase shear flows has undergone several decades of development and validation, the consideration of the corresponding problem in two- phase shear flows has just began. This dissertation represents a systematic effort to use a tool known as direct numerical simulations (DNS) to advance our understanding of particle transport and flow modulation in a gas mixing layer laden with solid particles. In DNS, almost all dynamically important flow scales are directly resolved. Previously, DNS of three-dimensional (3D) particle-laden shear flows have not been possible due to their high computational cost. Therefore, we first set out to develop and validate a computationally efficient and numerically accurate DNS methodology for particle-laden mixing layer. The method relies on a Fourier vorticity-based formulation together with a divergence-free decomposition. While almost all previous numerical studies adopted the trajectory approach for the dispersed phase in the context of DNS, a continuum approach has been developed and shown to reduce the computational time by a factor of 15 for the simulations of 3D particle-laden mixing layers. The validity and interpretation of the continuum approach were illustrated analytically with a stagnation point flow model. Detailed comparisons showed that the continuum approach and the trajectory approach yielded very similar results. Since the particulate field is compressible, numerical diffusion must be applied to remove local singularities. A dynamic-diffusion model has been developed as an optimum numerical diffusion model to ensure spectral resolution of particulate continuum fields. The numerical method was then used to study the interactions of finite-inertia particles with 3D flow

  15. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  16. Exposure visualisation of ultrafine particle counts in a transport microenvironment

    NASA Astrophysics Data System (ADS)

    Kaur, S.; Clark, R. D. R.; Walsh, P. T.; Arnold, S. J.; Colvile, R. N.; Nieuwenhuijsen, M. J.

    An increasing number of studies indicate that short-term peak exposures, such as those seen in the transport microenvironment, pose particular health threats. Short-term exposure can only be sufficiently characterised using portable, fast-response monitoring instrumentation with detailed summaries of individual activity. In this paper, we present an exposure visualisation system that addresses this issue—it allows the simultaneous presentation of mobile video imagery synchronised with measured real-time ultrafine particle count exposure of an individual. The combined data can be examined in detail for the contribution of the surrounding environment and the individual's activities to their peak and overall exposure. The exposure visualisation system is demonstrated and evaluated around the DAPPLE study site in Central London using different modes of transport (walking, cycling, bus, car and taxi). The video images, synchronised with the exposure profile, highlight the extent to which ultrafine particle exposure is associated with traffic density and proximity to pollutant source. The extremely rapid decline in concentration with increasing distance away from the pollutant source, such as from the main street to the backstreets, is clearly evident. The visualisation technique allows these data to be presented to both technical audiences and laypersons thus making it an effective environmental risk communication tool. Some exposure peaks however are not obviously associated with any event recorded on video—in these cases it will be necessary to use advanced dispersion modelling techniques to investigate meteorological conditions and other variables influencing in-street conditions to identify their possible causes.

  17. High energy electromagnetic particle transportation on the GPU

    SciTech Connect

    Canal, P.; Elvira, D.; Jun, S. Y.; Kowalkowski, J.; Paterno, M.; Apostolakis, J.

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  18. Simulating the transport of heavy charged particles through trabecular spongiosa

    NASA Astrophysics Data System (ADS)

    Gersh, Jacob A.

    As planning continues for manned missions far beyond Low Earth Orbit, a paramount concern remains the flight crew's exposure to galactic cosmic radiation. When humans exit the protective magnetic field of Earth, they become subject to bombardment by highly-reactive heavy charged (HZE) particles. A possible consequence of this two- to three-year-long mission is the onset of radiation-induced leukemia, a disorder with a latency period as short as two to three years. Because data on risk to humans from exposure to HZE particles is non-existent, studies of leukemia in animals are now underway to investigate the relative effectiveness of HZE exposures. Leukemogenesis can result from energy depositions occurring within marrow contained in the trabecular spongiosa. Trabecular spongiosa is found in flat bones and within the ends of long bones, and is characterized by an intricate matrix of interconnected bone tissue forming cavities that house marrow. The microscopic internal dimensions of spongiosa vary between species. As radiation traverses this region, interface-induced dose perturbations that occur at the interfaces between bone and marrow affect the patterns of energy deposition within the region. An aim of this project is to determine the extent by which tissue heterogeneity and microscopic dimensions have on patterns of energy deposition within the trabecular spongiosa. This leads to the development of PATHFIT, a computer code capable of generating simple quadric-based geometric models of trabecular spongiosa for both humans and mice based on actual experimentally-determined internal dimensions of trabecular spongiosa. Following the creation of spongiosa models, focus is placed on the development of HITSPAP, a hybrid Monte Carlo (MC) radiation transport code system that combines capabilities of the MC code PENELOPE and MC code PARTRAC. This code is capable of simulating the transport of HZE particles through accurate models of trabecular spongiosa. The final and

  19. Evidence for particle transport between alveolar macrophages in vivo

    SciTech Connect

    Benson, J.M.; Nikula, K.J.; Guilmette, R.A.

    1995-12-01

    Recent studies at this Institute have focused on determining the role of alveolar macrophages (AMs) in the transport of particles within and form the lung. For those studies, AMs previously labeled using the nuclear stain Hoechst 33342 and polychromatic Fluoresbrite microspheres (1 {mu}m diameter, Polysciences, Inc., Warrington, PA) were instilled into lungs of recipient F344 rats. The fate of the donor particles and the doubly labeled AMs within recipient lungs was followed for 32 d. Within 2-4 d after instillation, the polychromatic microspheres were found in both donor and resident AMs, suggesting that particle transfer occurred between the donor and resident AMs. However, this may also have been an artifact resulting from phagocytosis of the microspheres form dead donor cells or from the fading or degradation of Hoechst 33342 within the donor cells leading to their misidentification as resident AMs. The results support the earlier findings that microspheres in donor AMs can be transferred to resident AMs within 2 d after instillation.

  20. Transport of large particles in flow through porous media

    NASA Astrophysics Data System (ADS)

    Imdakm, A. O.; Sahimi, Muhammad

    1987-12-01

    There is considerable evidence indicating that significant reduction in the efficiency of many processes in porous media, such as enhancing oil recovery, heterogeneous chemical reactions, deep-bed filtration, gel permeation, and liquid chromatography, is due to the reduction in the permeability of the pore space. This reduction is due to the transport of particles, whose sizes are comparable with those of the pores, and the subsequent blocking of the pores by various mechanisms. In this paper we develop a novel Monte Carlo method for theoretical modeling of this phenomenon. Particles of various sizes are injected into the medium, and their migration in the flow field is modeled by a random walk whose transition porbability is proportional to the local pore fluxes. Pores are blocked and their flow capacity is reduced (or vanished) when large particles pass through them (and reduce their flow) or totally block them. The permeability of the medium can ultimately vanish and, therefore, this phenomenon is a percolation process. Various quantities of interest such as the variations of the permeability with process time and the distribution of pore-plugging times are computed. The critical exponent characterizing the vanishing of the permeability near the percolation threshold appears to be different from that of percolation conductivity. The agreement between our results and the available experimental data is excellent.

  1. Predicting transient particle transport in enclosed environments with the combined computational fluid dynamics and Markov chain method.

    PubMed

    Chen, C; Lin, C-H; Long, Z; Chen, Q

    2014-02-01

    To quickly obtain information about airborne infectious disease transmission in enclosed environments is critical in reducing the infection risk to the occupants. This study developed a combined computational fluid dynamics (CFD) and Markov chain method for quickly predicting transient particle transport in enclosed environments. The method first calculated a transition probability matrix using CFD simulations. Next, the Markov chain technique was applied to calculate the transient particle concentration distributions. This investigation used three cases, particle transport in an isothermal clean room, an office with an underfloor air distribution system, and the first-class cabin of an MD-82 airliner, to validate the combined CFD and Markov chain method. The general trends of the particle concentrations vs. time predicted by the Markov chain method agreed with the CFD simulations for these cases. The proposed Markov chain method can provide faster-than-real-time information about particle transport in enclosed environments. Furthermore, for a fixed airflow field, when the source location is changed, the Markov chain method can be used to avoid recalculation of the particle transport equation and thus reduce computing costs. PMID:23789964

  2. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  3. Charged Particle Energization and Transport in Reservoirs throughout the Heliosphere: 1. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Roelof, E. C.

    2015-09-01

    “Reservoirs” of energetic charged particles are regions where the particle population is quasi-trapped in large-scale (relative to the gyroradii) magnetic field structures. Reservoirs are found throughout the heliosphere: the huge heliosheath (90particles within these reservoirs is produced by the interaction when the particle magnetic drifts have a component along the large-scale electric fields produced by plasma convection. The appropriate description of this transport is “weak scattering”, in which the particle's first adiabatic invariant (magnetic moment) is approximately conserved while the particle itself moves rather freely along magnetic field lines. Considerable insight into the observed properties of energization processes can be gained from a remarkably simple equation that describes the particle's fractional time-rate-of-change of momentum (dlnp/dt) which depends only upon its pitch angle, the divergence of the plasma velocity (V⊥) transverse to the magnetic field), and the inner product of (V⊥) with the curvature vector of the field lines. The possibilities encompassed in this simple (but general) equation are quite rich, so we restrict our application of it in this paper to the compressive acceleration of SEPs within CMEs.

  4. A methodology for long-range prediction of air transportation

    NASA Technical Reports Server (NTRS)

    Ayati, M. B.; English, J. M.

    1980-01-01

    A framework and methodology for long term projection of demand for aviation fuels is presented. The approach taken includes two basic components. The first was a new technique for establishing the socio-economic environment within which the future aviation industry is embedded. The concept utilized was a definition of an overall societal objective for the very long run future. Within a framework so defined, a set of scenarios by which the future will unfold are then written. These scenarios provide the determinants of the air transport industry operations and accordingly provide an assessment of future fuel requirements. The second part was the modeling of the industry in terms of an abstracted set of variables to represent the overall industry performance on a macro scale. The model was validated by testing the desired output variables from the model with historical data over the past decades.

  5. Simplified curve fits for the transport properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.

    1987-01-01

    New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).

  6. Universal bursty behavior in the air transportation system.

    PubMed

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α=2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality. PMID:26764752

  7. Fatigue and associated performance decrements in air transport operations

    NASA Technical Reports Server (NTRS)

    Lyman, E. G.; Orlady, H. W.

    1981-01-01

    A study of safety reports was conducted to examine the hypothesis that fatigue and associated performance decrements occur in air transport operations, and that these are associated with some combination of factors: circadian desynchronosis, duty time; pre-duty activity; sleep; work scheduling; workload; and environmental deprivation. The findings are based on a selected sample of reported incidents in which the reporter associated fatigue with the occurrence. In comparing the fatigue reports with a control set, significant performance decrements were found to exist related to time-of-day, awareness and attention to duty, less significantly, final phases of flights. The majority of the fatigue incidents involved such unsafe events as altitude deviations, takeoffs and landing without clearance, and the like. Considerations of duty and sleep are the major factors in the reported fatigue conditions.

  8. The Economic Effect of Competition in the Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Hubbard, H. B.

    1972-01-01

    The air transportation industry has been described as a highly-competitive, regulated oligopoly or as a price-regulated cartel with blocked entry, resulting in excessive service and low load factors. The current structure of the industry has been strongly influenced by the hypotheses that increased levels of competition are desirable per se, and that more competing carriers can be economically supported in larger markets, in longer haul markets, with lower unit costs, and with higher fare levels. An elementary application of competition/game theory casts doubt on the validity of these hypotheses, but rather emphasizes the critical importance of the short-term non-variable costs in determining economic levels of competition.

  9. Universal bursty behavior in the air transportation system

    NASA Astrophysics Data System (ADS)

    Ito, Hidetaka; Nishinari, Katsuhiro

    2015-12-01

    Social activities display bursty behavior characterized by heavy-tailed interevent time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law interarrival time distribution with an exponent α =2.5 and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.

  10. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  11. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    DOE R&D Accomplishments Database

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  12. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.; Kissick, M.W.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  13. Detection and Identification: Instrumentation and Calibration for Air/Liquid/Surface-borne Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.

    2013-04-01

    Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.

  14. The importance of gradients in particle activity during sediment transport: Insights from a probabilistic description of particle motions

    NASA Astrophysics Data System (ADS)

    Furbish, D. J.

    2009-04-01

    Sediment particles transported by rainsplash, by bioturbation, and as bedload in turbulent flows, undergo motions that are quasi-random in magnitude and direction. Moreover, these motions characteristically are intermittent, in that particles are mostly at rest most of the time, and heterogeneous, in that the volumetric or areal concentration of particles in motion at any instant is spatially patchy. These particle motions can be formulated as a stochastic processes involving both advective and dispersive parts. By taking into account the intermittent activity of particles, and separating this activity from the physics of motion in the parametric description of transport, the formulation indicates that gradients in particle activity can have a key role in transport. The formulation illustrates, for example, how the growth of soil mounds beneath desert shrubs involves differential rainsplash that initially causes more grains to be splashed inward beneath protective shrub canopies than outward. This ‘harvesting' of nearby soil material, including nutrients, means that shrubs locally participate in regulating the rate sediment transport down a hillslope. With soil bioturbation, spatial variations in the disturbance frequency strongly influence the mixing of soil constituents, including distinct particle fractions (such as specific size or mineral fractions, seeds, or debitage), or elements and compounds adsorbed to particles. The formulation also provides a probabilistic version of the Exner equation. During bedload transport, gradients in particle activity, through both advective and dispersive effects, may contribute importantly to the local divergence of the particle flux, thereby influencing initial bedform growth.

  15. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  16. Regulation of human hepatic drug transporter activity and expression by diesel exhaust particle extract.

    PubMed

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 μg/mL and relevant to environmental exposure situations. By contrast, 25 μg/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 μg/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their

  17. Transport of inertial particles by viscous streaming in arrays of oscillating probes

    NASA Astrophysics Data System (ADS)

    Chong, Kwitae; Kelly, Scott D.; Smith, Stuart T.; Eldredge, Jeff D.

    2016-01-01

    A mechanism for the transport of microscale particles in viscous fluids is demonstrated. The mechanism exploits the trapping of such particles by rotational streaming cells established in the vicinity of an oscillating cylinder, recently analyzed in previous work. The present work explores a strategy of transporting particles between the trapping points established by multiple cylinders undergoing oscillations in sequential intervals. It is demonstrated that, by controlling the sequence of oscillation intervals, an inertial particle is effectively and predictably transported between the stable trapping points. Arrays of cylinders in various arrangements are investigated, revealing a technique for constructing arbitrary particle trajectories. It is found that the domain from which particles can be transported and trapped by an oscillator is extended, even to regions in which particles are shielded, by the presence of other stationary cylinders. The timescales for transport are examined, as are the mechanisms by which particles are drawn away from an obstacle toward the trapping point of an oscillator.

  18. A Program in Air Transportation Technology (Joint University Program)

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1996-01-01

    The Joint University Program on Air Transportation Technology was conducted at Princeton University from 1971 to 1995. Our vision was to further understanding of the design and operation of transport aircraft, of the effects of atmospheric environment on aircraft flight, and of the development and utilization of the National Airspace System. As an adjunct, the program emphasized the independent research of both graduate and undergraduate students. Recent principal goals were to develop and verify new methods for design and analysis of intelligent flight control systems, aircraft guidance logic for recovery from wake vortex encounter, and robust flight control systems. Our research scope subsumed problems associated with multidisciplinary aircraft design synthesis and analysis based on flight physics, providing a theoretical basis for developing innovative control concepts that enhance aircraft performance and safety. Our research focus was of direct interest not only to NASA but to manufacturers of aircraft and their associated systems. Our approach, metrics, and future directions described in the remainder of the report.

  19. Fixed Wing Project: Technologies for Advanced Air Transports

    NASA Technical Reports Server (NTRS)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  20. Traffic emission factors of ultrafine particles: effects from ambient air.

    PubMed

    Janhäll, Sara; Molnar, Peter; Hallquist, Mattias

    2012-09-01

    Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented. PMID:22858604

  1. Survey of projected growth and problems facing air transportation, 1975 - 1985

    NASA Technical Reports Server (NTRS)

    Williams, L. J.; Wilson, A.

    1975-01-01

    Results are presented of a survey conducted to determine the current opinion of people working in air transportation demand forecasting on the future of air transportation over the next ten years. In particular, the survey included questions on future demand growth, load factor, fuel prices, introduction date for the next new aircraft, the priorities of problems facing air transportation, and the probability of a substantial change in air transportation regulation. The survey participants included: airlines, manufacturers, universities, government agencies, and other organizations (financial institutions, private research companies, etc.). The results are shown for the average responses within the organization represented as well as the overall averages.

  2. The contribution of air-fluidization to the mobility of rapid flowslides involving fine particles

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Dewals, Benjamin; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel

    2016-04-01

    Air-fluidization can be the origin of the long runout of gravitational flows involving fine particles such as ash. An excessive air pore pressure dramatically reduces the friction angle of the material as long as this pressure has not been dissipated, which occurs during the flow. This phenomenon can be modelled thanks to the 2D depth-averaged equations of mass and momentum conservation and an additional transport equation for basal pore pressure evolution (Iverson and Denlinger, 2001). In this contribution, we discuss the application of this model in relation to recent experimental results on air-fluidized flows by Roche et al. (2008) and Roche (2012). The experimental results were used to set a priori the value of the diffusion coefficient in the model, taking into account the difference of scale between the experiments and real-world applications. We also compare the model predictions against detailed observations of a well-documented historical event, the collapse of a fly-ash heap in Belgium (Stilmant et al., 2015). In particular, we analyse the influence of the different components of the model on the results (pore pressure dissipation vs. pore pressure generation). The diffusion coefficient which characterizes the dissipation of air pore pressure is found sufficiently low for maintaining a fluidized flow over hundreds of meters. The study concludes that an air-fluidization theory is consistent with the field observations. These findings are particularly interesting as they seem not in line with the mainstream acceptation in landslide modelling that air generally plays a secondary role (e.g., Legros, 2002). References Iverson, R.M., Denlinger, R.P., 2001. Flow of variably fluidized granular masses across three-dimensional terrain - 1. Coulomb mixture theory. J. Geophys. Res. 106, 537 552. Legros, F., 2002. The mobility of long-runout landslides. Eng. Geol. 63, 301-331. Roche, O., 2012. Depositional processes and gas pore pressure in pyroclastic flows: an

  3. Proceedings of the Monterey Conference on Planning for Rotorcraft and Commuter Air Transportation

    NASA Technical Reports Server (NTRS)

    Stockwell, W. L.

    1983-01-01

    Planning and technological issues involved in rotorcraft and commuter fixed-wing air transportation are discussed. Subject areas include the future community environment, aircraft technology, community transportation planning, and regulatory perspectives.

  4. Inhalable particles and pulmonary host defense: in vivo and in vitro effects of ambient air and combustion particles.

    PubMed

    Hatch, G E; Boykin, E; Graham, J A; Lewtas, J; Pott, F; Loud, K; Mumford, J L

    1985-02-01

    The ability of particulate air pollutants (and possible constituents) to alter pulmonary host defenses was examined using an in vitro alveolar macrophage cytotoxicity assay and an in vivo bacterial infectivity screening test which employed intratracheal injection of the particles. A wide range of response between particles was seen at the 1.0-mg/ml level in vitro and the 0.1-mg/mouse level in vivo. A sample of fluidized-bed coal fly ash, bentonite, asbestos, some ambient air particles, and heavy metal oxides greatly increased susceptibility to pulmonary bacterial infection. Most coal fly ash samples and some air particles caused moderate increases in infectivity, while diesel particulates, volcanic ash, and crystalline silica caused only small increases. Cytotoxic effects on macrophages in vitro were observed with most of the particles. The in vivo and in vitro assays produced a similar ranking of toxicity; however, not all particles that were highly cytotoxic were potent in increasing bacterial infectivity. Increased toxicity measurable by either assay often appeared to be associated with small size or with the presence of metal in the particles. PMID:3967645

  5. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  6. Directed transport of active particles over asymmetric energy barriers.

    PubMed

    Koumakis, N; Maggi, C; Di Leonardo, R

    2014-08-21

    We theoretically and numerically investigate the transport of active colloids to target regions, delimited by asymmetric energy barriers. We show that it is possible to introduce a generalized effective temperature that is related to the local variance of particle velocities. The stationary probability distributions can be derived from a simple diffusion equation in the presence of an inhomogeneous effective temperature resulting from the action of external force fields. In particular, transition rates over asymmetric energy barriers can be unbalanced by having different effective temperatures over the two slopes of the barrier. By varying the type of active noise, we find that equal values of diffusivity and persistence time may produce strongly varied effective temperatures and thus stationary distributions. PMID:24978345

  7. Transport coefficients from the two particle irreducible effective action

    NASA Astrophysics Data System (ADS)

    Aarts, Gert; Martínez Resco, Jose M.

    2003-10-01

    We show that the lowest nontrivial truncation of the two-particle irreducible (2PI) effective action correctly determines transport coefficients in a weak coupling or 1/N expansion at leading (logarithmic) order in several relativistic field theories. In particular, we consider a single real scalar field with cubic and quartic interactions in the loop expansion, the O(N) model in the 2PI-1/N expansion, and QED with single and many fermion fields. Therefore, these truncations will provide a correct description, to leading (logarithmic) order, of the long time behavior of these systems, i.e. the approach to equilibrium. This supports the promising results obtained for the dynamics of quantum fields out of equilibrium using 2PI effective action techniques.

  8. Short-haul CTOL aircraft research. [on reduced energy for commercial air transportation

    NASA Technical Reports Server (NTRS)

    Williams, L. J.

    1978-01-01

    The results of the reduced energy for commercial air transportation studies on air transportation energy efficiency improvement alternatives are reviewed along with subsequent design studies of advanced turboprop powered transport aircraft. The application of this research to short-haul transportation is discussed. The results of several recent turboprop aircraft design are included. The potential fuel savings and cost savings for advanced turboprop aircraft appear substantial, particularly at shorter ranges.

  9. The effects of roadside structures on the transport and dispersion of ultrafine particles from highways

    NASA Astrophysics Data System (ADS)

    Bowker, George E.; Baldauf, Richard; Isakov, Vlad; Khlystov, Andrey; Petersen, William

    Understanding local-scale transport and dispersion of pollutants emitted from traffic sources is important for urban planning and air quality assessments. Predicting pollutant concentration patterns in complex environments depends on accurate representations of local features (e.g., noise barriers, trees, buildings) affecting near-field air flows. This study examined the effects of roadside barriers on the flow patterns and dispersion of pollutants from a high-traffic highway in Raleigh, North Carolina, USA. The effects of the structures were analyzed using the Quick Urban & Industrial Complex (QUIC) model, an empirically based diagnostic tool which simulates fine-scale wind field and dispersion patterns around obstacles. Model simulations were compared with the spatial distributions of ultrafine particles (UFP) from vehicular emissions measured using a passenger van equipped with a Differential Mobility Analyzer/Condensation Particle Counter. The field site allowed for an evaluation of pollutant concentrations in open terrain, with a noise barrier present near the road, and with a noise barrier and vegetation present near the road. Results indicated that air pollutant concentrations near the road were generally higher in open terrain situations with no barriers present; however, concentrations for this case decreased faster with distance than when roadside barriers were present. The presence of a noise barrier and vegetation resulted in the lowest downwind pollutant concentrations, indicating that the plume under this condition was relatively uniform and vertically well-mixed. Comparison of the QUIC model with the mobile UFP measurements indicated that QUIC reasonably represented pollutant transport and dispersion for each of the study configurations.

  10. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  11. Control of respirable particles and radon progeny with portable air cleaners

    SciTech Connect

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr/sup -1/. Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr/sup -1/. The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables.

  12. An Application of the Methodology for Assessment of the Sustainability of Air Transport System

    NASA Technical Reports Server (NTRS)

    Janic, Milan

    2003-01-01

    An assessment and operationalization of the concept of sustainable air transport system is recognized as an important but complex research, operational and policy task. In the scope of the academic efforts to properly address the problem, this paper aims to assess the sustainability of air transport system. It particular, the paper describes the methodology for assessment of sustainability and its potential application. The methodology consists of the indicator systems, which relate to the air transport system operational, economic, social and environmental dimension of performance. The particular indicator systems are relevant for the particular actors such users (air travellers), air transport operators, aerospace manufacturers, local communities, governmental authorities at different levels (local, national, international), international air transport associations, pressure groups and public. In the scope of application of the methodology, the specific cases are selected to estimate the particular indicators, and thus to assess the system sustainability under given conditions.

  13. Biomarker as a Research Tool in Linking Exposure to Air Particles and Respiratory Health

    PubMed Central

    2015-01-01

    Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. Methods. In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized. Results. Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate. Conclusion. Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health. PMID:25984536

  14. An Overview of Ultrafine Particles in Ambient Air

    EPA Science Inventory

    Solid and liquid particles found in the atmospheric aerosol typically cover 4 to 5 orders of magnitude from nanometers (nm) up to 100 micrometers (µm). The size range of particles of most interest to human health effects are inhalable and typically fall below 10 µm1,2....

  15. Particles at Oil-Air Surfaces: Powdered Oil, Liquid Oil Marbles, and Oil Foam.

    PubMed

    Binks, Bernard P; Johnston, Shaun K; Sekine, Tomoko; Tyowua, Andrew T

    2015-07-01

    The type of material stabilized by four kinds of fluorinated particles (sericite and bentonite platelet clays and spherical zinc oxide) in air-oil mixtures has been investigated. It depends on the particle wettability and the degree of shear. Upon vigorous agitation, oil dispersions are formed in all the oils containing relatively large bentonite particles and in oils of relatively low surface tension (γla < 26 mN m(-1)) like dodecane, 20 cS silicone, and cyclomethicone containing the other fluorinated particles. Particle-stabilized oil foams were obtained in oils having γla > 26 mN m(-1) where the advancing air-oil-solid contact angle θ lies between ca. 90° and 120°. Gentle shaking, however, gives oil-in-air liquid marbles with all the oil-particle systems except for cases where θ is <60°. For oils of tension >24 mN m(-1) with omniphobic zinc oxide and sericite particles for which advancing θ ≥ 90°, dry oil powders consisting of oil drops in air which do not leak oil could be made upon gentle agitation up to a critical oil:particle ratio (COPR). Above the COPR, catastrophic phase inversion of the dry oil powders to air-in-oil foams was observed. When sheared on a substrate, the dry oil powders containing at least 60 wt % of oil release the encapsulated oil, making these materials attractive formulations in the cosmetic and food industries. PMID:26107421

  16. Impact of particle nanotopology on water transport through hydrophobic soils.

    PubMed

    Truong, Vi Khanh; Owuor, Elizabeth A; Murugaraj, Pandiyan; Crawford, Russell J; Mainwaring, David E

    2015-12-15

    The impact of non- and poorly wetting soils has become increasingly important, due to its direct influence on the water-limited potential yield of rain-fed grain crops at a time of enhanced global competition for fresh water. This study investigates the physical and compositional mechanisms underlying the influence of soil organic matter (SOM) on the wetting processes of model systems. These model systems are directly related to two sandy wheat-producing soils that have contrasting hydrophobicities. Atomic force microscopy (AFM), contact angle and Raman micro-spectroscopy measurements on model planar and particulate SOM-containing surfaces demonstrated the role of the hierarchical surface structure on the wetting dynamics of packed particulate beds. It was found that a nanoscale surface topology is superimposed over the microscale roughness of the packed particles, and this controls the extent of water ingress into particulate packed beds of these particles. Using two of the dominant component organic species found in the SOM of the two soils used in this study, it was found that the specific interactions taking place between the SOM components, rather than their absolute quantities, dictated the formation of highly hydrophobic surface nanotopologies. This hydrophobicity was demonstrated, using micro-Raman imaging, to arise from the surface being in a composite Cassie-Baxter wetting state. Raman imaging demonstrated that the particle surface nanotopography influenced the degree of air entrapment in the interstices within the particle bed. The influence of a conventional surfactant on the wetting kinetics of both the model planar surfaces and packed particulate beds was quantified in terms of their respective advancing contact angles and the capillary wetting force vector. The information obtained for all of the planar and particulate surfaces, together with that obtained for the two soils, allowed linear relationships to be obtained in plots of the contact angle

  17. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  18. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  19. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments

    NASA Astrophysics Data System (ADS)

    Yang, Fenhuan; Kaul, Daya; Wong, Ka Chun; Westerdahl, Dane; Sun, Li; Ho, Kin-fai; Tian, Linwei; Brimblecombe, Peter; Ning, Zhi

    2015-05-01

    Epidemiologic studies have linked human exposure to pollutants with adverse health effects. Passenger exposure in public transport systems contributes an important fraction of daily burden of air pollutants. While there is extensive literature reporting the concentrations of pollutants in public transport systems in different cities, there are few studies systematically addressing the heterogeneity of passenger exposure in different transit microenvironments, in cabins of different transit vehicles and in areas with different characteristics. The present study investigated PM2.5 (particulate matter with aerodynamic diameters smaller than 2.5 μm), black carbon (BC), ultrafine particles (UFP) and carbon monoxide (CO) pollutant concentrations in various public road transport systems in highly urbanized city of Hong Kong. Using a trolley case housing numerous portable air monitors, we conducted a total of 119 trips during the campaign. Transit microenvironments, classified as 1). busy and secondary roadside bus stops; 2). open and enclosed termini; 3). above- and under-ground Motor Rail Transport (MTR) platforms, were investigated and compared to identify the factors that may affect passenger exposures. The pollutants inside bus and MTR cabins were also investigated together with a comparison of time integrated exposure between the transit modes. Busy roadside and enclosed termini demonstrated the highest average particle concentrations while the lowest was found on the MTR platforms. Traffic-related pollutants BC, UFP and CO showed larger variations than PM2.5 across different microenvironments and areas confirming their heterogeneity in urban environments. In-cabin pollutant concentrations showed distinct patterns with BC and UFP high in diesel bus cabins and CO high in LPG bus cabins, suggesting possible self-pollution issues and/or penetration of on-road pollutants inside cabins during bus transit. The total passenger exposure along selected routes, showed bus

  20. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  1. Magnetic-Fluctuation-Induced Particle Transport and Density Relaxation in a High-Temperature Plasma

    SciTech Connect

    Ding, W. X.; Brower, D. L.; Fiksel, G.; Den Hartog, D. J.; Prager, S. C.; Sarff, J. S.

    2009-07-10

    The first direct measurement of magnetic-fluctuation-induced particle flux in the core of a high-temperature plasma is reported. Transport occurs due to magnetic field fluctuations associated with global tearing instabilities. The electron particle flux, resulting from the correlated product of electron density and radial magnetic fluctuations, accounts for density profile relaxation during a magnetic reconnection event. The measured particle transport is much larger than that expected for ambipolar particle diffusion in a stochastic magnetic field.

  2. Combustion Of Porous Graphite Particles In Oxygen Enriched Air

    NASA Technical Reports Server (NTRS)

    Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.

    2003-01-01

    Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.

  3. The world's air transportation services : data as to passengers, mail, and goods carried by American and European transportation services

    NASA Technical Reports Server (NTRS)

    1922-01-01

    This report presents detailed descriptions, statistics, and graphs on European and American air transport. The European countries listed are Belgium, Czecho-Slovakia, Denmark, France, Germany, Great Britain, Holland, and Italy.

  4. Smogbusters: Grassroots Action for Clean Air and Sustainable Transport in Australia

    ERIC Educational Resources Information Center

    Manners, Eric; Wake, David; Carlisle, Rachel

    2009-01-01

    Smogbusters was a national, community-based, government-funded community education program promoting clean air and sustainable transport in Australia from 1994 to 2002. Smogbusters aimed to improve air quality primarily by raising awareness about motor vehicle transport and its negative impacts on health, the environment and communities, and by…

  5. 78 FR 15664 - Approval and Promulgation of Air Quality Implementation Plans; New Mexico; Interstate Transport...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... Rule (CAIR), 70 FR 25172 (May 12, 2005); and Transport Rule or Cross-State Air Pollution Rule, 76 FR... our July 30, 2012 proposal for Arizona regarding interstate transport for the 2006 PM 2.5 NAAQS (77 FR... significant deterioration of air quality for the 2006 PM 2.5 NAAQS (78 FR 4337). We will act on the...

  6. 14 CFR 119.53 - Wet leasing of aircraft and other arrangements for transportation by air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wet leasing of aircraft and other arrangements for transportation by air. 119.53 Section 119.53 Aeronautics and Space FEDERAL AVIATION... Chapter § 119.53 Wet leasing of aircraft and other arrangements for transportation by air. (a)...

  7. The path toward clean air: implementing new standards for ozone and fine particles

    SciTech Connect

    Lydia Wegman; Erika Sasser

    2005-04-01

    Many areas in the United States have air pollution that exceeds the levels allowed by the U.S. Environmental Protection Agency (EPA) under its revised National Ambient Air Quality Standards for ozone and fine particles. This article provides an overview of the steps EPA and states are taking to implement the new standards. 17 refs., 3 figs., 2 tabs.

  8. 77 FR 65310 - Additional Air Quality Designations for the 2006 24-Hour Fine Particle National Ambient Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-26

    ... the 2006 24-hour Fine Particle (PM 2.5 ) National Ambient Air Quality Standards,'' 74 FR 58688... Federal Regulations DC District of Columbia EO Executive Order EPA Environmental Protection Agency FR... EPA finalized designations for the 2006 24-hour PM 2.5 NAAQS (74 FR 58688, November 13, 2009), the...

  9. Identification of terms to define unconstrained air transportation demands

    NASA Technical Reports Server (NTRS)

    Jacobson, I. D.; Kuhilhau, A. R.

    1982-01-01

    The factors involved in the evaluation of unconstrained air transportation systems were carefully analyzed. By definition an unconstrained system is taken to be one in which the design can employ innovative and advanced concepts no longer limited by present environmental, social, political or regulatory settings. Four principal evaluation criteria are involved: (1) service utilization, based on the operating performance characteristics as viewed by potential patrons; (2) community impacts, reflecting decisions based on the perceived impacts of the system; (3) technological feasibility, estimating what is required to reduce the system to practice; and (4) financial feasibility, predicting the ability of the concepts to attract financial support. For each of these criteria, a set of terms or descriptors was identified, which should be used in the evaluation to render it complete. It is also demonstrated that these descriptors have the following properties: (a) their interpretation may be made by different groups of evaluators; (b) their interpretations and the way they are used may depend on the stage of development of the system in which they are used; (c) in formulating the problem, all descriptors should be addressed independent of the evaluation technique selected.

  10. PULMONARY TOXICOLOGY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL

    EPA Science Inventory

    PULMONARY TOXICITY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL.

    M Daniels, A Ranade* & MJ Selgrade & MI Gilmour.
    Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, RTP, NC. * Particle Technology, College Par...

  11. CORRELATIONS OF PERSONAL EXPOSURE TO PARTICLES WITH OUTDOOR AIR MEASUREMENT: A REVIEW OF RECENT STUDIES

    EPA Science Inventory

    Epidemiological studies have found a correlation between daily mortality and particle concentrations in outdoor air as measured at a central monitoring station. These studies have been the central reason for the U.S. EPA to propose new tighter particle standards. However, perso...

  12. CONCENTRATED AMBIENT AIR PARTICLES INDUCE PULMONARY INFLAMMATION IN HEALTHY HUMAN VOLUNTEERS

    EPA Science Inventory


    We tested the hypothesis that exposure of healthy volunteers to concentrated ambient particles (CAPS) is associated with an influx of inflammatory cells into the lower respiratory tract. Thirty-eight volunteers were exposed to either filtered air or particles concentrated fro...

  13. Direct and indirect air particle cytotoxicity in human alveolar epithelial cells.

    PubMed

    Orona, N S; Astort, F; Maglione, G A; Saldiva, P H N; Yakisich, J S; Tasat, D R

    2014-08-01

    Air particulate matter has been associated with adverse impact on the respiratory system leading to cytotoxic and proinflammatory effects. The biological mechanisms behind these associations may be initiated by inhaled small size particles, particle components (soluble fraction) and/or mediators released by particle-exposed cells (conditioned media). The effect of Urban Air Particles from Buenos Aires (UAP-BA) and Residual Oil Fly Ash (ROFA) a surrogate of ambient air pollution, their Soluble Fractions (SF) and Conditioned Media (CM) on A549 lung epithelial cells was examined. After 24 h exposure to TP (10 and 100 μg/ml), SF or CM, several biological parameters were assayed on cultured A549 cells. We tested cell viability by MTT, superoxide anion (O₂(-)) generation by NBT and proinflammatory cytokine (TNFα, IL-6 and IL-8) production by ELISA. UAP-BA particles or its SF (direct effect) did not modify cell viability and generation of O₂(-) for any of the doses tested. On the contrary, UAP-BA CM (indirect effect) reduced cell viability and increased both generation of O₂(-) and IL-8 production. Exposure to ROFA particles, SF or ROFA CM reduced proliferation and O₂(-) but, stimulated IL-8. It is worth to note that UAP-BA and ROFA depicted distinct effects on particle-exposed A549 cells implicating morphochemical dependence. These in vitro findings support the hypothesis that particle-induced lung inflammation and disease may involve lung-derived mediators. PMID:24590061

  14. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  15. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  16. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  17. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  18. A unified transport equation for both cosmic rays and thermal particles

    NASA Technical Reports Server (NTRS)

    Williams, L. L.; Schwadron, N.; Jokipii, J. R.; Gombosi, T. I.

    1993-01-01

    We present a unified transport equation that is valid for particles of all energies if the particle mean free paths are much smaller than macroscopic fluid length scales. If restricted to particles with random speeds much greater than fluid flow speeds, this equation reduces to the previously discussed extended cosmic-ray transport equation. It is significant that this allows one to describe the acceleration of particles from thermal energies to cosmic-ray energies using one transport equation. This is in contrast to previous transport equations (the Parker equation and the extended cosmic-ray transport equation), which were restricted to fast particles. The close connection to the extended cosmic-ray transport equation is demonstrated.

  19. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    SciTech Connect

    Meng, Jianxin; Mei, Deqing Yang, Keji; Fan, Zongwei

    2014-08-14

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles.

  20. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  1. DANTSYS: a system for deterministic, neutral particle transport calculations

    SciTech Connect

    Alcouffe, R.E.; Baker, R.S.

    1996-12-31

    The THREEDANT code is the latest addition to our system of codes, DANTSYS, which perform neutral particle transport computations on a given system of interest. The system of codes is distinguished by geometrical or symmetry considerations. For example, ONEDANT and TWODANT are designed for one and two dimensional geometries respectively. We have TWOHEX for hexagonal geometries, TWODANT/GQ for arbitrary quadrilaterals in XY and RZ geometry, and THREEDANT for three-dimensional geometries. The design of this system of codes is such that they share the same input and edit module and hence the input and output is uniform for all the codes (with the obvious additions needed to specify each type of geometry). The codes in this system are also designed to be general purpose solving both eigenvalue and source driven problems. In this paper we concentrate on the THREEDANT module since there are special considerations that need to be taken into account when designing such a module. The main issues that need to be addressed in a three-dimensional transport solver are those of the computational time needed to solve a problem and the amount of storage needed to accomplish that solution. Of course both these issues are directly related to the number of spatial mesh cells required to obtain a solution to a specified accuracy, but is also related to the spatial discretization method chosen and the requirements of the iteration acceleration scheme employed as will be noted below. Another related consideration is the robustness of the resulting algorithms as implemented; because insistence on complete robustness has a significant impact upon the computation time. We address each of these issues in the following through which we give reasons for the choices we have made in our approach to this code. And this is useful in outlining how the code is evolving to better address the shortcomings that presently exist.

  2. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...

  3. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  4. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  5. Impact of emissions from the Los Angeles port region on San Diego air quality during regional transport events.

    PubMed

    Ault, Andrew P; Moore, Meagan J; Furutani, Hiroshi; Prather, Kimberly A

    2009-05-15

    Oceangoing ships emit an estimated 1.2-1.6 million metric tons (Tg) of PM10 per year and represent a significant source of air pollution to coastal communities. As shown herein, ship and other emissions near the Los Angeles and Long Beach Port region strongly influence air pollution levels in the San Diego area. During time periods with regional transport, atmospheric aerosol measurements in La Jolla, California show an increase in 0.5-1 microm sized single particles with unique signatures including soot, metals (i.e., vanadium, iron, and nickel), sulfate, and nitrate. These particles are attributed to primary emissions from residual oil sourcessuch as ships and refineries, as well as traffic in the port region, and secondary processing during transport. During regional transport events, particulate matter concentrations were 2-4 times higher than typical average concentrations from local sources, indicating the health, environmental, and climate impacts from these emission sources must be taken into consideration in the San Diego region. Unless significant regulations are imposed on shipping-related activities, these emission sources will become even more important to California air quality as cars and truck emissions undergo further regulations and residual oil sources such as shipping continue to expand. PMID:19544846

  6. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed Central

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-01-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to

  7. Some considerations for air transportation analysis to non-urban areas.

    NASA Technical Reports Server (NTRS)

    Norman, S. D.

    1973-01-01

    Review of some of the problems associated with air transportation to and from nonurban areas. While a significant proportion of public transportation needs of nonurban areas are met by aircraft, there are indications that improvement in air transportation service are called for and would be rewarded by increased patronage. However, subsidized local service carriers are attracted by large aircraft operation, and there is a tendency to discontinue service to low density areas. Prospects and potential means for reversing this trend are discussed.

  8. United States International Air Transport Policy, the Promise and the Reality

    NASA Technical Reports Server (NTRS)

    Landry, J. E.; Phillips, G.

    1972-01-01

    The United States international air transportation policy is discussed. The major departure of the current policy lies in the relationship between scheduled and charter services. Various provisions of the transportation charter are analyzed to show the restrictions as well as the benefits the legislation holds for commercial aviation. It is stated that a group of full service carriers can meet the full spectrum of demands for air transportation more efficiently than two or more groups.

  9. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    SciTech Connect

    Luna, Robert E.; Wangler, Michael W.; Selling, Hendrik A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations.

  10. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Fu, G. Y.; Sheng, Zheng-Mao; Breslau, J. A.; Wang, Feng

    2014-09-01

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  11. M3D-K Simulations of Sawteeth and Energetic Particle Transport in Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Wei; Fu, Guoyong; Sheng, Zhengmao; Breslau, Joshua; Wang, Feng

    2013-10-01

    Nonlinear simulations of Sawteeth and energetic particle transport are carried out using the kinetic/MHD hybrid code M3D-K. MHD simulations show repeated sawtooth cycles due to a resistive (1,1) internal kink mode for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in plasma core depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with previous theory. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases as particle energy becomes large.

  12. M3D-K simulations of sawteeth and energetic particle transport in tokamak plasmas

    SciTech Connect

    Shen, Wei; Sheng, Zheng-Mao; Fu, G. Y.; Breslau, J. A.; Wang, Feng

    2014-09-15

    Nonlinear simulations of sawteeth and related energetic particle transport are carried out using the kinetic/magnetohydrodynamic (MHD) hybrid code M3D-K. MHD simulations show repeated sawtooth cycles for a model tokamak equilibrium. Furthermore, test particle simulations are carried out to study the energetic particle transport due to a sawtooth crash. The results show that energetic particles are redistributed radially in the plasma core, depending on pitch angle and energy. For trapped particles, the redistribution occurs for particle energy below a critical value in agreement with existing theories. For co-passing particles, the redistribution is strong with little dependence on particle energy. In contrast, the redistribution level of counter-passing particles decreases with increasing particle energy.

  13. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors. PMID:25503684

  14. Control strategies for sub-micrometer particles indoors: model study of air filtration and ventilation.

    PubMed

    Jamriska, M; Morawska, L; Ensor, D S

    2003-06-01

    The effects of air filtration and ventilation on indoor particles were investigated using a single-zone mathematical model. Particle concentration indoors was predicted for several I/O conditions representing scenarios likely to occur in naturally and mechanically ventilated buildings. The effects were studied for static and dynamic conditions in a hypothetical office building. The input parameters were based on real-world data. For conditions with high particle concentrations outdoors, it is recommended to reduce the amount of outdoor air delivered indoors and the necessary reduction level can be quantified by the model simulation. Consideration should also be given to the thermal comfort and minimum outdoor air required for occupants. For conditions dominated by an indoor source, it is recommended to increase the amount of outdoor air delivered indoors and to reduce the amount of return air. Air filtration and ventilation reduce particle concentrations indoors, with the overall effect depending on efficiency, location and the number of filters applied. The assessment of indoor air quality for specific conditions could be easily calculated by the model using user-defined input parameters. PMID:12756003

  15. Coherent pulses in the diffusive transport of charged particles`

    NASA Technical Reports Server (NTRS)

    Kota, J.

    1994-01-01

    We present exact solutions to the diffusive transport of charged particles following impulsive injection for a simple model of scattering. A modified, two-parameter relaxation-time model is considered that simulates the low rate of scattering through perpendicular pitch-angle. Scattering is taken to be isotropic within each of the foward- and backward-pointing hemispheres, respectively, but, at the same time, a reduced rate of sccattering is assumed from one hemisphere to the other one. By applying a technique of Fourier- and Laplace-transform, the inverse transformation can be performed and exact solutions can be reached. By contrast with the first, and so far only exact solutions of Federov and Shakov, this wider class of solutions gives rise to coherent pulses to appear. The present work addresses omnidirectional densities for isotropic injection from an instantaneous and localized source. The dispersion relations are briefly discussed. We find, for this particular model, two diffusive models to exist up to a certain limiting wavenumber. The corresponding eigenvalues are real at the lowest wavenumbers. Complex eigenvalues, which are responsible for coherent pulses, appear at higher wavenumbers.

  16. Laboratory study of the particle-size distribution of Decabromodiphenyl ether (BDE-209) in ambient air.

    PubMed

    Su, Peng-hao; Hou, Chun-yan; Sun, Dan; Feng, Dao-lun; Halldorson, Thor; Ding, Yong-sheng; Li, Yi-fan; Tomy, Gregg T

    2016-02-01

    Laboratory measurements for particle-size distribution of Decabromodiphenyl ether (BDE-209) were performed in a 0.5 m(3) sealed room at 25 °C. BDE-209 was manually bounded to ambient particles. An electrostatic field-sampler was employed to collect particles. The number of collected particles (n(i,j), i and j was the class of particle diameter and applied voltage on electrostatic field-sampler sampler, respectively) and the corresponding mass of BDE-209 in collected particles (m(∑i,j)) were determined in a series of 6 experiments. The particle-size distribution coefficient (ki) was calculated through equations related to n(i,j) and m(∑i,j), and the particle-size distribution of BDE-209 was determined by ki·n(i,j). Results revealed that BDE-209 distributed in particles of all size and were not affiliated with fine particles as in field measurements. The particle size-fraction should be taken into account when discussing the particle-size distribution of BDE-209 in ambient air due to the normalized coefficients (normalized to k1) and were approximately in the same order of magnitude for each diameter class. The method described in the present study was deemed feasible in determining the particle-size distribution of BDE-209 from vaporization sources and helpful to understanding the instinct rule of particle-size distribution of BDE-209, and potentially feasible for other SVOCs. PMID:26363326

  17. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  18. Number size distribution of aerosols at Mt. Huang and Nanjing in the Yangtze River Delta, China: Effects of air masses and characteristics of new particle formation

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Zhu, Bin; Shen, Lijuan; An, Junlin; Yin, Yan; Kang, Hanqing

    2014-12-01

    Aerosol number spectra in the range of 10 nm-10 μm were observed at Mt. Huang (Aug. 15-Sep. 15) and Nanjing (Oct. 13-Nov. 15) by a wide-range particle spectrometer (WPS) in 2011. Based on the backward trajectories obtained using the HYSPLIT model, the transport pathways of observed air masses during the study periods were classified into the following four groups: maritime air mass, continental air mass, marine-continental mixed air mass and local air mass. The variations in the aerosol number spectrum and the new particle formation (NPF) events for various types of air masses were discussed, along with meteorological data. The results showed that the average number concentration was 12,540 cm- 3 at Nanjing and only 2791 cm- 3 at Mt. Huang. The aerosol number concentration in Nanjing was 3-7 times higher than that in Mt. Huang; the large discrepancy was in the range of 10-100 nm. Different types of air masses had different effects on number concentration distribution. The number concentration of aerosols was higher in marine air masses, continental air masses and continental-marine mixed air masses at 10-50 nm, 100-500 nm and 50-200 nm, respectively. Under the four types of air masses, the aerosol size spectra had bimodal distributions in Nanjing and unimodal distributions in Mt. Huang (except under continental air masses: HT1). The effects of the diverse air masses on aerosol size segments of the concentration peak in Mt. Huang were stronger than those in Nanjing. The local air masses were dominant at these two sites and accounted for 44% of the total air masses. However, the aerosol number concentration was the lowest in Mt. Huang and the highest in Nanjing when local air masses were present. The number concentrations for foreign air masses increased at Mt. Huang and decreased at Nanjing. Different types of air masses had greater effects on the aerosol spectrum distribution at Mt. Huang than at Nanjing. During the NPF events, the particle growth rates at Mt

  19. Forced transport of self-propelled particles in a two-dimensional separate channel

    NASA Astrophysics Data System (ADS)

    Wu, Jian-Chun; Ai, Bao-Quan

    2016-04-01

    Transport of self-propelled particles in a two-dimensional (2D) separate channel is investigated in the presence of the combined forces. By applying an ac force, the particles will be trapped by the separate walls. A dc force produces the asymmetry of the system and induces the longitudinal directed transport. Due to the competition between self-propulsion and the combined external forces, the transport is sensitive to the self-propelled speed and the particle radius, thus one can separate the particles based on these properties.

  20. Forced transport of self-propelled particles in a two-dimensional separate channel

    PubMed Central

    Wu, Jian-chun; Ai, Bao-quan

    2016-01-01

    Transport of self-propelled particles in a two-dimensional (2D) separate channel is investigated in the presence of the combined forces. By applying an ac force, the particles will be trapped by the separate walls. A dc force produces the asymmetry of the system and induces the longitudinal directed transport. Due to the competition between self-propulsion and the combined external forces, the transport is sensitive to the self-propelled speed and the particle radius, thus one can separate the particles based on these properties. PMID:27035860

  1. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  2. Qualitative multiplatform microanalysis of individual heterogeneous atmospheric particles from high-volume air samples.

    PubMed

    Conny, Joseph M; Collins, Sean M; Herzing, Andrew A

    2014-10-01

    High-resolution microscopic analysis of individual atmospheric particles can be difficult, because the filters upon which particles are captured are often not suitable as substrates for microscopic analysis. Described here is a multiplatform approach for microscopically assessing chemical and optical properties of individual heterogeneous urban dust particles captured on fibrous filters during high-volume air sampling. First, particles embedded in fibrous filters are transferred to polished silicon or germanium wafers with electrostatically assisted high-speed centrifugation. Particles are clustered in an array of deposit areas, which allows for easily locating the same particle with different microscopy instruments. Second, particles with light-absorbing and/or light-scattering behavior are identified for further study from bright-field and dark-field light-microscopy modes, respectively. Third, particles identified from light microscopy are compositionally mapped at high definition with field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. Fourth, compositionally mapped particles are further analyzed with focused ion-beam (FIB) tomography, whereby a series of thin slices from a particle are imaged, and the resulting image stack is used to construct a three-dimensional model of the particle. Finally, particle chemistry is assessed over two distinct regions of a thin FIB slice of a particle with energy-filtered transmission electron microscopy (TEM) and electron energy-loss spectroscopy associated with scanning transmission electron microscopy (STEM). PMID:25220253

  3. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  4. Dynamic airspace configuration algorithms for next generation air transportation system

    NASA Astrophysics Data System (ADS)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  5. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-12-31

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He{sup 2{plus}} and Fe{sup 24{plus}} transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He{sup 2{plus}} studies. By examining the electron and He{sup 2{plus}} responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed.

  6. Flow and particle dispersion in a pulmonary alveolus--part II: effect of gravity on particle transport.

    PubMed

    Chhabra, Sudhaker; Prasad, Ajay K

    2010-05-01

    The acinar region of the human lung comprises about 300x10(6) alveoli, which are responsible for gas exchange between the lung and the blood. As discussed in Part I (Chhabra and Prasad, "Flow and Particle Dispersion in a Pulmonary Alveolus-Part I: Velocity Measurements and Convective Particle Transport," ASME J. Biomech. Eng., 132, p. 051009), the deposition of aerosols in the acinar region can either be detrimental to gas exchange (as in the case of harmful particulate matter) or beneficial (as in the case of inhalable pharmaceuticals). We measured the flow field inside an in-vitro model of a single alveolus mounted on a bronchiole and calculated the transport and deposition of massless particles in Part I. This paper focuses on the transport and deposition of finite-sized particles ranging from 0.25 microm to 4 microm under the combined influence of flow-induced advection (computed from velocity maps obtained by particle image velocimetry) and gravitational settling. Particles were introduced during the first inhalation cycle and their trajectories and deposition statistics were calculated for subsequent cycles for three different particle sizes (0.25 microm, 1 microm, and 4 microm) and three alveolar orientations. The key outcome of the study is that particles particles (d(p)=1 microm) deviate to some extent from streamlines and exhibit complex trajectories. The motion of large particles >or=4 microm is dominated by gravitational settling and shows little effect of fluid advection. Additionally, small and midsize particles deposit at about two-thirds height in the alveolus irrespective of the gravitational orientation whereas the deposition of large particles is governed primarily by the orientation of the gravity vector. PMID:20459211

  7. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    NASA Astrophysics Data System (ADS)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  8. Improved particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  9. California air transportation study: A transportation system for the California Corridor of the year 2010

    NASA Technical Reports Server (NTRS)

    1989-01-01

    To define and solve the problems of transportation in the California Corrider in the year 2010, the 1989 California Polytechnic State University Aeronautical Engineering Senior Design class determined future corridor transportation needs and developed a system to meet the requirements. A market study, which included interpreting travel demand and gauging the future of regional and national air travel in and out of the corridor, allowed the goals of the project to be accurately refined. Comprehensive trade-off studies of several proposed transporation systems were conducted to determine which components would form the final proposed system. Preliminary design and further analysis were performed for each resulting component. The proposed system consists of three vehicles and a special hub or mode mixer, the Corridor Access Port (CAP). The vehicles are: (1) an electric powered aircraft to serve secondary airports and the CAP; (2) a high speed magnetic levitation train running through the CAP and the high population density areas of the corridor; and (3) a vertical takeoff and landing tilt rotor aircraft to serve both intercity and intrametropolitan travelers from the CAP and city vertiports. The CAP is a combination and an extension of the hub, mode mixer, and Wayport concepts. The CAP is an integrated part of the system which meets the travel demands in the corridor, and interfaces with interstate and international travel.

  10. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  11. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    SciTech Connect

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-01-01

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He[sup 2[plus

  12. Two-dimensional noncontact transportation of small objects in air using flexural vibration of a plate.

    PubMed

    Kashima, Ryota; Koyama, Daisuke; Matsukawa, Mami

    2015-12-01

    This paper investigates a two-dimensional ultrasonic manipulation technique for small objects in air. The ultrasonic levitation system consists of a rectangular vibrating plate with four ultrasonic transducers and a reflector. The configuration of the vibrator, the resonant frequency, and the positions of the four transducers with step horns were determined from finite element analysis such that an intense acoustic standing-wave field could be generated between the plates. A lattice flexural vibration mode with a wavelength of 28.3 mm was excited on the prototype plate at 24.6 kHz. Small objects could get trapped in air along the horizontal nodal plane of the standing wave. By controlling the driving phase difference between the transducers, trapped objects could be transported without contact in a two-dimensional plane. When the phase difference was changed from 0° to 720°, the distance moved by a small particle in the orthogonal direction was approximately 29 mm, which corresponds with the wavelength of the flexural vibration on the vibrating plate. PMID:26670855

  13. Toxicity assessment of air-delivered particle-bound polybrominated diphenyl ethers.

    PubMed

    Kim, Jong Sung; Klösener, Johannes; Flor, Susanne; Peters, Thomas M; Ludewig, Gabriele; Thorne, Peter S; Robertson, Larry W; Luthe, Gregor

    2014-03-20

    Human exposure to polybrominated diphenyl ethers (PBDEs) can occur via ingestion of indoor dust, inhalation of PBDE-contaminated air and dust-bound PBDEs. However, few studies have examined the pulmonary toxicity of particle-bound PBDEs, mainly due to the lack of an appropriate particle-cell exposure system. In this study we developed an in vitro exposure system capable of generating particle-bound PBDEs mimicking dusts containing PBDE congeners (BDEs 35, 47 and 99) and delivering them directly onto lung cells grown at an air-liquid interface (ALI). The silica particles and particles-coated with PBDEs ranged in diameter from 4.3 to 4.5 μm and were delivered to cells with no apparent aggregation. This experimental set up demonstrated high reproducibility and sensitivity for dosing control and distribution of particles. ALI exposure of cells to PBDE-bound particles significantly decreased cell viability and induced reactive oxygen species generation in A549 and NCI-H358 cells. In male Sprague-Dawley rats exposed via intratracheal insufflation (0.6 mg/rat), particle-bound PBDE exposures induced inflammatory responses with increased recruitment of neutrophils to the lungs compared to sham-exposed rats. The present study clearly indicates the potential of our exposure system for studying the toxicity of particle-bound compounds. PMID:24451063

  14. Toxicity Assessment of Air-delivered Particle-bound Polybrominated Diphenyl Ethers

    PubMed Central

    Kim, Jong Sung; Klösener, Johannes; Flor, Susanne; Peters, Thomas M.; Ludewig, Gabriele; Thorne, Peter S.; Robertson, Larry W.; Luthe, Gregor

    2014-01-01

    Human exposure to polybrominated diphenyl ether (PBDE) can occur via ingestion of indoor dust, inhalation of PBDE-contaminated air and dust-bound PBDEs. However, few studies have examined the pulmonary toxicity of particle-bound PBDEs, mainly due to the lack of an appropriate particle-cell exposure system. In this study we developed an in vitro exposure system capable of generating particle-bound PBDEs mimicking dusts containing PBDE congeners (BDEs 35, 47, 99) and delivering them directly onto lung cells grown at an air-liquid interface (ALI). The silica particles and particle-coated with PBDEs ranged in diameter from 4.3 to 4.5 μm and were delivered to cells with no apparent aggregation. This experimental set up demonstrated high reproducibility and sensitivity for dosing control and distribution of particles. ALI exposure of cells to PBDE-bound particles significantly decreased cell viability and induced reactive oxygen species generation in A549 and NCI-H358 cells. In male Sprague-Dawley rats exposed via intratracheal insufflation (0.6 mg/rat), particle-bound PBDE exposures induced inflammatory responses with increased recruitment of neutrophils to the lungs compared to sham-exposed rats. The present study clearly indicates the potential of our exposure system for studying the toxicity of particle-bound compounds. PMID:24451063

  15. Problems and issues for short-haul air transportation.

    NASA Technical Reports Server (NTRS)

    Vittek, J. F., Jr.

    1972-01-01

    The problems of developing an efficient short-haul air system are not primarily technical, but economic and political. The key issues are whether the community will accept new and expanded air facilities, what standards of service the passengers will demand and how the system will evolve. The solutions recommended are national in scope and require the federal government to take a leading role.

  16. Estimation of economic costs of particulate air pollution from road transport in China

    NASA Astrophysics Data System (ADS)

    Guo, X. R.; Cheng, S. Y.; Chen, D. S.; Zhou, Y.; Wang, H. Y.

    2010-09-01

    Valuation of health effects of air pollution is becoming a critical component of the performance of cost-benefit analysis of pollution control measures, which provides a basis for setting priorities for action. Beijing has focused on control of transport emission as vehicular emissions have recently become an important source of air pollution, particularly during Olympic games and Post-games. In this paper, we conducted an estimation of health effects and economic cost caused by road transport-related air pollution using an integrated assessment approach which utilizes air quality model, engineering, epidemiology, and economics. The results show that the total economic cost of health impacts due to air pollution contributed from transport in Beijing during 2004-2008 was 272, 297, 310, 323, 298 million US (mean value), respectively. The economic costs of road transport accounted for 0.52, 0.57, 0.60, 0.62, and 0.58% of annual Beijing GDP from 2004 to 2008. Average cost per vehicle and per ton of PM 10 emission from road transport can also be estimated as 106 US /number and 3584 US $ t -1, respectively. These findings illustrate that the impact of road transport contributed particulate air pollution on human health could be substantial in Beijing, whether in physical and economic terms. Therefore, some control measures to reduce transport emissions could lead to considerable economic benefit.

  17. Journal of Air Transportation World Wide, Volume 3, No. 1. Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor)

    1998-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  18. Journal of Air Transportation World Wide, Volume 2, No. 1. Volume 2

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor)

    1997-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a key focal point of the journal will be in the area of aviation administration and policy.

  19. Journal of Air Transportation World Wide, Volume 4, No. 2. Volume 4

    NASA Technical Reports Server (NTRS)

    Bowen, Brent D. (Editor); Kabashkin, Igor (Editor)

    1999-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. The goal of the Journal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  20. Journal of Air Transportation World Wide, Volume 5, No. 2. Volume 5, No. 2

    NASA Technical Reports Server (NTRS)

    Browen, Brent D.

    2000-01-01

    The Journal of Air Transportation World Wide's (JATWW) mission is to provide the global community immediate key resource information in all areas of air transportation. Our goal is to be recognized as the preeminent scholarly journal in the aeronautical aspects of transportation. As an international and interdisciplinary journal, the JATWW will provide a forum for peer-reviewed articles in all areas of aviation and space transportation research, policy, theory, case study, practice, and issues. While maintaining a broad scope, a focal point of the journal will be in the area of aviation administration and policy.

  1. Turbulent transport of alpha particles in reactor plasmas

    SciTech Connect

    Estrada-Mila, C.; Candy, J.; Waltz, R. E.

    2006-11-15

    A systematic study of the behavior of energetic ions in reactor plasmas is presented. Using self-consistent gyrokinetic simulations, in concert with an analytic asymptotic theory, it is found that alpha particles can interact significantly with core ion-temperature-gradient turbulence. Specifically, the per-particle flux of energetic alphas is comparable to the per-particle flux of thermal species (deuterium or helium ash). This finding opposes the conventional wisdom that energetic ions, because of their large gyroradii, do not interact with the turbulence. For the parameters studied, a turbulent modification of the alpha-particle density profile appears to be stronger than turbulent modification of the alpha-particle pressure profile. Crude estimates indicate that the alpha density modification, which is directly proportional to the core turbulence intensity, could be in the range of 15% at midradius in a reactor. The corresponding modification of the alpha-particle pressure profile is predicted to be smaller (in the 1% range)

  2. Suspended load and bed-load transport of particle-laden gravity currents: the role of particle-bed interaction

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Bergantz, G. W.

    2007-03-01

    The development of particle-enriched regions (bed-load) at the base of particle-laden gravity currents has been widely observed, yet the controls and relative partitioning of material into the bed-load is poorly understood. We examine particle-laden gravity currents whose initial mixture (particle and fluid) density is greater than the ambient fluid, but whose interstitial fluid density is less than the ambient fluid (such as occurs in pyroclastic flows produced during volcanic eruptions or when sediment-enriched river discharge enters the ocean, generating hyperpycnal turbidity currents). A multifluid numerical approach is employed to assess suspended load and bed-load transport in particle-laden gravity currents under varying boundary conditions. Particle-laden flows that traverse denser fluid (such as pyroclastic flows crossing water) have leaky boundaries that provide the conceptual framework to study suspended load in isolation from bed-load transport. We develop leaky and saltation boundary conditions to study the influence of flow substrate on the development of bed-load. Flows with saltating boundaries develop particle-enriched basal layers (bed-load) where momentum transfer is primarily a result of particle-particle collisions. The grain size distribution is more homogeneous in the bed-load and the saltation boundaries increase the run-out distance and residence time of particles in the flow by as much as 25% over leaky boundary conditions. Transport over a leaky substrate removes particles that reach the bottom boundary and only the suspended load remains. Particle transport to the boundary is proportional to the settling velocity of particles, and flow dilution results in shear and buoyancy instabilities at the upper interface of these flows. These instabilities entrain ambient fluid, and the continued dilution ultimately results in these currents becoming less dense than the ambient fluid. A unifying concept is energy dissipation due to particle

  3. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    PubMed Central

    Fortoul, T. I.; Rodriguez-Lara, V.; Gonzalez-Villalva, A.; Rojas-Lemus, M.; Cano-Gutierrez, G.; Ustarroz-Cano, M.; Colin-Barenque, L.; Montaño, L. F.; García-Pelez, I.; Bizarro-Nevares, P.; Lopez-Valdez, N.; Falcon-Rodriguez, C. I.; Jimenez-Martínez, R. S.; Ruiz-Guerrero, M. L.; López-Zepeda, L. S.; Morales-Rivero, A.; Muñiz-Rivera-Cambas, A.

    2011-01-01

    There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature. PMID:21716674

  4. Interfacial area measurement and transport modeling in air-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Fu, Xinyu

    In two-fluid model, the interfacial area concentration (IAC) is an important parameter that characterizes the interaction of two-phases at the interface. The accuracy of IAC modeling and local measurements largely affects the efficiency of designing and assessing two-phase flow systems. The prediction of the dynamical evolution of IAC is one of the most challenging tasks in research and application. This thesis is focused on developing advanced local measurement techniques to obtain reliable two-phase parameters and implementing efficient theoretical models for IAC source and sink terms in a two-group interfacial area transport equation based on experiments. In this study, an advanced local measurement technique using a four-sensor conductivity probe has been presented for obtaining IAC in air-water flows. It extends the existing conductivity probe method to slug and churn-turbulent flows with a unified probe design and comprehensive signal processing system. Sophisticated algorithm and software have been implemented that is robust in handling most practical conditions with high reliability. Systematic analyses on the issues of probe applications and benchmarks have been performed. The improved four-sensor method has also been applied to flow conditions with significant local recirculation, which was considered the most challenging situation for local measurement in two-phase flow. Using the well-established instrumentation, solid databases for a two-inch air-water loop have been built with sufficient information on the axial development and the radial distribution of the local parameters. Mechanistic models of major fluid particle interaction phenomena involving two bubble groups have been proposed, including the shearing-off of small bubbles from slug/cap bubbles, the wake entrainment of group-1 bubble into group-2 bubble, the wake acceleration and coalescence between group-2 bubbles, and the breakup of group-2 bubbles due to surface instability. Prediction of

  5. Interaction of Charged Colloidal Particles at the Air-Water Interface.

    PubMed

    Girotto, Matheus; Dos Santos, Alexandre P; Levin, Yan

    2016-07-01

    We study, using Monte Carlo simulations, the interaction between charged colloidal particles confined to the air-water interface. The dependence of force on ionic strength and counterion valence is explored. For 1:1 electrolyte, we find that the electrostatic interaction at the interface is very close to the one observed in the bulk. On the other hand, for salts with multivalent counterions, an interface produces an enhanced attraction between like charged colloids. Finally, we explore the effect of induced surface charge at the air-water interface on the interaction between colloidal particles. PMID:26551757

  6. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission

    NASA Astrophysics Data System (ADS)

    Uk Lee, Byung; Yermakov, Mikhail; Grinshpun, Sergey A.

    2004-09-01

    The continuous emission of unipolar ions was evaluated in order to determine its ability to remove fine and ultrafine particles from indoor air environments. The evolution of the indoor aerosol concentration and particle size distribution was measured in real time with the ELPI in a room-size (24.3 m3) test chamber where the ion emitter was operating. After the results were compared with the natural decay, the air cleaning factor was determined. The particle aerodynamic size range of ∼0.04-2 μm was targeted because it represents many bioaerosol agents that cause emerging diseases, as well as those that can be used for biological warfare or in the event of bioterrorism. The particle electric charge distribution (also measured in the test chamber with the ELPI) was rapidly affected by the ion emission. It was concluded that the corona discharge ion emitters (either positive or negative), which are capable of creating an ion density of 105-106 e± cm-3, can be efficient in controlling fine and ultrafine aerosol pollutants in indoor air environments, such as a typical office or residential room. At a high ion emission rate, the particle mobility becomes sufficient so that the particle migration results in their deposition on the walls and other indoor surfaces. Within the tested ranges of the particle size and ion density, the particles were charged primarily due to the diffusion charging mechanism. The particle removal efficiency was not significantly affected by the particle size, while it increased with increasing ion emission rate and the time of emission. The performance characteristics of three commercially available ionic air purifiers, which produce unipolar ions by corona discharge at relatively high emission rates, were evaluated. A 30-minute operation of the most powerful device among those tested resulted in the removal of about 97% of 0.1 μm particles and about 95% of 1 μm particles from the air in addition to the natural decay effect.

  7. Impact of Sahara dust transport on Cape Verde atmospheric element particles.

    PubMed

    Almeida-Silva, M; Almeida, S M; Freitas, M C; Pio, C A; Nunes, T; Cardoso, J

    2013-01-01

    The objectives of this study were to (1) conduct an elemental characterization of airborne particles sampled in Cape Verde and (2) assess the influence of Sahara desert on local suspended particles. Particulate matter (PM(10)) was collected in Praia city (14°94'N; 23°49'W) with a low-volume sampler in order to characterize its chemical composition by k0-INAA. The filter samples were first weighed and subsequently irradiated at the Portuguese Research Reactor. Results showed that PM(10) concentrations in Cape Verde markedly exceeded the health-based air quality standards defined by the European Union (EU), World Health Organization (WHO), and U.S. Environmental Protection Agency (EPA), in part due to the influence of Sahara dust transport. The PM(10) composition was characterized essentially by high concentrations of elements originating from the soil (K, Sm, Co, Fe, Sc, Rb, Cr, Ce, and Ba) and sea (Na), and low concentrations of anthropogenic elements (As, Zn, and Sb). In addition, the high concentrations of PM measured in Cape Verde suggest that health of the population may be less affected compared with other sites where PM(10) concentrations are lower but more enriched with toxic elements. PMID:23514066

  8. Transport and Retention of Engineered Nanoporous Particles in Porous Media: Effects of Concentration and Flow Dynamics

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2013-01-20

    Engineered nanoporous particles are an important class of nano-structured materials that can be functionalized in their internal surfaces for various applications including groundwater contaminant sequestration. This paper reported a study of transport and retention of engineered nanoporous silicate particles (ENSPs) that are designed for treatment and remediation of contaminants such as uranium in groundwater and sediments. The transport and retention of ENSPs were investigated under variable particle concentrations and dynamic flow conditions in a synthetic groundwater that mimics field groundwater chemical composition. The dynamic flow condition was achieved using a flow-interruption (stop-flow) approach with variable stop-flow durations to explore particle retention and release kinetics. The results showed that the ENSPs transport was strongly affected by the particle concentrations and dynamic flow conditions. A lower injected ENSPs concentration and longer stop-flow duration led to a more particle retention. The experimental data were used to evaluate the applicability of various kinetic models that were developed for colloidal particle retention and release in describing ENSPs transport. Model fits suggested that the transport and retention of ENSPs were subjected to a complex coupling of reversible attachment/detachment and straining/liberation processes. Both experimental and modeling results indicated that dynamic groundwater flow condition is an important parameter to be considered in exploring and modeling engineered particle transport in subsurface porous media.

  9. Pan American Airways/Naval Air Transport Service/destroyer base site showing brick ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing brick and concrete paving of patio, and circular planters. View facing east. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  10. Pan American Airways/Naval Air Transport Service/destroyer base site showing stone ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pan American Airways/Naval Air Transport Service/destroyer base site showing stone wall around patio. View facing east-southeast. - U.S. Naval Base, Pearl Harbor, Pearl City Peninsula, Pearl City, Honolulu County, HI

  11. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  12. Regional Air Transport in Europe: The Potential Role of the Civil Tiltrotor in Reducing Airside Congestion

    NASA Technical Reports Server (NTRS)

    Correnti, Vincenzo; Ignaccolo, Matteo; Capri, Salvatore; Inturri, Giuseppe

    2006-01-01

    The volume of air traffic worldwide is still in constant growth despite unfair events that sometimes occur. The demand for regional air transport is also increasing, thanks in part to the use of new vehicles purposely designed for short range flights which make this means of transport more attractive than in the past. This paper studies the possibility of using aircraft capable of vertical or short takeoff or landing (V/STOL), in particular the tiltrotor, in the regional air transport market and the impact on airport capacity that the use of this craft would have. With this in mind the advantages and disadvantages of using this vehicle are identified, as well as the changes to be made to the air transport system in order to exploit its full potential.

  13. 77 FR 38747 - Reports by Air Carriers on Incidents Involving Animals During Air Transport

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ... Privacy Act statement in the Federal Register published on April 11, 2000 (65 FR 19477-78), or you may... implementing section 710 of AIR-21. See 68 FR 47798. The rule required air carriers that provide scheduled... regulations. See 70 FR 7392. The rule is codified at 14 CFR 234.13. Section 234.13 requires air carriers...

  14. Particle Transport and Energization Associated with Disturbed Magnetospheric Events

    SciTech Connect

    C.Z. Cheng; J.R. Johnson; S. Zaharia

    1999-11-01

    Energetic particle flux enhancement events observed by satellites during strongly disturbed events in the magnetosphere (e.g., substorms, storm sudden commencements, etc.) are studied by considering interaction of particles with Earthward propagating electromagnetic pulses of westward electric field and consistent magnetic field of localized radial and azimuthal extent in a background magnetic field. The energetic particle flux enhancement is mainly due to the betatron acceleration process: particles are swept by the Earthward propagating electric field pulses via the EXB drift toward the Earth to higher magnetic field locations and are energized because of magnetic moment conservation. The most energized particles are those which stay in the pulse for the longest time and are swept the longest radial distance toward the Earth. Assuming a constant propagating velocity of the pulse we obtain analytical solutions of particle orbits. We examine substorm energetic particle injection by computing the particle flux and comparing with geosynchronous satellite observations. Our results show that for pulse parameters leading to consistency with observed flux values, the bulk of the injected particles arrive from distances less than 9 R(subscript E), which is closer to the Earth than the values obtained by the previous model and is also closer to the distances obtained by the injection boundary model.

  15. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    NASA Astrophysics Data System (ADS)

    Yang, Y. M.; Bednarz, B.

    2013-02-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  16. The Conference Proceedings of the 2003 Air Transport Research Society (ATRS) World Conference, Volume 3

    NASA Technical Reports Server (NTRS)

    Bowen, Brent (Editor); Gudmundsson, Sveinn (Editor); Oum, Tae (Editor)

    2003-01-01

    Volume 3 of the 2003 Air Transport Reserch Society (ATRS) World Conference includes papers on topics relevant to airline operations worldwide. Specific topics include: European Union and civil aviation regimens;simulating decision making in airline operations, passenger points of view on convenient airports; route monopolies and nonlinear pricing; cooperation among airports in Europe; fleet modernizaiton in Brazil;the effects of deregulation on the growth of air transportation in Europe and the United States.

  17. The energy dilemma and its impact on air transportation

    NASA Technical Reports Server (NTRS)

    Dyer, C. R. (Editor); Sincoff, M. Z. (Editor); Cribbins, P. D. (Editor)

    1973-01-01

    The dimensions of the energy situation are discussed in relation to air travel. Energy conservation, fuel consumption, and combustion efficiency are examined, as well as the proposal for subsonic aircraft using hydrogen fuel.

  18. Journal of Air Transportation, Volume 12, No. 1

    NASA Technical Reports Server (NTRS)

    Bowers, Brent D. (Editor); Kabashkin, Igor (Editor)

    2007-01-01

    Topics discussed include: a) Data Mining Methods Applied to Flight Operations Quality Assurance Data: A Comparison to Standard Statistical Methods; b) Financial Comparisons across Different Business Models in the Canadian Airline Industry; c) Carving a Niche for the "No-Frills" Carrier, Air Arabia, in Oil-Rich Skies; d) Situational Leadership in Air Traffic Control; and e) The Very Light Jet Arrives: Stakeholders and Their Perceptions.

  19. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways

    PubMed Central

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-01-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 μm aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301

  20. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways.

    PubMed

    Ma, Baoshun; Ruwet, Vincent; Corieri, Patricia; Theunissen, Raf; Riethmuller, Michel; Darquenne, Chantal

    2009-05-01

    Accurate modeling of air flow and aerosol transport in the alveolated airways is essential for quantitative predictions of pulmonary aerosol deposition. However, experimental validation of such modeling studies has been scarce. The objective of this study is to validate CFD predictions of flow field and particle trajectory with experiments within a scaled-up model of alveolated airways. Steady flow (Re = 0.13) of silicone oil was captured by particle image velocimetry (PIV), and the trajectories of 0.5 mm and 1.2 mm spherical iron beads (representing 0.7 to 14.6 mum aerosol in vivo) were obtained by particle tracking velocimetry (PTV). At twelve selected cross sections, the velocity profiles obtained by CFD matched well with those by PIV (within 1.7% on average). The CFD predicted trajectories also matched well with PTV experiments. These results showed that air flow and aerosol transport in models of human alveolated airways can be simulated by CFD techniques with reasonable accuracy. PMID:20161301