Science.gov

Sample records for air velocity effects

  1. Effect of wind tunnel air velocity on VOC flux rates from CAFO manure and wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind tunnels and flux chambers are often used to estimate volatile organic compound (VOC) emissions from animal feeding operations (AFOs) without regard to air velocity or sweep air flow rates. Laboratory experiments were conducted to evaluate the effect of wind tunnel air velocity on VOC emission ...

  2. Effects of air velocity on laying hen production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  3. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  4. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  5. Research on inert gas narcosis and air velocity effects on metabolic performance

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of air velocity on metabolic performance are studied by using high forced airflow in a closed environment as a mechanism to control the concentration of volatile animal wastes. Air velocities between 100 and 200 ft/min are without significant effects on the metabolism of rats. At velocities of 200 ft/min and above, oxygen consumption and CO2 production as well as food consumption increase. In most instances, the changes are on the order of 5-10%. At the same time, the RQ for the animals increases slightly and generally correlates well with oxygen consumption and CO2 production. Experiments on the nature of inert gas narcosis show that halothane and methoxyflurane are rather potent inhibitors of the NADH:O2 oxidoreductase system in rats. These experiments suggest that the mechanism of inert gas narcosis is not mandatorily related to a membrane surface phenomenon.

  6. Effects of shape, size, and air velocity on entry loss factors of suction hoods.

    PubMed

    McLoone, H E; Guffey, S E; Curran, J P

    1993-03-01

    This study further elucidated the effects of air velocity, aspect ratio (face length to face width), and area ratio (face area to duct area) on entry loss factors of suction hoods. A full scale ventilation system was utilized to determine the entry loss factor attributable to each of 20 square and rectangular hoods with a 90 degrees included angle. Static and velocity pressures were measured using Pitot tubes connected by tubing to piezo-resistive pressure transducers and inclined tube manometers. The entry loss factor, Fh, is the ratio of hood total pressure loss to mean velocity pressure. Values of Fh determined in this study ranged from 0.17-1.85. The values of Fh were a hyperbolic function of area ratio with a region rapidly increasing change for area ratios less than 5. For area ratios greater than 5, the values of Fh approached an asymptote of 0.17. Among hoods with a given area ratio (e.g., 2.5, 5.1, or 10.2), values of Fh were independent of aspect ratio. To a limited extent, Fh values decreased as mean air velocities increased from 319-1770 m/min (1046-5807 feet/min). PMID:8447256

  7. Thermal stability effects on the structure of the velocity field above an air-water interface

    NASA Technical Reports Server (NTRS)

    Papadimitrakis, Y. A.; Hsu, Y.-H. L.; Wu, J.

    1987-01-01

    Mean velocity and turbulence measurements are described for turbulent flows above laboratory water waves, under various wind and thermal stratification conditions. Experimental results, when presented in the framework of Monin-Obukhov (1954) similarity theory, support local scaling based on evaluation of stratification effects at the same nondimensional distance from the mean water surface. Such scaling allows an extension of application of the above theory to the outer region of the boundary layer. Throughout the fully turbulent region, ratios of mean velocity gradients, eddy viscosities, and turbulence intensities under nonneutral and neutral conditions correlate well with the parameter z/Lambda (Lambda being a local Obukhov length and z the vertical coordinate of the mean air flow) and show good agreement with established field correlations. The influence of stratification on the wind-stress coefficient can be estimated from an empirical relationship in terms of its value under neutral conditions and a bulk Richardson number.

  8. Effect of low air velocities on thermal homeostasis and comfort during exercise at space station operational temperature and humidity

    NASA Technical Reports Server (NTRS)

    Beumer, Ronald J.

    1989-01-01

    The effectiveness of different low air velocities in maintaining thermal comfort and homeostasis during exercise at space station operational temperature and humidity was investigated. Five male subjects exercised on a treadmill for successive ten minute periods at 60, 71, and 83 percent of maximum oxygen consumption at each of four air velocities, 30, 50, 80, and 120 ft/min, at 22 C and 62 percent relative humidity. No consistent trends or statistically significant differences between air velocities were found in body weight loss, sweat accumulation, or changes in rectal, skin, and body temperatures. Occurrence of the smallest body weight loss at 120 ft/min, the largest sweat accumulation at 30 ft/min, and the smallest rise in rectal temperature and the greatest drop in skin temperature at 120 ft/min all suggested more efficient evaporative cooling at the highest velocity. Heat storage at all velocities was evidenced by increased rectal and body temperatures; skin temperatures declined or increased only slightly. Body and rectal temperature increases corresponded with increased perception of warmth and slight thermal discomfort as exercise progressed. At all air velocities, mean thermal perception never exceeded warm and mean discomfort, greatest at 30 ft/min, was categorized at worst as uncomfortable; sensation of thermal neutrality and comfort returned rapidly after cessation of exercise. Suggestions for further elucidation of the effects of low air velocities on thermal comfort and homeostasis include larger numbers of subjects, more extensive skin temperature measurements and more rigorous analysis of the data from this study.

  9. Atmospheric corrosion effects of HNO 3—Influence of concentration and air velocity on laboratory-exposed copper

    NASA Astrophysics Data System (ADS)

    Samie, Farid; Tidblad, Johan; Kucera, Vladimir; Leygraf, Christofer

    A recently developed experimental set-up has been used to explore the atmospheric corrosion effects of nitric acid (HNO 3) on copper, in particular the influence of concentration and air velocity. Characterization and quantification of the corrosion products on exposed samples were performed with Fourier transform infrared (FT-IR) microspectrocscopy, ion chromatography, X-ray diffraction (XRD), micro-balance and microscopy. At low air velocity (0.03 cm s -1) HNO 3 deposition and weight gain of copper increased linearly with concentration up to 400 μg m -3 or 156 ppb. The influence of air velocity on corrosion of copper was tested within the range of 0.03-35.4 cm s -1. Although the air velocity in this study was significantly lower than typical outdoor wind values, a high HNO 3 concentration of the air velocity of 35.4 cm s -1 resulted in a relatively high deposition velocity ( Vd) of 0.9 cm s -1 on the metal surface and 1.2 cm s -1 on an ideal absorbent, which would imply a limiting deposition velocity on the copper surface ( Vd,surf) of 3.6 cm s -1. Results obtained in this study emphasize the importance for future research on the corrosion effects of HNO 3 on materials as very little has so far been done in this field.

  10. Effect of Wind Tunnel Air Velocity on VOC Flux from Standard Solutions and CAFO Manure/Wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and practitioners have used wind tunnels and flux chambers to quantify the flux of volatile organic compounds (VOCs), ammonia, and hydrogen sulfide and estimate emission factors from animal feeding operations (AFOs) without accounting for effects of air velocity or sweep air flow rate. L...

  11. Effect of air velocity on kinetics of thin layer carrot pomace drying.

    PubMed

    Kumar, N; Sarkar, B C; Sharma, H K

    2011-10-01

    Carrot pomace is a by-product obtained during carrot juice processing. Thin layer carrot pomace drying was performed in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at the air velocity of 0.5, 0.7 and 1.0 m/s at air temperatures from 60 to 75 °C. It was observed that whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. Mathematical models were tested to fit drying data of carrot pomace. The best fit model was observed on the basis of R², Chi-square and RMSE values. R² values for all the selected models were above 0.9783. The average values of effective diffusivity ranged from 2.61 × 10(-9) to 3.64 × 10(-9) m²/s. PMID:21954311

  12. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  13. Entrapped air bubbles in piezo-driven inkjet printing: Their effect on the droplet velocity

    NASA Astrophysics Data System (ADS)

    de Jong, Jos; Jeurissen, Roger; Borel, Huub; van den Berg, Marc; Wijshoff, Herman; Reinten, Hans; Versluis, Michel; Prosperetti, Andrea; Lohse, Detlef

    2006-12-01

    Air bubbles entrapped in the ink channel are a major problem in piezo-driven inkjet printing. They grow by rectified diffusion and eventually counteract the pressure buildup at the nozzle, leading to a breakdown of the jetting process. Experimental results on the droplet velocity udrop as a function of the equilibrium radius R0 of the entrained bubble are presented. Surprisingly, udrop(R0) shows a pronounced maximum around R0=17μm before it sharply drops to zero around R0=19μm. A simple one-dimensional model is introduced to describe this counterintuitive behavior which turns out to be a resonance effect of the entrained bubble.

  14. Temperature and air velocity effects on ethanol emission from corn silage with the characteristics of an exposed silo face

    NASA Astrophysics Data System (ADS)

    Montes, Felipe; Hafner, Sasha D.; Rotz, C. Alan; Mitloehner, Frank M.

    2010-05-01

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some locations. Recent research suggests that silage is a major source of VOCs emitted from agriculture, but only limited data exist on silage emissions. Ethanol is the most abundant VOC emitted from corn silage; therefore, ethanol was used as a representative compound to characterize the pattern of emission over time and to quantify the effect of air velocity and temperature on emission rate. Ethanol emission was measured from corn silage samples removed intact from a bunker silo. Emission rate was monitored over 12 h for a range in air velocity (0.05, 0.5, and 5 m s -1) and temperature (5, 20, and 35 °C) using a wind tunnel system. Ethanol flux ranged from 0.47 to 210 g m -2 h -1 and 12 h cumulative emission ranged from 8.5 to 260 g m -2. Ethanol flux was highly dependent on exposure time, declining rapidly over the first hour and then continuing to decline more slowly over the duration of the 12 h trials. The 12 h cumulative emission increased by a factor of three with a 30 °C increase in temperature and by a factor of nine with a 100-fold increase in air velocity. Effects of air velocity, temperature, and air-filled porosity were generally consistent with a conceptual model of VOC emission from silage. Exposure duration, temperature, and air velocity should be taken into consideration when measuring emission rates of VOCs from silage, so emission rate data obtained from studies that utilize low air flow methods are not likely representative of field conditions.

  15. Effects of light intensity light quality and air velocity on temperature in plant reproductive organs

    NASA Astrophysics Data System (ADS)

    Kitaya, Y.; Hirai, H.

    Excess temperature increase in plant reproductive organs such as anthers and stigmata could cause fertility impediments and thus produce sterile seeds under artificial lighting conditions in closed plant growth facilities There is a possibility that the aberration was caused by an excess increase in temperatures of reproductive organs in Bioregenerative Life Support Systems under microgravity conditions in space The fundamental study was conducted to know the thermal situation of the plant reproductive organs as affected by light intensity light quality and air velocity on the earth and to estimate the excess temperature increase in the reproductive organs in closed plant growth facilities in space Thermal images of reproductive organs of rice and strawberry were captured using infrared thermography at an air temperature of 10 r C The temperatures in flowers at 300 mu mol m -2 s -1 PPFD under the lights from red LEDs white LEDs blue LEDs fluorescent lamps and incandescent lamps increased by 1 4 1 7 1 9 6 0 and 25 3 r C respectively for rice and by 2 8 3 4 4 1 7 8 and 43 4 r C respectively for strawberry The flower temperatures increased with increasing PPFD levels The temperatures in petals anthers and stigmas of strawberry at 300 mu mol m -2 s -1 PPFD under incandescent lamps increased by 32 7 29 0 and 26 6 r C respectively at 0 1 m s -1 air velocity and by 20 6 18 5 and 15 9 r C respectively at 0 8 m s -1 air velocity The temperatures of reproductive organs decreased with increasing

  16. Optimization and investigation of the effect of velocity distribution of air curtains on the performance of food refrigerated display cabinets

    NASA Astrophysics Data System (ADS)

    Wu, XueHong; Chang, ZhiJuan; Ma, QiuYang; Lu, YanLi; Yin, XueMei

    2016-08-01

    This paper focuses on improving the performance of the vertical open refrigerated display cabinets (VORDC) by optimizing the structure of deflector, which is affected by inlet velocity and velocity distribution of air curtains. The results show that the temperature of products located at the front and at the rear reduces as the increases of inlet velocity of air curtains. The increase of the inlet velocity of air curtains can strengthen the disturbance inside the VORDC, and also decrease the temperature of products inside the VORDC; the increase of the outer velocity of air curtain will exacerbate the disturbance outside the VORDC and decrease air curtain's performance. The present study can provide a theoretical foundation for the design of VORDC.

  17. Effect of flow velocity and temperature on ignition characteristics in laser ignition of natural gas and air mixtures

    NASA Astrophysics Data System (ADS)

    Griffiths, J.; Riley, M. J. W.; Borman, A.; Dowding, C.; Kirk, A.; Bickerton, R.

    2015-03-01

    Laser induced spark ignition offers the potential for greater reliability and consistency in ignition of lean air/fuel mixtures. This increased reliability is essential for the application of gas turbines as primary or secondary reserve energy sources in smart grid systems, enabling the integration of renewable energy sources whose output is prone to fluctuation over time. This work details a study into the effect of flow velocity and temperature on minimum ignition energies in laser-induced spark ignition in an atmospheric combustion test rig, representative of a sub 15 MW industrial gas turbine (Siemens Industrial Turbomachinery Ltd., Lincoln, UK). Determination of minimum ignition energies required for a range of temperatures and flow velocities is essential for establishing an operating window in which laser-induced spark ignition can operate under realistic, engine-like start conditions. Ignition of a natural gas and air mixture at atmospheric pressure was conducted using a laser ignition system utilizing a Q-switched Nd:YAG laser source operating at 532 nm wavelength and 4 ns pulse length. Analysis of the influence of flow velocity and temperature on ignition characteristics is presented in terms of required photon flux density, a useful parameter to consider during the development laser ignition systems.

  18. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  19. Effects of metabolic rate on thermal responses at different air velocities in -10 degrees C.

    PubMed

    Mäkinen, T T; Gavhed, D; Holmér, I; Rintamäki, H

    2001-04-01

    The effects of exercise intensity on thermoregulatory responses in cold (-10 degrees C) in a 0.2 (still air, NoWi), 1.0 (Wi1), and 5.0 (Wi5) m x s(-1) wind were studied. Eight young and healthy men, preconditioned in thermoneutral (+20 degrees C) environment for 60 min, walked for 60 min on the treadmill at 2.8 km/h with different combinations of wind and exercise intensity. Exercise level was adjusted by changing the inclination of the treadmill between 0 degrees (lower exercise intensity, metabolic rate 124 W x m(-2), LE) and 6 degrees (higher exercise intensity, metabolic rate 195 W x m(-2), HE). Due to exercise increased heat production and circulatory adjustments, the rectal temperature (T(re)), mean skin temperature (Tsk) and mean body temperature (Tb) were significantly higher at the end of HE in comparison to LE in NoWi and Wi1, and T(re) and Tb also in Wi5. Tsk and Tb were significantly decreased by 5.0 m x s(-1) wind in comparison to NoWi and Wi1. The higher exercise intensity was intense enough to diminish peripheral vasoconstriction and consequently the finger skin temperature was significantly higher at the end of HE in comparison to LE in NoWi and Wi1. Mean heat flux from the skin was unaffected by the exercise intensity. At LE oxygen consumption (VO2) was significantly higher in Wi5 than NoWi and Wi1. Heart rate was unaffected by the wind speed. The results suggest that, with studied exercise intensities, produced without changes in walking speed, the metabolic rate is not so important that it should be taken into consideration in the calculation of wind chill index. PMID:11282319

  20. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles. [for combustion studies

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  1. Computational Fluid Dynamics Investigation of Human Aspiration in Low-Velocity Air: Orientation Effects on Mouth-Breathing Simulations

    PubMed Central

    Anthony, T. Renée

    2013-01-01

    Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1–0.4 m s−1). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s−1), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min−1, respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins. PMID:23316076

  2. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  3. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  4. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  5. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  6. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  7. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  8. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  9. Simulation of air velocity in a vertical perforated air distributor

    NASA Astrophysics Data System (ADS)

    Ngu, T. N. W.; Chu, C. M.; Janaun, J. A.

    2016-06-01

    Perforated pipes are utilized to divide a fluid flow into several smaller streams. Uniform flow distribution requirement is of great concern in engineering applications because it has significant influence on the performance of fluidic devices. For industrial applications, it is crucial to provide a uniform velocity distribution through orifices. In this research, flow distribution patterns of a closed-end multiple outlet pipe standing vertically for air delivery in the horizontal direction was simulated. Computational Fluid Dynamics (CFD), a tool of research for enhancing and understanding design was used as the simulator and the drawing software SolidWorks was used for geometry setup. The main purpose of this work is to establish the influence of size of orifices, intervals between outlets, and the length of tube in order to attain uniformity of exit flows through a multi outlet perforated tube. However, due to the gravitational effect, the compactness of paddy increases gradually from top to bottom of dryer, uniform flow pattern was aimed for top orifices and larger flow for bottom orifices.

  10. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  11. Significance of air humidity and air velocity for fungal spore release into the air

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Pasanen, P.; Jantunen, M. J.; Kalliokoski, P.

    Our previous field studies have shown that the presence of molds in buildings does not necessarily mean elevated airborne spore counts. Therefore, we investigated the release of fungal spores from cultures of Aspergillus fumigatus, Penicillium sp. and Cladosporium sp. at different air velocities and air humidities. Spores of A. fumigatus and Penicillium sp. were released from conidiophores already at air velocity of 0.5 ms -1, whereas Cladosporium spores required at least a velocity of 1.0 ms -1. Airborne spore counts of A. fumigatus and Penicillium sp. were usually higher in dry than moist air, being minimal at relative humidities (r.h.) above 70%, while the effect of r.h. on the release of Cladosporium sp. was ambivalent. The geometric mean diameter of released spores increased when the r.h. exceeded a certain level which depends on fungal genus. Thus, spores of all three fungi were hygroscopic but the hygroscopicity of various spores appeared at different r.h.-ranges. This study indicates that spore release is controlled by external factors and depends on fungal genus which can be one reason for considerable variation of airborne spore counts in buildings with mold problems.

  12. Influence of velocity effects on the shape of N2 (and air) broadened H2O lines revisited with classical molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, N. H.; Tran, H.; Gamache, R. R.; Bermejo, D.; Domenech, J.-L.

    2012-08-01

    The modeling of the shape of H2O lines perturbed by N2 (and air) using the Keilson-Storer (KS) kernel for collision-induced velocity changes is revisited with classical molecular dynamics simulations (CMDS). The latter have been performed for a large number of molecules starting from intermolecular-potential surfaces. Contrary to the assumption made in a previous study [H. Tran, D. Bermejo, J.-L. Domenech, P. Joubert, R. R. Gamache, and J.-M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 108, 126 (2007)], 10.1016/j.jqsrt.2007.03.009, the results of these CMDS show that the velocity-orientation and -modulus changes statistically occur at the same time scale. This validates the use of a single memory parameter in the Keilson-Storer kernel to describe both the velocity-orientation and -modulus changes. The CMDS results also show that velocity- and rotational state-changing collisions are statistically partially correlated. A partially correlated speed-dependent Keilson-Storer model has thus been used to describe the line-shape. For this, the velocity changes KS kernel parameters have been directly determined from CMDS, while the speed-dependent broadening and shifting coefficients have been calculated with a semi-classical approach. Comparisons between calculated spectra and measurements of several lines of H2O broadened by N2 (and air) in the ν3 and 2ν1 + ν2 + ν3 bands for a wide range of pressure show very satisfactory agreement. The evolution of non-Voigt effects from Doppler to collisional regimes is also presented and discussed.

  13. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  14. Measurement of vertical velocity using clear-air Doppler radars

    NASA Technical Reports Server (NTRS)

    Vanzandt, T. E.; Green, J. L.; Nastrom, G. D.; Gage, K. S.; Clark, W. L.; Warnock, J. M.

    1989-01-01

    A new clear air Doppler radar was constructed, called the Flatland radar, in very flat terrain near Champaign-Urbana, Illinois. The radar wavelength is 6.02 m. The radar has been measuring vertical velocity every 153 s with a range resolution of 750 m almost continuously since March 2, 1987. The variance of vertical velocity at Flatland is usually quite small, comparable to the variance at radars located near rough terrain during periods of small background wind. The absence of orographic effects over very flat terrain suggests that clear air Doppler radars can be used to study vertical velocities due to other processes, including synoptic scale motions and propagating gravity waves. For example, near rough terrain the shape of frequency spectra changes drastically as the background wind increases. But at Flatland the shape at periods shorter than a few hours changes only slowly, consistent with the changes predicted by Doppler shifting of gravity wave spectra. Thus it appears that the short period fluctuations of vertical velocity at Flatland are alsmost entirely due to the propagating gravity waves.

  15. Derivation of vertical air velocity from conventional Radiosonde ascents

    NASA Astrophysics Data System (ADS)

    Manguttathil Gopalakrishnan, Manoj; Mohanakumar, Kesavapillai; Samson, Titu; Kottayil, Ajil; Varadarajan, Rakesh; Rebello, Rejoy

    2016-07-01

    In this work, we devise a method to estimate air vertical velocity from ascending radiosondes similar to that described in published results, but with certain differences in deriving the balloon parameters and the drag coefficient, while not considering explicitly the heat exchange between the balloon and the environment. We basically decompose the observed balloon ascent rate into vertical velocity in still air due to buoyancy force and that due to vertical air motion. The first part is computed from basic hydrodynamical principles and the vertical velocity is derived as the difference between observed ascent rate and the estimated still air vertical velocity. The derived values agree reasonably well (r=0.66) with vertical velocities observed with a collocated wind profiler radar, and the sources of uncertainties are discussed. Since vertical velocity is a difficult quantity to measure directly without expensive methods, derivation of the same from the conventional radiosonde ascents could be of great importance to the meteorological communities.

  16. Flame Velocities over a Wide Composition Range for Pentane-air, Ethylene-air, and Propyne-air Flames

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Wong, Edgar, L

    1951-01-01

    Fundamental flame velocities are reported for pentane air, ethylene-air, and propylene-air mixtures for the concentration range 60 to 130 percent of stoichiometric. A form of the Tanford and Pease equation, which includes a small constant velocity term independent of diffusion, will predict the observed changes in flame velocity.

  17. Modeling the exit velocity of a compressed air cannon

    NASA Astrophysics Data System (ADS)

    Rohrbach, Z. J.; Buresh, T. R.; Madsen, M. J.

    2012-01-01

    The use of compressed air cannons in an undergraduate laboratory provides a way to illustrate the connection between diverse physics concepts, such as conservation of momentum, the work-kinetic energy theorem, gas expansion, air drag, and elementary Newtonian mechanics. However, it is not clear whether the expansion of the gas in the cannon is an adiabatic or an isothermal process. We built an air cannon that utilizes a diaphragm valve to release the pressurized gas and found that neither process accurately predicts the exit velocity of our projectile. We discuss a model based on the flow of air through the valve, which is in much better agreement with our data.

  18. Unimpeded air velocity profiles of air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that relies on tree structure information to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Unimpeded air jet velocities from an air assisted, five-port sprayer in an open field were measured at four height...

  19. Air velocity distributions from air-assisted five-port sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capability to control both liquid and air flow rates based on tree structures would be one of the advantages of future variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rate functions...

  20. Air velocity distributions from a variable-rate air-assisted sprayer for tree applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capability that implements tree structure to control liquid and air flow rates is the preferential design in the development of variable-rate orchard and nursery sprayers. Air jet velocity distributions from an air assisted, five-port sprayer which was under the development to achieve variable-rat...

  1. Rise velocity of an air bubble in porous media: Theoretical studies

    NASA Astrophysics Data System (ADS)

    Corapcioglu, M. Yavuz; Cihan, Abdullah; Drazenovic, Mirna

    2004-04-01

    The rise velocity of injected air phase from the injection point toward the vadose zone is a critical factor in in-situ air sparging operations. It has been reported in the literature that air injected into saturated gravel rises as discrete air bubbles in bubbly flow of air phase. The objective of this study is to develop a quantitative technique to estimate the rise velocity of an air bubble in coarse porous media. The model is based on the macroscopic balance equation for forces acting on a bubble rising in a porous medium. The governing equation incorporates inertial force, added mass force, buoyant force, surface tension and drag force that results from the momentum transfer between the phases. The momentum transfer terms take into account the viscous as well as the kinetic energy losses at high velocities. Analytical solutions are obtained for steady, quasi-steady, and accelerated bubble rise velocities. Results show that air bubbles moving up through a porous medium equilibrate after a short travel time and very short distances of rise. It is determined that the terminal rise velocity of a single air bubble in an otherwise water saturated porous medium cannot exceed 18.5 cm/s. The theoretical model results compared favorably with the experimental data reported in the literature. A dimensional analysis conducted to study the effect of individual forces indicates that the buoyant force is largely balanced by the drag force for bubbles with an equivalent radius of 0.2-0.5 cm. With increasing bubble radius, the dimensionless number representing the effect of the surface tension force decreases rapidly. Since the total inertial force is quite small, the accelerated bubble rise velocity can be approximated by the terminal velocity.

  2. Fume hood performance: Face velocity variability inconsistent air volume systems

    SciTech Connect

    Volin, C.E.; Joao, R.V.; Gershey, E.L.; Reiman, J.S.; Party, E.

    1998-09-01

    A 3-year survey of 366 bench-type fume hoods in working laboratories in conventional, constant air volume settings showed that face velocities varied greatly from unit to unit and over time. Fume hoods with bypasses performed better than those without; however, even newly fabricated bypass hoods exhibited large variations. These variations were due to several factors; however, face velocities at 100 {+-} 10 ft/min at working sash heights in the range of 20 to 40 cm (8 to 16 inches) were attainable. The use of smoke showed poor containment, especially at face velocities below 85 ft/min (0.425 m/s) or above 130 ft/min (0.65 m/s) and when the hoods were obstructed by large items placed on the work surface. Auxiliary/supplemental air created unstable face velocities and poor smoke patterns. The analysis of 3 years of fume hood monitoring showed clearly the need for and importance of a maintenance program where the fume hood lower slots are cleaned and fans, ducts, dampers, and hoods are checked periodically.

  3. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  4. Effect of gas-transfer-velocity parameterization choice on CO2 air-sea fluxes in the North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Wróbel, I.; Piskozub, J.

    2015-11-01

    The ocean sink is an important part of the anthropogenic CO2 budget. Because the terrestrial biosphere is usually treated as a residual, understanding the uncertainties the net flux into the ocean sink is crucial for understanding the global carbon cycle. One of the sources of uncertainty is the parameterization of CO2 gas transfer velocity. We used a recently developed software tool, FluxEngine, to calculate monthly net carbon air-sea flux for the extratropical North Atlantic, European Arctic as well as global values (or comparison) using several available parameterizations of gas transfer velocity of different dependence of wind speed, both quadratic and cubic. The aim of the study is to constrain the uncertainty caused by the choice of parameterization in the North Atlantic, a large sink of CO2 and a region with good measurement coverage, characterized by strong winds. We show that this uncertainty is smaller in the North Atlantic and in the Arctic than globally, within 5 % in the North Atlantic and 4 % in the European Arctic, comparing to 9 % for the World Ocean when restricted to functions with quadratic wind dependence and respectively 42, 40 and 67 % for all studied parameterizations. We propose an explanation of this smaller uncertainty due to the combination of higher than global average wind speeds in the North Atlantic and lack of seasonal changes in the flux direction in most of the region. We also compare the available pCO2 climatologies (Takahashi and SOCAT) pCO2 discrepancy in annual flux values of 8 % in the North Atlantic and 19 % in the European Arctic. The seasonal flux changes in the Arctic have inverse seasonal change in both climatologies, caused most probably by insufficient data coverage, especially in winter.

  5. Comparison of umbo velocity in air- and bone-conduction.

    PubMed

    Röösli, Christof; Chhan, David; Halpin, Christopher; Rosowski, John J

    2012-08-01

    This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously. For air conduction, V(U) at standard hearing threshold level was calculated. For BC, ΔV was defined as the difference between V(U) and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). ΔV and P(EC) at BC standard hearing threshold were calculated. ΔV at standard BC threshold was significantly smaller than V(U) at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above. PMID:22609771

  6. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  7. Preservation of Cognitive Performance with Age during Exertional Heat Stress under Low and High Air Velocity

    PubMed Central

    Wright Beatty, Heather E.; Keillor, Jocelyn M.; Hardcastle, Stephen G.; Boulay, Pierre; Kenny, Glen P.

    2015-01-01

    Older adults may be at greater risk for occupational injuries given their reduced capacity to dissipate heat, leading to greater thermal strain and potentially cognitive decrements. Purpose. To examine the effects of age and increased air velocity, during exercise in humid heat, on information processing and attention. Methods. Nine young (24 ± 1 years) and 9 older (59 ± 1 years) males cycled 4 × 15 min (separated by 15 min rest) at a fixed rate of heat production (400 W) in humid heat (35°C, 60% relative humidity) under 0.5 (low) and 3.0 (high) m·s−1 air velocity wearing coveralls. At rest, immediately following exercise (end exercise), and after the final recovery, participants performed an abbreviated paced auditory serial addition task (PASAT, 2 sec pace). Results. PASAT numbers of correct responses at end exercise were similar for young (low = 49 ± 3; high = 51 ± 3) and older (low = 46 ± 5; high = 47 ± 4) males and across air velocity conditions, and when scored relative to age norms. Psychological sweating, or an increased sweat rate with the administration of the PASAT, was observed in both age groups in the high condition. Conclusion. No significant decrements in attention and speeded information processing were observed, with age or altered air velocity, following intermittent exercise in humid heat. PMID:25874223

  8. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  9. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  10. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  11. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Supplied-Air Respirators § 84.140 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  12. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  13. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    SciTech Connect

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  14. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Astrophysics Data System (ADS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-03-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  15. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  16. A Hypothetical Burning-Velocity Formula for Very Lean Hydrogen-Air Mixtures

    SciTech Connect

    Williams, Forman; Williams, Forman A; Grcar, Joseph F

    2008-06-30

    Very lean hydrogen-air mixtures experience strong diffusive-thermal types of cellular instabilities that tend to increase the laminar burning velocity above the value that applies to steady, planar laminar flames that are homogeneous in transverse directions. Flame balls constitute an extreme limit of evolution of cellular flames. To account qualitatively for the ultimate effect of diffusive-thermal instability, a model is proposed in which the flame is a steadily propagating, planar, hexagonal, close-packed array of flame balls, each burning as if it were an isolated, stationary, ideal flame ball in an infinite, quiescent atmosphere. An expression for the laminar burning velocity is derived from this model, which theoretically may provide an upper limit for the experimental burning velocity.

  17. Effect of Velocity in Icing Scaling Tests

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Bond, Thomas H. (Technical Monitor)

    2003-01-01

    This paper presents additional results of a study first published in 1999 to determine the effect of scale velocity on scaled icing test results. Reference tests were made with a 53.3-cm-chord NACA 0012 airfoil model in the NASA Glenn Icing Research Tunnel at an airspeed of 67 m/s, an MVD of 40 microns, and an LWC of 0.6 g/cu m. Temperature was varied to provide nominal freezing fractions of 0.8, 0.6, and 0.5. Scale tests used both 35.6- and 27.7-cm-chord 0012 models for 2/3- and 1/2-size scaling. Scale test conditions were found using the modified Ruff (AEDC) scaling method with the scale velocity determined in five ways. Four of the scale velocities were found by matching the scale and reference values of water-film thickness, velocity, Weber number, and Reynolds number. The fifth scale velocity was simply the average of those found by matching the Weber and Reynolds numbers. The resulting scale velocities ranged from 85 to 220 percent of the reference velocity. For a freezing fraction of 0.8, the value of the scale velocity had no effect on how well the scale ice shape simulated the reference shape. For nominal freezing fractions of 0.5 and 0.6, the best simulation of the reference shape was achieved when the scale velocity was the average of the constant-Weber-number and the constant-Reynolds-number velocities.

  18. [Growth and polysaccharide formation in Sinorhizobium meliloti strains in an air-lift-type fermentor. Effect on nodulation velocity in alfalfa plants].

    PubMed

    Lorda, G S; Castaño, R C; Pordomingo, A B; Pastor, M D; Balatti, A P

    2003-01-01

    In this paper the influence of the exopolysaccharides produced by Sinorhizobium meliloti strains on the nodulation rates in alfalfa plants has been considered. The experiments were performed in a rotary shaker and in an air-lift type fermentor. Different Sinorhizobium meliloti strains were used. Bacterial growth rates were determined by viable cell counts. Exopolysaccharide concentration was determined by precipitation with ethanol. It was observed that maximum cell concentration was in the order of 1 x 10(10) cell/ml and exopolysaccharide content was approximately 11 g/l. The experiments performed with alfalfa plants in a controlled environment chamber showed that, when inoculation was carried out with diluted suspensions (1/10), nodulation time was reduced from 10 to 4 days, while the strains retained their symbiotic properties. PMID:12920984

  19. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  20. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  1. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  2. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  3. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  4. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  5. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Air velocity and noise levels; hoods and helmets... Efficiency Respirators and Combination Gas Masks § 84.1139 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  6. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Air velocity and noise levels; hoods and helmets... PROTECTIVE DEVICES Chemical Cartridge Respirators § 84.202 Air velocity and noise levels; hoods and helmets; minimum requirements. Noise levels generated by the respirator will be measured inside the hood or...

  7. Impact of air velocity on the development and detection of small coal fires

    SciTech Connect

    Egan, M.R.

    1993-12-31

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate, that in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial stage of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine. 9 refs., 3 figs., 10 tabs.

  8. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  9. Velocity-jump models with crowding effects

    NASA Astrophysics Data System (ADS)

    Treloar, Katrina K.; Simpson, Matthew J.; McCue, Scott W.

    2011-12-01

    Velocity-jump processes are discrete random-walk models that have many applications including the study of biological and ecological collective motion. In particular, velocity-jump models are often used to represent a type of persistent motion, known as a run and tumble, that is exhibited by some isolated bacteria cells. All previous velocity-jump processes are noninteracting, which means that crowding effects and agent-to-agent interactions are neglected. By neglecting these agent-to-agent interactions, traditional velocity-jump models are only applicable to very dilute systems. Our work is motivated by the fact that many applications in cell biology, such as wound healing, cancer invasion, and development, often involve tissues that are densely packed with cells where cell-to-cell contact and crowding effects can be important. To describe these kinds of high-cell-density problems using a velocity-jump process we introduce three different classes of crowding interactions into a one-dimensional model. Simulation data and averaging arguments lead to a suite of continuum descriptions of the interacting velocity-jump processes. We show that the resulting systems of hyperbolic partial differential equations predict the mean behavior of the stochastic simulations very well.

  10. Quantifying energy and mass transfer in crop canopies: sensors for measurement of temperature and air velocity

    NASA Technical Reports Server (NTRS)

    Bugbee, B.; Monje, O.; Tanner, B.

    1996-01-01

    Here we report on the in situ performance of inexpensive, miniature sensors that have increased our ability to measure mass and energy fluxes from plant canopies in controlled environments: 1. Surface temperature. Canopy temperature measurements indicate changes in stomatal aperture and thus latent and sensible heat fluxes. Infrared transducers from two manufacturers (Exergen Corporation, Newton, MA; and Everest Interscience, Tucson, AZ, USA) have recently become available. Transducer accuracy matched that of a more expensive hand-held infrared thermometer. 2. Air velocity varies above and within plant canopies and is an important component in mass and energy transfer models. We tested commercially-available needle, heat-transfer anemometers (1 x 50 mm cylinder) that consist of a fine-wire thermocouple and a heater inside a hypodermic needle. The needle is heated and wind speed determined from the temperature rise above ambient. These sensors are particularly useful in measuring the low wind speeds found within plant canopies. 3. Accurate measurements of air temperature adjacent to plant leaves facilitates transport phenomena modeling. We quantified the effect of radiation and air velocity on temperature rise in thermocouples from 10 to 500 micrometers. At high radiation loads and low wind speeds, temperature errors were as large as 7 degrees C above air temperature.

  11. Velocity and temperature field characteristics of water and air during natural convection heating in cans.

    PubMed

    Erdogdu, Ferruh; Tutar, Mustafa

    2011-01-01

    Presence of headspace during canning is required since an adequate amount allows forming vacuum during the process. Sealing technology may not totally eliminate all entrapped gases, and headspace might affect heat transfer. Not much attention has been given to solve this problem in computational studies, and cans, for example, were mostly assumed to be fully filled with product. Therefore, the objective of this study was to determine velocity and temperature evolution of water and air in cans during heating to evaluate the relevance of headspace in the transport mechanism. For this purpose, canned water samples with a certain headspace were used, and required governing continuity, energy, and momentum equations were solved using a finite volume approach coupled with a volume of fluid element model. Simulation results correlated well with experimental results validating faster heating effects of headspace rather than insulation effects as reported in the literature. The organized velocity motions along the air-water interface were also shown. Practical Application: Canning is a universal and economic method for processing of food products, and presence of adequate headspace is required to form vacuum during sealing of the cans. Since sealing technology may not totally eliminate the entrapped gases, mainly air, headspace might affect heating rates in cans. This study demonstrated the increased heating rates in the presence of headspace in contrast with some studies in the literature. By applying the effect of headspace, required processing time for thermally processed foods can be reduced leading to more rapid processes and lower energy consumptions. PMID:21535663

  12. The effectiveness of a heated air curtain

    NASA Astrophysics Data System (ADS)

    Frank, Daria

    2014-11-01

    Air curtains are high-velocity plane turbulent jets which are installed in the doorway in order to reduce the heat and the mass exchange between two environments. The air curtain effectiveness E is defined as the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. In the present study, we investigate the effects of an opposing buoyancy force on the air curtain effectiveness. Such an opposing buoyancy force arises for example if a downwards blowing air curtain is heated. We conducted small-scale experiments using water as the working fluid with density differences created by salt and sugar. The effectiveness of a downwards blowing air curtain was measured for situations in which the initial density of the air curtain was less than both the indoor and the outdoor fluid density, which corresponds to the case of a heated air curtain. We compare the effectiveness of the heated air curtain to the case of the neutrally buoyant air curtain. It is found that the effectiveness starts to decrease if the air curtain is heated beyond a critical temperature. Furthermore, we propose a theoretical model to describe the dynamics of the buoyant air curtain. Numerical results obtained from solving this model corroborate our experimental findings.

  13. Velocity and pressure distribution behind bodies in an air current

    NASA Technical Reports Server (NTRS)

    Betz, A

    1924-01-01

    The following experiments on the air flow behind bodies were made for the purpose of assisting in the explanation of the phenomena connected with air resistance. The first two series of experiments dealt with the phenomena behind a cylinder. The third series of experiments was carried out behind a streamlined strut.

  14. Effect of Temperature on Jet Velocity Spectra

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Wernet, Mark P.

    2007-01-01

    Statistical jet noise prediction codes that accurately predict spectral directivity for both cold and hot jets are highly sought both in industry and academia. Their formulation, whether based upon manipulations of the Navier-Stokes equations or upon heuristic arguments, require substantial experimental observation of jet turbulence statistics. Unfortunately, the statistics of most interest involve the space-time correlation of flow quantities, especially velocity. Until the last 10 years, all turbulence statistics were made with single-point probes, such as hotwires or laser Doppler anemometry. Particle image velocimetry (PIV) brought many new insights with its ability to measure velocity fields over large regions of jets simultaneously; however, it could not measure velocity at rates higher than a few fields per second, making it unsuitable for obtaining temporal spectra and correlations. The development of time-resolved PIV, herein called TR-PIV, has removed this limitation, enabling measurement of velocity fields at high resolution in both space and time. In this paper, ground-breaking results from the application of TR-PIV to single-flow hot jets are used to explore the impact of heat on turbulent statistics of interest to jet noise models. First, a brief summary of validation studies is reported, undertaken to show that the new technique produces the same trusted results as hotwire at cold, low-speed jets. Second, velocity spectra from cold and hot jets are compared to see the effect of heat on the spectra. It is seen that heated jets possess 10 percent more turbulence intensity compared to the unheated jets with the same velocity. The spectral shapes, when normalized using Strouhal scaling, are insensitive to temperature if the stream-wise location is normalized relative to the potential core length. Similarly, second order velocity correlations, of interest in modeling of jet noise sources, are also insensitive to temperature as well.

  15. Effects of air velocity on broiler production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent improvements in poultry genetics have resulted in increased growth rates (Havenstein et al., 2003) and total heat production (Chepete and Xin, 2001; Xin et al., 2001). In addition, market weights have also increased with white the meat demand of the U.S. resulting in birds being marketed at ...

  16. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  17. Assessment of air velocity sensors for use in animal produciton facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ventilation is an integral part of thermal environment control in animal production facilities. Accurately measuring the air velocity distribution within these facilities is cumbersome using the traverse method and a distributed velocity measurement system would reduce the time necessary to perform ...

  18. Dynamics of air temperature, velocity and ammonia emissions in enclosed and conventional pig housing systems.

    PubMed

    Song, J I; Park, K-H; Jeon, J H; Choi, H L; Barroga, A J

    2013-03-01

    This study aimed to compare the dynamics of air temperature and velocity under two different ventilation and housing systems during summer and winter in Korea. The NH3 concentration of both housing systems was also investigated in relation to the pig's growth. The ventilation systems used were; negative pressure type for the enclosed pig house (EPH) and natural airflow for the conventional pig house (CPH). Against a highly fluctuating outdoor temperature, the EPH was able to maintain a stable temperature at 24.8 to 29.1°C during summer and 17.9 to 23.1°C during winter whilst the CPH had a wider temperature variance during summer at 24.7 to 32.3°C. However, the temperature fluctuation of the CPH during winter was almost the same with that of EPH at 14.5 to 18.2°C. The NH3 levels in the CPH ranged from 9.31 to 16.9 mg/L during summer and 5.1 to 19.7 mg/L during winter whilst that of the EPH pig house was 7.9 to 16.1 mg/L and 3.7 to 9.6 mg/L during summer and winter, respectively. These values were less than the critical ammonia level for pigs with the EPH maintaining a lower level than the CPH in both winter and summer. The air velocity at pig nose level in the EPH during summer was 0.23 m/s, enough to provide comfort because of the unique design of the inlet feature. However, no air movement was observed in almost all the lower portions of the CPH during winter because of the absence of an inlet feature. There was a significant improvement in weight gain and feed intake of pigs reared in the EPH compared to the CPH (p<0.05). These findings proved that despite the difference in the housing systems, a stable indoor temperature was necessary to minimize the impact of an avoidable and highly fluctuating outdoor temperature. The EPH consistently maintained an effective indoor airspeed irrespective of season; however the CPH had defective and stagnant air at pig nose level during winter. Characteristics of airflow direction and pattern were consistent relative to

  19. Electrode Evaporation Effects on Air Arc Behavior

    NASA Astrophysics Data System (ADS)

    Li, Xingwen; Chen, Degui; Li, Rui; Wu, Yi; Niu, Chunping

    2008-06-01

    A numerical study of the effects of copper and silver vapours on the air arc behavior is performed. The commercial software FLUENT is adapted and modified to develop a two-dimensional magneto-hydrodynamic (MHD) models of arc with the thermodynamic properties and transport coefficients, net emission coefficient for the radiation model of 99% ai-1% Cu, 99% air-1% Ag, and pure air, respectively. The simulation result demonstrates that vaporization of the electrode material may cool the arc center region and reduce the arc velocity. The effects of Ag vapour are stronger compared to those of Cu vapour.

  20. 42 CFR 84.140 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.140 Section 84.140 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Supplied-Air...

  1. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  2. Effects of horizontal velocity variations on ultrasonic velocity measurements in open channels

    USGS Publications Warehouse

    Swain, E.D.

    1992-01-01

    Use of an ultrasonic velocity meter to determine discharge in open channels involves measuring the velocity in a line between transducers in the stream and relating that velocity to the average velocity in the stream. The standard method of calculating average velocity in the channel assumes that the velocity profile in the channel can be represented by the one-dimensional von Karman universal velocity profile. However, the velocity profile can be described by a two-dimensional equation that accounts for the horizontal velocity variations induced by the channel sides. An equation to calculate average velocity accounts for the two-dimensional variations in velocity within a stream. The use of this new equation to calculate average velocity was compared to the standard method in theoretical trapezoidal cross sections and in the L-31N and Snapper Creek Extension Canals near Miami, Florida. These comparisons indicate that the two-dimensional variations have the most significant effect in narrow, deep channels. Also, the two-dimensional effects may be significant in some field situations and need to be considered when determining average velocity and discharge with an ultrasonic velocity meter.

  3. Selection effects in Doppler velocity planet searches

    NASA Astrophysics Data System (ADS)

    O'Toole, Simon; Tinney, Chris; Jones, Hugh

    2008-05-01

    The majority of extra-solar planets have been discovered by measuring the Doppler velocities of the host star. Like all exoplanet detection methods, the Doppler method is rife with observational biases. Before any robust comparison of mass, orbital period and eccentricity distributions can be made with theory, a detailed understanding of these selection effects is required, something which up to now is lacking. We present here a progress report on our analysis of the selection effects present in Anglo-Australian Planet Search data, including the methodology used and some preliminary results.

  4. Design of passively aerated compost piles: Vertical air velocities between the pipes

    SciTech Connect

    Lynch, N.J.; Cherry, R.S.

    1996-09-01

    Passively aerated compost piles are built on a base of porous materials, such as straw or wood chips, in which perforated air supply pipes are distributed. The piles are not turned during composting, nor is forced-aeration equipment used, which significantly reduces the operating and capital expenses associated with these piles. Currently, pile configurations and materials are worked out by trial and error. Fundamentally based design procedures are difficult to develop because the natural convection air flow rate is not explicitly known, but rather is closely coupled with the pile temperature. This paper develops a mathematical model to analytically determine the maximum upward air flow velocity over an air supply pipe and the drop in vertical velocity away from the pipe. This model has one dimensionless number, dependent on the pile and base properties, which fully characterizes the velocity profile between the pipes. 9 refs., 4 figs., 1 tab.

  5. Cosmology with Peculiar Velocities: Observational Effects

    NASA Astrophysics Data System (ADS)

    Andersen, P.; Davis, T. M.; Howlett, C.

    2016-09-01

    In this paper we investigate how observational effects could possibly bias cosmological inferences from peculiar velocity measurements. Specifically, we look at how bulk flow measurements are compared with theoretical predictions. Usually bulk flow calculations try to approximate the flow that would occur in a sphere around the observer. Using the Horizon Run 2 simulation we show that the traditional methods for bulk flow estimation can overestimate the magnitude of the bulk flow for two reasons: when the survey geometry is not spherical (the data do not cover the whole sky), and when the observations undersample the velocity distributions. Our results may explain why several bulk flow measurements found bulk flow velocities that seem larger than those expected in standard ΛCDM cosmologies. We recommend a different approach when comparing bulk flows to cosmological models, in which the theoretical prediction for each bulk flow measurement is calculated specifically for the geometry and sampling rate of that survey. This means that bulk flow values will not be comparable between surveys, but instead they are comparable with cosmological models, which is the more important measure.

  6. Spatial Characteristics of Water Spray Formed by Two Impinging Jets at Several Jet Velocities in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Foster, Hampton H.; Heidmann, Marcus F.

    1960-01-01

    The spatial characteristics of a spray formed by two impinging water jets in quiescent air were studied over a range of nominal jet velocities of 30 to 74 feet per second. The total included angle between the 0.089-inch jets was 90 deg. The jet velocity, spray velocity, disappearance of the ligaments just before drop formation, mass distribution, and size and position of the largest drops were measured in a circumferential survey around the point of jet impingement. Photographic techniques were used in the evaluations. The distance from the point of jet impingement to ligament breakup into drops was about 4 inches on the spray axis and about 1.3 inches in the radial position +/-90 deg from the axis. The distance tended to increase slightly with increase in jet velocity. The spray velocity varied from about 99 to about 72 percent of the jet velocity for a change in circumferential position from the spray axis to the +/-80 deg positions. The percentages tended to increase slightly with an increase in jet velocity. Fifty percent of the mass was distributed about the spray axis in an included angle of slightly less than 40 deg. The effect of jet velocity was small. The largest observed drops (2260-micron or 0.090-in. diam.) were found on and about the spray axis. The size of the largest drops decreased for an increase in radial angular position, being about 1860 microns (0.074 in.) at the +/-90 deg positions. The largest drop sizes tended to decrease for an increase in jet velocity, although the velocity effect was small. A drop-size distribution analysis indicated a mass mean drop size equal to 54 percent of an extrapolated maximum drop size.

  7. Definition of water droplets "strain cycles" in air times dependences on their sizes and movement velocities

    NASA Astrophysics Data System (ADS)

    Volkov, Roman; Zhdanova, Alena; Zabelin, Maxim; Kuznetsov, Geniy; Strizhak, Pavel

    2014-08-01

    Experimental investigation of water droplets deformation regularities during their motion in the air by the action of gravitational forces was executed. Characteristic sizes of droplets were varied in the range from 3 mm to 6 mm. Velocities of droplets movement attained to 5 m/s. The cross-correlation system of video registration was used. More than ten characteristic "strain cycles" of droplets during the 1 m distance motion by them thought the air were established. Characteristic of droplets forms, periods, dimensions and ranges were determined for all "strain cycles". "Strain cycle" times dependences on velocity and sizes of droplets were established.

  8. 42 CFR 84.1139 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.1139 Section 84.1139 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Dust, Fume, and...

  9. 42 CFR 84.202 - Air velocity and noise levels; hoods and helmets; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Air velocity and noise levels; hoods and helmets; minimum requirements. 84.202 Section 84.202 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Chemical...

  10. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  11. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  12. A velocity dependent effective angle method for calibration of X-probes at low velocities

    NASA Astrophysics Data System (ADS)

    Bakken, Ole Martin; Krogstad, Per-Åge

    A velocity dependent effective angle (VDEA) method for the calibration of yaw response of hot-wire X-probes at low flow velocities (0.5-6 m/s) is presented. Comparisons with a full velocity vs. yaw-angle method (Österlund 1999) in a smooth wall channel flow indicate that there is only moderate advantage in using the latter method, which is considerably more laborious. Comparisons with direct numerical simulations (DNS) (Moser et al. 1999) and the more common fixed effective angle method (FEA) show that the VDEA method significantly improves estimates of Reynolds stresses compared to the FEA method.

  13. Impact of air velocity on the development and detection of small coal fires. Report of investigations/1993

    SciTech Connect

    Egan, M.R.

    1993-01-01

    The U.S. Bureau of Mines conducted experiments in the intermediate-scale fire tunnel to assess the influence of air velocity on the gas production and smoke characteristics during smoldering and flaming combustion of Pittsburgh seam coal and its impact on the detection of the combustion products. On-line determinations of mass and number of smoke particles, light transmission, and various gas concentrations were made. From these experimental values, generation rates, heat-release rates, production constants, particle sizes, obscuration rates, and optical densities were calculated. Ventilation has a direct effect on fire detection and development. The results indicate that, in general, increased air velocity lengthened the onset of smoke and flaming ignition, increased the fire intensity, but decreased the gas and smoke concentrations. Increased air velocity also lengthened the response times of all the fire sensors tested. Rapid and reliable detector response at this most crucial state of fire development can increase the possibility that appropriate miner response (fire suppression tactics or evacuation) can be completed before toxic smoke spreads throughout the mine.

  14. Increased Air Velocity Reduces Thermal and Cardiovascular Strain in Young and Older Males during Humid Exertional Heat Stress.

    PubMed

    Wright Beatty, Heather E; Hardcastle, Stephen G; Boulay, Pierre; Flouris, Andreas D; Kenny, Glen P

    2015-01-01

    Older adults have been reported to have a lower evaporative heat loss capacity than younger adults during exercise when full sweat evaporation is permitted. However, it is unclear how conditions of restricted evaporative and convective heat loss (i.e., high humidity, clothing insulation) alter heat stress. to the purpose of this study was to examine the heat stress responses of young and older males during and following exercise in a warm/humid environment under two different levels of air velocity. Ten young (YOUNG: 24±2 yr) and 10 older (OLDER: 59±3 yr) males, matched for body surface area performed 4×15-min cycling bouts (15-min rest) at a fixed rate of heat production (400 W) in warm/humid conditions (35°C, 60% relative humidity) under 0.5 (Low) and 3.0 (High) m·s(-1) air velocity while wearing work coveralls. Rectal (Tre) and mean skin (MTsk) temperatures, heart rate (HR), local sweat rate, % max skin blood flow (SkBF) (recovery only), and blood pressure (recovery only) were measured. High air velocity reduced core and skin temperatures (p < 0.05) equally in YOUNG and OLDER males (p > 0.05) but was more effective in reducing cardiovascular strain (absolute and % max HR; p < 0.05) in YOUNG males (p < 0.05). Greater increases in local dry heat loss responses (% max SkBF and cutaneous vascular conductance) were detected across time in OLDER than YOUNG males in both conditions (p < 0.05). Local dry heat loss responses and cardiovascular strain were attenuated during the High condition in YOUNG compared to OLDER (p < 0.05). High air velocity reduced the number of males surpassing the 38.0°C Tre threshold from 90% (Low) to 50% (High). Despite age-related local heat loss differences, YOUNG and OLDER males had similar levels of heat stress during intermittent exercise in warm and humid conditions while wearing work coveralls. Increased air velocity was effective in reducing heat stress equally, and cardiovascular strain to a greater extent, in YOUNG and OLDER

  15. Measurements of Flat-Flame Velocities of Diethyl Ether in Air

    PubMed Central

    Gillespie, Fiona; Metcalfe, Wayne K.; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Curran, Henry J.

    2013-01-01

    This study presents new adiabatic laminar burning velocities of diethyl ether in air, measured on a flat-flame burner using the heat flux method. The experimental pressure was 1 atm and temperatures of the fresh gas mixture ranged from 298 to 398 K. Flame velocities were recorded at equivalence ratios from 0.55 to 1.60, for which stabilization of the flame was possible. The maximum laminar burning velocity was found at an equivalence ratio of 1.10 or 1.15 at different temperatures. These results are compared with experimental and computational data reported in the literature. The data reported in this study deviate significantly from previous experimental results and are well-predicted by a previously reported chemical kinetic mechanism. PMID:23710107

  16. An Empirical Model of Human Aspiration in Low-Velocity Air Using CFD Investigations

    PubMed Central

    Anthony, T. Renée; Anderson, Kimberly R.

    2016-01-01

    Computational fluid dynamics (CFD) modeling was performed to investigate the aspiration efficiency of the human head in low velocities to examine whether the current inhaled particulate mass (IPM) sampling criterion matches the aspiration efficiency of an inhaling human in airflows common to worker exposures. Data from both mouth and nose inhalation, averaged to assess omnidirectional aspiration efficiencies, were compiled and used to generate a unifying model to relate particle size to aspiration efficiency of the human head. Multiple linear regression was used to generate an empirical model to estimate human aspiration efficiency and included particle size as well as breathing and freestream velocities as dependent variables. A new set of simulated mouth and nose breathing aspiration efficiencies was generated and used to test the fit of empirical models. Further, empirical relationships between test conditions and CFD estimates of aspiration were compared to experimental data from mannequin studies, including both calm-air and ultra-low velocity experiments. While a linear relationship between particle size and aspiration is reported in calm air studies, the CFD simulations identified a more reasonable fit using the square of particle aerodynamic diameter, which better addressed the shape of the efficiency curve’s decline toward zero for large particles. The ultimate goal of this work was to develop an empirical model that incorporates real-world variations in critical factors associated with particle aspiration to inform low-velocity modifications to the inhalable particle sampling criterion. PMID:25438035

  17. Measurements of laminar burning velocities for natural gas-hydrogen-air mixtures

    SciTech Connect

    Huang, Zuohua; Zhang, Yong; Zeng, Ke; Liu, Bing; Wang, Qian; Jiang, Deming

    2006-07-15

    Laminar flame characteristics of natural gas-hydrogen-air flames were studied in a constant-volume bomb at normal temperature and pressure. Laminar burning velocities and Markstein lengths were obtained at various ratios of hydrogen to natural gas (volume fraction from 0 to 100%) and equivalence ratios (f from 0.6 to 1.4). The influence of stretch rate on flame was also analyzed. The results show that, for lean mixture combustion, the flame radius increases with time but the increasing rate decreases with flame expansion for natural gas and for mixtures with low hydrogen fractions, while at high hydrogen fractions, there exists a linear correlation between flame radius and time. For rich mixture combustion, the flame radius shows a slowly increasing rate at early stages of flame propagation and a quickly increasing rate at late stages of flame propagation for natural gas and for mixtures with low hydrogen fractions, and there also exists a linear correlation between flame radius and time for mixtures with high hydrogen fractions. Combustion at stoichiometric mixture demonstrates the linear relationship between flame radius and time for natural gas-air, hydrogen-air, and natural gas-hydrogen-air flames. Laminar burning velocities increase exponentially with the increase of hydrogen fraction in mixtures, while the Markstein length decreases and flame instability increases with the increase of hydrogen fractions in mixture. For a fixed hydrogen fraction, the Markstein number shows an increase and flame stability increases with the increase of equivalence ratios. Based on the experimental data, a formula for calculating the laminar burning velocities of natural gas-hydrogen-air flames is proposed. (author)

  18. Tuning a physically-based model of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.

    Air-sea gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated exchange, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.

  19. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    NASA Technical Reports Server (NTRS)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are

  20. The influence of bubble plumes on air-seawater gas transfer velocities

    NASA Astrophysics Data System (ADS)

    Asher, W. E.; Karle, L. M.; Higgins, B. J.; Farley, P. J.; Monahan, E. C.; Leifer, I. S.

    1996-05-01

    Laboratory results have demonstrated that bubble plumes are a very efficient air-water gas transfer mechanism. Because breaking waves generate bubble plumes, it could be possible to correlate the air-sea gas transport velocity kL with whitecap coverage. This correlation would then allow kL to be predicted from measurements of apparent microwave brightness temperature through the increase in sea surface microwave emissivity associated with breaking waves. In order to develop this remote-sensing-based method for predicting air-sea gas fluxes, a whitecap simulation tank was used to measure evasive and invasive kL values for air-seawater transfer of carbon dioxide, oxygen, helium, sulfur hexafluoride, and dimethyl sulfide at cleaned and surfactant-influenced water surfaces. An empirical model has been developed that can predict kL from bubble plume coverage, diffusivity, and solubility. The observed dependence of kL on molecular diffusivity and aqueous-phase solubility agrees with the predictions of modeling studies of bubble-driven air-water gas transfer. It has also been shown that soluble surfactants can decrease kL even in the presence of breaking waves.

  1. Compact High-Velocity Atmospheric Pressure Dielectric Barrier Plasma Jet in Ambient Air

    NASA Astrophysics Data System (ADS)

    Annette, Meiners; Michael, Leck; Bernd, Abel

    2015-01-01

    In this paper, a non-thermal atmospheric pressure plasma jet at high streaming velocity operating with ambient air is highlighted. In the present technological approach, the employment of air poses a significant challenge. The high oxygen concentration in air results in a reduced concentration of reactive species in combination with a short species lifetime. The plasma jet assembly presented here contains a special dielectric barrier with a high secondary emission coefficient. In this way, the electron density and in turn the density of reactive species is increased. In addition, the plasma jet assembly is equipped with a short electrode. This leads to a higher voltage across the discharge gap and in turn to an increased density of reactive plasma species. The plasma jet is formed within and emitted by a small conical nozzle. A high-speed gas flow with gas velocity of 340 m/s was achieved at the end of the nozzle. In the jet the concentration of toxic and unwanted neutral plasma species like O3 or NOx is significantly reduced because of the shorter residence time within the plasma. The range of short-lived active plasma species is in turn considerably enhanced. The jet efficiency and action range measured through the oxidation of a test surface were determined by measuring the increase of surface tension of a polypropylene substrate via contact angle measurements after plasma treatment. Numerical modeling of the plasma plume indicates that oxygen atoms are in fact the main active species in the plasma plume.

  2. A reconciliation of empirical and mechanistic models of the air-sea gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Callaghan, Adrian H.; Nightingale, Philip D.; Shutler, Jamie D.

    2016-01-01

    Models of the air-sea transfer velocity of gases may be either empirical or mechanistic. Extrapolations of empirical models to an unmeasured gas or to another water temperature can be erroneous if the basis of that extrapolation is flawed. This issue is readily demonstrated for the most well-known empirical gas transfer velocity models where the influence of bubble-mediated transfer, which can vary between gases, is not explicitly accounted for. Mechanistic models are hindered by an incomplete knowledge of the mechanisms of air-sea gas transfer. We describe a hybrid model that incorporates a simple mechanistic view—strictly enforcing a distinction between direct and bubble-mediated transfer—but also uses parameterizations based on data from eddy flux measurements of dimethyl sulphide (DMS) to calibrate the model together with dual tracer results to evaluate the model. This model underpins simple algorithms that can be easily applied within schemes to calculate local, regional, or global air-sea fluxes of gases.

  3. Effects of light on gravitaxis and velocity in Chlamydomonas reinhardtii.

    PubMed

    Sineshchekov, O; Lebert, M; Hader, D P

    2000-09-01

    The effects of light on gravitaxis and velocity in the bi-flagellated green alga Chlamydomonas reinhardtii were investigated using a real time automatic tracking system. Three distinct light effects on gravitaxis and velocity with parallel kinetics were found. Photosynthetically active continuous red light reversibly enhances the swimming velocity and increases or decreases the precision of gravitaxis, depending on its initial level. Blue light flashes induce fast transient increases in velocity immediately after the photophobic response, and transiently decrease or even reverse negative gravitaxis. The calcium dependence of this response, its fluence-response curve and its spectral characteristics strongly suggest the participation of chlamy-rhodopsin in this effect. The third response, a prolonged activation of velocity and gravitaxis, is also induced by blue light flashes, which can be observed even in calcium-free medium. PMID:12090268

  4. Motion Prediction and the Velocity Effect in Children

    ERIC Educational Resources Information Center

    Benguigui, Nicolas; Broderick, Michael P.; Baures, Robin; Amorim, Michel-Ange

    2008-01-01

    In coincidence-timing studies, children have been shown to respond too early to slower stimuli and too late to faster stimuli. To examine this velocity effect, children aged 6, 7.5, 9, 10.5, and adults were tested with two different velocities in a prediction-motion task which consisted of judging, after the occlusion of the final part of its…

  5. Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Mansour, M.S.

    2011-01-15

    The turbulent burning velocity is defined by the mass rate of burning and this also requires that the associated flame surface area should be defined. Previous measurements of the radial distribution of the mean reaction progress variable in turbulent explosion flames provide a basis for definitions of such surface areas for turbulent burning velocities. These inter-relationships. in general, are different from those for burner flames. Burning velocities are presented for a spherical flame surface, at which the mass of unburned gas inside it is equal to the mass of burned gas outside it. These can readily be transformed to burning velocities based on other surfaces. The measurements of the turbulent burning velocities presented are the mean from five different explosions, all under the same conditions. These cover a wide range of equivalence ratios, pressures and rms turbulent velocities for ethanol-air mixtures. Two techniques are employed, one based on measurements of high speed schlieren images, the other on pressure transducer measurements. There is good agreement between turbulent burning velocities measured by the two techniques. All the measurement are generalised in plots of burning velocity normalised by the effective unburned gas rms velocity as a function of the Karlovitz stretch factor for different strain rate Markstein numbers. For a given value of this stretch factor a decrease in Markstein number increases the normalised burning velocity. Comparisons are made with the findings of other workers. (author)

  6. Strain-induced extinction of hydrogen-air counterflow diffusion flames - Effects of steam, CO2, N2, and O2 additives to air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.

    1992-01-01

    A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.

  7. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  8. Velocity measurements within a shock and reshock induced air/SF6 turbulent mixing zone

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane; Joly, Laurent; Shock-induced mixing Team

    2012-11-01

    A turbulent mixing zone (TMZ) is created in a shock tube (based in ISAE, DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a 1 μm thick plastic microfilm maintained flat and parallel to the shock by two wire grids. The upper grid of square spacing 1.8 mm imposes the nonlinear initial perturbation for the Richtmyer-Meshkov instability (RMI). After interaction with a reshock and a rarefaction, the TMZ remains approximately stagnant but much more turbulent. High speed Schlieren visualizations enable the choice of abscissae for Laser Doppler Velocity (LDV) measurements. For a length of the SF6 section equal to 250 mm, the LDV abscissae are 43, 135 and 150 mm from the initial position of the interface. Because of numerous microfilm fragments in the flow and a limited number of olive oil droplets as seeding particles for the LDV, statistical convergence requires the superposition of a least 50 identical runs at each abscissa. The dependence of TMZ structure and velocity field on length of the SF6 section between 100 and 300 mm will be presented. This experimental investigation is carried out in support of modeling and multidimensional simulation efforts at CEA, DAM, DIF. Financial support from CEA is thanksfully appreciated by ISAE.

  9. Solid-armature railguns without the velocity-skin effect

    SciTech Connect

    Cowan, M.

    1991-01-01

    If the velocity-skin effect could be eliminated, solid-armature railguns might reach high velocity ({ge} 6 km/s) without forcing most of the armature current to pass through an arc. Even then, magnetic diffusion (the normal'' skin effect) will limit acceleration. In this paper, the performance limits for railguns which are free from the velocity-skin effect are investigated by deriving the upper limits for a specific kind of power supply. Previous performance estimates made for solid-armature railguns are examined in the light of these results and are found to be relatively very optimistic. A railgun design which limits the velocity-skin effect and which may allow improved performance for solid armatures is described. 6 refs.

  10. Solid-armature railguns without the velocity-skin effect

    SciTech Connect

    Cowan, M.

    1991-12-31

    If the velocity-skin effect could be eliminated, solid-armature railguns might reach high velocity ({ge} 6 km/s) without forcing most of the armature current to pass through an arc. Even then, magnetic diffusion (the ``normal`` skin effect) will limit acceleration. In this paper, the performance limits for railguns which are free from the velocity-skin effect are investigated by deriving the upper limits for a specific kind of power supply. Previous performance estimates made for solid-armature railguns are examined in the light of these results and are found to be relatively very optimistic. A railgun design which limits the velocity-skin effect and which may allow improved performance for solid armatures is described. 6 refs.

  11. Blasting and blast effects in cold regions. Part 1. Air blast. Special report

    SciTech Connect

    Not Available

    1985-12-01

    Contents include: ideal blast waves in free air; the shock equations for air blast; scaling procedures for comparison of explosions; reflection and refraction of airblast; effect of charge height, or height of burst; attenuation of air blast and variation of shock-front properties; air blast from nuclear explosions; air blast from underground explosions; air blast from underwater explosions; air blast damage criteria; effects of ambient pressure and temperature; explosions in vacuum or in space; air blast attenuation over snow surfaces; shock reflection from snow surfaces; shock velocity over snow; variation of shock pressure with charge height over snow; release of avalanches by air blast.

  12. Effects of low velocity impacts on basaltoids

    NASA Astrophysics Data System (ADS)

    Oszkiewicz, Dagmara; Nowak, Monika; Kohout, Tomas; McDermott, Kathryn; Marciniak, Lukasz; Muinonen, Karri; Penttila, Antti

    2015-04-01

    basalts. We perform low velocity impacts (˜4-7 km/s) into the selected basaltoids using the two stage light gas gun facilities based at the University of Kent. We next investigate the spectra and shock iduced changes in the samples. The conclusion of this experiments may be applicable to HED meteorites and the topic of altering the surfaces of basaltoid-like planetary bodies. Acknowledgement MN was supported by Polish National Science Center, grant number NN307039740. DAO was supported by Polish National Science Center, grant number 2012/04/S/ST9/00022. References [Burbine et al., 1996] Burbine, Thomas H., Anders Meibom, and Richard P. Binzel 1996, Meteoritics & Planetary Science 31.5: 607-620. [Weiss et al., 2013] Weiss, B. P., Elkins-Tanton, L. T., Barucci, M. A., et al. 2012, Planetary and Space Science 66(1), 137-146

  13. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  14. Effects of velocity averaging on the shapes of absorption lines

    NASA Technical Reports Server (NTRS)

    Pickett, H. M.

    1980-01-01

    The velocity averaging of collision cross sections produces non-Lorentz line shapes, even at densities where Doppler broadening is not apparent. The magnitude of the effects will be described using a model in which the collision broadening depends on a simple velocity power law. The effect of the modified profile on experimental measures of linewidth, shift and amplitude will be examined and an improved approximate line shape will be derived.

  15. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  16. Health Effects of Air Pollution.

    ERIC Educational Resources Information Center

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  17. Size-effect of explosive sensitivity under low velocity impact

    NASA Astrophysics Data System (ADS)

    Ma, Danzhu; Chen, Pengwan; Zhou, Qiang

    2013-06-01

    Low velocity impact may ignite the solid high explosives and cause undesired explosion incidents. The safety of high explosives under low velocity impact is one of the most important problems in handling, manufacture, storage, and transportation procedures. More and more evaluation tests have been developed for low velocity impact scenarios, including, but not limited to the drop hammer impact test, the Susan test, the Spigot test, and the Steven test, with a charge mass varying from tens of milligrams to several kilograms. The effects of specimen size on explosive sensitivity were found in our drop hammer impact test and Steven tests, including the threshold velocity/height and reaction violence. To further analyze the size effects on explosive sensitivity under low velocity impacts, we collected the impact sensitivity data of several PBX explosives in the drop hammer test, the Steven test, the Susan test and the Spigot test. The effective volume of explosive charge and the threshold specific mechanical energy were introduced to investigate the size-effect on the explosive ignition thresholds. The effective volumes of explosive charge in Steven test and Spigot test were obtained by numerical simulation, due to the localization of the impact. The threshold specific mechanical energy is closely related to the effective volume of explosive charge. The results show that, with the increase of effective volume, the specific mechanical energy needed for explosive ignition decreases and trends to reach a constant value. The mechanisms of size effects on explosive sensitivity are also discussed.

  18. Specimen size effect of explosive sensitivity under low velocity impact

    NASA Astrophysics Data System (ADS)

    Ma, Danzhu; Chen, Pengwan; Dai, Kaida; Zhou, Qiang

    2014-05-01

    Low velocity impact may ignite the solid high explosives and cause undesired explosion incidents. The safety of high explosives under low velocity impact is one of the most important issues in handling, manufacture, storage, and transportation procedures. Various evaluation tests have been developed for low velocity impact scenarios, including, but not limited to the drop hammer test, the Susan test, the Spigot test, and the Steven test, with a charge mass varying from tens of milligrams to several kilograms. The effects of specimen size on explosive sensitivity were found in some impact tests such as drop hammer test and Steven tests, including the threshold velocity/height and reaction violence. To analyse the specimen size effects on explosive sensitivity under low velocity impacts, we collected the impact sensitivity data of several PBX explosives in the drop hammer test, the Steven test, the Susan test and the Spigot test. The effective volume of explosive charge and the critical specific mechanical energy were introduced to investigate the size-effect on the explosive reaction thresholds. The effective volumes of explosive charge in Steven test and Spigot test were obtained by numerical simulation, due to the deformation localization of the impact loading. The critical specific mechanical energy is closely related to the effective volume of explosive charge. The results show that, with the increase of effective volume, the critical mechanical energy needed for explosive ignition decreases and tends to reach a constant value. The mechanisms of size effects on explosive sensitivity are also discussed.

  19. The Effects of Wall Roughness on Particle Velocities in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Benson, Michael; Eaton, John

    2003-11-01

    Previous experiments on particle-laden turbulent channel flows have shown lower than expected particle mean velocities. This research examined wall roughness effects on particle velocity distributions. Experiments were conducted in an existing vertical, fully developed channel air flow apparatus. Particle-board walls in the flow development section were replaced with smooth acrylic walls. The final 1.7 m of the development section was either a smooth section made of acrylic or a second section roughened by attaching mesh screen made of 0.25 mm diameter wire. The channel operated at a Reynolds number of 13,800 and was seeded with 150 im diameter spherical glass particles at 15loading. The wall roughness had little effect on the mean fluid velocity profile, but the particle velocity profiles and PDF's showed substantial dependence on the wall roughness. Particle mean velocities were higher than the gas velocity for the smooth wall flow, but substantially lagged the gas phase in the rough wall case, except near the wall. The particle streamwise rms velocity was nearly uniform across the channel width for the rough wall case.

  20. Influence of speckle effect on doppler velocity measurement

    NASA Astrophysics Data System (ADS)

    Zheng, Zheng; Changming, Zhao; Haiyang, Zhang; Suhui, Yang; Dehua, Zhang; Xingyuan, Zheng; Hongzhi, Yang

    2016-06-01

    In a coherent Lidar system, velocity measurement of a target is achieved by measuring Doppler frequency shift between the echo and local oscillator (LO) signals. The measurement accuracy is proportional to the spectrum width of Doppler signal. Actually, the speckle effect caused by the scattering of laser from a target will broaden the Doppler signal's spectrum and bring uncertainty to the velocity measurement. In this paper, a theoretical model is proposed to predict the broadening of Doppler spectrum with respect to different target's surface and motion parameters. The velocity measurement uncertainty caused by the broadening of spectrum is analyzed. Based on the analysis, we design a coherent Lidar system to measure the velocity of the targets with different surface roughness and transverse velocities. The experimental results are in good agreement with theoretical analysis. It is found that the target's surface roughness and transverse velocity can significantly affect the spectrum width of Doppler signal. With the increase of surface roughness and transverse velocity, the measurement accuracy becomes worse. However, the influence of surface roughness becomes weaker when the spot size of laser beam on the target is smaller.

  1. 3D Tomographic Imaging of the Crustal Velocity Structure beneath the Marmara Sea using Air-gun and Earthquake Data

    NASA Astrophysics Data System (ADS)

    Tarancioglu, Adil; Kocaoglu, Argun H.; Ozalaybey, Serdar

    2014-05-01

    The objective of this study is to investigate the local seismicity and obtain a detailed three-dimensional crustal velocity structure beneath the Marmara Sea in an area surrounding the North Anatolian Fault Zone (NAFZ) by tomographic inversion using both controlled-source (air-gun) and earthquake data. The tomographic inversion is carried out by using the local earthquake tomography code SIMUL2000. Two sets of seismological data, collected in 2006 (EOSMARMARA experiment) and 2001 (SEISMARMARA experiment), are re-processed and used in this study. A total of 441 high quality earthquakes and 452 air-gun shots recorded by a total of 53 Ocean Bottom Seismometers (OBS) are selected for the simultaneous inversion for velocity and hypocentral parameters. The OBS location and time-drift errors are identified from air-gun shot records by a grid search method and required corrections are made on the travel time data. The initial (reference) velocity model and earthquake locations required for the three dimensional tomographic inversion are derived from the one-dimensional velocity model obtained by using the VELEST algorithm in which a subset of earthquakes are selected such that phase readings were made by at least five stations and maximum azimuthal gap was 180o. The inversion results are checked for initial model dependence and the effect of damping factor. The reliability of the results is also evaluated in terms of derivative-weighted-sum, resolution-diagonal-elements values and checkerboard tests. The hypocenter locations of the local earthquakes have been remarkably improved by the three-dimensional velocity model obtained from the tomographic inversion. The three-dimensional velocity model shows that the Tekirdag, Central and Cinarcik Basins are characterized generally by lower Vp (3.0 - 3.5 km/s) values and most of the earthquakes across these regions are located at the depths of 10 to 17 km, about 5 km deeper than those obtained from the one-dimensional reference

  2. Ground cloud air quality effects

    NASA Technical Reports Server (NTRS)

    Brubaker, K. L.

    1980-01-01

    The effects of the ground cloud associated with launching of a large rocket on air quality are discussed. The ground cloud consists of the exhaust emitted by the rocket during the first 15 to 25 seconds following ignition and liftoff, together with a large quantity of entrained air, cooling water, dust and other debris. Immediately after formation, the ground cloud rises in the air due to the buoyant effect of its high thermal energy content. Eventually, at an altitude typically between 0.7 and 3 km, the cloud stabilizes and is carried along by the prevailing wind at that altitude. For the use of heavy lift launch vehicles small quantities of nitrogen oxides, primarily nitric oxide and nitrogen dioxide, are expected to be produced from a molecular nitrogen impurity in the fuel or liquid oxygen, or from entrainment and heating of ambient air in the hot rocket exhaust. In addition, possible impurities such as sulfur in the fuel would give rise to a corresponding amount of oxidation products such as sulfur dioxide.

  3. The Effect of Fatigue on Kicking Velocity in Soccer Players

    PubMed Central

    Ferraz, Ricardo; van den Tillaar, Roland; Marques, Mário C.

    2012-01-01

    Soccer is a game in which fatigue can negatively influence players’ performance. Few studies have examined the practical effects of fatigue on soccer performance skills. Thus, the aim of the present study was to evaluate the effect of fatigue, acutely induced by means of a soccer specific circuit on ball velocity. Ten amateur soccer players (age 27.3 ± 5.25 yr; experience 16,8 ± 6.05 yr; level secondary division; body height 1,80 m ± 0,06; body mass 75,7 kg ± 5,78), participated in this study and performed maximal instep kicks before and after the implementation of an intensive, intermittent and repeated exercise protocol. Analysis of variance with repeated measures indicated a significant decrease (p<0.05) in ball velocity after just one round of the fatigue circuit. However, after the third circuit ball velocity increased and after the fifth circuit maximal ball velocity increased yet again (compared to the second circuit) and was not significantly different from before commencement of the fatigue protocol. The results partly confirmed the hypothesis of the negative influence of fatigue upon ball velocity in soccer kicking, demonstrating also some variability in the presented values of ball velocity perhaps theoretically accounted for by the general governor model. PMID:23486374

  4. Displacement velocity effects on rock fracture shear strengths

    NASA Astrophysics Data System (ADS)

    Kleepmek, M.; Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.

    2016-09-01

    Triaxial shear tests are performed to assess the effects of displacement velocity and confining pressure on shear strengths and dilations of tension-induced fractures and smooth saw-cut surfaces prepared in granite, sandstone and marl specimens. A polyaxial load frame is used to apply confining pressures between 1 and 18 MPa with displacement velocities ranging from 1.15 × 10-5 to 1.15 × 10-2 mm/s. The results indicate that the shearing resistances of smooth saw-cut surfaces tend to be independent of the displacement velocity and confining pressure. Under each confinement the peak and residual shear strengths and dilation rates of rough fractures increase with displacement velocities. The sheared-off areas increase when the confining pressure increases, and the displacement rate decreases. The velocity-dependent shear strengths tend to act more under high confining pressures for the rough fractures in strong rock (granite) than for the smoother fractures in weaker rocks (sandstone and marl). An empirical criterion that explicitly incorporates the effects of shear velocity is proposed to describe the peak and residual shear strengths. The criterion fits well to the test results for the three tested rocks.

  5. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  6. Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Vysokomornaya, O. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2015-08-01

    The deformation of water, kerosene, and ethyl alcohol drops traveling a distance of up to 1 m in air with different velocities (1-5 m/s) is recorded by high-speed photography (the frame of the cross-correlation camera is less than 1 µs). It is shown that the shape of the drops varies cyclically. Several tens of "deformation cycles" are found, which have characteristic times, drop size variation amplitudes, and number of shapes. It is found that the velocity and size of the drops influence the parameters of their deformation cycles. Experiments with the drops are conducted in air at moderate Weber numbers (We < 10).

  7. Effects of Flow Velocity and Particle Size on Transport of Ultrafine Bubbles in Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Nishimura, T.

    2015-12-01

    Potential applications of ultrafine bubbles (UFBs) have drawn more attention, especially in environmental engineering fields such as soil/groundwater remediation. Understanding a transport mechanism of UFBs in soils is essential to optimize remediation techniques using UFBs. In this study, column transport experiments using glass beads with different size fraction were conducted, where UFBs created by either air or oxygen were injected to the column with different flow conditions. Effects of particle size and flow velocities on transport characteristics of UFBs were investigated based on the column experiments. The results showed that attachments of UFBs were enhanced under lower water velocity condition, exhibiting more than 50% of UFBs injected were attached inside the column. The mobility of O2-UFBs which have lower zeta potential was higher than that of Air-UFBs. A convection-dispersion model including bubble attachment and detachment terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data.

  8. Quantum effects in new integrated optical angular velocity sensors

    NASA Astrophysics Data System (ADS)

    Armenise, M. N.; Ciminelli, C.; de Leonardis, F.; Passaro, V. M. N.

    2004-06-01

    The paper describes the quantum effects to be considered in the model of new integrated optical angular velocity sensors. Integrated optics provides a promising approach to low-cost, light weight, and high performance devices. Some preliminary results are also reported.

  9. Effects of increasing tip velocity on wind turbine rotor design.

    SciTech Connect

    Resor, Brian Ray; Maniaci, David Charles; Berg, Jonathan Charles; Richards, Phillip William

    2014-05-01

    A reduction in cost of energy from wind is anticipated when maximum allowable tip velocity is allowed to increase. Rotor torque decreases as tip velocity increases and rotor size and power rating are held constant. Reduction in rotor torque yields a lighter weight gearbox, a decrease in the turbine cost, and an increase in the capacity for the turbine to deliver cost competitive electricity. The high speed rotor incurs costs attributable to rotor aero-acoustics and system loads. The increased loads of high speed rotors drive the sizing and cost of other components in the system. Rotor, drivetrain, and tower designs at 80 m/s maximum tip velocity and 100 m/s maximum tip velocity are created to quantify these effects. Component costs, annualized energy production, and cost of energy are computed for each design to quantify the change in overall cost of energy resulting from the increase in turbine tip velocity. High fidelity physics based models rather than cost and scaling models are used to perform the work. Results provide a quantitative assessment of anticipated costs and benefits for high speed rotors. Finally, important lessons regarding full system optimization of wind turbines are documented.

  10. Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow

    NASA Astrophysics Data System (ADS)

    Powell, Robert; Jenkins, Thomas

    1998-11-01

    Heat Transfer Effects on Laminar Velocity Profiles in Pipe Flow. Robert L. Powell, Thomas P. Jenkins Department of Chemical Engineering & Materials Science University of California, Davis, CA 95616 Using laser Doppler velocimetry, we have measured the axial velocity profiles for steady, pressure driven, laminar flow of water in a circular tube. The flow was established in a one inch diameter seamless glass tube. The entry length prior to the measuring section was over one hundred diameters. Reynolds numbers in the range 500-2000 were used. Under conditions where the temperature difference between the fluid and the surroundings differed by as little as 0.2C, we found significant asymmetries in the velocity profiles. This asymmetry was most pronounced in the vertical plane. Varying the temperature difference moved the velocity maximum either above or below the centerline depending upon whether the fluid was warmer or cooler than the room. These results compare well to existing calculations. Using the available theory and our experiments it is possible to identify parameter ranges where non-ideal conditions(not parabolic velocity profiles) will be found. Supported by the EMSP Program of DOE.

  11. Effects of forward velocity on turbulent jet mixing noise

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr. (Editor)

    1976-01-01

    Flight simulation experiments were conducted in an anechoic free jet facility over a broad range of model and free jet velocities. The resulting scaling laws were in close agreement with scaling laws derived from theoretical and semiempirical considerations. Additionally, measurements of the flow structure of jets were made in a wind tunnel by using a laser velocimeter. These tests were conducted to describe the effects of velocity ratio and jet exit Mach number on the development of a jet in a coflowing stream. These turbulence measurements and a simplified Lighthill radiation model were used in predicting the variation in radiated noise at 90 deg to the jet axis with velocity ratio. Finally, the influence of forward motion on flow-acoustic interactions was examined through a reinterpretation of the 'static' numerical solutions to the Lilley equation.

  12. INVESTIGATING THE INFLUENCE OF RELATIVE HUMIDITY, AIR VELOCITY, AND AMPLIFICATION ON THE EMISSION RATES OF FUNGAL SPORES

    EPA Science Inventory

    The paper discusses the impact of relative humidity (RH), air velocity, and surface growth on the emission rates of fungal spores from the surface of contaminated material. Although the results show a complex interaction of factors, we have determined, for this limited data set,...

  13. Space-based retrievals of air-sea gas transfer velocities using altimeters: Calibration for dimethyl sulfide

    NASA Astrophysics Data System (ADS)

    Goddijn-Murphy, Lonneke; Woolf, David K.; Marandino, Christa

    2012-08-01

    This study is the first to directly correlate gas transfer velocity, measured at sea using the eddy-correlation (EC) technique, and satellite altimeter backscattering. During eight research cruises in different parts of the world, gas transfer velocity of dimethyl sulfide (DMS) was measured. The sample times and locations were compared with overpass times and locations of remote sensing satellites carrying Ku-band altimeters: ERS-1, ERS-2, TOPEX, POSEIDON, GEOSAT Follow-On, JASON-1, JASON-2 and ENVISAT. The result was 179 pairs of gas transfer velocity measurements and backscattering coefficients. An inter-calibration of the different altimeters significantly reduced data scatter. The inter-calibrated data was best fitted to a quadratic relation between the inverse of the backscattering coefficients and the gas transfer velocity measurements. A gas transfer parameterization based on backscattering, corresponding with sea surface roughness, might be expected to perform better than wind speed-based parameterizations. Our results, however, did not show improvement compared to direct correlation of shipboard wind speeds. The relationship of gas transfer velocity to satellite-derived backscatter, or wind speed, is useful to provide retrieval algorithms. Gas transfer velocity (cm/hr), corrected to a Schmidt number of 660, is proportional to wind speed (m/s). The measured gas transfer velocity is controlled by both the individual water-side and air-side gas transfer velocities. We calculated the latter using a numerical scheme, to derive water-side gas transfer velocity. DMS is sufficiently soluble to neglect bubble-mediated gas transfer, thus, the DMS transfer velocities could be applied to estimate water-side gas transfer velocities through the unbroken surface of any other gas.

  14. Detailed Comparison of Blast Effects in Air and Vacuum

    SciTech Connect

    Tringe, J W; Molitoris, J D; Garza, R G; Andreski, H G; Batteux, J D; Lauderbach, L M; Vincent, E R; Wong, B M

    2007-07-26

    Although blast mitigation is most often achieved with solid shielding, ambient gas pressure can also affect the coupling of shock waves to solid targets. In this work the role of air as an energy transfer medium was examined experimentally by subjecting identical large-area rectangular witness plates to short-range blast effects in air and vacuum ({approx}50 mtorr) at 25 C. The expanding reactant front of 3 kg C4 charges was observed by fast camera to be cylindrically symmetric in both air and vacuum. The horizontal component of the reactant cloud velocity (perpendicular to the witness plates) was constant in both cases, with values of 3.0 and 5.9 km/s for air and vacuum, respectively. As a result of the blast, witness plates were plastically deformed into a shallow dish geometry, with local maxima 30 and 20 mm deep for air and vacuum, respectively. The average plate deflection from the air blast was 11 mm, {approx}10% deeper than the average vacuum plate deflection. Shock pressure estimates were made with a simple impedance-matching model, and indicate peak values in the 30-50 MPa range are consistent with the reactant cloud density and velocity. However, more detailed analysis is necessary to definitely establish the mechanisms by which air couples shock energy to the plates.

  15. Cluster Peculiar Velocities through the Kinetic Sunyaev-Zeldovich Effect

    NASA Astrophysics Data System (ADS)

    Motl, P. M.; Burns, J. O.; Norman, M. L.

    2004-12-01

    Upcoming observations of the kinetic Sunyyaev-Zeldovich effect (KSZE) offer the possibility to measure the line of sight velocity of galaxy clusters relative to the cosmic miccrowave background reference frame. These data will enable a variety of cosmological tests including the estimation of the cosmic density field itself (in addition to the perturbations of the density). However, simulated clusters of galaxies typically have internal flows with speeds that are comparable to the peculiar velocity of the clusters. Assumng an angular resolution typical for interferometers and bolometer arrays that are currently in use or under devlopment, we construct maps of both the thermal and kinetic Sunyaev-Zeldovich effects for large samples of numerical clusters of galaxies (containing approximately 100 clusters with 1 × 1014 ; M⊙ ≤ M200 ≤ 2 × 1015 ; M⊙ at the present eepoch). The synthetic maps are used to construct estimates of the cluster peculiar velocity; the internal cluster flows result in a irreduccible dispersion in the cluster peculiar velocity measurements.

  16. Air-sea Exchange of Dimethylsulfide (DMS) - Separation of the Transfer Velocity to Buoyancy, Turbulence, and Wave Driven Components

    NASA Astrophysics Data System (ADS)

    Yang, M.; Blomquist, B.; Huebert, B. J.; Fairall, C. W.

    2009-12-01

    In the past several years, we have measured the sea-to-air flux of DMS directly with eddy covariance on five cruises in distinct oceanic environments, including the equatorial Pacific (TAO 2003), Sargasso Sea (Biocomplexity 2004), Northern Atlantic (DOGEE 2007), Southern Ocean (SO-GasEX 2008), and Peruvian/Chilean upwelling region (VOCALS-REx 2008). Normalizing DMS flux by its concurrent air-sea concentration difference gave us the transfer velocity of DMS (kDMS). Our wealth of kDMS measurements (~2000 hourly values) in very different oceans and across a wide range of wind speeds (0.5~20.5 m/s) provides an opportunity to evaluate existing parameterizations of k and quantify the importance of various controlling factors on gas exchange. Gas exchange in different wind speed regimes is driven by distinct physical mechanisms. In low winds (<4 m/s), buoyancy-driven convection results in a finite and positive kDMS. In moderate winds (4~10 m/s), turbulence from wind-stress prevails, as we found a near linear dependence of kDMS on wind speed and on friction velocity (u*). In high winds (>10 m/s), there is additional bubble-mediated exchange from wave-breaking, which depends on gas solubility (a function of temperature and to a lesser degree, salinity). When normalizing kDMS to a reference temperature of 20°C, we found the oft-used Schmidt number correction (for diffusivity) to be inadequate because it does not account for the temperature dependence in solubility. To quantify the solubility effect, we subtract the small buoyancy-driven term computed by the NOAA-COARE model 3.0a from k660 (kDMS corrected to a Schmidt number of 660). A linear fit to the residual k660 in the moderate wind regime allows us to further separate the turbulence-driven and wave-breaking components. A solubility correction is applied to the latter, which is then added back to the buoyancy and turbulence-driven terms to give k660,C. Compared to k660, k660,C shows a significant reduction in scatter

  17. Effects of impact velocity on pressure-driven nanofluid

    NASA Astrophysics Data System (ADS)

    Liu, Hailong; Cao, Guoxin

    2013-09-01

    Using molecular dynamics simulations, we investigate the pressure-driven water infiltration behavior of carbon nanotubes (CNTs), in which water molecules can infiltrate into CNTs from outside upon an external impact load. According to the direction of impact mechanical wave, the infiltration procedure can be divided into the forward stage (stage I) and the reflected stage (stage II). At the forward stage of mechanical wave, the flow behavior strongly depends on the impact velocity but it is essentially not very sensitive to the tube radius. With a higher impact velocity, the water flow has a higher transport velocity, a lower density, a weaker CNT-water interaction, a higher potential energy, and a more disordered structure shown by a wider distribution of water dipole and OH bonds orientations. At the reflected stage, due to the impact pressure effect, the water structure is significantly changed, and the flow behavior is less sensitive to the impact velocity but more sensitive to the tube radius. After the reflected wave passed the water molecules inside CNTs, the water density and potential are significantly increased, which initiates a significant change for the water structure inside CNTs, especially for small size tubes. In a small tube like (10,10), a new water conformation is created in the reflected procedure, while there is no such new structure created in a larger tube like (20,20). Due to the different structures, the behavior of the pressure-driven water flow inside CNTs is significantly different than the steady flow.

  18. Effect of velocity spread on operation of high power gyrotrons

    SciTech Connect

    Levush, B.; Cai, S.Y.; Antonsen, T.M. Jr.; Guss, W.C.; Basten, M.A.; Kreischer, K.E.; Temkin, R.

    1995-12-31

    The effect of velocity spread on the operation of 140 GHz gyrotrons has been studied. The performance of two cavities, with low and high Q, has been examined experimentally and theoretically. The simulation code MAGY was modified to include the measured velocity distribution function and the measured pitch angle in order to compare the measured efficiencies with the predicted efficiencies. Based on measurements, the inferred velocity spread at a beam current of 40 A is given by {l_angle}{delta}{upsilon}{sub {perpendicular}}/{upsilon}{sub {perpendicular}}{r_angle}{sub RMS} = 15%. Simulations with this spread produced efficiencies lower than those measured. However, it was found that assuming {l_angle}{delta}{upsilon}{sub {perpendicular}}/{upsilon}{sub {perpendicular}}{r_angle}{sub RMS} = 10% for 40 A current and using the experimentally determined dependence of the spread on the current the calculated efficiencies agree well with the measured efficiencies for the low Q cavity. The efficiency of the low Q gyrotron at 40 A beam current is only 27%. For the same beam current and velocity spread the efficiency of the high Q gyrotron was predicted to be 40% which agrees well with the measured efficiency of 39%.

  19. Modeling the effect of humidity on the threshold friction velocity of coal particles

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Chen, Weiping; Ma, Chun; Zhan, Shuifen

    2012-09-01

    Coal particles emission could cause serious air pollution in coal production region and transport region. In coal mining industry, large amounts of water are regularly spayed to coal piles to prevent dust emission from the coal particles. The mechanism behind this measure is to manage the threshold friction velocity, which is an important parameter in controlling wind erosion and dust emission. Bagnold has developed a threshold friction velocity model for soil particles. However, the Bagnold model cannot be applied directly to coal particles as coal particles are quite different from soils in physical and chemical properties. We studied and modeled threshold friction velocity of coal particles under different humidities by using a wind tunnel. Results showed that the effects of humidity on coal particles' threshold friction velocity are related to the hydrophilic effect and adhesive effect. Bagnold model can be corrected by two new parameter items which explained the two effects. The new model, agreed well with wind tunnel measurements for coal particles with different size categories. Despite the fact the new model was developed for coal particles, its physical basis may allow the model application to other wind susceptible particles.

  20. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    SciTech Connect

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-02-19

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency.

  1. The Effect of Compressibility on the Pressure Reading of a Prandtl Pitot Tube at Subsonic Flow Velocity

    NASA Technical Reports Server (NTRS)

    Walchner, O

    1939-01-01

    Errors arising from yawed flow were also determined up to 20 degrees angle of attack. In axial flow, the Prandtl pitot tube begins at w/a approx. = 0.8 to give an incorrect static pressure reading, while it records the tank pressure correctly, as anticipated, up to sonic velocity. Owing to the compressibility of the air, the Prandtl pitot tube manifests compression shocks when the air speed approaches velocity of sound. This affects the pressure reading of the instrument. Because of the increasing importance of high speed in aviation, this compressibility effect is investigated in detail.

  2. Laminar burning velocities of lean hydrogen-air mixtures at pressures up to 1.0 MPa

    SciTech Connect

    Bradley, D.; Lawes, M.; Liu, Kexin; Woolley, R.; Verhelst, S.

    2007-04-15

    Values of laminar burning velocity, u{sub l}, and the associated strain rate Markstein number, Ma{sub sr}, of H{sub 2}-air mixtures have been obtained from measurements of flame speeds in a spherical explosion bomb with central ignition. Pressures ranged from 0.1 to 1.0 MPa, with values of equivalence ratio between 0.3 and 1.0. Many of the flames soon became unstable, with an accelerating flame speed, due to Darrieus-Landau and thermodiffusive instabilities. This effect increased with pressure. The flame wrinkling arising from the instabilities enhanced the flame speed. A method is described for allowing for this effect, based on measurements of the flame radii at which the instabilities increased the flame speed. This enabled u{sub l} and Ma{sub sr} to be obtained, devoid of the effects of instabilities. With increasing pressure, the time interval between the end of the ignition spark and the onset of flame instability, during which stable stretched flame propagation occurred, became increasingly small and very high camera speeds were necessary for accurate measurement. Eventually this time interval became so short that first Ma{sub sr} and then u{sub l} could not be measured. Such flame instabilities throw into question the utility of u{sub l} for high pressure, very unstable, flames. The measured values of u{sub l} are compared with those predicted by detailed chemical kinetic models of one-dimensional flames. (author)

  3. Forging of compressor blades: Temperature and ram velocity effects

    SciTech Connect

    Saigal, A.; Zhen, K.; Chan, T.S.

    1995-07-01

    Forging is one of the most widely used manufacturing process for making high-strength, structurally integrated, impact and creep-resistant Ti-6Al-4V compressor blades for jet engines. In addition, in modern metal forming technology, finite element analysis method and computer modeling are being extensively employed for initial evaluation and optimization of various processes, including forging. In this study, DEFORM, a rigid viscoplastic two-dimensional finite element code was used to study the effects of initial die temperature and initial ram velocity on the forging process. For a given billet, die temperature and ram velocity influence the strain rate, temperature distribution,and thus the flow stress of the material. The die temperature and the ram velocity were varied over the range 300 to 700 F and 15--25 in./sec, respectively, to estimate the maximum forging load and the total energy required to forge compressor blades. The ram velocity was assumed to vary linearly as a function of stroke. Based on the analysis,it was found the increasing the die temperature from 300 to 700 F decreases the forging loads by 19.9 percent and increases the average temperature of the workpiece by 43 F. Similarly, increasing the initial ram velocity from 15 to 25 in./sec decreases the forging loads by 25.2 percent and increases the average temperature of the workpiece by 36 F. The nodal temperature distribution is bimodal in each case. The forging energy required to forge the blades is approximately 18 kips *in./in.

  4. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    NASA Technical Reports Server (NTRS)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  5. Influence of current velocity and wind speed on air-water gas exchange in a mangrove estuary

    NASA Astrophysics Data System (ADS)

    Ho, David T.; Coffineau, Nathalie; Hickman, Benjamin; Chow, Nicholas; Koffman, Tobias; Schlosser, Peter

    2016-04-01

    Knowledge of air-water gas transfer velocities and water residence times is necessary to study the fate of mangrove derived carbon exported into surrounding estuaries and ultimately to determine carbon balances in mangrove ecosystems. For the first time, the 3He/SF6 dual tracer technique, which has been proven to be a powerful tool to determine gas transfer velocities in the ocean, is applied to Shark River, an estuary situated in the largest contiguous mangrove forest in North America. The mean gas transfer velocity was 3.3 ± 0.2 cm h-1 during the experiment, with a water residence time of 16.5 ± 2.0 days. We propose a gas exchange parameterization that takes into account the major sources of turbulence in the estuary (i.e., bottom generated shear and wind stress).

  6. Pickup Ion Velocity Distributions at Titan: Effects of Spatial Gradients

    NASA Technical Reports Server (NTRS)

    Hartle, R. E.; Sittler, E. C.

    2004-01-01

    The principle source of pickup ions at Titan is its neutral exosphere, extending well above the ionopause into the magnetosphere of Saturn or the solar wind, depending on the moon's orbital position. Thermal and nonthermal processes in the thermosphere generate the distribution of neutral atoms and molecules in the exosphere. The combination of these processes and the range of mass numbers, 1 to over 28, contribute to an exospheric source structure that produces pickup ions with gyroradii that are much larger or smaller than the corresponding scale heights of their neutral sources. The resulting phase space distributions are dependent on the spatial structure of the exosphere as well as that of the magnetic field and background plasma. When the pickup ion gyroradius is less than the source gas scale height, the pickup ion velocity distribution is characterized by a sharp cutoff near the maximum speed, which is twice that of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. This was the case for pickup H(sup +) ions identified during the Voyager 1 flyby. In contrast, as the gyroradius becomes much larger than the scale height, the peak of the velocity distribution in the source region recedes from the maximum speed. Iri addition, the amplitude of the distribution near the maximum speed decreases. These more beam like distributions of heavy ions were not observed from Voyager 1 , but should be observable by more sensitive instruments on future spacecraft, including Cassini. The finite gyroradius effects in the pickup ion velocity distributions are studied by including in the analysis the possible range of spatial structures in the neutral exosphere and background plasma.

  7. Spatially and Temporally Resolved Measurements of Velocity in a H2-air Combustion-Heated Supersonic Jet

    NASA Technical Reports Server (NTRS)

    Bivolaru, Daniel; Cutler, Andrew D.; Danehy, Paul M.; Gaffney, Richard L.; Baurle, Robert a.

    2009-01-01

    This paper presents simultaneous measurements at multiple points of two orthogonal components of flow velocity using a single-shot interferometric Rayleigh scattering (IRS) technique. The measurements are performed on a large-scale Mach 1.6 (Mach 5.5 enthalpy) H2-air combustion jet during the 2007 test campaign in the Direct Connect Supersonic Combustion Test facility at NASA Langley Research Center. The measurements are performed simultaneously with CARS (Coherent Anti-stokes Raman Spectroscopy) using a combined CARS-IRS instrument with a common path 9-nanosecond pulsed, injection-seeded, 532-nm Nd:YAG laser probe pulse. The paper summarizes the measurements of velocities along the core of the vitiated air flow as well as two radial profiles. The average velocity measurement near the centerline at the closest point from the nozzle exit compares favorably with the CFD calculations using the VULCAN code. Further downstream, the measured axial velocity shows overall higher values than predicted with a trend of convergence at further distances. Larger discrepancies are shown in the radial profiles.

  8. Threshold velocities for input of soil particles into the air by desert soils

    SciTech Connect

    Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R.

    1980-10-20

    Desert soils mostly from the Mojave Desert were tested for threshold friction velocity (the friction velocity above which soil erosion takes place) with an open-bottomed portable wind tunnel. Several geomorphological settings were chosen to be representative of much of the surface of the Mojave Desert, for example, playas, alluvial fans, and aeolian features. Variables which increase threshold velocity are decreasing proportion of sand, increasing size of dry aggregates of the soil, and increasing fraction of the soil mass larger than 1 mm. Threshold velocity increases with different types of soil surfaces in the following order: disturbed soils (except disturbed heavy clay soils), sand dunes, alluvial and aeolian sand deposits, disturbed playa soils, skirts of playas, playa centers, and desert pavement (alluvial deposits). 21 references, 5 figures, 6 tables.

  9. Measurements of the Air-flow Velocity in the Cylinder of an Airplane Engine

    NASA Technical Reports Server (NTRS)

    Wenger, Hermann

    1939-01-01

    The object of the present investigation is to determine the velocity in the BMW-VI cylinder of an externally driven single-cylinder test engine at high engine speeds using the hot-wire method of Ulsamer.

  10. Probability distribution functions for the initial liftoff velocities of saltating sand grains in air

    NASA Astrophysics Data System (ADS)

    Cheng, Hong; Zou, Xue-Yong; Zhang, Chun-Lai

    2006-11-01

    Saltating sand grains are the primary component of airborne sand and account for 75% of all transport flux of sand grains. Although they have been widely studied, the microscopic and macroscopic aspects of blown sand physics have not been united, and this has slowed development of this field. The main reason for this is that the bridge (probability distribution functions for initial liftoff velocities of saltating sand grains) between the macroscopic and microscopic research has not been satisfactorily solved because it is difficult to measure the initial liftoff parameters of saltating sand grains and because the underlying theory is lacking. In this paper, we combined theoretical analyses with wind tunnel experiment data to describe the liftoff parameters of saltating sand grains (the horizontal, vertical, and resultant liftoff velocities and angles). On the basis of these data, the liftoff angles follow a LogNorm4 distribution function, whereas the horizontal, vertical, and resultant liftoff velocities follow a Gamma distribution function. We also demonstrated that it is feasible to colligate initial liftoff velocities of saltating sand grains obtained under different frictional wind velocities by different scholars in wind tunnel experiments and comprehensively analyze their distributions. Therefore the distribution functions of initial liftoff velocities of saltating sand grains presented in this paper do a good job of reflecting the underlying physics.

  11. The relationship between ocean surface turbulence and air-sea gas transfer velocity: An in-situ evaluation

    NASA Astrophysics Data System (ADS)

    Esters, L.; Landwehr, S.; Sutherland, G.; Bell, T. G.; Saltzman, E. S.; Christensen, K. H.; Miller, S. D.; Ward, B.

    2016-05-01

    Although the air-sea gas transfer velocity k is usually parameterized with wind speed, the so-called small-eddy model suggests a relationship between k and ocean surface dissipation of turbulent kinetic energy ɛ. Laboratory and field measurements of k and ɛ have shown that this model holds in various ecosystems. Here, field observations are presented supporting the theoretical model in the open ocean. These observations are based on measurements from the Air-Sea Interaction Profiler and eddy covariance CO2 and DMS air-sea flux data collected during the Knorr11 cruise. We show that the model results can be improved when applying a variable Schmidt number exponent compared to a commonly used constant value of 1/2. Scaling ɛ to the viscous sublayer allows us to investigate the model at different depths and to expand its applicability for more extensive data sets.

  12. a Study of Liquid - of Atomization Droplet Size Velocity and Temperature Distribution via Information Theory Spray Interaction with Ambient Air Motion.

    NASA Astrophysics Data System (ADS)

    Li, Xianguo

    Linear temporal instability analysis of a moving thin viscous liquid sheet of uniform thickness in an inviscid gas medium shows that surface tension always opposes, while surrounding gas and relative velocity between the sheet and gas favour the onset and development of instability. For gas Weber number smaller than the density ratio of gas to liquid, liquid viscosity enhances instability; If gas Weber number is slightly larger, aerodynamic and viscosity -induced instabilities interact with each other, displaying complicated effects of viscosity via Ohnesorge number; For much larger values of gas Weber numbers, aerodynamic instability dominates, liquid viscosity reduces disturbance growth rate and increases the dominant wavelength. Droplet probability distribution function (PDF) in sprays is formulated through information theory without resorting to the details of atomization processes. The derived analytical droplet size PDF is Nukiyama-Tanasawa type if conservation of mass is considered alone. If conservation of mass, momentum and energy is all taken into account, the joint droplet size and velocity PDF depends on Weber number, and compares favourably with measurements. Droplet velocity PDF is truncated Gaussian for any specific droplet size. Mean velocity approaches a constant value and velocity variance decreases as droplet size increases. Mean droplet diameters calculated agree well with observations. The computation indicates that atomization efficiency is very low, usually less than 1%. Droplet size, velocity and temperature PDF in sprays under combusting environment has also been derived. Effects of combustion on PDF occur mainly through the heat transferred into liquid sheet prior to its breakup. Experimental studies identify three modes of spray behaviours due to its interaction with various annular air flows, and show that bluff-body type of combustor has ability and easement to control aerodynamically spray angle, shape and droplet trajectories. It is

  13. Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    NASA Technical Reports Server (NTRS)

    Heymsfield, Gerald M.; Tian, Lin; Li, Lihua; Srivastava, C.

    2005-01-01

    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented.

  14. Applications of the Zero-Group-Velocity Lamb Mode for Air-Coupled Ultrasonic Imaging

    NASA Astrophysics Data System (ADS)

    Holland, Stephen D.; Song, Jun-Ho; Evan, Victoria L.; Chimenti, D. E.

    2005-04-01

    Airborne ultrasound couples particularly well into plates at the zero-group-velocity point of the first order symmetric (S1) Lamb mode. Applications of this mode to ultrasonic imaging of plate-like structures are discussed. The sensitivity and high Q of this mode makes it ideal for imaging. Images from a wide variety of materials and samples, including composites and honeycomb structures are presented. Transmission at the zero-group-velocity frequency is shown to be particularly sensitive to nearby flaws and discontinuities, and is therefore suitable for wide-area scanning for cracks or manufacturing flaws.

  15. After-effects of using a weighted bat on subsequent swing velocity and batters' perceptions of swing velocity and heaviness.

    PubMed

    Otsuji, Tamiki; Abe, Masafu; Kinoshita, Hiroshita

    2002-02-01

    In baseball and softball, warm-up swings with a weighted bat have been believed to increase swing velocity when an ordinary bat is used in the subsequent competitive situation. The purpose of this study was to investigate the after-effects of using a weighted bat on subsequent swing velocity and batters' perceptions of swing velocity and heaviness. Eight men in varsity softball and baseball hit a ball suspended from the ceiling 45 times (3 sets of 15 trials). For each set, the initial 5 trials were done using an ordinary 920-g wooden bat (Control condition), and the following 5 trials by a bat with an 800-g bat ring (Weighted condition), and the final 5 trials again by the ordinary bat (post-Weighted condition). Analysis of variance showed a significant decrease of 3.3% in the measured linear velocity of the bat prior to impact with the ball for the first swing of the post-Weighted condition compared with the Control condition. From the second swing the velocity returned to the level of the Control condition. Subjective judgment of the heaviness and velocity of swings for the Weighted and post-Weighted conditions by each participant showed that the ordinary bat felt lighter and swing speed felt faster for the post-Weighted condition. The advantage of the warm-up with a weighted bat was thus psychological and not biomechanical. PMID:11883550

  16. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  17. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.

    PubMed

    Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J

    2010-01-01

    Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309

  18. Velocity autocorrelation function of a dispersion of heavy particles in a turbulent flow: on the effect of interparticle collisions

    NASA Astrophysics Data System (ADS)

    Avila, R.; Rodriguez-Meza, M. A.

    2004-04-01

    The effect of particle-to-particle interactions on the dispersion and on the velocity auto-correlation function of heavy particles in a turbulent flow, is presented. The inter-particle collision process is based on a direct numerical simulation approach, which requires that all the particles be simultaneously tracked through the flow field. In the first part of the paper, the turbulent characteristics of the velocity of non-colliding heavy particles which disperse in a vertical, nearly isotropic, grid generated decaying turbulence air flow, are presented. In the second part of this investigation, the solid particles are allowed to collide. The numerical predictions confirm the fact that the inter-particle collisions promote a decrease of the lateral particle dispersion, the particle velocity autocorrelation function and the mean lateral velocity of the particles.

  19. Effect of gas velocity on the weakly nonlinear instability of a planar viscous sheet

    SciTech Connect

    Yang, Li-Jun Chen, Pi-Min; Wang, Chen

    2014-07-15

    A weakly nonlinear spatial instability of a two-dimensional planar viscous sheet for sinuous disturbances in a co-flowing inviscid gas stream is investigated theoretically, with an emphasis on the effect of the surrounding gas velocity. The solutions of the second-order interface disturbances are derived and the wave deformation has been computed. The results indicate that the second-order surface disturbance of the fundamental sinuous mode is varicose, which causes the thinning and the subsequent breakup of the liquid sheet. The nonlinear behaviors of the planar sheet are quite sensitive to variations in gas-to-liquid velocity ratio. The deviation of the velocity ratio from the value of unity leads to a larger growth rate, a larger second-order initial amplitude, and a shorter breakup length, and therefore enhances the instability. The growth rates predicted by the present nonlinear analysis according to the shortest breakup length are generally smaller than the linear predictions and can better conform to the experimental measures of Barreras et al. [“Linear instability analysis of the viscous longitudinal perturbation on an air-blasted liquid sheets,” Atomization Sprays 11, 139 (2001)]. Furthermore, the wave deformations of the most unstable disturbances are presented. The nonlinear instability of the planar sheet for a fixed velocity difference is performed. An equal increase of the gas and liquid velocity reduces the spatial growth rate and increases the breakup length, but generally has no influences on the second-order initial amplitude and the wavelength of the disturbance.

  20. Effects of radial and circumferential inlet velocity profile distortions on performance of a short-length double-annular ram induction combustor

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Perkins, P. J.

    1972-01-01

    Inlet air velocity profile tests were conducted on a full-scale short-length 102-centimeter-diameter annual combustor designed for advanced gas turbine engine applications. The inlet profiles studied include radial distortions that were center peaked, and tip peaked, as well as a circumferential distortion which was center peaked for one-third of the circumference and flat for the other two-thirds. An increase in combustor pressure loss was the most significant effect of the radial air velocity distortions. With the circumferential distortion, exit temperature pattern factor doubled when compared to a flat velocity profile.

  1. The influence of topography on vertical velocity of air in relation to severe storms near the Southern Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Pessano, H.; Hierro, R.; Santos, J. R.; Llamedo, P.; Alexander, P.

    2015-04-01

    On the basis of 180 storms which took place between 2004 and 2011 over the province of Mendoza (Argentina) near to the Andes Range at southern mid-latitudes, we consider those registered in the northern and central crop areas (oases). The regions affected by these storms are currently protected by an operational hail mitigation project. Differences with previously reported storms detected in the southern oasis are highlighted. Mendoza is a semiarid region situated roughly between 32S and 37S at the east of the highest Andes top. It forms a natural laboratory where different sources of gravity waves, mainly mountain waves, occur. In this work, we analyze the effects of flow over topography generating mountain waves and favoring deep convection. The joint occurrence of storms with hail production and mountain waves is determined from mesoscale numerical simulations, radar and radiosounding data. In particular, two case studies that properly represent diverse structures observed in the region are considered in detail. A continuous wavelet transform is applied to each variable and profile to detect the main oscillation modes present. Simulated temperature profiles are validated and compared with radiosounding data. Each first radar echo, time and location are determined. The necessary energy to lift a parcel to its level of free convection is tested from the Convective Available Potential Energy and Convection Inhibition. This last parameter is compared against the mountain waves' vertical kinetic energy. The time evolution and vertical structure of vertical velocity and equivalent potential temperature suggest in both cases that the detected mountain wave amplitudes are able to provide the necessary energy to lift the air parcel and trigger convection. A simple conceptual scheme linking the dynamical factors taking place before and during storm development is proposed.

  2. Effects of diameter and temperature on XTX-8004 detonation velocity

    SciTech Connect

    Campos, C.A.

    1980-10-01

    This study was performed to determine the dependence of XTX-8004 steady detonation velocity on charge diameter and temperature. The tests were performed for four different diameters at three temperatures using a standard 4-track detonation velocity block and corresponding printed circuit ionization switch plate. The explosive was loaded in the detonation velocity block to a nominal density of 1.553 g/cc. Measurements obtained from two samples per temperature indicate the critical diameter is less than 0.178 cm. A relationship between detonation velocity and density due to temperature was established using experimental measurements.

  3. Measuring air-sea gas exchange velocities in a large scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2014-06-01

    In this study we present gas exchange measurements conducted in a large scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.8 to 15 m s-1 conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of three) was observed for N2O under a surfactant covered water surface. In contrast, the surfactant affected CH3OH, the high solubility tracer only weakly.

  4. Size and Velocity Characteristics of Droplets Generated by Thin Steel Slab Continuous Casting Secondary Cooling Air-Mist Nozzles

    NASA Astrophysics Data System (ADS)

    Minchaca M, J. I.; Castillejos E, A. H.; Acosta G, F. A.

    2011-06-01

    Direct spray impingement of high temperature surfaces, 1473 K to 973 K (1200 °C to 700 °C), plays a critical role in the secondary cooling of continuously cast thin steel slabs. It is known that the spray parameters affecting the local heat flux are the water impact flux w as well as the droplet velocity and size. However, few works have been done to characterize the last two parameters in the case of dense mists ( i.e., mists with w in the range of 2 to 90 L/m2s). This makes it difficult to rationalize how the nozzle type and its operating conditions must be selected to control the cooling process. In the present study, particle/droplet image analysis was used to determine the droplet size and velocity distributions simultaneously at various locations along the major axis of the mist cross section at a distance where the steel strand would stand. The measurements were carried out at room temperature for two standard commercial air-assisted nozzles of fan-discharge type operating over a broad range of conditions of practical interest. To achieve statistically meaningful samples, at least 6000 drops were analyzed at each location. Measuring the droplet size revealed that the number and volume frequency distributions were fitted satisfactorily by the respective log-normal and Nukiyama-Tanasawa distributions. The correlation of the parameters of the distribution functions with the water- and air-nozzle pressures allowed for reasonable estimation of the mean values of the size of the droplets generated. The ensemble of measurements across the mist axis showed that the relationship between the droplet velocity and the diameter exhibited a weak positive correlation. Additionally, increasing the water flow rate at constant air pressure caused a decrease in the proportion of the water volume made of finer droplets, whereas the volume proportion of faster droplets augmented until the water flow reached a certain value, after which it decreased. Diminishing the air

  5. Effect of atomization air on droplet dynamics of spray flames

    SciTech Connect

    Presser, C.; Semerjian, H.G. . Center for Chemical Technology); Gupta, A.K. . Dept. of Mechanical Engineering)

    1988-01-01

    Fuel spray combustions is an important part of a wide variety of propulsion and power systems such as furnaces and gas turbine combustors, afterburners, fuel-injection internal combustion engines, liquid rocket engines, etc. Recent studies using air-assist nozzles have shown that the design and fabrication of these nozzles can directly influence spray circumferential uniformity, i.e., the presence of asymmetrical fuel flux profiles in combustors. The practical implications of these fuel flux nonuniformities are that they seriously alter the spray structure, which subsequently affects droplet/air interactions, local fuel/air mixing, overall flame characteristics and combustor performance, and pollutant emission levels. In addition, the effect of aerodynamic factors on spray characteristics has been investigated. This paper discusses the effect of atomization air on the droplet dynamics of spray flames formed by an air-assist nozzle. Presented are spatial distributions of mean droplet velocity and their probability distributions, which provide quantitative information for examination of the observed spray flame features.

  6. Predicting S-wave velocities for unconsolidated sediments at low effective pressure

    USGS Publications Warehouse

    Lee, Myung W.

    2010-01-01

    Accurate S-wave velocities for shallow sediments are important in performing a reliable elastic inversion for gas hydrate-bearing sediments and in evaluating velocity models for predicting S-wave velocities, but few S-wave velocities are measured at low effective pressure. Predicting S-wave velocities by using conventional methods based on the Biot-Gassmann theory appears to be inaccurate for laboratory-measured velocities at effective pressures less than about 4-5 megapascals (MPa). Measured laboratory and well log velocities show two distinct trends for S-wave velocities with respect to P-wave velocity: one for the S-wave velocity less than about 0.6 kilometer per second (km/s) which approximately corresponds to effective pressure of about 4-5 MPa, and the other for S-wave velocities greater than 0.6 km/s. To accurately predict S-wave velocities at low effective pressure less than about 4-5 MPa, a pressure-dependent parameter that relates the consolidation parameter to shear modulus of the sediments at low effective pressure is proposed. The proposed method in predicting S-wave velocity at low effective pressure worked well for velocities of water-saturated sands measured in the laboratory. However, this method underestimates the well-log S-wave velocities measured in the Gulf of Mexico, whereas the conventional method performs well for the well log velocities. The P-wave velocity dispersion due to fluid in the pore spaces, which is more pronounced at high frequency with low effective pressures less than about 4 MPa, is probably a cause for this discrepancy.

  7. Air damping effect on the air-based CMUT operation

    NASA Astrophysics Data System (ADS)

    Cha, Bu-Sang; Kanashima, Takeshi; Lee, Seung-Mok; Okuyama, Masanori

    2015-08-01

    The vibration amplitude, damping ratio and viscous damping force in capacitive micromachinedultrasonic transducers (CMUTs) with a perforated membrane have been calculated theoretically and compared with the experimental data on its vibration behavior. The electrical bias of the DC and the AC voltages and the operation frequency conditions influence the damping effect because leads to variations in the gap height and the vibration velocity of the membrane. We propose a new estimation method to determine the damping ratio by the decay rate of the vibration amplitudes of the perforated membrane plate are measured using a laser vibrometer at each frequency, and the damping ratios were calculated from those results. The influences of the vibration frequency and the electrostatic force on the damping effect under the various operation conditions have been studied.

  8. The effect of dilatancy on velocity anisotropy in Westerly granite

    NASA Technical Reports Server (NTRS)

    Soga, N.; Mizutani, H.; Spetzler, H.; Martin, R. J., III

    1978-01-01

    Jacketed samples of Westerly granite were fractured at confining pressures up to 1 kbar, and compressional and horizontally as well as vertically polarized shear velocities were measured in orthogonal directions perpendicular to the compression axis. Changes occurring with increased strain are described, and the velocity data were analyzed by application of the Anderson et al (1974) approach. Observed and calculated velocities are found to be in good agreement, and the degree of dilatancy was determined from the differences between the strains measured perpendicularly to the compression axis and the estimated elastic strains in those directions.

  9. Pulse modulation effect on velocity fringes. [holography of moving objects

    NASA Technical Reports Server (NTRS)

    Decker, A. J.

    1975-01-01

    The degradation of a hologram caused by object motion can be utilized to measure the rate of change of the length of an object beam. A rectangular shaped laser pulse is ordinarily used to illuminate the object in such an investigation. The velocity fringes obtained are considered in the calculation. There are no velocity fringes for Gaussian shaped pulses or for the pulses produced by a Q-switched ruby laser. It is shown with the aid of a mathematical analysis that a pulse of oscillating intensity or a pulse train will yield velocity fringes regardless of the shape of an individual pulse.

  10. Health effects of outdoor air pollution

    PubMed Central

    Abelsohn, Alan; Stieb, Dave M.

    2011-01-01

    Abstract Objective To inform family physicians about the health effects of air pollution and to provide an approach to counseling vulnerable patients in order to reduce exposure. Sources of information MEDLINE was searched using terms relevant to air pollution and its adverse effects. We reviewed English-language articles published from January 2008 to December 2009. Most studies provided level II evidence. Main message Outdoor air pollution causes substantial morbidity and mortality in Canada. It can affect both the respiratory system (exacerbating asthma and chronic obstructive pulmonary disease) and the cardiovascular system (triggering arrhythmias, cardiac failure, and stroke). The Air Quality Health Index (AQHI) is a new communication tool developed by Health Canada and Environment Canada that indicates the level of health risk from air pollution on a scale of 1 to 10. The AQHI is widely reported in the media, and the tool might be of use to family physicians in counseling high-risk patients (such as those with asthma, chronic obstructive pulmonary disease, or cardiac failure) to reduce exposure to outdoor air pollution. Conclusion Family physicians can use the AQHI and its health messages to teach patients with asthma and other high-risk patients how to reduce health risks from air pollution. PMID:21841106

  11. Effects of dextran sulfate on tracheal mucociliary velocity in dogs.

    PubMed

    Sudo, E; Boyd, W A; King, M

    2000-01-01

    We have shown that low molecular weight dextran, as a potential mucolytic agent, reduced the viscoelasticity and spinnability of cystic fibrosis (CF) sputum and improved its ciliary transportability in vitro; it also reduced viscoelasticity of healthy dog mucus in in vitro testing. In anesthetized dogs, dextran administered by aerosol at 65 mg/mL increased tracheal mucus velocity, but this increase was not sustained for higher concentrations. The purpose of the present study is to evaluate whether low mol. wt. dextran sulfate, a charged oligosaccharide, exhibits similar effects to previously tested neutral dextran when administered by aerosol to anesthetized dogs in terms of mucus rheology and mucociliary clearance rate. Healthy mongrel dogs were anesthetized with pentobarbital and intubated. Aerosols of Ringer's solution or dextran sulfate (m.w. 5000) dissolved in Ringer's were generated by Pari LC STAR nebulizer, and delivered during 30-min periods of spontaneous breathing. Tracheal transepithelial potential difference (PD, using agar filled electrodes) and tracheal mucociliary velocity (TMV, by charcoal marker particle transport) were measured under bronchoscopic control, and mucus for viscoelasticity analysis by magnetic rheometry was collected by the endotracheal tube method. We performed experiments in seven dogs, involving 30-min administrations of aerosol, separated by 30-min periods of no aerosol. All dogs received inhalations of 6.5 mg/mL, 20 mg/mL, and 65 mg/mL dextran sulfate. Tracheal mucus viscoelasticity (average log G* over 1-100 rad/s) decreased progressively with increasing dose of dextran sulfate; for the highest concentration (65 mg/mL), log G* decreased by a factor of 2.61 (p = 0.021). A modest increase in the TMV was observed for the first dose of dextran sulfate (128% of baseline at 6.5 mg/mL, p = 0.066); thereafter TMV was stable. PD increased significantly at each concentration of dextran sulfate compared with Ringer control; however, there

  12. Human health effects of air pollution.

    PubMed Central

    Folinsbee, L J

    1993-01-01

    Over the past three or four decades, there have been important advances in the understanding of the actions, exposure-response characteristics, and mechanisms of action of many common air pollutants. A multidisciplinary approach using epidemiology, animal toxicology, and controlled human exposure studies has contributed to the database. This review will emphasize studies of humans but will also draw on findings from the other disciplines. Air pollutants have been shown to cause responses ranging from reversible changes in respiratory symptoms and lung function, changes in airway reactivity and inflammation, structural remodeling of pulmonary airways, and impairment of pulmonary host defenses, to increased respiratory morbidity and mortality. Quantitative and qualitative understanding of the effects of a small group of air pollutants has advanced considerably, but the understanding is by no means complete, and the breadth of effects of all air pollutants is only partially understood. PMID:8354181

  13. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  14. The effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings

    NASA Astrophysics Data System (ADS)

    Karban, Robert, Jr.

    The purpose of this study was to investigate the effects of intensification pressure, gate velocity, and intermediate shot velocity on the internal quality of aluminum die castings. An experimental design was developed to analyze two levels of intensification pressure, two levels of gate velocity, and four levels of intermediate shot velocity. These parameters were chosen because of the ease of their manipulation on the manufacturing floor in an effort to develop an optimum process for a given die design. Internal casting quality is measured by the density of the casting produced as compared to the theoretical density of the alloy being molded. The study also included monitoring of the biscuit length of the samples collected. A statistical analysis was conducted to determine any correlation between or among any of the independent variables or the other parameter monitored. The results of this study indicate that there is a statistical significance among and between the independent variables that were controlled in this experiment. The results also indicated a significant positive relationship between biscuit length and the density of the resultant castings.

  15. Effects of closed immersion filtered water flow velocity on the ablation threshold of bisphenol A polycarbonate during excimer laser machining

    NASA Astrophysics Data System (ADS)

    Dowding, Colin; Lawrence, Jonathan

    2010-04-01

    A closed flowing thick film filtered water immersion technique ensures a controlled geometry for both the optical interfaces of the flowing liquid film and allows repeatable control of flow-rate during machining. This has the action of preventing splashing, ensures repeatable machining conditions and allows control of liquid flow velocity. To investigate the impact of this technique on ablation threshold, bisphenol A polycarbonate samples have been machined using KrF excimer laser radiation passing through a medium of filtered water flowing at a number of flow velocities, that are controllable by modifying the liquid flow-rates. An average decrease in ablation threshold of 7.5% when using turbulent flow velocity regime closed thick film filtered water immersed ablation, compared to ablation using a similar beam in ambient air; however, the use of laminar flow velocities resulted in negligible differences between closed flowing thick film filtered water immersion and ambient air. Plotting the recorded threshold fluence achieved with varying flow velocity showed that an optimum flow velocity of 3.00 m/s existed which yielded a minimum ablation threshold of 112 mJ/cm 2. This is attributed to the distortion of the ablation plume effected by the flowing immersion fluid changing the ablation mechanism: at laminar flow velocities Bremsstrahlung attenuation decreases etch rate, at excessive flow velocities the plume is completely destroyed, removing the effect of plume etching. Laminar flow velocity regime ablation is limited by slow removal of debris causing a non-linear etch rate over ' n' pulses which is a result of debris produced by one pulse remaining suspended over the feature for the next pulse. The impact of closed thick film filtered water immersed ablation is dependant upon beam fluence: high fluence beams achieved greater etch efficiency at high flow velocities as the effect of Bremsstrahlung attenuation is removed by the action of the fluid on the plume; low

  16. Air pollution holiday effect in metropolitan Kaohsiung

    NASA Astrophysics Data System (ADS)

    Tan, P.; Chen, P. Y.

    2014-12-01

    Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.

  17. Effect of tank liquid acoustic velocity on Doppler string phantom measurements.

    PubMed

    Goldstein, A

    1991-03-01

    The quantitative effects of degassed water in string phantom tank Doppler measurements are derived theoretically. The Doppler parameter measurements considered are range gate registration, range gate profile, image flow angle measurements, and velocity calculation. The equipment velocity calculation is demonstrated to have an appreciable error which is due to the water acoustic velocity and the transducer acquisition geometry. A velocity calibration technique is proposed that only needs a simple multiplicative factor to compensate for the water in the tank. PMID:2027185

  18. Air-driven Brazil nut effect

    NASA Astrophysics Data System (ADS)

    Naylor, M.; Swift, Michael; King, P.

    2003-07-01

    A large heavy object may rise to the top of a bed of smaller particles under the influence of vertical vibration, the “Brazil nut effect.” Recently it has been noted that interstitial air can influence the Brazil nut rise time. Here we report that the air movement induced by vertical vibration produces a very strong Brazil nut effect for fine granular beds. We use a porous-bottomed box to investigate the mechanism responsible for this effect and to demonstrate that it is related to the piling of fine beds, first reported by Chladni and studied by Faraday. Both effects are due to the strong interaction of the fine particles with the air, as it is forced through the bed by the vibration.

  19. The velocity effects of large historical earthquakes in Chinese mainland

    NASA Astrophysics Data System (ADS)

    Tan, Weijie; Dong, Danan; Wu, Bin

    2016-04-01

    Accompanying with the collision between Indian and Eurasian plates, China has experienced decadal large earthquakes over the past 100 years. These large earthquakes are mainly located along several seismic belts in Tien Shan, Tibet Plateau, and Northern China. The postseismic deformation and stress accumulation induced by the historical earthquakes is important for assess the contemporary seismic hazards. The postseismic deformation induced by historical large earthquakes also influences the observed present day velocity field. The relaxation of the viscoelastic asthenosphere is modeled on a layered spherically symmetric earth with Maxwell rheology. The layer's thickness, the density p and the P-wave velocity Vp are from PREM. The shear modulus are derived from the p and Vp. The viscosity between lower crust and upper mantle adopted in this study is 1×1019 Pa.s. Viscoelastic relaxation contributions due to 34 historical large earthquakes in China from 1900 to 2001 are calculated using VISCO1D-v3 program developed by Pollitz (1997). We calculated the model predicted velocity field in 2015 in China caused by historical big earthquakes. The pattern of predicted velocity field is consistent with the present movement of crust, with peak velocities reaching 6mm yr‑1. The region of Southwestern China moves northeastwards, and also a significant rotation occurred at the edge of the Tibetan Plateau. The velocity field caused by historical large earthquakes provides a base to isolate the velocity field caused by the contemporary tectonic movement from the geodetic observations. It also provides critical information to investigate the regional stress accumulation and to assess the mid-term to long-term earthquake risk.

  20. Effect of water velocity on hydroponic phytoremediation of metals.

    PubMed

    Weiss, P; Westbrook, A; Weiss, J; Gulliver, J; Biesboer, D

    2014-01-01

    The influence of flow velocity on the uptake of cadmium, copper, lead, and zinc by hydroponically grown soft stem bulrush (Scirpus validus) was investigated. The roots of the plants were exposed to a continually recycled, nutrient enriched, synthetic stormwater. Plants were divided into groups and the roots of each group exposed to different but constant water velocities. The metal concentrations in the roots and stems were compared after three weeks. Metal accumulation in roots was increased for water velocities between 1.3 and 4.0 cm s(-1). In a second experiment, the roots of all plants were exposed to a single velocity and the root and stem metal concentrations were determined as a function of time. Metal concentrations in the roots approached a constant value after three weeks. After this time, accumulation of metals depends upon root growth. The results suggest that long-term accumulation by the roots of hydroponic Scirpus validus can be increased by increasing water velocity, which implies that floating islands with movement will retain more metals from the water column. PMID:24912210

  1. Effect of water on carbon monoxide-oxygen flame velocity

    NASA Technical Reports Server (NTRS)

    Mcdonald, Glen E

    1954-01-01

    The flame velocities were measured of 20 percent oxygen and 80 percent carbon monoxide mixtures containing either light water or heavy water. The flame velocity increased from 34.5 centimeters per second with no added water to about 104 centimeters per second for a 1.8 percent addition of light water and to 84 centimeters per second for an equal addition of heavy water. The addition of heavy water caused greater increases in flame velocity with equilibrium hydrogen-atom concentration than would be predicted by the Tanford and Pease square-root relation. The ratio of the flame velocity of a mixture containing light water to that of a mixture containing heavy water was found to be 1.4. This value is the same as the ratio of the reaction rate of hydrogen to that of deuterium and oxygen. A ratio of reaction rates of 1.4 would also be required for the square-root law to give the observed ratio of flame-velocity changes.

  2. Air-pollution effects on biodiversity

    SciTech Connect

    Barker, J.R.; Tingey, D.T.

    1992-04-01

    To address the issues of air pollution impacts on biodiversity, the U.S. Environmental Protection Agency, Environmental Research Laboratory in Corvallis, OR, the U.S. Fish and Wildlife Service National Fisheries Research Center in Leetown, and the Electric Power Research Institute convened a workshop to evaluate current knowledge, identify information gaps, provide direction to research and assess policy issues. In order to obtain the most current and authoritative information possible, air pollution and biodiversity experts were invited to participate in a workshop and author the papers that make up this report. Each paper was presented and discussed, then collected in this document. The material has been organized into four parts: an introduction, an overview of air pollution exposure and effects, the consequences of air pollution on biodiversity, and policy issues and research needs.

  3. Air pollutants effects on forest ecosystems

    SciTech Connect

    Not Available

    1985-01-01

    This book presents the papers given at a conference on the effects of acid rain on forests. The conference was sponsored by the National Acid Precipitation Assessment Program (NAPAP). Topics considered at the conference included the status of US research on acid deposition and its effects contributing factors to the decline of forests, evidence for effects on ecosystems, the effects of air pollutants on forest ecosystems in North America and Europe, forest management, and future scientific research programs and management approaches.

  4. Effects of superficial gas velocity on process dynamics in bioreactors

    NASA Astrophysics Data System (ADS)

    Devi, T. T.; Kumar, B.

    2014-06-01

    Present work analyzes the flow hydrodynamics and mass transfer mechanisms in double Rushton and CD-6 impeller on wide range (0.0075-0.25 m/s) of superficial gas velocity ( v g) in a gas-liquid phase bioreactor by employing computational fluid dynamics (CFD) technique. The volume averaged velocity magnitude and dissipation rate are found higher with increasing superficial gas velocity. Higher relative power draw ( P g/ P 0) is predicted in CD-6 than the Rushton impeller but no significant difference in volume averaged mass transfer coefficient ( k L a) observed between these two types of impeller. The ratio of power draw with mass transfer coefficient has been found higher in CD-6 impeller (25-50 %) than the Rushton impeller.

  5. On the coefficients of small eddy and surface divergence models for the air-water gas transfer velocity

    NASA Astrophysics Data System (ADS)

    Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.

    2015-03-01

    Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.

  6. Effect of enclosure shape on natural convection velocities

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.

    1982-01-01

    A numerical analysis was performed to compare natural convection velocities in two dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 x 1 aspect ratio rectangles, horizontal and upright half circles, diamond. In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 1000 and 5000 with the temperature difference taken to be across (1) the maximum horizontal dimension, (2) the median horizontal line (line through centroid) and (3) the horizontal distance such that the temperature gradient is the same for shapes of equal area. For the class of shapes including the square, upright half circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension (condition (a)). The velocities for the horizontal rectangle and half circle were found to be approximately one half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area.

  7. Effect of air deflectors on fan performance in tunnel-ventilated broiler houses with a dropped ceiling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air velocity is a critical design parameter for modern commercial broiler houses, owing to the beneficial effects of increased cooling on live performance and thermal comfort in broiler chickens. As a result, design velocities have increased over the last 15 years and broiler growers have installed ...

  8. Velocity effects on an accelerated Unruh-DeWitt detector

    NASA Astrophysics Data System (ADS)

    Abdolrahimi, Shohreh

    2014-07-01

    We analyze the response of an Unruh-DeWitt detector moving along an unbounded spatial trajectory in a two-dimensional spatial plane with constant independent magnitudes of both the four-acceleration and of a timelike proper time derivative of the four-accelration. In a Fermi-Walker frame moving with the detector, the direction of the acceleration rotates at a constant rate around a great circle. This is the motion of a charge in a uniform electric field when in the frame of the charge there is both an electric and a magnetic field. We compare the response of this detector to a detector moving with constant velocity in a thermal bath of the corresponding temperature for non-relativistic velocities and two regimes: ultraviolet and infrared. In the infrared regime, the detector in the Minkowski space-time moving along the spatially two-dimensional trajectory should move with a higher speed to keep up with the same excitation rate of the inertial detector in a thermal bath. In the ultraviolet regime, the dominant modification in the response of this detector compared with the blackbody spectrum of Unruh radiation is the same as the dominant modification perceived by a detector moving with constant velocity in a thermal bath.

  9. Doppler effects on velocity spectra observed by MST radars

    NASA Technical Reports Server (NTRS)

    Scheffler, A. O.; Liu, C. H.

    1986-01-01

    Recently, wind data from mesophere-stratosphere-troposphere (MST) radars have been used to study the spectra of gravity waves in the atmosphere (Scheffler and Liu, 1985; VanZandt et al., 1985). Since MST radar measures the line-of-sight Doppler velocities, it senses the components of the wave-associated velocities along its beam directions. These components are related through the polarization relations which depend on the frequency and wave number of the wave. Therfore, the radar-observed velocity spectrum will be different from the original gravity-wave spectrum. Their relationship depends on the frequency and wave number of the wave as well as the propagation geometry. This relation can be used to interpret the observed data. It can also be used to test the assumption of gravity-wave spectrum (Scheffler and Liu, 1985). In deriving this relation, the background atmosphere has been assumed to be motionless. Obviously, the Doppler shift due to the background wind will change the shape of the gravity-wave power spectrum as well as its relation with the radar-observed spectrum. Here, researcher's investigate these changes.

  10. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  11. The effects of alteration and porosity on seismic velocities in oceanic basalts and diabases

    NASA Astrophysics Data System (ADS)

    Carlson, R. L.

    2014-12-01

    velocities in the lavas that cap normal oceanic crust are affected by both crack porosity and alteration of the primary mineral phases, chiefly to clays. Porosity accounts for 75-80% of the velocity variation in sonic log velocities in the lava sections of Holes 504B and 1256D, but the effect of alteration on the properties of the basalts has not been assessed. In this analysis, the grain velocities in basalt and diabase samples are estimated from an empirical linear relationship between grain density and the P wave modulus. The theoretical velocity in fresh, zero-porosity basalt, or diabase is 6.96 ± 0.07 km/s. Grain velocities in the diabase samples are statistically indistinguishable from the theoretical velocity, and show no variation with depth; alteration does not significantly affect the velocities in the diabase samples from Hole 504B. This result is consistent with previous analyses, which demonstrated that velocities in the dikes are controlled by crack porosity. In basalt lab samples, alteration reduces the average sample grain velocity to 6.74 ± 0.02 km/s; cracks at the sample scale further reduce the velocity to 5.86 ± 0.03 km/s, and large-scale cracks in the lavas reduce the average in situ velocity to 5.2 ± 0.3 km/s. Cracks account for nearly 90% of the difference between seismic (in situ) velocities and the theoretical velocity in the unaltered solid material. Basalt grain velocities show a small, but significant systematic increase with depth; the influence of alteration decreases with depth in the lavas, reaching near zero at the base of the lavas in Holes 504B and 1256D. This article was corrected on 16 JAN 2015. See the end of the full text for details.

  12. The Effect of Guided Practice on Overhand-Throw Ball Velocities of Kindergarten Children.

    ERIC Educational Resources Information Center

    Halverson, Lolas E.; And Others

    This report, the first of three on the effects of teaching kindergarten children the overhand throw, compares the children's final ball velocities to those of two control groups. Later reports will discuss the effect of instruction on the children's movement processes and the relationship between velocity and movement process. Forty-five children…

  13. Effects of walk-by and sash movement on contaminant leakage of air curtain-isolated fume hood.

    PubMed

    Huang, Rong Fung; Chen, Hong Da; Hung, Chien-Hsiung

    2007-12-01

    The effects of the walk-by motion and sash movement on the containment leakage of an air curtain-isolated fume hood were evaluated and compared with the results of a corresponding conventional fume hood. The air curtain was generated by a narrow planar jet issued from the double-layered sash and a suction slot-flow arranged on the floor of the hood just behind the doorsill. The conventional fume hood used for comparison had the major dimensions identical to the air-curtain hood. SF tracer-gas concentrations were released and measured following the prEN 14175-3:2003 protocol to examine the contaminant leakage levels. Experimental results showed that operating the air-curtain hood at the suction velocity above about 6 m/s and jet velocity about 1 m/s could provide drastically high containment performance when compared with the corresponding conventional fume hood operated at the face velocity of 0.5 m/s. The total air flow required for the air-curtain hood operated at 6 m/s suction velocity and 1 m/s jet velocity was about 20% less than that exhausted by the conventional fume hood. If the suction velocity of the air-curtain hood was increased above 8 m/s, the containment leakage during dynamic motions could be reduced to ignorable level (about 10(3) ppm). PMID:18212476

  14. Measuring air-sea gas-exchange velocities in a large-scale annular wind-wave tank

    NASA Astrophysics Data System (ADS)

    Mesarchaki, E.; Kräuter, C.; Krall, K. E.; Bopp, M.; Helleis, F.; Williams, J.; Jähne, B.

    2015-01-01

    In this study we present gas-exchange measurements conducted in a large-scale wind-wave tank. Fourteen chemical species spanning a wide range of solubility (dimensionless solubility, α = 0.4 to 5470) and diffusivity (Schmidt number in water, Scw = 594 to 1194) were examined under various turbulent (u10 = 0.73 to 13.2 m s-1) conditions. Additional experiments were performed under different surfactant modulated (two different concentration levels of Triton X-100) surface states. This paper details the complete methodology, experimental procedure and instrumentation used to derive the total transfer velocity for all examined tracers. The results presented here demonstrate the efficacy of the proposed method, and the derived gas-exchange velocities are shown to be comparable to previous investigations. The gas transfer behaviour is exemplified by contrasting two species at the two solubility extremes, namely nitrous oxide (N2O) and methanol (CH3OH). Interestingly, a strong transfer velocity reduction (up to a factor of 3) was observed for the relatively insoluble N2O under a surfactant covered water surface. In contrast, the surfactant effect for CH3OH, the high solubility tracer, was significantly weaker.

  15. A one-dimensional numerical model for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Leon, A.; Apte, S.

    2015-12-01

    The presence of pressurized air pockets in combined sewer systems is argued to produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows through vertical shafts. A 1D numerical model is developed for predicting pressure and velocity oscillations of a compressed air-pocket in a vertical shaft which in turn attempts to simulate geyser like flows. The vertical shaft is closed at the bottom and open to ambient pressure at the top. Initially, the lower section of the vertical shaft is filled with compressed air and the upper section with water. The interaction between the pressurized air pocket and the water column in the vertical shaft exhibits an oscillatory motion of the water column that decays over time. The model accounts for steady and unsteady friction to estimate the energy dissipation. The model also includes the falling flow of water around the external perimeter of the pressurized air pocket by assuming that any expansion in the pressurized air pocket would result in the falling volume of water. The acceleration of air-water interface is predicted through a force balance between the pressurized air pocket and the water column combined with the Method of Characteristics that resolves pressure and velocity within the water column. The expansion and compression of the pressurized air pocket is assumed to follow either isothermal process or adiabatic process. Results for both assumptions; isothermal and adiabatic processes, are presented. The performance of the developed 1D numerical model is compared with that of a commercial 3D CFD model. Overall, a good agreement between both models is obtained for pressure and velocity oscillations. The paper will also present a sensitivity analysis of the 3D CFD model.

  16. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  17. The Air Toxics Health Effects Database (ATHED)

    SciTech Connect

    Woodall, George M. Smith, Roy L.

    2008-11-15

    The Air Toxics Health Effects Database (ATHED) is currently used by the EPA's Office of Air Quality Planning and Standards (OAQPS) to support risk assessments for the Residual Risk Program. An assessment of the residual risk is required to be performed at a specified time (typically 8years) following the promulgation of a technology-based Maximum Achievable Control Technologies (MACT) standard. The goal of the Residual Risk Program is to assure that the risk that remains after MACT standards are implemented (i.e., the 'residual risk') is acceptable, and if not, to propose additional regulations to mitigate those risks. ATHED maintains all available reference values for each chemical as separate data records, and includes values for all exposure durations (acute, short-term, subchronic and chronic). These values are used as benchmarks to determine acceptable exposure levels to the hazardous air pollutants (HAPs) listed in Section 112 of the Clean Air Act. ATHED also provides useful background information on the uncertainty and/or modifying factors that were applied in the derivation of each reference value, as well as the point of departure and the critical study/studies. To facilitate comparisons across durations for a specific chemical, ATHED data can be graphically presented.

  18. Computational simulation of temperature and velocity distribution in human upper respiratory airway during inhalation of hot air.

    PubMed

    Goodarzi-Ardakani, V; Taeibi-Rahni, M; Salimi, M R; Ahmadi, G

    2016-03-01

    The present study provides an accurate simulation of velocity and temperature distributions of inhalation thermal injury in a human upper airway, including vestibule, nasal cavity, paranasal sinuses, nasopharynx, oropharynx, larynx, and upper part of main bronchus. To this end, a series of CT scan images, taken from an adult woman, was used to construct a three dimensional model. The airway walls temperature was adjusted according to existing in vivo temperature measurements. Also, in order to cover all breathing activities, five different breathing flow rates (10, 15, 20, 30, and 40 l/min) and different ambient air temperatures (100, 200, 300, 400, and 500 °C) were studied. Different flow regimes, including laminar, transitional, and turbulence were considered and the simulations were validated using reliable experimental data. The results show that nostrils, vestibule, and nasal cavity are damaged more than other part of airway. Finally, In order to obtain the heat flux through the walls, correlations for Nusselt number for each individual parts of airway (vestibule, main upper airway, nasopharynx etc.,) are proposed. PMID:26777422

  19. Study on measurement of the coal powder concentration in pneumatic pipes of a boiler with relationship between air velocity and pressure drop

    SciTech Connect

    Pan, W.; Shen, F.; Lin, W.; Chen, L.; Zhang, D.; Wang, Q.; Ke, J.; Quan, W.

    1999-07-01

    According to the theoretical relationship between air velocity and pressure drop in different solid-air mass flow in vertical pipes with the condition of upward air-solid flowing, the experimental research on measuring the coal powder concentration is directed against the pneumatic pipes of a boiler's combustion system in the energy industry. Through analyzing the experimental results, a mathematical model for measuring the coal powder concentration in pneumatic pipes is obtained. Then, the error analysis is done, and the method of on-line measurement and its function are provided.

  20. Effects of spoilers and gear on B-747 wake vortex velocities

    NASA Technical Reports Server (NTRS)

    Luebs, A. B.; Bradfute, J. G.; Ciffone, D. L.

    1976-01-01

    Vortex velocities were measured in the wakes of four configurations of a 0.61-m span model of a B-747 aircraft. The wakes were generated by towing the model underwater in a ship model basin. Tangential and axial velocity profiles were obtained with a scanning laser velocimeter as the wakes aged to 35 span lengths behind the model. A 45 deg deflection of two outboard flight spoilers with the model in the landing configuration resulted in a 36 percent reduction in wake maximum tangential velocity, altered velocity profiles, and erratic vortex trajectories. Deployment of the landing gear with the inboard flaps in the landing position and outboard flaps retracted had little effect on the flap vortices to 35 spans, but caused the wing tip vortices to have: (1) more diffuse velocity profiles; (2) a 27 percent reduction in maximum tangential velocity; and (3) a more rapid merger with the flap vortices.

  1. Effects of Movement Velocity and Maximal Concentric and Eccentric Actions on the Bilateral Deficit

    ERIC Educational Resources Information Center

    Dickin, D. Clark; Too, Danny

    2006-01-01

    This study was performed to examine the effects of movement velocity and maximal concentric and eccentric actions on the bilateral deficit. Eighteen female participants performed maximal unilateral and bilateral knee extensions concentrically and eccentrically across six movement velocities (30, 60, 90, 120, 150, and 180[degrees]/s). Repeated…

  2. Air quality effects of residential wood combustion

    SciTech Connect

    Cannon, J.A.

    1984-09-01

    In the mid 1970s the air quality in Missoula, Montana began to deteriorate due to pollution from wood-burning stoves. By 1980, 12,000 households were heating their homes with wood to some degree. Consequently, particulate concentrations rose sharply, with concentrations of over 500 ..mu..g/m/sup 3/ on many days. Because of health concerns, the Montana Department of Health and Environmental Sciences carried out an air pollution study. According to the data studied, airborne particulates appeared to be impairing the pulmonary function of children and older individuals with obstructive pulmonary disease. The correlation between human health effects and wood stove emissions was even more serious because of the size of the particulates; i.e., less than ten microns in diameter. A number of communities across the country have instituted voluntary and/or mandatory restrictions on local wood-burning. EPA has been involved in a number of activities that support the efforts of any community that thinks it has a potential air quality problem caused by residential wood combustion. The agency has also funded research on mutagenic and carcinogenic effects of wood smoke emission on mamallian cells and rodents.

  3. Effects of particulate air pollution on asthmatics

    SciTech Connect

    Perry, G.B.; Chai, H.; Dickey, D.W.; Jones, R.H.; Kinsman, R.A.; Morrill, C.G.; Spector, S.L.; Weiser, P.C.

    1983-01-01

    Twenty-four asthmatic subjects in Denver were followed from January through March 1979, a three-month period in which Denver air pollution levels are generally high and variable. Dichotomous, virtual impactor samplers provided daily measurements (micrograms/m3) of inhaled particulate matter (total mass, sulfates, and nitrates) for coarse (2.5--15 micrograms in aerodynamic diameter) and fine fractions (less than 2.5 micrometers). Carbon monoxide, sulfur dioxide, ozone, temperature, and barometric pressure were also measured. Twice daily measurements of each subject's peak expiratory flow rates, use of as-needed aerosolized bronchodilators, and report of airways obstruction symptoms characteristic of asthma were tested for relationships to air pollutants using a random effects model across subjects. During the time actually observed, there were very few days in which high levels of suspended particulates were recorded. Of the environmental variables studied, only fine nitrates were associated with increased symptom reports and increased aerosolized bronchodilator usage.

  4. Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking.

    PubMed

    Buhmann, Jeska; Desmet, Frank; Moens, Bart; Van Dyck, Edith; Leman, Marc

    2016-01-01

    The expressive features of music can influence the velocity of walking. So far, studies used instructed (and intended) synchronization. But is this velocity effect still present with non-instructed (spontaneous) synchronization? To figure that out, participants were instructed to walk in their own comfort tempo on an indoor track, first in silence and then with tempo-matched music. We compared velocities of silence and music conditions. The results show that some music has an activating influence, increasing velocity and motivation, while other music has a relaxing influence, decreasing velocity and motivation. The influence of musical expression on the velocity of self-paced walking can be predicted with a regression model using only three sonic features explaining 56% of the variance. Phase-coherence between footfall and beat did not contribute to the velocity effect, due to its implied fixed pacing. The findings suggest that the velocity effect depends on vigor entrainment that influences both stride length and pacing. Our findings are relevant for preventing injuries, for gait improvement in walking rehabilitation, and for improving performance in sports activities. PMID:27167064

  5. Spontaneous Velocity Effect of Musical Expression on Self-Paced Walking

    PubMed Central

    Buhmann, Jeska; Desmet, Frank; Moens, Bart; Van Dyck, Edith; Leman, Marc

    2016-01-01

    The expressive features of music can influence the velocity of walking. So far, studies used instructed (and intended) synchronization. But is this velocity effect still present with non-instructed (spontaneous) synchronization? To figure that out, participants were instructed to walk in their own comfort tempo on an indoor track, first in silence and then with tempo-matched music. We compared velocities of silence and music conditions. The results show that some music has an activating influence, increasing velocity and motivation, while other music has a relaxing influence, decreasing velocity and motivation. The influence of musical expression on the velocity of self-paced walking can be predicted with a regression model using only three sonic features explaining 56% of the variance. Phase-coherence between footfall and beat did not contribute to the velocity effect, due to its implied fixed pacing. The findings suggest that the velocity effect depends on vigor entrainment that influences both stride length and pacing. Our findings are relevant for preventing injuries, for gait improvement in walking rehabilitation, and for improving performance in sports activities. PMID:27167064

  6. Effect of Velocity of Detonation of Explosives on Seismic Radiation

    NASA Astrophysics Data System (ADS)

    Stroujkova, A. F.; Leidig, M.; Bonner, J. L.

    2014-12-01

    We studied seismic body wave generation from four fully contained explosions of approximately the same yields (68 kg of TNT equivalent) conducted in anisotropic granite in Barre, VT. The explosions were detonated using three types of explosives with different velocities of detonation (VOD): Black Powder (BP), Ammonium Nitrate Fuel Oil/Emulsion (ANFO), and Composition B (COMP B). The main objective of the experiment was to study differences in seismic wave generation among different types of explosives, and to determine the mechanism responsible for these differences. The explosives with slow burn rate (BP) produced lower P-wave amplitude and lower corner frequency, which resulted in lower seismic efficiency (0.35%) in comparison with high burn rate explosives (2.2% for ANFO and 3% for COMP B). The seismic efficiency estimates for ANFO and COMP B agree with previous studies for nuclear explosions in granite. The body wave radiation pattern is consistent with an isotropic explosion with an added azimuthal component caused by vertical tensile fractures oriented along pre-existing micro-fracturing in the granite, although the complexities in the P- and S-wave radiation patterns suggest that more than one fracture orientation could be responsible for their generation. High S/P amplitude ratios and low P-wave amplitudes suggest that a significant fraction of the BP source mechanism can be explained by opening of the tensile fractures as a result of the slow energy release.

  7. Kinetic effects on the velocity-shear-driven instability

    NASA Technical Reports Server (NTRS)

    Wang, Z.; Pritchett, P. L.; Ashour-Abdalla, M.

    1992-01-01

    A comparison is made between the properties of the low-frequency long-wavelength velocity-shear-driven instability in kinetic theory and magnetohydrodynamics (MHD). The results show that the removal of adiabaticity along the magnetic field line in kinetic theory leads to modifications in the nature of the instability. Although the threshold for the instability in the two formalisms is the same, the kinetic growth rate and the unstable range in wave-number space can be larger or smaller than the MHD values depending on the ratio between the thermal speed, Alfven speed, and flow speed. When the thermal speed is much larger than the flow speed and the flow speed is larger than the Alfven speed, the kinetic formalism gives a larger maximum growth rate and broader unstable range in wave-number space. In this regime, the normalized wave number for instability can be larger than unity, while in MHD it is always less than unity. The normal mode profile in the kinetic case has a wider spatial extent across the shear layer.

  8. Effect of initial tangential velocity distribution on the mean evolution of a swirling turbulent free jet

    NASA Technical Reports Server (NTRS)

    Farokhi, S.; Taghavi, R.; Rice, E. J.

    1988-01-01

    An existing cold jet facility at NASA-Lewis was modified to produce swirling flows with controllable initial tangential velocity distribution. Distinctly different swirl velocity profiles were produced, and their effects on jet mixing characteristics were measured downstream of an 11.43 cm diameter convergent nozzle. It was experimentally shown that in the near field of a swirling turbulent jet, the mean velocity field strongly depends on the initial swirl profile. Two extreme tangential velocity distributions were produced. The two jets shared approximately the same initial mass flow rate of 5.9 kg/s, mass averaged axial Mach number and swirl number. Mean centerline velocity decay characteristics of the solid body rotation jet flow exhibited classical decay features of a swirling jet with S = 0.48 reported in the literature. It is concluded that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field.

  9. Effects of pressure drop and superficial velocity on the bubbling fluidized bed incinerator.

    PubMed

    Wang, Feng-Jehng; Chen, Suming; Lei, Perng-Kwei; Wu, Chung-Hsing

    2007-12-01

    Since performance and operational conditions, such as superficial velocity, pressure drop, particles viodage, and terminal velocity, are difficult to measure on an incinerator, this study used computational fluid dynamics (CFD) to determine numerical solutions. The effects of pressure drop and superficial velocity on a bubbling fluidized bed incinerator (BFBI) were evaluated. Analytical results indicated that simulation models were able to effectively predict the relationship between superficial velocity and pressure drop over bed height in the BFBI. Second, the models in BFBI were simplified to simulate scale-up beds without excessive computation time. Moreover, simulation and experimental results showed that minimum fluidization velocity of the BFBI must be controlled in at 0.188-3.684 m/s and pressure drop was mainly caused by bed particles. PMID:18074287

  10. Effect of particle volume fraction on the settling velocity of volcanic ash particles: implications for ash dispersion models

    NASA Astrophysics Data System (ADS)

    Del Bello, E.; Taddeucci, J.; De'Michieli Vitturi, M.; Scarlato, P.; Andronico, D.; Scollo, S.; Kueppers, U.

    2015-12-01

    We present the first report of experimental measurements of the enhanced settling velocity of volcanic particles as function of particle volume fraction. In order to investigate the differences in the aerodynamic behavior of ash particles when settling individually or in mass, we performed systematic large-scale ash settling experiments using natural basaltic and phonolitic ash. By releasing ash particles at different, controlled volumetric flow rates, in an unconstrained open space and at minimal air movement, we measured their terminal velocity, size, and particle volume fraction with a high-speed camera at 2000 fps. Enhanced settling velocities of individual particles increase with increasing particle volume fraction. This suggests that particle clustering during fallout may be one reason explaining larger than theoretical depletion rates of fine particles from volcanic ash clouds. We provide a quantitative empirical model that allows to calculate, from a given particle size and density, the enhanced velocity resulting from a given particle volume fraction. The proposed model has the potential to serve as a simple tool for the prediction of the terminal velocity of ash of an hypothetical distribution of ash of known particle size and volume fraction. This is of particular importance for advection-diffusion transport model of ash where generally a one-way coupling is adopted, considering only the flow effects on particles. To better quantify the importance of the enhanced settling velocity in ash dispersal, we finally introduced the new formulation in a Lagrangian model calculating for realistic eruptive conditions the resulting ash concentration in the atmosphere and on the ground.

  11. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  12. Acute effects of various weighted bat warm-up protocols on bat velocity.

    PubMed

    Reyes, G Francis; Dolny, Dennis

    2009-10-01

    Although research has provided evidence of increased muscular performance following a facilitation set of resistance exercise, this has not been established for use prior to measuring baseball bat velocity. The purpose of this study was to determine the effectiveness of selected weighted bat warm-up protocols to enhance bat velocity in collegiate baseball players. Nineteen collegiate baseball players (age = 20.15 +/- 1.46 years) were tested for upper-body strength by a 3-repetition maximum (RM) bench press (mean = 97.98 +/- 14.54 kg) and mean bat velocity. Nine weighted bat warm-up protocols, utilizing 3 weighted bats (light = 794 g; standard = 850 g; heavy = 1,531 g) were swung in 3 sets of 6 repetitions in different orders. A control trial involved the warm-up protocol utilizing only the standard bat. Pearson product correlation revealed a significant relationship between 3RM strength and pretest bat velocity (r = 0.51, p = 0.01). Repeated measures analysis of variance (ANOVA) revealed no significant treatment effects of warm-up protocol on bat velocity. However, the order of standard, light, heavy bat sequence resulted in the greatest increase in bat velocity (+6.03%). These results suggest that upper-body muscle strength influences bat velocity. It appears that the standard, light, heavy warm-up order may provide the greatest benefit to increase subsequent bat velocity and may warrant use in game situations. PMID:19855339

  13. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers

    PubMed Central

    Williams, Michael; Harveson, Lanisa; Melton, Jason; Delobel, Ashley; Puentedura, Emilio J.

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  14. The Acute Effects of Upper Extremity Stretching on Throwing Velocity in Baseball Throwers.

    PubMed

    Williams, Michael; Harveson, Lanisa; Melton, Jason; Delobel, Ashley; Puentedura, Emilio J

    2013-01-01

    Purpose. To examine the effects of static and proprioceptive neuromuscular facilitation (PNF) stretching of the shoulder internal rotators on throwing velocity. Subjects. 27 male throwers (mean age = 25.1 years old, SD = 2.4) with adequate knowledge of demonstrable throwing mechanics. Study Design. Randomized crossover trial with repeated measures. Methods. Subjects warmed up, threw 10 pitches at their maximum velocity, were randomly assigned to 1 of 3 stretching protocols (static, PNF, or no stretch), and then repeated their 10 pitches. Velocities were recorded after each pitch and average and peak velocities were recorded after each session. Results. Data were analyzed using a 3 × 2 repeated measures ANOVA. No significant interaction between stretching and throwing velocity was observed. Main effects for time were not statistically significant. Main effects for the stretching groups were statistically significant. Discussion. Results suggest that stretching of the shoulder internal rotators did not significantly affect throwing velocity immediately after stretching. This may be due to the complexity of the throwing task. Conclusions. Stretching may be included in a thrower's warm-up without any effects on throwing velocity. Further research should be performed using a population with more throwing experience and skill. PMID:26464880

  15. Velocity-changing collisional effects in nonlinear atomic spectroscopy and photon echo decay in gases

    NASA Technical Reports Server (NTRS)

    Herman, R. M.

    1983-01-01

    A general theory of atomic dipole coherence under the influence of collisional phase changes, inelastic effects and optically active atom velocity changes, including those due to anisotropic interactions is presented. Velocity change effects are obtained in closed form. Line shapes appear as convolutions of standard pressure broadening contours with velocity-change contours. Width and shift parameters for the He-broadened Na D lines at 2 m bar pressure, 380 K are calculated, as are He-induced photon echo decay rates for these lines. Overall agreement with xperiment is reasonably good.

  16. Investigation of the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot using simultaneous 2-Colour-TIRE-LII

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A.; Suntz, R.; Bockhorn, H.

    2015-05-01

    The response of non-premixed swirling flames to acoustic perturbations at various frequencies (0-350 Hz) and the impact of imposed air inlet velocity oscillations on the formation and oxidation of soot are investigated. The results obtained from these flames are of special interest for "rich-quenched-lean" (RQL) combustion concepts applied in modern gas turbines. In RQL combustion, the fuel is initially oxidized by air under fuel-rich conditions in a first stage followed by a fuel-lean combustion step in a second stage. To mimic soot formation and oxidation in RQL combustion, soot particle measurements in highly turbulent, non-premixed swirling natural gas/ethylene-confined flames at imposed air inlet velocity oscillations are performed using simultaneous 2-Colour-Time-Resolved-Laser-Induced Incandescence (simultaneous 2-Colour-TIRE-LII). The latter technique is combined with line-of-sight averaged OH*-chemiluminescence imaging, measurements of the velocity field by high-speed particle imaging velocimetry under reactive combustion conditions and measurements of the mean temperature field obtained by a thermocouple. A natural gas/ethylene mixture (Φ = 1.56, 42 % C2H4, 58 % natural gas, P th = 17.6 kW at atmospheric pressure) is used as a fuel, which is oxidized by air under fuel-rich conditions in the first combustion chamber.

  17. Simulation of temporal characteristics of ion-velocity susceptibility to single event upset effect

    NASA Astrophysics Data System (ADS)

    Geng, Chao; Xi, Kai; Liu, Tian-Qi; Gu, Song; Liu, Jie

    2014-08-01

    Using a Monte Carlo simulation tool of the multi-functional package for SEEs Analysis (MUFPSA), we study the temporal characteristics of ion-velocity susceptibility to the single event upset (SEU) effect, including the deposited energy, traversed time within the device, and profile of the current pulse. The results show that the averaged dposited energy decreases with the increase of the ion-velocity, and incident ions of 209Bi have a wider distribution of energy deposition than 132Xe at the same ion-velocity. Additionally, the traversed time presents an obvious decreasing trend with the increase of ion-velocity. Concurrently, ion-velocity certainly has an influence on the current pulse and then it presents a particular regularity. The detailed discussion is conducted to estimate the relevant linear energy transfer (LET) of incident ions and the SEU cross section of the testing device from experiment and simulation and to critically consider the metric of LET.

  18. Effects of buoyancy on lean premixed v-flames, Part II. VelocityStatistics in Normal and Microgravity

    SciTech Connect

    Cheng, R.K.; Bedat, B.; Yegian, D.T.

    1999-07-01

    The field effects of buoyancy on laminar and turbulent premixed v-flames have been studied by the use of laser Doppler velocimetry to measure the velocity statistics in +1g, -1g and {micro}g flames. The experimental conditions covered mean velocity, Uo, of 0.4 to 2 m/s, methane/air equivalence ratio, f, of 0.62 to 0.75. The Reynolds numbers, from 625 to 3130 and the Richardson number from 0.05 to 1.34. The results show that a change from favorable (+1g) to unfavorable (-1g) mean pressure gradient in the plume create stagnating flows in the far field whose influences on the mean and fluctuating velocities persist in the near field even at the highest Re we have investigated. The use of Richardson number < 0.1 as a criterion for momentum dominance is not sufficient to prescribe an upper limit for these buoyancy effects. In {micro}g, the flows within the plumes are non-accelerating and parallel. Therefore, velocity gradients and hence mean strain rates in the plumes of laboratory flames are direct consequences of buoyancy. Furthermore, the rms fluctuations in the plumes of {micro}g flames are lower and more isotropic than in the laboratory flames to show that the unstable plumes in laboratory flames also induce velocity fluctuations. The phenomena influenced by buoyancy i.e. degree of flame wrinkling, flow acceleration, flow distribution, and turbulence production, can be subtle due to their close coupling with other flame flow interaction processes. But they cannot be ignored in fundamental studies or else the conclusions and insights would be ambiguous and not very meaningful.

  19. An Analysis of Consolidation Grouting Effect of Bedrock Based on its Acoustic Velocity Increase

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Lu, Wen-bo; Zhang, Wen-ju; Yan, Peng; Zhou, Chuang-bing

    2015-05-01

    Acoustic velocity is an important parameter to evaluate the mechanical properties of fractured rock masses. Based on the in situ acoustic velocity measurement data of ~20 hydropower stations in China, we assessed the acoustic velocity increase of rock masses as a result of consolidation grouting in different geological conditions, such as fault sites, weathered areas and excavation-induced damage zones. We established an empirical relationship between the acoustic velocity of rock masses before and after consolidation grouting, and examined the correlation between acoustic velocity and deformation modulus. A case study is presented about a foundation consolidation grouting project for an intake tower of Pubugou Hydropower Station. The results show that different types of rock masses possess distinct ranges for resultant acoustic velocity increase by consolidation grouting. Under a confidence interval of 95 %, the ranges of the increasing rate of acoustic velocity in a faulted zone, weathered zone, and excavation-induced damage zone are observed to be 12.7-43.1, 12.3-31.2, and 6.9-14.5 %, respectively. The acoustic velocity before grouting and its increasing rate can be used to predict the effectiveness of consolidation grouting.

  20. Effects of mechanical horseback riding velocity on spinal alignment in young adults

    PubMed Central

    Lim, Jae-Heon; Cho, Woon-Su; Lee, Seong-Jin; Park, Chi-Bok; Park, Jang-Sung

    2016-01-01

    [Purpose] This study aimed to determine if the velocity of mechanical horseback-riding training can improve spinal alignment in young adults. [Subjects and Methods] Thirty-six subjects were enrolled in this study. The subjects were randomly allocated into high-, moderate-, and low-velocity mechanical horseback-riding training groups. All participants completed one 20-minute session per day, 3 days per week, for 6 weeks. The evaluation was performed before and 6 weeks after the training intervention. The spinal alignment was measured by a Formetric III device. The measurement items were kyphotic angle, lordotic angle, trunk inclination, pelvic torsion, pelvic rotation, and lateral deviation. The data were analyzed using analysis of covariance to determine the statistical significance. [Results] The kyphotic angle and trunk inclination were significantly different among the groups. The kyphotic angles of the high- and moderate-velocity groups were significantly lower than that of the low-velocity group after the intervention. The trunk inclination of the high-velocity group was significantly lower than that of the low-velocity group after intervention. [Conclusion] Higher-velocity mechanical horseback-riding training is more effective than lower-velocity mechanical horseback-riding training for improving spinal alignment. PMID:27390428

  1. Effects of uneven moisture distribution on the strength of and wave velocity in concrete.

    PubMed

    Popovics, Sandor

    2005-05-01

    Earlier findings showed that the effects of moisture (liquid or free water) in hardened concrete on its behavior, especially the lesser known effects ofuneven moisture distribution, can (a) be significant, and (b) vary from property to property. This distribution, for instance whether or not the surface layer is drier than the overall average moisture content, can be characterized by the difference between the velocity of the longitudinal wave (pulse velocity) measured in the standard through-thickness manner, and the velocity of the longitudinal wave propagating on the concrete surface. The summary of earlier findings on the effects of moisture distribution is followed by a recent investigation on pulse velocity in the special case, occurring frequently in practice, when the distribution is uneven because the liquid is concentrated in cracks in the concrete. PMID:15823317

  2. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  3. Age dependence and the effect of cracks on the seismic velocities of the upper oceanic crust

    NASA Astrophysics Data System (ADS)

    Cerney, Brian Patrick

    Seismic velocities in young (e.g., <1 Ma) upper oceanic crust increase with depth from ˜2.0 km s-1 at the top of the basaltic crust to ˜6.8 km s-1 at its base. Also, seismic velocities at the top of the upper oceanic crust increase with age, while the velocities at the base remain fairly constant. The increase in seismic velocities with depth and age in oceanic crust can be explained by the stiffening of cracks with increasing overburden pressure and infilling of pore space with alteration products. Both of these mechanisms increase the moduli of the igneous crust and thus raise its seismic velocities. Using the oblate spheroidal pore-shapes model of Kuster-Toksoz, laboratory measurements of P- and S-wave velocities, densities, and porosities of basaltic mini-cores from Hole 990A on the Southeast Greenland Margin show that pores can be effectively sealed by alteration products, and that the distribution of pore shapes is independent of porosity. Analyses of sonobuoy data collected over 0--7 Ma oceanic crust near the East Pacific Rise using the hidden layer method estimates seismic velocities of the upper oceanic crust. The results of sonobuoy analyses indicate that mean top-of-basement velocities and velocity gradients are 2.8 +/- 0.1 km s-1 and 2.7 +/- 0.1 s-1 respectively. Results also suggest that top-of-basement velocities increase at a rate of 0.12 +/- 0.05 km s-1 Ma-1 . A pressure-dependent asperity-deformation model describes the increase in seismic velocities with depth observed from the sonobuoy data. The asperity-deformation model incorporates a velocity variation of the form V( z) = V0 (1 + z/ z0)1/n, where z is depth, V0 is the velocity at the seafloor, and z 0 and n are constants. The asperity-deformation model describes how seismic velocities can increase with pressure simply through the stiffening of cracks without a need for a change in mineral moduli. The observed traveltimes are modeled to within an average root-mean-square misfit of 3.5 ms

  4. Effect of old age on human skeletal muscle force-velocity and fatigue properties.

    PubMed

    Callahan, Damien M; Kent-Braun, Jane A

    2011-11-01

    It is generally accepted that the muscles of aged individuals contract with less force, have slower relaxation rates, and demonstrate a downward shift in their force-velocity relationship. The factors mediating age-related differences in skeletal muscle fatigue are less clear. The present study was designed to test the hypothesis that age-related shifts in the force-velocity relationship impact the fatigue response in a velocity-dependent manner. Three fatigue protocols, consisting of intermittent, maximum voluntary knee extension contractions performed for 4 min, were performed by 11 young (23.5 ± 0.9 yr, mean ± SE) and 10 older (68.9 ± 4.3) women. The older group fatigued less during isometric contractions than the young group (to 71.1 ± 3.7% initial torque and 59.8 ± 2.5%, respectively; P = 0.02), while the opposite was true during contractions performed at a relatively high angular velocity of 270°·s(-1) (old: 28.0 ± 3.9% initial power, young: 52.1 ± 6.9%; P < 0.01). Fatigue was not different (P = 0.74) between groups during contractions at an intermediate velocity, which was selected for each participant based on their force-velocity relationship. There was a significant association between force-velocity properties and fatigue induced by the intermediate-velocity fatigue protocol in the older (r = 0.72; P = 0.02) and young (r = 0.63; P = 0.04) groups. These results indicate that contractile velocity has a profound impact on age-related skeletal muscle fatigue resistance and suggest that changes in the force-velocity relationship partially mediate this effect. PMID:21868683

  5. Effect of Strip Velocity on Pickling Rate of Hot-Rolled Steel in Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Hudson, R. M.; Warning, C. J.

    1982-02-01

    The combined effect of strip velocity with other parameters on pickling rate of hot-rolled low-carbon steel in hydrochloric acid (HCl) solutions was determined. At temperatures from 150 to200°F(66 to 93°), the time required for pickling decreased substantially as strip velocity was increased from 0 to about 250 fpm (76 mpm); no further decrease in time resulted when velocities were increased to 800 fpm (244 mpm). Other pickling variables were studied with a velocity of 400 fpm (122 mpm). Pickling times decrease with increases in HCl concentrations, CHCl, and temperature, TF, according to prediction equations of the form log t = A + B log CHCl + D(459 + TF)-1. At 200°F, temper-mill scalebreaking decreased pickling times by about 5 sec; at lower temperatures, a larger magnitude effect was noted for one steel in the group tested.

  6. The Effect of Hemorheologic Factors on Middle Cerebral Artery Blood Flow Velocity in Young Individuals.

    PubMed

    Ameriso, S F; Meiselman, H J; Saraj, A; Fisher, M

    1992-01-01

    Analysis of the effect of hemorheologic factors on middle cerebral artery (MCA) blood flow velocity in 55 healthy individuals aged 18 to 30 years demonstrated an inverse association between mean MCA blood flow velocity and hematocrit (r = -0.27, p < 0.05). This association was largely explained by the effect of whole-blood viscosity. Neither fibrinogen concentration nor plasma viscosity were significantly associated with MCA blood flow velocity in this group; this lack of a fibrinogen association is in contrast to results previously obtained in elderly individuals where an inverse association was observed. These findings thus demonstrate age-dependent differences in the relationship between fibrinogen and MCA blood flow velocity. PMID:27308856

  7. Effect of gravity on terminal particle settling velocity on Moon, Mars and Earth

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus J.

    2013-04-01

    Gravity has a non-linear effect on the settling velocity of sediment particles in liquids and gases due to the interdependence of settling velocity, drag and friction. However, StokeśLaw, the common way of estimating the terminal velocity of a particle moving in a gas of liquid assumes a linear relationship between terminal velocity and gravity. For terrestrial applications, this "error" is not relevant, but it may strongly influence the terminal velocity achieved by settling particles on Mars. False estimates of these settling velocities will, in turn, affect the interpretation of particle sizes observed in sedimentary rocks on Mars. Wrong interpretations may occur, for example, when the texture of sedimentary rocks is linked to the amount and hydraulics of runoff and thus ultimately the environmental conditions on Mars at the time of their formation. A good understanding of particle behaviour in liquids on Mars is therefore essential. In principle, the effect of lower gravity on settling velocity can also be achieved by reducing the difference in density between particle and gas or liquid. However, the use of such analogues simulating the lower gravity on Mars on Earth is creates other problems because the properties (i.e. viscosity) and interaction of the liquids and sediment (i.e. flow around the boundary layer between liquid and particle) differ from those of water and mineral particles. An alternative for measuring the actual settling velocities of particles under Martian gravity, on Earth, is offered by placing a settling tube on a reduced gravity flight and conduct settling tests within the 20 to 25 seconds of Martian gravity that can be simulated during such a flight. In this presentation we report the results of such a test conducted during a reduced gravity flight in November 2012. The results explore the strength of the non-linearity in the gravity-settling velocity relationship for terrestrial, lunar and Martian gravity.

  8. Field-effect transistor having a superlattice channel and high carrier velocities at high applied fields

    DOEpatents

    Chaffin, R.J.; Dawson, L.R.; Fritz, I.J.; Osbourn, G.C.; Zipperian, T.E.

    1984-04-19

    In a field-effect transistor comprising a semiconductor having therein a source, a drain, a channel and a gate in operational relationship, there is provided an improvement wherein said semiconductor is a superlattice comprising alternating quantum well and barrier layers, the quantum well layers comprising a first direct gap semiconductor material which in bulk form has a certain bandgap and a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, the barrier layers comprising a second semiconductor material having a bandgap wider than that of said first semiconductor material, wherein the layer thicknesses of said quantum well and barrier layers are sufficiently thin that the alternating layers constitute a superlattice having a curve of electron velocity versus applied electric field which has a maximum electron velocity at a certain electric field, and wherein the thicknesses of said quantum well layers are selected to provide a superlattice curve of electron velocity versus applied electric field whereby, at applied electric fields higher than that at which the maximum electron velocity occurs in said first material when in bulk form, the electron velocities are higher in said superlattice than they are in said first semiconductor material in bulk form.

  9. Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments.

    PubMed

    Mendoza-Sanchez, Itza; Autenrieth, Robin L; McDonald, Thomas J; Cunningham, Jeffrey A

    2010-06-01

    Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis-dichloroethene (cis-DCE) during transport in porous media. Columns were filled with homogeneous glass beads and inoculated with a culture capable of complete dechlorination of tetrachloroethene to ethene. A constant concentration of cis-DCE was maintained in the columns' influent. Three different pore velocities were tested in duplicate, subjecting each column to a constant velocity. At high flow velocity, degradation of cis-DCE to ethene was nearly complete within the residence time of the columns. However, at medium and low flow velocities, incomplete dechlorination was observed. After 7 weeks, DNA was harvested from the columns to determine differences in the microbial populations. Results suggest that Dehalococcoides sp. were present in higher quantities in the high-velocity columns, consistent with the observed dechlorination. These results suggest that, at contaminated groundwater sites, heterogeneity of groundwater velocity may be one factor that contributes to heterogeneous distribution of biological activity. PMID:19894128

  10. Effects of a 4-week youth baseball conditioning program on throwing velocity.

    PubMed

    Escamilla, Rafael F; Fleisig, Glenn S; Yamashiro, Kyle; Mikla, Tony; Dunning, Russell; Paulos, Lonnie; Andrews, James R

    2010-12-01

    Effects of a 4-week youth baseball conditioning program on throwing velocity. This study examined the effects of a 4-week youth baseball conditioning program on maximum throwing velocity. Thirty-four youth baseball players (11-15 years of age) were randomly and equally divided into control and training groups. The training group performed 3 sessions (each 75 minutes) weekly for 4 weeks, which comprised a sport specific warm-up, resistance training with elastic tubing, a throwing program, and stretching. Throwing velocity was assessed initially and at the end of the 4-week conditioning program for both control and training groups. The level of significance used was p < 0.05. After the 4-week conditioning program, throwing velocity increased significantly (from 25.1 ± 2.8 to 26.1 ± 2.8 m·s) in the training group but did not significantly increase in the control group (from 24.2 ± 3.6 to 24.0 ± 3.9 m·s). These results demonstrate that the short-term 4-week baseball conditioning program was effective in increasing throwing velocity in youth baseball players. Increased throwing velocity may be helpful for pitchers (less time for hitters to swing) and position players (decreased time for a runner to advance to the next base). PMID:21068687

  11. Effect of Wind Velocity on Flame Spread in Microgravity

    NASA Technical Reports Server (NTRS)

    Prasad, Kuldeep; Olson, Sandra L.; Nakamura, Yuji; Fujita, Osamu; Nishizawa, Katsuhiro; Ito, Kenichi; Kashiwagi, Takashi; Simons, Stephen N. (Technical Monitor)

    2002-01-01

    A three-dimensional, time-dependent model is developed describing ignition and subsequent transition to flame spread over a thermally thin cellulosic sheet heated by external radiation in a microgravity environment. A low Mach number approximation to the Navier Stokes equations with global reaction rate equations describing combustion in the gas phase and the condensed phase is numerically solved. The effects of a slow external wind (1-20 cm/s) on flame transition are studied in an atmosphere of 35% oxygen concentration. The ignition is initiated at the center part of the sample by generating a line-shape flame along the width of the sample. The calculated results are compared with data obtained in the 10s drop tower. Numerical results exhibit flame quenching at a wind speed of 1.0 cm/s, two localized flames propagating upstream along the sample edges at 1.5 cm/s, a single line-shape flame front at 5.0 cm/s, three flames structure observed at 10.0 cm/s (consisting of a single line-shape flame propagating upstream and two localized flames propagating downstream along sample edges) and followed by two line-shape flames (one propagating upstream and another propagating downstream) at 20.0 cm/s. These observations qualitatively compare with experimental data. Three-dimensional visualization of the observed flame complex, fuel concentration contours, oxygen and reaction rate isosurfaces, convective and diffusive mass flux are used to obtain a detailed understanding of the controlling mechanism, Physical arguments based on lateral diffusive flux of oxygen, fuel depletion, oxygen shadow of the flame and heat release rate are constructed to explain the various observed flame shapes.

  12. Effects of particle size and velocity on burial depth of airborne particles in glass fiber filters

    SciTech Connect

    Higby, D.P.

    1984-11-01

    Air sampling for particulate radioactive material involves collecting airborne particles on a filter and then determining the amount of radioactivity collected per unit volume of air drawn through the filter. The amount of radioactivity collected is frequently determined by directly measuring the radiation emitted from the particles collected on the filter. Counting losses caused by the particle becoming buried in the filter matrix may cause concentrations of airborne particulate radioactive materials to be underestimated by as much as 50%. Furthermore, the dose calculation for inhaled radionuclides will also be affected. The present study was designed to evaluate the extent to which particle size and sampling velocity influence burial depth in glass-fiber filters. Aerosols of high-fired /sup 239/PuO/sub 2/ were collected at various sampling velocities on glass-fiber filters. The fraction of alpha counts lost due to burial was determined as the ratio of activity detected by direct alpha count to the quantity determined by photon spectrometry. The results show that burial of airborne particles collected on glass-fiber filters appears to be a weak function of sampling velocity and particle size. Counting losses ranged from 0 to 25%. A correction that assumes losses of 10 to 15% would ensure that the concentration of airborne alpha-emitting radionuclides would not be underestimated when glass-fiber filters are used. 32 references, 21 figures, 11 tables.

  13. Drift velocity versus electric field in ⟨ 110 ⟩ Si nanowires: Strong confinement effects

    NASA Astrophysics Data System (ADS)

    Li, Jing; Mugny, Gabriel; Niquet, Yann-Michel; Delerue, Christophe

    2015-08-01

    We have performed atomistic simulations of the phonon-limited high field carrier transport in ⟨ 110 ⟩ Si nanowires with small diameter. The carrier drift velocities are obtained from a direct solution of the non-linear Boltzmann transport equation. The relationship between the drift velocity and the electric field considerably depends on the carrier, temperature, and diameter of the nanowires. In particular, the threshold between the linear and non-linear regimes exhibits important variations. The drift velocity reaches a maximum value and then drops. These trends can be related to the effects of quantum confinement on the band structure of the nanowires. We also discuss the impact of the different phonon modes and show that high-energy phonons can, unexpectedly, increase the drift velocity at a high electric field.

  14. Lane-changing behavior and its effect on energy dissipation using full velocity difference model

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Ding, Jian-Xun; Shi, Qin; Kühne, Reinhart D.

    2016-07-01

    In real urban traffic, roadways are usually multilane with lane-specific velocity limits. Most previous researches are derived from single-lane car-following theory which in the past years has been extensively investigated and applied. In this paper, we extend the continuous single-lane car-following model (full velocity difference model) to simulate the three-lane-changing behavior on an urban roadway which consists of three lanes. To meet incentive and security requirements, a comprehensive lane-changing rule set is constructed, taking safety distance and velocity difference into consideration and setting lane-specific speed restriction for each lane. We also investigate the effect of lane-changing behavior on distribution of cars, velocity, headway, fundamental diagram of traffic and energy dissipation. Simulation results have demonstrated asymmetric lane-changing “attraction” on changeable lane-specific speed-limited roadway, which leads to dramatically increasing energy dissipation.

  15. Effects of tangential velocity distribution on flow stability in a draft tube

    NASA Astrophysics Data System (ADS)

    Dou, Huashu; Niu, Lin; Cao, Shuliang

    2014-10-01

    Numerical simulations of the flow in the draft tube of a Francis turbine are carried out in order to elucidate the effects of tangential velocity on flow stability. Influence of the location of the maximum tangential velocity is explored considering the equality of the total energy at the inlet of the draft tube. It is found that the amplitude of the pressure fluctuation decreases when the location of the maximum of the tangential velocity moves from the centre to the wall on the cross section. Thus, the stability of the flow in the draft tube increases with the moving of the location of the maximum tangential velocity. However, the relative hydraulic loss increases and the recovery coefficient of the draft tube decreases slightly.

  16. Dark matter velocity dispersion effects on CMB and matter power spectra

    NASA Astrophysics Data System (ADS)

    Piattella, O. F.; Casarini, L.; Fabris, J. C.; de Freitas Pacheco, J. A.

    2016-02-01

    Effects of velocity dispersion of dark matter particles on the CMB TT power spectrum and on the matter linear power spectrum are investigated using a modified CAMB code. Cold dark matter originated from thermal equilibrium processes does not produce appreciable effects but this is not the case if particles have a non-thermal origin. A cut-off in the matter power spectrum at small scales, similar to that produced by warm dark matter or that produced in the late forming dark matter scenario, appears as a consequence of velocity dispersion effects, which act as a pressure perturbation.

  17. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  18. Computational Modeling of Seismic Wave Propagation Velocity-Saturation Effects in Porous Rocks

    NASA Astrophysics Data System (ADS)

    Deeks, J.; Lumley, D. E.

    2011-12-01

    Compressional and shear velocities of seismic waves propagating in porous rocks vary as a function of the fluid mixture and its distribution in pore space. Although it has been possible to place theoretical upper and lower bounds on the velocity variation with fluid saturation, predicting the actual velocity response of a given rock with fluid type and saturation remains an unsolved problem. In particular, we are interested in predicting the velocity-saturation response to various mixtures of fluids with pressure and temperature, as a function of the spatial distribution of the fluid mixture and the seismic wavelength. This effect is often termed "patchy saturation' in the rock physics community. The ability to accurately predict seismic velocities for various fluid mixtures and spatial distributions in the pore space of a rock is useful for fluid detection, hydrocarbon exploration and recovery, CO2 sequestration and monitoring of many subsurface fluid-flow processes. We create digital rock models with various fluid mixtures, saturations and spatial distributions. We use finite difference modeling to propagate elastic waves of varying frequency content through these digital rock and fluid models to simulate a given lab or field experiment. The resulting waveforms can be analyzed to determine seismic traveltimes, velocities, amplitudes, attenuation and other wave phenomena for variable rock models of fluid saturation and spatial fluid distribution, and variable wavefield spectral content. We show that we can reproduce most of the published effects of velocity-saturation variation, including validating the Voigt and Reuss theoretical bounds, as well as the Hill "patchy saturation" curve. We also reproduce what has been previously identified as Biot dispersion, but in fact in our models is often seen to be wave multi-pathing and broadband spectral effects. Furthermore, we find that in addition to the dominant seismic wavelength and average fluid patch size, the

  19. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running.

    PubMed

    Samozino, P; Rabita, G; Dorel, S; Slawinski, J; Peyrot, N; Saez de Villarreal, E; Morin, J-B

    2016-06-01

    This study aimed to validate a simple field method for determining force- and power-velocity relationships and mechanical effectiveness of force application during sprint running. The proposed method, based on an inverse dynamic approach applied to the body center of mass, estimates the step-averaged ground reaction forces in runner's sagittal plane of motion during overground sprint acceleration from only anthropometric and spatiotemporal data. Force- and power-velocity relationships, the associated variables, and mechanical effectiveness were determined (a) on nine sprinters using both the proposed method and force plate measurements and (b) on six other sprinters using the proposed method during several consecutive trials to assess the inter-trial reliability. The low bias (<5%) and narrow limits of agreement between both methods for maximal horizontal force (638 ± 84 N), velocity (10.5 ± 0.74 m/s), and power output (1680 ± 280 W); for the slope of the force-velocity relationships; and for the mechanical effectiveness of force application showed high concurrent validity of the proposed method. The low standard errors of measurements between trials (<5%) highlighted the high reliability of the method. These findings support the validity of the proposed simple method, convenient for field use, to determine power, force, velocity properties, and mechanical effectiveness in sprint running. PMID:25996964

  20. What is an effective portable air cleaning device? A review.

    PubMed

    Shaughnessy, R J; Sextro, R G

    2006-04-01

    The use of portable air cleaning devices in residential settings has been steadily growing over the last 10 years. Three out of every 10 households now contain a portable air cleaning device. This increased use of air cleaners is accompanied by, if not influenced by, a fundamental belief by consumers that the air cleaners are providing an improved indoor air environment. However, there is a wide variation in the performance of air cleaners that is dependent on the specific air cleaner design and various indoor factors. The most widely used method in the United States to assess the performance of new air cleaners is the procedure described in the American National Standards Institute (ANSI)/Association of Home Appliance Manufacturers (AHAM) AC-1-2002. This method describes both the test conditions and the testing protocol. The protocol yields a performance metric that is based on the measured decay rate of contaminant concentrations with the air cleaner operating compared with the measured decay rate with the air cleaner turned off. The resulting metric, the clean air delivery rate (CADR), permits both an intercomparison of performance among various air cleaners and a comparison of air cleaner operation to other contaminant removal processes. In this article, we comment on the testing process, discuss its applicability to various contaminants, and evaluate the resulting performance metrics for effective air cleaning. PMID:16531290

  1. A new air quality perception scale for global assessment of air pollution health effects.

    PubMed

    Deguen, Séverine; Ségala, Claire; Pédrono, Gaëlle; Mesbah, Mounir

    2012-12-01

    Despite improvements in air quality in developed countries, air pollution remains a major public health issue. To fully assess the health impact, we must consider that air pollution exposure has both physical and psychological effects; this latter dimension, less documented, is more difficult to measure and subjective indicators constitute an appropriate alternative. In this context, this work presents the methodological development of a new scale to measure the perception of air quality, useful as an exposure or risk appraisal metric in public health contexts. On the basis of the responses from 2,522 subjects in eight French cities, psychometric methods are used to construct the scale from 22 items that assess risk perception (anxiety about health and quality of life) and the extent to which air pollution is a nuisance (sensorial perception and symptoms). The scale is robust, reproducible, and discriminates between subpopulations more susceptible to poor air pollution perception. The individual risk factors of poor air pollution perception are coherent with those findings in the risk perception literature. Perception of air pollution by the general public is a key issue in the development of comprehensive risk assessment studies as well as in air pollution risk management and policy. This study offers a useful new tool to measure such efforts and to help set priorities for air quality improvements in combination with air quality measurements. PMID:22852801

  2. Long-term carbide development in high-velocity oxygen fuel/high-velocity air fuel Cr3C2-NiCr coatings heat treated at 900 °C

    NASA Astrophysics Data System (ADS)

    Matthews, S.; Hyland, M.; James, B.

    2004-12-01

    During the deposition of Cr3C2-NiCr coatings, compositional degradation occurs, primarily through the dissolution of the carbide phase into the matrix. Exposure at an elevated temperature leads to transformations in the compositional distribution and microstructure. While these have been investigated in short-term trials, no systematic investigations of the long-term microstructural development have been presented for high-velocity sprayed coatings. In this work, high-velocity air fuel (HVAF) and high-velocity oxygen fuel (HVOF) coatings were treated at 900 °C for up to 60 days. Rapid refinement of the supersaturated matrix phase occurred, with the degree of matrix phase alloying continuing to decrease over the following 20 to 40 days. Carbide nucleation in the HVAF coatings occurred preferentially on the retained carbide grains, while that in the HVOF coatings developed in the regions of greatest carbide dissolution. This difference resulted in a variation in carbide morphologies. Preferential horizontal growth was evident in both coatings over the first 20 to 30 days of exposure, beyond which spheroidization of the microstructure occurred. After 30 days, the carbide morphology of both coatings was comparable, tending toward an expansive structure of coalesced carbide grains. The development of the carbide phase played a significant role in the microhardness variation of these coatings with time.

  3. Effect of velocity and added resistance on selected coordination and force parameters in front crawl.

    PubMed

    Schnitzler, Christophe; Brazier, Tim; Button, Chris; Seifert, Ludovic; Chollet, Didier

    2011-10-01

    The effect of (a) increasing velocity and (b) added resistance was examined on the stroke (stroke length, stroke rate [SR]), coordination (index of coordination [IdC], propulsive phases), and force (impulse and peaks) parameters of 7 national-level front crawl swimmers (17.14 ± 2.73 years of swimming; 57.67 ± 1.62 seconds in the 100-m freestyle). The additional resistance was provided by a specially designed parachute. Parachute swimming (PA) and free-swimming (F) conditions were compared at 5 velocities per condition. Video footage was used to calculate the stroke and coordination parameters, and sensors allowed the determination of force parameters. The results showed that (a) an increase in velocity (V) led to increases in SR, IdC, propulsive phase duration, and peak propulsive force (p < 0.05), but no significant change in force impulse per cycle, whatever the condition (PA or F); and (b) in PA conditions, significant increases in the IdC, propulsive phase duration, and force impulse and a decrease in SR were recorded at high velocities (p < 0.05). These results indicated that, in the F condition, swimmers adapted to the change in velocity by modifying stroke and coordination rather than force parameters, whereas the PA condition enhanced the continuity of propulsive action and force development. Added resistance, that is, "parachute training," can be used for specific strength training purposes as long as swimming is performed near maximum velocity. PMID:21912344

  4. Effects of ischemia on capillary density and flow velocity in nailfolds of human toes.

    PubMed

    Richardson, D; Schwartz, R; Hyde, G

    1985-07-01

    The purpose of this study was to investigate reactive hyperemia in the capillary network of human skin in terms of the flow per capillary and the density of flow-active capillaries. Seventeen male subjects 20 to 40 years of age were seated with their right foot placed on the stage of a Leitz epi-ilumination microscope such that the nailfold capillary field in their large toes could be viewed. These vessels were video taped while flow velocity in the right posterior tibial artery was recorded via Doppler ultrasound at rest, then following a 45-sec period of arterial occlusion to the foot. Subsequent to experimentation flow velocity in single nailfold capillaries was measured via video densitometry and the number of flow-active capillaries in the field of view were counted. Following the release of arterial occlusion arterial flow velocity increased 142% above rest, the velocity in single capillaries increased by 54%, and the density of flow-active capillaries, as identified by the presence of red cells, decreased by 37%. The fact that capillary flow velocity increased to a lesser degree than arterial velocity during reactive hyperemia vis-a-vis a decrease in the number of flow-active capillaries indicates that ischemia to the foot elicits a smaller dilatory effect in vascular elements controlling blood flow to the superficial cutaneous region of the toe as compared to other regional vascular networks. PMID:4021840

  5. Influence of the inlet velocity profiles on the prediction of velocity distribution inside an electrostatic precipitator

    SciTech Connect

    Haque, Shah M.E.; Deev, A.V.; Subaschandar, N.; Rasul, M.G.; Khan, M.M.K.

    2009-01-15

    The influence of the velocity profile at the inlet boundary on the simulation of air velocity distribution inside an electrostatic precipitator is presented in this study. Measurements and simulations were performed in a duct and an electrostatic precipitator (ESP). A four-hole cobra probe was used for the measurement of velocity distribution. The flow simulation was performed by using the computational fluid dynamics (CFD) code FLUENT. Numerical calculations for the air flow were carried out by solving the Reynolds-averaged Navier-Stokes equations coupled with the realizable k-{epsilon} turbulence model equations. Simulations were performed with two different velocity profiles at the inlet boundary - one with a uniform (ideal) velocity profile and the other with a non-uniform (real) velocity profile to demonstrate the effect of velocity inlet boundary condition on the flow simulation results inside an ESP. The real velocity profile was obtained from the velocity measured at different points of the inlet boundary whereas the ideal velocity profile was obtained by calculating the mean value of the measured data. Simulation with the real velocity profile at the inlet boundary was found to predict better the velocity distribution inside the ESP suggesting that an experimentally measured velocity profile could be used as velocity inlet boundary condition for an accurate numerical simulation of the ESP. (author)

  6. Effect of fuel/air nonuniformity on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1979-01-01

    A flame tube combustor holding jet A fuel was used in experiments performed at a pressure of .3 Mpa and a reference velocity of 25 meters/second for three inlet air temperatures of 600, 700, and 800 K. The gas sample measurements were taken at locations 18 cm and 48 cm downstream of the perforated plate flameholder. Nonuniform fuel/air profiles were produced using a fuel injector by separately fueling the inner five fuel tubes and the outer ring of twelve fuel tubes. Six fuel/air profiles were produced for nominal overall equivalence ratios of .5 and .6. An example of three of three of these profiles and their resultant nitric oxide NOx emissions are presented. The uniform fuel/air profile cases produced uniform and relatively low profile levels. When the profiles were either center-peaked or edge-peaked, the overall mass-weighted nitric oxide levels increased.

  7. Orthogonal design on range hood with air curtain and its effects on kitchen environment.

    PubMed

    Liu, Xiaomin; Wang, Xing; Xi, Guang

    2014-01-01

    Conventional range hoods cannot effectively prevent the oil fumes containing cooking-induced harmful material from escaping into the kitchen Air curtains and guide plates have been used in range hoods to reduce the escape of airborne emissions and heat, thereby improving the kitchen environment and the cook's degree of comfort. In this article, numerical simulations are used to study the effects of the jet velocity of an air curtain, the jet angle of the air curtain, the width of the jet slot, the area of the guide plate, and the exhaust rate of the range hood on the perceived temperature, the perceived concentration of oil fumes, the release temperature of oil fumes, and the concentration of escaped oil fumes in a kitchen. The orthogonal experiment results show that the exhaust rate of the range hood is the main factor influencing the fumes concentration and the temperature distribution in the kitchen. For the range hood examined in the present study, the optimum values of the exhaust rate, the jet velocity of the air curtain, the jet angle of the air curtain, the width of the jet slot, and the area of the guide plate are 10.5 m(3)/min, 1.5 m/s, -5°, 4 mm, and 0.22 m(2), respectively, based on the results of the parametric study. In addition, the velocity field, temperature field, and oil fumes concentration field in the kitchen using the proposed range hood with the air curtain and guide plate are analyzed for those parameters. The study's results provide significant information needed for improving the kitchen environment. PMID:24521068

  8. Air plasma effect on dental disinfection

    NASA Astrophysics Data System (ADS)

    Duarte, S.; Kuo, S. P.; Murata, R. M.; Chen, C. Y.; Saxena, D.; Huang, K. J.; Popovic, S.

    2011-07-01

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  9. Air plasma effect on dental disinfection

    SciTech Connect

    Duarte, S.; Murata, R. M.; Saxena, D.; Kuo, S. P.; Chen, C. Y.; Huang, K. J.; Popovic, S.

    2011-07-15

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  10. Effect of walking velocity on hindlimb kinetics during stance in normal horses.

    PubMed

    Khumsap, S; Clayton, H M; Lanovaz, J L

    2001-04-01

    The objectives of this study were to measure the effect of walking velocity on net joint moments and joint powers in the hindlimb during stance and to use the data to predict these variables at different walking velocities. Videographic and force data were collected synchronously from 5 sound horses walking over a force plate at a range of velocities. Force and kinematic data from 56 trials were combined using an inverse dynamic solution to determine net joint moments and joint powers. Analysis by simple regression and correlation (P < 0.05, r2 > or = 0.30, r > 0.50) showed that, in early stance, there were significant velocity-dependent increases in the peak magnitudes of the following variables: extensor moment and positive power at the hip, flexor moment and positive power at the stifle, extensor moment, negative and positive power at the tarsus, and flexor moment and negative power at the fetlock. In late stance, there were significant velocity-dependent increases in the peak magnitudes of the following variables: flexor moment at the hip, negative power at the stifle and flexor moment and positive power at the tarsus. As velocity increased, the hip showed an increase in energy generation, whereas the tarsus showed increases in both energy generation and absorption. It is concluded that an increase in walking velocity is associated with increases in peak magnitudes of the net joint moments and joint powers in the hindlimb; and that energy generation at the hip makes the largest contribution to the increase in velocity. PMID:11721562

  11. Effect of postural changes on 3D joint angular velocity during starting block phase.

    PubMed

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments. PMID:23062070

  12. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of

  13. Group velocity of extraordinary waves in superdense magnetized quantum plasma with spin-1/2 effects

    SciTech Connect

    Li Chunhua; Ren Haijun; Yang Weihong; Wu Zhengwei; Chu, Paul K.

    2012-12-15

    Based on the one component plasma model, a new dispersion relation and group velocity of elliptically polarized extraordinary electromagnetic waves in a superdense quantum magnetoplasma are derived. The group velocity of the extraordinary wave is modified due to the quantum forces and magnetization effects within a certain range of wave numbers. It means that the quantum spin-1/2 effects can reduce the transport of energy in such quantum plasma systems. Our work should be of relevance for the dense astrophysical environments and the condensed matter physics.

  14. Health effects of particulate air pollution: time for reassessment?

    PubMed Central

    Pope, C A; Bates, D V; Raizenne, M E

    1995-01-01

    Numerous studies have observed health effects of particulate air pollution. Compared to early studies that focused on severe air pollution episodes, recent studies are more relevant to understanding health effects of pollution at levels common to contemporary cities in the developed world. We review recent epidemiologic studies that evaluated health effects of particulate air pollution and conclude that respirable particulate air pollution is likely an important contributing factor to respiratory disease. Observed health effects include increased respiratory symptoms, decreased lung function, increased hospitalizations and other health care visits for respiratory and cardiovascular disease, increased respiratory morbidity as measured by absenteeism from work or school or other restrictions in activity, and increased cardiopulmonary disease mortality. These health effects are observed at levels common to many U.S. cities including levels below current U.S. National Ambient Air Quality Standards for particulate air pollution. Images Figure 1. PMID:7656877

  15. Coupled Velocity and Cooling Effectiveness Measurements of a Film Cooling Hole With Varied Blowing Rates and Ejection Angles

    NASA Astrophysics Data System (ADS)

    Issakhanian, Emin; Elkins, Chris J.; Eaton, John K.

    2010-11-01

    Film cooling is used to shield turbine blades from combustion gases which are at temperatures above the melting point of the blade's constituent alloy. Maximizing film cooling effectiveness allows higher combustion temperatures and decreases need for bypass air. The present experiment studies flow through a single film cooling hole jetting into a square channel. The momentum thickness Reynolds number of the main flow is 500. The diameter of the cooling flow is 10 times the momentum thickness at the hole exit. The cooling flow Reynolds number varies between 1250 and 5000. Magnetic Resonance Velocimetry (MRV) and Concentration (MRC) are used to measure mean velocity and coolant concentration of the 3-D field both inside the main channel and inside the cooling hole and feed plenum. By marking only the main flow with a passive scalar, the MRC data allow measurement of cooling flow concentration, which by analogy is related to the temperature of the fluid. The velocity data shows the development of a counter-rotating vortex pair downstream of the jet. These vortices transport cooling flow away from the channel floor resulting in a lifted kidney-shaped coolant cross-section and reduced effectiveness. The varying strength of this flow feature and of surface effectiveness due to different ejection angles and blowing ratios is studied.

  16. Effect of warm-up with different weighted bats on normal baseball bat velocity.

    PubMed

    Montoya, Brian S; Brown, Lee E; Coburn, Jared W; Zinder, Steven M

    2009-08-01

    Traditionally, baseball players have used a heavy bat for warm-up before competition. Because bat velocity is an essential component to hitting a baseball, and because players warm up differently, there is a need to investigate the best way to maximize post warm-up bat velocity. The purpose of this study was to determine the effects of warm-up with different weighted bats on normal baseball bat velocity. Nineteen recreational male baseball players (age, 24.5 +/- 3.9 years; height, 181.1 +/- 8.4 cm; body mass, 87.9 +/- 18.4 kg) participated in this study. Three different randomized warm-up conditions were completed and analyzed for velocity and for their effect on post warm-up normal baseball bat velocity. Subjects were instructed to perform 5 maximal swings with each of 3 different weighted bats-light (LB = 9.6 oz), normal (NB = 31.5 oz), and heavy (HB = 55.2 oz)-followed by 30-second rest and then 5 swings of the NB. Analysis of variance revealed that warm-up velocity of the LB (63.57 +/- 3.58 mph) was significantly (p < 0.05) faster than that of NB (51.25 +/- 3.01 mph) and HB (41.79 +/- 3.01 mph), whereas warm-up velocity of NB was also significantly faster than that of HB. For post warm-up, LB (52.29 +/- 2.68 mph) and NB (50.60 +/- 3.04 mph) produced significantly faster velocity of the normal bat than the HB (48.26 +/- 2.98 mph). Warming up with 5 swings of a light or normal bat appears to increase post warm-up velocity of the normal bat when compared with warming up with a heavy bat after a rest period of 30 seconds. Within the bat weight spectrum of this study, it is suggested that when preparing to hit, 5 warm-up swings with either a light or normal bat will allow a player to achieve the greatest velocity of their normal bat. PMID:19593220

  17. Effects of magnetic field and Hall current to the blood velocity and LDL transfer

    NASA Astrophysics Data System (ADS)

    Abdullah, I.; Naser, N.; Talib, A. H.; Mahali, S.

    2015-09-01

    The magnetic field and Hall current effects have been considered on blood velocity and concentration of low-density lipoprotein (LDL). It is important to observe those effects to the flowing blood in a stenosed artery. The analysis from the obtained results may be useful to some clinical procedures, such as MRI, where the radiologists may have more information in the investigations before cardiac operations could be done. In this study, the uniform magnetic field and Hall current are applied to the Newtonian blood flow through an artery having a cosine-shaped stenosis. The governing equations are coupled with mass transfer and solved employing a finite difference Marker and Cell (MAC) method with an appropriate initial and boundary conditions. The graphical results of velocity profiles and LDL concentration are presented in this paper and the results show that the velocity increases and concentration decreases as Hall parameter increased.

  18. Gas-rich and gas-poor structures through the stream velocity effect

    NASA Astrophysics Data System (ADS)

    Popa, Cristina; Naoz, Smadar; Marinacci, Federico; Vogelsberger, Mark

    2016-08-01

    Using adiabatic high-resolution numerical simulations, we quantify the effect of the streaming motion of baryons with respect to dark matter at the time of recombination on structure formation and evolution. Formally a second-order effect, the baryonic stream velocity has proven to have significant impact on dark matter halo abundance, as well as on the gas content and morphology of small galaxy clusters. In this work, we study the impact of stream velocity on the formation and gas content of haloes with masses up to 109 M⊙, an order of magnitude larger than previous studies. We find that the non-zero stream velocity has a sizable impact on the number density of haloes with masses ≲ few × 107 M⊙ up to z = 10, the final redshift of our simulations. Furthermore, the gas stream velocity induces a suppression of the gas fraction in haloes, which at z = 10 is ˜10 per cent for objects with M ˜ 107 M⊙, as well as a flattening of the gas density profiles in the inner regions of haloes. We further identify and study the formation, in the context of a non-zero stream velocity, of moderately long lived gas-dominated structures at intermediate redshifts 10 < z < 20, which Naoz and Narayan have recently proposed as potential progenitors of globular clusters.

  19. Gas-rich and gas poor structures through the stream velocity effect

    NASA Astrophysics Data System (ADS)

    Popa, Cristina; Naoz, Smadar; Marinacci, Federico; Vogelsberger, Mark

    2016-05-01

    Using adiabatic high-resolution numerical simulations we quantify the effect of the streaming motion of baryons with respect to dark matter at the time of recombination on structure formation and evolution. Formally a second order effect, the baryonic stream velocity has proven to have significant impact on dark matter halo abundance, as well as on the gas content and morphology of small galaxy clusters. In this work, we study the impact of stream velocity on the formation and gas content of haloes with masses up to 109M⊙, an order of magnitude larger than previous studies. We find that the non-zero stream velocity has a sizable impact on the number density of haloes with masses ≲ few× 107M⊙ up to z = 10, the final redshift of our simulations. Furthermore, the gas stream velocity induces a suppression of the gas fraction in haloes, which at z=10 is ˜10% for objects with M ˜ 107M⊙, as well as a flattening of the gas density profiles in the inner regions of haloes. We further identify and study the formation, in the context of a non-zero stream velocity, of moderately long lived gas dominated structures at intermediate redshifts 10 < z < 20, which Naoz and Narayan have recently proposed as potential progenitors of globular clusters.

  20. Ballistic Range Measurements of Stagnation-Point Heat Transfer in Air and in Carbon Dioxide at Velocities up to 18,000 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Yee, Layton; Bailey, Harry E.; Woodward, Henry T.

    1961-01-01

    A new technique for measuring heat-transfer rates on free-flight models in a ballistic range is described in this report. The accuracy of the heat-transfer rates measured in this way is shown to be comparable with the accuracy obtained in shock-tube measurements. The specific results of the present experiments consist of measurements of the stagnation-point heat-transfer rates experienced by a spherical-nosed model during flight through air and through carbon dioxide at velocities up to 18,000 feet per second. For flight through air these measured heat-transfer rates agree well with both the theoretically predicted rates and the rates measured in shock tubes. the heat-transfer rates agree well with the rates measured in a shock tube. Two methods of estimating the stagnation-point heat-transfer rates in carbon dioxide are compared with the experimental measurements. At each velocity the measured stagnation-point heat-transfer rate in carbon dioxide is about the same as the measured heat-transfer rate in air.

  1. Air Gap Effects in LX-17

    SciTech Connect

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  2. Effects of aging on force, velocity, and power in the elbow flexors of males.

    PubMed

    Toji, Hideki; Kaneko, Masahiro

    2007-11-01

    The effect of aging on muscular power development was investigated by determining the force-velocity relationship. The muscle cross-sectional area (CSA) was estimated by the thickness of the elbow flexors. The subjects were 19 elderly males aged 69.1+/-3.7 years old (G-70 group), 15 middle-aged males aged 50.9+/-3.5 years old (G-50), and 19 young males aged 21.2+/-1.3 years old (G-20). The G-70 group had the slowest shortening velocities under various load conditions, resulting in the lowest force-velocity relationship. The maximum values for force (Fmax), velocity (Vmax), power (Pmax), dynamic constants (a, b), and the a/Fmax ratio were determined using Hill's equation. The a/Fmax ratio determines the degree of concavity in the force-velocity curve. The a/Fmax ratio was greatest in G-70, followed by those in G-50 and G-20, while the maximum values for force (Fmax), velocity (Vmax), and power (Pmax) were significantly lower in G-70 than in the other groups. Fmax and Pmax per CSA were lowest in G-70, and Vmax per unit muscle length was also lowest in G-70 as compared to the other age groups. The ratio of G-70/G-20 was greatest in Pmax (69.6%), followed by Fmax (75.3%) and Vmax (83.4%). However, there were no significant differences in CSA among the 3 age groups. Our findings suggest that muscle force and shortening velocity may decline gradually in the process of aging attributed to declining muscle function rather than CSA. PMID:18174666

  3. Effects of Turbulence on Settling Velocities of Synthetic and Natural Particles

    NASA Astrophysics Data System (ADS)

    Jacobs, C.; Jendrassak, M.; Gurka, R.; Hackett, E. E.

    2014-12-01

    For large-scale sediment transport predictions, an important parameter is the settling or terminal velocity of particles because it plays a key role in determining the concentration of sediment particles within the water column as well as the deposition rate of particles onto the seabed. The settling velocity of particles is influenced by the fluid dynamic environment as well as attributes of the particle, such as its size, shape, and density. This laboratory study examines the effects of turbulence, generated by an oscillating grid, on both synthetic and natural particles for a range of flow conditions. Because synthetic particles are spherical, they serve as a reference for the natural particles that are irregular in shape. Particle image velocimetry (PIV) and high-speed imaging systems were used simultaneously to study the interaction between the fluid mechanics and sediment particles' dynamics in a tank. The particles' dynamics were analyzed using a custom two-dimensional tracking algorithm used to obtain distributions of the particle's velocity and acceleration. Turbulence properties, such as root-mean-square turbulent velocity and vorticity, were calculated from the PIV data. Results are classified by Stokes number, which was based-on the integral scale deduced from the auto-correlation function of velocity. We find particles with large Stokes numbers are unaffected by the turbulence, while particles with small Stokes numbers primarily show an increase in settling velocity in comparison to stagnant flow. The results also show an inverse relationship between Stokes number and standard deviation of the settling velocity. This research enables a better understanding of the interdependence between particles and turbulent flow, which can be used to improve parameterizations in large-scale sediment transport models.

  4. Characterization of air freshener emission: the potential health effects.

    PubMed

    Kim, Sanghwa; Hong, Seong-Ho; Bong, Choon-Keun; Cho, Myung-Haing

    2015-01-01

    Air freshener could be one of the multiple sources that release volatile organic compounds (VOCs) into the indoor environment. The use of these products may be associated with an increase in the measured level of terpene, such as xylene and other volatile air freshener components, including aldehydes, and esters. Air freshener is usually used indoors, and thus some compounds emitted from air freshener may have potentially harmful health impacts, including sensory irritation, respiratory symptoms, and dysfunction of the lungs. The constituents of air fresheners can react with ozone to produce secondary pollutants such as formaldehyde, secondary organic aerosol (SOA), oxidative product, and ultrafine particles. These pollutants then adversely affect human health, in many ways such as damage to the central nervous system, alteration of hormone levels, etc. In particular, the ultrafine particles may induce severe adverse effects on diverse organs, including the pulmonary and cardiovascular systems. Although the indoor use of air freshener is increasing, deleterious effects do not manifest for many years, making it difficult to identify air freshener-associated symptoms. In addition, risk assessment recognizes the association between air fresheners and adverse health effects, but the distinct causal relationship remains unclear. In this review, the emitted components of air freshener, including benzene, phthalate, and limonene, were described. Moreover, we focused on the health effects of these chemicals and secondary pollutants formed by the reaction with ozone. In conclusion, scientific guidelines on emission and exposure as well as risk characterization of air freshener need to be established. PMID:26354370

  5. The Effect of Charge Reactive Metal Cases on Air Blast

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wilson, William H.

    2009-12-01

    Experiments were conducted in a 23 m3 closed chamber using a charge encased in a cylindrical reactive metal case to study the effect on air blast from the case fragments. Parameters varied included case/charge mass ratio, charge diameter and charge type (i.e., detonation energy and pressure). The pressure histories measured on the chamber wall showed a double-shock front structure with an accelerating precursor shock followed by the primary shock, suggesting the early-time reaction of small case fragments. During the early reflections on the chamber wall, significant pressure rises versus the steel-cased and bare charges indicated combustion of a large amount of small case particles generated by secondary fragmentation. The analysis of explosion pressures and recovered fragments and solid products gave an expression for burnt casing mass as a function of Gurney velocity and charge diameter. The equivalent bare charge mass that yields the same explosion pressure as the cased charge increased with case/charge mass ratio and reached 2.5 times charge mass at the ratio of 1.75.

  6. A Numerical and Experimental Study of Coflow Laminar Diffusion Flames: Effects of Gravity and Inlet Velocity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Bennett, B. A. V.; Ma, B.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2015-01-01

    In this work, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting behavior of laminar coflow methane-air diffusion flames was investigated both computationally and experimentally. A series of flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) was assessed numerically under microgravity and normal gravity conditions with the fuel stream CH4 mole fraction ranging from 0.4 to 1.0. Computationally, the MC-Smooth vorticity-velocity formulation of the governing equations was employed to describe the reactive gaseous mixture; the soot evolution process was considered as a classical aerosol dynamics problem and was represented by the sectional aerosol equations. Since each flame is axisymmetric, a two-dimensional computational domain was employed, where the grid on the axisymmetric domain was a nonuniform tensor product mesh. The governing equations and boundary conditions were discretized on the mesh by a nine-point finite difference stencil, with the convective terms approximated by a monotonic upwind scheme and all other derivatives approximated by centered differences. The resulting set of fully coupled, strongly nonlinear equations was solved simultaneously using a damped, modified Newton's method and a nested Bi-CGSTAB linear algebra solver. Experimentally, the flame shape, size, lift-off height, and soot temperature were determined by flame emission images recorded by a digital camera, and the soot volume fraction was quantified through an absolute light calibration using a thermocouple. For a broad spectrum of flames in microgravity and normal gravity, the computed and measured flame quantities (e.g., temperature profile, flame shape, lift-off height, and soot volume fraction) were first compared to assess the accuracy of the numerical model. After its validity was established, the influence of gravity, fuel dilution, and inlet velocity on the structure, stabilization, and sooting

  7. Evaluation of an Imputed Pitch Velocity Model of the Auditory Kappa Effect

    ERIC Educational Resources Information Center

    Henry, Molly J.; McAuley, J. Devin

    2009-01-01

    Three experiments evaluated an imputed pitch velocity model of the auditory kappa effect. Listeners heard 3-tone sequences and judged the timing of the middle (target) tone relative to the timing of the 1st and 3rd (bounding) tones. Experiment 1 held pitch constant but varied the time (T) interval between bounding tones (T = 728, 1,000, or 1,600…

  8. Investigation of Microopto-eletromechanical Angular Velocity and Acceleration Transducers based on Optical Tunneling Effect

    NASA Astrophysics Data System (ADS)

    Busurin, V. I.; Lwin, Naing Htoo; Tuan, Pham Anh

    In this paper the possibility of microopto-electromechanical (MOEM) angular velocity and acceleration transducers based on optical tunneling effect (OTE) is considered. The generalized model of MOEM transducers with various types of sensing elements (SE) is developed, transfer functions are investigated, and the errors with various design parameters of transducers are estimated.

  9. Effect of simulated forward speed on the jet noise of inverted velocity profile coannular nozzles

    NASA Technical Reports Server (NTRS)

    Packman, A. B.; Ng, K. W.; Chen, C. Y.

    1977-01-01

    Tests were conducted of inverted velocity profile coannular nozzles and a conical nozzle in an acoustic wind tunnel facility to simulate flight effects on jet noise generation. Coannular model nozzles were tested at fan to core nozzle exit area ratios of .75 and 1.2. Fan stream jet velocity ranged up to 2000 fps at a variety of fan exhaust pressure ratios and temperatures for a core stream of 1000 fps. The wind tunnel airflow was varied from static to 425 fps. The acoustic results indicated that the noise level differences seen previously under static conditions are retained in the flight environment.

  10. Effect of particle velocity fluctuations on the inertia coupling in two-phase flow

    NASA Technical Reports Server (NTRS)

    Drew, Donald A.

    1989-01-01

    Consistent forms for the interfacial force, the interfacial pressure, the Reynolds stresses and the particle stress have been derived for the inviscid, irrotational incompressible flow of fluid in a dilute suspension of spheres. The particles are assumed to have a velocity distribution, giving rise to an effective pressure and stress in the particle phase. The velocity fluctuations also contribute in the fluid Reynolds stress and in the (elastic) stress field inside the spheres. The relation of these constitutive equations to the force on an individual sphere is discussed.

  11. Effects of current velocity on byssal thread production in the zebra mussel (Dreissena polymorpha)

    SciTech Connect

    Clarke, M.; McMahon, R.F.

    1995-06-01

    Effect of current velocity on byssal thread production by the zebra mussel (Dreissena polymorpha) was investigated. Number of threads produced by samples of 20 mussels at 25{degrees}C exposed to currents velocities of 0.1, 0.15, 0.2, 0.27 m/s were counted over 21 days. Mussels were removed from current daily and number of new threads counted over a period of 21 days after which mussels were removed and their shell length measured. Increased current velocity significantly elevated rates of byssal thread production between 0.1 m/s and 0.2 m/s. velocities of 0.27 m/s suppressed production. Suppression may be due to agitation, interfering with the mussels ability to successfully produce a byssal thread. Mean byssal thread number in a newly formed byssal complex after 21 days exposure was 52.5, 63.8, 73.3 and 60.4 at current velocities of 0.1, 0.15, 0.2 and 0.27 m/s respectively. Some of these results are consistent with observations made on the intertidal bivalve Mytilus edulis, others conflict. Results support contention that characteristics of byssal attachment may vary between freshwater and marine species.

  12. The effects of leg angular velocity on mean power frequency and amplitude of the mechanomyographic signal.

    PubMed

    Ebersole, K T; Housh, T J; Weir, J P; Johnson, G O; Evetovich, T K; Smith, D B

    2000-01-01

    The purpose of the present investigation was to examine the effects of leg angular velocity on the mean power frequency (MPF) and amplitude of the mechanomyographic (MMG) signal during maximal concentric (CON) isokinetic muscle actions. Sixteen adult subjects performed maximal CON leg extensions on a calibrated Cybex 6000 dynamometer at leg angular velocities of 60 and 300 degrees.s-1. MMG was detected by a piezoelectric crystal contact sensor placed over the mid-portion of the vastus lateralis muscle. The results indicated a significant (p < 0.05) velocity-related decrease in peak torque (PT) and increase in MMG amplitude from 60 to 300 degrees.s-1. There was, however, no velocity-related change (p > 0.05) in MMG MPF. These findings did not support our hypothesis that increases across velocity in MMG amplitude were due to decreases in muscle stiffness as a result of a shift in the contribution of slow and fast-twitch muscle fibers to PT production. Future research should examine the potential influence of actin-myosin cycling rate as well as limb movement on the MPF and amplitude of the MMG signal. PMID:10782358

  13. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant`s breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  14. Air exchange effectiveness of conventional and task ventilation for offices

    SciTech Connect

    Fisk, W.J.; Faulkner, D.; Prill, R.J.

    1991-12-01

    Air quality and comfort complaints within large buildings are often attributed to air distribution problems. We define three air exchange effectiveness parameters related to air distribution. The first two indicate the indoor air flow pattern (i.e., the extent of short circuiting, mixing, or displacement flow) for an entire building or region. The third parameter is most useful for assessments of the spatial variability of ventilation. We also define the air diffusion effectiveness which indicates the air flow pattern within specific rooms or sections of buildings. The results of measurements of these parameters in US office buildings by the authors and other researchers are reviewed. Almost all measurements indicate very limited short circuiting or displacement flow between locations of air supply and removal. However, a moderate degree of short circuiting is evident from a few measurements in rooms with heated supply air. The results of laboratory-based measurements by the authors are consistent with the field data. Our measurements in office buildings do indicate that ventilation rates can vary substantially between indoor locations, probably due to variation in air supply rates between locations rather than variation in the indoor air flow patterns. One possible method of improving air distribution is to employ task ventilation with air supplied closer to the occupant's breathing zone. We have evaluated two task ventilation systems in a laboratory setting. During most operating conditions, these systems did not provide a region of substantially increased ventilation where occupants breath. However, both systems are capable of providing substantially enhanced ventilation at the breathing zone under some operating conditions. Therefore, task ventilation is a potential option for using ventilation air more effectively.

  15. Misperceptions of angular velocities influence the perception of rigidity in the kinetic depth effect

    NASA Technical Reports Server (NTRS)

    Domini, F.; Caudek, C.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    1997-01-01

    Accuracy in discriminating rigid from nonrigid motion was investigated for orthographic projections of three-dimension rotating objects. In 3 experiments the hypothesis that magnitudes of angular velocity are misperceived in the kinetic depth effect was tested, and in 4 other experiments the hypothesis that misperceiving angular velocities leads to misperceiving rigidity was tested. The principal findings were (a) the magnitude of perceived angular velocity is derived heuristically as a function of a property of the first-order optic flow called deformation and (b) perceptual performance in discriminating rigid from nonrigid motion is accurate in cases when the variability of the deformations of the individual triplets of points of the stimulus displays favors this interpretation and not accurate in other cases.

  16. Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow

    NASA Astrophysics Data System (ADS)

    Pozorski, Jacek; Knorps, Maria; Łuniewski, Mirosław

    2011-12-01

    A non-isothermal turbulent flow with the dispersed phase is modelled using the Large Eddy Simulation (LES) approach for fluid, one-way coupled with the equations of point-particle evolution. The channel is heated at both walls and isoflux boundary conditions are applied for fluid. Particle velocity and thermal statistics are computed. Of particular interest are the r.m.s. profiles and the probability density function of particle temperature in the near-wall region. We compare our findings with available reference data for particle-laden, heated channel flow. Moreover, an open issue in LES is the influence of non-resolved (residual) scales of fluid velocity and temperature fields on particles. In the present contribution, we apply a stochastic model for subfilter fluid velocity at the particle positions that aims at reconstructing the effects of the smallest scales of turbulence on particle dynamics. We analyse the impact of this model on particle thermal statistics.

  17. UNDERSTANDING THE EFFECTS OF AIR POLLUTION ON HUMAN HEALTH

    EPA Science Inventory

    Modern air pollution regulation is first and foremost motivated by concerns about the effects of air pollutants on human health and secondarily by concerns about its effects on ecosystems, cultural artifacts, and quality of life values such as visibility. This order of priority ...

  18. LONG-TERM EFFECTS OF AIR POLLUTANTS: IN CANINE SPECIES

    EPA Science Inventory

    The Clean Air Act of 1970 as amended in 1977 requires that a comprehensive data base be established to assess human health effects caused by air pollution from mobile sources. The spectrum of potential toxic effects can be viewed from two perspectives: The first is the identifica...

  19. Some Factors Influencing Air Force Simulator Training Effectiveness. Technical Report.

    ERIC Educational Resources Information Center

    Caro, Paul W.

    A study of U.S. Air Force simulator training was conducted to identify factors that influence the effectiveness of such training and to learn how its effectiveness is being determined. The research consisted of a survey of ten representative Air Force simulator training programs and a review of the simulator training research literature. A number…

  20. Effect of electric charging on the velocity of water flow in CNT.

    PubMed

    Abbasi, Hossein Reza; Karimian, S M Hossein

    2016-09-01

    The role of electrical charge in controlling the velocity of water molecules in a finite single-walled carbon nanotube (CNT) was studied in detail using molecular dynamics simulation. Different test cases were examined to determine the parameters affecting the control of water-flow velocity in CNT upon electrically charging the surface of a CNT. The results showed that charge magnitude and volume, as well as the charging scenario, are the parameters having greatest effect. The implementation of electric charge on the surface of a CNT was demonstrated to decrease the resistance of CNT to incoming water flow at the entrance, but to increase friction-type resistance to flow along the CNT. Therefore, through controlling the magnitude of electric charge, water flow through the CNT may be accelerated, or decelerated. The results show that the velocity of molecular flow in the CNT increases to a maximum value, and then decreases with electric charge regardless of its sign. In the case studied here, this maximum velocity occurs at electric charging of ±0.25e/atom. It was also shown that, to reach similar flow velocities in a CNT, it is not sufficient to merely implement equal volumes of electric charge, where the volume of electric charging is defined as charge magnitude × charging time. In fact , both magnitude of charging and volume of electric charging must be equal to each other. These findings, together with options to implement scenarios with alternative charging, provide the means to effectively adjust desired velocities in a CNT. PMID:27488104

  1. The effect of sliding velocity on chondrocytes activity in 3D scaffolds.

    PubMed

    Wimmer, Markus A; Alini, Mauro; Grad, Sibylle

    2009-03-11

    Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated +/-25 degrees at 0.01, 0.1, and 1Hz to generate 0.28, 2.8, and 28mm/s, respectively. The median velocity of these 'open' motion trajectories was tested against 'closed' motion trajectories in that the scaffold oscillated +/-20 degrees against the ball at 1Hz, reaching 2.8mm/s. Constructs were loaded twice a day for 1h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed. Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28mm/s, while all other measured variables were considerably up-regulated at 28mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA. To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion. PMID:19152917

  2. Effect of Cutting Velocity / Stem Size on the Efficiency of NRCRI Cassave Stem Cutting Machine

    NASA Astrophysics Data System (ADS)

    Ikejiofor, M. C.

    2012-11-01

    The developed NRCRI (National Root Crops Research Institute) cassava stem cutting machine was evaluated. The cassava stems from the variety TME 419 were used. The sizes of the stem used were 1.8, 2.0, 2.3 and 2.6cm. Also, different cutting velocities of 1.20, 1.23 and 1.32m/s were used. The stakes produced has length of 2.5cm. Analysis of variance in RCBD was used to evaluate the effect of the cutting velocity and the stem size on the efficiency of the cutting machine. The result of the analysis showed that the cutting velocity had very highly significant effect, while the stem size had no significant effect at 5% level on the efficiency of the cutting machine. The data obtained also showed that the highest and least cutting efficiencies of 99.42 and 94.71% were obtained with the machine cutting velocities of 1.2 and 1.32m/s respectively.

  3. The development of effects-based air quality management regimes

    NASA Astrophysics Data System (ADS)

    Longhurst, J. W. S.; Irwin, J. G.; Chatterton, T. J.; Hayes, E. T.; Leksmono, N. S.; Symons, J. K.

    This paper considers the evolution of attempts to control and manage air pollution, principally but not exclusively focussing upon the challenge of managing air pollution in urban environments. The development and implementation of a range of air pollution control measures are considered. Initially the measures implemented primarily addressed point sources, a small number of fuel types and a limited number of pollutants. The adequacy of such a source-control approach is assessed within the context of a changing and challenging air pollution climate. An assessment of air quality management in the United Kingdom over a 50-year timeframe exemplifies the range of issues and challenges in contemporary air quality management. The need for new approaches is explored and the development and implementation of an effects-based, risk management system for air quality regulation is evaluated.

  4. Effects of building-roof cooling on flow and air temperature in urban street canyons

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Jin; Pardyjak, Eric; Kim, Do-Yong; Han, Kyoung-Soo; Kwon, Byung-Hyuk

    2014-05-01

    The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.

  5. Evaluation of the effect of media velocity on HEPA filter performance

    SciTech Connect

    Alderman, Steven; Parsons, Michael; Hogancamp, Kristina; Norton, O. Perry; Waggoner, Charles

    2007-07-01

    Section FC of the ASME AG-1 Code addresses glass fiber HEPA filters and restricts the media velocity to a maximum of 2.54 cm/s (5 ft/min). Advances in filter media technology allow glass fiber HEPA filters to function at significantly higher velocities and still achieve HEPA performance. However, diffusional capture of particles < 100 nm is reduced at higher media velocities due to shorter residence times within the media matrix. Therefore, it is unlikely that higher media velocities for HEPA filters will be allowed without data to demonstrate the effect of media velocity on removal of particles in the smaller size classes. In order to address this issue, static testing has been conducted to generate performance related data and a range of dynamic testing has provided data regarding filter lifetimes, loading characteristics, changes in filter efficiency and the most penetrating particle size over time. Testing was conducted using 31 cm x 31 cm x 29 cm deep pleat HEPA filters supplied from two manufacturers. Testing was conducted at media velocities ranging from 2.0-4.5 cm/s with a solid aerosol challenge composed of potassium chloride. Two set of media velocity data were obtained for each filter type. In one set of evaluations, the maximum aerosol challenge particle size was limited to 3 {mu}m, while particles above 3 {mu}m were not constrained in the second set. This provided for considerable variability in the challenge mass mean diameter and overall mass loading rate. Results of this testing will be provided to the ASME AG-1 FC Committee for consideration in future versions of the HEPA standard. In general, the initial filter efficiency decreased with increasing media velocity. However, initial filter efficiencies were generally good in all cases. Filter efficiency values averaged over the first ten minute of the loading cycle ranged from 99.970 to 99.996 %. Additionally, the most penetrating particle size was observed to decrease with increasing media velocity

  6. Effects of Run-Up Velocity on Performance, Kinematics, and Energy Exchanges in The Pole Vault

    PubMed Central

    Linthorne, Nicholas P.; Weetman, A. H. Gemma

    2012-01-01

    This study examined the effect of run-up velocity on the peak height achieved by the athlete in the pole vault and on the corresponding changes in the athlete's kinematics and energy exchanges. Seventeen jumps by an experienced male pole vaulter were video recorded in the sagittal plane and a wide range of run-up velocities (4.5-8.5 m/s) was obtained by setting the length of the athlete's run-up (2-16 steps). A selection of performance variables, kinematic variables, energy variables, and pole variables were calculated from the digitized video data. We found that the athlete's peak height increased linearly at a rate of 0.54 m per 1 m/s increase in run-up velocity and this increase was achieved through a combination of a greater grip height and a greater push height. At the athlete's competition run-up velocity (8.4 m/s) about one third of the rate of increase in peak height arose from an increase in grip height and about two thirds arose from an increase in push height. Across the range of run-up velocities examined here the athlete always performed the basic actions of running, planting, jumping, and inverting on the pole. However, he made minor systematic changes to his jumping kinematics, vaulting kinematics, and selection of pole characteristics as the run-up velocity increased. The increase in run-up velocity and changes in the athlete's vaulting kinematics resulted in substantial changes to the magnitudes of the energy exchanges during the vault. A faster run-up produced a greater loss of energy during the take-off, but this loss was not sufficient to negate the increase in run-up velocity and the increase in work done by the athlete during the pole support phase. The athlete therefore always had a net energy gain during the vault. However, the magnitude of this gain decreased slightly as run-up velocity increased. Key pointsIn the pole vault the optimum technique is to run-up as fast as possible.The athlete's vault height increases at a rate of about 0.5 m

  7. Air sea gas transfer velocity estimates from the Jason-1 and TOPEX altimeters: Prospects for a long-term global time series

    NASA Astrophysics Data System (ADS)

    Glover, David M.; Frew, Nelson M.; McCue, Scott J.

    2007-06-01

    Estimation of global and regional air-sea fluxes of climatically important gases is a key goal of current climate research programs. Gas transfer velocities needed to compute these fluxes can be estimated by combining altimeter-derived mean square slope with an empirical relation between transfer velocity and mean square slope derived from field measurements of gas fluxes and small-scale wave spectra [Frew, N.M., Bock, E.J., Schimpf, U., Hara, T., Hauβecker, H., Edson, J.B., McGillis, W.R., Nelson, R.K., McKenna, S.P., Uz, B.M., Jähne, B., 2004. Air-sea gas transfer: Its dependence on wind stress, small-scale roughness and surface films, J. Geophys. Res., 109, C08S17, doi: 10.1029/2003JC002131.]. We previously reported initial results from a dual-frequency (Ku- and C-band) altimeter algorithm [Glover, D.M., Frew, N.M., McCue, S.J., Bock, E.J., 2002. A Multi-year Time Series of Global Gas Transfer Velocity from the TOPEX Dual Frequency, Normalized Radar Backscatter Algorithm, In: Gas Transfer at Water Surfaces, editors: Donelan, M., Drennan, W., Saltzman, E., and Wanninkhof, R., Geophysical Monograph 127, American Geophysical Union, Washington, DC, 325-331.] for estimating the air-sea gas transfer velocity ( k) from the mean square slope of short wind waves (40-100 rad/m) and derived a 6-year time series of global transfer velocities based on TOPEX observations. Since the launch of the follow-on altimeter Jason-1 in December 2001 and commencement of the TOPEX/Jason-1 Tandem Mission, we have extended this time series to 12 years, with improvements to the model parameters used in our algorithm and using the latest corrected data releases. The prospect of deriving multi-year and interdecadal time series of gas transfer velocity from TOPEX, Jason-1 and follow-on altimeter missions depends on precise intercalibration of the normalized backscatter. During the Tandem Mission collinear phase, both satellites followed identical orbits with a mere 73-s time separation. The

  8. Respiratory effects of air pollution on children.

    PubMed

    Goldizen, Fiona C; Sly, Peter D; Knibbs, Luke D

    2016-01-01

    A substantial proportion of the global burden of disease is directly or indirectly attributable to exposure to air pollution. Exposures occurring during the periods of organogenesis and rapid lung growth during fetal development and early post-natal life are especially damaging. In this State of the Art review, we discuss air toxicants impacting on children's respiratory health, routes of exposure with an emphasis on unique pathways relevant to young children, methods of exposure assessment and their limitations and the adverse health consequences of exposures. Finally, we point out gaps in knowledge and research needs in this area. A greater understanding of the adverse health consequences of exposure to air pollution in early life is required to encourage policy makers to reduce such exposures and improve human health. PMID:26207724

  9. Effect of Premature Ventricular Contractions on Middle Cerebral Artery Blood Flow Velocity.

    PubMed

    Ameriso, S F; Fisher, M; Sager, P

    1991-08-01

    The effect of premature ventricular contractions on blood flow velocity in the middle cerebral artery was studied by transcranial Doppler ultrasonography in 1 0 patients. Velocity during three ectopic beats for each patient was lower than that during the preceding and the following beat in every recording. The decrease in peak velocity was 30.7 ± 12.4% and 37.1 ± 13.3% (mean ± standard deviation) compared to the preceding and following beat, respectively. This variation was significantly larger (p < 0.0001) than the spontaneous change observed during sinus rhythm, 2. 7 ± 2.2% in patients with premature ventricular contractions and 3.5 ± 3.2% in control subjects. Similar results were obtained for both mean and diastolic blood flow velocities. Systolic-diastolic ratios were similar for premature ventricular contractions, beats preceding or following premature ventricular contractions, and sinus rhythm beats. Transcranial Doppler ultrasound appears to be an excellent technique for analyzing the effects of cardiac arrhythmias on the cerebral circulation. PMID:27311107

  10. Interlimb coordination in prosthetic walking: effects of asymmetry and walking velocity.

    PubMed

    Donker, Stella F; Beek, Peter J

    2002-06-01

    The present study focuses on interlimb coordination in walking with an above-knee prosthesis using concepts and tools of dynamical systems theory (DST). Prosthetic walkers are an interesting group to investigate from this theory because their locomotory system is inherently asymmetric, while, according to DST, coordinative stability may be expected to be reduced as a function of the asymmetry of the oscillating components. Furthermore, previous work on locomotion motivated from DST has shown that the stability of interlimb coordination increases with walking velocity, leading to the additional expectation that the anticipated destabilizing effect of the prosthesis-induced asymmetry may be diminished at higher walking velocities. To examine these expectations, an experiment was conducted aimed at comparing interlimb coordination during treadmill walking between seven participants with an above-knee prosthesis and seven controls across a range of walking velocities. The observed gait patterns were analyzed in terms of standard gait measures (i.e., absolute and relative swing, stance and step times) and interlimb coordination measures (i.e., relative phase and frequency locking). As expected, the asymmetry brought about by the prosthesis led to a decrease in the stability of the coordination between the legs as compared to the control group, while coordinative stability increased with increasing walking velocity in both groups in the absence of a significant interaction. In addition, the 2:1 frequency coordination between arm and leg movements that is generally observed in healthy walkers at low walking velocities was absent in the prosthetic walkers. Collectively, these results suggest that both stability and adaptability of coordination are reduced in prosthetic walkers but may be enhanced by training them to walk at higher velocities. PMID:12102109

  11. Effect of Pore-scale Velocity on the Biodegradation of Contaminants during Transport in Porous Media

    NASA Astrophysics Data System (ADS)

    Mendoza-Sanchez, I.; Autenrieth, R. L.; McDonald, T. J.; Cunningham, J. A.

    2007-12-01

    Column experiments were conducted to evaluate the effect of pore velocity on the extent of biodegradation of cis- dichloroethene (cis-DCE) during transport in porous media. The columns were filled with homogeneous glass beads and inoculated with the KB-1 culture (provided by SiREM, Guelph, Ontario, Canada), which is capable of complete dechlorination of perchloroethene to ethene. The columns were fed continuously with a synthetic groundwater containing a constant concentration of cis-DCE. Three different pore flow velocities (0.03, 0.08, and 0.51 m/day) were tested in duplicate, subjecting each column to a constant velocity for the entire experiment. Dechlorination of cis-DCE to vinyl chloride and ethene was monitored over time and space within the columns. Protein concentrations, also measured over time and space, were used to relate cell growth to biodegradation efficiency. At the end of the experiment, microbial DNA was harvested from the columns, and denaturing gradient gel electrophoresis (DGGE) was used to determine differences in the microbial communities that had developed in the columns subjected to different flow rates. The results show that the pore velocity has a strong influence on the microbial population and the degree of dechlorination. At high flow velocity (0.51 m/day), the degradation of cis-DCE to ethene was complete, and the organism capable of cis-DCE dechlorination ({Dehalococcoides sp.}) was present at the end of the experiment. In contrast, at medium and low flow velocities (0.08 and 0.03 m/day), incomplete dechlorination was observed with an absence or low concentration of {Dehalococcoides sp}. These results suggest that it is important for field-scale groundwater remediation to understand the interaction between physical and biological processes on the scale of single pores.

  12. The health effects of exercising in air pollution.

    PubMed

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities. PMID:24174304

  13. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling

    USGS Publications Warehouse

    Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.

    1999-01-01

    We offer a first-principle-based effective medium model for elastic-wave velocity in unconsolidated, high porosity, ocean bottom sediments containing gas hydrate. The dry sediment frame elastic constants depend on porosity, elastic moduli of the solid phase, and effective pressure. Elastic moduli of saturated sediment are calculated from those of the dry frame using Gassmann's equation. To model the effect of gas hydrate on sediment elastic moduli we use two separate assumptions: (a) hydrate modifies the pore fluid elastic properties without affecting the frame; (b) hydrate becomes a component of the solid phase, modifying the elasticity of the frame. The goal of the modeling is to predict the amount of hydrate in sediments from sonic or seismic velocity data. We apply the model to sonic and VSP data from ODP Hole 995 and obtain hydrate concentration estimates from assumption (b) consistent with estimates obtained from resistivity, chlorinity and evolved gas data. Copyright 1999 by the American Geophysical Union.

  14. Dynamic effects on containment of air-curtain fume hood operated with heat source.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi

    2012-01-01

    This study focused on the leakage characteristics of the air-curtain fume hood that are subject to the influences of sash movement and walk-by motion while a high temperature heat source was operated in the hood. The flow visualization and trace gas test method were used to investigate the performance of the air-curtain fume hood. An electric heater was placed in the hood to simulate the heat source. The temperature of the heat source installed inside the air-curtain fume hood varied between 180°C and 300°C. Trace gas tests following the dynamic test methods of EN-14175 protocol were employed to measure the spillages of sulfur hexafluoride gas that were released in the hood. When subject to the influence of sash movement at a heat source temperature lower than 260°C, the leakage level was high at the suction velocity V(s) < 8 m/sec but was negligibly small at V(s) > 10 m/sec. When subject to the influence of people walk-by, the leakage level was relatively low at the suction velocity larger than 8 m/sec at sash height H = 50 cm. The height of the sash opening was a crucial parameter for the containment of the air-curtain fume hood. At the sash opening lower than about 25 cm, suction velocity less than or equal to 6 m/sec was enough to make the sulfur hexafluoride leakage less than the threshold value, 0.65 ppm, suggested by the BG Chemie. The air-curtain fume hood presented a great performance to resist the effect of drafts even though there was a high temperature heat source working in the hood. PMID:23009207

  15. Error estimations of dry deposition velocities of air pollutants using bulk sea surface temperature under common assumptions

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Yao; Tsuang, Ben-Jei; Keenlyside, Noel; Wang, Shu-Lun; Arthur Chen, Chen-Tung; Wang, Bin-Jye; Liu, Tsun-Hsien

    2010-07-01

    It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8-4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m -2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5-2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m -2. Scale analysis shows that for a slightly soluble gas (e.g., NO 2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO 2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O 3 and CO 2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.

  16. AIR POLLUTION EFFECTS ON SEMEN QUALITY

    EPA Science Inventory

    The potential impact of exposure to periods of high air pollution on male reproductive health was examined within the framework of an international project conducted in the Czech Republic. Semen quality was evaluated in young men (age 18) living in the Teplice District who are ex...

  17. Effect of core stability training on throwing velocity in female handball players.

    PubMed

    Saeterbakken, Atle H; van den Tillaar, Roland; Seiler, Stephen

    2011-03-01

    The purpose was to study the effect of a sling exercise training (SET)-based core stability program on maximal throwing velocity among female handball players. Twenty-four female high-school handball players (16.6 ± 0.3 years, 63 ± 6 kg, and 169 ± 7 cm) participated and were initially divided into a SET training group (n = 14) and a control group (CON, n = 10). Both groups performed their regular handball training for 6 weeks. In addition, twice a week, the SET group performed a progressive core stability-training program consisting of 6 unstable closed kinetic chain exercises. Maximal throwing velocity was measured before and after the training period using photocells. Maximal throwing velocity significantly increased 4.9% from 17.9 ± 0.5 to 18.8 ± 0.4 m·s in the SET group after the training period (p < 0.01), but was unchanged in the control group (17.1 ± 0.4 vs. 16.9 ± 0.4 m·s). These results suggest that core stability training using unstable, closed kinetic chain movements can significantly improve maximal throwing velocity. A stronger and more stable lumbopelvic-hip complex may contribute to higher rotational velocity in multisegmental movements. Strength coaches can incorporate exercises exposing the joints for destabilization force during training in closed kinetic chain exercises. This may encourage an effective neuromuscular pattern and increase force production and can improve a highly specific performance task such as throwing. PMID:20581697

  18. Effects of transducer, velocity, Doppler angle, and instrument settings on the accuracy of color Doppler ultrasound.

    PubMed

    Stewart, S F

    2001-04-01

    The accuracy of a commercial color Doppler ultrasound (US) system was assessed in vitro using a rotating torus phantom. The phantom consisted of a thin rubber tube filled with a blood-mimicking fluid, joined at the ends to form a torus. The torus was mounted on a disk suspended in water, and rotated at constant speeds by a motor. The torus fluid was shown in a previous study to rotate as a solid body, so that the actual fluid velocity was dependent only on the motor speed and sample volume radius. The fluid velocity could, thus, be easily compared to the color Doppler-derived velocity. The effects of instrument settings, velocity and the Doppler angle was assessed in four transducers: a 2.0-MHz phased-array transducer designed for cardiac use, a 4.0-MHz curved-array transducer designed for general thoracic use, and two linear transducers designed for vascular use (one 4.0 MHz and one 6.0 MHz). The color Doppler accuracy was found to be significantly dependent on the transducer used, the pulse-repetition frequency and wall-filter frequency, the actual fluid velocity and the Doppler angle (p < 0.001 by analysis of variance). In particular, the phased array and curved array were observed to be significantly more accurate than the two linear arrays. The torus phantom was found to provide a sensitive measure of color Doppler accuracy. Clinicians need to be aware of these effects when performing color Doppler US exams. PMID:11368866

  19. Measurement of Off-Body Velocity, Pressure, and Temperature in an Unseeded Supersonic Air Vortex by Stimulated Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2008-01-01

    A noninvasive optical method is used to make time-averaged (30 sec) off-body measurements in a supersonic airflow. Seeding of tracer particles is not required. One spatial component of velocity, static pressure, and static temperature are measured with stimulated Raman scattering. The three flow parameters are determined simultaneously from a common sample volume (0.3 by 0.3 by 15 mm) using concurrent measurements of the forward and backward scattered line shapes of a N2 vibrational Raman transition. The capability of this technique is illustrated with laboratory and large-scale wind tunnel testing that demonstrate 5-10% measurement uncertainties. Because the spatial resolution of the present work was improved to 1.5 cm (compared to 20 cm in previous work), it was possible to demonstrate a modest one-dimensional profiling of cross-flow velocity, pressure, and translational temperature through the low-density core of a stream-wise vortex (delta-wing model at Mach 2.8 in NASA Langley's Unitary Plan Wind Tunnel).

  20. Effect of temperature on ultrasonic velocities of unconsolidated sandstones reservoirs during the SAGD recovery process

    NASA Astrophysics Data System (ADS)

    Doan, D.-H.; Nauroy, J.-F.; Delage, P.; Mainguy, M.

    2010-06-01

    The steam assisted gravity drainage (SAGD) is a thermal in-situ technology that has been successfully used to enhance the recovery of heavy oil and bitumen in the Western Canada and in the Eastern Venezuela basins. Pressure and temperature variations during SAGD operations induce complex changes in the mechanical and acoustic properties of the reservoir rocks as well as of the caprock. To study these changes, measurements of ultrasonic wave velocities Vp, Vs were performed on both reconstituted samples and natural samples from oil sands reservoir. Reconstituted samples were made of Fontainebleau sands with a slight cementation formed by a silicate solution. They have a high porosity (about 30 % to 40 %) and a high permeability (up to 10 D). Natural oil sands samples are unconsolidated sandstones extracted from the fluvio-estuarine McMurray Formation in Alberta (Canada). The saturating fluids were bitumen and glycerol with a strongly temperature dependent viscosity. The tests were carried out at different temperatures (in the range 40° and +86°C) and at different effective pressures (from 12 bars up to 120 bars). Experimental results firstly showed that the elastic wave propagation velocities measured are strongly dependent on temperature and pore fluid viscosity whereas little effect of effective pressure was observed. Velocities decreased with increasing temperature and increased with increasing effective pressure. These effects are mainly due to the variations of the saturating fluids properties. Finally, the tests were modelled by using Ciz and Shapiro (2007) approach and satisfactory velocities values were obtained with highly viscous fluids, a case that cannot be easily explained by using the poro-elastic theory of Biot-Gassmann.

  1. RADIAL VELOCITY ALONG THE VOYAGER 1 TRAJECTORY: THE EFFECT OF SOLAR CYCLE

    SciTech Connect

    Pogorelov, N. V.; Zank, G. P.; Borovikov, S. N.; Burlaga, L. F.; Decker, R. A.; Stone, E. C.

    2012-05-01

    As Voyager 1 and Voyager 2 are approaching the heliopause (HP)-the boundary between the solar wind (SW) and the local interstellar medium (LISM)-we expect new, unknown features of the heliospheric interface to be revealed. A seeming puzzle reported recently by Krimigis et al. concerns the unusually low, even negative, radial velocity components derived from the energetic ion distribution. Steady-state plasma models of the inner heliosheath (IHS) show that the radial velocity should not be equal to zero even at the surface of the HP. Here we demonstrate that the velocity distributions observed by Voyager 1 are consistent with time-dependent simulations of the SW-LISM interaction. In this Letter, we analyze the results from a numerical model of the large-scale heliosphere that includes solar cycle effects. Our simulations show that prolonged periods of low to negative radial velocity can exist in the IHS at substantial distances from the HP. It is also shown that Voyager 1 was more likely to observe such regions than Voyager 2.

  2. Effect of a weak lower crustal channel in Tibet on geodetic velocities

    NASA Astrophysics Data System (ADS)

    Robinson, P.; Meade, B. J.

    2011-12-01

    Geodetic observations of deformation across the Tibetan plateau contain information about both tectonic and earthquake cycle processes. Time-dependent variations in surface velocities may occur as a result of stress relaxation in a weak lower crustal channel underneath the plateau. Earthquake cycle models with a weak lower crustal channel reveal substantially more near-fault strain than do classical two-layer models. We assess whether or not observed GPS velocity gradients across faults in Tibet are consistent with models that incorporate a weak lower crustal channel with a viscosity less than 1019 Pa s. In particular, we infer a lower bound on lower crustal viscosity beneath the Kunlun and Altyn Tagh faults. Based on these geodetically-constrained estimates of channel viscosity, we use a simple lubrication theory model in two dimensions to calculate the time-dependent evolution of the lower crustal channel thickness and the velocity within the flowing channel. The magnitudes of the shear stresses exerted by the lower crustal material on the underside of the upper crust are of particular interest; these shear stresses could have a significant effect on the observed east-west geodetic velocities on the Tibetan Plateau.

  3. Effects of curing time and frequency on ultrasonic wave velocity in grouted rock bolts

    NASA Astrophysics Data System (ADS)

    Madenga, V.; Zou, D. H.; Zhang, C.

    2006-05-01

    Grouted rock bolts are widely used to reinforce excavated ground in mining and civil engineering structures. To date, opportunities for testing the quality of the grout in grouted rock bolts have been limited to the pull-out tests and the over-coring methods. Both these methods are destructive, time-consuming and costly. These deficiencies have fueled research into the use of ultrasonic methods for testing the quality of the grout in rock bolts. However, only partial success has been achieved in these efforts chiefly due to inadequate knowledge of the ultrasonic wave characteristics such as wave velocity in grouted rock bolts. This paper presents results of an experimental study into the effects of curing time and testing frequency on the velocity of ultrasonic waves propagating along rock bolts grouted in concrete. A substantial wave velocity decrease, as much as 47.7% at certain frequencies, was recorded in rock bolts grouted in fully cured concrete in comparison to non-grouted bolts. The results demonstrate the importance of optimizing the selection of test frequencies as well as suggesting the possibility of a new approach based on wave velocity decrease for testing the grout quality of rock bolts.

  4. The effects of sliding velocity on the frictional and physical properties of heated fault gouge

    USGS Publications Warehouse

    Moore, Diane E.; Summers, R.; Byerlee, J.D.

    1986-01-01

    The frictional properties of a crushed granite gouge and of gouges rich in montmorillonite, illite, and serpentine minerals have been investigated at temperatures as high as 600??C, confining pressures as high as 2.5 kbar, a pore pressure of 30 bar, and sliding velocities of 4.8 and 4.8??10-2 ??m/sec. The gouges showed nearly identical strength behaviors at the two sliding velocities; all four gouges, however, showed a greater tendency to stick-slip movement and somewhat higher stress drops in the experiments at 4.8??10-2 ??m/sec. Varying the sliding velocity also had an effect on the mineral assemblages and deformation textures developed in the heated gouges. The principal mineralogical difference was that at 400??C and 1 kbar confining pressure a serpentine breakdown reaction occurred in the experiments at 4.8??10-2 ??m/sec but not in those at 4.8 ??m/sec. The textures developed in the gouge layers were in part functions of the gouge type and the temperature, but changes in the sliding velocity affected, among other features, the degree of mineral deformation and the orientation of some fractures. ?? 1986 Birkha??user Verlag.

  5. Quantifying the combined effects of attempt rate and swimming capacity on passage through velocity barriers

    USGS Publications Warehouse

    Castro-Santos, T.

    2004-01-01

    The ability of fish to migrate past velocity barriers results from both attempt rate and swimming capacity. Here, I formalize this relationship, providing equations for estimating the proportion of a population successfully passing a barrier over a range of distances and times. These equations take into account the cumulative effect of multiple attempts, the time required to stage those attempts, and both the distance traversed on each attempt and its variability. I apply these equations to models of white sucker (Catostomus commersoni) and walleye (Stizostedion vitreum) ascending a 23-m-long flume against flows ranging from 1.5 to 4.5 m??s-1. Attempt rate varied between species, attempts, and over time and was influenced by hydraulic variables (velocity of flow and discharge). Distance of ascent was primarily influenced by flow velocity. Although swimming capacity was similar, white sucker had greater attempt rates, and consequently better passage success, than walleye. Over short distances, models for both species predict greater passage success against higher velocities owing to the associated increased attempt rate. These results highlight the importance of attraction to fish passage and the need for further investigation into the hydraulic and other environmental conditions required to simultaneously optimize both attempt rate and passage success.

  6. Numerical evaluation of the effect of traffic pollution on indoor air quality of a naturally ventilated building.

    PubMed

    Chang, Tsang-Jung

    2002-09-01

    A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours. PMID:12269665

  7. Effect of the Dzyaloshinskii-Moriya interaction on the propagation velocity of the entanglement

    NASA Astrophysics Data System (ADS)

    Mahmoudi, M.; Mahdavifar, S.; Soltani, M. R.

    2016-08-01

    It is known that the spin chains can be used to propagate pairwise entanglement. In particular, the time evolution of initial maximally entangled states was shown that the pairwise entanglement propagates with a velocity proportional to the exchange interaction in the spin-1/2 XX chains. Here, we add the Dzyaloshinskii-Moriya interaction in the spin-1/2 XX chain model and study the dynamics of the concurrence between nearest-neighbor spins. We show that the Dzyaloshinskii-Moriya interaction has a significant increasing effect on the velocity of propagation. In addition, extremum in derivative of the concurrence between two NN spins, exactly happen at times where each of these two spins will be entangled with NN of themselves. The effect of a phase factor is also investigated and the existence of an "optimal" value is confirmed.

  8. Effect of superficial velocity on vaporization pressure drop with propane in horizontal circular tube

    NASA Astrophysics Data System (ADS)

    Novianto, S.; Pamitran, A. S.; Nasruddin, Alhamid, M. I.

    2016-06-01

    Due to its friendly effect on the environment, natural refrigerants could be the best alternative refrigerant to replace conventional refrigerants. The present study was devoted to the effect of superficial velocity on vaporization pressure drop with propane in a horizontal circular tube with an inner diameter of 7.6 mm. The experiments were conditioned with 4 to 10 °C for saturation temperature, 9 to 20 kW/m2 for heat flux, and 250 to 380 kg/m2s for mass flux. It is shown here that increased heat flux may result in increasing vapor superficial velocity, and then increasing pressure drop. The present experimental results were evaluated with some existing correlations of pressure drop. The best prediction was evaluated by Lockhart-Martinelli (1949) with MARD 25.7%. In order to observe the experimental flow pattern, the present results were also mapped on the Wang flow pattern map.

  9. Phase velocity and attenuation predictions of waves in cancellous bone using an iterative effective medium approximation.

    PubMed

    Potsika, Vassiliki T; Protopappas, Vasilios C; Vavva, Maria G; Polyzos, Demosthenes; Fotiadis, Dimitrios I

    2013-01-01

    The quantitative determination of wave dispersion and attenuation in bone is an open research area as the factors responsible for ultrasound absorption and scattering in composite biological tissues have not been completely explained. In this study, we use the iterative effective medium approximation (IEMA) proposed in [1] so as to calculate phase velocity and attenuation in media with properties similar to those of cancellous bones. Calculations are performed for a frequency range of 0.4-0.8 MHz and for different inclusions' volume concentrations and sizes. Our numerical results are compared with previous experimental findings so as to assess the effectiveness of IEMA. It was made clear that attenuation and phase velocity estimations could provide supplementary information for cancellous bone characterization. PMID:24111396

  10. Membrane air-stripping: Effects of pretreatment

    SciTech Connect

    Castro, K. ); Zander, A.K. . Dept. of Civil and Environmental Engineering)

    1995-03-01

    As a result of the Safe Drinking Water Act and its 1986 amendments, the number of regulated volatile organic chemicals (VOCs) has increased substantially. The discovery of drinking water supply sources contaminated by VOCs is also increasing. These factors have led to the development of alternative treatment methods for control of VOCs. Microporous polypropylene hollow-fiber membranes offer significant advantages over packed-tower aeration for removing volatile organic chemicals. A laboratory study assessed the performance of membrane air-stripping in continuous operation, while exposed to various pretreatments. Results indicate that membrane air-stripping is compatible with low-pH or low-chlorine waters but not with waters of high pH or high-chlorine concentration or those that are ozonated.

  11. Effect of the Trendelenburg position on the distribution of arterial air emboli in dogs

    NASA Technical Reports Server (NTRS)

    Butler, Bruce D.; Laine, Glen A.; Leiman, Basil C.; Warters, Dave; Kurusz, Mark

    1988-01-01

    The effect of Trendelenburg position (TP) on the distribution of arterial air emboli in dogs was examined in a two-part investigation. In the first part, the effects of the bubble size and the vessel angle on the bubble velocity and the direction of flow were investigated in vitro, using a simulated carotid artery preparation. It was found that larger bubbles increased in velocity in the same direction as the blood flow at 0-, 10-, and 30-deg vessel angles, and decreased when the vessel was positioned at 90 deg. Smaller bubbles did not change velocity from 0 to 30 deg, but acted to increase the velocity, in the same direction as the flood flow, at 90 deg. The second series of experiments examined the effect of 0 to 30 deg TP on carotid-artery distribution of gas bubbles injected into the left ventricle or ascending aorta of anesthetized dogs. It was found that, regardless of the degree of the TP, the bubbles passed into the carotid artery simultaneously with the passage into the abdominal aorta. It is concluded that the TP does not prevent arterial bubbles from reaching the brain.

  12. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  13. The effects of pressure and temperature on sound velocity and density of Ni-S liquid

    NASA Astrophysics Data System (ADS)

    Terasaki, H. G.; Nishida, K.; Urakawa, S.; Uesugi, K.; Kuwabara, S.; Takubo, Y.; Shimoyama, Y.; Takeuchi, A.; Suzuki, Y.; Kono, Y.; Higo, Y.; Kondo, T.

    2013-12-01

    Sound velocity and density of the core material are indispensable properties to estimate a composition in the terrestrial core comparing with the observed seismic data. Here, we report these properties of Ni-S, which corresponds to the end-member of possible core composition Fe-Ni-S, at high pressure and temperature. These properties were measured based on simultaneous measurement of sound velocity and density combined with X-ray tomography technique. The experiments were carried out at X-ray computed micro-tomography (CT) beamlines (BL20XU, BL20B2), SPring-8 synchrotron radiation facility. Monochromatized X-ray of 51 keV passed through the sample cell and detected as a radiography image using CCD camera. X-ray radiography images from 0 to 180o were measured for CT measurement by rotating the press. An 80-ton uni-axial press was used to generate high pressure with using opposed-type cupped anvils (Urakawa et al. 2010). Density was determined by using X-ray absorption method obtained from the X-ray radiograph image. The sample thickness for the X-ray path can be directly obtained from the CT data. The sample density was also determined from the volume of the sample at high pressure and temperature. P-wave sound velocity was measured using pulse-echo overlapping ultrasonic method using LiNbO3 transducer attached backside of the anvil. We have successfully measured the sound velocity and density of Ni-S up to 1.5 GPa. Comparing with the previous results of liquid Fe-S, the effect of Ni on the sound velocity is minor but that on the density can not be negligible.

  14. Spatio-temporal linear stability analysis of stratified planar wakes: Velocity and density asymmetry effects

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Jagtap, Swapnil; Quinlan, J. Mathew; Renfro, Michael W.; Cetegen, Baki M.; Lieuwen, Tim

    2016-04-01

    This paper explores the hydrodynamic stability of bluff body wakes with non-uniform mean density, asymmetric mean density, and velocity profiles. This work is motivated by experiments [S. Tuttle et al., "Lean blow off behavior of asymmetrically-fueled bluff body-stabilized flames," Combust. Flame 160, 1677 (2013)], which investigated reacting wakes with equivalence ratio stratification and, hence, asymmetry in the base flow density profiles. They showed that highly stratified cases exhibited strong, narrowband oscillations, suggestive of global hydrodynamic instability. In this paper, we present a local hydrodynamic stability analysis for non-uniform density wakes that includes base flow asymmetry. The results show that increasing the degree of base density asymmetry generally has a destabilizing effect and that increasing base velocity asymmetry tends to be stabilizing. Furthermore, we show that increasing base density asymmetry slightly decreases the absolute frequency and that increasing the base velocity asymmetry slightly increases the absolute frequency. In addition, we show that increasing the degree of base density asymmetry distorts the most absolutely unstable hydrodynamic mode from its nominally sinuous structure. This distorted mode exhibits higher amplitude pressure and velocity oscillations near the interface with the smaller density jump than near the one with the bigger density jump. This would then be anticipated to lead to strongly non-symmetric amplitudes of flame flapping, with much stronger flame flapping on the side with lower density ratio. These predictions are shown to be consistent with experimental data. These comparisons support the analytical predictions that increased base density asymmetry are destabilizing and that hydrodynamic velocity fluctuation amplitudes should be greatest at the flame with the lowest density jump.

  15. The Effects of "Grunting" on Serve and Forehand Velocity in Collegiate Tennis Players.

    PubMed

    O'Connell, Dennis G; Hinman, Martha; Hearne, Kevin F; Michael, Zach S; Nixon, Sam L

    2014-06-30

    To examine the effects of grunting on velocity and force production during dynamic and static tennis strokes in collegiate tennis players. Thirty-two (16 M and 16 F) Division II and III collegiate tennis athletes with a mean age of 20.2 ± 1.89 years participated as subjects. Demographic and survey data were obtained prior to subjects completing a 10-15 minute warm-up of serves and ground strokes while grunting and not grunting. Subjects performed randomized sets (3 grunting and 3 non-grunting trials) of serves and forehand strokes both dynamically and isometrically. Stroke velocities and isometric forces were measured with a calibrated radar gun and calibrated dynamometer, respectively. EMG data from subjects' dominant pectoralis major and contralateral external oblique muscles were recorded and averaged for data analysis. A repeated measures multivariate analysis of variance (RM-MANOVA) compared dynamic stroke velocity, isometric muscle force, and peak EMG activity during each breathing condition at the 0.05 alpha level. The RMANOVA indicated that dynamic velocity and isometric force of both serves and forehand strokes were significantly greater when subjects grunted (F=46.572, p<0.001, power=1.00). Peak muscle activity in the external oblique and pectoralis major muscles was also greater when grunting during both types of strokes (F=3.867, p=0.05, power=0.950). Grunt history, gender, perceived advantages and disadvantages of grunting, years of experience, highest level of competition, and order of testing did not significantly alter any of these results. The velocity, force, and peak muscle activity during tennis serves and forehand strokes are significantly enhanced when athletes are allowed to grunt. PMID:24983852

  16. The effects of "grunting" on serve and forehand velocities in collegiate tennis players.

    PubMed

    OʼConnell, Dennis G; Hinman, Martha R; Hearne, Kevin F; Michael, Zach S; Nixon, Sam L

    2014-12-01

    The aim of this study was to examine the effects of grunting on velocity and force production during dynamic and static tennis strokes in collegiate tennis players. Thirty-two (16 male and 16 female) division II and III collegiate tennis athletes with a mean age of 20.2 ± 1.89 years participated as subjects. Demographic and survey data were obtained before subjects completed a 10- to 15-minute warm-up of serves and ground strokes while grunting and not grunting. The subjects performed randomized sets (3 grunting and 3 nongrunting trials) of serves and forehand strokes both dynamically and isometrically. Stroke velocities and isometric forces were measured with a calibrated radar gun and calibrated dynamometer, respectively. Electromyographic (EMG) data from subjects' dominant pectoralis major and contralateral external oblique muscles were recorded and averaged for data analysis. A repeated measures multivariate analysis of variance (RM-MANOVA) compared dynamic stroke velocity, isometric muscle force, and peak EMG activity during each breathing condition at the 0.05 alpha level. The RM-MANOVA indicated that dynamic velocity and isometric force of both serves and forehand strokes were significantly greater when the subjects grunted (F = 46.572, p < 0.001, power = 1.00). Peak muscle activity in the external oblique and pectoralis major muscles was also greater when grunting during both types of strokes (F = 3.867, p = 0.05, power = 0.950). Grunt history, gender, perceived advantages, and disadvantages of grunting, years of experience, highest level of competition, and order of testing did not significantly alter any of these results. The velocity, force, and peak muscle activity during tennis serves and forehand strokes are significantly enhanced when athletes are allowed to grunt. PMID:25412161

  17. The variance of convection velocity in the turbulent boundary layer and its effect on coherence length

    NASA Astrophysics Data System (ADS)

    Palumbo, Dan

    2013-07-01

    variance in the convection velocity has a significant effect on the decay of coherent power in the wall pressure of the turbulent boundary layer.

  18. The effect of undissolved air on isochoric freezing.

    PubMed

    Perez, Pedro A; Preciado, Jessica; Carlson, Gary; DeLonzor, Russ; Rubinsky, Boris

    2016-06-01

    This study evaluates the effect of undissolved air on isochoric freezing of aqueous solutions. Isochoric freezing is concerned with freezing in a constant volume thermodynamic system. A possible advantage of the process is that it substantially reduces the percentage of ice in the system at every subzero temperature, relative to atmospheric freezing. At the pressures generated by isochoric freezing, or high pressure isobaric freezing, air cannot be considered an incompressible substance and the presence of undissolved air substantially increases the amount of ice that forms at any subfreezing temperature. This effect is measurable at air volumes as low as 1%. Therefore eliminating the undissolved air, or any separate gaseous phase, from the system is essential for retaining the properties of isochoric freezing. PMID:27074589

  19. Which ornamental plant species effectively remove benzene from indoor air?

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Ju; Mu, Yu-Jing; Zhu, Yong-Guan; Ding, Hui; Crystal Arens, Nan

    Phytoremediation—using plants to remove toxins—is an attractive and cost effective way to improve indoor air quality. This study screened ornamental plants for their ability to remove volatile organic compounds from air by fumigating 73 plant species with 150 ppb benzene, an important indoor air pollutant that poses a risk to human health. The 10 species found to be most effective at removing benzene from air were fumigated for two more days (8 h per day) to quantify their benzene removal capacity. Crassula portulacea, Hydrangea macrophylla, Cymbidium Golden Elf., Ficus microcarpa var. fuyuensis, Dendranthema morifolium, Citrus medica var. sarcodactylis, Dieffenbachia amoena cv. Tropic Snow; Spathiphyllum Supreme; Nephrolepis exaltata cv. Bostoniensis; Dracaena deremensis cv. Variegata emerged as the species with the greatest capacity to remove benzene from indoor air.

  20. Effects of Velocity on Electromyographic, Mechanomyographic, and Torque Responses to Repeated Eccentric Muscle Actions.

    PubMed

    Hill, Ethan C; Housh, Terry J; Camic, Clayton L; Smith, Cory M; Cochrane, Kristen C; Jenkins, Nathaniel D M; Cramer, Joel T; Schmidt, Richard J; Johnson, Glen O

    2016-06-01

    Hill, EC, Housh, TJ, Camic, CL, Smith, CM, Cochrane, KC, Jenkins, NDM, Cramer, JT, Schmidt, RJ, and Johnson, GO. Effects of velocity on electromyographic, mechanomyographic, and torque responses to repeated eccentric muscle actions. J Strength Cond Res 30(6): 1743-1751, 2016-The purposes of this study were to examine the effects of the velocity of repeated eccentric muscle actions on the torque and neuromuscular responses during maximal isometric and eccentric muscle actions. Twelve resistance-trained men performed 30 repeated, maximal, eccentric, isokinetic muscle actions at randomly ordered velocities of 60, 120, or 180°·s on separate days. Maximal voluntary isometric contractions (MVICs) were performed before (pretest) and after (posttest) the repeated eccentric muscle actions on each day. Eccentric isokinetic peak torque (EIPT) values were the averages of the first 3 and last 3 repetitions of the 30 repeated eccentric muscle actions. During the EIPT and MVIC muscle actions, electromyographic (EMG) and mechanomyographic (MMG) amplitude (EMG AMP and MMG AMP) and mean power frequency (EMG MPF and MMG MPF) values were assessed. These results indicated that the repeated eccentric muscle actions had no effects on EIPT, or the EMG AMP, EMG MPF, or MMG MPF values assessed during the EIPT muscle actions, but decreased MMG AMP. The repeated eccentric muscle actions, however, decreased MVIC torque, and also the EMG AMP and MMG MPF values assessed during the MVIC muscle actions, but increased MMG AMP. The results indicated that the velocity of the repeated eccentric muscle actions affected the MVIC torque responses, but not EIPT or any of the neuromuscular parameters. Furthermore, there are differences in the torque and neuromuscular responses for isometric vs. eccentric muscle actions after repeated eccentric muscle actions. PMID:26566165

  1. Modeling of integrated sunlight velocity measurements: The effect of surface darkening by magnetic fields

    NASA Technical Reports Server (NTRS)

    Ulrich, R. K.; Henney, C. J.; Schimpf, S.; Fossat, E.; Gelly, B.; Grec, G.; Loudagh, S.; Schmider, F.-X; Palle, P.; Regulo, C.

    1993-01-01

    It has been known since the work by Claverie et al. (1982) that integrated-sunlight velocities measured with the resonance scattering technique show variations with time scales of weeks to months. The cause can be understood in terms of the effects of solar activity as was pointed out by Edmunds & Gough (1983) and Andersen & Maltby (1983). The latter authors included a model calculation based on sunspot areas which showed good promise of being able to quantitatively reproduce the observed velocity shifts. We discuss in this paper a new modeling effort based on daily magnetograms obtained at the 150-ft tower on Mt. Wilson. This type of database is more quantitative than sunspot area. Similar maps of magnetically sensitive quantities will be measured on a continuous time base as part of several planned helioseismology experiments (from space with the Solar Oscillations Imagery/Michelson Doppler Imager (SOI/MDI) experiment on the Solar and Heliospheric Observatory (SOHO), see Scherrer et al. (1991) or with ground-based networks, see Hill & Leibacher (1991)). We discuss the correlations between various magnetically sensitive quantities and develop a new model for the effects of magnetic field on line profiles and surface brightness. From these correlations we integrate the line profile changes over the solar surface using observed magnetic field strengths measured at lambda 5250.2. The final output is a new model for the effects of magnetic fields on integrated sunlight velocities which we compare with daily offset velocities derived from the International Research on the Interior of the Sun (IRIS)-T instrument at the Observatorio del Teide.

  2. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  3. The effect of heating and cooling on the velocity fluctuations in the ISM induced by the system of stars

    NASA Astrophysics Data System (ADS)

    Deiss, B. M.; Kegel, W. H.

    1986-06-01

    Dissipative thermal effects are taken into account in the expressions for interstellar gas velocity fluctuations (due to the gravitational interaction with stars) derived by Kegel and Volk (1983), with application to the interpretation of interstellar lines, the large scale flow of the interstellar matter, and the collapse of interstellar clouds. Results indicate a decrease in the critical wavelength for gravitational instability, which value is prevented by thermal effects from becoming zero when the relative velocity approaches the velocity of sound, in contradiction with the results of Kegel and Volk, and of Niimi (1970). The velocity fluctuations in the gas derived by Kegel and Volk are shown to be reduced considerably, though velocity fluctuations many times the velocity of sound, which increase with increasing relative motion between gas and stars, are found, principally in molecular clouds.

  4. Investigating the Effects of Traffic on Air Pollution.

    ERIC Educational Resources Information Center

    Taylor, Sharon

    2001-01-01

    Discusses the benefits of bringing scientists into the classroom to collaborate with children on environmental research projects. Describes one collaborative project that focused on the effects of traffic on air pollution. (DDR)

  5. Effect of the q-nonextensive electron velocity distribution on a magnetized plasma sheath

    SciTech Connect

    Safa, N. Navab Ghomi, H.; Niknam, A. R.

    2014-08-15

    In this work, a sheath model has been developed to investigate the effect of the q-nonextensive electron velocity distribution on the different characteristics of a magnetized plasma. By using Segdeev potential method, a modified Bohm criterion for a magnetized plasma with the nonextensive electron velocity distribution is derived. The sheath model is then used to analyze numerically the sheath structure under different q, the parameter quantifying the nonextensivity degree of the system. The results show that as the q-parameter decreases, the floating potential becomes more negative. The sheath length increases at the lower values of the q-parameter due to the increase in the electron population at the high-energy tail of the distribution function. As q-parameter decreases, the effective temperature of the electrons increases which results in a more extended plasma sheath. The ion velocity and density profiles for the different nonextensivity degrees of the system reflect the gyro-motion of the ions in the presence of the magnetic field. Furthermore, the results coincide with those given by the Maxwellian electron distribution function, when q tends to 1.

  6. Interchange and Flow Velocity Shear Instabilities in the Presence of Finite Larmor Radius Effects

    NASA Astrophysics Data System (ADS)

    Sotnikov, V.; Kim, T.; Mishin, E.; Genoni, T.; Rose, D.; Mehlhorn, T.

    2014-09-01

    Ionospheric irregularities cause scintillations of electromagnetic signals that can severely affect navigation and transionospheric communication, in particular during Equatorial Plasma Bubbles (EPBs) events. However, the existing ionospheric models do not describe density irregularities with typical scales of several ion Larmor radii that affect UHF and L bands. These irregularities can be produced in the process of nonlinear evolution of interchange or flow velocity shear instabilities. The model of nonlinear development of these instabilities based on two-fluid hydrodynamic description with inclusion of finite Larmor radius effects will be presented. The derived nonlinear equations will be numerically solved by using the code Flute, which was originally developed for High Energy Density applications and modified to describe interchange and flow velocity shear instabilities in the ionosphere. The high-resolution simulations will be driven by the ambient conditions corresponding to the AFRL C/NOFS satellite low-resolution data during EPBs.

  7. The effects of impact velocity on the evolution of experimental regoliths

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Horz, Friedrich

    1988-01-01

    Fragmental targets consisting of a coarse-grained gabbro were subjected to multiple impacts with stainless-steel spheres at 0.7, 1.4, and 1.9 km/s in order to investigate the effects of impact velocity on the generation and evolution of experimental regoliths. Although the low-velocity impactors were shown to be more efficient in terms of both mass comminution and the creating of new surfaces, the comminuted material formed by the faster projectiles possessed smaller mean grain sizes and larger proportions of fine-grained debris. The 2-4 mm material was found in all cases to exhibit a mass excess relative to the adjacent size fractions.

  8. Effect of anisotropy of electron velocity distribution function on dynamic characteristics of sheath in Hall thrusters

    SciTech Connect

    Zhang Fengkui; Wu Xiande; Ding Yongjie; Li Hong; Yu Daren

    2011-10-15

    In Hall thrusters, the electron velocity distribution function is not only depleted at high energies, but also strongly anisotropic. With these electrons interacting with the channel wall, the sheath will be changed in its dynamic characteristics. In the present letter, a two dimensional particle-in-cell code is used to simulate these effects in a collisionless plasma slab. The simulated results indicate that the sheath changes from steady regime to temporal oscillation regime when the electron velocity distribution function alters from isotropy to anisotropy. Moreover, the temporal oscillation sheath formed by the anisotropic electrons has a much greater oscillating amplitude and a much smaller average potential drop than that formed by the isotropic electrons has. The anisotropic electrons are also found to lower the critical value of electron temperature needed for the appearance of the spatial oscillation sheath.

  9. Directed percolation process in the presence of velocity fluctuations: Effect of compressibility and finite correlation time

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Hnatič, M.; Kapustin, A. S.; Lučivjanský, T.; Mižišin, L.

    2016-01-01

    The direct bond percolation process (Gribov process) is studied in the presence of random velocity fluctuations generated by the Gaussian self-similar ensemble with finite correlation time. We employ the renormalization group in order to analyze a combined effect of the compressibility and finite correlation time on the long-time behavior of the phase transition between an active and an absorbing state. The renormalization procedure is performed to the one-loop order. Stable fixed points of the renormalization group and their regions of stability are calculated in the one-loop approximation within the three-parameter (ɛ ,y ,η ) expansion. Different regimes corresponding to the rapid-change limit and frozen velocity field are discussed, and their fixed points' structure is determined in numerical fashion.

  10. Directed percolation process in the presence of velocity fluctuations: Effect of compressibility and finite correlation time.

    PubMed

    Antonov, N V; Hnatič, M; Kapustin, A S; Lučivjanský, T; Mižišin, L

    2016-01-01

    The direct bond percolation process (Gribov process) is studied in the presence of random velocity fluctuations generated by the Gaussian self-similar ensemble with finite correlation time. We employ the renormalization group in order to analyze a combined effect of the compressibility and finite correlation time on the long-time behavior of the phase transition between an active and an absorbing state. The renormalization procedure is performed to the one-loop order. Stable fixed points of the renormalization group and their regions of stability are calculated in the one-loop approximation within the three-parameter (ɛ,y,η) expansion. Different regimes corresponding to the rapid-change limit and frozen velocity field are discussed, and their fixed points' structure is determined in numerical fashion. PMID:26871066

  11. Transition effect of air shower particles in plastic scintillators

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Maeda, T.; Kameda, T.; Mizushima, K.; Misaki, Y.

    1985-01-01

    The transition effect of air shower particles in the plastic scintillators near the core was measured by scintillators of various thickness. The air showers selected for the measurement were of 10,000. Results obtained are as follows: (1) the multiplication of shower particles in the scintillators is less than 20% for that of 50 mm thickness; (2) dependence of the transition effect on age parameter is not recognized within the experimental errors.

  12. Flow in Smooth Straight Pipes at Velocities Above and Below Sound Velocity

    NASA Technical Reports Server (NTRS)

    Frossel, W

    1938-01-01

    To investigate the laws of flow of compressible fluids in pipes, tests were carried out with air flowing at velocities below and above that of sound in straight smooth pipes. Air was chosen as the flow medium. In order that the effect of compressibility may be brought out most effectively, the velocity should lie between 100 and 500 m/s (200 and 1,000 mph); that is, be of the order of magnitude of the velocity of sound in air. The behavior of the compression shock in a smooth cylindrical pipe was also investigated. The compression shock can occur at any position in the pipe, depending on the throttling downstream, and travels upstream with increasing throttling up to the pipe entrance, so that only subsonic velocities occur in the pipe.

  13. Effects of bat composition, grip firmness, and impact location on postimpact ball velocity.

    PubMed

    Weyrich, A S; Messier, S P; Ruhmann, B S; Berry, M J

    1989-04-01

    The purpose of this investigation was to examine the effects of bat composition (aluminum and wooden), impact location [center of percussion (COP), center of gravity (COG), and end of the bat (E)], and grip firmness [tight (T) and no tension (NT)] on postimpact ball velocity. With the bats placed alternately in NT and T conditions, baseballs were delivered at a speed of 27.1 m.s-1 from a pitching machine positioned 1.5 m from the bat. High-speed photography (400 fps) was performed using a Locam camera positioned 7.54 m from and perpendicular to the principal plane of ball movement. A three-way ANCOVA revealed significant (P less than 0.01) differences in postimpact ball velocity between the three impact locations, with the COP yielding the greatest values, followed by the COG and E. Moreover, there was a significant (P less than 0.01) grip vs bat interaction. A simple-effects procedure revealed the following results: 1) the T grip produced greater (P less than 0.01) velocities than the NT grip across the aluminum (Al) bat; 2) there was no difference (P greater than 0.01) between the T and NT grips across the wooden (W) bat; 3) the W bat produced greater (P less than 0.01) velocities than the Al bat across the NT grip; and 4) there was no difference (P greater than 0.01) between the Al and W bats across the T grip.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2709983

  14. Effect of chiropractic treatment on hip extension ability and running velocity among young male running athletes☆

    PubMed Central

    Sandell, Jörgen; Palmgren, Per J.; Björndahl, Lars

    2008-01-01

    Abstract Objective This study investigates the effect of chiropractic treatment on hip joint extension ability and running velocity. Methods This was a prospective, randomized, controlled experimental pilot study. Seventeen healthy male junior athletes (age, 17-20 years) training in middle distance running were recruited from local Swedish athletic associations. Hip extension ability and running velocity were measured before and after the study period. Chiropractic investigations comprised motion palpation of the sacroiliac and hip joints and modified Thomas test of the ability to extend the leg. In the treatment group, findings of restrictive joint dysfunctions formed the basis for the choice of chiropractic treatment. The interventions were based on a pragmatic approach consisting of high-velocity, low-amplitude manipulations targeted toward, but not exclusively to, the sacroiliac joints. Results The treatment group showed significantly greater hip extension ability after chiropractic treatment than did controls (P < .05). Participants in the treatment group did not show a significant decrease in time for running 30 m after treatment (average, −0.065 seconds; P = .0572), whereas the difference was even smaller for the control subjects (average, −0.003; P = .7344). Conclusions The results imply that chiropractic treatment can improve hip extensibility in subjects with restriction as measured by the modified Thomas test. It could be speculated that the running step was amplified by increasing the angle of step through facilitated hip joint extension ability. The possible effect of chiropractic treatment to enhance the running velocity, by increasing the hip joint extension ability and thereby increasing the running step, remains unproven. PMID:19674719

  15. An experimental investigation on the effects of surface gravity waves on the water evaporation rate in different air flow regimes

    NASA Astrophysics Data System (ADS)

    Jodat, Amin; Moghiman, Mohammad; Shirkhani, Golshad

    2013-12-01

    Estimating rate of evaporation from undisturbed water surfaces to moving and quiet air has been the topic a vast number of research activities. The obvious presence of various shapes of gravity waves on the water body surfaces was the motivation of this experimental investigation. In this investigation experimental measurements have been done to quantify evaporation rate from wavy water surfaces in free, mixed and forced convection regimes. The effects of a wide range of surface gravity waves from low steepness, round shaped crest with slow celerity, to steep and very slight spilling crest waves, on the water evaporation rate have been investigated. A wide range of was achieved by applying different air flow velocities on a large heated wave flume equipped with a wind tunnel. Results reveal that wave motion on the water surface increase the rate of evaporation for all air flow regimes. For free convection, due to the effect of wave motion for pumping rotational airflows at the wave troughs and the dominant effect of natural convection for the air flow advection, the maximum evaporation increment percentage from wavy water surface is about 70 %. For mixed and forced convection, water evaporation rate increment is more sensitive to the air flow velocity for the appearance of very slight spilling on the steep wave crests and the leeward air flow structures.

  16. Experimental investigation of bubble column hydrodynamics: Effect of elevated pressure and superficial gas velocity

    NASA Astrophysics Data System (ADS)

    Ong, Booncheng

    Bubble column reactors are widely used in the chemical and biochemical industries. They were reactors of choice in syngas conversion to clean fuels and chemicals. Most of the current applications of bubble column reactors in the chemical process industry require operation at high-pressure conditions. Further, to enhance the volumetric productivity, high gas flow rates are employed. The fundamental description of bubble column hydrodynamics under these conditions is very complex and complete understanding has not yet been established in spite of concerted research efforts. In order to improve our ability to quantify phenomena in bubble columns, it is essential that precise and quality experimental information is available to advance the state of the art in bubble column design and operation. In this study, measurements of gas holdup from Computed Tomography, and of time-averaged liquid velocity and turbulence from Computer Automated Radioactive Particle Tracking are obtained in a 6.4″ diameter stainless steel bubble column at elevated pressure and at high superficial gas velocity with different gas spargers. It is shown quantitatively that deep in the churn-turbulent regime, gas holdup and liquid recirculation increase with pressure and superficial gas velocity while sparger effects are predominantly confined to the distributor zone. Additionally, an increase in pressure results in the reduction of turbulent normal stresses and eddy diffusivities most likely due to a reduction in bubble size. Based on the experimental data obtained from this study, a correction factor to the correlation of Zehner (1986) for predicting the centerline liquid velocity is developed to account for pressure effect on liquid recirculation. The correction factor indicates an one-eighth power dependency on gas density. Comparison of the experimentally estimated eddy viscosity with the model of Ohnuki and Akimoto (2001) suggests that the contribution of bubble-induced turbulence to the

  17. An Air Quality Data Analysis System for Interrelating Effects, Standards and Needed Source Reductions

    ERIC Educational Resources Information Center

    Larsen, Ralph I.

    1973-01-01

    Makes recommendations for a single air quality data system (using average time) for interrelating air pollution effects, air quality standards, air quality monitoring, diffusion calculations, source-reduction calculations, and emission standards. (JR)

  18. Pile-Driving Pressure and Particle Velocity at the Seabed: Quantifying Effects on Crustaceans and Groundfish.

    PubMed

    Miller, James H; Potty, Gopu R; Kim, Hui-Kwan

    2016-01-01

    We modeled the effects of pile driving on crustaceans, groundfish, and other animals near the seafloor. Three different waves were investigated, including the compressional wave, shear wave, and interface wave. A finite element (FE) technique was employed in and around the pile, whereas a parabolic equation (PE) code was used to predict propagation at long ranges from the pile. Pressure, particle displacement, and particle velocity are presented as a function of range at the seafloor for a shallow-water environment near Rhode Island. We discuss the potential effects on animals near the seafloor. PMID:26611024

  19. Flight velocity effects on the jet noise of several variations of a 104-tube suppressor nozzle

    NASA Technical Reports Server (NTRS)

    Burley, R. R.

    1974-01-01

    At the relatively high takeoff speeds of supersonic transport aircraft, an important question concerns whether the flight speed affects the noise of suppressor nozzles. To answer this question, flyover and static tests using a modified F-106B aircraft were conducted on a 104-tube suppressor nozzle. Comparison of adjusted flyover and static spectra indicated that flight velocity had a small adverse effect on the suppression of the 104-tube suppressor. The adverse effect was larger with the acoustic shroud installed than without it.

  20. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  1. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  2. Effect of soil surface conditions on runoff velocity and sediment mean aggregate diameter

    NASA Astrophysics Data System (ADS)

    César Ramos, Júlio; Bertol, Ildegardis; Paz González, Antonio; de Souza Werner, Romeu; Marioti, Juliana; Henrique Bandeira, Douglas; Andrighetti Leolatto, Lidiane

    2013-04-01

    Soil cover and soil management are the factors that most influence soil erosion by water, because they directly affect soil surface roughness and surface cover. The main effect of soil cover by crop residues consists in dissipation of kinetic energy of raindrops and also partly kinetic energy of runoff, so that the soil disaggregation is considerably reduced but, in addition, soil cover captures detached soil particles, retains water on its surface and decreases runoff volume and velocity. In turn, soil surface roughness, influences soil surface water storage and infiltration and also runoff volume and velocity, sediment retention and subsequently water and sediment losses. Based on the above rationale, we performed a field experiment to assess the influence of soil cover and soil surface roughness on decay of runoff velocity as well as on mean diameter of transported sediments (D50 index). The following treatments were evaluated: SRR) residues of Italian ryegrass (Lolium multiflorum) on a smooth soil surfcace, SRV) residues of common vetch (Vicia sativa) on a smooth soil surface, SSR) scarification after cultivation of Italian ryegrass resulting in a rough surface, SSV) scarification after cultivation of common vetch resulting in a rough surface, and SBS) scarified bare soil with high roughness as a control. The field experiments was performed on an Inceptisol in South Brazil under simulated rainfall conditions during 2012. Experimental plots were 11 m long and 3.5 m wide with an area of 38.5 m2. Six successive simulated rainfall tests were applied using a rotating-boom rain simulator. During each test, rain intensity was 60 mmhr-1, whereas rain duration was 90 minutes. Runoff velocity showed no significant differences between cultivated treatments. However, when compared to bare soil treatment, SBS (0.178 m s-1) and irrespective of the presence of surface crop residues or scarification operations, cultivated soil treatments significantly reduced runoff velocity

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  4. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  5. Hydrogen emissivity in realistic nebulae - The effects of velocity fields and internal dust

    NASA Astrophysics Data System (ADS)

    Cota, S. A.; Ferland, G. J.

    1988-03-01

    The paper presents calculations of the H-beta emissivity expected from nebulae with velocity gradients or internal dust. As has been found by Capriotti, Cox, and Mathews, Lyman line escape and destruction can prevent the 100 percent conversion of high-n Lyman lines into Ly-alpha and Balmer lines. For dusty environments such as the Orion Nebula or the general interstellar medium, the H-beta emissivity can be reduced by less than about 15 percent. Lyman line escape may cause still larger deviations in environments such as nova shells where the expansion velocities are large and velocity gradients likely. Although the partial conversion of Lyman lines only lowers the H-beta emissivity by typically less than about 10 percent under most circumstances, this introduces a systematic error in abundance measurements; the abundance of other elements relative to hydrogen will be overestimated by this amount. This effect must be considered in detail if very accurate abundance measurements are to be made. The present predictions of the deviation from case B emissivity are presented in a way in which they can be easily used by observers or incorporated into photoionization or shock codes.

  6. Collisional Processing of Comet and Asteroid Surfaces: Velocity Effects on Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jensen, E. A.; Wooden, D. H.; Lindsay, S. S.; Smith, D. C.; Nakamura-Messenger, K.; Keller, L. P.; Cintala, M. J.; Zolensky, M. E.

    2012-01-01

    A new paradigm has emerged where 3.9 Gyr ago, a violent reshuffling reshaped the placement of small bodies in the solar system (the Nice model). Surface properties of these objects may have been affected by collisions caused by this event, and by collisions with other small bodies since their emplacement. These impacts affect the spectrographic observations of these bodies today. Shock effects (e.g., planar dislocations) manifest in minerals allowing astronomers to better understand geophysical impact processing that has occurred on small bodies. At the Experimental Impact Laboratory at NASA Johnson Space Center, we have impacted forsterite and enstatite across a range of velocities. We find that the amount of spectral variation, absorption wavelength, and full width half maximum of the absorbance peaks vary non-linearly with the velocity of the impact. We also find that the spectral variation increases with decreasing crystal size (single solid rock versus granular). Future analyses include quantification of the spectral changes with different impactor densities, temperature, and additional impact velocities. Results on diopside, fayalite, and magnesite can be found in Lederer et al., this meeting.

  7. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    SciTech Connect

    Garrigues, L.; Mazouffre, S.; Bourgeois, G.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion mean velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.

  8. Effect of ion excape velocity and conversion surface material on H- production

    SciTech Connect

    Johnson, Kenneth F; Tarvainen, Olli A; Geros, E.; Stelzer, J.; Rouleau, G.; Kalvas, T.; Komppula, J.; Carmichael, J.

    2010-10-05

    According to generally accepted models surface production of negative ions depends on ion escape velocity and work function of the surface. We have conducted an experimental study addressing the role of the ion escape velocity on H{sup -} production. A converter-type ion source at Los Alamos Neutron Science Center was employed for the experiment. The ion escape velocity was changed by varying the bias voltage of the converter electrode. It was observed that due to enhanced stripping of H{sup -} no direct gain of extracted beam current can be achieved by increasing the converter voltage. At the same time the conversion efficiency of H{sup -} was observed to vary with converter voltage and follow the existing theories in qualitative manner. We discuss the role of surface material on H{sup -} formation probability and present calculations predicting relative H{sup -} yields from different cesiated surfaces. These calculations are compared with experimental observations from different types of H{sup -} ion sources. The effects caused by varying cesium coverage are also discussed. Finally, we present a novel idea of utilizing materials exhibiting so-called negative electron affinity in H{sup -}/D{sup -} production under UV-light exposure.

  9. Effects of Impact Velocity and Slenderness Ratio on Dynamic Buckling Load for Long Columns

    NASA Astrophysics Data System (ADS)

    Mimura, K.; Umeda, T.; Yu, M.; Uchida, Y.; Yaka, H.

    In this research, the buckling behavior of long columns under dynamic load was investigated both experimentally and numerically, and an effective buckling criterion for dynamic load was derived from the results in terms of the impact velocity and the slenderness ratio. In the experiments, a free fall drop-weight type impact testing machine was employed. The dynamic buckling loads were measured by the load sensing block, and the displacements were measured by a high speed magnetic-resistance device. In the numerical analyses, dynamic FEM code 'MSC-Dytran' was used to simulate the typical experimental results, and the validity and the accuracy of the simulations were checked. The dynamic buckling loads at various impact velocities were then systematically investigated. From both experimental and simulated results, it was found that the dynamic to static buckling load ratios can be successfully described as a square function of the slenderness ratio of the columns, while they can be also described by a power law of the applied impact velocity.

  10. Edge mode velocities in the quantum Hall effect from a dc measurement

    NASA Astrophysics Data System (ADS)

    Zucker, Philip; Feldman, D. E.

    Because of the bulk gap, low energy physics in the quantum Hall effect is confined to the edges of the 2D electron liquid. The velocities of edge modes are key parameters of edge physics. They were determined in several quantum Hall systems from time-resolved measurements and high-frequency ac transport. We propose a way to extract edge velocities from dc transport in a point contact geometry defined by narrow gates. The width of the gates assumes two different sizes at small and large distances from the point contact. The Coulomb interaction across the gates depends on the gate width and affects the conductance of the contact. The conductance exhibits two different temperature dependencies at high and low temperatures. The transition between the two regimes is determined by the edge velocity. An interesting feature of the low-temperature I - V curve is current oscillations as a function of the voltage. The oscillations emerge due to charge reflection from the interface of the regions defined by the narrow and wide sections of the gates. This work is available at arXiv:1510.01725 This work was supported by the NSF under Grant No. DMR-1205715.

  11. Effects of movement distance, duration, velocity, and type on action prediction in 12-month-olds.

    PubMed

    Daum, Moritz M; Gampe, Anja; Wronski, Caroline; Attig, Manja

    2016-05-01

    The goal of the present study was to test the influence of the spatial and temporal dynamics of observed manual actions on infants' action prediction. Twelve-month-old infants were presented with reach-and-transport actions performed by a human agent. Movement distance, duration, and - resulting from the two - movement velocity were systematically varied. Action prediction was measured via the latency of gaze arrival at target in relation to agent's hand. The results showed a general effect of all parameters on the infants' perception of goal-directed actions: Infants were more likely to predict the action goal the longer the movement distance was, the longer the movement duration was, and the slower the movement velocity was. In addition, they were more likely to predict the goal of a reaching than a transport action. The present findings extent previous findings by showing that infants are not only sensitive to differences in distances, durations, and velocities at early age but that these factors have a strong impact on the prediction of the goal of observed actions. PMID:27175908

  12. Edge mode velocities in the quantum Hall effect from a dc measurement

    NASA Astrophysics Data System (ADS)

    Zucker, P. T.; Feldman, D. E.

    2015-11-01

    Because of the bulk gap, low energy physics in the quantum Hall effect is confined to the edges of the 2D electron liquid. The velocities of edge modes are key parameters of edge physics. They were determined in several quantum Hall systems from time-resolved measurements and high-frequency ac transport. We propose a way to extract edge velocities from dc transport in a point contact geometry defined by narrow gates. The width of the gates assumes two different sizes at small and large distances from the point contact. The Coulomb interaction across the gates depends on the gate width and affects the conductance of the contact. The conductance exhibits two different temperature dependencies at high and low temperatures. The transition between the two regimes is determined by the edge velocity. An interesting feature of the low-temperature I-V curve is current oscillations as a function of the voltage. The oscillations emerge due to charge reflection from the interface of the regions defined by the narrow and wide sections of the gates.

  13. Air pollution effects on the structure of Citrus aurantium leaves

    SciTech Connect

    Psaras, G.K.; Christodoulakis, N.S.

    1987-09-01

    Individual air pollutants cause acute and chronic plant injury, act on stomata and affect carbon dioxide exchange as well as plant growth and development. Inhibition of photosynthesis by several air pollutants has been reported repeatedly. Besides, structural modifications of cell organelles have been reported after fumigation by SO/sub 2/. Although chlorosis and subsequent necrosis are common phenomena caused by artificial treatment with pollutants, fine structural leaf characteristics of plants exposed to long-term air pollution in natural conditions are little explored. Light microscope examination of air pollution affected leaves of plants common in natural ecosystems of Athens' metropolitan area revealed chlorosis phenomena. Electron microscope examination of the leaves of a common subshrub of greek phryganic formations grown in a heavily air polluted natural ecosystem of Athens metropolitan area revealed pronounced ultrastructural anomalies of chloroplasts, mitochondria and microbodies of the mesophyll cells. This organelle destruction of the photosynthesizing tissue as well as the minimization of the ecosystem primary productivity are attributed to the compound action of several toxic air pollutants of the photochemical smog of Athens. This work describes the long-term air pollution effects on the structural features of the leaves of Citrus aurantium, a decorative species planted throughout the heavily air polluted city of Athens.

  14. Analysis of the effect of the fluid-structure interface on elastic wave velocity in cornea-like structures by OCE and FEM

    NASA Astrophysics Data System (ADS)

    Han, Zhaolong; Li, Jiasong; Singh, Manmohan; Vantipalli, Srilatha; Aglyamov, Salavat R.; Wu, Chen; Liu, Chih-hao; Raghunathan, Raksha; Twa, Michael D.; Larin, Kirill V.

    2016-03-01

    Air-pulse optical coherence elastography (OCE) is a promising technique for quantifying biomechanical properties of the cornea. This technique typically involves imaging and analysis of the propagation of the air-pulse induced elastic waves to reconstruct corneal biomechanical properties using an analytical model. However, the effect of the fluid-structure interface (FSI) at the corneal posterior surface on the elastic wave velocity is not accounted for in many models. In this study, we examined the effect of the FSI with OCE experiments on contact lenses with and without fluid in the posterior gap. Finite element models (FEM), also with and without the FSI, were constructed to simulate the elastic wave propagation based on the OCE measurements. The FEM and OCE results were in good agreement demonstrating the feasibility of the method. To further investigate the effect of the FSI, OCE experiments and subsequent FEM simulations were conducted on in situ rabbit corneas before and after rose bengal/green light corneal collagen cross-linking (RGX). Both the OCE experiments and the FE simulations demonstrated that the FSI significantly reduced the group velocity of the elastic wave, and thus, should be considered when determining corneal biomechanical properties from an appropriate mechanical model. By matching the FEM-calculated velocity to the OCE-measured velocity, the corneal elasticity was quantified. The Young’s modulus of the rabbit cornea before RGX was E  =  65  ±  10 kPa at a controlled intraocular pressure (IOP) of 15 mmHg. After RGX, the Young’s modulus increased to E  =  102  ±  7 kPa at the same IOP.

  15. Effects of Inter-Particle Collisions and Two-Way Coupling on Particle Deposition Velocity in a Turbulent Channel Flow

    NASA Astrophysics Data System (ADS)

    Nasr, Hojjat; Ahmadi, Goodarz; McLaughlin, John

    2010-11-01

    This study was concerned with the effect of particle-particle collisions and two-way coupling on the particle deposition velocity in a turbulent channel flow. The time history of the instantaneous turbulent velocity vector was generated by the two-way coupled direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudospectral method. The particle equation of motion included the Stokes drag, the Saffman lift, and the gravitational forces. The effect of particles on the flow was included in the analysis via a feedback force that acted on the fluid on the computational grid points. Several simulations for different particle relaxation times and particle mass loading were performed, and the effects of the inter-particle collisions and two-way coupling on the particle deposition velocity, fluid and particle fluctuating velocities, particle normal mean velocity, and particle concentration were determined. It was found that when particle-particle collisions were included in the computation, the particle deposition velocity increased. When the particle collision was neglected but the particle-fluid two-way coupling was accounted for, the particle deposition velocity decreased slightly. For the four-way coupling case, when both inter-particle collisions and two-way coupling effects were taken into account, the particle deposition velocity increased. Comparisons of the present simulation results with the available experimental data and earlier numerical results are also presented.

  16. High velocity pulsed wire-arc spray

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor); Kincaid, Russell W. (Inventor)

    1999-01-01

    Wire arc spraying using repetitively pulsed, high temperature gas jets, usually referred to as plasma jets, and generated by capillary discharges, substantially increases the velocity of atomized and entrained molten droplets. The quality of coatings produced is improved by increasing the velocity with which coating particles impact the coated surface. The effectiveness of wire-arc spraying is improved by replacing the usual atomizing air stream with a rapidly pulsed high velocity plasma jet. Pulsed power provides higher coating particle velocities leading to improved coatings. 50 micron aluminum droplets with velocities of 1500 m/s are produced. Pulsed plasma jet spraying provides the means to coat the insides of pipes, tubes, and engine block cylinders with very high velocity droplet impact.

  17. The Effect of Rain on Air-Water Gas Exchange

    NASA Technical Reports Server (NTRS)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  18. Air ventilation impacts of the "wall effect" resulting from the alignment of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Yim, S. H. L.; Fung, J. C. H.; Lau, A. K. H.; Kot, S. C.

    The objective of this study is to investigate the air ventilation impacts of the so called "wall effect" caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD - FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio ( VR) and the retention time ( T r) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a "wall" upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.

  19. Health Effects of Air Quality Regulations in Delhi, India.

    PubMed

    Foster, Andrew; Kumar, Naresh

    2011-03-01

    This, the first systematic study, quantifies the health effects of air quality regulations in Delhi, which adopted radical measures to improve air quality, including, for example, the conversion of all commercial vehicles to compressed natural gas (CNG), and the closure of polluting industries in residential areas from 2000 to 2002. Air pollution data, collected at 113 sites (spread across Delhi and its neighboring areas) from July-December 2003, were used to compute exposure at the place of residence of 3,989 subjects. A socio-economic and respiratory health survey was administered in 1,576 households. This survey collected time-use, residence histories, demographic information, and direct measurements of lung function with subjects. The optimal interpolation methods were used to link air pollution and respiratory health data at the place of their residence. Resident histories, in combination with secondary data, were used to impute cumulative exposure prior to the air-quality interventions, and the effects of recent air quality measures on lung function were then evaluated. Three important findings emerge from the analysis. First, the interventions were associated with a significant improvement in respiratory health. Second, the effect of these interventions varied significantly by gender and income. Third, consistent with a causal interpretation of these results, effects were the strongest among those individuals who spend a disproportionate share of their time out-of-doors. PMID:21461142

  20. Health Effects of Air Quality Regulations in Delhi, India

    PubMed Central

    Foster, Andrew; Kumar, Naresh

    2011-01-01

    This, the first systematic study, quantifies the health effects of air quality regulations in Delhi, which adopted radical measures to improve air quality, including, for example, the conversion of all commercial vehicles to compressed natural gas (CNG), and the closure of polluting industries in residential areas from 2000 to 2002. Air pollution data, collected at 113 sites (spread across Delhi and its neighboring areas) from July-December 2003, were used to compute exposure at the place of residence of 3,989 subjects. A socio-economic and respiratory health survey was administered in 1,576 households. This survey collected time-use, residence histories, demographic information, and direct measurements of lung function with subjects. The optimal interpolation methods were used to link air pollution and respiratory health data at the place of their residence. Resident histories, in combination with secondary data, were used to impute cumulative exposure prior to the air-quality interventions, and the effects of recent air quality measures on lung function were then evaluated. Three important findings emerge from the analysis. First, the interventions were associated with a significant improvement in respiratory health. Second, the effect of these interventions varied significantly by gender and income. Third, consistent with a causal interpretation of these results, effects were the strongest among those individuals who spend a disproportionate share of their time out-of-doors. PMID:21461142

  1. Health effects of air quality regulations in Delhi, India

    NASA Astrophysics Data System (ADS)

    Foster, Andrew; Kumar, Naresh

    2011-03-01

    This, the first systematic study, quantifies the health effects of air quality regulations in Delhi, which adopted radical measures to improve air quality, including, for example, the conversion of all commercial vehicles to compressed natural gas (CNG), and the closure of polluting industries in residential areas from 2000 to 2002. Air pollution data, collected at 113 sites (spread across Delhi and its neighboring areas) from July-December 2003, were used to compute exposure at the place of residence of 3989 subjects. A socio-economic and respiratory health survey was administered in 1576 households. This survey collected time-use, residence histories, demographic information, and direct measurements of lung function with subjects. The optimal interpolation methods were used to link air pollution and respiratory health data at the place of their residence. Resident histories, in combination with secondary data, were used to impute cumulative exposure prior to the air-quality interventions, and the effects of recent air quality measures on lung function were then evaluated. Three important findings emerge from the analysis. First, the interventions were associated with a significant improvement in respiratory health. Second, the effect of these interventions varied significantly by gender and income. Third, consistent with a causal interpretation of these results, effects were the strongest among those individuals who spend a disproportionate share of their time out-of-doors.

  2. Suppression of slip and rupture velocity increased by thermal pressurization: Effect of dilatancy

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2013-11-01

    investigated the effect of dilatancy on dynamic rupture propagation on a fault where thermal pressurization (TP) is in effect, taking into account permeability varying with porosity; the study is based on three-dimensional (3-D) numerical simulations of spontaneous ruptures obeying a slip-weakening friction law and Coulomb failure criterion. The effects of dilatancy on dynamic ruptures interacting with TP have been often investigated in one- or two-dimensional numerical simulations. The sole 3-D numerical simulation gave attention only to the behavior at a single point on a fault. Moreover, with the sole exception based on a single-degree-freedom spring-slider model, the previous simulations including dilatancy and TP have not considered changes in hydraulic diffusivity. However, the hydraulic diffusivity, which strongly affects TP, can vary as a power of porosity. In this study, we apply a power law relationship between permeability and porosity. We consider both reversible and irreversible changes in porosity, assuming that the irreversible change is proportional to the slip rate and dilatancy coefficient ɛ. Our numerical simulations suggest that the effects of dilatancy can suppress slip and rupture velocity increased by TP. The results reveal that the amount of slip on the fault decreases with increasing ɛ or exponent of the power law, and the rupture velocity is predominantly suppressed by ɛ. This was observed regardless of whether the applied stresses were high or low. The deficit of the final slip in relation to ɛ can be smaller as the fault size is larger.

  3. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  4. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind

  5. Hematological and hemorheological effects of air pollution

    SciTech Connect

    Baskurt, O.K.; Levi, E.; Caglayan, S.; Dikmenoglu, N.; Kutman, M.N. )

    1990-07-01

    Selected hematological parameters and erythrocyte deformability indexes for 16 young male military students were compared before and after a period of exposure to heavy pollution. These students lived in Ankara, which has a serious air pollution problem. The mean sulfur dioxide levels measured at a station proximal to the campus where the students lived were 188 micrograms/m3 and 201 micrograms/m3 during first and second measurements, respectively. During the period between the two measurements, the mean sulfur dioxide level was 292 micrograms/m3. Significant erythropoiesis was indicated by increased erythrocyte counts and hemoglobin and hematocrit levels. Methemoglobin percentage was increased to 2.37 +/- 0.49% (mean +/- standard error) from 0.51 +/- 0.23%. Sulfhemoglobinemia was present in six subjects after the period of pollution, but it was not present in any student prior to this period. Significant increases in erythrocyte deformability indexes were observed after the period of pollution, i.e., from 1.13 +/- 0.01 to 1.21 +/0 0.02, implying that erythrocytes were less flexible, which might impair tissue perfusion.

  6. Effect of mean velocity shear on the dissipation rate of turbulent kinetic energy

    NASA Technical Reports Server (NTRS)

    Yoshizawa, Akira; Liou, Meng-Sing

    1992-01-01

    The dissipation rate of turbulent kinetic energy in incompressible turbulence is investigated using a two-scale DIA. The dissipation rate is shown to consist of two parts; one corresponds to the dissipation rate used in the current turbulence models of eddy-viscosity type, and another comes from the viscous effect that is closely connected with mean velocity shear. This result can elucidate the physical meaning of the dissipation rate used in the current turbulence models and explain part of the discrepancy in the near-wall dissipation rates between the current turbulence models and direct numerical simulation of the Navier-Stokes equation.

  7. Walk-through survey report: HVLV (high velocity low volume) control technology for aircraft bonded wing and radome maintenance at Air Force Logistics Command, McClellan Air Force Base, Sacramento, California

    SciTech Connect

    Hollett, B.A.

    1983-08-01

    A walk through survey was conducted at the Sacramento Air Logistics Center, McClellan Air Force Base, California, on June 13, 1983, to evaluate the use of High Velocity Low Volume (HVLV) technology in the aircraft-maintenance industry. The HVLV system consisted of 65 ceiling drops in the bonded honeycomb shop where grinding and sanding operations created glass fiber and resin dusts. Preemployment and periodic physical examinations were required. Workers were required to wear disposable coveralls, and disposable dust masks were available. Workers walked through decontamination air jet showers before leaving the area to change clothes. Environmental monitoring revealed no significant dust exposures when the HVLV system was in use. Performance of the exhaust system on the eight-inch-diameter nose cone sanding operation was good, but the three-inch-diameter tools were too large and the shrouds too cumbersome for use on many hand-finishing tasks. The author concludes that the HVLV system is partially successful but requires additional shroud design. Further development of small tool shrouds is recommended.

  8. Reactions of Microsolvated Organic Compounds at Ambient Surfaces: Droplet Velocity, Charge State, and Solvent Effects

    NASA Astrophysics Data System (ADS)

    Badu-Tawiah, Abraham K.; Campbell, Dahlia I.; Cooks, R. Graham

    2012-06-01

    The exposure of charged microdroplets containing organic ions to solid-phase reagents at ambient surfaces results in heterogeneous ion/surface reactions. The electrosprayed droplets were driven pneumatically in ambient air and then electrically directed onto a surface coated with reagent. Using this reactive soft landing approach, acid-catalyzed Girard condensation was achieved at an ambient surface by directing droplets containing Girard T ions onto a dry keto-steroid. The charged droplet/surface reaction was much more efficient than the corresponding bulk solution-phase reaction performed on the same scale. The increase in product yield is ascribed to solvent evaporation, which causes moderate pH values in the starting droplet to reach extreme values and increases reagent concentrations. Comparisons are made with an experiment in which the droplets were pneumatically accelerated onto the ambient surface (reactive desorption electrospray ionization, DESI). The same reaction products were observed but differences in spatial distribution were seen associated with the "splash" of the high velocity DESI droplets. In a third type of experiment, the reactions of charged droplets with vapor phase reagents were examined by allowing electrosprayed droplets containing a reagent to intercept the headspace vapor of an analyte. Deposition onto a collector surface and mass analysis showed that samples in the vapor phase were captured by the electrospray droplets, and that instantaneous derivatization of the captured sample is possible in the open air. The systems examined under this condition included the derivatization of cortisone vapor with Girard T and that of 4-phenylpyridine N-oxide and 2-phenylacetophenone vapors with ethanolamine.

  9. Effective Stack Design in Air Pollution Control.

    ERIC Educational Resources Information Center

    Clarke, John H.

    1968-01-01

    Stack design problems fall into two general caterories--(1) those of building re-entry, and (2) those of general area pollution. Extensive research has developed adequate information, available in the literature, to permit effective stack design. A major roadblock to effective design has been the strong belief by architects and engineers that high…

  10. Driver air bag effectiveness by severity of the crash.

    PubMed Central

    Segui-Gomez, M

    2000-01-01

    OBJECTIVES: This analysis provided effectiveness estimates of the driver-side air bag while controlling for severity of the crash and other potential confounders. METHODS: Data were from the National Automotive Sampling System (1993-1996). Injury severity was described on the basis of the Abbreviated Injury Scale, Injury Severity Score, Functional Capacity Index, and survival. Ordinal, linear, and logistic multivariate regression methods were used. RESULTS: Air bag deployment in frontal or near-frontal crashes decreases the probability of having severe and fatal injuries (e.g., Abbreviated Injury Scale score of 4-6), including those causing a long-lasting high degree of functional limitation. However, air bag deployment in low-severity crashes increases the probability that a driver (particularly a woman) will sustain injuries of Abbreviated Injury Scale level 1 to 3. Air bag deployment exerts a net injurious effect in low-severity crashes and a net protective effect in high-severity crashes. The level of crash severity at which air bags are protective is higher for female than for male drivers. CONCLUSIONS: Air bag improvement should minimize the injuries induced by their deployment. One possibility is to raise their deployment level so that they deploy only in more severe crashes. PMID:11029991

  11. Effect of Velocity and Temperature Distribution at the Hole Exit on Film Cooling of Turbine Blades

    NASA Technical Reports Server (NTRS)

    Garg, V. K.; Gaugler, R. E.

    1997-01-01

    An existing three-dimensional Navier-Stokes code (Arnone et al, 1991), modified Turbine Branch, to include film cooling considerations (Garg and Gaugler, 1994), has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle's transition criterion (1991), Forest's model for augmentation of leading edge heat transfer due to free-stream turbulence (1977), and Crawford's model for augmentation of eddy viscosity due to film cooling (Crawford et al, 1980) are used. Use of Mayle's and Forest's models is relevant only for the ACE rotor due to the absence of showerhead cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60 percent on the heat transfer coefficient at the blade suction surface, and 50 percent at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.

  12. Effect of velocity and temperature distribution at the hole exit on film cooling of turbine blades

    NASA Technical Reports Server (NTRS)

    Garg, Vijay K.; Gaugler, Raymond E.

    1995-01-01

    An existing three-dimensional Navier-Stokes code, modified to include film cooling considerations, has been used to study the effect of coolant velocity and temperature distribution at the hole exit on the heat transfer coefficient on three-film-cooled turbine blades, namely, the C3X vane, the VKI rotor, and the ACE rotor. Results are also compared with the experimental data for all the blades. Moreover, Mayle's transition criterion, Forest's model for augmentation of leading edge heat transfer due to freestream turbulence, and Crawford's model for augmentation of eddy viscosity due to film cooling are used. Use of Mayle's and Forest's models is relevant only for the ACE rotor due to the absence of showerhead cooling on this rotor. It is found that, in some cases, the effect of distribution of coolant velocity and temperature at the hole exit can be as much as 60% on the heat transfer coefficient at the blade suction surface, and 50% at the pressure surface. Also, different effects are observed on the pressure and suction surface depending upon the blade as well as upon the hole shape, conical or cylindrical.

  13. Ankle positions and exercise intervals effect on the blood flow velocity in the common femoral vein during ankle pumping exercises

    PubMed Central

    Toya, Kaori; Sasano, Ken; Takasoh, Tomomi; Nishimoto, Teppei; Fujimoto, Yuta; Kusumoto, Yasuaki; Yoshimatsu, Tatsuki; Kusaka, Satomi; Takahashi, Tetsuya

    2016-01-01

    [Purpose] The aim of this study was to identify the most effective method of performing ankle pumping exercises. [Subjects and Methods] The study subjects were 10 men. We measured time-averaged maximum flow velocity and peak systolic velocity in the common femoral vein using a pulse Doppler method with a diagnostic ultrasound system during nine ankle pumping exercises (three different ankle positions and three exercise intervals). Changes of blood flow velocity during ankle pumping exercises with different ankle positions and exercise intervals were compared. [Result] Peak systolic velocity of the leg-up position showed significantly lower values than those of the supine and head-up positions. For all exercise intervals, the increased amount of blood flow velocity in the leg-up position was significantly lower than that in the head-up and supine positions. [Conclusion] Ankle positions and exercise intervals must be considered when performing effective ankle pumping exercises. PMID:27065564

  14. Effect of aspect ratio on the air forces and moments of harmonically oscillating thin rectangular wings in supersonic potential flow

    NASA Technical Reports Server (NTRS)

    Watkins, Charles E

    1951-01-01

    This report treats the effect of aspect ratio on the air forces and moments of an oscillating flat rectangular wing in supersonic potential flow. The linearized velocity potential for the wing undergoing sinusoidal torsional oscillations simultaneously with sinusoidal vertical translations is derived in the form of a power series in terms of a frequency parameter. The series development is such that the differential equation for the velocity potential is satisfied to the required power of the frequency parameter considered and the linear boundary conditions are satisfied exactly. The method of solution can be utilized for other plan forms, that is, plan forms for which certain steady-state solutions are known.

  15. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  16. Pore Velocity Estimation Uncertainties

    NASA Astrophysics Data System (ADS)

    Devary, J. L.; Doctor, P. G.

    1982-08-01

    Geostatistical data analysis techniques were used to stochastically model the spatial variability of groundwater pore velocity in a potential waste repository site. Kriging algorithms were applied to Hanford Reservation data to estimate hydraulic conductivities, hydraulic head gradients, and pore velocities. A first-order Taylor series expansion for pore velocity was used to statistically combine hydraulic conductivity, hydraulic head gradient, and effective porosity surfaces and uncertainties to characterize the pore velocity uncertainty. Use of these techniques permits the estimation of pore velocity uncertainties when pore velocity measurements do not exist. Large pore velocity estimation uncertainties were found to be located in the region where the hydraulic head gradient relative uncertainty was maximal.

  17. Assessment of Effects of Air Pollution on Daily Outpatient Visits using the Air Quality Index

    PubMed Central

    Mu, Haosheng; Otani, Shinji; Okamoto, Mikizo; Yokoyama, Yae; Tokushima, Yasuko; Onishi, Kazunari; Hosoda, Takenobu; Kurozawa, Youichi

    2014-01-01

    Background The air quality index (AQI) is widely used to characterize the quality of ambient air. Chinese cities officially report the AQI on a daily basis. To assess the possible effects of air pollution on daily outpatient visits, we examined the association between AQI and the daily outpatient count. Methods Daily data on outpatient visits to each clinical department were collected from the Z county hospital of Datong City, China. The collection period was between 5 April and 30 June, 2012. Daily AQI data and meteorological information were simultaneously recorded. We compared outpatient counts between the index days and comparison days, and calculated Pearson’s product moment correlation coefficient between outpatient counts and AQI levels. Results The average AQI level for index days was significantly higher than that for comparison days. No significant difference was observed in temperature or relative humidity between index days and comparison days. The outpatient counts for pediatrics were significantly higher on index days than on comparison days, and no significant difference was noted in other clinical departments. The outpatient counts for pediatrics positively correlated with the AQI level, and no correlation was noted in other clinical departments. Conclusion The present study assessed the association between daily outpatient visits and air pollution using AQI. The results obtained suggest that air pollution could increase the outpatient count for pediatrics. PMID:25901100

  18. The Effects of Very Light Jet Air Taxi Operations on Commercial Air Traffic

    NASA Technical Reports Server (NTRS)

    Smith, Jeremy C.; Dollyhigh, Samuel M.

    2006-01-01

    This study investigates the potential effects of Very Light Jet (VLJ) air taxi operations adding to delays experienced by commercial passenger air transportation in the year 2025. The affordable cost relative to existing business jets and ability to use many of the existing small, minimally equipped, but conveniently located airports is projected to stimulate a large demand for the aircraft. The resulting increase in air traffic operations will mainly be at smaller airports, but this study indicates that VLJs have the potential to increase further the pressure of demand at some medium and large airports, some of which are already operating at or near capacity at peak times. The additional delays to commercial passenger air transportation due to VLJ air taxi operations are obtained from simulation results using the Airspace Concepts Evaluation System (ACES) simulator. The direct increase in operating cost due to additional delays is estimated. VLJs will also cause an increase in traffic density, and this study shows increased potential for conflicts due to VLJ operations.

  19. The Effect of Velocity on the Extinction Behavior of a Diffusion Flame during Transient Depressurization

    NASA Technical Reports Server (NTRS)

    Goldmeer, Jeffrey S.; Urban, David L.; Tien, James

    1999-01-01

    Current fire suppression plans for the International Space Station include the use of venting (depressurization) as a method for extinguishing a fire. Until recently this process had only been examined as part of a material flammability experiment performed on Skylab in the early 1970's. Due to the low initial pressure (0.35 Atm) and high oxygen concentration (65%), the Skylab experimental results are not applicable for understanding the effects of venting on a fire in a space station environment (21%O2, 1 Atm). Recent research examined the extinction behavior of a diffusion flame over a polymethyl methacrylate (PMMA) cylinder during a transient depressurization in low-gravity. The numerical model was used to examine extinction limits as a function of depressurization rate, forced flow velocity, and initial solid phase temperature. The experimental and numerically predicted extinction data indicated that as the solid phase temperature increased the pressure required to extinguish the flame decreased. The numerical model was also used to examine conditions not obtainable in the low-gravity experiments. From these simulations, a series of extinction boundaries were generated that showed a region of increased flammability existed at a forced flow of 10 cm/s. Analysis of these extinction boundaries indicated that they were quasi-steady in nature, and that the final extinction conditions were independent of the transient process. The velocity range in the previous study was limited and thus the results did not examine the effects of velocities less than 1 cm/s or greater than 20 cm/s. This study utilized low-gravity experiments performed on NASA's Reduced-gravity Research Aircraft Laboratory and numerical simulations to examine conditions applicable to the Space Station environment. This paper extends the analysis of the previous study to a comprehensive examination of the effect of increased velocity on extinction behavior and extinction limits during a transient

  20. Effects of the curvature of a lava channel on velocity and stress fields

    NASA Astrophysics Data System (ADS)

    Valerio, Antonella; Tallarico, Andrea; Dragoni, Michele

    2010-05-01

    Bends in lava flows due to local variations in topography are commonly observed in volcanic fields. The curvature of a channel affects the flow surface morphology, as described in literature by Greeley (1971) and Peterson (1994). Where channels make an especially sharp bend, crust plates break and are incorporated within the flow by remelting. In some places, they jam together welding to the sides of the channel and forming a stable roof. We propose a model to explain the effects of the curvature of a channel on velocity, shear stress and formation of solid crust at the surface. Lava is described as a Newtonian, homogeneous, isotropic and incompressible fluid. The steady-state solution of the Navier-Stokes equation is found for a unidirectional flow, in cylindrical polar coordinates, neglecting the gradient of pressure and assuming a dependence of velocity on the radial coordinate only. The flow levees are described as arcs of concentric circumferences, with their centres in the origin of the reference frame. The equation is solved using non-slip boundary conditions at the levees. From the constitutive equation of a Newtonian incompressible fluid we obtain the nonvanishing component of the shear stress. As a consequence of the curvature of the channel, velocity and shear stress show an asymmetric behaviour in respect to the centre of the channel. The gradient of velocity and the shear stress reach larger values close to the levee with the higher curvature. Heat radiation and convection into the atmosphere are considered as the main cooling processes. Solid platforms form at the flow surface during cooling. Crust plates are laterally confined by the shear regions with high stress values. The model analyses the effects of the curvature of a channel on the development and shape of surface solid plates. The dimension and shape of plates are controlled by the competition between the shear stress and crust yield strength, and the degree of crust coverage of the channel

  1. The Effects of Velocity Correlation Times on the Turbulent Amplification of Magnetic Energy

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.

    1997-06-01

    This paper extends the quasilinear theory of Kulsrud & Anderson to assess the effects of realistically long velocity correlation times on the turbulent amplification of a very weak magnetic field. A computer simulation is presented that tracks the growth of the magnetic energy in a turbulent plasma at a single point moving with the turbulent flow. The velocities are assumed to conform to the ideas of Kraichnan concerning Lagrangian correlation times, and are modeled as a set of randomly generated pulses chosen to reproduce the correct two-time Lagrangian correlation tensor. The model is simple computationally and can be used to calculate the growth rate of the magnetic energy for arbitrarily high magnetic Reynolds numbers. The simulations show that the magnetic energy grows roughly half as fast as predicted in the short correlation time approximation of Kulsrud & Anderson's quasilinear theory. In a separate analysis, the effects of nonzero correlation times are considered using an analytic method developed by van Kampen. The growth rate is expanded, roughly speaking, in powers of the correlation time divided by the time required for the energy to exponentiate once. The first two terms in the series are calculated. In themselves, these two terms do not exactly determine the growth rate, but they are consistent with the numerical results. The analytic treatment is included mostly for completeness and because it offers some physical understanding of the problem. The main conclusion of the paper is that velocity correlation times do not play an important role in the growth of the magnetic energy. As a result, Kulsrud & Anderson's short correlation time analysis of the spectrum of amplified small-scale fields should be approximately correct.

  2. The effect of gait approach velocity on the broken escalator phenomenon.

    PubMed

    Tang, K-S; Kaski, D; Allum, J H J; Bronstein, A M

    2013-05-01

    Walking onto a stationary surface previously experienced as moving generates an after-effect commonly known as the "broken escalator" after-effect (AE). This AE represents an inappropriate expression of the locomotor adaptation necessary to step onto the moving platform (or escalator). It is characterised by two main biomechanical components, an increased gait approach velocity (GAV) and a forward trunk overshoot on gait termination. We investigated whether the trunk overshoot and other biomechanical measures are the direct inertial consequence of the increased GAV or whether these are the result of an independent adaptive mechanism. Forty-eight healthy young adults walked onto a movable sled. They performed 5 trials with the sled stationary at their preferred walking velocity (BEFORE trials), 5 with the sled moving (MOVING or adaptation trials), and 5 with the sled stationary again (AFTER trials). For the AFTER trials, subjects were divided into four groups. One group was instructed to walk slowly ("slower"), another with cueing at the BEFORE pace ("metronome"). The third group walked without cueing at the BEFORE pace ("normal"), and the fourth, fast ("faster"). We measured trunk pitch angle, trunk linear horizontal displacement, left shank pitch angular velocity and surface EMG from lower leg and trunk muscles. In the AFTER trials, an AE was observed in these biomechanical measures for all gait speeds, but these were not strongly dependent on GAV. An AE was present even when GAV was not different from that of BEFORE trials. Therefore, we conclude that, although contributary, the trunk overshoot is not the direct consequence of the increased GAV. Instead, it appears to be generated by anticipatory motor activity "just in case" the sled moves, herewith termed a "pre-emptive" postural adjustment. PMID:23468158

  3. PIC Simulations of the Effect of Velocity Space Instabilities on Electron Viscosity and Thermal Conduction

    NASA Astrophysics Data System (ADS)

    Riquelme, Mario A.; Quataert, Eliot; Verscharen, Daniel

    2016-06-01

    In low-collisionality plasmas, velocity-space instabilities are a key mechanism providing an effective collisionality for the plasma. We use particle-in-cell (PIC) simulations to study the interplay between electron- and ion-scale velocity-space instabilities and their effect on electron pressure anisotropy, viscous heating, and thermal conduction. The adiabatic invariance of the magnetic moment in low-collisionality plasmas leads to pressure anisotropy, {{Δ }}{p}j\\equiv {p}\\perp ,j-{p}\\parallel ,j\\gt 0, if the magnetic field {\\boldsymbol{B}} is amplified ({p}\\perp ,j and {p}\\parallel ,j denote the pressure of species j (electron, ion) perpendicular and parallel to {\\boldsymbol{B}}). If the resulting anisotropy is large enough, it can in turn trigger small-scale plasma instabilities. Our PIC simulations explore the nonlinear regime of the mirror, IC, and electron whistler instabilities, through continuous amplification of the magnetic field | {\\boldsymbol{B}}| by an imposed shear in the plasma. In the regime 1≲ {β }j≲ 20 ({β }j\\equiv 8π {p}j/| {\\boldsymbol{B}}{| }2), the saturated electron pressure anisotropy, {{Δ }}{p}{{e}}/{p}\\parallel ,{{e}}, is determined mainly by the (electron-lengthscale) whistler marginal stability condition, with a modest factor of ∼1.5–2 decrease due to the trapping of electrons into ion-lengthscale mirrors. We explicitly calculate the mean free path of the electrons and ions along the mean magnetic field and provide a simple physical prescription for the mean free path and thermal conductivity in low-collisionality β j ≳ 1 plasmas. Our results imply that velocity-space instabilities likely decrease the thermal conductivity of plasma in the outer parts of massive, hot, galaxy clusters. We also discuss the implications of our results for electron heating and thermal conduction in low-collisionality accretion flows onto black holes, including Sgr A* in the Galactic Center.

  4. Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows

    NASA Astrophysics Data System (ADS)

    Salesky, Scott T.; Katul, Gabriel G.; Chamecki, Marcelo

    2013-10-01

    Within the diabatic atmospheric surface layer (ASL) under quasi-stationary and horizontal homogeneous conditions, the mean velocity profile deviates from its conventional logarithmic shape by a height-dependent universal stability correction function ϕm(ζ) that varies with the stability parameter ζ. The ζ parameter measures the relative importance of mechanical to buoyant production or destruction of turbulent kinetic energy (TKE) within the ASL. A link between ϕm(ζ) and the spectrum of turbulence in the ASL was recently proposed by Katul et al. ["Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer," Phys. Rev. Lett. 107, 268502 (2011)]. By accounting for the stability-dependence of TKE production, Katul et al. were able to recover scalings for ϕm with the anticipated power-law exponents for free convective, slightly unstable, and stable conditions. To obtain coefficients for the ϕm(ζ) curve in good agreement with empirical formulas, they introduced a correction for the variation of the integral lengthscale of vertical velocity with ζ estimated from the Kansas experiment. In the current work, the link between the coefficients in empirical curves for ϕm(ζ) and stability-dependent properties of turbulence in the ASL, including the variation with ζ of the integral lengthscale and the anisotropy of momentum transporting eddies is investigated using data from the Advection Horizontal Array Turbulence Study. The theoretical framework presented by Katul et al. is revised to account explicitly for these effects. It is found that the coefficients in the ϕm(ζ) curve for unstable and near-neutral conditions can be explained by accounting for the stability-dependence of the integral lengthscale and anisotropy of momentum-transporting eddies; however, an explanation for the observed ϕm(ζ) curve for stable conditions remains elusive. The effect of buoyancy on the horizontal and vertical integral lengthscales is also analyzed in

  5. Dependence of the effect of aerosols on cirrus clouds on background vertical velocity

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo

    2012-07-01

    Cirrus clouds cover approximately 20-25% of the globe and thus play an important role in the Earth's radiation budget. This important role in the radiation budget played by cirrus clouds indicates that aerosol effects on cirrus clouds can have a substantial impact on the variation of global radiative forcing if the ice-water path (IWP) changes. This study examines the aerosol indirect effect (AIE) through changes in the IWP for cirrus cloud cases. This study also examines the dependence of aerosol-cloud interactions in cirrus clouds on the large-scale vertical motion. We use a cloud-system resolving model (CSRM) coupled with a double-moment representation of cloud microphysics. Intensified interactions among the cloud ice number concentration (CINC), deposition and dynamics play a critical role in the IWP increases due to aerosol increases from the preindustrial (PI) level to the present-day (PD) level with a low large-scale vertical velocity. Increased aerosols lead to an increased CINC, providing an increased surface area for water vapor deposition. The increased surface area leads to increased deposition despite decreased supersaturation with increasing aerosols. The increased deposition causes an increased depositional heating which produces stronger updrafts, and these stronger updrafts lead to the increased IWP. However, with a high large-scale vertical velocity, the effect of increased CINC on deposition was not able to offset the effect of decreasing supersaturation with increasing aerosols. The effect of decreasing supersaturation on deposition dominant over that of increasing CINC leads to smaller deposition and IWP at high aerosol with the PD aerosol than at low aerosol with the PI aerosol. The conversion of ice crystals to aggregates through autoconversion and accretion plays a negligible role in the IWP responses to aerosols, as does the sedimentation of aggregates. The sedimentation of ice crystals plays a more important role in the IWP response to

  6. Effect of Kinesiotape Applications on Ball Velocity and Accuracy in Amateur Soccer and Handball

    PubMed Central

    Müller, Carsten; Brandes, Mirko

    2015-01-01

    Evidence supporting performance enhancing effects of kinesiotape in sports is missing. The aims of this study were to evaluate effects of kinesiotape applications with regard to shooting and throwing performance in 26 amateur soccer and 32 handball players, and to further investigate if these effects were influenced by the players’ level of performance. Ball speed as the primary outcome and accuracy of soccer kicks and handball throws were analyzed with and without kinesiotape by means of radar units and video recordings. The application of kinesiotapes significantly increased ball speed in soccer by 1.4 km/h (p=0.047) and accuracy with a lesser distance from the target by −6.9 cm (p=0.039). Ball velocity in handball throws also significantly increased by 1.2 km/h (p=0.013), while accuracy was deteriorated with a greater distance from the target by 3.4 cm (p=0.005). Larger effects with respect to ball speed were found in players with a lower performance level in kicking (1.7 km/h, p=0.028) and throwing (1.8 km/h, p=0.001) compared with higher level soccer and handball players (1.2 km/h, p=0.346 and 0.5 km/h, p=0.511, respectively). In conclusion, the applications of kinesiotape used in this study might have beneficial effects on performance in amateur soccer, but the gain in ball speed in handball is counteracted by a significant deterioration of accuracy. Subgroup analyses indicate that kinesiotape may yield larger effects on ball velocity in athletes with lower kicking and throwing skills. PMID:26839612

  7. Effect of Kinesiotape Applications on Ball Velocity and Accuracy in Amateur Soccer and Handball.

    PubMed

    Müller, Carsten; Brandes, Mirko

    2015-12-22

    Evidence supporting performance enhancing effects of kinesiotape in sports is missing. The aims of this study were to evaluate effects of kinesiotape applications with regard to shooting and throwing performance in 26 amateur soccer and 32 handball players, and to further investigate if these effects were influenced by the players' level of performance. Ball speed as the primary outcome and accuracy of soccer kicks and handball throws were analyzed with and without kinesiotape by means of radar units and video recordings. The application of kinesiotapes significantly increased ball speed in soccer by 1.4 km/h (p=0.047) and accuracy with a lesser distance from the target by -6.9 cm (p=0.039). Ball velocity in handball throws also significantly increased by 1.2 km/h (p=0.013), while accuracy was deteriorated with a greater distance from the target by 3.4 cm (p=0.005). Larger effects with respect to ball speed were found in players with a lower performance level in kicking (1.7 km/h, p=0.028) and throwing (1.8 km/h, p=0.001) compared with higher level soccer and handball players (1.2 km/h, p=0.346 and 0.5 km/h, p=0.511, respectively). In conclusion, the applications of kinesiotape used in this study might have beneficial effects on performance in amateur soccer, but the gain in ball speed in handball is counteracted by a significant deterioration of accuracy. Subgroup analyses indicate that kinesiotape may yield larger effects on ball velocity in athletes with lower kicking and throwing skills. PMID:26839612

  8. Air-leakage effects on stone cladding panels

    NASA Astrophysics Data System (ADS)

    Colantonio, Antonio

    1995-03-01

    This paper looks at the effects of air leakage on insulated stone clad precast panels used in present day construction of large commercial buildings. The building investigated was a newly built twenty story office building in a high density urban setting. Air leakage was suspected as a possible cause for thermal comfort complaints at isolated locations within the perimeter zones of the building. During the warrantee period the building owner asked for a quality control inspection of the air barrier assembly of the building envelope. Infrared thermography was used to locate areas of suspected air leakage within the building envelope. In order to differentiate thermal patterns produced by air leakage, conduction and convection as well as radiation from external sources, the building was inspected from the exterior; (1) after being pressurized for three hours, (2) one hour after the building was depressurized and (3) two and a half hours after total building depressurization was maintained by the building mechanical systems. Thermal images from similar locations were correlated for each time and pressure setting to verify air leakage locations within the building envelope. Areas exhibiting air leakage were identified and contractors were requested to carry out the necessary repairs. The pressure differential across the building envelope needs to be known in order to properly carry out an inspection to identify all locations of air leakage within a building envelope. As well the direction of the air movement and the density of the cladding material need to be accounted for in the proper inspection of these types of wall assemblies.

  9. Rate Effects on Timing, Key Velocity, and Finger Kinematics in Piano Performance

    PubMed Central

    Dalla Bella, Simone; Palmer, Caroline

    2011-01-01

    We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement “signatures” may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound. PMID:21731615

  10. Automatic versus Voluntary Motor Imitation: Effect of Visual Context and Stimulus Velocity

    PubMed Central

    Bisio, Ambra; Stucchi, Natale; Jacono, Marco; Fadiga, Luciano; Pozzo, Thierry

    2010-01-01

    Automatic imitation is the tendency to reproduce observed actions involutarily. Though this topic has been widely treated, at present little is known about the automatic imitation of the kinematic features of an observed movement. The present study was designed to understand if the kinematics of a previously seen stimulus primes the executed action, and if this effect is sensitive to the kinds of stimuli presented. We proposed a simple imitation paradigm in which a dot or a human demonstrator moved in front of the participant who was instructed either to reach the final position of the stimulus or to imitate its motion with his or her right arm. Participants' movements were automatically contaminated by stimulus velocity when it moved according to biological laws, suggesting that automatic imitation was kinematic dependent. Despite that the performance, in term of reproduced velocity, improved in a context of voluntary imitation, subjects did not replicate the observed motions exactly. These effects were not affected by the kind of stimuli used, i.e., motor responses were influenced in the same manner after dot or human observation. These findings support the existence of low-level sensory-motor matching mechanisms that work on movement planning and represent the basis for higher levels of social interaction. PMID:20976006

  11. Temperature dependence of the inhibitory effects of orthovanadate on shortening velocity in fast skeletal muscle.

    PubMed Central

    Pate, E; Wilson, G J; Bhimani, M; Cooke, R

    1994-01-01

    We have investigated the effects of the orthophosphate (P(i)) analog orthovanadate (Vi) on maximum shortening velocity (Vmax) in activated, chemically skinned, vertebrate skeletal muscle fibers. Using new "temperature-jump" protocols, reproducible data can be obtained from activated fibers at high temperatures, and we have examined the effect of increased [Vi] on Vmax for temperatures in the range 5-30 degrees C. We find that for temperatures < or = 20 degrees C, increasing [Vi] inhibits Vmax; for temperatures > or = 25 degrees C, increasing [Vi] does not inhibit Vmax. Attached cross-bridges bound to Vi are thought to be an analog of the weakly bound actin-myosin.ADP-P(i) state. The data suggest that the weakly bound Vi state can inhibit velocity at low temperature, but not at high temperature, with the transition occurring over a narrow temperature range of < 5 degrees C. This suggests a highly cooperative interaction. The data also define a Q10 for Vmax of 2.1 for chemically skinned rabbit psoas fibers over the temperature range of 5-30 degrees C. Images FIGURE 3 PMID:8061204

  12. The effect of pressure on ultrasonic velocity and attenuation in near-surface sedimentary rocks

    SciTech Connect

    Best, A.I.

    1997-03-01

    Accurate laboratory ultrasonic measurements of velocity and attenuation were made on water-saturated samples of limestone, sandstone and siltstone as a function of effective pressure (5--60 MPa) using the pulse-echo method. Core samples were taken from Carboniferous sediments at the Whitchester shallow borehole test site; they were cut perpendicular to the horizontal bedding planes. The compressional- and shear-wave velocities and quality factors of the limestones generally showed negligible increases with pressure, while those of the siltstones and sandstones showed intermediate and significant increases with pressure, respectively. At 60 MPa, the sandstone samples generally showed a range of quality factors attributed to their differing porosities and differing proportions of rigid skeletal minerals (quartz grains) and compliant matrix materials (clay, kerogenic organic matter); at 5 MPa, they generally showed similar quality factors attributed to the presence of microcracks, which occur predominantly at grain contacts. The results show that kerogenic organic matter behaves in a similar way to other compliant matrix minerals in causing high attenuation at ultrasonic frequencies, and that caution must be exercised when applying high pressure geostatistical relationships to reservoir rocks at low effective pressures. The results indicate the presence of two types of squirt flow loss mechanisms: clay squirt flow dominates at high pressures, while microcrack squirt flow dominates at low pressures. Clean sandstones and limestones can be distinguished from those with significant amounts of compliant minerals, and sandstones with cracks can be distinguished from those without cracks.

  13. Predicted and measured effects of pressure and crossflow velocity on composite propellant burning rate

    NASA Technical Reports Server (NTRS)

    King, M. K.

    1980-01-01

    A theoretical model for prediction of burning rates of composite (ammonium perchlorate oxidizer) solid propellants as a function of pressure and crossflow velocity was developed. Included in this model is the capability for treatment of multimodal oxidizer particle sizes and metalized formulations. In addition, an experimental device for measuring the effects of crossflow velocity on propellant burning rate was developed and used to characterize a series of AP/HTPB propellants with systematically varied formulation parameters. Model predictions of zero-crossflow burning rate versus pressure characteristics were found to be in agreement with data, while the agreement between erosive burning predictions and data is, in general, good. The experimental data indicate that the dominant factor influencing the sensitivity of composite propellant burning rate to crossflow is the base (no-crossflow) burning rate versus pressure characteristics of the propellant (lower base burning rate leading to increased crossflow sensitivity). Finally, the model was used to examine the effects of motor scaling on erosive burning: erosive burning is predicted to diminish with increasing motor size, in agreement with experience.

  14. Rate effects on timing, key velocity, and finger kinematics in piano performance.

    PubMed

    Bella, Simone Dalla; Palmer, Caroline

    2011-01-01

    We examined the effect of rate on finger kinematics in goal-directed actions of pianists. In addition, we evaluated whether movement kinematics can be treated as an indicator of personal identity. Pianists' finger movements were recorded with a motion capture system while they performed melodies from memory at different rates. Pianists' peak finger heights above the keys preceding keystrokes increased as tempo increased, and were attained about one tone before keypress. These rate effects were not simply due to a strategy to increase key velocity (associated with tone intensity) of the corresponding keystroke. Greater finger heights may compensate via greater tactile feedback for a speed-accuracy tradeoff that underlies the tendency toward larger temporal variability at faster tempi. This would allow pianists to maintain high temporal accuracy when playing at fast rates. In addition, finger velocity and accelerations as pianists' fingers approached keys were sufficiently unique to allow pianists' identification with a neural-network classifier. Classification success was higher in pianists with more extensive musical training. Pianists' movement "signatures" may reflect unique goal-directed movement kinematic patterns, leading to individualistic sound. PMID:21731615

  15. Effects of Instability Versus Traditional Resistance Training on Strength, Power and Velocity in Untrained Men

    PubMed Central

    Maté-Muñoz, José Luis; Monroy, Antonio J. Antón; Jodra Jiménez, Pablo; Garnacho-Castaño, Manuel V.

    2014-01-01

    The purpose of this study was compare the effects of a traditional and an instability resistance circuit training program on upper and lower limb strength, power, movement velocity and jumping ability. Thirty-six healthy untrained men were assigned to two experimental groups and a control group. Subjects in the experimental groups performed a resistance circuit training program consisting of traditional exercises (TRT, n = 10) or exercises executed in conditions of instability (using BOSU® and TRX®) (IRT, n = 12). Both programs involved three days per week of training for a total of seven weeks. The following variables were determined before and after training: maximal strength (1RM), average (AV) and peak velocity (PV), average (AP) and peak power (PP), all during bench press (BP) and back squat (BS) exercises, along with squat jump (SJ) height and counter movement jump (CMJ) height. All variables were found to significantly improve (p <0.05) in response to both training programs. Major improvements were observed in SJ height (IRT = 22.1%, TRT = 20.1%), CMJ height (IRT = 17.7%, TRT = 15.2%), 1RM in BS (IRT = 13.03%, TRT = 12.6%), 1RM in BP (IRT = 4.7%, TRT = 4.4%), AP in BS (IRT = 10.5%, TRT = 9.3%), AP in BP (IRT = 2.4%, TRT = 8.1%), PP in BS (IRT=19.42%, TRT = 22.3%), PP in BP (IRT = 7.6%, TRT = 11.5%), AV in BS (IRT = 10.5%, TRT = 9.4%), and PV in BS (IRT = 8.6%, TRT = 4.5%). Despite such improvements no significant differences were detected in the posttraining variables recorded for the two experimental groups. These data indicate that a circuit training program using two instability training devices is as effective in untrained men as a program executed under stable conditions for improving strength (1RM), power, movement velocity and jumping ability. Key Points Similar adaptations in terms of gains in strength, power, movement velocity and jumping ability were produced in response to both training programs. Both the stability and instability approaches

  16. [The effect of gravity on linear blood flow velocity in different parts of the venous system in humans].

    PubMed

    Modin, A Iu

    2002-01-01

    Effects of gravity on linear blood velocity in jugular, femoral and popliteal veins were examined in 45 healthy male and female subjects. The zero-g effects were simulated by putting the subjects in the recumbent position, and the gravity effects were provoked by active orthostasis. Blood velocity was measured with CW Doppler (4 MHz). No difference was determined in velocity of the blood flow along the veins in recumbent subjects. In the head-up position, blood flow was significantly increased in the jugular vein and decreased in the leg veins. In several instances, brief contraction of the crus muscles caused a noticeable rise in the peak velocity along the femoral vein. In the head-up position this hemodynamic effect of the crus pump was much more pronounced. PMID:12098950

  17. Measurement of Gas and Liquid Velocities in an Air-Water Two-Phase Flow using Cross-Correlation of Signals from a Double Senor Hot-Film Probe

    SciTech Connect

    B. Gurau; P. Vassalo; K. Keller

    2002-02-19

    Local gas and liquid velocities are measured by cross-correlating signals from a double sensor hot-film anemometer probe in pure water flow and air water two-phase flow. The gas phase velocity measured in two-phase flow agrees with velocity data obtained using high-speed video to within +/-5%. A turbulent structure, present in the liquid phase, allows a correlation to be taken, which is consistent with the expected velocity profiles in pure liquid flow. This turbulent structure is also present in the liquid phase of a two-phase flow system. Therefore, a similar technique can be applied to measure the local liquid velocity in a two-phase system, when conditions permit.

  18. Rectilinear-motion space inversion-based detection approach for infrared dim air targets with variable velocities

    NASA Astrophysics Data System (ADS)

    Ma, Tianlei; Shi, Zelin; Yin, Jian; Liu, Yunpeng; Xu, Baoshu; Zhang, Chengshuo

    2016-03-01

    Dim targets are extremely difficult to detect using methods based on single-frame detection. Radiation accumulation is one of the effective methods to improve signal-to-noise ratio (SNR). A detection approach based on radiation accumulation is proposed. First, a location space and a motion space are established. Radiation accumulation operation, controlled by vectors from the motion space, is applied to the original image space. Then, a new image space is acquired where some images have an improved SNR. Second, quasitargets in the new image space are obtained by constant false-alarm ratio judging, and location vectors and motion vectors of quasitargets are also acquired simultaneously. Third, the location vectors and motion vectors are mapped into the two spaces, respectively. Volume density function is defined in the motion space. Location extremum of the location space and volume density extremum of motion space will confirm the true target. Finally, actual location of the true target in the original image space is obtained by space inversion. The approach is also applicable to detect multiple dim targets. Experimental results show the effectiveness of the proposed approach and demonstrate the approach is superior to compared approaches on detection probability and false alarm probability.

  19. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  20. Effect of relative velocity distribution on efficiency and exit flow of centrifugal impellers

    NASA Astrophysics Data System (ADS)

    Mishina, H.; Nishida, H.

    1983-03-01

    A quasi-three-dimensional flow analysis proposed by Senoo and Nakase (1972) is applied in order to estimate the relative velocity distribution within a centrifugal impeller, assuming that the flow is both isentropic and inviscid. The relationship between relative velocity distribution, impeller efficiency, and meridional exit flow is experimentally investigated for the case of shrouded impellers having various relative velocity distributions. Analytical results are used to establish design criteria for the relative velocity distribution of centrifugal impellers.

  1. Effect of Different Interrepetition Rest Periods on Barbell Velocity Loss During the Ballistic Bench Press Exercise.

    PubMed

    García-Ramos, Amador; Padial, Paulino; Haff, G Gregory; Argüelles-Cienfuegos, Javier; García-Ramos, Miguel; Conde-Pipó, Javier; Feriche, Belén

    2015-09-01

    This study investigated the effect of introducing different interrepetition rest (IRR) periods on the ability to sustain maximum bench press throw velocity with a range of loads commonly used to develop upper-body power. Thirty-four physically active collegiate men (age: 21.5 ± 2.8 years; body mass: 75.2 ± 7.2 kg; height: 176.9 ± 4.9 cm) were tested during 2 consecutive weeks. During the first week, the maximum dynamic strength (repetition maximum [RM]) in bench press exercise was determined (RM = 76.7 ± 13.2 kg). The following week, 3 testing sessions were conducted with 48 hours apart in random order. In each day of evaluation, only 1 load (30%RM, 40%RM, or 50%RM) was assessed in the bench press throw exercise. With each load, subjects performed 3 single sets of 15 repetitions (15-minute interset rest) with 3 different sets configurations: continuous repetitions (CR), 6 seconds of IRR (IRR6), and 12 seconds of IRR (IRR12). The decrease of peak velocity (PV) was significantly lower for IRR12 compared with CR and IRR6 at least since the repetition 4. No differences between CR and IRR6 protocols were found until the repetition 7 at 30%RM and 40%RM and until the repetition 5 at 50%RM. The decrease of PV during the CR protocol was virtually linear for the 3 loads analyzed (r > 0.99); however, this linear relationship became weaker for IRR6 (r = 0.79-0.95) and IRR12 (r = 0.35-0.87). These results demonstrate that IRR periods allow increasing the number of repetitions before the onset of significant velocity losses. PMID:26308827

  2. Shortening velocity of skeletal muscle from humans with malignant hyperthermia susceptibility: effects of halothane.

    PubMed

    Etchrivi, T S; Haudecoeur, G; Stix, I; Reyford, H; Tavernier, B; Krivosic-Horber, R M; Adnet, P J

    2000-01-24

    The aim of this investigation was to assess the effect of halothane on the velocity of shortening and lengthening of muscle from normal subjects and from patients with malignant hyperthermia susceptibility. Strips were mounted horizontally at optimal length in normal Krebs-Ringer's solution and mechanical parameters were obtained before and after exposure to 3 vol.% halothane. The maximun shortening velocity at zero load (V(max)) was determined by using Hill's characteristic equation. The contraction and relaxation indices were measured under isotonic and isometric conditions: maximum shortening and lengthening velocities (maxV(c) and maxV(r), respectively); isometric peak twitch tension; peak of the positive (+dP/dt(max)) and negative (-dP/dt(max)) twitch tension derivative; ratio R1=maxV(c)/maxV(r) and ratio R2=(+dP/dt(max))/(-dP/dt(max)). In normal muscle, halothane markedly increased V(max), maxV(c) and peak twitch tension by 30+/-10%, 30+/-5% and 40+/-15%, respectively. The maxV(r) values increased concomitantly with the maxV(c) values, such that no change in the ratio R1 was observed. Both +dP/dt(max) and -dP/dt(max) increased such that the ratio R2 did not vary. In malignant hyperthermia susceptibility muscle, halothane induced a significant decrease in V(max) (-30+/-10%) and maxV(r) (-45+/-15%) without changing maxV(c). The decrease in maxV(r) was greater than that of maxV(c), such that the ratio R1 increased significantly. Peak twitch tension and +dP/dt(max) remained unchanged whereas -dP/dt(max) decreased significantly; the ratio R2 increased by 40+/-10%. These results suggest that halothane alters the contractile properties of malignant hyperthermia susceptibility muscle. PMID:10657553

  3. Effects of H2O, CO2, and N2 air contaminants on critical airside strain rates for extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary

    1989-01-01

    Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.

  4. Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation

    PubMed Central

    Campbell, Ian C.; Ries, Jared; Dhawan, Saurabh S.; Quyyumi, Arshed A.; Taylor, W. Robert; Oshinski, John N.

    2013-01-01

    Background Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. Method of approach We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a “reference standard” of the patient’s own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on CFD results. We quantified these differences by examining the pointwise percent error of mean wall shear stress (WSS) and oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of mean WSS and OSI in the internal carotid artery bulb. Results The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and use of non-patient-specific flow waveform both affected WSS and OSI results more than did choice of inlet velocity profile. Conclusions Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile. PMID:22757489

  5. Effects of A 6-Week Junior Tennis Conditioning Program on Service Velocity

    PubMed Central

    Fernandez-Fernandez, Jaime; Ellenbecker, Todd; Sanz-Rivas, david; Ulbricht, Alexander; Ferrautia, lexander

    2013-01-01

    This study examined the effects of a 6-week strength-training program on serve velocity in youth tennis players. Thirty competitive healthy and nationally ranked male junior tennis players (13 years of age) were randomly and equally divided into control and training groups. The training group performed 3 sessions (60-70 min) weekly for 6 weeks, comprising core strength, elastic resistance and medicine ball exercises. Both groups (control and training) also performed a supervised stretching routine at the end of each training session, during the 6 week intervention. Service velocity, service accuracy and shoulder internal/external rotation were assessed initially and at the end of the 6-week conditioning program for both, control and training groups. There was a significant improvement in the serve velocity for the training group (p = 0. 0001) after the intervention, whereas in the control group there were no differences between pre and post-tests (p = 0.29). Serve accuracy was not affected in the training group (p = 0.10), nor in the control group (p = 0.15). Shoulder internal/external rotation ROM significantly improved in both groups, training (p = 0.001) and control (p = 0.0001). The present results showed that a short- term training program for young tennis players, using minimum equipment and effort, can result in improved tennis performance (i.e., serve velocity) and a reduction in the risk of a possible overuse injury, reflected by an improvement in shoulder external/internal range of motion. Key Points A short-term training program for young tennis players, using minimum equipment and effort, can result in improved tennis performance and a reduction in the risk of a possible overuse injury, reflected by an improvement in shoulder external/internal range of motion A combination of core stabilization, elastic resistance exercises, and upper body plyometric exercises (i.e., medicine ball throws), focussing on the primary muscle groups and stabilizers involved

  6. Physical modelling of the effect of fractures on compressional and shear wave velocities

    NASA Astrophysics Data System (ADS)

    Gurevich, Boris; Lebedev, Maxim; Glubokovskikh, Stanislav; Dyskin, Arcady; Pasternak, Elena; Vialle, Stephanie

    2016-04-01

    Ultrasonic measurements were performed on a sample of polyester resin permeated by multiple fractures. The samples were prepared by mixing high doses of catalyst, about 7-10 % with the liquid resin base. The mix was then heated in an oven at 60° C for a period of 1 hour. This operation produced many shrinkage cracks varying in size from 8 mm to 20 mm (Sahouryeh et al., 2002). The produced samples were parallelepiped 50 mm x 50 mm in cross-section with height of 100 mm. Micro-CT scanning of the sample reveals many open fractures with apertures 0.2 - 0.4 mm. Elastic properties of the fractured samples were derived from ultrasonic measurements using piezo-electric transducers. These measurements give compressional (Vp) and shear (Vs) wave velocities of 2450 and 1190 m/s, respectively, giving Vp/Vs = 2.04. At the same time the velocities in the intact resin are Vp=2460 and Vs=1504 m/s, respectively, with Vp/Vs = 1.63. Thus we see that the fractures have a negligible effect on the Vp (within the measurement error) but a dramatic effect on Vs (about 20%). This contradicts the common understanding that the effects of dry fractures on Vp and Vs are similar in magnitude. Indeed, assuming very roughly that the distribution of fractures is isotropic, we can estimate the cumulative normal fracture compliance from the difference between shear moduli of the intact and fractured resin to be 0.30 GPa‑1 and fracture density of 0.41. This value can be used to estimate the effective bulk modulus of the fractured material. The corresponding p-wave velocity, Vp = 1860 m/s, is significantly lower that the observed value. The results suggest that an equivalent medium approximation is not applicable in this case, probably due to the fact that the long-wave approximation is inadequate. Indeed the fractures are larger than the wavelength that corresponds to the peak frequencies of the power spectrum of the signal. This suggests a strong influence of diffraction. Furthermore, the

  7. The Effect of Air Density on Atmospheric Electric Fields Required for Lightning Initiation from a Long Airborne Object

    NASA Technical Reports Server (NTRS)

    Bazelyan, E. M.; Aleksandrov, N. L.; Raizer, Yu. Pl.; Konchankov, A. M.

    2006-01-01

    The purpose of the work was to determine minimum atmospheric electric fields required for lightning initiation from an airborne vehicle at various altitudes up to 10 km. The problem was reduced to the determination of a condition for initiation of a viable positive leader from a conductive object in an ambient electric field. It was shown that, depending on air density and shape and dimensions of the object, critical atmospheric fields are governed by the condition for leader viability or that for corona onset. To establish quantitative criteria for reduced air densities, available observations of spark discharges in long laboratory gaps were analyzed, the effect of air density on leader velocity was discussed and evolution in time of the properties of plasma in the leader channel was numerically simulated. The results obtained were used to evaluate the effect of pressure on the quantitative relationships between the potential difference near the leader tip, leader current and its velocity; based on these relationships, criteria for steady development of a leader were determined for various air pressures. Atmospheric electric fields required for lightning initiation from rods and ellipsoidal objects of various dimensions were calculated at different air densities. It was shown that there is no simple way to extend critical ambient fields obtained for some given objects and pressures to other objects and pressures.

  8. Trapping effect on the sound velocity of a multilayer Fermi gas

    NASA Astrophysics Data System (ADS)

    Salas, Patricia; Solís, M. A.

    2015-03-01

    We present the trapping effect on the behavior of the isothermal compressibility and sound velocity for an interactionless Fermi gas immersed in a periodic interconnected multilayer structure created by an external Dirac comb potential which can vary both in spacing and in the intensity that controls the impenetrability of the layer edge (the wall). At T = 0 , for a given layer width and respect to the free ideal Fermi gas values, the isothermal compressibility as a function of the impenetrability starts in one and then monotonically increases to reach a larger constant value which is width dependent. The sound velocity as a function of impenetrability starts in one and for a range of impenetrabilities shows a bump which suggests that the presence of the structure increases the speed. For a finite temperature, given a separation between the walls and several values of their impenetrabilities, both properties start their evolution in temperature from the ideal Fermi gas value, unfold at temperatures near and under TF, and then recover the behavior of a classical gas at higher temperatures. We acknowledge partial support from PAPIIT IN111613 and CONACyT 221030.

  9. P wave velocity structure below India and Tibet incorporating anisotropic delay time effects

    NASA Astrophysics Data System (ADS)

    Mohanty, Debasis D.; Singh, Arun; O'Driscoll, Leland J.; Ravi Kumar, M.; Srinagesh, D.; Humphreys, Eugene D.

    2016-03-01

    We incorporate the effects of anisotropy to refine the continental-scale 3-D isotropic velocity model previously produced for India and Tibet by inverting 52,050 teleseismic P wave residuals. We have exploited a total of 1648 individual SKS splitting parameters to calculate the P wave travel time corrections due to azimuthal anisotropy. Our results suggest that anisotropy affects the P wave delays significantly (-0.3 to +0.5 s). Integration of these corrections into the 3-D modeling is achieved in two ways: (a) a priori adjustment to the delay time vector and (b) inverting only for anisotropic delays by introducing strong damping above 80 km and below 360 km depths and then subtracting the obtained anisotropic artifact image from the isotropic image, to get the corrected image. Under the assumption of azimuthal anisotropy resulting from lattice preferred orientation (LPO) alignment due to horizontal flow, the bias in isotropic P wave tomographic images is clear. The anisotropy corrected velocity perturbations are in the range of ±1.2% at depths of around 150 km and reduced further at deeper levels. Although the bias due to anisotropy does not affect the gross features, it does introduce certain artifacts at deeper levels.

  10. Near-surface wave velocity structure of Faial (Azores - Portugal) Island for site effect studies

    NASA Astrophysics Data System (ADS)

    Borges, José; Neves, Samuel; Caldeira, Bento; Bezzeghoud, Mourad; Carvalho, João; Carvalho, Alexandra

    2015-04-01

    Throughout history, the life of the Azorean people has been marked by earthquakes that have had different effects depending on their proximity and magnitude. This seismic activity, which may have volcanic or tectonic origins, has affected the population of these islands by destroying infrastructure and claiming lives. The social and economic impacts of these phenomena are enormous. The last significant event affecting the Azores (Portugal) was the July 1998 Mw=6.2 earthquake causing major destruction affecting more than 5000 people, causing 8 deaths, 150 persons injured and 1500 homeless. Ground motion simulations are mainly based on source characteristics and are heavily dependent on the medium, which is still poorly understood. Subsurface soil condition can amplify the seismic waves, so, for seismic response analysis, it is necessary to know the shallow soil properties and its spatial variability. For this purpose, we applied P and S-wave refraction, Multichannel Analysis of Surface Waves (MASW) to characterize shear wave velocity at different sites in the Faial Island, in particular, in sites where already occurred amplification. Ambient vibrations can also be used to estimate physical properties of the shallower geological formations. With this goal, the obtained velocity models were confirmed by comparison between real H/V curves with synthetic ones. We concluded that the anomalous intensities observed in some sites are strongly related to thick layers of soft sediments of pyroclastic deposits produced by old volcanic eruptions occurred in the Faial Island.

  11. Electron Transport Coefficients and Effective Ionization Coefficients in SF6-O2 and SF6-Air Mixtures Using Boltzmann Analysis

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Xu, Min; Yuan, Dingkun; Zhang, Yafang; Hu, Zhaoji; Tan, Zhihong

    2014-10-01

    The electron drift velocity, electron energy distribution function (EEDF), density-normalized effective ionization coefficient and density-normalized longitudinal diffusion velocity are calculated in SF6-O2 and SF6-Air mixtures. The experimental results from a pulsed Townsend discharge are plotted for comparison with the numerical results. The reduced field strength varies from 40 Td to 500 Td (1 Townsend=10-17 V·cm2) and the SF6 concentration ranges from 10% to 100%. A Boltzmann equation associated with the two-term spherical harmonic expansion approximation is utilized to gain the swarm parameters in steady-state Townsend. Results show that the accuracy of the Boltzmann solution with a two-term expansion in calculating the electron drift velocity, electron energy distribution function, and density-normalized effective ionization coefficient is acceptable. The effective ionization coefficient presents a distinct relationship with the SF6 content in the mixtures. Moreover, the E/Ncr values in SF6-Air mixtures are higher than those in SF6-O2 mixtures and the calculated value E/Ncr in SF6-O2 and SF6-Air mixtures is lower than the measured value in SF6-N2. Parametric studies conducted on these parameters using the Boltzmann analysis offer substantial insight into the plasma physics, as well as a basis to explore the ozone generation process.

  12. Effect of local velocity on diffusion-induced stress in large-deformation electrodes of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Yong; Zhang, Kai; Zheng, Bailin; Yang, Fuqian

    2016-07-01

    In this work, the contribution of local velocity to the resultant flux of lithium in lithium-ion battery is introduced into the diffusion equation to describe the migration of lithium in the active material of electrodes. The effect of the local velocity on the stress evolution in a spherical electrode made of silicon is analyzed, using the derived diffusion equation and nonlinear theory of elasticity. Two boundary conditions at the surface of the electrode, which represent two extreme conditions of real electrode materials, are used in the stress analysis: one is stress-free, and the other is immobile. The numerical results with the stress-free boundary condition suggest that the effect of the local velocity on the distribution of radial stress and hoop stress increases with the increase of time and the effect of the local velocity on the distribution of lithium is relatively small. In comparison with the results without the effect of the local velocity, the effect of the local velocity is negligible for the immobile boundary condition. The numerical result shows that the use of the immobile boundary condition leads to the decrease of von-Mises stress, which likely will retard the mechanical degradation of electrode and improve the electrochemical performance of lithium-ion battery.

  13. Effects of gamma-ray and high energy carbon ion irradiation on swimming velocity of Euglena gracilis

    NASA Astrophysics Data System (ADS)

    Sakashita, T.; Doi, M.; Yasuda, H.; Fuma, S.; Häder, D.-P.

    The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34±4 Gy (gamma-rays) and 13±1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6±0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity.

  14. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  15. Effect of air velocity on laying hen performance and egg quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing convective cooling can improve performance and thermal comfort of commercial poultry when weather or system design limit cooling through other means such as evaporative cooling. Previous work in young hens showed increased egg production rate as feed intake is maintained under heat stres...

  16. Temperature and air velocity effects on ethanol emission from corn silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) from agricultural sources are believed to be an important contributor to tropospheric ozone in some areas. Recent research suggests that silage is a major source of these VOCs, but only limited data exist on VOC emission from silage. Ethanol is normally the most abu...

  17. Effects of air flow on rat electroolfactogram.

    PubMed

    Scott-Johnson, P E; Blakley, D; Scott, J W

    2000-12-01

    The electroolfactogram (EOG) previously has been used to demonstrate the regional distribution of rat olfactory epithelial odorant responses. Here, we evaluated the effects of airflow parameters on EOGs in two preparations: one where odorants were directly applied to the epithelium (opened preparation) and one where odorants were drawn through the nasal passages by an artificial sniff (closed preparation). EOG rise times served as one measure of odorant access. For isoamyl acetate (but not for limonene), rise times were slower in the lateral recesses of the closed (but not the opened) preparation. Polar odorants (amyl acetate, carvone and benzaldehyde) evoked smaller responses in the closed preparation than in the opened preparation, and these responses were particularly depressed in the lateral regions of the closed preparation. Responses to nonpolar hydrocarbon odorants (limonene and benzene) were equal in the lateral regions of both preparations, but were somewhat depressed in the medial region of the closed preparation. The responses to some polar odorants in the closed preparation were sensitive to changes in airflow parameters. These data suggest that the sorptive properties of the nose contribute substantially to determining the response of the epithelium and act to increase differences produced by inherent receptor mechanisms. PMID:11114154

  18. Effects of neutral interactions on velocity-shear-driven plasma waves

    SciTech Connect

    Enloe, C. L.; Tejero, E. M.; Amatucci, W. E.; Crabtree, C.; Ganguli, G.; Sotnikov, V.

    2014-06-15

    In a laboratory experiment, we demonstrate the substantial effects that collisions between charged and neutral particles have on low-frequency (Ω{sub i} ≪ ω ≪ Ω{sub e}) shear-driven electrostatic lower hybrid waves in a plasma. We establish a strong (up to 2.5 kV/m) highly localized electric field with a length scale shorter than the ion gyroradius, so that the ions in the plasma, unlike the electrons, do not develop the full E × B drift velocity. The resulting shear in the particle velocities initiates the electron-ion hybrid (EIH) instability, and we observe the formation of strong waves in the vicinity of the shear with variations in plasma densities of 10% or greater. Our experimental configuration allows us to vary the neutral background density by more than a factor of two while holding the charged particle density effectively constant. Not surprisingly, increasing the neutral density decreases the growth rate/saturation amplitude of the waves and increases the threshold electric field necessary for wave formation, but the presence of neutrals affects the dominant wave frequency as well. We show that a 50% increase in the neutral density decreases the wave frequency by 20% while also suppressing the electric field dependence of the frequency that is observed when fewer neutrals are present. The majority of these effects, as well as the values of the frequencies we observe, closely match the predictions of previously developed linear EIH instability theory, for which we present the results of a numerical solution.

  19. Transport of Tank 241-SY-101 Waste Slurry: Effects of Dilution and Temperature on Critical Pipeline Velocity

    SciTech Connect

    KP Recknagle; Y Onishi

    1999-06-15

    This report presents the methods and results of calculations performed to predict the critical velocity and pressure drop required for the two-inch pipeline transfer of solid/liquid waste slurry from underground waste storage Tank 241-SY-101 to Tank 241-SY- 102 at the Hanford Site. The effects of temperature and dilution on the critical velocity were included in the analysis. These analyses show that Tank 241-SY-101 slurry should be diluted with water prior to delivery to Tank 241-SY-102. A dilution ratio of 1:1 is desirable and would allow the waste to be delivered at a critical velocity of 1.5 ft/sec. The system will be operated at a flow velocity of 6 ft/sec or greater therefore, this velocity will be sufficient to maintain a stable slurry delivery through the pipeline. The effect of temperature on the critical velocity is not a limiting factor when the slurry is diluted 1:1 with water. Pressure drop at the critical velocity would be approximately two feet for a 125-ft pipeline (or 250-ft equivalent straight pipeline). At 6 ft/sec, the pressure drop would be 20 feet over a 250-ft equivalent straight pipeline.

  20. Effective velocity distribution in an atom gravimeter: Effect of the convolution with the response of the detection

    NASA Astrophysics Data System (ADS)

    Farah, T.; Gillot, P.; Cheng, B.; Landragin, A.; Merlet, S.; Pereira Dos Santos, F.

    2014-08-01

    We present here a detailed study of the influence of the transverse motion of the atoms in a free-fall gravimeter. By implementing Raman selection in the horizontal directions at the beginning of the atoms' free fall, we characterize the effective velocity distribution, i.e., the velocity distribution of the detected atom, as a function of the laser cooling and trapping parameters. In particular, we show that the response of the detection induces a pronounced asymmetry of this effective velocity distribution that depends not only on the imbalance between molasses beams but also on the initial position of the displaced atomic sample. This convolution with the detection has a strong influence on the averaging of the bias due to Coriolis acceleration. The present study allows a fairly good understanding of results previously published in [New J. Phys. 13, 065025 (2011), 10.1088/1367-2630/13/6/065025], where the mean phase shift due to Coriolis acceleration was found to have a sign different from that expected.

  1. The Effects of Air Pollution and Temperature on COPD.

    PubMed

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  2. The Effects of Air Pollution and Temperature on COPD

    PubMed Central

    Hansel, Nadia N.; McCormack, Meredith C.; Kim, Victor

    2016-01-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12–16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature—both heat and cold—have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance. PMID:26683097

  3. Effects of the concentration of emulsion of oil-in-water on the propagation velocity and attenuation

    NASA Astrophysics Data System (ADS)

    Silva, L. S. F.; Bibiano, D. S.; Figueiredo, M. K. K.; Costa-Félix, R. P. B.

    2015-01-01

    Soybean oil is an important feedstock for production of biodiesel that generates about 20 % of oily effluents. This paper studied the effect of concentration of soybean oil-inwater emulsions, in the range from 6 000 to 14 000 ppm, on the propagation velocity and ultrasonic attenuation. The Emission-Reception method has shown that the propagation velocity depends linearly on the concentration. The behavior of attenuation is similar to the velocity. Thus, both parameters can be used to measure oils and greases content in water.

  4. Concerning the flow about ring-shaped cowlings Part IX : the influence of oblique oncoming flow on the incremental velocities and air forces at the front part of circular cowls

    NASA Technical Reports Server (NTRS)

    Kuchemann, Dietrich; Weber, Johanna

    1952-01-01

    The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.

  5. Buckling of Aluminum Honeycomb Core and Its Effect on Ultrasonic Velocity

    NASA Astrophysics Data System (ADS)

    Hsu, David K.; Dayal, Vinay; Harris, Aaron L.; Peters, John J.

    2004-02-01

    This paper reports an investigation on the interior buckling morphology of impact-damaged honeycomb core and its effects on the amplitude and velocity of transmitted ultrasound. In a systematic experiment, honeycomb core specimens were compressed to various degrees of buckling and the transmitted ultrasonic amplitude and time-of-flight were measured as a function of percent deformation. The measured time-of-flight showed a dramatic increase with increasing degree of buckling. As a comparison, the time of flight was modeled in a transient finite element analysis of a buckled honeycomb cell wall. A single cycle load was applied to the top end of the simplified model and the response was recorded at the bottom end of the wall. The finite element simulation results for time-of-flight showed qualitative agreement with the experimental data.

  6. Effect of hindlimb unweighting on single soleus fiber maximal shortening velocity and ATPase activity

    NASA Technical Reports Server (NTRS)

    Mcdonald, K. S.; Fitts, R. H.

    1993-01-01

    The effect of hindlimb unweighting (HU) for 1 to 3 wks on the shortening velocity of a soleus fiber, its ATPase content, and the relative contents of the slow and fast myosin was investigated by measuring fiber force, V(0), ATPase activity, and myosin content in SDS protein profiles of a single rat soleus fiber suspended between a motor arm and a transducer. It was found that HU induces a progressive increase in fiber V(0) that is likely caused, at least in part, by an increase in the fiber's myofibrillar ATPase activity. The HU-induced increases in V(0) and ATPase were associated with the presence of a greater percentage of fast type IIa fibers. However, a large population of fibers after 1, 2, and 3 wks of HU showed increases in V(0) and ATPase but displayed the same myosin protein profile on SDS gels as control fibers.

  7. Wind tunnel investigation of the effect of high relative velocities on the structural integrity of birds

    NASA Technical Reports Server (NTRS)

    Bresnahan, D. L.

    1972-01-01

    An experimental investigation was conducted in a supersonic wind tunnel to determine the effect a sudden high velocity headwind had on the physical deformation and structural breakup characteristics of birds. Several sizes of recently killed birds were dropped into the test section at free-stream Mach numbers ranging from 0.2 to 0.8 and photographed with high-speed motion-picture cameras. These conditions simulated flow conditions encountered when birds are ingested into the inlets of high speed aircraft, thereby constituting a safety hazard to the aircraft and its occupants. The investigation shows that, over the range of headwind conditions tested, the birds remained structurally intact and did not suffer any appreciable deformation or structural breakup.

  8. A Study of the Effects of Air Pollution on Children

    ERIC Educational Resources Information Center

    Bury, Irene B.

    1970-01-01

    An investigation of the possible effects of air pollution on the absenteeism of elementary school children showed that a greater percent of absences occurred in the test group than in a comparable group. There is little question as to the importance that such information should have for educators, informed parents, and other adults in community…

  9. CARDIAC MOLECULAR EFFECTS INDUCED BY AIR POLLUTION PARTICLES

    EPA Science Inventory

    Abstract Submitted to the American Thoracic Society 98th International Conference, May 17 - 22, 2002, Atlanta, GA

    CARDIAC MOLECULAR EFFECTS INDUCED BY AIR POLLUTION PARTICLES
    K. Dreher1, R. Jaskot1, J. Richards1, and T. Knuckles2. 1U. S. Environmental Protection Agency,...

  10. The Effects of a Blizzard on Urban Air Pollution.

    ERIC Educational Resources Information Center

    da Silva, Armando; Bein, Frederick L.

    1981-01-01

    The chronology and effects of a 1978 blizzard on Indianapolis' air pollution levels (ozone, sulfur dioxide, carbon monoxide) are used as a case study for geography classes. Photographs, graphs, and maps are provided as examples of meteorological data collection and interpretation. (AM)

  11. AIR POLLUTION MIXTURES: HEALTH EFFECTS ACROSS LIFE STAGES

    EPA Science Inventory

    Our Center will address four of the six research priorities of the EPA solicitation to establish Clean Air Centers. It will: I) investigate the effects of pollutants and mixtures through animal and human studies; 2) identify sub-populations that are at increased risk through t...

  12. AIR POLLUTION MODELS AS DESCRIPTORS OF CAUSE-EFFECT RELATIONSHIPS

    EPA Science Inventory

    The problem of air pollution modeling is treated beginning from a philosophical standpoint, in which a model is viewed as a universal statement and a complementary set of singular statements from which specific cause-effect relationships are deduced; proceeding to the formulation...

  13. Turbulent hydraulic jumps: Effect of Weber number and Reynolds number on air entrainment and micro-bubble generation

    NASA Astrophysics Data System (ADS)

    Mortazavi, Milad; Mani, Ali

    2015-11-01

    Air entrainment in breaking waves is a ubiquitous and complex phenomenon. It is the main source of air transfer from atmosphere to the oceans. Furthermore, air entrainment due to ship-induced waves contributes to bubbly flows in ship wakes and also affect their performance. In this study, we consider a turbulent hydraulic jump as a canonical setting to investigate air entrainment due to turbulence-wave interactions. The flow has an inlet Froude number of 2.0, while three different Weber numbers (We = 1820, 729, 292), and two different Reynolds numbers (Re = 11000, 5500) based on the inlet height and inlet velocity are investigated. Air entrainment is shown to be very sensitive to the We number, while Re number has a minor effect. Wave breaking and interface collisions are significantly reduced in the low Weber number cases. As a result, micro-bubble generation is significantly reduced with decreasing Weber number. Vortex shedding events are observed to emerge at the toe of the jump in all of the cases. For high Weber number regimes, shedding of vortices is accompanied by engulfment of air pockets into the jump in a periodic manner, while for lower Webber number regimes such events are significantly suppressed. Reynolds number is shown to have a negligible effect on the air entrainment, wave breaking and micro-bubble generation, contrary to the previous assumptions in other studies. Supported by ONR.

  14. The Effect of Micrite on Velocity, Its Sensitivity to Pressure, and Dissolution of Carbonates

    NASA Astrophysics Data System (ADS)

    El Husseiny, A.; Vanorio, T.

    2014-12-01

    This study investigates the effect of micrite on the acoustic properties of well-controlled microstructures created in the laboratory to closely mimic carbonate rocks. In particular, we examine the effect of micrite content on the elastic stiffness rock, its sensitivity to pressure, and induced dissolution upon saturation with a reactive fluid. We followed Dunham's classification and fabricated the samples by mixing coarse (sand size) and very fine (micrite size) calcite grains in different ratios, with the addition of cement and then cold-compressing the mixture. The acoustic velocities were measured under bench-top conditions and as functions of confining pressure before and after the injection of a CO2aqueous solution. Our bench-top measurements indicated that micrite makes the frame of the carbonate samples stiffer. Since the sensitivity of the elastic stiffness to pressure decreases as the content of micrite increases (see figure 1), we hypothesize a stiffer pore structure (i.e., rounder pores) in micrite-richer fabrics. Furthermore, the presence of micrite makes the carbonate sample more reactive upon dissolution. The concentration of Ca+2 cations in the fluid measured at the outlet after the injection of the CO2 aqueous solution shows larger dissolution in the micrite-rich samples likely due to the higher surface area of the micrite aggregates. The content of micrite also seems to affect the evolution of stiffness as dissolution proceeds. As the content of micrite increases, the enhanced dissolution translates into a marked softening of the rock frame. We conclude that the content of micrite can play an important role in the complex rock-fluid interaction of carbonates as well as when comparing Gassmann's predictions to velocity measurements of saturated carbonates.

  15. Effect of the initial pressure on the characteristics of the flame propagation in hydrogen-propane-air mixtures

    NASA Astrophysics Data System (ADS)

    Cheng, Guanbing; Bauer, Pascal; Zitoun, Ratiba

    2014-08-01

    This paper is aimed at an experimental investigation on effects of initial pressure on flame propagation characteristics of binary fuels hydrogen-propane-air mixtures at room temperature. The experiments are performed in a square channel equipped with perforated orifice obstacles. Four initial pressures are examined. Based on pressure transducers along the channel, the flame velocity, maximum pressure of the front peak and characteristic distances are measured. Successive stages are observed as flame propagates: (i) a velocity increase at the beginning, (ii) a velocity equal to the sound speed of combustion products and (iii) a decrease of the velocity. When the initial pressure is more important, the flame velocity and the maximal pressure of the front peak are higher, which yields a shorter characteristic distance of flame propagation. By means of a Schlieren photography technique, the physical mechanisms of flame propagation are identified in its initial stage. The physical mechanisms such as flame surface area increase and combustion product expansion as well as delayed combustion between two adjacent plates are responsible for flame acceleration upon its initial stage. The oscillations of the centerline flame velocity are due to the constrained-expanded structure of flow in reactants ahead of flame when it crosses the plates.

  16. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity.

    PubMed

    Erken, Haydar Ali; Erken, Gülten; Colak, Rıdvan; Genç, Osman

    2013-12-01

    It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA. PMID:24377343

  17. Climatic effects of air pollutants over china: A review

    NASA Astrophysics Data System (ADS)

    Liao, Hong; Chang, Wenyuan; Yang, Yang

    2015-01-01

    Tropospheric ozone (O3) and aerosols are major air pollutants in the atmosphere. They have also made significant contributions to radiative forcing of climate since preindustrial times. With its rapid economic development, concentrations of air pollutants are relatively high in China; hence, quantifying the role of air pollutants in China in regional climate change is especially important. This review summarizes existing knowledge with regard to impacts of air pollutants on climate change in China and defines critical gaps needed to reduce the associated uncertainties. Measured monthly, seasonal, and annual mean surface-layer concentrations of O3 and aerosols over China are compiled in this work, with the aim to show the magnitude of concentrations of O3 and aerosols over China and to provide datasets for evaluation of model results in future studies. Ground-based and satellite measurements of O3 column burden and aerosol optical properties, as well as model estimates of radiative forcing by tropospheric O3 and aerosols are summarized. We also review regional and global modeling studies that have investigated climate change driven by tropospheric O3 and/or aerosols in China; the predicted sign and magnitude of the responses in temperature and precipitation to O3/aerosol forcings are presented. Based on this review, key priorities for future research on the climatic effects of air pollutants in China are highlighted.

  18. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  19. The Effect of Intermittent Arm and Shoulder Cooling on Baseball Pitching Velocity.

    PubMed

    Bishop, Stacy H; Herron, Robert L; Ryan, Gregory A; Katica, Charles P; Bishop, Phillip A

    2016-04-01

    The throwing arm of a baseball pitcher is subjected to high stress as a result of the repetitive activity of pitching. Intermittent cryotherapy may facilitate recovery from this repeated high stress, but few researchers have investigated cryotherapy's efficacy in an ecologically valid setting. This study investigated the effects of intermittent cryotherapy on pitching velocity and subjective measures of recovery and exertion in a simulated baseball game. Trained college-aged male baseball pitchers (n = 8) threw 12 pitches (1 pitch every 20 seconds) per inning for 5 total innings during a simulated pitching start. Between each inning, pitchers received shoulder and arm cooling (AC) or, on a separate occasion, no cooling (NC). All sessions took place in a temperate environment (18.3 ± 2.8° C; 49 ± 4% relative humidity). Pitch speeds were averaged for each participant each inning and overall for 5 innings. Perceived exertion (rating of perceived exertion [RPE]) was recorded at the end of each simulated inning. Perceived recovery (perceived recovery scale [PRS]) was recorded after treatment between each inning. Mean pitching velocity for all-innings combined was higher (p = 0.04) for shoulder and elbow cooling (AC) (31.2 ± 2.1 m·s) than for no cooling (NC) (30.6 ± 2.1 m·s). Average pitch speed was significantly higher in the fourth (p = <0.01) and fifth (p = 0.02) innings in AC trial (31.3 ± 2 m·s for both innings) compared with NC trial (30.0 ± 2.22 m·s and 30.4 ± 1.99 m·s, for the fourth and fifth innings, respectively. AC resulted in a significantly lower RPE (p ≤ 0.01) and improved PRS (p ≤ 0.01) compared with NC. Intermittent cryotherapy attenuated velocity loss in baseball pitching, decreased RPE, and facilitated subjective recovery during a 5-inning simulated game. PMID:24077378

  20. Effects of fin pattern on the air side heat transfer coefficient in plate finned tube heat exchangers

    SciTech Connect

    Beecher, D.T.; Fagan, T.J.

    1987-06-01

    The effects of air velocity, heat exchanger geometry and fin pattern on air side heat transfer in plate finned tube heat exchangers were investigated experimentally using a single fin passage model. The geometric parameters considered included tube diameter, transverse tube spacing, longitudinal tube spacing, number of tube rows and fin spacing. The effects of fin pattern depth and number of fin patterns per longitudinal tube row were investigated for a pattern consisting of corrugations of triangular cross section transverse to the direction of air flow. The heat transfer data were correlated in terms of the dimensionless heat transfer coefficient (Nussult number) based on the arithmetic mean temperature difference Nu/sub a/ and the Graetz number Gz, a dimensionless measure of the level of flow development.

  1. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  2. Effect of various warm-up devices on bat velocity of intercollegiate baseball players.

    PubMed

    Szymanski, David J; Beiser, Erik J; Bassett, Kylie E; Till, Megan E; Medlin, Greg L; Beam, Jason R; DeRenne, Coop

    2011-02-01

    A variety of warm-up devices are available to baseball players to use before their game at-bat. Past baseball research evaluating warm-up devices indicates that implements that are ±12% of standard game bat weight produce the greatest bat velocities for high school and intercollegiate players. The purpose of this study was to examine the effect of various warm-up devices on bat velocity (BV) of intercollegiate baseball players. Twenty-two Division I intercollegiate baseball players (age = 20.0 ± 1.5 years, height = 182.6 ± 8.3 cm, body mass = 91.4 ± 11.4 kg, lean body mass = 78.8 ± 8.9 kg, % body fat = 13.6 ± 3.8) participated in a warm-up with 1 of 10 weighted devices on separate days. Each of the 10 testing sessions consisted of a standardized warm-up, 3 dry swings as hard as possible with the assigned warm-up device, 2 comfortable dry swings with a standard game baseball bat followed by 3 game swings (20-second rest between swings) while hitting a baseball off of a batting tee with the same standard game baseball bat. Results indicated that there were no statistically significant differences in BV after using any of the 10 warm-up devices. For male intercollegiate baseball players, results indicate that warm-up devices varying from 623.7 to 2,721.5 g (22-96 oz.) did not change mean BV of a standard game baseball bat, suggesting that intercollegiate players can use any of the 10 warm-up devices in the on-deck circle and maintain their BV. Therefore, personal preference as to which warm-up implement to use in the on-deck circle is advised. PMID:21240027

  3. q-solver equilibrium model with fast ion orbit width, velocity anisotropy and toroidal flow effects

    NASA Astrophysics Data System (ADS)

    Gorelenkov, Nikolai; Jardin, Steven

    2015-11-01

    We present a novel formulation for the plasma equilibrium problem using the q-solver framework together with the pressure coupling scheme for energetic particle (EP) contribution. The employed formulation accounts for the EP pressure anisotropy which is based on the moments of the velocity distribution function representation incorporating the finite orbit width (FOW) effects. The system of equations includes the toroidal plasma flow. These effects are important in applications for recently upgraded plasmas of NSTX-U and DIII-D where additional NBIs are installed. Strongly anisotropic beam ions accompanied by plasma rotation have to be addressed in various applications involving for example the stability of Alfvenic and internal kink modes. The anisotropy and rotational effects could be treated separately or together depending on applications. Fast ion anisotropic pressure tensor is computed using the set of basis functions. In particular we show that in the limit of zero orbit width any distribution function can satisfy the solvability requirements for Grad-Shafranov equation, which follows from the force balance along the magnetic field lines.

  4. The free jet as a simulator of forward velocity effects on jet noise

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Tester, B. J.; Tanna, H. K.

    1978-01-01

    A thorough theoretical and experimental study of the effects of the free-jet shear layer on the transmission of sound from a model jet placed within the free jet to the far-field receiver located outside the free-jet flow was conducted. The validity and accuracy of the free-jet flight simulation technique for forward velocity effects on jet noise was evaluated. Transformation charts and a systematic computational procedure for converting measurements from a free-jet simulation to the corresponding results from a wind-tunnel simulation, and, finally, to the flight case were provided. The effects of simulated forward flight on jet mixing noise, internal noise and shock-associated noise from model-scale unheated and heated jets were established experimentally in a free-jet facility. It was illustrated that the existing anomalies between full-scale flight data and model-scale flight simulation data projected to the flight case, could well be due to the contamination of flight data by engine internal noise.

  5. Applying policy and health effects of air pollution in South Korea: focus on ambient air quality standards

    PubMed Central

    Ha, Jongsik

    2014-01-01

    Objectives South Korea’s air quality standards are insufficient in terms of establishing a procedure for their management. The current system lacks a proper decision-making process and prior evidence is not considered. The purpose of this study is to propose a measure for establishing atmospheric environmental standards in South Korea that will take into consideration the health of its residents. Methods In this paper, the National Ambient Air Quality Standards (NAAQS) of the US was examined in order to suggest ways, which consider health effects, to establish air quality standards in South Korea. Up-to-date research on the health effects of air pollution was then reviewed, and tools were proposed to utilize the key results. This was done in an effort to ensure the reliability of the standards with regard to public health. Results This study showed that scientific research on the health effects of air pollution and the methodology used in the research have contributed significantly to establishing air quality standards. However, as the standards are legally binding, the procedure should take into account the effects on other sectors. Realistically speaking, it is impossible to establish standards that protect an entire population from air pollution. Instead, it is necessary to find a balance between what should be done and what can be done. Conclusions Therefore, establishing air quality standards should be done as part of an evidence-based policy that identifies the health effects of air pollution and takes into consideration political, economic, and social contexts. PMID:25300297

  6. Mechanism study on the effects of side assisting gas velocity during CO{sub 2} laser welding process

    SciTech Connect

    Zhang Linjie; Zhang Jianxun; Gong Shuili

    2009-07-15

    An experimental study on the effects of side assisting gas during CO{sub 2} laser welding has been carried out, and it is found that side assisting gas velocity can significantly affect the laser induced plasma and the weld cross-sectional geometry. In order to get better understanding on the associated mechanism, a three dimensional model based on the conservation laws of mass, momentum, and energy has been developed to simulate the spatial distributions of plasma temperature under different side assisting gas velocities. Furthermore, ray-tracing method is employed to investigate the variation of bremsstrahlung absorption and power density distribution on keyhole walls at different side assisting gas velocities with the assumption of conical keyhole shape. The results show that the diminishing of refraction and bremsstrahlung absorption due to an increase in side assisting gas velocity results in an increase in heat transfer efficiency, which contributes to the increase of weld cross-sectional area and penetration depth.

  7. Effects of socks which improved foot sensation on velocity and stride length of elderly subjects crossing obstacles.

    PubMed

    Yoo, Won-Gyu

    2015-08-01

    [Purpose] We developed socks which improve foot sensation and investigated their effect on the velocity and stride length of elderly women crossing obstacles. [Subjects] Ten community-dwelling, elderly women who could walk independently were recruited. [Methods] We measured velocity and stride length using the GAITRite system while the participants crossed obstacles under three conditions: barefoot, wearing ordinary socks, and wearing the socks which improve foot sensation. [Results] Velocity and stride length in bare feet and when wearing the sense-improving socks increased significantly compared to their values when wearing standard socks. Velocity and stride length did not differ between the bare foot and improved sock conditions. [Conclusion] Wearing socks helps protect the foot, but can decrease foot sensory input. Therefore, the socks which improve foot sensation were useful for preventing falls and protecting the feet of the elderly women while they crossed obstacles. PMID:26357432

  8. Effects of socks which improved foot sensation on velocity and stride length of elderly subjects crossing obstacles

    PubMed Central

    Yoo, Won-Gyu

    2015-01-01

    [Purpose] We developed socks which improve foot sensation and investigated their effect on the velocity and stride length of elderly women crossing obstacles. [Subjects] Ten community-dwelling, elderly women who could walk independently were recruited. [Methods] We measured velocity and stride length using the GAITRite system while the participants crossed obstacles under three conditions: barefoot, wearing ordinary socks, and wearing the socks which improve foot sensation. [Results] Velocity and stride length in bare feet and when wearing the sense-improving socks increased significantly compared to their values when wearing standard socks. Velocity and stride length did not differ between the bare foot and improved sock conditions. [Conclusion] Wearing socks helps protect the foot, but can decrease foot sensory input. Therefore, the socks which improve foot sensation were useful for preventing falls and protecting the feet of the elderly women while they crossed obstacles. PMID:26357432

  9. Effects of exciting frequencies, grain sizes, and damage upon P-wave velocity for ultrasonic NDT of concrete

    NASA Astrophysics Data System (ADS)

    Ju, Jiann W.; Weng, Lisheng

    2000-05-01

    This paper focuses on the experimental study of the effects of exciting frequencies, grain (aggregate) sizes, and damage upon the ultrasonic P-wave velocity when performing the ultrasonic nondestructive testing (NDT) for concrete specimens. Two batches of concrete and mortar specimens were prepared in the laboratory for the investigation of the effects from the stated factors upon the P-wave velocity. Damage here mostly refers to microcracks and microvoids in concrete. Five different aggregate sizes, 0' (mortar), 3/8', 1/2', 3/4', and 1', were selected to demonstrate the grain (aggregate) size effect. Exciting frequencies of the ultrasonic wave were set to range from 100 kHz to 1,000 kHz, with increment of 50 kHz, to demonstrate the frequency effect. Styrofoam particles were mixed into the comparison concrete and mortar specimens to simulate the distributed microvoids (damage). Different volume fractions of styrofoam particles were mixed into the mortar specimens in order to study the effect of different porosities (damage) upon the P-wave velocity. The experimental observations show that, for mortar and concrete specimens with aggregate sizes from 0 to 1 inch, the P-wave velocity would not be affected significantly within the tested frequency range (100 - 1000 kHz). The normalized P-wave velocity exhibits almost identical pattern upon the exciting frequencies for all specimens.

  10. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  11. Health effects of SRS non-radiological air emissions

    SciTech Connect

    Stewart, J.

    1997-06-16

    This report examines the potential health effects of non radiological emissions to the air resulting from operations at the Savannah River Site (SRS). The scope of this study was limited to the 55 air contaminants for which the US Environmental Protection Agency (EPA) has quantified risk by determining unit risk factors (excess cancer risks) and/or reference concentrations (deleterious non cancer risks). Potential health impacts have been assessed in relation to the maximally exposed individual. This is a hypothetical person who resides for a lifetime at the SRS boundary. The most recent (1994) quality assured SRS emissions data available were used. Estimated maximum site boundary concentrations of the air contaminants were calculated using air dispersion modeling and 24-hour and annual averaging times. For the emissions studied, the excess cancer risk was found to be less than the generally accepted risk level of 1 in 100,000 and, in most cases, was less than 1 in 1,000,000. Deleterious non cancer effects were also found to be very unlikely.

  12. The effects of pressure, temperature, and pore water on velocities in Westerly granite. [for seismic wave propagation

    NASA Technical Reports Server (NTRS)

    Spencer, J. W., Jr.; Nur, A. M.

    1976-01-01

    A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.

  13. Comparison of effectiveness of convection-, transpiration-, and film-cooling methods with air as coolant

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Livingood, N B

    1954-01-01

    Various parts of aircraft propulsion engines that are in contact with hot gases often require cooling. Transpiration and film cooling, new methods that supposedly utilize cooling air more effectively than conventional convection cooling, have already been proposed. This report presents material necessary for a comparison of the cooling requirements of these three methods. Correlations that are regarded by the authors as the most reliable today are employed in evaluating each of the cooling processes. Calculations for the special case in which the gas velocity is constant along the cooled wall (flat plate) are presented. The calculations reveal that a comparison of the three cooling processes can be made on quite a general basis. The superiority of transpiration cooling is clearly shown for both laminar and turbulent flow. This superiority is reduced when the effects of radiation are included; for gas-turbine blades, however, there is evidence indicating that radiation may be neglected.

  14. Effect of cattle temperament as determined by exit velocity on lung respiratory lesions and liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this trial was to use exit velocity as a means of determining temperament of cattle to evaluate the impact of temperament on animal health. At the time of processing, exit velocity and body weight were recorded on 20 pens of cattle (2,877 head) at a commercial feedlot. Infrared sens...

  15. Grain size evolution in the mantle and its effect on geodynamics, seismic velocities and attenuation

    NASA Astrophysics Data System (ADS)

    Dannberg, Juliane; Eilon, Zach; Gassmoeller, Rene; Moulik, Pritwiraj; Myhill, Robert; Faul, Ulrich; Asimow, Paul

    2015-04-01

    Dynamic models of Earth's convecting mantle usually implement flow laws with constant grain size, stress-independent viscosity and a limited treatment of variations associated with changes in mineral assemblage. These simplifications greatly reduce computational requirements but preclude effects such as shear localisation and transient changes in rheology associated with phase transitions, which have the potential to fundamentally change flow patterns in the mantle. Here we use the finite-element code ASPECT (Bangerth et al., 2013) to model grain size evolution and the interplay between grain size, stress and strain rate in the convecting mantle. We include the simultaneous and competing effects of dynamic recrystallisation resulting from work done by dislocation creep, grain growth in multiphase assemblages and recrystallisation at phase transitions. Grain size variations also affect seismic properties of mantle materials. We use several published formulations to relate intrinsic variables (P, T, and grain size) from our numerical models to seismic velocity (Vs) and attenuation (Q). Our calculations use thermodynamically self-consistent anharmonic elastic moduli determined for the mineral assemblages in the mantle using HeFESTo (Stixrude and Lithgow-Bertelloni, 2013). We investigate the effect of realistically heterogeneous grain sizes by computing body wave travel times, ray paths, and attenuation (t*) at different frequencies. We highlight the frequency-dependent sensitivity of seismic waves to grain size, which is important when interpreting Vs and Q observations in terms of mineral assemblage and temperature. Our models show that rapid metamorphic reactions in mantle upwellings and downwellings lead to high lateral viscosity contrasts, as a result of gradual grain size evolution. Positive feedback between grain size reduction and viscosity reduction results in shear localisation. As a result, the edges of thermal plumes have smaller grain sizes and lower

  16. Effects of cosmic string velocities and the origin of globular clusters

    NASA Astrophysics Data System (ADS)

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milky Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.

  17. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  18. Gas exchange in wetlands with emergent vegetation: The effects of wind and thermal convection at the air-water interface

    NASA Astrophysics Data System (ADS)

    Poindexter, Cristina M.; Variano, Evan A.

    2013-07-01

    Methane, carbon dioxide, and oxygen are exchanged between wetlands and the atmosphere through multiple pathways. One of these pathways, the hydrodynamic transport of dissolved gas through the surface water, is often underestimated in importance. We constructed a model wetland in the laboratory with artificial emergent plants to investigate the mechanisms and magnitude of this transport. We measured gas transfer velocities, which characterize the near-surface stirring driving air-water gas transfer, while varying two stirring processes important to gas exchange in other aquatic environments: wind and thermal convection. To isolate the effects of thermal convection, we identified a semiempirical model for the gas transfer velocity as a function of surface heat loss. The laboratory results indicate that thermal convection will be the dominant mechanism of air-water gas exchange in marshes with emergent vegetation. Thermal convection yielded peak gas transfer velocities of 1 cm h-1. Because of the sheltering of the water surface by emergent vegetation, gas transfer velocities for wind-driven stirring alone are likely to exceed this value only in extreme cases.

  19. Effects of 3D Velocity and Attenuation in the Tonga-Fiji Subduction Zone

    NASA Astrophysics Data System (ADS)

    Savage, B.; Wiens, D. A.; Tromp, J.

    2005-12-01

    The current understanding of a subduction zone's temperature and composition is limited. Much of our recent knowledge of subduction zones comes from earthquake locations, geochemical measurements, and lab based experiments. Recently, two studies of the Tonga-Fiji subduction zone have presented tomographic images of velocity and attenuation (Roth et al., 1999; Zhao et al., 1997). Roth et al. (2000) then combined these two tomographic models of the Tonga-Fiji subduction zone to derive an empirical relationship between changes in velocity and attenuation. This relationship agrees well with two independent, experimental data sets (Jackson et al., 1992; Sato et al., 1989). Using the tomographic velocity model and the empirical relationship between velocity and attenuation we create synthetic seismograms for the Tonga-Fiji subduction zone to test whether a simple increase in velocity accurately depicts this subduction zone. To construct the model we use the tomographic model of Zhao et al. (1997) to create a shear velocity model using a simple Vs/Vp ratio. Following Roth et al. (2000) these tomographic models are combined with the empirical relation between velocity and attenuation to create an attenuation model. The resulting synthetics are compared to recorded data to validate the tomographic velocity model and the empirical relation between velocity and attenuation. Any mismatch in this comparison will provide a basis for further refinement of the tomographic models and the velocity-attenuation relation. The synthetics are created using the SPECFEM3D global code (Komatitsch et al., 2002) with the new addition of a three-dimensional attenuation operator. Attenuation is simulated by a set of standard linear solids over the desired frequency range as described in Liu et al. (1976). Our initial results at a minimum period of 3.3 seconds suggest that the attenuation structure plays a minor role for the present source-receiver geometry. The addition of the 3D attenuation

  20. The effects of shape and amplitude on the velocity of scrape-off layer filaments

    NASA Astrophysics Data System (ADS)

    Omotani, J. T.; Militello, F.; Easy, L.; Walkden, N. R.

    2016-01-01

    A complete model of the dynamics of scrape-off layer filaments will be rather complex, including temperature evolution, three dimensional geometry and finite Larmor radius effects. However, the basic mechanism of \\boldsymbol{E}× \\boldsymbol{B} advection due to electrostatic potential driven by the diamagnetic current can be captured in a much simpler model; a complete understanding of the physics in the simpler model will then aid interpretation of more complex simulations, by allowing the new effects to be disentangled. Here we consider such a simple model, which assumes cold ions and isothermal electrons and is reduced to two dimensions. We derive the scaling with width and amplitude of the velocity of isolated scrape-off layer filaments, allowing for arbitrary elliptical cross-sections, where previously only circular cross-sections have been considered analytically. We also put the scaling with amplitude in a new and more satisfactory form. The analytical results are extensively validated with two dimensional simulations and also compared, with reasonable agreement, to three dimensional simulations having minimal variation parallel to the magnetic field.

  1. The effect of prolonged exposure to 750 C air on the tribological performance of PM212

    NASA Technical Reports Server (NTRS)

    Bemis, Kirk; Bogdanski, Michael S.; Dellacorte, Christopher; Sliney, Harold E.

    1994-01-01

    The effect of prolonged exposure to 750 C air on the tribological performance and dimensional stability of PM212, a high temperature, self-lubricating composite, is studied. PM212, by weight, contains 70 percent metal-bonded Cr3C2, 15 percent BaF2/CaF2 eutectic, and 15 percent silver. Rub blocks were fabricated from PM212 by cold isostatic pressing followed by sintering. Prior to tribo-testing, the rub blocks were exposed to 750 C air for periods ranging from 100 to 1000 hours. Then, the rub blocks were slid against nickel-based superalloy disks in a double-rub-block tribometer in air under a 66 N load at temperatures from 25 to 750 C with a sliding velocity of 0.36 m/s. Unexposed rub blocks were tested for baseline comparison. Friction coefficients ranged from 0.24 to 0.37 for the unexposed rub blocks and from 0.32 to 0.56 for the exposed ones. Wear for both the composite blocks and superalloy disks was typically in the moderate to low range of 10(exp -5) to 10(exp -6) mm(exp 3)/N-m. Friction and wear data were similar for the rub blocks exposed for 100, 500, and 1000 hours. Prolonged exposure to 750 C air increased friction and wear of the PM212 rub blocks at room temperature, but their triboperformance remained unaffected at higher temperatures, probably due to the formation of lubricious metal oxides. Dimensional stability of the composite was studied by exposing specimens of varying thicknesses for 500 hours in air at 750 C. Block thicknesses were found to increase with increased exposure time until steady state was reached after 100 hours of exposure, probably due to oxidation.

  2. Effect of air pollution on athlete health and performance.

    PubMed

    Rundell, Kenneth William

    2012-05-01

    Unfavourable effects on the respiratory and the cardiovascular systems from short-term and long-term inhalation of air pollution are well documented. Exposure to freshly generated mixed combustion emissions such as those observed in proximity to roadways with high volumes of traffic and those from ice-resurfacing equipment are of particular concern. This is because there is a greater toxicity from freshly generated whole exhaust than from its component parts. The particles released from emissions are considered to cause oxidative damage and inflammation in the airways and the vascular system, and may be related to decreased exercise performance. However, few studies have examined this aspect. Several papers describe deleterious effects on health from chronic and acute air pollution exposure. However, there has been no research into the effects of long-term exposure to air pollution on athletic performance and a paucity of studies that describe the effects of acute exposure on exercise performance. The current knowledge of exercising in the high-pollution environment and the consequences that it may have on athlete performance are reviewed. PMID:22267572

  3. Effect of grip strength and grip strengthening exercises on instantaneous bat velocity of collegiate baseball players.

    PubMed

    Hughes, Shawn S; Lyons, Brian C; Mayo, Jerry J

    2004-05-01

    Bat velocity is considered to be an important factor for successful hitting. The relationship between grip strength and bat velocity has not been conclusively established. The purposes of this study were to determine the relationship of grip strength to bat velocity and to ascertain whether the performance of resistance training exercises designed to specifically target the forearms and grip would significantly alter bat velocity. The subjects for this study were 23 male members (mean +/- SD, age = 19.7 +/- 1.3 years, height = 182.5 +/- 5.9 cm, weight = 85.4 +/- 15.5 kg, experience = 14.4 +/- 1.7 years) of a varsity baseball team at a National Collegiate Athletic Association Division II school. The Jamar hand dynamometer was used to test grip strength, and the SETPRO Rookie was used to measure instantaneous bat velocity at the point of contact with the ball. Subjects were randomly divided into an experimental group and a control group. For 6 weeks, both groups participated in their usual baseball practice sessions, but the experimental group also performed extra forearm and grip strengthening exercises, whereas the control group did not. Pretest and posttest correlations between grip strength and bat velocity revealed no significant relationship between grip strength and bat velocity (pretest r = 0.054, p = 0.807; posttest r = 0.315, p = 0.145). A dependent t-test performed on all subjects revealed that a significant (p = 0.001) increase in bat velocity did occur over the course of the study. A covariate analysis, employing pretest bat velocity as the covariate, revealed no significant difference (p = 0.795) in posttest bat velocity scores between the experimental and control groups. Thus, increases in bat velocity occurred, but the differences were similar for both the experimental and control groups. The findings of this study suggest that grip strength and bat velocity are not significantly related, and that the allocation of time and energy for added training

  4. Climate Change and Air Pollution: Effects on Respiratory Allergy.

    PubMed

    D'Amato, Gennaro; Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-09-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction. PMID:27334776

  5. Climate Change and Air Pollution: Effects on Respiratory Allergy

    PubMed Central

    Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-01-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction. PMID:27334776

  6. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter. PMID:7942509

  7. Effect of ambient air quality on throughfall acidity

    SciTech Connect

    Chen, C.W.; Clesceri, N.L.; Gherini, S.A.; Goldstein, R.A.

    1985-06-01

    Observations at Woods Lake-watershed in the Adirondacks (New York) indicate that precipitation is further acidified by passage through coniferous canopies; conversely, passage through deciduous canopies has a net alkalizing effect. Both effects are dependent upon the levels of air quality. If the aerosol concentrations were to decrease to 35% of the current levels, both types of canopy would have a net alkalizing effect on incident precipitation. If the aerosol concentrations doubled, both canopy types would be net acidifiers of throughfall. The experimental procedure of varying aerosol concentration in an enclosed chamber may provide a means for measuring foliar exudation.

  8. Pulsation effects on the air fuel ratio of carburetor engines

    SciTech Connect

    Tanaka, M.; Sato, T.; Watanabe, K.

    1986-01-01

    A significant wavewise change of air fuel ratio in line with the engine speed having a long intake pipe was studied experimentally and theoretically. The results show the pulsewise change in fuel flow plays the dominant role in the wavewise change in the air fuel ratio. It is found that this pulsewise fluctuation of the fuel flow forms an oscillation wave with both the amplitude and frequency becoming larger according to the engine speed resulted by the phase change of the pulsation wave in the intake pipe according to the engine speed. A modified frequency ratio of gas vibration in the intake pipe to that of engine intake stroke is proposed to explain this pulsation effect on the fuel flow and an effective simulator for this phenomena is established.

  9. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  10. Effect of low emission sources on air quality in Cracow

    SciTech Connect

    Nedoma, J.

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  11. Position-dependent velocity of an effective temperature point for the estimation of the thermal diffusivity of solids

    NASA Astrophysics Data System (ADS)

    Balachandar, Settu; Shivaprakash, N. C.; Kameswara Rao, L.

    2016-01-01

    A new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the velocity of an effective temperature point (ETP), and by using a two-beam interferometer the proposed concept is corroborated. 1D unsteady heat flow via step-temperature excitation is interpreted as a ‘micro-scale rectilinear translatory motion’ of an ETP. The velocity dependent function is extracted by revisiting the Fourier heat diffusion equation. The relationship between the velocity of the ETP with thermal diffusivity is modeled using a standard solution. Under optimized thermal excitation, the product of the ‘velocity of the ETP’ and the distance is a new constitutive equation for the thermal diffusivity of the solid. The experimental approach involves the establishment of a 1D unsteady heat flow inside the sample through step-temperature excitation. In the moving isothermal surfaces, the ETP is identified using a two-beam interferometer. The arrival-time of the ETP to reach a fixed distance away from heat source is measured, and its velocity is calculated. The velocity of the ETP and a given distance is sufficient to estimate the thermal diffusivity of a solid. The proposed method is experimentally verified for BK7 glass samples and the measured results are found to match closely with the reported value.

  12. Effects of Current Velocity, Particle Size, and Substrate Heterogeneity on Crayfish (Orconectes propinquus) Activity

    NASA Astrophysics Data System (ADS)

    Clark, J. M.; Kershner, M. W.

    2005-05-01

    The use of flow refugia (e.g., substrate) by lotic invertebrates often increases their likelihood of survival during flood events. Movement to potential refugia becomes risky as velocities increase, and the range of velocities that benthic invertebrates can withstand is variable. In this study, activity time and slip velocities of small [carapace length (CL)=10-20 mm] and large (CL=20-30 mm) Orconectes propinquus were measured in an artificial flume across ranges of current velocity and substrate heterogeneity. Particle sizes included small pebbles (16-32 mm), large pebbles (32-64 mm), and small cobble (64-128 mm). Water velocity was increased by 0.1 m/s increments from 0.1-1.5 m/s at 5-minute intervals or until the crayfish was dislodged from the substrate. As current velocity increased, the probability of slipping increased for all crayfish. Regardless of the degree of substrate heterogeneity, small crayfish held their position at higher velocities than large crayfish and were also less active. Slip rates were generally lower for both sizes as substrate heterogeneity increased. Essentially, the availability and probability of finding refugia increased with increased habitat heterogeneity and allowed crayfish to avoid being swept into the drift.

  13. Effects of Bed Rest on Conduction Velocity of the Triceps Surae Stretch Reflex and Postural Control

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Wood, S. J.; Cerisano, J. M.; Kofman, I. S.; Fisher, E. A.; Esteves, J. T.; Taylor, L. C.; DeDios, Y. E.; Harm, D. L.

    2011-01-01

    Despite rigorous exercise and nutritional management during space missions, astronauts returning from microgravity exhibit neuromuscular deficits and a significant loss in muscle mass in the postural muscles of the lower leg. Similar changes in the postural muscles occur in subjects participating in long-duration bed rest studies. These adaptive muscle changes manifest as a reduction in reflex conduction velocity during head-down bed rest. Because the stretch reflex encompasses both the peripheral (muscle spindle and nerve axon) and central (spinal synapse) components involved in adaptation to calf muscle unloading, it may be used to provide feedback on the general condition of neuromuscular function, and might be used to evaluate the effectiveness of countermeasures aimed at preserving muscle mass and function during periods of unloading. Stretch reflexes were measured on 18 control subjects who spent 60 to 90 days in continuous 6 deg head-down bed rest. Using a motorized system capable of rotating the foot around the ankle joint (dorsiflexion) through an angle of 10 degrees at a peak velocity of about 250 deg/sec, a stretch reflex was recorded from the subject's left triceps surae muscle group. Using surface electromyography, about 300 reflex responses were obtained and ensemble-averaged on 3 separate days before bed rest, 3 to 4 times in bed, and 3 times after bed rest. The averaged responses for each test day were examined for reflex latency and conduction velocity (CV) across gender. Computerized posturography was also conducted on these same subjects before and after bed rest as part of the standard measures. Peak-to-peak sway was measured during Sensory Organization Tests (SOTs) to evaluate changes in the ability to effectively use or suppress visual, vestibular, and proprioceptive information for postural control. Although no gender differences were found, a significant increase in reflex latency and a significant decrease in CV were observed during the bed

  14. The Effects of Air Pollution on Ischemic Stroke Admission Rate

    PubMed Central

    Alimohammadi, Hossein; Fakhri, Sara; Derakhshanfar, Hojjat; Hosseini-Zijoud, Seyed-Mostafa; Safari, Saeed

    2016-01-01

    The present study aimed to determine the relationship between the level of air pollutants and the rate of ischemic stroke (IS) admissions to hospitals. In this retrospective cross-sectional study, stroke admissions (January-March 2012 and 2013) to an emergency department and air pollution and meteorological data were gathered. The relationship between air pollutant levels and hospital admission rates were evaluated using the generalize additive model. In all 379 patients with IS were referred to the hospital (52.5% male; mean age 68.2±13.3 years). Both transient (p<0.001) and long-term (p<0.001) rises in CO level increases the risk of IS. Increased weekly (p<0.001) and monthly (p<0.001) average O3 levels amplifies this risk, while a transient increase in NO2 (p<0.001) and SO2 (p<0.001) levels has the same effect. Long-term changes in PM10 (p<0.001) and PM2.5 (p<0.001) also increase the risk of IS. The findings showed that the level of air pollutants directly correlates with the number of stroke admissions to the emergency department. PMID:26866000

  15. The Effects of Air Pollution on Ischemic Stroke Admission Rate.

    PubMed

    Alimohammadi, Hossein; Fakhri, Sara; Derakhshanfar, Hojjat; Hosseini-Zijoud, Seyed-Mostafa; Safari, Saeed; Hatamabadi, Hamid Reza

    2016-01-01

    The present study aimed to determine the relationship between the level of air pollutants and the rate of ischemic stroke (IS) admissions to hospitals. In this retrospective cross-sectional study, stroke admissions (January-March 2012 and 2013) to an emergency department and air pollution and meteorological data were gathered. The relationship between air pollutant levels and hospital admission rates were evaluated using the generalize additive model. In all 379 patients with IS were referred to the hospital (52.5% male; mean age 68.2±13.3 years). Both transient (p<0.001) and long-term (p<0.001) rises in CO level increases the risk of IS. Increased weekly (p<0.001) and monthly (p<0.001) average O3 levels amplifies this risk, while a transient increase in NO2 (p<0.001) and SO2 (p<0.001) levels has the same effect. Long-term changes in PM10 (p<0.001) and PM2.5 (p<0.001) also increase the risk of IS. The findings showed that the level of air pollutants directly correlates with the number of stroke admissions to the emergency department. PMID:26866000

  16. Extended effects of air pollution on cardiopulmonary mortality in Vienna

    NASA Astrophysics Data System (ADS)

    Neuberger, Manfred; Rabczenko, Daniel; Moshammer, Hanns

    BackgroundCurrent standards for fine particulates and nitrogen dioxide are under revision. Patients with cardiovascular disease have been identified as the largest group which need to be protected from effects of urban air pollution. MethodsWe sought to estimate associations between indicators of urban air pollution and daily mortality using time series of daily TSP, PM 10, PM 2.5, NO 2, SO 2, O 3 and nontrauma deaths in Vienna (Austria) 2000-2004. We used polynomial distributed lag analysis adjusted for seasonality, daily temperature, relative humidity, atmospheric pressure and incidence of influenza as registered by sentinels. ResultsAll three particulate measures and NO 2 were associated with mortality from all causes and from ischemic heart disease and COPD at all ages and in the elderly. The magnitude of the effect was largest for PM 2.5 and NO 2. Best predictor of mortality increase lagged 0-7 days was PM 2.5 (for ischemic heart disease and COPD) and NO 2 (for other heart disease and all causes). Total mortality increase, lagged 0-14 days, per 10 μg m -3 was 2.6% for PM 2.5 and 2.9% for NO 2, mainly due to cardiopulmonary and cerebrovascular causes. ConclusionAcute and subacute lethal effects of urban air pollution are predicted by PM 2.5 and NO 2 increase even at relatively low levels of these pollutants. This is consistent with results on hospital admissions and the lack of a threshold. While harvesting (reduction of mortality after short increase due to premature deaths of most sensitive persons) seems to be of minor importance, deaths accumulate during 14 days after an increase of air pollutants. The limit values for PM 2.5 and NO 2 proposed for 2010 in the European Union are unable to prevent serious health effects.

  17. Plasma screening effects on the energies of hydrogen atom under the influence of velocity-dependent potential

    SciTech Connect

    Bahar, M. K.

    2014-07-15

    In order to examine the plasma screening and velocity-dependent potential effects on the hydrogen atom, the Schrödinger equation including a more general exponential cosine screened Coulomb and velocity-dependent potential is solved numerically in the framework asymptotic iteration method. The more general exponential cosine screened Coulomb potential is used to model Debye and quantum plasma for the specific values of the parameters in its structure. However, in order to examine effects of velocity-dependent potential on energy values of hydrogen atom in Debye and quantum plasma, the isotropic form factor of velocity-dependent potential is given as harmonic oscillator type, ρ(r)=ρ{sub o}r{sup 2}. Then, the energies of s and p states are calculated numerically without any approximation. In order to investigate thoroughly plasma screening effects and contribution of velocity-dependent potential on energy values of hydrogen atom, the corresponding calculations are carried out by using different values of parameters of more general exponential cosine screened Coulomb potential and isotropic dependence, results of which are discussed.

  18. Modeling the effect of varying swim speeds on fish passage through velocity barriers

    USGS Publications Warehouse

    Castro-Santos, T.

    2006-01-01

    The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.

  19. The effect of turbulent velocity fluctuations on the convective heat transfer to droplets subjected to evaporation and thermolysis

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Finnerman, Oskar; Ström, Henrik

    2016-06-01

    The effect of turbulent velocity fluctuations on the convective heat transfer to single droplets in a turbulent channel flow are investigated numerically. It is found that for properties relevant to typical liquid spray applications, the convective heat transfer is enhanced with increasing droplet size and bulk Reynolds number. The combined effect of convective heat transfer enhancement and increased driving forces for heat and mass transfer due to droplet dispersion is thereafter investigated for a commercial spray application. The probability distribution functions of droplet properties in the spray are found to be significantly affected by the presence of turbulent velocity fluctuations in the carrier phase.

  20. The effect of wind velocity on transpiration in a mixed broadleaved deciduous forest

    NASA Astrophysics Data System (ADS)

    Kim, D.; Oren, R.; Oishi, A. C.; Hsieh, C.; Phillips, N. G.; Novick, K. A.; Stoy, P. C.

    2013-12-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to water vapor flux out of leaves (RC, dominated by stomatal resistance, Rstom), and the rate at which RA decreases with increasing U. We investigated the effect of U on transpiration at the canopy scale using filtered meteorological data and sap flux measurements gathered from six diverse species of a mature broadleaved deciduous forest. Only under high light conditions, stand transpiration (EC) increased slightly (6.5%) with increasing U ranging from ~0.7 to ~4.7 m s-1. Under other conditions, sap flux density (Js) and EC responded weakly or did not change with U. RA, estimated from Monin-Obukhov similarity theory, decreased with increasing U, but this decline was offset by increasing RC, estimated from a rearranged Penman-Monteith equation, due to a concurrent increase in vapor pressure deficit (D). The increase of RC with D over the observed range of U was consistent with increased Rstom by ~40% based on hydraulic theory. Except for very rare half-hourly values, the proportion of RA to total resistance (RT) remained < 15% over the observed range of conditions. These results suggest that in similar forests and conditions, accounting for the effects of U-D relationship on Rstom would reduce the uncertainty of modeling canopy gas exchange more than accounting for the direct effect of U on RA.

  1. Carbonate pore system evaluation using the velocity-porosity-pressure relationship, digital image analysis, and differential effective medium theory

    NASA Astrophysics Data System (ADS)

    Lima Neto, Irineu A.; Misságia, Roseane M.; Ceia, Marco A.; Archilha, Nathaly L.; Oliveira, Lucas C.

    2014-11-01

    Carbonate reservoirs exhibit heterogeneous pore systems and a wide variety of grain types, which affect the rock's elastic properties and the reservoir parameter relationships. To study the Albian carbonates in the Campos Basin, a methodology is proposed to predict the amount of microporosity and the representative aspect ratio of these inclusions. The method assumes three pore-space scales in two representative inclusion scenarios: 1) a macro-mesopore median aspect ratio from the thin-section digital image analysis (DIA) and 2) a microporosity aspect ratio predicted based on the measured P-wave velocities. Through a laboratory analysis of 10 grainstone core samples of the Albian age, the P- and S-wave velocities (Vp and Vs) are evaluated at effective pressures of 0-10 MPa. The analytical theories in the proposed methodology are functions of the aspect ratios from the differential effective medium (DEM) theory, the macro-mesopore system recognized from the DIA, the amount of microporosity determined by the difference between the porosities estimated from laboratorial helium-gas and the thin-section petrographic images, and the P-wave velocities under dry effective pressure conditions. The DIA procedure is applied to estimate the local and global parameters, and the textural implications concerning ultrasonic velocities and image resolution. The macro-mesopore inclusions contribute to stiffer rocks and higher velocities, whereas the microporosity inclusions contribute to softer rocks and lower velocities. We observe a high potential for this methodology, which uses the microporosity aspect ratio inverted from Vp to predict Vs with a good agreement. The results acceptably characterize the Albian grainstones. The representative macro-mesopore aspect ratio is 0.5, and the inverted microporosity aspect ratio ranges from 0.01 to 0.07. The effective pressure induced an effect of slight porosity reduction during the triaxial tests, mainly in the microporosity inclusions

  2. Effect of velocity ratio on coherent-structure dynamics in turbulent free shear layers

    NASA Astrophysics Data System (ADS)

    Suryanarayanan, Saikishan; Narasimha, Roddam

    2014-11-01

    The relevance of the vortex-gas model to the large scale dynamics of temporally evolving turbulent free shear layers has been established by extensive simulations (Phys. Rev. E 89, 013009 (2014)). The effects of velocity ratio (r =U2 /U1) on shear layer dynamics are revealed by spatially evolving vortex-gas shear-layer simulations using a computational model based on Basu et al. (Appl. Math. Modelling 19, (1995)), but with a crucial improvement that ensures conservation of global circulation. The simulations show that the initial conditions and downstream boundaries can significantly affect the flow over substantial part of the domain, but the equilibrium spread rate is a universal function of r, and is within the experimental scatter. The spread in the r = 0 limit is higher than Galilean-transformed temporal value. The present 2D simulations at r = 0 show continuous growth of structures, while merger-dominated evolution is observed for r = 0 . 23 (and higher). These two mechanisms were observed across the same two values of r in the experiments of D'Ovidio & Coats (J. Fluid Mech. 737, 2013), but the continuous growth was instead attributed to mixing-transition and 3D. The 2D mechanisms responsible for the observed continuous growth of structures are analyzed in detail. Supported in part by RN/Intel/4288 and RN/DRDO/4124.

  3. Effect of Axial Velocity Density Ratio on the Performance of a Controlled Diffusion Airfoil Compressor Cascade

    NASA Astrophysics Data System (ADS)

    Senthil Kumaran, R.; Kamble, Sachin; Swamy, K. M. M.; Nagpurwala, Q. H.; Bhat, Ananthesha

    2015-12-01

    Axial Velocity Density Ratio (AVDR) is an important parameter to check the two-dimensionality of cascade flows. It can have significant influence on the cascade performance and the secondary flow structure. In the present study, the effect of AVDR has been investigated on a highly loaded Controlled Diffusion airfoil compressor cascade. Detailed 3D Computational Fluid Dynamics (CFD) studies were carried out with the cascade at five different AVDRs. Key aerodynamic performance parameters and flow structure through the cascade were analyzed in detail. CFD results of one AVDR were validated with the experimental cascade test data and were seen to be in good agreement. Loss characteristics of the cascade varied significantly with change in AVDR. Increase in AVDR postponed the point of separation on the suction surface, produced thinner boundary layers and caused substantial drop in the pressure loss coefficient. Strong end wall vortices were noticed at AVDR of 1.177. At higher AVDRs, the flow was well guided even close to the end wall and the secondary flows diminished. The loading initially improved with increase in AVDR. Beyond a certain limit, further increase in AVDR offered no improvements to the loading but rather resulted in drop in diffusion and deviation.

  4. Effect of temperature on composite sandwich structures subjected to low velocity impact. [aircraft construction materials

    NASA Technical Reports Server (NTRS)

    Sharma, A. V.

    1980-01-01

    The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.

  5. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors.

    PubMed

    Lens, P N; Korthout, D; van Lier, J B; Hulshoff Pol, L W; Lettinga, G

    2001-02-01

    The effect of the superficial liquid upflow velocity on the acidifying and sulfate reducing capacity of thermophilic (55 degrees C; pH 6.0) granular sludge bed reactors treating partly acidified wastewater was investigated. A comparison was made between a UASB and an EGSB reactor, operated at an upflow velocity of 1 m.h-1 and 6.8 m.h-1, respectively. Both reactors were inoculated with a mixture of mesophilic sulphidogenic, thermophilic sulphidogenic and thermophilic methanogenic sludge (ratio 2:1:1). They were fed a synthetic wastewater containing starch, sucrose, lactate, propionate and acetate and a low sulphate concentration (COD/SO4(2-) ratio of 10). At the end of the experiment, the sulphate level of the influent was slightly increased to a COD/SO4(2-) ratio of 8. The reactors were operated at a hydraulic retention time of about 5 h and the imposed volumetric organic loading rates (OLR) ranged from 4.9 to 40.0 g COD l-1d-1. When imposing an OLR of 40.0 g COD l-1d-1, the acidification efficiency dropped to 80% and the sulphate reduction efficiency decreased to 50% in the UASB reactor. In the EGSB reactor, the sulphate reduction efficiency dropped to 30% directly following the OLR increase to 40 g COD l-1d-1, but recovered rapidly to 100% (at an OLR of 35 g COD l-1d-1) until the end of the experiment. In the UASB reactor, there was a net acetate and propionate production. At the higher organic loading rates, propionate was converted to n-butyrate and n-valerate. These back reactions did not occur in the EGSB reactor, in which an active methanogenic population developed, leading to a net acetate removal (up to 50%) and a high gas loading rate (up to 8.5 l l-1d-1). In both reactors, the effluent sulphide concentration was always below 200 mg l-1, of which about 90% was present as undissociated H2S (under the given conditions--pH 5.8-6.1 and 55 degrees C). The biogas (including CH4 and CO2) production rates in the UASB were very low, i.e. < 31 biogas l-1 reactor d

  6. Effects of Sand-Filled Hydraulic Fractures during Air Sparging

    NASA Astrophysics Data System (ADS)

    Hall, R. J.; Murdoch, L. C.; Falta, R. W.

    2003-12-01

    The effectiveness of air sparging is limited in fine-grained formations, such as clay-rich saprolite, where low permeability restricts flow rates. The purpose of this work is to investigate the effectiveness of using hydraulic fractures to increase the performance of air sparging in relatively low permeability materials. The approach has been to conduct step-rate, air-injection tests into conventional wells and wells intersecting fractures, and then to evaluate the results of these tests using analytical and numerical models. Fieldwork is being conducted in an area underlain by saprolite weathered from granitoid gneiss. Permeability of the saprolite ranges from 1x10-12 to 5x10 -12 m2 according to slug test data. Five wells have been used for testing: three non-fractured and two fractured wells. Well tests involved injecting air at constant pressure and monitoring transient flow rates until the flow approximately equilibrated over 10 to 60 minutes, then incrementally increasing pressure and repeating the flow monitoring. Field results were expressed in terms of the initial specific sparge capacity (Q/(P-H-E)) where Q is mass flow rate, P is injection pressure, H is hydrostatic pressure, and E is air entry pressure. The specific sparge capacity of conventional wells ranges from 0.3 to 0.6 m3/(Mpa min), whereas it is several times greater for fractured wells (0.8 to 3.5 m3/(Mpa min)) at the field site. Field data have been analyzed using analytical and numerical models. We use the step-rate data and invert an analytical solution adapted from Philip (J. Contam. Hydro., 1998) to estimate the in situ relative permeability function during sparging. This approach indicates that permeability ranges from 0.4x10-12 to 2x10-12 m2, which is remarkably similar to the slug test data. It also indicates that the in situ air entry pressure is approximately 31 kPa, and the exponent constant in the Gardner relative permeability function ranges from 0.12 to 0.25 m-1. Numerical analyses

  7. Effect of surface thickness on the wetting front velocity during jet impingement surface cooling

    NASA Astrophysics Data System (ADS)

    Agrawal, Chitranjan; Gotherwal, Deepesh; Singh, Chandradeep; Singh, Charan

    2016-06-01

    A hot stainless steel (SS-304) surface of 450 ± 10 °C initial temperature is cooled with a normally impinging round water jet. The experiments have been performed for the surface of different thickness e.g. 1, 2, 3 mm and jet Reynolds number in the range of Re = 26,500-48,000. The cooling performance of the hot test surface is evaluated on the basis of wetting front velocity. The wetting front velocity is determined for 10-40 mm downstream spatial locations away from the stagnation point. It has been observed that the wetting front velocity increase with the rise in jet flow rate, however, diminishes towards the downstream spatial location and with the rise in surface thickness. The proposed correlation for the dimensionless wetting front velocity predicts the experimental data well within the error band of ±30 %, whereas, 75 % of experimental data lies within the range of ±20 %.

  8. Effective detection and management of low-velocity Lisfranc injuries in the emergency setting

    PubMed Central

    Mayich, D. Joshua; Mayich, Michael S.; Daniels, Timothy R.

    2012-01-01

    Abstract Objective To improve the ability of primary care physicians to recognize the mechanisms and common presentations of low-velocity Lisfranc injuries (LFIs) and to impart an improved understanding of the role of imaging and principles of primary care in low-velocity LFIs. Sources of information A MEDLINE literature review was performed and the results were summarized, reviewing anatomy and mechanisms, clinical and imaging-based diagnoses, and management principles in the primary care setting. Main message Low-velocity LFIs result from various mechanisms and can have very subtle findings on clinical examination and imaging. A high degree of suspicion and caution are warranted when managing this type of injury. Conclusion Although potentially devastating if missed, if a few treatment principles for low-velocity LFIs are applied from the initial presentation onward, outcomes from this injury can be optimized. PMID:23152455

  9. Stabilization effect of multiple drivers' desired velocities in car-following theory

    NASA Astrophysics Data System (ADS)

    Zhang, Geng; Zhao, Min; Sun, Di-Hua; Liu, Wei-Ning; Li, Hua-Min

    2016-01-01

    In order to reveal the influence of driver's individual behavior on traffic flow more accurately, a new car-following model is proposed with consideration of multiple drives' desired velocities. The stability criterion of the new model is derived through linear stability theory and the results show that the current driver's desired velocity can stabilize traffic flow but the preceding driver's desired velocity can damage traffic stability. Through nonlinear analysis, the traffic jamming transition characteristics near the critical point can be described by the kink-antikink soliton of the mKdV equation. Numerical simulation confirms the analytical results, which shows that the multiple drivers' desired velocities play an important role in traffic evolution.

  10. Air quality effects of alternative fuels. Final report

    SciTech Connect

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  11. Air pollution effects due to deregulation of the electric industry

    NASA Astrophysics Data System (ADS)

    Davoodi, Khojasteh Riaz

    The Energy Policy Act of 1992 introduced the concept of open-access into the electric utility industry which allows privately-owned utilities to transmit power produced by non-utility generators and independent power producers (IPPs). In April 1996, the Federal Energy Regulatory Commission (FERC) laid down the final rules (Orders No. 888 & No. 889), which required utilities to open their transmission lines to any power producer and charge them no more than what they pay for the use of their own lines. These rules set the stage for the retail sale of electricity to industrial, commercial and residential utility customers; non-utility generators (Nugs); and power marketers. These statutory, regulatory and administrative changes create for the electric utility industry two different forces that contradict each other. The first is the concept of competition among utility companies; this places a greater emphasis on electric power generation cost control and affects generation/fuel mix selection and demand side management (DSM) activities. The second force, which is converse to the first, is that utilities are major contributors to the air pollution burden in the United States and environmental concerns are forcing them to reduce emissions of air pollutants by using more environmentally friendly fuels and implementing energy saving programs. This study evaluates the impact of deregulation within the investor owned electric utilities and how this deregulation effects air quality by investigating the trend in demand side management programs and generation/fuel mix. A survey was conducted of investor owned utilities and independent power producers. The results of the survey were analyzed by analysis of variance and regression analysis to determine the impact to Air Pollution. An air Quality Impact model was also developed in this study. This model consists of six modules: (1) demand side management and (2) consumption of coal, (3) gas, (4) renewable, (5) oil and (6

  12. Effect of Range and Angular Velocity of Passive Movement on Somatosensory Evoked Magnetic Fields.

    PubMed

    Sugawara, Kazuhiro; Onishi, Hideaki; Yamashiro, Koya; Kojima, Sho; Miyaguchi, Shota; Kotan, Shinichi; Tsubaki, Atsuhiro; Kirimoto, Hikari; Tamaki, Hiroyuki; Shirozu, Hiroshi; Kameyama, Shigeki

    2016-09-01

    To clarify characteristics of each human somatosensory evoked field (SEF) component following passive movement (PM), PM1, PM2, and PM3, using high spatiotemporal resolution 306-channel magnetoencephalography and varying PM range and angular velocity. We recorded SEFs following PM under three conditions [normal range-normal velocity (NN), small range-normal velocity (SN), and small range-slow velocity (SS)] with changing movement range and angular velocity in 12 participants and calculated the amplitude, equivalent current dipole (ECD) location, and the ECD strength for each component. All components were observed in six participants, whereas only PM1 and PM3 in the other six. Clear response deflections at the ipsilateral hemisphere to PM side were observed in seven participants. PM1 amplitude was larger under NN and SN conditions, and mean ECD location for PM1 was at primary motor area. PM3 amplitude was larger under SN condition and mean ECD location for PM3 under SS condition was at primary somatosensory area. PM1 amplitude was dependent on the angular velocity of PM, suggesting that PM1 reflects afferent input from muscle spindle, whereas PM3 amplitude was dependent on the duration. The ECD for PM3 was located in the primary somatosensory cortex, suggesting that PM3 reflects cutaneous input. We confirmed the hypothesis for locally distinct generators and characteristics of each SEF component. PMID:27075772

  13. Site-effect estimations for Taipei Basin based on shallow S-wave velocity structures

    NASA Astrophysics Data System (ADS)

    Chen, Ying-Chi; Huang, Huey-Chu; Wu, Cheng-Feng

    2016-03-01

    Shallow S-wave velocities have been widely used for earthquake ground-motion site characterization. Thus, the S-wave velocity structures of Taipei Basin, Taiwan were investigated using array records of microtremors at 15 sites (Huang et al., 2015). In this study, seven velocity structures are added to the database describing Taipei Basin. Validity of S-wave velocity structures are first examined using the 1D Haskell method and well-logging data at the Wuku Sewage Disposal Plant (WK) borehole site. Basically, the synthetic results match well with the observed data at different depths. Based on S-wave velocity structures at 22 sites, theoretical transfer functions at five different formations of the sedimentary basin are calculated. According to these results, predominant frequencies for these formations are estimated. If the S-wave velocity of the Tertiary basement is assumed to be 1000 m/s, the predominant frequencies of the Quaternary sediments are between 0.3 Hz (WUK) and 1.4 Hz (LEL) in Taipei Basin while the depths of sediments between 0 m (i.e. at the edge of the basin) and 616 m (i.e. site WUK) gradually increase from southeast to northwest. Our results show good agreement with available geological and geophysical information.

  14. The Effect of Bolus Consistency on Hyoid Velocity in Healthy Swallowing

    PubMed Central

    Nagy, Ahmed; Molfenter, Sonja M.; Péladeau-Pigeon, Melanie; Stokely, Shauna; Steele, Catriona M.

    2015-01-01

    The aim of this study was to determine whether measures of hyoid velocity increase when swallowing liquids of thicker consistency at a constant volume. A gender-balanced sample of 20 healthy young participants (mean age 31.5) each swallowed 3 boluses of 5ml volume in 3 consistencies (ultrathin, thin, and nectar-thick barium). Using frame by frame tracking of hyoid position, we identified the onset and peak of the hyoid movement and derived measures of velocity (i.e., distance in anatomically normalized units, i.e., % of the C2–4 vertebral distance, divided by duration in ms) for the X, Y and XY movement directions. Peak hyoid velocity was also identified for each movement direction. Where significant differences were identified, the component measures of hyoid movement distance and duration were further explored to determine the strategies used to alter velocity. The results showed increased velocities and higher peak velocities with the nectar thick stimuli compared to thin and ultrathin stimuli. This was achieved by a primary strategy of larger hyoid movement distances per unit of time when swallowing nectar-thick liquids.. These results point to one mechanism by which thickened liquids may contribute to improved airway protection, by facilitating more-timely laryngeal vestibule closure. PMID:26048615

  15. Jet Velocity Profile Effects on Spray Characteristics of Impinging Jets at High Reynolds and Weber Numbers

    NASA Astrophysics Data System (ADS)

    Rodrigues, Neil S.; Kulkarni, Varun; Sojka, Paul E.

    2014-11-01

    While like-on-like doublet impinging jet atomization has been extensively studied in the literature, there is poor agreement between experimentally observed spray characteristics and theoretical predictions (Ryan et al. 1995, Anderson et al. 2006). Recent works (Bremond and Villermaux 2006, Choo and Kang 2007) have introduced a non-uniform jet velocity profile, which lead to a deviation from the standard assumptions for the sheet velocity and the sheet thickness parameter. These works have assumed a parabolic profile to serve as another limit to the traditional uniform jet velocity profile assumption. Incorporating a non-uniform jet velocity profile results in the sheet velocity and the sheet thickness parameter depending on the sheet azimuthal angle. In this work, the 1/7th power-law turbulent velocity profile is assumed to provide a closer match to the flow behavior of jets at high Reynolds and Weber numbers, which correspond to the impact wave regime. Predictions for the maximum wavelength, sheet breakup length, ligament diameter, and drop diameter are compared with experimental observations. The results demonstrate better agreement between experimentally measured values and predictions, compared to previous models. U.S. Army Research Office under the Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  16. DETECTION OF THE VELOCITY SHEAR EFFECT ON THE SPATIAL DISTRIBUTIONS OF THE GALACTIC SATELLITES IN ISOLATED SYSTEMS

    SciTech Connect

    Lee, Jounghun; Choi, Yun-Young E-mail: yy.choi@khu.ac.kr

    2015-02-01

    We report a detection of the effect of the large-scale velocity shear on the spatial distributions of the galactic satellites around the isolated hosts. Identifying the isolated galactic systems, each of which consists of a single host galaxy and its satellites, from the Seventh Data Release of the Sloan Digital Sky Survey and reconstructing linearly the velocity shear field in the local universe, we measure the alignments between the relative positions of the satellites from their isolated hosts and the principal axes of the local velocity shear tensors projected onto the plane of sky. We find a clear signal that the galactic satellites in isolated systems are located preferentially along the directions of the minor principal axes of the large-scale velocity shear field. Those galactic satellites that are spirals, are brighter, are located at distances larger than the projected virial radii of the hosts, and belong to the spiral hosts yield stronger alignment signals, which implies that the alignment strength depends on the formation and accretion epochs of the galactic satellites. It is also shown that the alignment strength is quite insensitive to the cosmic web environment, as well as the size and luminosity of the isolated hosts. Although this result is consistent with the numerical finding of Libeskind et al. based on an N-body experiment, owing to the very low significance of the observed signals, it remains inconclusive whether or not the velocity shear effect on the satellite distribution is truly universal.

  17. Velocity of Canine Retraction in Angle Class I Treated with First Premolar Extraction: Effect of Facial Pattern.

    PubMed

    Nakamura, Yu; Toyodome, Yoriko; Ishii, Takenobu; Sakamoto, Teruo; Motegi, Etsuko; Sueishi, Kenji

    2015-01-01

    Recently, new methods have been applied to increase velocity of tooth movement. A standard mean of tooth movement velocity remains to be established, however. Moreover, to our knowledge, no studies have investigated the effect of factors affecting this velocity. The aim of the present study was to investigate the effect of facial pattern on the mean velocity of canine retraction in selected cases of orthodontic treatment carried out at this hospital. A total of 112 patients with Angle Class I crowding treated with extraction of the bilateral maxillary and mandibular first premolars and a conventional edgewise bracket were selected at random. The canine retraction period was defined as that between the end of leveling and the beginning of anterior retraction, and was obtained from medical records. Calipers were used to measure how far the canine cusps moved between pre- and post-surgically on superimposed cephalometric tracings. The velocity of canine retraction was significantly slower in the maxilla of male patients with a brachyofacial pattern (p<0.01). Canine retraction is the longest stage of orthodontic treatment. Here, movement was slowest in the maxilla of male patients with a brachyofacial pattern. This indicates that treatment may take longer than average in male patients with a brachyofacial pattern, and that this should be explained prior to commencing such work. PMID:26370574

  18. The effect of air leakage and heat exchange on the decay of entrapped air pocket slamming oscillations

    NASA Astrophysics Data System (ADS)

    Abrahamsen, Bjørn C.; Faltinsen, Odd M.

    2011-10-01

    The phenomenon studied in this work is that of an air pocket entrapped by a free surface water wave inside a rectangular tank at a high filling level. The wave, which is a gravity wave, is caused by forced horizontal motion which is constructed in a particular way, in order to entrap an air pocket as it approaches the upper left corner of the tank. As the wave touches the roof, the air is compressed and starts to oscillate. The oscillations resemble, to some extent, the free oscillations of an underdamped mass-spring system, where the mass is related to the generalized added mass effect of the water pressure associated with the air pocket oscillations. The stiffness is due to the compressibility of the air. The reason for the damping or, more generally, the decay of the air pocket oscillations is less understood. Air leakage has been proposed as one possible reason for this decay. In this work, the role of air leakage is found not to be the reason for the decay of the air pocket oscillations, because it is not present during major parts of the impact. However, by drilling holes in the roof of the tank, the effect of leakage during the oscillations is proven to cause decay. To explain the physical source of the decay of the oscillations, damping due to heat transfer to and from the air pocket is investigated through an analytical one-dimensional steady-state model. The damping due to heat transfer is observed to play an important role. The obtained understanding of the mechanisms causing the decay of the air-pocket impact at the upper corner is believed to be relevant to other types of impacts, particularly the entrapment of air pockets on walls by breaking waves.

  19. Encapsulated graphene field-effect transistors for air stable operation

    SciTech Connect

    Alexandrou, Konstantinos Kymissis, Ioannis; Petrone, Nicholas; Hone, James

    2015-03-16

    In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics.

  20. Adverse health effects of air pollutants in a nonsmoking population.

    PubMed

    Pope, C A

    1996-07-17

    Utah Valley has provided an interesting and unique opportunity to evaluate the health effects of respirable particulate air pollution (PM10). Residents of this valley are predominantly nonsmoking members of the Church of Jesus Christ of Latter-day Saints (Mormons). The area has moderately high average PM10 levels with periods of highly elevated PM10 concentrations due to local emissions being trapped in a stagnant air mass near the valley floor during low-level temperature inversion episodes. Due to a labor dispute, there was intermittent operation of the single largest pollution source, an old integrated steel mill. Levels of other common pollutants including sulfur dioxide, ozone, and acidic aerosol are relatively low. Studies specific to Utah Valley have observed that elevated PM10 concentrations are associated with: (1) decreased lung function; (2) increased incidence of respiratory symptoms; (3) increased school absenteeism; (4) increased respiratory hospital admissions; and (5) increased mortality, especially respiratory and cardiovascular mortality. PMID:8711730