Science.gov

Sample records for air void contents

  1. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    NASA Astrophysics Data System (ADS)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  2. Compensation for air voids in photoacoustic computed tomography image reconstruction

    NASA Astrophysics Data System (ADS)

    Matthews, Thomas P.; Li, Lei; Wang, Lihong V.; Anastasio, Mark A.

    2016-03-01

    Most image reconstruction methods in photoacoustic computed tomography (PACT) assume that the acoustic properties of the object and the surrounding medium are homogeneous. This can lead to strong artifacts in the reconstructed images when there are significant variations in sound speed or density. Air voids represent a particular challenge due to the severity of the differences between the acoustic properties of air and water. In whole-body small animal imaging, the presence of air voids in the lungs, stomach, and gastrointestinal system can limit image quality over large regions of the object. Iterative reconstruction methods based on the photoacoustic wave equation can account for these acoustic variations, leading to improved resolution, improved contrast, and a reduction in the number of imaging artifacts. However, the strong acoustic heterogeneities can lead to instability or errors in the numerical wave solver. Here, the impact of air voids on PACT image reconstruction is investigated, and procedures for their compensation are proposed. The contributions of sound speed and density variations to the numerical stability of the wave solver are considered, and a novel approach for mitigating the impact of air voids while reducing the computational burden of image reconstruction is identified. These results are verified by application to an experimental phantom.

  3. Thickness and air voids measurement on asphalt concrete pavements using ground-penetrating radar

    NASA Astrophysics Data System (ADS)

    Dhakal, Sharad Raj

    Layer thickness and air voids are important parameters in quality assurance of newly paved hot mix asphalt (HMA) pavements. A non-destructive testing (NDT) technique was used to collect layer thickness information. The thicknesses estimated by the technique were compared with core thicknesses. Ground penetrating radar (GPR) system with air coupled antennas was used for on-site pavement data collection. Two application softwares - RADAN and ROAD DOCTOR - were used to process the field data for estimating layer thicknesses and air voids along the scanned pavements. 150 mm diameter cores taken from random locations on the pavements were tested in the laboratory to determine layer thickness and air voids. Statistical analyses were conducted to compare thicknesses and generate a regression equation relating air voids and dielectric constant of the pavement material. No significant differences were found between thickness estimates from RADAN and ROAD DOCTOR softwares when compared to the core measurements. However, RADAN and ROAD DOCTOR results are marginally significantly different from each other. ROAD DOCTOR software was used to generate air voids for the pavements scanned. Laboratory results from cores were utilized to determine calibration factors for the air voids -- dielectric equation. A relationship between air voids and dielectric constant is presented. It is concluded that GPR system with air coupled antennas used alongside a reduced core testing has a potential for quality control of newly paved hot mixed asphalt pavements.

  4. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  5. Observations of coarsening of air voids in a polymer-highly-soluble crystalline matrix during dissolution

    NASA Astrophysics Data System (ADS)

    Karakosta, Eleni; Jenneson, Paul M.; Sear, Richard P.; McDonald, Peter J.

    2006-07-01

    A combination of magnetic resonance imaging and x-ray microcomputed tomography has been used to visualize the development of the internal micro-structure within compressed tablets made from a combination of insoluble particles (Eudragit, a polymer) and soluble particles (diltiazem hydrochloride, a drug), during dissolution in water. Air voids in the tablet are seen to coarsen. The size distribution of the air voids is well fitted by a log-normal distribution with a mean size that grows linearly with time. There is evidence for both diffusion of voids and sudden collapse of individual voids, presumably as they coalesce. The behavior of the voids is studied and compared with models of coarsening; the implications for tablet dissolution are considered.

  6. Improved light output power of LEDs with embedded air voids structure and SiO2 current blocking layer

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Yuan, Shu; Liu, Sheng; Ding, Han

    2014-06-01

    GaN-based light-emitting diodes (LEDs) with an embedded air voids structure and a SiO2 current blocking layer (CBL) was fabricated and investigated. The air voids structure was formed between cone-shaped patterned sapphire substrate and GaN epitaxial layer by combining laser scribing with H3PO4-based hot chemical etching. The air voids embedded high power LED showed 8.9% higher light output power due to a strong light reflection and redirection at the interface between GaN and air voids, which could increase the top light extraction of the high power LED. Compared to the air voids embedded high power LED, the light output power of the high power LED by integrating air voids structure with SiO2 CBL was 9.1% higher than that of the air voids embedded LED without SiO2 CBL. It was also found that the simulation results agree well with the experimental results.

  7. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  8. Estimation of air void and aggregate spatial distributions in concrete under uniaxial compression using computer tomography scanning

    SciTech Connect

    Wong, R.C.K. . E-mail: rckwong@ucalgary.ca; Chau, K.T.

    2005-08-01

    Normal- and high-strength concrete cylinders (designed compressive strengths of 30 and 90 MPa at 28 days) were loaded uniaxially. Computer tomography (CT) scanning technique was used to examine the evolution of air voids inside the specimens at various loading states up to 85% of the ultimate compressive strength. The normal-strength concrete yielded a very different behaviour in changes of internal microstructure as compared to the high-strength concrete. There were significant instances of nucleation and growth in air voids in the normal-strength concrete specimen, while the increase in air voids in the high-strength concrete specimen was insignificant. In addition, CT images were used for mapping the aggregate spatial distributions within the specimens. No intrinsic anisotropy was detected from the fabric analysis.

  9. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  10. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, D.A.; Rubin, J.

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. -from Authors

  11. Effect of initial oxygen content on the void swelling behavior of fast neutron irradiated copper

    NASA Astrophysics Data System (ADS)

    Zinkle, S. J.; Garner, F. A.

    2004-08-01

    Density measurements were performed on high purity copper specimens containing ⩽10 and ˜90 wt ppm oxygen following irradiation in FFTF MOTA 2B. Significant amounts of swelling were observed in both the low-oxygen and oxygen-doped specimens following irradiation to ˜17 dpa at 375 °C and ˜47 dpa at 430 °C. Oxygen doping up to 360 appm (˜90 wt ppm) did not significantly affect the void swelling of copper for these irradiation conditions. This implies that surface energy reduction associated with oxygen segregation and chemisorption on void surfaces is not a significant factor controlling the void swelling behavior in copper irradiated with neutrons to high doses at ˜400 °C.

  12. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  13. Effect of initial oxygen content on the void swelling behavior of fast neutron irradiated copper

    SciTech Connect

    Zinkle, S.J.; Garner, F.A.

    1998-03-01

    Density measurements were performed on high purity copper specimens containing {le}10 wt.ppm and {approximately}120 wt.ppm oxygen following irradiation in FFTF MOTA 2B. Significant amounts of swelling were observed in both the oxygen-free and oxygen-doped specimens following irradiation to {approximately}17 dpa at 375 C and {approximately}47 dpa at 430 C. Oxygen doping up to 360 appm (90 wt.ppm) did not significantly affect the void swelling of copper for these irradiation conditions.

  14. A study of the effect of fabrication variables on the void content and quality of fuel plates

    SciTech Connect

    Wiencek, T.C.

    1986-10-01

    The control of void content and quality of dispersion type fuel plates fabricated for research and test reactors are issues of concern to plate fabricators. These two variables were studied by examining the data for various geometries of fuel plates fabricated at ANL. It was found that the porosity of a fuel plate can be increased by: (1) decreasing the fuel particle size, (2) increasing the fuel particle surface roughness, (3) increasing the matrix strength, (4) decreasing the rolling temperature, (5) decreasing the final fuel zone thickness, and (6) increasing the volume percentage of the fuel. Porosity formation is controlled by bulk movement and deformation and/or fracture of particles. The most important factor is the flow stress of the matrix material. Lowering the flow stress will decrease the plate porosity. The percentage of plates with fuel-out-of-zone is a function of the fuel material and the loading. The highest percentage of plates with fuel-out-of-zone were those with U3Si2 which is at this time the most commonly used silicide fuel.

  15. Improved light extraction of nitride-based flip-chip light-emitting diodes by forming air voids on Ar-implanted sapphire substrate

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lee, Ming-Lun; Chen, Po-Cheng; Yang, Yu-Chen; Yen, Cheng-Hsiung; Lai, Wei-Chih

    2014-09-01

    GaN-based flip-chip light emitting diodes (FC-LEDs) with embedded air voids grown on a selective-area Arimplanted AlN/sapphire (AIAS) substrate was demonstrated in this study. The proposed FC LED with an embedded light scattering layer can destroy the light interference and thereby increase the LEE of GaN-based flip-chip LEDs. The epitaxial layers grown on Ar-implanted regions exhibited lower growth rates compared with those grown on implantation-free regions. Accordingly, air voids formed over the implanted regions after merging laterally grown GaN facet fronts. The light-output power of LEDs grown on AIAS was greater than that of LEDs grown on implantation free sapphire substrates. At an injection current of 700 mA, the output power of LEDs grown on AIAS was enhanced by 20% compared with those of LEDs without embedded air voids. The increase in output power was mainly attributed to the scattering of light around the air voids, which increased the probability of photons escaping from the LEDs. This study on FC LEDs with embedded light-scattering layer highlights the potential application of these LEDs as an alternative to conventional patterned sapphire substrates for improving the LEE of GaN/sapphire-based LEDs. Based on ray tracing simulation, if the height and the width of bottom of gaps were increased to 3 μm, the Lop could be enhanced over 60%.

  16. An experimental investigation on the effect of particle size on the thermal properties and void content of Solid Glass Microsphere filled epoxy Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Debasmita; Satapathy, Alok

    2016-02-01

    This paper investigates about the thermal characterization of Solid glass micro-sphere (SGM) filled epoxy composites. SGMs of different sizes are embedded in epoxy resin to fabricate composites by hand-layup technique. The composites for various SGM content ranging from 0 to about 35 vol % are thus fabricated and the effective thermal conductivities (keff ) of the composites are estimated. The theoretical values are then compared with keff values obtained from the experiment. This study shows that the incorporation of SGm results in an improvement in thermal insulation capability of the polymer. Further, the influence of size and content of SGMs in the extent of reduction of keff was studied. Also, the effect of void content on improving insulation capability of the composites was analysed.

  17. Gas in void galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, Kathryn Joyce

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, and provide an observational test for theories of cosmological structure formation. We investigate the neutral hydrogen properties (i.e. content, morphology, kinematics) of void galaxies, both individually and systematically, using a combination of observations and simulations, to form a more complete understanding of the nature of these systems. We investigate in detail the H I morphology and kinematics of two void galaxies. One is an isolated polar disk galaxy in a diffuse cosmological wall situated between two voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies. We also examine KK 246, the only confirmed galaxy located within the nearby Tully Void. It is a dwarf galaxy with an extremely extended H I disk and signs of an H I cloud with anomalous velocity. It also exhibits clear misalignment between the kinematical major and minor axes, and a general misalignment between the H I and optical major axes. The relative isolation and extreme underdense environment make these both very interesting cases for examining the role of gas accretion in galaxy evolution. To study void galaxies as a population, we have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. We have imaged this new Void Galaxy Survey in H I at the Westerbork Synthesis Radio Telescope with a typical resolution of 8 kpc, probing a volume of 1.2 Mpc and 12,000 km s^-1 surrounding each galaxy. We reach H I mass limits of 2 x 10^8 M_sun and column density sensitivities of 5 x 10^19 cm^-2

  18. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    NASA Technical Reports Server (NTRS)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  19. Measuring HOMO/LUMO gap of explosive film at air interface using ESFG: model for explosive at void surface

    NASA Astrophysics Data System (ADS)

    Farrow, Darcie; Kohl, Ian; Kearney, Sean; Rupper, Stephen; Martin, Laura; Alam, Kathy; Knepper, Robert; Kay, Jeffery

    Vibrational broadband sum frequency generation has enabled measurements of heat transfer/disorder under shock compression on monolayer length scales (Carter, JPCA, 2008). At Sandia, we are extending this approach to examine shock-induced changes in the electronic structure of secondary explosives at surfaces using electronic sum frequency generation (ESFG)(Yamaguchi, JCP, 2008). Theoretical studies suggest explosives at voids and grain boundaries may have different reactivity than bulk material based on shifts in the bandgap at defects (Kuklja, Appl. Phys. A 2003). We seek to measure these electronic shifts for the first time using a thin film explosive samples as a model for the void surface. We will report electronic sum frequency data from vapour deposited thin film explosive compared to UV/Vis data of the bulk film at ambient pressures and discuss application of ESFG technique to samples under shock compression.

  20. Dysfunctional voiding.

    PubMed

    Chiozza, M L

    2002-01-01

    Wetting may be considered the Cinderella of paediatric medicine. Before discussing dysfunctional voiding, the milestones of the normal development of continence in the child and the definitions used to describe this topic are presented. Bladder storage requires (1): accommodation of increasing volumes of urine at low intravesical pressure and with appropriate sensation; (2): a bladder outlet that is closed and not modified during increase in intra-abdominal pressure; (3): absence of involuntary bladder contractions. Development of continence in the child involves three independent factors maturing concomitantly: (1) development of normal bladder capacity; (2) maturation of urethral sphincter function; (3) development of neural control over bladder-sphincter function. All these processes are discussed. Abnormalities of any of these maturational sequences, which run parallel and overlapping, may result in clinically evident abnormalities of bladder sphincter control. Although dysfunctional voiding (DV) in children is very common its prevalence has not been well studied and, to date, and its origin is not well known. In a correct evaluation of functional voiding we must take into account different elements: the bladder capacity (that increases during the first 8 years of life roughly 30 ml per year), the micturition frequency, post-void residual volumes, bladder dynamics, urinary flow rates. Thus the correct assessment of children with lower urinary tract dysfunction should include a detailed history. Signs of DV range from urge syndrome to complex incontinence patterns during the day and the night. In addition to incontinence problems, children may have frequency, urgency, straining to void, weak or interrupted urinary stream, urinary tract infections (UTIs) and chronic constipation with or without encopresis. DV are also referred in enuretic children who wet the bed more than one time per night and have a functional bladder capacity lower than attended for age

  1. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  2. The nature of voids - II. Tracing underdensities with biased galaxies

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-11-01

    We study how the properties of cosmic voids depend on those of the tracer galaxy populations in which they are identified. We use a suite of halo occupation distribution mocks in a simulation, identify voids in these populations using the ZOBOV void finder and measure their abundances, sizes, tracer densities and dark matter content. To separate the effects of bias from those of sampling density, we do the same for voids traced by randomly downsampled subsets of the simulation dark matter particles. At the same sampling density, galaxy bias reduces the total number of voids by ˜50 per cent and can dramatically change their size distribution. The matter content of voids in biased and unbiased tracers also differs. Deducing void properties from simulation therefore requires the use of realistic galaxy mocks. We discuss how the void observables can be related to their matter content. In particular we consider the compensation of the total mass deficit in voids and find that the distinction between over- and undercompensated voids is not a function of void size alone, as has previously been suggested. However, we find a simple linear relationship between the average density of tracers in the void and the total mass compensation on much larger scales. The existence of this linear relationship holds independent of the bias and sampling density of the tracers. This provides a universal tool to classify void environments and will be important for the use of voids in observational cosmology.

  3. Present and future variations in Antarctic firn air content

    NASA Astrophysics Data System (ADS)

    Ligtenberg, S. R. M.; Kuipers Munneke, P.; van den Broeke, M. R.

    2014-09-01

    A firn densification model (FDM) is used to assess spatial and temporal (1979-2200) variations in the depth, density and temperature of the firn layer covering the Antarctic ice sheet (AIS). A time-dependent version of the FDM is compared to more commonly used steady-state FDM results. Although the average AIS firn air content (FAC) of both models is similar (22.5 m), large spatial differences are found: in the ice-sheet interior, the steady-state model underestimates the FAC by up to 2 m, while the FAC is overestimated by 5-15 m along the ice-sheet margins, due to significant surface melt. Applying the steady-state FAC values to convert surface elevation to ice thickness (i.e., assuming flotation at the grounding line) potentially results in an underestimation of ice discharge at the grounding line, and hence an underestimation of current AIS mass loss by 23.5% (or 16.7 Gt yr-1) with regard to the reconciled estimate over the period 1992-2011. The timing of the measurement is also important, as temporal FAC variations of 1-2 m are simulated within the 33 yr period (1979-2012). Until 2200, the Antarctic FAC is projected to change due to a combination of increasing accumulation, temperature, and surface melt. The latter two result in a decrease of FAC, due to (i) more refrozen meltwater, (ii) a higher densification rate, and (iii) a faster firn-to-ice transition at the bottom of the firn layer. These effects are, however, more than compensated for by increasing snowfall, leading to a 4-14% increase in FAC. Only in melt-affected regions, future FAC is simulated to decrease, with the largest changes (-50 to -80%) on the ice shelves in the Antarctic Peninsula and Dronning Maud Land. Integrated over the AIS, the increase in precipitation results in a similar volume increase due to ice and air (both ~150 km3 yr-1 until 2100). Combined, this volume increase is equivalent to a surface elevation change of +2.1 cm yr-1, which shows that variations in firn depth remain

  4. Illicit psychotropic substance contents in the air of Italy

    NASA Astrophysics Data System (ADS)

    Cecinato, Angelo; Balducci, Catia; Budetta, Valentina; Pasini, Antonello

    2010-06-01

    Two in-field campaigns were performed in 2009 to elucidate the contents of illicit psychotropic substances in airborne particulates of Italian cities. Twenty-eight localities of eight Italian regions were investigated in winter, and further eleven sites in June (14 regions in total), thanks to contribution of Regional Environmental Agencies. Cocaine was found almost everywhere, although some sites were rural or suburban. The maximum was recorded in Milan in winter (˜0.39 ng m -3), and "high" values (up to ˜0.16 ng m -3) in other Northern cities and in Rome. Besides cocaine, three cannabinoids will be monitored, namely Δ 9-tetrahydrocannabinol, cannabidiol and cannabinol. The three compounds often affected the air at lower extents than cocaine, and sometimes resulted absent. Cannabinol accounted for up to 90% of the total. The concentrations of illicit compounds were up to six times lower in June than in winter. This decrease was probably induced by the lowering of boundary layer height typical of winter, and by the oxidizing capacity of atmosphere, which is stronger in the warm season. Compared to n-alkanes, polynuclear aromatic compounds, nicotine, caffeine and airborne particulate, cocaine seemed to follow a peculiar behaviour; in fact, meaningful (≥0.80) Pearson (linear) regression coefficients were calculated from the corresponding concentrations only at local scale (e.g. Rome), and within just one season. Improvements of the method are needed to monitor illicit drug metabolites (e.g. benzoylecgonine, ecgonine methyl ester, 9-carboxy-11-nor-Δ 9-tetrahydrocannabinol), heroin and semi-volatile amphetamines.

  5. A Simple Experiment To Measure the Content of Oxygen in the Air Using Heated Steel Wool

    ERIC Educational Resources Information Center

    Vera, Francisco; Rivera, Rodrigo; Nunez, Cesar

    2011-01-01

    The typical experiment to measure the oxygen content in the atmosphere uses the rusting of steel wool inside a closed volume of air. Two key aspects of this experiment that make possible a successful measurement of the content of oxygen in the air are the use of a closed atmosphere and the use of a chemical reaction that involves the oxidation of…

  6. Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year

    NASA Astrophysics Data System (ADS)

    Parat, Sylvie; Perdrix, Alain; Fricker-Hidalgo, Hélène; Saude, Isabelle; Grillot, Renee; Baconnier, Pierre

    Heating, ventilation and air-conditioning (HVAC) may be responsible for the production and spread of airborne microorganisms in office buildings. In order to compare airborne microbiological flora in an air-conditioned building with that in a naturally ventilated building, eight sets of measurements were made over a 1-year period. Concurrently with other environmental measurements, air samples were collected in each building, from three offices and from the outdoor air, using the Andersen single-stage sampler. Three different media were used to culture fungi, staphylococci and mesophilic bacteria. Multivariate analysis revealed a group of offices more contaminated than others, and a marked seasonal variation in fungal concentrations. A comparison of mean levels of microorganisms measured in the two buildings showed that the air microbial content was significantly higher and more variable in the naturally ventilated building than in the air-conditioned building. Moreover, in the naturally ventilated building, the interior fungal content was strongly dependent on the outdoor content, while in the air-conditioned building fungal concentrations remained constant despite significant variations measured outside. This was confirmed by a statistical comparison of the correlation coefficients between indoor and outdoor concentrations. No difference was observed regarding gaseous pollutants and temperature, but relative humidity was significantly higher in the air-conditioned building. The effect of HVAC was to prevent the intake of outdoor particles and to dilute the indoor concentrations. These results are consistent with the presence of high-efficiency filters and a steam humidifier in the HVAC system under study.

  7. An alternative void growth suppression technique in autoclave processing

    SciTech Connect

    White, S.R.; Kim, Y.K.

    1994-12-31

    Voids in composites are primarily controlled by the amount of autoclave pressure applied during the process cycle. There are two reasons that this methodology may not be feasible in all cases. First, the prescribed autoclave pressure may be excessively high and secondly, the resin pressure is not hydrostatic nor uniform throughout the composite part. An alternative method to reduce void content in polymer composites is presented using the stage curing technique. In this processing method the cure cycle is interrupted and the part is cooled down under pressure. During this cool down phase bubble dissolution occurs. Subsequently, the part is heated back up to the cure temperature without vacuum. Bubble growth rate is reduced under these conditions and the final void content is also reduced. Experimental evidence shows a 79% reduction in void content for an AS4/3510-6 composite system. A simple void growth model is used to explain the void reduction mechanism and provide quantitative verification.

  8. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  9. Air transport of plutonium metal: content expansion initiative for the plutonium air transportable (PAT01) packaging

    SciTech Connect

    Caviness, Michael L; Mann, Paul T

    2010-01-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  10. Air transport of plutonium metal : content expansion initiative for the Plutonium Air Transportable (PAT-1) packaging.

    SciTech Connect

    Mann, Paul T.; Caviness, Michael L.; Yoshimura, Richard Hiroyuki

    2010-06-01

    The National Nuclear Security Administration (NNSA) has submitted an application to the Nuclear Regulatory Commission (NRC) for the air shipment of plutonium metal within the Plutonium Air Transportable (PAT-1) packaging. The PAT-1 packaging is currently authorized for the air transport of plutonium oxide in solid form only. The INMM presentation will provide a limited overview of the scope of the plutonium metal initiative and provide a status of the NNSA application to the NRC.

  11. Void/particulate detector

    DOEpatents

    Claytor, Thomas N.; Karplus, Henry B.

    1985-01-01

    Voids and particulates are detected in a flowing stream of fluid contained in a pipe by a detector which includes three transducers spaced about the pipe. A first transducer at a first location on the pipe transmits an ultrasonic signal into the stream. A second transducer detects the through-transmission of the signal at a second location and a third transducer at a third location upstream from the first location detects the back-scattering of the signal from any voids or particulates. To differentiate between voids and particulates a fourth transducer is positioned at a fourth location which is also upstream from the first location. The back-scattered signals are normalized with the through-transmission signal to minimize temperature fluctuations.

  12. Natural radioactivity content in soil and indoor air of Chellanam.

    PubMed

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed. PMID:22951996

  13. Removal of introduced inorganic content from chipped forest residues via air classification

    SciTech Connect

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and in a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.

  14. Removal of introduced inorganic content from chipped forest residues via air classification

    DOE PAGESBeta

    Lacey, Jeffrey A.; Aston, John E.; Westover, Tyler L.; Cherry, Robert S.; Thompson, David N.

    2015-08-04

    Inorganic content in biomass decreases the efficiency of conversion processes, especially thermochemical conversions. The combined concentrations of specific ash forming elements are the primary attributes that cause pine residues to be considered a degraded energy conversion feedstock, as compared to clean pine. Air classification is a potentially effective and economical tool to isolate high inorganic content biomass fractions away from primary feedstock sources to reduce their ash content. In this work, loblolly pine forest residues were air classified into 10 fractions whose ash content and composition were measured. Ash concentrations were highest in the lightest fractions (5.8–8.5 wt%), and inmore » a heavy fraction of the fines (8.9–15.1 wt%). The removal of fractions with high inorganic content resulted in a substantial reduction in the ash content of the remaining biomass in forest thinnings (1.69–1.07 wt%) and logging residues (1.09–0.68 wt%). These high inorganic content fractions from both forest residue types represented less than 7.0 wt% of the total biomass, yet they contained greater than 40% of the ash content by mass. Elemental analysis of the air classified fractions revealed the lightest fractions were comprised of high concentrations of soil elements (silicon, aluminum, iron, sodium, and titanium). However, the elements of biological origin including calcium, potassium, magnesium, sulfur, manganese, and phosphorous were evenly distributed throughout all air classified fractions, making them more difficult to isolate into fractions with high mineral concentrations. Under the conditions reported in this study, an economic analysis revealed air classification could be used for ash removal for as little as $2.23 per ton of product biomass. As a result, this study suggests air classification is a potentially attractive technology for the removal of introduced soil minerals from pine forest residues.« less

  15. Voids of dark energy

    SciTech Connect

    Dutta, Sourish; Maor, Irit

    2007-03-15

    We investigate the clustering properties of a dynamical dark energy component. In a cosmic mix of a pressureless fluid and a light scalar field, we follow the linear evolution of spherical matter perturbations. We find that the scalar field tends to form underdensities in response to the gravitationally collapsing matter. We thoroughly investigate these voids for a variety of initial conditions, explain the physics behind their formation, and consider possible observational implications. Detection of dark energy voids will clearly rule out the cosmological constant as the main source of the present acceleration.

  16. Assimilation of IASI and AIRS Data: Information Content and Quality Control

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Infrared Atmospheric Sounding Interferometer (IASI) and Atmospheric Infrared Sounder (AIRS) instruments have two orders of magnitude more channels that the current operational infrared sounder (High Resolution Infra-Red Sounder (HIRS)). This data volume presents a technological challenge for using the data in a data assimilation system. Data reduction will be a necessary for assimilation. It is important to understand the information content of the radiance measurements for data reduction purposes. In this talk, I will discuss issues relating to information content and quality control for assimilation of the AIRS and IASI data.

  17. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  18. Distinct effects of moisture and air contents on acoustic properties of sandy soil.

    PubMed

    Oshima, Takuya; Hiraguri, Yasuhiro; Okuzono, Takeshi

    2015-09-01

    Knowledge of distinct effects of moisture content and air volume on acoustic properties of soil is sought to predict the influence of human activities such as cultivation on acoustic propagation outdoors. This work used an impedance tube with the two-thickness method to investigate such effects. For a constant moisture weight percentage, the magnitude of the characteristic impedance became smaller and the absorption coefficient became higher with increase of the air space ratio. For a constant air space ratio, the absorption coefficient became larger and the magnitude of the propagation constant became smaller with increasing moisture weight percentage. PMID:26428823

  19. Void/particulate detector

    DOEpatents

    Claytor, T.N.; Karplus, H.B.

    1983-09-26

    Apparatus for detecting voids and particulates in a flowing stream of fluid contained in a pipe may comprise: (a) a transducer for transmitting an ultrasonic signal into the stream, coupled to the pipe at a first location; (b) a second transducer for detecting the through-transmission of said signal, coupled to the pipe at a second location; (c) a third transducer for detecting the back-scattering of said signal, coupled to the pipe at a third location, said third location being upstream from said first location; (d) circuit means for normalizing the back-scattered signal from said third transducer to the through-transmitted signal from said second transducer; which normalized signal provides a measure of the voids and particulates flowing past said first location.

  20. Antioxidant activity and phenolic content of air-classified corn bran

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of extracting free and bound phenolic compounds and antioxidant activities from air classified corn bran was evaluated by various extracting methods. The free phenolic contents and antioxidant activities decreased significantly with the increasing particle sizes for all methods us...

  1. Characterization of voids formed during liquid impregnation of nonwoven multifilament glass networks as related to composite processing

    NASA Technical Reports Server (NTRS)

    Mahale, Anant D.; Prudhomme, Robert K.; Rebenfeld, Ludwig

    1993-01-01

    A technique based on matching the refractive index of an invading liquid to that of a fiber mat was used to study entrapment of air ('voids') that occurs during forced in-plane radial flow into nonwoven multifilament glass networks. The usefulness of this technique is demonstrated in quantifying and mapping the air pockets. Experiments with a series of fluids with surface tensions varying from 28 x 10(exp -3) to 36 x 10(exp -3) N/m, viscosities from 45 x 10(exp -3) to 290 x 10(exp -3) Pa.s, and inlet flow rates from 0.15 x 10(exp -6) to 0.75 x 10(exp -6) m(exp 3)/s, showed that void content is a function of the capillary number characterizing the flow process. A critical value of capillary number, Ca = 2.5 x 10(exp -3), identifies a zone below which void content increases exponentially with decreasing capillary number. Above this critical value, negligible entrapment of voids is observed. Similar experiments carried out on surface treated nonwoven mats spanning a range of equilibrium contact angles from 20 deg to 78 deg showed that there is a critical contact angle above which negligible entrapment is observed. Below this value, there is no apparent effect of contact angle on the void fraction - capillary number relationship described earlier. Studies on the effect of filament wettability, and fluid velocity and viscosity on the size of the entrapment (voids) were also carried out. These indicate that larger sized entrapments which envelop more than one pore are favored by a low capillary number in comparison to smaller, pore level bubbles. Experiments were carried out on deformed mats - imposing high permeability spots at regular intervals on a background of low permeability. The effect of these spatial fluctuations in heterogeneity of the mat on entrapment is currently being studied.

  2. Investigation on the heavy-metal content of zinc-air button cells.

    PubMed

    Richter, Andrea; Richter, Silke; Recknagel, Sebastian

    2008-01-01

    Within the framework of a German government project (initiated by the Federal Environment Agency) to check the compliance of commercially available batteries with the German Battery Ordinance concerning their heavy metal contents, 18 different types of commercially available zinc-air button cells were analysed for their cadmium, lead and mercury contents. After microwave assisted dissolution with aqua regia, Cd and Pb were determined using inductively coupled plasma mass spectrometry (ICP-MS), and Hg was determined using inductively coupled plasma optical emission spectrometry (ICP OES) and atomic absorption spectrometry. Cd contents were found to be much lower than the permitted limits; Pb contents were also found to be below the limits. Hg contents were found to be near the limits, and in one case the limit was exceeded. PMID:18280730

  3. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

  4. Void galaxy properties depending on void filament straightness

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-08-01

    We investigate the properties of galaxies belonging to the filaments in cosmic void regions, using the void catalogue constructed by Pan et al. (2012) from the SDSS DR7. To identify galaxy filaments within a void, voids with 30 or more galaxies are selected as a sample. We identify 3172 filaments in 1055 voids by applying the filament finding algorithm utilizing minimal spanning tree (MST) which is an unique linear pattern into which connects all the galaxies in a void. We study the correlations between galaxy properties and the specific size of filament which quantifies the degree of the filament straightness. For example, the average magnitude and the magnitude of the faintest galaxy in filament decrease as the straightness of the filament increases. We also find that the correlations become stronger in rich filaments with many member galaxies than in poor ones. We discuss a physical explanation to our findings and their cosmological implications.

  5. Stress Voiding During Wafer Processing

    SciTech Connect

    Yost, F.G.

    1999-03-01

    Wafer processing involves several heating cycles to temperatures as high as 400 C. These thermal excursions are known to cause growth of voids that limit reliability of parts cut from the wafer. A model for void growth is constructed that can simulate the effect of these thermal cycles on void growth. The model is solved for typical process steps and the kinetics and extent of void growth are determined for each. It is shown that grain size, void spacing, and conductor line width are very important in determining void and stress behavior. For small grain sizes, stress relaxation can be rapid and can lead to void shrinkage during subsequent heating cycles. The effect of rapid quenching from process temperatures is to suppress void growth but induce large remnant stress in the conductor line. This stress can provide the driving force for void growth during storage even at room temperature. For isothermal processes the model can be solved analytically and estimates of terminal void size a nd lifetime are obtained.

  6. On the magnetic fields in voids

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Hanasz, M.; Lesch, H.; Remus, R.-S.; Stasyszyn, F. A.

    2013-02-01

    We study the possible magnetization of cosmic voids by void galaxies. Recently, observations revealed isolated star-forming galaxies within the voids. Furthermore, a major fraction of a voids volume is expected to be filled with magnetic fields of a minimum strength of about 10-15 G on Mpc scales. We estimate the transport of magnetic energy by cosmic rays (CR) from the void galaxies into the voids. We assume that CRs and winds are able to leave small isolated void galaxies shortly after they assembled, and then propagate within the voids. For a typical void, we estimate the magnetic field strength and volume-filling factor depending on its void galaxy population and possible contributions of strong active galactic nuclei (AGNs) which border the voids. We argue that the lower limit on the void magnetic field can be recovered, if a small fraction of the magnetic energy contained in the void galaxies or void bordering AGNs is distributed within the voids.

  7. Climate and air quality trade-offs in altering ship fuel sulfur content

    NASA Astrophysics Data System (ADS)

    Partanen, A. I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-12-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved, while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario (ship fuel sulfur content of 2.7%) with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold the present-day fuel sulfur content (i.e. 5.4%) elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced effective radiative forcing (ERF) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the ERF to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing international treaties, could cause detrimental side-effects, and could be classified as geoengineering.

  8. Testing gravity using cosmic voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Padilla, Nelson; Li, Baojiu

    2015-07-01

    We explore voids in dark matter and halo fields from simulations of Λ cold dark matter and Hu-Sawicki f (R) models. In f (R) gravity, dark matter void abundances are greater than that of general relativity (GR). Differences for halo void abundances are much smaller, but still at the 2σ, 6σ and 14σ level for the f (R) model parameter |fR0| = 10-6, 10-5 and 10-4. Counter-intuitively, the abundance of large voids found using haloes in f (R) gravity is lower, which suggests that voids are not necessarily emptier of galaxies in this model. We find the halo number density profiles of voids are not distinguishable from GR, but the same voids are emptier of dark matter in f (R) gravity. This can be observed by weak gravitational lensing of voids, for which the combination of a spec-z and a photo-z survey over the same sky is necessary. For a volume of 1 (Gpc h-1)3, |fR0| = 10-5 and 10-4 may be distinguished from GR at 4σ and 8σ using the lensing tangential shear signal around voids. Sample variance and line-of-sight projection effect sets limits for constraining |fR0| = 10-6. This might be overcome with a larger volume. The smaller halo void abundance and the stronger lensing shear signal of voids in f (R) models may be combined to break the degeneracy between |fR0| and σ8. The outflow of dark matter from void centres are 5, 15 and 35 per cent faster in f (R) gravity for |fR0| = 10-6, 10-5 and 10-4. The velocity dispersions are greater than that in GR by similar amounts. Model differences in velocities imply potential powerful constraints for the model in phase space and in redshift space.

  9. Assessment of heavy metal contents in the ambient air of the Coimbatore city, Tamilnadu, India.

    PubMed

    Vijayanand, C; Rajaguru, P; Kalaiselvi, K; Selvam, K Panneer; Palanivel, M

    2008-12-30

    Industrialization and urbanization are the two major causes of deteriorating air quality. To evaluate the ambient air quality of the Coimbatore city, suspended particulate matter (SPM) was collected at ten stations and analysed for the heavy metals content. The concentrations of seven heavy metals (Zn, Fe, Cu, Pb, Ni, Cr and Cd) were estimated. The level of SPM was found to be either at permissible or non-permissible limit depending upon the category of the sampling station. At majority of sampling stations, concentrations of Zn were found to be maximum than other heavy metals. The order of average concentrations of heavy metals in Coimbatore atmospheric air was Zn>Fe>Cu>Pb>Cr>Ni>Cd. The usage of Zn for protective coating on iron, steel etc. by the industries in Coimbatore city could be the major reason for the higher concentration of this heavy metal in this region. PMID:18471965

  10. Void detecting device

    DOEpatents

    Nakamoto, Koichiro; Ohyama, Nobumi; Adachi, Kiyoshi; Kuwahara, Hajime

    1979-01-01

    A detector to be inserted into a flowing conductive fluid, e.g. sodium coolant in a nuclear reactor, comprising at least one exciting coil to receive an a-c signal applied thereto and two detecting coils located in the proximity of the exciting coil. The difference and/or the sum of the output signals of the detecting coils is computed to produce a flow velocity signal and/or a temperature-responsive signal for the fluid. Such flow velocity signal or temperature signal is rectified synchronously by a signal the phase of which is shifted substantially .+-. 90.degree. with respect to the flow velocity signal or temperature signal, thereby enabling the device to detect voids in the flowing fluid without adverse effects from flow velocity variations or flow disturbances occurring in the fluid.

  11. Lipid content and metabolism of human keratinocyte cultures grown at the air-medium interface.

    PubMed

    Williams, M L; Brown, B E; Monger, D J; Grayson, S; Elias, P M

    1988-07-01

    The differentiation of human keratinocytes in most culture systems is incomplete; e.g., lamellar bodies, the characteristic lipid-delivery organelles of epidermis, are not present. Moreover, their lipid profile does not reflect the distinctive composition found in cornifying epidermis. In contrast, keratinocytes that grow at an air-medium interface exhibit more complete differentiation. In this study, we compared the elaboration of lamellar bodies, the lipid content, and the lipid metabolism of human keratinocytes, cultured both under standard immersed conditions and after lifting to an air-medium interface. Whereas submerged cultures neither elaborated lamellar bodies nor displayed a lipid distribution characteristic of cornifying epidermis, lifted cultures displayed advanced cornification, elaborated lamellar bodies which were deposited in intercellular domains, and a lipid profile more typical of cornifying epidermis. Moreover, lipid biosynthesis was 5-10-fold more active in lifted than in immersed cultures, and was not inhibited by exogenous lipoproteins. These findings are consistent with recent studies that demonstrate both high rates of lipogenesis in differentiating layers of the epidermis as well as autonomy of lipogenesis from the influence of circulating lipoproteins. Thus, the lipid content and metabolism of human keratinocyte cultures, grown at an air-medium interface, demonstrate features that simulate the epidermis. PMID:2456290

  12. Measurement of the muon content in air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Veberič, Darko

    2016-07-01

    The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  13. Millennial and Sub-millennial Variability of Total Air Content from the WAIS Divide Ice Core

    NASA Astrophysics Data System (ADS)

    Edwards, Jon; Brook, Edward; Fegyveresi, John; Lee, James; Mitchell, Logan; Sowers, Todd; Alley, Richard; McConnell, Joe; Severinghaus, Jeff; Baggenstos, Daniel

    2014-05-01

    The analysis of ancient air bubbles trapped in ice is integral to the reconstruction of climate over the last 800 ka. While mixing ratios of greenhouse gases along with isotopic ratios are being studied in ever increasing resolution, one aspect of the gas record that continues to be understudied is the total air content (TAC) of the trapped bubbles. Published records of TAC are often too low in temporal resolution to adequately capture sub-millennial scale variability. Here we present a high-resolution TAC record (10-50 year sampling resolution) from the WAIS Divide ice core, measured at Oregon State and Penn State Universities. The records cover a variety of climatic conditions over the last 56 ka and show millennial variability of up to 10% and sub-millennial variability between 2.5 and 3.5%. We find that using the pore close off volume parameterization (Delomotte et al., J. Glaciology, 1999, v.45), along with the site temperature derived from isotopes, our TAC record implies unrealistically large changes in surface pressure or elevation. For example, the TAC decreases by ~10% between 19.5ka and 17.3ka, and would imply an elevation increase of nearly 800m. The total accumulation of ice over this period is just 280m (Fudge et al. Nature 2013), making the calculated elevation interpretation implausible. To resolve this discrepancy, we investigate the millennial and sub-millennial variability in our TAC record as a function of changes in firn densification and particularly layering. The firn is the uppermost layer of an ice sheet where snow is compressed into ice, trapping ancient air. Thus firn processes are important for the interpretation of total air content as well as other gas records. We compare our TAC record with proxies for dust, temperature and accumulation to determine how processes other than elevation affect TAC.

  14. PRECISION COSMOGRAPHY WITH STACKED VOIDS

    SciTech Connect

    Lavaux, Guilhem; Wandelt, Benjamin D.

    2012-08-01

    We present a purely geometrical method for probing the expansion history of the universe from the observation of the shape of stacked voids in spectroscopic redshift surveys. Our method is an Alcock-Paczynski (AP) test based on the average sphericity of voids posited on the local isotropy of the universe. It works by comparing the temporal extent of cosmic voids along the line of sight with their angular, spatial extent. We describe the algorithm that we use to detect and stack voids in redshift shells on the light cone and test it on mock light cones produced from N-body simulations. We establish a robust statistical model for estimating the average stretching of voids in redshift space and quantify the contamination by peculiar velocities. Finally, assuming that the void statistics that we derive from N-body simulations is preserved when considering galaxy surveys, we assess the capability of this approach to constrain dark energy parameters. We report this assessment in terms of the figure of merit (FoM) of the dark energy task force and in particular of the proposed Euclid mission which is particularly suited for this technique since it is a spectroscopic survey. The FoM due to stacked voids from the Euclid wide survey may double that of all other dark energy probes derived from Euclid data alone (combined with Planck priors). In particular, voids seem to outperform baryon acoustic oscillations by an order of magnitude. This result is consistent with simple estimates based on mode counting. The AP test based on stacked voids may be a significant addition to the portfolio of major dark energy probes and its potentialities must be studied in detail.

  15. Climate and air quality trade-offs in altering ship fuel sulfur content

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  16. Testing Gravity using Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Falck, Bridget

    2016-01-01

    Though general relativity is well-tested on small (Solar System) scales, the late-time acceleration of the Universe provides strong motivation to test GR on cosmological scales. The difference between the small and large scale behavior of gravity is determined by the screening mechanism in modified gravity theories. Dark matter halos are often screened in these models, especially in models with Vainshtein screening, motivating a search for signatures of modified gravity in cosmic voids. We explore density, force, and velocity profiles of voids found in N-body simulations, using both dark matter particles and dark matter halos to identify the voids. The prospect of testing gravity using cosmic voids may be limited by the sparsity of halos as tracers of the density field.

  17. Manipulating ship fuel sulfur content and modeling the effects on air quality and climate

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Laakso, Anton; Schmidt, Anja; Kokkola, Harri; Kuokkanen, Tuomas; Kerminen, Veli-Matti; Lehtinen, Kari E. J.; Laakso, Lauri; Korhonen, Hannele

    2013-04-01

    Aerosol emissions from international shipping are known to cause detrimental health effects on people mainly via increased lung cancer and cardiopulmonary diseases. On the other hand, the aerosol particles from the ship emissions modify the properties of clouds and are believed to have a significant cooling effect on the global climate. In recent years, aerosol emissions from shipping have been more strictly regulated in order to improve air quality and thus decrease the mortality due to ship emissions. Decreasing the aerosol emissions from shipping is projected to decrease their cooling effect, which would intensify the global warming even further. In this study, we use a global aerosol-climate model ECHAM5.5-HAM2 to test if continental air quality can be improved while still retaining the cooling effect from shipping. The model explicitly resolves emissions of aerosols and their pre-cursor gases. The model also calculates the interaction between aerosol particles and clouds, and can thus predict the changes in cloud properties due to aerosol emissions. We design and simulate a scenario where ship fuel sulfur content is strictly limited to 0.1% near all coastal regions, but doubled in the open oceans from the current global mean value of 2.7% (geo-ships). This scenario is compared to three other simulations: 1) No shipping emissions at all (no-ships), 2) present-day shipping emissions (std-ships) and 3) a future scenario where sulfur content is limited to 0.1% in the coastal zones and to 0.5% in the open ocean (future-ships). Global mean radiative flux perturbation (RFP) in std-ships compared to no-ships is calculated to be -0.4 W m-2, which is in the range of previous estimates for present-day shipping emissions. In the geo-ships simulation the corresponding global mean RFP is roughly equal, but RFP is spatially distributed more on the open oceans, as expected. In future-ships the decreased aerosol emissions provide weaker cooling effect of only -0.1 W m-2. In

  18. Clustering and bias measurements of SDSS voids

    NASA Astrophysics Data System (ADS)

    Clampitt, Joseph; Jain, Bhuvnesh; Sánchez, Carles

    2016-03-01

    Using a void catalogue from the Sloan Digital Sky Survey, we present the first measurements of void clustering and the corresponding void bias. Over the range 30-200 Mpc h-1, the void autocorrelation is detected at 5σ significance for voids of radius 15-20 Mpc h-1. We also measure the void-galaxy cross-correlation at higher signal to noise and compare the inferred void bias with the autocorrelation results. Void bias is constant with scale for voids of a given size, but its value falls from 5.6 ± 1.0 to below zero as the void radius increases from 15 to 30 Mpc h-1. The comparison of our measurements with carefully matched galaxy mock catalogues, with no free parameters related to the voids, shows that model predictions can be reliably made for void correlations. We study the dependence of void bias on tracer density and void size with a view to future applications. In combination with our previous lensing measurements of void mass profiles, these clustering measurements provide another step towards using voids as cosmological tracers.

  19. Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete.

    PubMed

    Berriman, J; Purnell, P; Hutchins, D A; Neild, A

    2005-02-01

    This paper describes the use of non-contact ultrasound for the evaluation of concrete. Micromachined capacitance transducers are used to transmit ultrasonic longitudinal chirp signals through concrete samples using air as the coupling medium, and a pulse compression technique is then employed for measurement of time of flight through the sample. The effect on the ultrasonic wave speed of storing concrete samples, made with the same water/cement ratio, at different humidity levels is investigated. It is shown that there is a correlation between humidity and speed of sound, allowing a correction factor for humidity to be derived. A strong positive linear correlation between aggregate content and speed of sound was then observed; there was no obvious correlation between compressive strength and speed of sound. The results from the non-contact system are compared with that from a contact system, and conclusions drawn concerning coupling of energy into the samples. PMID:15567195

  20. Void Nucleation, Growth and Coalescence in Irradiated Metals

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2008-01-11

    A novel computational treatment of dense, stiff, coupled reaction rate equations is introduced to study the nucleation, growth, and possible coalescence of cavities during neutron irradiation of metals. Radiation damage is modeled by the creation of Frenkel pair defects and helium impurity atoms. A multi-dimensional cluster size distribution function allows independent evolution of the vacancy and helium content of cavities, distinguishing voids and bubbles. A model with sessile cavities and no cluster-cluster coalescence can result in a bimodal final cavity size distribution with coexistence of small, high-pressure bubbles and large, low-pressure voids. A model that includes unhindered cavity diffusion and coalescence ultimately removes the small helium bubbles from the system, leaving only large voids. The terminal void density is also reduced and the incubation period and terminal swelling rate can be greatly altered by cavity coalescence. Temperature-dependent trapping of voids/bubbles by precipitates and alterations in void surface diffusion from adsorbed impurities and internal gas pressure may give rise to intermediate swelling behavior through their effects on cavity mobility and coalescence.

  1. 40 CFR 1065.526 - Repeating void modes or test intervals.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Repeating void modes or test intervals. 1065.526 Section 1065.526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.526 Repeating void modes or...

  2. 40 CFR 1065.526 - Repeating void modes or test intervals.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Repeating void modes or test intervals. 1065.526 Section 1065.526 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Performing an Emission Test Over Specified Duty Cycles § 1065.526 Repeating void modes or...

  3. The life and death of cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Elahi, Pascal; Falck, Bridget; Onions, Julian; Hamaus, Nico; Knebe, Alexander; Srisawat, Chaichalit; Schneider, Aurel

    2014-12-01

    We investigate the formation, growth, merger history, movement, and destruction of cosmic voids detected via the watershed transform code VIDE in a cosmological N-body dark matter Λ cold dark matter simulation. By adapting a method used to construct halo merger trees, we are able to trace individual voids back to their initial appearance and record the merging and evolution of their progenitors at high redshift. For the scales of void sizes captured in our simulation, we find that the void formation rate peaks at scale factor 0.3, which coincides with a growth in the void hierarchy and the emergence of dark energy. Voids of all sizes appear at all scale factors, though the median initial void size decreases with time. When voids become detectable they have nearly their present-day volumes. Almost all voids have relatively stable growth rates and suffer only infrequent minor mergers. Dissolution of a void via merging is very rare. Instead, most voids maintain their distinct identity as annexed subvoids of a larger parent. The smallest voids are collapsing at the present epoch, but void destruction ceases after scale factor 0.3. In addition, voids centres tend to move very little, less than 10-2 of their effective radii per ln a, over their lifetimes. Overall, most voids exhibit little radical dynamical evolution; their quiet lives make them pristine probes of cosmological initial conditions and the imprint of dark energy.

  4. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  5. Low-void polyimide resins for autoclave processing

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.

    1972-01-01

    Development of an advanced A-type polyimide, which can be used to produce autoclave molded, low-void content composites suitable for use at temperatures up to 316 C is reported. It consists of a mixture of methyl nadic anhydride, an 80:20 molar ratio of methylene dianaline and thiodianilene, and pyromellitic dianhydride.

  6. Finding Brazing Voids by Holography

    NASA Technical Reports Server (NTRS)

    Galluccio, R.

    1986-01-01

    Vibration-induced interference fringes reveal locations of defects. Holographic apparatus used to view object while vibrated ultrasonically. Interference fringes in hologram reveal brazing defects. Holographic technique locates small voids in large brazed joints. Identifies unbrazed regions 1 in. to second power (6 cm to the second power) or less in area.

  7. Impact of sulfur content regulations of shipping fuel on coastal air quality

    NASA Astrophysics Data System (ADS)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    Shipping traffic is a sector that faces an enormous growth rate and contributes substantially to the emissions from the transportation sector, but lacks regulations and controls. Shipping is not enclosed in the Kyoto Protocol. However, the International Maritime Organization (IMO) introduced sufhur limits for marine heavy fuels, nitrogen oxide limits for newly-built ship engines and established Emission Control Areas (ECA) in the North and Baltic Sea as well as around North America with the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78 Annex VI). Recently, on the 1st of January 2015, the allowed sulfur content of marine fuels inside Sulfur Emission Control Areas has been significantly decreased from 1.0% to 0.1%. However, measurements of reactive trace gases and the chemical composition of the marine troposphere along shipping routes are sparse and up to now there is no regular monitoring system available. The project MeSmarT (measurements of shipping emissions in the marine troposphere) is a cooperation between the University of Bremen, the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz-Zentrum Geesthacht. This study aims to analyse the influence of shipping emissions on the coastal air quality by evaluating ground-based remote sensing measurements using the MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) technique. Measurements of the atmospheric trace gases nitrogen dioxide (NO2) and sulfur dioxide (SO2) have been carried out in the marine troposphere at the MeSmarT measurement sites in Wedel and on Neuwerk and on-board several ship cruises on the North and Baltic Sea. The capability of two-channel MAX-DOAS systems to do simultaneous measurements in the UV and visible spectral range has been used in the so called "onion-peeling" approach to derive spatial distributions of ship emissions and to analyse the movement of the exhausted

  8. Mineral content of urban plants as an indicator of air sulphate pollution

    SciTech Connect

    Ufimtseva, M.D.; Zaickina, L.I.

    1996-08-01

    Phytogeochemical indication constitutes one of the promising methods of urban environment monitoring. Usually the phytogeochemical assessment includes the estimation of heavy metal content in urban plants in reference to the regional background level. The indication, based on the diversity of the biological response reactions to the industrial contamination, allows us to use the other parameters for the characterization of current condition of the urban environment (and particularly the atmospheric contamination) as well. As it is well known, mineral phytolites which may constitute up to 85% of dry weight are formed in plant tissues. The mineral composition of plants does not seem to be studied well enough as yet, and the data on mineral complexes in urban plants are absent completely. The authors` attempt was to study the peculiarities of urban plant mineral content and to reveal the value of the quantitative proportion of different mineral compounds for the air pollution indication. Urban plant mineral composition was tested in the samples of ashes by means of the infrared (IR) spectroscopy method which is usually used for the estimation of mineral compounds in rock. The IR absorption spectra were taken for the samples of bark or leaf ashes, taken from the tree, shrub, and herbaceous species that were most common and widely distributed both throughout the industrial areas and in the areas without noticeable pollution. These spectra look like curves with a lot of peales with different range which evidently correspond not to clear substances but to the mixtures of different minerals. The variation of absorbtion intensities in the observed lands makes it possible to estimate the quantitative contribution of different minerals (carbonates, sulphates, phosphates, quartz, feldspar, etc.) to the general IR spectrum.

  9. Investigation of antenna frequency impact on assessing voids of asphalt pavements using GPR

    NASA Astrophysics Data System (ADS)

    Plati, C.; Georgouli, K.; Loizos, A.

    2012-04-01

    , such voids or moisture, is concerned. The implementation of the horn antenna method is dependent upon, amongst others, the resolution of the antenna in use. The present research work investigates the application of the GPR sensor technique to assess voids within the asphalt layers, with a focus on the air-coupled antenna penetration depth and resolution. For this purpose the dielectric properties of asphalt layer materials were estimated and related voids contents were evaluated based on data collected by an air-coupled GPR system, operating at a 1 GHz and alternatively a 2 GHz central frequency. The collected data is analyzed comparatively for the two antennas. Comparison results indicate differences between the voids determined from the 1 GHz and 2GHz antennas. These differences are further analyzed and evaluated for pavement quality control purposes. The indication of a relationship between the measured voids is also evaluated, while ground truth data is used for the validation of the GPR data analysis results. The above is presented and discussed thoroughly with the aim to assist pavement quality assurance systems

  10. Measurements of the muon content of air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Valiño, I.; Pierre Auger Collaboration

    2015-08-01

    The Pierre Auger Observatory offers a unique window to study cosmic rays and particle physics at energies above 3 EeV (corresponding to a centre-of-mass energy of 75 TeV in proton-proton collisions) inaccessible to accelerator experiments. We discuss the different methods of estimating the number of muons in showers recorded at the Pierre Auger Observatory, which is an observable sensitive to primary mass composition and to properties of the hadronic interactions in the shower. The muon content, derived from data with these methods, is presented and compared to predictions from the post-LHC hadronic interaction models for different primary composition. We find that models do not reproduce well the Auger observations, displaying a deficit of muons at the ground. In the light of these results, a better understanding of ultra-high energy extensive air showers and hadronic interactions is crucial to determine the composition of ultra-high energy cosmic rays. We report on the upgrade plans of the Pierre Auger Observatory to achieve this science goal.

  11. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  12. Formation Of Voids In Dusty Lorentzian Plasma

    SciTech Connect

    Bahamida, S.; Annou, K.; Annou, R.

    2008-09-07

    We study the possibility of formation of voids in Lorentzian plasmas containing of dust particles obeying to vortex-like velocity distribution. The size of the void is found to be ion spectral index dependent.

  13. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-08-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  14. What Health-Related Information Flows through You Every Day? A Content Analysis of Microblog Messages on Air Pollution

    ERIC Educational Resources Information Center

    Yang, Qinghua; Yang, Fan; Zhou, Chun

    2015-01-01

    Purpose: The purpose of this paper is to investigate how the information about haze, a term used in China to describe the air pollution problem, is portrayed on Chinese social media by different types of organizations using the theoretical framework of the health belief model (HBM). Design/methodology/approach: A content analysis was conducted…

  15. Deuterium content of H2 measured on air samples from the CARIBIC project

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.; Schuck, T.; Brenninkmeijer, C. A. M.; Röckmann, T.

    2009-04-01

    H2 is present in the atmosphere at levels of ~500 ppb; its largest sources are the oxidation of methane and other hydrocarbons and combustion processes. In the coming decades, H2 levels are expected to rise due to use of hydrogen as an energy carrier. This may affect methane lifetimes and stratospheric ozone depletion. Unfortunately, large uncertainties still exist in the global H2budget. The different sources and sinks of H2 have very distinct isotopic signatures and fractionation coefficients, respectively. For this reason, measurements of isotopic composition are a promising tool to gain insight into H2 source and sink processes and to constrain the terms in the global budget. The CARIBIC project uses an automated instrument container on board of a commercial passenger aircraft to carry out in situ measurements of trace gases and aerosols and to collect air samples. The use of a commercial airliner results in samples mostly from the Upper Troposphere-Lower Stratosphere (UTLS) region. Although the UTLS region is considered to be an interesting part of the atmosphere, relatively few measurements have been made there before. The CARIBIC samples are routinely analyzed for various gases, including four important greenhouse gases. In addition, air samples of 15 CARIBIC flights have now been analyzed for molecular hydrogen concentration (H2) and H2 deuterium content (^D-H2) in the isotope laboratory of the Institute of Marine and Atmospheric Research Utrecht (IMAU). A GC-IRMS system (similar to Rhee et al. [2004]) is used to determine the concentration and deuterium content of atmospheric H2 precisely and routinely. This poster will present a selection of the first results. For some flights, samples close to the takeoff and landing region show strong contamination signatures (high H2 concentrations and low ^D-H2 values). With the exclusion of these samples, ^D values correlate negatively with methane concentration, as observed previously by Rahn et al. [2003] and R

  16. A study of void effects on the interlaminar shear strength of unidirectional graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1990-01-01

    A study was conducted to evaluate the effect of voids on the interlaminar shear strength (ILSS) of a polyimide matrix composite system. The graphite/PRM-15 composite was chosen for study because of the extensive amount of experience that has been amassed in the processing of this material. Composite densities and fiber contents of more than thirty different laminates were measured along with ILSS. Void contents were calculated and the void geometry and distribution were noted using microscopic techniques such as those used in metallography. It was found that there was a good empirical correlation between ILSS and composite density. The most acceptable relationship between the ILSS and density was found to be a power equation which closely resembles theoretically derived expressions. An increase in scatter in the strength data was observed as the void content increased. In laminates with low void content, the void appears to be more segregated in one area of the laminate. It was found that void free composites could be processed in matched metal die molds at pressures greater than 1.4 and less than 6.9 MPa.

  17. Fuzzy Reasoning to More Accurately Determine Void Areas on Optical Micrographs of Composite Structures

    NASA Technical Reports Server (NTRS)

    Dominquez, Jesus A.; Tate, Lanetra C.; Wright, M. Clara; Caraccio, Anne

    2013-01-01

    Accomplishing the best-performing composite matrix (resin) requires that not only the processing method but also the cure cycle generate low-void-content structures. If voids are present, the performance of the composite matrix will be significantly reduced. This is usually noticed by significant reductions in matrix-dominated properties, such as compression and shear strength. Voids in composite materials are areas that are absent of the composite components: matrix and fibers. The characteristics of the voids and their accurate estimation are critical to determine for high performance composite structures. One widely used method of performing void analysis on a composite structure sample is acquiring optical micrographs or Scanning Electron Microscope (SEM) images of lateral sides of the sample and retrieving the void areas within the micrographs/images using an image analysis technique. Segmentation for the retrieval and subsequent computation of void areas within the micrographs/images is challenging as the gray-scaled values of the void areas are close to the gray-scaled values of the matrix leading to the need of manually performing the segmentation based on the histogram of the micrographs/images to retrieve the void areas. The use of an algorithm developed by NASA and based on Fuzzy Reasoning (FR) proved to overcome the difficulty of suitably differentiate void and matrix image areas with similar gray-scaled values leading not only to a more accurate estimation of void areas on composite matrix micrographs but also to a faster void analysis process as the algorithm is fully autonomous.

  18. The nature of voids - I. Watershed void finders and their connection with theoretical models

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.

    2015-12-01

    The statistical study of voids in the matter distribution promises to be an important tool for precision cosmology, but there are known discrepancies between theoretical models of voids and the voids actually found in large simulations or galaxy surveys. The empirical properties of observed voids are also not well understood. In this paper, we study voids in an N-body simulation, using the ZOBOV watershed algorithm. As in other studies, we use sets of subsampled dark matter particles as tracers to identify voids, but we use the full-resolution simulation output to measure dark matter densities at the identified locations. Voids span a wide range of sizes and densities, but there is a clear trend towards larger voids containing deeper density minima, a trend which is expected for all watershed void finders. We also find that the tracer density at void locations is usually smaller than the true density, and that this relationship depends on the sampling density of tracers. We show that fits given in the literature fail to match the observed density profiles of voids. The average enclosed density contrast within watershed voids varies widely with both the size of the void and the minimum density within it, but is always far from the shell-crossing threshold expected from theoretical models. Voids with deeper density minima also show much broader density profiles. We discuss the implications of these results for the excursion set approach to modelling such voids.

  19. Using aliphatic alcohols as gaseous tracers in determination of water contents and air-water interfacial areas in unsaturated sands

    NASA Astrophysics Data System (ADS)

    Sung, Menghau; Chen, Bi-Hsiang

    2011-11-01

    A new type of gaseous tracer utilizing nontoxic aliphatic alcohols for the determination of water content and air-water interfacial area is tested on unsaturated sands of low water content. Alcohol vapors are generated at room temperature and passed through the experimental sand column. Breakthrough curves (BTCs) of these vapors are obtained by monitoring their effluent concentrations using GC-FID. The retardation factor with respect to each vapor transport process is obtained by optimizing BTCs data using the CXTFIT program in the reverse problem mode. The water content and the interfacial area are subsequently calculated from their retardation factors by both equilibrium and nonequilibrium transport models. Experimental results indicate that the pentanol tracer is feasible in the determination of water content at conditions when the degree of water saturation is low. In the determination of air-water interfacial area, decanol is selected due to its interfacial adsorption characteristics. By comparing to interfacial areas from theoretical predictions as well as other conventional tarcer methods, the ones determined from the decanol tracer tests are found to be close to the true interfacial areas when the water content is low.

  20. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  1. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  2. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  3. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  4. 40 CFR 68.215 - Permit content and air permitting authority or designated agency requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... authority or designated agency requirements. 68.215 Section 68.215 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Other... requested by the air permitting authority or designated agency. (c) For 40 CFR part 70 or part 71...

  5. Nocturia: The circadian voiding disorder

    PubMed Central

    Moon, Young Tae; Kim, Kyung Do

    2016-01-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  6. Nocturia: The circadian voiding disorder.

    PubMed

    Kim, Jin Wook; Moon, Young Tae; Kim, Kyung Do

    2016-05-01

    Nocturia is a prevalent condition of waking to void during the night. The concept of nocturia has evolved from being a symptomatic aspect of disease associated with the prostate or bladder to a form of lower urinary tract disorder. However, recent advances in circadian biology and sleep science suggest that it might be important to consider nocturia as a form of circadian dysfunction. In the current review, nocturia is reexamined with an introduction to sleep disorders and recent findings in circadian biology in an attempt to highlight the importance of rediscovering nocturia as a problem of chronobiology. PMID:27195315

  7. Conservative management of voiding dysfunction

    PubMed Central

    Patel, Anita

    2007-01-01

    This review article discusses the efficacy of various conservative therapies in the management of voiding dysfunction with special reference to urinary incontinence. The article emphasizes the fact that conservative therapies have limited side effects and they do not jeopardize future treatment options. Behaviour therapy, pelvic floor therapy and biofeedback; electrical and magnetic stimulation are discussed here individually. Though there is unanimous agreement that these therapies improve quality of life, complete cure is rare. All therapies work better in conjunction with each other rather than in isolation. The review also highlights the need for randomized controlled trials of better methodology. PMID:19675794

  8. Air content and O2/N2 tuned chronologies on local insolation signatures in the Vostok ice core are similar

    NASA Astrophysics Data System (ADS)

    Lipenkov, V.; Raynaud, D.; Loutre, M.-F.; Duval, P.; Lemieux-Dudon, B.

    2009-04-01

    An accurate chronology of ice cores is needed for interpreting the paleoclimatic record and understanding the relation between insolation and climate. A new domain of research in this area has been initially stimulated by the work of M. Bender (2002) linking the record of O2/N2 ratio in the air trapped in the Vostok ice with the local insolation. More recently, it has been proposed that the long-term changes in air content, V, recorded in ice from the high Antarctic plateau is also dominantly imprinted by the local summer insolation (Raynaud et al., 2007). The present paper presents a new V record from Vostok, which is compared with the published Vostok O2/N2 record for the same period of time (150-400 ka BP) by using the same spectral analysis methods. The spectral differences between the two properties and the possible mechanisms linking them with insolation through the surface snow structure and the close-off processes are discussed. The main result of our study is that the two experimentally independent local insolation proxies lead to absolute (orbital) time scales, which agree together within a standard deviation of 0.6 ka. This result strongly adds credibility to the air content of ice and the O2 to N2 ratio of the air trapped in ice as equally reliable and complementary tools for accurate dating of existing and future deep ice cores. References: M. Bender, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth and Planetary Science Letters 204(2002) 275-289. D. Raynaud, V. Lipenkov, B. Lemieux-Dudon, P. Duval, M.F. Loutre, N. Lhomme, The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records, Earth and Planetary Science Letters 261(2007) 337-349.

  9. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  10. Constraints on Cosmology and Gravity from the Dynamics of Voids.

    PubMed

    Hamaus, Nico; Pisani, Alice; Sutter, P M; Lavaux, Guilhem; Escoffier, Stéphanie; Wandelt, Benjamin D; Weller, Jochen

    2016-08-26

    The Universe is mostly composed of large and relatively empty domains known as cosmic voids, whereas its matter content is predominantly distributed along their boundaries. The remaining material inside them, either dark or luminous matter, is attracted to these boundaries and causes voids to expand faster and to grow emptier over time. Using the distribution of galaxies centered on voids identified in the Sloan Digital Sky Survey and adopting minimal assumptions on the statistical motion of these galaxies, we constrain the average matter content Ω_{m}=0.281±0.031 in the Universe today, as well as the linear growth rate of structure f/b=0.417±0.089 at median redshift z[over ¯]=0.57, where b is the galaxy bias (68% C.L.). These values originate from a percent-level measurement of the anisotropic distortion in the void-galaxy cross-correlation function, ϵ=1.003±0.012, and are robust to consistency tests with bootstraps of the data and simulated mock catalogs within an additional systematic uncertainty of half that size. They surpass (and are complementary to) existing constraints by unlocking cosmological information on smaller scales through an accurate model of nonlinear clustering and dynamics in void environments. As such, our analysis furnishes a powerful probe of deviations from Einstein's general relativity in the low-density regime which has largely remained untested so far. We find no evidence for such deviations in the data at hand. PMID:27610841

  11. Cosmology with void-galaxy correlations.

    PubMed

    Hamaus, Nico; Wandelt, Benjamin D; Sutter, P M; Lavaux, Guilhem; Warren, Michael S

    2014-01-31

    Galaxy bias, the unknown relationship between the clustering of galaxies and the underlying dark matter density field is a major hurdle for cosmological inference from large-scale structure. While traditional analyses focus on the absolute clustering amplitude of high-density regions mapped out by galaxy surveys, we propose a relative measurement that compares those to the underdense regions, cosmic voids. On the basis of realistic mock catalogs we demonstrate that cross correlating galaxies and voids opens up the possibility to calibrate galaxy bias and to define a static ruler thanks to the observable geometric nature of voids. We illustrate how the clustering of voids is related to mass compensation and show that volume-exclusion significantly reduces the degree of stochasticity in their spatial distribution. Extracting the spherically averaged distribution of galaxies inside voids from their cross correlations reveals a remarkable concordance with the mass-density profile of voids. PMID:24580436

  12. Universal density profile for cosmic voids.

    PubMed

    Hamaus, Nico; Sutter, P M; Wandelt, Benjamin D

    2014-06-27

    We present a simple empirical function for the average density profile of cosmic voids, identified via the watershed technique in ΛCDM N-body simulations. This function is universal across void size and redshift, accurately describing a large radial range of scales around void centers with only two free parameters. In analogy to halo density profiles, these parameters describe the scale radius and the central density of voids. While we initially start with a more general four-parameter model, we find two of its parameters to be redundant, as they follow linear trends with the scale radius in two distinct regimes of the void sample, separated by its compensation scale. Assuming linear theory, we derive an analytic formula for the velocity profile of voids and find an excellent agreement with the numerical data as well. In our companion paper [Sutter et al., arXiv:1309.5087 [Mon. Not. R. Astron. Soc. (to be published)

  13. Prenatal Ambient Air Pollution, Placental Mitochondrial DNA Content, and Birth Weight in the INMA (Spain) and ENVIRONAGE (Belgium) Birth Cohorts

    PubMed Central

    Clemente, Diana B.P.; Casas, Maribel; Vilahur, Nadia; Begiristain, Haizea; Bustamante, Mariona; Carsin, Anne-Elie; Fernández, Mariana F.; Fierens, Frans; Gyselaers, Wilfried; Iñiguez, Carmen; Janssen, Bram G.; Lefebvre, Wouter; Llop, Sabrina; Olea, Nicolás; Pedersen, Marie; Pieters, Nicky; Santa Marina, Loreto; Souto, Ana; Tardón, Adonina; Vanpoucke, Charlotte; Vrijheid, Martine; Sunyer, Jordi; Nawrot, Tim S.

    2015-01-01

    Background: Mitochondria are sensitive to environmental toxicants due to their lack of repair capacity. Changes in mitochondrial DNA (mtDNA) content may represent a biologically relevant intermediate outcome in mechanisms linking air pollution and fetal growth restriction. Objective: We investigated whether placental mtDNA content is a possible mediator of the association between prenatal nitrogen dioxide (NO2) exposure and birth weight. Methods: We used data from two independent European cohorts: INMA (n = 376; Spain) and ENVIRONAGE (n = 550; Belgium). Relative placental mtDNA content was determined as the ratio of two mitochondrial genes (MT-ND1 and MTF3212/R3319) to two control genes (RPLP0 and ACTB). Effect estimates for individual cohorts and the pooled data set were calculated using multiple linear regression and mixed models. We also performed a mediation analysis. Results: Pooled estimates indicated that a 10-μg/m3 increment in average NO2 exposure during pregnancy was associated with a 4.9% decrease in placental mtDNA content (95% CI: –9.3, –0.3%) and a 48-g decrease (95% CI: –87, –9 g) in birth weight. However, the association with birth weight was significant for INMA (–66 g; 95% CI: –111, –23 g) but not for ENVIRONAGE (–20 g; 95% CI: –101, 62 g). Placental mtDNA content was associated with significantly higher mean birth weight (pooled analysis, interquartile range increase: 140 g; 95% CI: 43, 237 g). Mediation analysis estimates, which were derived for the INMA cohort only, suggested that 10% (95% CI: 6.6, 13.0 g) of the association between prenatal NO2 and birth weight was mediated by changes in placental mtDNA content. Conclusion: Our results suggest that mtDNA content can be one of the potential mediators of the association between prenatal air pollution exposure and birth weight. Citation: Clemente DB, Casas M, Vilahur N, Begiristain H, Bustamante M, Carsin AE, Fernández MF, Fierens F, Gyselaers W, Iñiguez C, Janssen BG

  14. Predicting seed cotton moisture content from changes in drying air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Having an accurate measurement of seed-cotton moisture content in a cotton gin would help ginners determine how much heat to use to dry the cotton. A mathematical model was used to predict seed cotton moisture content in the overhead section of a gin. The model took into account the temperature, mas...

  15. Voids in cosmological simulations over cosmic time

    NASA Astrophysics Data System (ADS)

    Wojtak, Radosław; Powell, Devon; Abel, Tom

    2016-06-01

    We study evolution of voids in cosmological simulations using a new method for tracing voids over cosmic time. The method is based on tracking watershed basins (contiguous regions around density minima) of well-developed voids at low redshift, on a regular grid of density field. It enables us to construct a robust and continuous mapping between voids at different redshifts, from initial conditions to the present time. We discuss how the new approach eliminates strong spurious effects of numerical origin when voids' evolution is traced by matching voids between successive snapshots (by analogy to halo merger trees). We apply the new method to a cosmological simulation of a standard Λ-cold-dark-matter cosmological model and study evolution of basic properties of typical voids (with effective radii 6 h-1 Mpc < Rv < 20 h-1 Mpc at redshift z = 0) such as volumes, shapes, matter density distributions and relative alignments. The final voids at low redshifts appear to retain a significant part of the configuration acquired in initial conditions. Shapes of voids evolve in a collective way which barely modifies the overall distribution of the axial ratios. The evolution appears to have a weak impact on mutual alignments of voids implying that the present state is in large part set up by the primordial density field. We present evolution of dark matter density profiles computed on isodensity surfaces which comply with the actual shapes of voids. Unlike spherical density profiles, this approach enables us to demonstrate development of theoretically predicted bucket-like shape of the final density profiles indicating a wide flat core and a sharp transition to high-density void walls.

  16. Void evolution in polycarbonate at elevated temperatures

    SciTech Connect

    Chen, Y. H.; Li, C. L.; Lee, Sanboh; Kuo Feng Chou

    2011-08-15

    The void evolution in polycarbonate (PC) at elevated temperatures was investigated. Internal cylindrical cracks and voids were induced in PC by Nd-YAG laser irradiation. During the annealing at temperatures of 177-197 deg. C, the spherical void grows to a maximum size, which then decreases, and is finally leveling off. A model of void evolution based on the evaporation and condensation mechanisms for growth and shrinkage is proposed. The theoretical predictions are in good agreement with the experimental data. The activation energies of evaporation and condensation processes are determined to be 477.31 and 611.49 kJ/mol, respectively.

  17. Void evolution in polycarbonate at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Chen, Y. H.; Feng Chou, Kuo; Li, C. L.; Lee, Sanboh

    2011-08-01

    The void evolution in polycarbonate (PC) at elevated temperatures was investigated. Internal cylindrical cracks and voids were induced in PC by Nd-YAG laser irradiation. During the annealing at temperatures of 177-197 °C, the spherical void grows to a maximum size, which then decreases, and is finally leveling off. A model of void evolution based on the evaporation and condensation mechanisms for growth and shrinkage is proposed. The theoretical predictions are in good agreement with the experimental data. The activation energies of evaporation and condensation processes are determined to be 477.31 and 611.49 kJ/mol, respectively.

  18. Curve fitting air sample filter decay curves to estimate transuranic content.

    PubMed

    Hayes, Robert B; Chiou, Hung Cheng

    2004-01-01

    By testing industry standard techniques for radon progeny evaluation on air sample filters, a new technique is developed to evaluate transuranic activity on air filters by curve fitting the decay curves. The industry method modified here is simply the use of filter activity measurements at different times to estimate the air concentrations of radon progeny. The primary modification was to not look for specific radon progeny values but rather transuranic activity. By using a method that will provide reasonably conservative estimates of the transuranic activity present on a filter, some credit for the decay curve shape can then be taken. By carrying out rigorous statistical analysis of the curve fits to over 65 samples having no transuranic activity taken over a 10-mo period, an optimization of the fitting function and quality tests for this purpose was attained. PMID:14695010

  19. Piezoelectric performance of fluor polymer sandwiches with different void structures

    NASA Astrophysics Data System (ADS)

    Lou, Kexing; Zhang, Xiaoqing; Xia, Zhongfu

    2012-06-01

    Film sandwiches, consisting of two outer layers of fluoroethylenepropylene and one middle layer of patterned porous polytetrafluoroethylene, were prepared by patterning and fusion bonding. Contact charging was conducted to render the films piezoelectric. The critical voltage to trigger air breakdown in the inner voids in the fabricated films was investigated. The piezoelectric d 33 coefficients were measured employing the quasistatic method and dielectric resonance spectrum. The results show that the critical voltage for air breakdown in the inner voids is associated with the void microstructure of the films. For the films with patterning factors of 0%, 25% and 44%, the critical values are 300, 230 and 230 kV/cm, respectively. With an increase in the patterning factor, both the piezoelectric d 33 coefficients determined from the dielectric resonance spectra and those determined from quasistatic measurements increase, which might be due to a decrease in Young's modulus for the films. The nonlinearity of d 33 becomes increasingly obvious as the patterning factor increases.

  20. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors—Air Gap Effect

    PubMed Central

    Bore, Thierry; Wagner, Norman; Delepine Lesoille, Sylvie; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  1. Error Analysis of Clay-Rock Water Content Estimation with Broadband High-Frequency Electromagnetic Sensors--Air Gap Effect.

    PubMed

    Bore, Thierry; Wagner, Norman; Lesoille, Sylvie Delepine; Taillade, Frederic; Six, Gonzague; Daout, Franck; Placko, Dominique

    2016-01-01

    Broadband electromagnetic frequency or time domain sensor techniques present high potential for quantitative water content monitoring in porous media. Prior to in situ application, the impact of the relationship between the broadband electromagnetic properties of the porous material (clay-rock) and the water content on the frequency or time domain sensor response is required. For this purpose, dielectric properties of intact clay rock samples experimental determined in the frequency range from 1 MHz to 10 GHz were used as input data in 3-D numerical frequency domain finite element field calculations to model the one port broadband frequency or time domain transfer function for a three rods based sensor embedded in the clay-rock. The sensor response in terms of the reflection factor was analyzed in time domain with classical travel time analysis in combination with an empirical model according to Topp equation, as well as the theoretical Lichtenecker and Rother model (LRM) to estimate the volumetric water content. The mixture equation considering the appropriate porosity of the investigated material provide a practical and efficient approach for water content estimation based on classical travel time analysis with the onset-method. The inflection method is not recommended for water content estimation in electrical dispersive and absorptive material. Moreover, the results clearly indicate that effects due to coupling of the sensor to the material cannot be neglected. Coupling problems caused by an air gap lead to dramatic effects on water content estimation, even for submillimeter gaps. Thus, the quantitative determination of the in situ water content requires careful sensor installation in order to reach a perfect probe clay rock coupling. PMID:27096865

  2. Statistics and geometry of cosmic voids

    SciTech Connect

    Gaite, José

    2009-11-01

    We introduce new statistical methods for the study of cosmic voids, focusing on the statistics of largest size voids. We distinguish three different types of distributions of voids, namely, Poisson-like, lognormal-like and Pareto-like distributions. The last two distributions are connected with two types of fractal geometry of the matter distribution. Scaling voids with Pareto distribution appear in fractal distributions with box-counting dimension smaller than three (its maximum value), whereas the lognormal void distribution corresponds to multifractals with box-counting dimension equal to three. Moreover, voids of the former type persist in the continuum limit, namely, as the number density of observable objects grows, giving rise to lacunar fractals, whereas voids of the latter type disappear in the continuum limit, giving rise to non-lacunar (multi)fractals. We propose both lacunar and non-lacunar multifractal models of the cosmic web structure of the Universe. A non-lacunar multifractal model is supported by current galaxy surveys as well as cosmological N-body simulations. This model suggests, in particular, that small dark matter halos and, arguably, faint galaxies are present in cosmic voids.

  3. Void Fraction Instrument operation and maintenance manual

    SciTech Connect

    Borgonovi, G.; Stokes, T.I.; Pearce, K.L.; Martin, J.D.; Gimera, M.; Graves, D.B.

    1994-09-01

    This Operations and Maintenance Manual (O&MM) addresses riser installation, equipment and personnel hazards, operating instructions, calibration, maintenance, removal, and other pertinent information necessary to safely operate and store the Void Fraction Instrument. Final decontamination and decommissioning of the Void Fraction Instrument are not covered in this document.

  4. Pores and Void in Asclepiades' Physical Theory.

    PubMed

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades' theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus' theory. PMID:22984299

  5. Pores and Void in Asclepiades’ Physical Theory

    PubMed Central

    Leith, David

    2012-01-01

    This paper examines a fundamental, though relatively understudied, aspect of the physical theory of the physician Asclepiades of Bithynia, namely his doctrine of pores. My principal thesis is that this doctrine is dependent on a conception of void taken directly from Epicurean physics. The paper falls into two parts: the first half addresses the evidence for the presence of void in Asclepiades’ theory, and concludes that his conception of void was basically that of Epicurus; the second half focuses on the precise nature of Asclepiadean pores, and seeks to show that they represent void interstices between the primary particles of matter which are the constituents of the human body, and are thus exactly analogous to the void interstices between atoms within solid objects in Epicurus’ theory. PMID:22984299

  6. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  7. Testing spherical evolution for modelling void abundances

    NASA Astrophysics Data System (ADS)

    Achitouv, Ixandra; Neyrinck, Mark; Paranjape, Aseem

    2015-08-01

    We compare analytical predictions of void volume functions to those measured from N-body simulations, detecting voids with the ZOBOV void finder. We push to very small, non-linear voids, below few Mpc radius, by considering the unsampled dark matter density field. We also study the case where voids are identified using haloes. We develop analytical formula for the void abundance of both the excursion set approach and the peaks formalism. These formulas are valid for random walks smoothed with a top-hat filter in real space, with a large class of realistic barrier models. We test the extent to which the spherical evolution approximation, which forms the basis of the analytical predictions, models the highly aspherical voids that occur in the cosmic web, and are found by a watershed-based algorithm such as ZOBOV. We show that the volume function returned by ZOBOV is quite sensitive to the choice of treatment of subvoids, a fact that has not been appreciated previously. For reasonable choices of subvoid exclusion, we find that the Lagrangian density δv of the ZOBOV voids - which is predicted to be a constant δv ≈ -2.7 in the spherical evolution model - is different from the predicted value, showing substantial scatter and scale dependence. This result applies to voids identified at z = 0 with effective radius between 1 and 10 h-1 Mpc. Our analytical approximations are flexible enough to give a good description of the resulting volume function; however, this happens for choices of parameter values that are different from those suggested by the spherical evolution assumption. We conclude that analytical models for voids must move away from the spherical approximation in order to be applied successfully to observations, and we discuss some possible ways forward.

  8. Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents.

    PubMed

    Pampanin, Daniela M; Ballarin, Loriano; Carotenuto, Lucia; Marin, Maria G

    2002-03-01

    The Venus clam Chamelea gallina is fairly common along the western coasts of the Adriatic and is subjected to intense fishing. Since over the last 20 years extensive hypoxic and anoxic conditions have repeatedly damaged this natural resource, we decided to study the effects of anoxic stress on the functionality of clam haemocytes and the consequences on immune responses. Clams, exposed to air, close their valves and tissues become anoxic and metabolism processes switch to anaerobiosis. In these conditions, a significant decrease in the haematocrit value and in the percentage of acid phosphatase-positive haemocytes was observed, while the number of cells with beta-glucuronidase significantly increased after day 1. The above indices generally returned to control values when clams were re-immersed in seawater after 1 day of treatment. Clams exposed to air for 2 days and then re-immersed, attempted to recover in the subsequent 3 days. Animals had fully recovered on day 4. Three-day-exposed clams did not recover. Phagocytic and adhesion indices decreased significantly after the first day of air exposure. The change in frequency of three types of circulating cells (spreading, round, apoptotic) was also monitored. PMID:11867286

  9. Observation of voids and optical seizing of voids in silica glass with infrared femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Watanabe, Wataru; Toma, Tadamasa; Yamada, Kazuhiro; Nishii, Junji; Hayashi, Ken-ichi; Itoh, Kazuyoshi

    2000-11-01

    Many researchers have investigated the interaction of femtosecond laser pulses with a wide variety of materials. The structural modifications both on the surface and inside the bulk of transparent materials have been demonstrated. When femtosecond laser pulses are focused into glasses with a high numerical-aperture objective, voids are formed. We demonstrate that one can seize and move voids formed by femtosecond laser pulses inside silica glass and also merge two voids into one. We also present clear evidence that a void is a cavity by showing a scanning-electron-microscope image of cleft voids: we clove through the glass along a plane that includes the laser-ablated thin line on the surface and the voids formed inside. The optical seizing and merging of voids are important basic techniques for fabricate micro-optical dynamic devices, such as the rewritable 3-D optical storage.

  10. Interfacial area, velocity and void fraction in two-phase slug flow

    SciTech Connect

    Kojasoy, G.; Riznic, J.R.

    1997-12-31

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections.

  11. Dynamics of air gap formation around roots with changing soil water content.

    NASA Astrophysics Data System (ADS)

    Vetterlein, D.; Carminati, A.; Weller, U.; Oswald, S.; Vogel, H.-J.

    2009-04-01

    Most models regarding uptake of water and nutrients from soil assume intimate contact between roots and soil. However, it is known for a long time that roots may shrink under drought conditions. Due to the opaque nature of soil this process could not be observed in situ until recently. Combining tomography of the entire sample (field of view of 16 x 16 cm, pixel side 0.32 mm) with local tomography of the soil region around roots (field of view of 5 x 5 cm, pixel side 0.09 mm), the high spatial resolution required to image root shrinkage and formation of air-filled gaps around roots could be achieved. Applying this technique and combining it with microtensiometer measurements, measurements of plant gas exchange and microscopic assessment of root anatomy, a more detailed study was conducted to elucidate at which soil matric potential roots start to shrink in a sandy soil and which are the consequences for plant water relations. For Lupinus albus grown in a sandy soil tomography of the entire root system and of the interface between taproot and soil was conducted from day 11 to day 31 covering two drying cycles. Soil matric potential decreased from -36 hPa at day 11 after planting to -72, -251, -429 hPa, on day 17, 19, 20 after planting. On day 20 an air gap started to occur around the tap root and extended further on day 21 with matric potential below -429 hPa (equivalent to 5 v/v % soil moisture). From day 11 to day 21 stomatal conductivity decreased from 467 to 84 mmol m-2 s-1, likewise transpiration rate decreased and plants showed strong wilting symptoms on day 21. Plants were watered by capillary rise on day 21 and recovered completely within a day with stomatal conductivity increasing to 647 mmol m-2 s-1. During a second drying cycle, which was shorter as plants continuously increased in size, air gap formed again at the same matric potential. Plant stomatal conductance and transpiration decreased in a similar fashion with decreasing matric potential and

  12. VIDE: The Void IDentification and Examination toolkit

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Lavaux, G.; Hamaus, N.; Pisani, A.; Wandelt, B. D.; Warren, M.; Villaescusa-Navarro, F.; Zivick, P.; Mao, Q.; Thompson, B. B.

    2015-03-01

    We present VIDE, the Void IDentification and Examination toolkit, an open-source Python/C++ code for finding cosmic voids in galaxy redshift surveys and N -body simulations, characterizing their properties, and providing a platform for more detailed analysis. At its core, VIDE uses a substantially enhanced version of ZOBOV (Neyinck 2008) to calculate a Voronoi tessellation for estimating the density field and performing a watershed transform to construct voids. Additionally, VIDE provides significant functionality for both pre- and post-processing: for example, VIDE can work with volume- or magnitude-limited galaxy samples with arbitrary survey geometries, or dark matter particles or halo catalogs in a variety of common formats. It can also randomly subsample inputs and includes a Halo Occupation Distribution model for constructing mock galaxy populations. VIDE uses the watershed levels to place voids in a hierarchical tree, outputs a summary of void properties in plain ASCII, and provides a Python API to perform many analysis tasks, such as loading and manipulating void catalogs and particle members, filtering, plotting, computing clustering statistics, stacking, comparing catalogs, and fitting density profiles. While centered around ZOBOV, the toolkit is designed to be as modular as possible and accommodate other void finders. VIDE has been in development for several years and has already been used to produce a wealth of results, which we summarize in this work to highlight the capabilities of the toolkit. VIDE is publicly available at

  13. Antilensing: the bright side of voids.

    PubMed

    Bolejko, Krzysztof; Clarkson, Chris; Maartens, Roy; Bacon, David; Meures, Nikolai; Beynon, Emma

    2013-01-11

    More than half of the volume of our Universe is occupied by cosmic voids. The lensing magnification effect from those underdense regions is generally thought to give a small dimming contribution: objects on the far side of a void are supposed to be observed as slightly smaller than if the void were not there, which together with conservation of surface brightness implies net reduction in photons received. This is predicted by the usual weak lensing integral of the density contrast along the line of sight. We show that this standard effect is swamped at low redshifts by a relativistic Doppler term that is typically neglected. Contrary to the usual expectation, objects on the far side of a void are brighter than they would be otherwise. Thus the local dynamics of matter in and near the void is crucial and is only captured by the full relativistic lensing convergence. There are also significant nonlinear corrections to the relativistic linear theory, which we show actually underpredicts the effect. We use exact solutions to estimate that these can be more than 20% for deep voids. This remains an important source of systematic errors for weak lensing density reconstruction in galaxy surveys and for supernovae observations, and may be the cause of the reported extra scatter of field supernovae located on the edge of voids compared to those in clusters. PMID:23383886

  14. Influence of local air flow regimes on the ozone content of two Pyrenean valleys

    NASA Astrophysics Data System (ADS)

    Ezcurra, A.; Benech, B.; Echelecou, A.; Santamaría, J. M.; Herrero, I.; Zulueta, E.

    2013-08-01

    The Pyrenees Mountains, the natural border between France and Spain, have experienced a large increase in road traffic in the last decade. Due to this fact, a research program named PAP (Pollution Atmospheric in the Pyrenees) was established in 2004 by several laboratories from Spain and France to address the influence of meteorological regimes on the pollution levels of two adjacent valleys, Aspe valley (France) and Canfranc valley (Spain), situated in the center of the Pyrenean range. Pollution measurements show that mean ozone concentrations increase with height. In Sarrance, the site placed at the bottom of the valleys at 335 m above sea level (ASL), the mean ozone value was 23 ppb, whereas at the Pic Midi observatory (2877 m ASL), the top of the PAP network, the value found for mean ozone values was 52 ppb. A linear trend fits this altitudinal variation with a vertical gradient of 17 ppb km-1. The data demonstrate that the observatories located over 1400 m ASL do not show the classical mean daily ozone cycle, and that mean ozone concentrations throughout the day are nearly constant. By contrast, below 1400 m ASL, the classical mean daily ozone cycle is clear, reaching a maximum around noon. These findings indicate that the photochemical reactions are almost inactive at the elevated observatories and, as a result, it can be concluded that ozone levels at those locations are mostly caused by advection of aged air masses. Consequently, we could find that the gradient inside the valleys follows a linear trend of 29 ppb km-1. Finally, it has been observed that in north Foehn situations, intrusions of polluted air coming from the Free Troposphere (FT) can be detected in the upper part of the Spanish valley of Canfranc, where the mean daily ozone cycle changes significantly and becomes similar to the ones measured at the stations situated above 1400 m ASL. However, the results also pointed out that, except for the Foehn situations, the different local air flow

  15. Arteriolar oxygenation in tumour and subcutaneous arterioles: effects of inspired air oxygen content.

    PubMed Central

    Dewhirst, M. W.; Ong, E. T.; Rosner, G. L.; Rehmus, S. W.; Shan, S.; Braun, R. D.; Brizel, D. M.; Secomb, T. W.

    1996-01-01

    Carbogen is thought to be more effective than normobaric oxygen in reducing tumour hypoxia because it may reduce hyperoxic vasoconstriction. In this study, tumour and normal arteriolar diameters were measured simultaneously with perivascular pO2 during air breathing followed by either carbogen or 100% oxygen to determine whether the action of carbogen is the result of alterations in feeding vessel diameter. Fischer-344 rats bearing dorsal flap window chambers, with or without implanted R3230AC tumours, were the experimental subjects. Arteriolar diameters were measured using optical techniques and perivascular pO2 was measured using recessed-tip electrodes (3-6 microns tip diameter). Baseline arteriolar pO2 averaged 30-50% of blood gas pO2 (mean = 97 mmHg). Both hyperoxic gases increased blood gas pO2 by 4-to 5-fold, but relative improvements in arteriolar pO2 were < or = 2.5 for all arterioles studied. This means that these normobaric high O2 gases are not very efficient in increasing O2 delivery to tumours. In addition, improvements in tumour arteriolar pO2 were transient for both hyperoxic gases. Oxygen and carbogen caused no change and mild vasodilatory responses in tumour arterioles, respectively. Normal arterioles on the other hand, tended toward vasoconstriction by carbogen breathing. Peri-arteriolar pO2 in tumours increased within the first 5 min of breathing either hyperoxic gas, followed by a decline back toward values seen with air-breathing. These results suggest that temporal changes in tumour oxygenation after exposure to carbogen or O2 may not be due to changes in perfusion. Other factors, such as changes in O2 consumption rate may be involved. PMID:8763889

  16. Neutron Imaging Calibration to Measure Void Fraction

    SciTech Connect

    Geoghegan, Patrick J; Bilheux, Hassina Z; Sharma, Vishaldeep; Fricke, Brian A

    2015-01-01

    Void fraction is an intuitive parameter that describes the fraction of vapor in a two-phase flow. It appears as a key variable in most heat transfer and pressure drop correlations used to design evaporating and condensing heat exchangers, as well as determining charge inventory in refrigeration systems. Void fraction measurement is not straightforward, however, and assumptions on the invasiveness of the measuring technique must be made. Neutron radiography or neutron imaging has the potential to be a truly non-invasive void fraction measuring technique but has until recently only offered qualitative descriptions of two-phase flow, in terms of flow maldistributions, for example. This paper describes the calibration approach necessary to employ neutron imaging to measure steady-state void fraction. Experiments were conducted at the High Flux Isotope Reactor (HFIR) Cold Guide 1D neutron imaging facility at Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, USA.

  17. Infrared Thermal Sensing Of Sewer Voids

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1984-03-01

    The deterioration of sewer systems and their associated infrastructure is one of the most serious problems facing city, state, federal, and world authorities. As an example, three large sewer voids in the St. Louis Metropolitan area caused over $2,000,000 in repair costs in only one year. The detection of voids in and around underground sewer lines, as well as the detection of effluent leakages is necessary when determining the priority of structures for repair. At the present time sewer voids are sometimes detected by manual methods which are expensive, time consuming, and not extremely accurate. Most of the time, the void is not detected until the street caves in. Infrared thermography has been found to be capable of detecting voids around underground sewer systems because under certain conditions, temperature differentials exist between various types of materials, effluents, and cavities. This paper describes the problem of deteriorating sewer systems, the field tests used to detect sewer voids, the equipment used in the field tests, the theories used to design the tests, various complicating factors, and anticipated future refinements on the procedure.

  18. Void formation and roughening in slow fracture.

    PubMed

    Afek, Itai; Bouchbinder, Eran; Katzav, Eytan; Mathiesen, Joachim; Procaccia, Itamar

    2005-06-01

    Slow crack propagation in ductile, and in certain brittle materials, appears to take place via the nucleation of voids ahead of the crack tip due to plastic yields, followed by the coalescence of these voids. Postmortem analysis of the resulting fracture surfaces of ductile and brittle materials on the microm-mm and the nm scales, respectively, reveals self-affine cracks with anomalous scaling exponent zeta approximately = 0.8 in 3 dimensions and zeta approximately = 0.65 in 2 dimensions. In this paper we present an analytic theory based on the method of iterated conformal maps aimed at modelling the void formation and the fracture growth, culminating in estimates of the roughening exponents in 2 dimensions. In the simplest realization of the model we allow one void ahead of the crack, and address the robustness of the roughening exponent. Next we develop the theory further, to include two voids ahead of the crack. This development necessitates generalizing the method of iterated conformal maps to include doubly connected regions (maps from the annulus rather than the unit circle). While mathematically and numerically feasible, we find that the employment of the stress field as computed from elasticity theory becomes questionable when more than one void is explicitly inserted into the material. Thus further progress in this line of research calls for improved treatment of the plastic dynamics. PMID:16089840

  19. Counting voids to probe dark energy

    NASA Astrophysics Data System (ADS)

    Pisani, Alice; Sutter, P. M.; Hamaus, Nico; Alizadeh, Esfandiar; Biswas, Rahul; Wandelt, Benjamin D.; Hirata, Christopher M.

    2015-10-01

    We show that the number of observed voids in galaxy redshift surveys is a sensitive function of the equation of state of dark energy. Using the Fisher matrix formalism, we find the error ellipses in the w0-wa plane when the equation of state of dark energy is assumed to be of the form wCPL(z )=w0+waz /(1 +z ) . We forecast the number of voids to be observed with the ESA Euclid satellite and the NASA WFIRST mission, taking into account updated details of the surveys to reach accurate estimates of their power. The theoretical model for the forecast of the number of voids is based on matches between abundances in simulations and the analytical prediction. To take into account the uncertainties within the model, we marginalize over its free parameters when calculating the Fisher matrices. The addition of the void abundance constraints to the data from Planck, HST and supernova survey data noticeably tighten the w0-wa parameter space. We, thus, quantify the improvement in the constraints due to the use of voids and demonstrate that the void abundance is a sensitive new probe for the dark energy equation of state.

  20. Cluster-Void Degeneracy Breaking: Dark Energy, Planck, and the Largest Cluster and Void

    NASA Astrophysics Data System (ADS)

    Sahlén, Martin; Zubeldía, Íñigo; Silk, Joseph

    2016-03-01

    Combining galaxy cluster and void abundances breaks the degeneracy between mean matter density {{{Ω }}}{{m}} and power-spectrum normalization {σ }8. For the first time for voids, we constrain {{{Ω }}}{{m}}=0.21+/- 0.10 and {σ }8=0.95+/- 0.21 for a flat Λ CDM universe, using extreme-value statistics on the claimed largest cluster and void. The Planck-consistent results detect dark energy with two objects, independently of other dark energy probes. Cluster-void studies are also complementary in scale, density, and nonlinearity, and are of particular interest for testing modified-gravity models.

  1. Effects of liquid VOC concentration and salt content on partitioning equilibrium of hydrophilic VOC at air-sweat interface

    NASA Astrophysics Data System (ADS)

    Cheng, Wen-Hsi; Chu, Fu-Sui; Su, Tzy-I.

    Volatile organic compounds (VOCs) must initially be absorbed by sweat on the surface of skin for human VOC dermal exposure. The partitioning equilibrium at the air-sweat interface is given by p=Cg*/C, where pc is the partitioning coefficient, and Cg* is the gaseous concentration in equilibrium with the aqueous VOC concentration ( CL) at a constant water temperature ( Tw). A series of thermodynamic functions of Cg*(C,T) are presented, as well as the values of pc, and the heat of gaseous-liquid phase transfer (Δ Htr) for tested VOCs, including iso-propanol (IPA, CL=12-120 mg L -1) and methyl ethyl ketone (MEK, CL=10-80 mg L -1) to determine the effects of liquid VOC concentration and salt contents of sweat on pc of hydrophilic VOCs. Experimental data reveal that the pc values of IPA and MEK drop as the liquid VOC concentrations increasing from 10 to 120 mg L -1. However, sodium salt content in human sweat (sodium chloride and sodium lactate) induces the effect of salt, indicating the increase in pc. Notably, neither urea nor ammonia in human sweat increase pc. Artificial sweat, consisting of sodium chloride 0.47%, urea 0.05%, ammonia 0.004% and sodium lactate 0.6%, was used to evaluate the increase in the pc values of IPA and MEK. The liquid VOC concentration effect simultaneously develops together with the salt effect on the partition at the interface of air-sweat for hydrophilic VOC solutions. The pc values of IPA for artificial sweat decrease as much as 32.5% as CL increases from 12 to 120 mg L -1 at 300 K, and those of MEK drop by as much as 70.9% as CL increases from 10 to 80 mg L -1 at 300 K. This investigation provides a basis for elucidating the assessment of human dermal exposure to hydrophilic VOCs.

  2. Resin flow and void formation in an autoclave cure cycle

    NASA Astrophysics Data System (ADS)

    Lionetto, Francesca; Lucia, Massimo; Dell'Anna, Riccardo; Maffezzoli, Alfonso

    2016-05-01

    A finite element (FE) model able to evaluate both the evolution of resin flow, degree of reaction and void formation during autoclave cure cycles was developed. The model was implemented using a commercial epoxy matrix widely used in aeronautic field. The FE model also included a kinetic and rheological model whose input parameters were experimentally determined by Differential Scanning Calorimetry and rheological analysis. The FE model was able to predict the evolution of degree of reaction with very good agreement with the experimental data. Moreover, the predicted resin losses were lower than 3% of the overall composite resin content.

  3. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    PubMed

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed. PMID:24328061

  4. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  5. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2011-07-01 2011-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  6. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2014-07-01 2014-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  7. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2013-07-01 2013-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  8. 38 CFR 3.207 - Void or annulled marriage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Void or annulled marriage... Void or annulled marriage. Proof that a marriage was void or has been annulled should consist of: (a... marriage void, together with such other evidence as may be required for a determination. (b) Annulled....

  9. Reliability Impact of Stockpile Aging: Stress Voiding

    SciTech Connect

    ROBINSON,DAVID G.

    1999-10-01

    The objective of this research is to statistically characterize the aging of integrated circuit interconnects. This report supersedes the stress void aging characterization presented in SAND99-0975, ''Reliability Degradation Due to Stockpile Aging,'' by the same author. The physics of the stress voiding, before and after wafer processing have been recently characterized by F. G. Yost in SAND99-0601, ''Stress Voiding during Wafer Processing''. The current effort extends this research to account for uncertainties in grain size, storage temperature, void spacing and initial residual stress and their impact on interconnect failure after wafer processing. The sensitivity of the life estimates to these uncertainties is also investigated. Various methods for characterizing the probability of failure of a conductor line were investigated including: Latin hypercube sampling (LHS), quasi-Monte Carlo sampling (qMC), as well as various analytical methods such as the advanced mean value (Ah/IV) method. The comparison was aided by the use of the Cassandra uncertainty analysis library. It was found that the only viable uncertainty analysis methods were those based on either LHS or quasi-Monte Carlo sampling. Analytical methods such as AMV could not be applied due to the nature of the stress voiding problem. The qMC method was chosen since it provided smaller estimation error for a given number of samples. The preliminary results indicate that the reliability of integrated circuits due to stress voiding is very sensitive to the underlying uncertainties associated with grain size and void spacing. In particular, accurate characterization of IC reliability depends heavily on not only the frost and second moments of the uncertainty distribution, but more specifically the unique form of the underlying distribution.

  10. The Cosmically Depressed: Life, Sociology and Identity of Voids

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; Platen, E.; Tigrak, E.; Hidding, J.; van der Hulst, J. M.; Aragón-Calvo, M. A.; Stanonik, K.; van Gorkom, J. H.

    2010-10-01

    In this contribution we review and discuss several aspects of Cosmic Voids, as a background for our void galaxy project (accompanying paper by Stanonik et al.). Voids are a major component of the large scale distribution of matter and galaxies in the Universe. Following a sketch of the general characteristics of void formation and evolution, we describe the influence of the environment on their development and structure and the characteristic hierarchical buildup of the cosmic void population. In order to be able to study the resulting tenuous void substructure and the galaxies populating the interior of voids, we subsequently set out to describe our parameter free tessellation-based watershed void finding technique. It allows us to trace the outline, shape and size of voids in galaxy redshift surveys. The application of this technique enables us to find galaxies in the deepest troughs of the cosmic galaxy distribution, and has formed the basis of our void galaxy program.

  11. Softening by void nucleation and growth in tension and shear

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Hutchinson, J. W.; Tvergaard, V.

    THE EFFECT of void nucleation and growth on overall stress-strain behavior is investigated for solids undergoing plastic straining under axisymmetric and shearing conditions. Contact between the void surface and the nucleating particle is taken into account and is found to be important under shear and under axisymmetric straining when the stress triaxiality is low. The notion of the macroscopic stress drop due to nucleation of a void is defined and computed, both for isolated voids and for voids in periodic arrays. The stress drop for an isolated void in an infinite matrix can be used to predict softening due to void nucleation when the void concentration is dilute. Interaction between voids in shear during nucleation is analysed numerically and softening effects are calculated along with large strain aspects of void deformation during subsequent growth.

  12. THE METALLICITY OF VOID DWARF GALAXIES

    SciTech Connect

    Kreckel, K.; Groves, B.; Croxall, K.; Pogge, R. W.; Van de Weygaert, R.

    2015-01-01

    The current ΛCDM cosmological model predicts that galaxy evolution proceeds more slowly in lower density environments, suggesting that voids are a prime location to search for relatively pristine galaxies that are representative of the building blocks of early massive galaxies. To test the assumption that void galaxies are more pristine, we compare the evolutionary properties of a sample of dwarf galaxies selected specifically to lie in voids with a sample of similar isolated dwarf galaxies in average density environments. We measure gas-phase oxygen abundances and gas fractions for eight dwarf galaxies (M{sub r} > –16.2), carefully selected to reside within the lowest density environments of seven voids, and apply the same calibrations to existing samples of isolated dwarf galaxies. We find no significant difference between these void dwarf galaxies and the isolated dwarf galaxies, suggesting that dwarf galaxy chemical evolution proceeds independent of the large-scale environment. While this sample is too small to draw strong conclusions, it suggests that external gas accretion is playing a limited role in the chemical evolution of these systems, and that this evolution is instead dominated mainly by the internal secular processes that are linking the simultaneous growth and enrichment of these galaxies.

  13. Lattice dependent motion of voids during electromigration

    SciTech Connect

    Sindermann, S. P.; Latz, A.; Dumpich, G.; Wolf, D. E.; Meyer zu Heringdorf, F.-J.

    2013-04-07

    The influence of the crystal lattice configuration to electromigration processes, e.g., void formation and propagation, is investigated in suitable test structures. They are fabricated out of self-assembled, bi-crystalline Ag islands, grown epitaxially on a clean Si(111) surface. The {mu}m-wide and approximately 100 nm thick Ag islands are a composition of a Ag(001) and a Ag(111) part. By focused ion beam milling, they are structured into wires with a single grain boundary, the orientation of which can be chosen arbitrarily. In-situ scanning electron microscopy (SEM) allows to capture an image sequence during electrical stressing and monitors the development of voids and hillocks in time. To visualize the position and motion of voids, we calculate void maps using a threshold algorithm. Most of the information from the SEM image sequence is compressed into one single image. Our present electromigration studies are based on in-situ SEM investigations for three different lattice configurations: Ag(001) (with electron current flow in [110] direction), Ag(111) (with electron current flow in [112] direction), and additionally 90 Ring-Operator rotated Ag(111) (with electron current flow in [110] direction). Our experimental results show that not only the formation and shape but also the motion direction of voids strongly depends on the crystal orientation.

  14. Modelling of void reduction in two dimensional cantala fiber/recycled HDPE composites using FEM

    NASA Astrophysics Data System (ADS)

    Radityo, Cornelius H.; Raharjo, Wijang W.; Budiana, Eko P.; Bahtiar, Muhammad K.

    2016-03-01

    The presence of void effect on the decrease in the mechanical properties of composites so the controlling of voids needs to be done. The aim of this research is to simulate the controlling of voids in composites by setting the displacement of the upper plate of hot press. The simulation was described in two-dimensional design by ANSYS software. The comparison of fiber, matrix, and void were set of 45%, 45%, and 10% respectively, while the geometry of the fiber was the diameter of 0.12 mm and length of 2.5 mm. Displacements of upper plate were varied 0.1 mm, 0.1075 mm, 0.115 mm, 0.1225 and 0.13 mm. The simulation results showed that increasing the displacement upper plate would be followed by decreasing of void content. The displacement of the top plate of 0.13 mm caused voids in the composite to be minimum, a tensile stress on the fibers of 2393.13 kPa and a tensile stress on the matrix of 285.43 kPa.

  15. Numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet

    NASA Astrophysics Data System (ADS)

    Mu-Yang, Qian; Cong-Ying, Yang; Zhen-dong, Wang; Xiao-Chang, Chen; San-Qiu, Liu; De-Zhen, Wang

    2016-01-01

    A numerical study of the effect of water content on OH production in a pulsed-dc atmospheric pressure helium-air plasma jet is presented. The generation and loss mechanisms of the OH radicals in a positive half-cycle of the applied voltage are studied and discussed. It is found that the peak OH density increases with water content in air (varying from 0% to 1%) and reaches 6.3×1018 m-3 when the water content is 1%. Besides, as the water content increases from 0.01% to 1%, the space-averaged reaction rate of three-body recombination increases dramatically and is comparable to those of main OH generation reactions. Project supported by the National Natural Science Foundation of China (Grant No. 11465013), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB212012), and the International Science and Technology Cooperation Program of China (Grant No. 2015DFA61800).

  16. From Voids to Yukawaballs And Back

    SciTech Connect

    Land, V.; Goedheer, W. J.

    2008-09-07

    When dust particles are introduced in a radio-frequency discharge under micro-gravity conditions, usually a dust free void is formed due to the ion drag force pushing the particles away from the center. Experiments have shown that it is possible to close the void by reducing the power supplied to the discharge. This reduces the ion density and with that the ratio between the ion drag force and the opposing electric force. We have studied the behavior of a discharge with a large amount of dust particles (radius 3.4 micron) with our hydrodynamic model, and simulated the closure of the void for conditions similar to the experiment. We also approached the formation of a Yukawa ball from the other side, starting with a discharge at low power and injecting batches of dust, while increasing the power to prevent extinction of the discharge. Eventually the same situation could be reached.

  17. Kinematics of the Local cosmic void

    NASA Astrophysics Data System (ADS)

    Nasonova, O. G.; Karachentsev, I. D.

    2011-03-01

    Available data on the distances and radial velocities of galaxies are systematized in order to study the distribution of peculiar velocities in neighborhoods of the Local cosmic void lying in the direction of the Aquila and Hercules constellations. A sample of 1056 galaxies is used, with distances measured in terms of the luminosity of the tip of the red giant branch (TRGB), the luminosity of the cepheids, the luminosity of type 1a supernovae, surface brightness fluctuations (SBF), and the Tully-Fisher relation. The amplitude of the outflow velocity of the galaxies is found to be ˜300 km/s. The average number density of galaxies inside the void is roughly a factor of five lower than the average outside it. The Local void population is characterized by lower luminosities and later morphological types, with medians of M B = - 15m.7 and T=8 (Sdm), respectively.

  18. Precision cosmology defeats void models for acceleration

    SciTech Connect

    Moss, Adam; Zibin, James P.; Scott, Douglas

    2011-05-15

    The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, {sigma}{sub 8}. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.

  19. Investigations on void morphology in CFRP composite materials and ultrasonic scattering attenuation based on a 2D random void model

    NASA Astrophysics Data System (ADS)

    Lin, L.; Ding, S. S.; Chen, J.; Liang, X. Y.; Li, X. M.

    2012-05-01

    A 2D random void model (RVM) is proposed to describe voids morphology in Carbon Fiber Reinforced Plastic (CFRP) composite materials and used to investigate Ultrasonic Scattering Attenuation Coefficient (USAC). Void morphology simulations from RVM present good matches to micrographic observations. The fluctuations of USAC due to the randomness of void morphology and their dependence on the frequency have been discussed, which are significantly helpful to clarify ultrasonic scattering attenuation mechanism from voids in nature.

  20. Discovery of Lyalpha Clouds in Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Stocke, John T.; Shull, J. M.; Penton, S. V.; Donahue, M.; Carilli, C.

    1995-05-01

    The HST/GHRS + G160M grating was used to obtain high resolution spectra of four very bright AGN located behind voids in the nearby distribution of bright galaxies (i.e. CfA and Arecibo redshift survey regions). A total of 9 Lyalpha absorption lines were discovered ranging in equivalent widths from 28 to 240 m Angstroms at velocities of cz=1500-10000 km/s. Of these 9, we identify 7 with supercluster structures and two in voids: one in the sightline of Mrk 501 at cz=7740 km/s and one in the sightline of Mrk 421 at cz=3020 km/s. Optical spectroscopy at Palomar and redshifted HI imaging at Westerbork fail to find faint galaxies or HI clouds close to the void absorption system in the Mrk 501 case. Thus, the voids are not entirely devoid of matter and not all Lyalpha clouds are associated with galaxies. Also, since the pathlengths through voids and superclusters probed by our observations thus far are nearly equal, there is some evidence that statistically the Lyalpha clouds avoid the voids. The nearest galaxy neighbors to these absorbing clouds are 0.45--5.9 Mpc away and thus too far away to be physically associated by most models, although some of the smaller nearest neighbor distances suggest a tidal debris origin to these clouds. Our results on local Lyalpha clouds are in full agreement with those found by Weymann, Morris et al. for the 3C273 sightline but disagree with results for the higher equivalent width systems where much closer cloud-galaxy associations were found by Lanzetta et al.

  1. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  2. Ductile damage model with void coalescence

    SciTech Connect

    Tonks, D.L.

    1995-03-01

    A general model for ductile damage in metals is presented. It includes damage induced by shear stress as well as damage caused by volumetric tension. Spallation is included as a special case. Strain induced damage is also treated. Void nucleation and growth are included and give rise to strain rate effects. Strain rate effects also arise in the model through elastic release wave propagation between damage centers. Underlying physics of the model is the nucleation, growth, and coalescence of voids in a plastically flowing solid. Implementation of the model in hydrocodes is discussed.

  3. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  4. Effect of radiation-induced segregation on void nucleation

    SciTech Connect

    Si-Ahmed, A.; Wolfer, W.G.

    1982-01-01

    The effect of segregation on void nucleation is investigated utilizing previous results for the capture efficiency of coated void. First, it is shown that any segregation, whether or not it leads to actual precipitation, leads to a modification of the bias factors for any sink. Small increases of either the lattice parameters or the elastic moduli result in reduced interstitial bias factors. Second, segregations to void embryos not only changes their capture efficiencies but also the surface energy. The effect of these changes on the void nucleation rate is studied in quantitative terms. When the segregation to voids results in an increase of the local lattice parameters by 0.4% or an increase of the shear modulus by 3%, the ultimate void nucleation rate is reached. Further increases no longer enhance void nucleation. Void nucleation without segregation effects would only be possible if the dislocation bias exceeds 50%. With segregation, void nucleation is not strongly dependent on the dislocation bias.

  5. Friction stir welding process to repair voids in aluminum alloys

    NASA Technical Reports Server (NTRS)

    Rosen, Charles D. (Inventor); Litwinski, Edward (Inventor); Valdez, Juan M. (Inventor)

    1999-01-01

    The present invention provides an in-process method to repair voids in an aluminum alloy, particularly a friction stir weld in an aluminum alloy. For repairing a circular void or an in-process exit hole in a weld, the method includes the steps of fabricating filler material of the same composition or compatible with the parent material into a plug form to be fitted into the void, positioning the plug in the void, and friction stir welding over and through the plug. For repairing a longitudinal void (30), the method includes machining the void area to provide a trough (34) that subsumes the void, fabricating filler metal into a strip form (36) to be fitted into the trough, positioning the strip in the trough, and rewelding the void area by traversing a friction stir welding tool longitudinally through the strip. The method is also applicable for repairing welds made by a fusing welding process or voids in aluminum alloy workpieces themselves.

  6. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  7. The view from the boundary: a new void stacking method

    NASA Astrophysics Data System (ADS)

    Cautun, Marius; Cai, Yan-Chuan; Frenk, Carlos S.

    2016-04-01

    We introduce a new method for stacking voids and deriving their profile that greatly increases the potential of voids as a tool for precision cosmology. Given that voids are distinctly non-spherical and have most of their mass at their edge, voids are better described relative to their boundary rather than relative to their centre, as in the conventional spherical stacking approach. The boundary profile is obtained by computing the distance of each volume element from the void boundary. Voids can then be stacked and their profiles computed as a function of this boundary distance. This approach enhances the weak lensing signal of voids, both shear and convergence, by a factor of 2 when compared to the spherical stacking method. It also results in steeper void density profiles that are characterized by a very slow rise inside the void and a pronounced density ridge at the void boundary. The resulting boundary density profile is self-similar when rescaled by the thickness of the density ridge, implying that the average rescaled profile is independent of void size. The boundary velocity profile is characterized by outflows in the inner regions whose amplitude scales with void size, and by a strong inflow into the filaments and walls delimiting the void. This new picture enables a straightforward discrimination between collapsing and expanding voids both for individual objects as well as for stacked samples.

  8. Relationship between voids and interlaminar shear strength of polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, Kenneth J.; Frimpong, Stephen

    1991-01-01

    The effect of voids on the interlaminar shear strength of a polyimide matrix composite system is described. The AS4 graphite/PMR-15 composite was chosen for study because this system can be readily processed by using the standard specified cure cycle to produce void-free composites and because preliminary work in this study had shown that the processing parameters of this resin matrix system can be altered to produce cured composites of varying void contents. Thirty-eight 12-ply unidirectional composite panels were fabricated for this study. A significant range of void contents (0 to 10 percent) was produced. The panels were mapped, ultrasonically inspected, and sectioned into interlaminar shear, flexure, and fiber content specimens. The density of each specimen was measured and interlaminar shear and flexure strength measurements were then made. The fiber content was measured last. The results of these tests were evaluated by using ultrasonic results, photomicrographs, statistical methods, theoretical relationships derived by other investigators, and comparison of the test data with the Integrated Composite Analyzer (ICAN) computer program developed at the Lewis Research Center for predicting composite ply properties. The testing is described in as much detail as possible in order to help others make realistic comparisons.

  9. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  10. Updating about reductions of air and blood lead concentrations in Turin, Italy, following reductions in the lead content of gasoline

    SciTech Connect

    Bono, R.; Pignata, C.; Gilli, G.

    1995-07-01

    Considering its well known toxicity and the chronic human exposure to lead, international lawmakers enforced some directives or laws calling for the reduction of lead content in gasoline. All of these legislative acts aimed to reduce health risks for the general population. The aim of this study was to consider the effectiveness of these laws on air lead levels and consequently on blood lead levels in a randomly selected urban Italian population. In particular, these markers were analyzed over the course of several years, corresponding to the periods just before and after enforcements of the reductions of lead in petrol. Data presented point out some considerations: (1) enforcement of legislative measures concerning the reduction of lead in petrol has reduced atmospheric levels of lead. This result demonstrates a major environmental success in primary prevention efforts. (2) This success is clear especially considering that the actual Pb-B levels can be extended to the urbanized populations. Pb-B levels were consistently higher for drinkers, for older adults and for males. The mean of Pb-B level for the present urbanized population is higher than the U.S. overall population (6.4 vs 3 {mu}g/dl). This difference can be also explained considering the different historical period of enforcement of the restriction laws. 10 refs., 3 figs., 3 tabs.

  11. Climatic and insolation control on the high-resolution total air content in the NGRIP ice core

    NASA Astrophysics Data System (ADS)

    Eicher, O.; Baumgartner, M.; Schilt, A.; Schmitt, J.; Schwander, J.; Stocker, T. F.; Fischer, H.

    2015-11-01

    Because the total air content (TAC) of polar ice is directly affected by the atmospheric pressure, its record in polar ice cores was considered as a proxy for past ice sheet elevation changes. However the Antarctic ice core TAC record is known to also contain an insolation signature, although the underlying physical mechanisms are still a matter of debate. Here we present a high-resolution TAC record over the whole North Greenland Ice Core Project ice core, covering the last 120 000 years, which independently supports an insolation signature in Greenland. Wavelet analysis reveals a clear precession and obliquity signal similar to previous findings on Antarctic TAC, with different insolation history. In our high-resolution record we also find a decrease of 3-5 % (3-4.2 mL kg-1) in TAC as a response to Dansgaard-Oeschger-Events (DO-events). TAC starts to decrease in parallel to increasing Greenland surface temperature and slightly before CH4 reacts to the warming, but also shows a two-step decline that lasts for several centuries into the warm phase/interstadial. The TAC response is larger than expected considering only local temperature and atmospheric pressure as a driver, pointing to transient firnification response caused by the accumulation-induced increase in the load on the firn at bubble close-off, while temperature changes deeper in the firn are still small.

  12. Influence of drying by convective air dryer or power ultrasound on the vitamin C and β-carotene content of carrots.

    PubMed

    Frias, Juana; Peñas, Elena; Ullate, Mónica; Vidal-Valverde, Concepción

    2010-10-13

    Convective air drying and power ultrasound effects on vitamin C and β-carotene contents in carrots were studied. For convective air drying, a central composite face-centered design fitting temperature between 40 and 65 °C and air flow rate between 2 and 6 × 10(-1) m/s were used; previously, carrots were blanched. Likewise, ultrasound drying was performed on both unblanched and blanched carrots at 20, 40, and 60 °C for 120, 90, and 75 min, respectively. Blanching had a sharp effect on vitamin C and β-carotene degradation (80-92% retentions, respectively), and convective air drying led to further losses (32-50% and 73-90% retentions, respectively). According to the response surface model, a combination of 40 °C and 6 × 10(-1) m/s will maximize vitamin C retention in dried carrots, whereas 40 °C and 3.3 × 10(-1) m/s will ensure the highest β-carotene content. Ultrasound drying caused higher vitamin C and β-carotene retention (82-92% and 96-98%, respectively) than convective air drying. Blanched carrots dehydrated by ultrasound showed retentions of 55% and 88% of vitamin C and β-carotene, respectively. Ultrasound drying at 20 °C for 120 min caused the maximum vitamin C and β-carotene contents. Therefore, power ultrasound may be considered a valuable tool to obtain high nutritive dehydrated carrots. PMID:20843024

  13. PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITY OF SUPERCRITICAL CARBON DIOXIDE-TREATED AND AIR-CLASSIFIED OAT BRAN CONCENTRATE MICROWAVE-IRRADIATED IN WATER OR ETHANOL AT VARYING TEMPERATURES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oat bran concentrate (OBC) was defatted with supercritical carbon dioxide (SCD), then microwave-irradiated at 50, 100 or 150 deg C for 10 min in water, 50% or 100% ethanol, and extract pH, soluble solids, phenolic content and antioxidant activity were analyzed. OBC was air-classified into five frac...

  14. "Dark energy" in the Local Void

    NASA Astrophysics Data System (ADS)

    Villata, M.

    2012-05-01

    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (˜5×1015 M ⊙) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.

  15. Healing Voids In Interconnections In Integrated Circuits

    NASA Technical Reports Server (NTRS)

    Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas

    1989-01-01

    Unusual heat treatment heals voids in aluminum interconnections on integrated circuits (IC's). Treatment consists of heating IC to temperature between 200 degrees C and 400 degrees C, holding it at that temperature, and then plunging IC immediately into liquid nitrogen. Typical holding time at evaluated temperature is 30 minutes.

  16. Void fraction instrument acceptance test procedure

    SciTech Connect

    Pearce, K.L.

    1994-09-15

    This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

  17. Finding Mount Everest and handling voids.

    PubMed

    Storch, Tobias

    2011-01-01

    Evolutionary algorithms (EAs) are randomized search heuristics that solve problems successfully in many cases. Their behavior is often described in terms of strategies to find a high location on Earth's surface. Unfortunately, many digital elevation models describing it contain void elements. These are elements not assigned an elevation. Therefore, we design and analyze simple EAs with different strategies to handle such partially defined functions. They are experimentally investigated on a dataset describing the elevation of Earth's surface. The largest value found by an EA within a certain runtime is measured, and the median over a few runs is computed and compared for the different EAs. For the dataset, the distribution of void elements seems to be neither random nor adversarial. They are so-called semirandomly distributed. To deepen our understanding of the behavior of the different EAs, they are theoretically considered on well-known pseudo-Boolean functions transferred to partially defined ones. These modifications are also performed in a semirandom way. The typical runtime until an optimum is found by an EA is analyzed, namely bounded from above and below, and compared for the different EAs. We figure out that for the random model it is a good strategy to assume that a void element has a worse function value than all previous elements. Whereas for the adversary model it is a good strategy to assume that a void element has the best function value of all previous elements. PMID:21073298

  18. Making Ceramic Reference Specimens Containing Seeded Voids

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.

    1994-01-01

    Internal and surface voids of known sizes incorporated into silicon carbide and silicon nitride ceramic reference specimens at prescribed locations. Specimens used to demonstrate sensitivity and resolution in nondestructive examination techniques like scanning laser acoustic microscopy and x-radiography, and to assist in establishing proper examination procedures.

  19. Simulation of void formation in interconnect lines

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried

    2003-04-01

    The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.

  20. Dynamic Void Growth and Shrinkage in Mg under Electron Irradiation

    SciTech Connect

    Xu, W. Z.; Zhang, Y. F.; Cheng, G. M.; Jian, W. W.; Millett, P. C.; Koch, C. C.; Mathaudhu, S. N.; Zhu, Y. T.

    2014-04-30

    We report in-situ atomic-scale investigation of void evolution, including growth, coalescence and shrinkage, under electron irradiation. With increasing irradiation dose, the total volume of voids increased linearly, while nucleation rate of new voids decreased slightly, and the total number of voids decreased. Some voids continued to grow while others shrank to disappear, depending on the nature of their interactions with nearby self-interstitial loops. For the first time, surface diffusion of adatoms was observed largely responsible for the void coalescence and thickening. These findings provide fundamental understanding to help with the design and modeling of irradiation-resistant materials.

  1. Atomistic modeling of shock-induced void collapse in copper

    SciTech Connect

    Davila, L P; Erhart, P; Bringa, E M; Meyers, M A; Lubarda, V A; Schneider, M S; Becker, R; Kumar, M

    2005-03-09

    Nonequilibrium molecular dynamics (MD) simulations show that shock-induced void collapse in copper occurs by emission of shear loops. These loops carry away the vacancies which comprise the void. The growth of the loops continues even after they collide and form sessile junctions, creating a hardened region around the collapsing void. The scenario seen in our simulations differs from current models that assume that prismatic loop emission is responsible for void collapse. We propose a new dislocation-based model that gives excellent agreement with the stress threshold found in the MD simulations for void collapse as a function of void radius.

  2. Voids in Sonic Fill(TM) restorations compared to traditional incrementally-filled composite restorations

    NASA Astrophysics Data System (ADS)

    Abourezq, Ibraheem A.

    SonicFill(TM) is a new composite resin and delivery system designed to provide rapid filling of cavity preparations by decreasing viscosity through application of sonic energy. However, it may produce unwanted air voids in the final restoration due to the short filling time. Air voids compromise long-term performance by providing weak foci, discontinuity at cavosurface margins and at internal cavity walls, and potential crack propagation. This study assessed the locations, sizes, and numbers of voids in SonicFill restorations compared with traditional composite resin restorations in a set of extracted molars with mesio-occlusal-distal (MOD) cavity preparations. Fifty noncarious intact extracted third molars were collected randomly from a large collection of discarded anonymous tooth specimens. Standardized MOD cavity preparations were cut, and teeth were assigned randomly to one of two groups ( n = 25). The first group was restored with SonicFill composite in two steps. The second group was restored with Herculite Ultra(TM) using an multiple increment layering technique (1-2 mm per layer). Cross-sectional images of the filling were taken by digital microscope. A total of 196 voids were found in the 50 specimens: 97 in SonicFill restorations and 99 in conventional restorations. Mean number of voids in SonicFill restorations was 3.88 versus 3.96 for conventional restorations. Mean percentage of void area in SonicFill restorations was 0.588% versus 0.508% for conventional restorations. Unpaired t tests for these differences indicated no statistically significant differences (p =.931 and p =.629, respectively). One-way ANOVA tests for mean void count and mean void area percentage differences by three location zones for conventional and SonicFill restorations also indicated no significant differences among the groups. The bulk-fill SonicFill system does not result in increased or decreased numbers or ii area of voids within Class II MOD restorations compared with a

  3. Gravitational entropy of local cosmic voids

    NASA Astrophysics Data System (ADS)

    Sussman, Roberto A.; Larena, Julien

    2015-08-01

    We undertake a non-perturbative study of the evolution of the ‘gravitational entropy’ proposed by Clifton, Ellis and Tavakol (CET) on local expanding cosmic CDM voids of ˜50-100 Mpc size described as spherical under-dense regions with negative spatial curvature, whose dynamics is determined by Lemaître-Tolman-Bondi (LTB) dust models asymptotic to three different types of FLRW background: ΛCDM, Einstein-de Sitter and ‘open’ FLRW with Λ =0 and negative spatial curvature. By assuming generic nearly spatially flat and linear initial conditions at the last scattering time, we examine analytically and numerically the CET entropy evolution into a fully nonlinear regime in our present cosmic time and beyond. Both analytic and numerical analysis reveal that the late time CET entropy growth is determined by the amplitude of initial fluctuations of spatial curvature at the last scattering time. This entropy growth decays to zero in the late asymptotic time range for all voids, but at a faster rate in voids with ΛCDM and open FLRW backgrounds. However, only for voids in a ΛCDM background is this suppression sufficiently rapid for the CET entropy itself to reach a terminal equilibrium (or ‘saturation’) value. The CET gravitational temperature vanishes asymptotically if Λ =0 and becomes asymptotically proportional to Λ for voids in a ΛCDM background. In the linear regime of the LTB evolution our results coincide, qualitatively and quantitatively, with previous results based on linear perturbation theory.

  4. BetaVoid: molecular voids via beta-complexes and Voronoi diagrams.

    PubMed

    Kim, Jae-Kwan; Cho, Youngsong; Laskowski, Roman A; Ryu, Seong Eon; Sugihara, Kokichi; Kim, Deok-Soo

    2014-09-01

    Molecular external structure is important for molecular function, with voids on the surface and interior being one of the most important features. Hence, recognition of molecular voids and accurate computation of their geometrical properties, such as volume, area and topology, are crucial, yet most popular algorithms are based on the crude use of sampling points and thus are approximations even with a significant amount of computation. In this article, we propose an analytic approach to the problem using the Voronoi diagram of atoms and the beta-complex. The correctness and efficiency of the proposed algorithm is mathematically proved and experimentally verified. The benchmark test clearly shows the superiority of BetaVoid to two popular programs: VOIDOO and CASTp. The proposed algorithm is implemented in the BetaVoid program which is freely available at the Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr). PMID:24677176

  5. Tank SY-101 void fraction instrument functional design criteria

    SciTech Connect

    McWethy, L.M.

    1994-10-18

    This document presents the functional design criteria for design, analysis, fabrication, testing, and installation of a void fraction instrument for Tank SY-101. This instrument will measure the void fraction in the waste in Tank SY-101 at various elevations.

  6. Assembly of filamentary void galaxy configurations

    NASA Astrophysics Data System (ADS)

    Rieder, Steven; van de Weygaert, Rien; Cautun, Marius; Beygu, Burcu; Portegies Zwart, Simon

    2013-10-01

    We study the formation and evolution of filamentary configurations of dark matter haloes in voids. Our investigation uses the high-resolution Λ cold dark matter simulation CosmoGrid to look for void systems resembling the VGS_31 elongated system of three interacting galaxies that was recently discovered by the Void Galaxy Survey inside a large void in the Sloan Digital Sky Survey galaxy redshift survey. H I data revealed these galaxies to be embedded in a common elongated envelope, possibly embedded in intravoid filament. In the CosmoGrid simulation we look for systems similar to VGS_31 in mass, size and environment. We find a total of eight such systems. For these systems, we study the distribution of neighbour haloes, the assembly and evolution of the main haloes and the dynamical evolution of the haloes, as well as the evolution of the large-scale structure in which the systems are embedded. The spatial distribution of the haloes follows that of the dark matter environment. We find that VGS_31-like systems have a large variation in formation time, having formed between 10 Gyr ago and the present epoch. However, the environments in which the systems are embedded evolved to resemble each other substantially. Each of the VGS_31-like systems is embedded in an intravoid wall, that no later than z = 0.5 became the only prominent feature in its environment. While part of the void walls retain a rather featureless character, we find that around half of them are marked by a pronounced and rapidly evolving substructure. Five haloes find themselves in a tenuous filament of a few h-1 Mpc long inside the intravoid wall. Finally, we compare the results to observed data from VGS_31. Our study implies that the VGS_31 galaxies formed in the same (proto)filament, and did not meet just recently. The diversity amongst the simulated halo systems indicates that VGS_31 may not be typical for groups of galaxies in voids.

  7. Measurement of local void fraction at elevated temperature and pressure

    SciTech Connect

    Duncan, D.; Trabold, T.A.

    1993-03-01

    Significant advances have recently been made in analytical and computational methods for the prediction of local thermal-hydraulic conditions in gas/liquid two-phase flows. There is, however, a need for extensive experimental data, for the dual purposes of constitutive relation development and code qualification. There is especially true of systems involving complicated geometries and/or extreme flow conditions for which little, if any, applicable information exists in the open literature. For the tests described in the present paper, a novel electrical probe has been applied to measure the void fraction in atmospheric pressure air/water flows, and steam/water mixtures at high temperature and pressure. The data acquired in the latter experiments are compared with the results of a one-dimensional two-fluid computational analysis.

  8. In situ determination of rheological properties and void fraction: Hanford Waste Tank 241-SY-103

    SciTech Connect

    Shepard, C.L.; Stewart, C.W.; Alzheimer, J.M.; Terrones, G.; Chen, G.; Wilkins, N.E.

    1995-11-01

    This report presents the results of the operation of the void fraction instrument (VFI) and ball rheometer in Hanford Tank 241-SY-103. The two instruments were deployed through risers 17C and 22A in July and August 1995 to gather data on the gas content and rheology of the waste. The results indicate that the nonconvective sludge layer contains up to 12% void and an apparent viscosity of 104 to 105 cP with a yield strength less than 210 Pa. The convective layer measured zero void and had no measurable yield strength. Its average viscosity was about 45 cP, and the density was less than 1.5 g/cc. The average void fraction was 0.047 {plus_minus} 0.015 at riser 17C and 0.091 {plus_minus} 0.015 at riser 22A. The stored gas volume based on these void fraction measurements is 213 {plus_minus} 42 M{sup 3} at 1 atmosphere.

  9. Detection of Molecular Gas in Void Galaxies : Implications for Star Formation in Isolated Environments

    NASA Astrophysics Data System (ADS)

    Das, M.; Saito, T.; Iono, D.; Honey, M.; Ramya, S.

    2015-12-01

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1-0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1-0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 108 and 109 M⊙. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M⊙ yr-1 which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  10. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the...

  11. 21 CFR 1305.28 - Canceling and voiding electronic orders.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 9 2013-04-01 2013-04-01 false Canceling and voiding electronic orders. 1305.28... I AND II CONTROLLED SUBSTANCES Electronic Orders § 1305.28 Canceling and voiding electronic orders. (a) A supplier may void all or part of an electronic order by notifying the purchaser of the...

  12. An Observational Detection of the Bridge Effect of Void Filaments

    NASA Astrophysics Data System (ADS)

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-12-01

    The bridge effect of void filaments is a phrase coined by Park & Lee to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into void galaxies. Analyzing the Sloan void catalog constructed by Pan et al., we identify the filamentary structures in void regions and determine the specific size of each void filament as a measure of its straightness. To avoid possible spurious signals caused by Malmquist bias, we consider only those void filaments whose redshifts are in the range 0≤slant z≤slant 0.02 and find a clear tendency that the void galaxies located in the straighter filaments are on average more luminous, which is in qualitative agreement with the numerical prediction. It is also shown that the strength of correlation increases with the number of member galaxies in the void filaments, which can be understood physically on the grounds that the more stretched filaments can connect the dense surroundings even to galaxies located deep in the central parts of the voids. This observational evidence may provide a key clue to the puzzling issue of why the void galaxies have higher specific star formation rates and bluer colors than their wall counterparts.

  13. Void Coalescence Processes Quantified Through Atomistic and Multiscale Simulation

    SciTech Connect

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2007-01-12

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process. We also discuss a technique for optimizing the calculation of fine-scale information on the fly for use in a coarse-scale simulation, and discuss the specific case of a fine-scale model that calculates void growth explicitly feeding into a coarse-scale mechanics model to study damage localization.

  14. Process Yields Strong, Void-Free Laminates

    NASA Technical Reports Server (NTRS)

    Bryant, L. E.; Covington, E. W., III; Dale, W. J.; Hall, E. T., Jr; Justice, J. E.; Taylor, E. C.; Wilson, M. L.

    1983-01-01

    Need for lightweight materials as structural components for future space transportation systems stimulated development of systematic method for manufacturing a polyimide/graphite composite. Laminates manufactured by process are void-free, exhibit excellent thermo-oxidative stability up to 315 degrees C (600 degrees F) and are 40 percent lighter than aluminum. Process is precise, repeatable, and ideally suited for researchers and small-lot producers of composite materials.

  15. Remote infrared thermal sensing of sewer voids

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1995-05-01

    Many sewers in America's cities are more than 125 years old and are subject to structural failure. In one year alone, St. Louis, Missouri had 4,000 sewer collapses that carried an astronomical repair tag. When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along with it endangering public health and safety. The ideal situation would be to repair a sewer before such cave-ins occur, as emergency repairs are far more costly than preventive measures. The question addressed by this paper is how to detect unseen problem areas in sewer systems before collapses occur. At the present, progressive sewer administrations may use crawl crews or remote controlled video cameras to inspect sewers at suspected problem locations. This can be extremely costly, dangerous, and not very accurate, as a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Sewer districts and independent engineering firms have found infrared thermography, a nondestructive testing method, to be extremely accurate in finding sewer voids, and accompanying pipeline leaks, before they can cause expensive and dangerous problems. Infrared thermography is a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently.

  16. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  17. Exposure to air, but not seawater, increases the glutamine content and the glutamine synthetase activity in the marsh clam Polymesoda expansa.

    PubMed

    Hiong, Kum C; Peh, Wendy Y X; Loong, Ai M; Wong, Wai P; Chew, Shit F; Ip, Yuen K

    2004-12-01

    Polymesoda expansa spends a considerable portion of its life exposed to air in mangrove swamps where salinity fluctuates greatly. Thus, the aim of this study was to evaluate the effects of aerial exposure (transfer from 10 per thousand brackish water directly to air) or salinity changes (transfer from 10 per thousand brackish water directly to 30 per thousand seawater) on nitrogen metabolism in P. expansa. We concluded that P. expansa is non-ureogenic because carbamoyl phosphate (CPS) III activity was undetectable in the adductor muscle, foot muscle, hepatopancreas and mantle when exposed to brackish water (control), seawater or air for 17 days. It is ammonotelic as it excretes nitrogenous wastes mainly as ammonia in brackish water or seawater. After transfer to seawater for 17 days, the contents of total free amino acids (TFAA) in the adductor muscle, foot muscle, hepatopancreas and mantle increased significantly. This could be related to an increase in protein degradation because exposure to seawater led to a greater rate of ammonia excretion on days 15 and 17, despite unchanged tissue ammonia contents. Alanine was the major free amino acid (FAA) in P. expansa. The contribution of alanine to the TFAA pool in various tissues increased from 43-48% in brackish water to 62-73% in seawater. In contrast, in clams exposed to air for 17 days there were no changes in alanine content in any of the tissues studied. Thus, the functional role of alanine in P. expansa is mainly connected with intracellular osmoregulation. Although 8.5-16.1% of the TFAA pool of P. expansa was attributable to glutamine, the glutamine contents in the adductor muscle, foot muscle, hepatopancreas and mantle were unaffected by 17 days of exposure to seawater. However, after exposure to air for 17 days, there were significant increases in ammonia content in all these tissues in P. expansa, accompanied by significant increases in glutamine content (2.9-, 2.5-, 4.5- and 3.4-fold, respectively

  18. Electrochemical effects of isolated voids in uranium dioxide

    NASA Astrophysics Data System (ADS)

    Hassan, A.-R.; El-Azab, Anter; Manuel, Michele

    2014-04-01

    We present a model to study the electrochemical effects of voids in oxide materials under equilibrium conditions and apply this model to uranium dioxide. Based on thermodynamic arguments, we claim that voids in uranium dioxide must contain oxygen gas at a pressure that we determine via a Kelvin equation in terms of temperature, void radius and the oxygen pressure of the outside gas reservoir in equilibrium with the oxide. The oxygen gas within a void gives rise to ionosorption and the formation of a layer of surface-charge on the void surface, which, in turn, induces an influence zone of space charge into the matrix surrounding the void. Since the space charge is carried in part by atomic defects, it is concluded that, as a part of the thermodynamic equilibrium of oxides containing voids, the off-stoichiometry around the void is different from its remote bulk value. As such, in a uranium dioxide solid with a void ensemble, the average off-stoichiometry level in the material differs from that of the void-free counterpart. The model is applied to isolated voids in off-stoichiometric uranium dioxide for a wide range of temperature and disorder state of the oxide.

  19. The sparkling Universe: the coherent motions of cosmic voids

    NASA Astrophysics Data System (ADS)

    Lambas, Diego García; Lares, Marcelo; Ceccarelli, Laura; Ruiz, Andrés N.; Paz, Dante J.; Maldonado, Victoria E.; Luparello, Heliana E.

    2016-01-01

    We compute the bulk motions of cosmic voids, using a Λ cold dark matter numerical simulation considering the mean velocities of the dark matter inside the void itself and that of the haloes in the surrounding shell. We find coincident values of these two measures in the range ˜300-400 km s-1, not far from the expected mean peculiar velocities of groups and galaxy clusters. When analysing the distribution of the pairwise relative velocities of voids, we find a remarkable bimodal behaviour consistent with an excess of both systematically approaching and receding voids. We determine that the origin of this bimodality resides in the void large-scale environment, since once voids are classified into void-in-void (R-type) or void-in-cloud (S-type), R-types are found mutually receding away, while S-types approach each other. The magnitude of these systematic relative velocities account for more than 100 km s-1, reaching large coherence lengths of up to 200 h-1 Mpc . We have used samples of voids from the Sloan Digital Sky Survey Data Release 7 and the peculiar velocity field inferred from linear theory, finding fully consistent results with the simulation predictions. Thus, their relative motion suggests a scenario of a sparkling universe, with approaching and receding voids according to their local environment.

  20. Void Coalescence Processes Quantified through Atomistic and Multiscale Simulation

    SciTech Connect

    Rudd, R E; Seppala, E T; Dupuy, L M; Belak, J

    2005-12-31

    Simulation of ductile fracture at the atomic scale reveals many aspects of the fracture process including specific mechanisms associated with void nucleation and growth as a precursor to fracture and the plastic deformation of the material surrounding the voids and cracks. Recently we have studied void coalescence in ductile metals using large-scale atomistic and continuum simulations. Here we review that work and present some related investigations. The atomistic simulations involve three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. No pronounced shear flow is found in the coalescence process.

  1. On the observability of coupled dark energy with cosmic voids

    NASA Astrophysics Data System (ADS)

    Sutter, P. M.; Carlesi, Edoardo; Wandelt, Benjamin D.; Knebe, Alexander

    2015-01-01

    Taking N-body simulations with volumes and particle densities tuned to match the sloan digital sky survey DR7 spectroscopic main sample, we assess the ability of current void catalogues to distinguish a model of coupled dark matter-dark energy from Λ cold dark matter cosmology using properties of cosmic voids. Identifying voids with the VIDE toolkit, we find no statistically significant differences in the ellipticities, but find that coupling produces a population of significantly larger voids, possibly explaining the recent result of Tavasoli et al. In addition, we use the universal density profile of Hamaus et al. to quantify the relationship between coupling and density profile shape, finding that the coupling produces broader, shallower, undercompensated profiles for large voids by thinning the walls between adjacent medium-scale voids. We find that these differences are potentially measurable with existing void catalogues once effects from survey geometries and peculiar velocities are taken into account.

  2. [Voiding dysfunction in children aged five to 15 years].

    PubMed

    Karaklajić, Dragana; Peco-Antić, Amira

    2004-01-01

    Voiding dysfunction in children was analyzed in 91 patients in a period from January 1st to October 1st 1998. Most of the patients had functional voiding disorder (92.31%), and only 7.69% manifested monosymptomatic night enuresis. The number of girls was bigger in the group of patients with voiding dysfunction while the boys were predominant in the group with monosymptomatic nocturnal enuresis. More than a half of children with functional voiding disorder had repeated urinal infections (58.23%), incontinence (93.49%), need for urgent voiding (68.13%), and vesicoureteral reflux (47.61%). The most common type of voiding dysfunction was urge syndrome/urge incontinence. The incidence of dysfunctional voiding disorder was more often in children with scaring changes of kidney which were diagnosed by static scintigraphy. PMID:15794052

  3. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO{sub 2} in exhale air samples

    SciTech Connect

    Stepanov, E V; Glushko, A N; Kasoev, S G; Koval', A V; Lapshin, D A

    2011-12-31

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of {sup 12}CO{sub 2} and {sup 13}CO{sub 2} isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 {mu}m). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm{sup -1}) are determined to be optimal for analysis of relative content of {sup 12}CO{sub 2} and {sup 13}CO{sub 2} in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO{sub 2} in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1 Per-Mille-Sign .

  4. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity. PMID:19468951

  5. Towards the reanalysis of void coefficients measurements at proteus for high conversion light water reactor lattices

    SciTech Connect

    Hursin, M.; Koeberl, O.; Perret, G.

    2012-07-01

    High Conversion Light Water Reactors (HCLWR) allows a better usage of fuel resources thanks to a higher breeding ratio than standard LWR. Their uses together with the current fleet of LWR constitute a fuel cycle thoroughly studied in Japan and the US today. However, one of the issues related to HCLWR is their void reactivity coefficient (VRC), which can be positive. Accurate predictions of void reactivity coefficient in HCLWR conditions and their comparisons with representative experiments are therefore required. In this paper an inter comparison of modern codes and cross-section libraries is performed for a former Benchmark on Void Reactivity Effect in PWRs conducted by the OECD/NEA. It shows an overview of the k-inf values and their associated VRC obtained for infinite lattice calculations with UO{sub 2} and highly enriched MOX fuel cells. The codes MCNPX2.5, TRIPOLI4.4 and CASMO-5 in conjunction with the libraries ENDF/B-VI.8, -VII.0, JEF-2.2 and JEFF-3.1 are used. A non-negligible spread of results for voided conditions is found for the high content MOX fuel. The spread of eigenvalues for the moderated and voided UO{sub 2} fuel are about 200 pcm and 700 pcm, respectively. The standard deviation for the VRCs for the UO{sub 2} fuel is about 0.7% while the one for the MOX fuel is about 13%. This work shows that an appropriate treatment of the unresolved resonance energy range is an important issue for the accurate determination of the void reactivity effect for HCLWR. A comparison to experimental results is needed to resolve the presented discrepancies. (authors)

  6. Perceptions of Non-Instructional Staff at the University of Michigan: A Content Analysis. AIR 1995 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Barrett, Martha Cohen; And Others

    The nature of the work environment as perceived by non-instructional staff was studied at the University of Michigan. Content analysis was undertaken of responses to open-ended survey questions answered by 4,891 non-instructional staff. Qualitative data from the content analysis were analyzed and compared to results of a quantitative data analysis…

  7. Surgical Management of Male Voiding Dysfunction.

    PubMed

    Mandeville, Jessica; Mourtzinos, Arthur

    2016-06-01

    Benign prostatic hypertrophy (BPH) is a common cause of voiding dysfunction. BPH may lead to bladder outlet obstruction and resultant troublesome lower urinary tract symptoms. Initial management of BPH and bladder outlet obstruction is typically conservative. However, when symptoms are severe or refractory to medical therapy or when urinary retention, bladder stone formation, recurrent urinary tract infections, or upper urinary tract deterioration occur, surgical intervention is often necessary. Numerous options are available for surgical management of BPH ranging from simple office-based procedures to transurethral operative procedures and even open and robotic surgeries. This article reviews the current, most commonly used techniques available for surgical management of BPH. PMID:27261790

  8. Void forming pyrolytic carbon coating process

    SciTech Connect

    Beatty, R.L.; Cook, J.L.

    2000-06-27

    A pyrolytic carbon coated nuclear fuel particle and method of making it are disclosed. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm{sup 3} and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2,000 C of greater than 1.7 grams/cm{sup 3} and an anisotropy factor greater than 5.

  9. Void forming pyrolytic carbon coating process

    DOEpatents

    Beatty, Ronald L.; Cook, Jackie L.

    2000-01-01

    A pyrolytic carbon coated nuclear fuel particle and method of making it. The fuel particle has a core composed of a refractory compound of an actinide metal. The pyrolytic carbon coating surrounds the core so as to provide a void volume therebetween. The coating has an initial density of no greater than 1.45 grams/cm.sup.3 and an anisotropy factor than 3.0 and a final density upon heat treatment above about 2000.degree. C. of greater than 1.7 grams/cm.sup.3 and an anisotropy factor greater than 5.

  10. Voiding Dysfunction after Total Mesorectal Excision in Rectal Cancer

    PubMed Central

    Kim, Jae Heon; Noh, Tae Il; Oh, Mi Mi; Park, Jae Young; Lee, Jeong Gu; Um, Jun Won; Min, Byung Wook

    2011-01-01

    Purpose The aim of this study was to assess the voiding dysfunction after rectal cancer surgery with total mesorectal excision (TME). Methods This was part of a prospective study done in the rectal cancer patients who underwent surgery with TME between November 2006 and June 2008. Consecutive uroflowmetry, post-voided residual volume, and a voiding questionnaire were performed at preoperatively and postoperatively. Results A total of 50 patients were recruited in this study, including 28 male and 22 female. In the comparison of the preoperative data with the postoperative 3-month data, a significant decrease in mean maximal flow rate, voided volume, and post-voided residual volume were found. In the comparison with the postoperative 6-month data, however only the maximal flow rate was decreased with statistical significance (P=0.02). In the comparison between surgical methods, abdominoperineal resection patients showed delayed recovery of maximal flow rate, voided volume, and post-voided residual volume. There was no significant difference in uroflowmetry parameters with advances in rectal cancer stage. Conclusions Voiding dysfunction is common after rectal cancer surgery but can be recovered in 6 months after surgery or earlier. Abdominoperineal resection was shown to be an unfavorable factor for postoperative voiding. Larger prospective study is needed to determine the long-term effect of rectal cancer surgery in relation to male and female baseline voiding condition. PMID:22087426

  11. Unambiguous voids in Allende chondrules and refractory inclusions

    SciTech Connect

    Murray, J.; Boesenberg, J.S.; Ebel, D.S.

    2003-03-26

    Void space can be caused by thin section preparation. 3-dimensional tomographic analysis, prior to sectioning, shows that several very different types of voids are abundant in Allende meteorite inclusions. Formation models are proposed for each type. Void spaces in the components of chondritic meteorites have received little attention, perhaps due to ambiguities attendant upon their very existence, and also their origin. Computer-aided microtomography allows the 3-dimensional imaging and analysis of void spaces within solid objects. Several striking examples of void spaces, apparently enclosed by solid material, resulted from our observations of large chondrules and CAIs from the Allende (CV3) meteorite. These voids are 'unambiguous' because their existence cannot be ascribed to plucking during sample preparation, as would be the case in traditional 2-dimensional thin section petrography. Although we focus on large objects in Allende, preliminary observations indicate that void spaces are prevalent in chondrules and refractory inclusions in many meteorites. Voids remain ambiguous, however, because their structure and appearance vary between chondrules and CAIs, suggesting there may be different causes of void formation in particular objects. Some voids appear to have formed as a result of dilation during cooling. Others are evidence of hydrothermal leaching on the parent body followed by partial chemical replacement. Alternatively, vapor-mediated leaching and replacement may have occurred in the nebula. Yet another possibility is internal brecciation caused by impact, while the object was still free floating in the nebula, and perhaps still partially molten.

  12. Electrical Resistivity Monitoring of Voids: Results of Dynamic Modeling Experiments

    NASA Astrophysics Data System (ADS)

    Lane, J. W.; Day-Lewis, F. D.; Singha, K.

    2006-05-01

    Remote, non-invasive detection of voids is a challenging problem for environmental and engineering investigations in karst terrain. Many geophysical methods including gravity, electrical, electromagnetic, magnetic, and seismic have potential to detect voids in the subsurface; lithologic heterogeneity and method- specific sources of noise, however, can mask the geophysical signatures of voids. New developments in automated, autonomous geophysical monitoring technology now allow for void detection using differential geophysics. We propose automated collection of electrical resistivity measurements over time. This dynamic approach exploits changes in subsurface electrical properties related to void growth or water-table fluctuation in order to detect voids that would be difficult or impossible to detect using static imaging approaches. We use a series of synthetic modeling experiments to demonstrate the potential of difference electrical resistivity tomography for finding (1) voids that develop vertically upward under a survey line (e.g., an incipient sinkhole); (2) voids that develop horizontally toward a survey line (e.g., a tunnel); and (3) voids that are influenced by changing hydrologic conditions (e.g., void saturation and draining). Synthetic datasets are simulated with a 3D finite-element model, but the inversion assumes a 2D forward model to mimic conventional practice. The results of the synthetic modeling experiments provide insights useful for planning and implementing field-scale monitoring experiments using electrical methods.

  13. Nanometer voids prevent crack growth in polymer thin films

    NASA Astrophysics Data System (ADS)

    Yokoyama, Hideaki; Dutriez, Cedric; Satoh, Kotaro; Kamigaito, Masami

    2007-03-01

    Macroscopic voids initiate cracks and cause catastrophic failure in brittle materials. The effect of micrometer voids in the mechanical properties of polymeric materials was studied in 1980's and 90's with the expectation that such small voids may initiate crazing, the toughening mechanism in polymer solids, similar to dispersed rubber particles widely used in industry. However, the micrometer voids showed only limited resistance against crack growth, and it was concluded that much smaller voids are necessary for the drastic change in mechanical properties. We have recently succeeded the nondestructive introduction of nanometer voids (30--70 nm) in polymeric materials using block copolymer template and carbon dioxide (CO2) by partitioning CO2 in CO2-philic nanodomains of block copolymers. The reduction of Young's modulus with such nanometer voids was minimal (2 to 1 GPa) due to the (short-range) ordered spherical voids. While the unprocessed copolymer films failed in brittle manner at around 2 % of tensile strain, the processed copolymer films with nanometer voids did not break up to at least 60 %. A microscopic observation under strain of the crack tip revealed that the nanometer voids were deformed under strain and directly converted into the networked fibrils near the crack tip similar to crazing and thus prevented the crack growth.

  14. Detection of underground voids in Ohio by use of geophysical methods

    USGS Publications Warehouse

    Munk, Jens; Sheets, R.A.

    1997-01-01

    Geophysical methods are generally classified as electrical, potential field, and seismic methods. Each method type relies on contrasts of physical properties in the subsurface. Forward models based on the physical properties of air- and water-filled voids within common geologic materials indicate that several geophysical methods are technically feasible for detection of subsurface voids in Ohio, but ease of use and interpretation varies widely between the methods. Ground-penetrating radar is the most rapid and cost-effective method for collection of subsurface data in areas associated with voids under roadways. Electrical resistivity, gravity, or seismic reflection methods have applications for direct delineation of voids, but data-collection and analytical procedures are more time consuming. Electrical resistivity, electromagnetic, or magnetic methods may be useful in locating areas where conductive material, such as rail lines, are present in abandoned underground coal mines. Other electrical methods include spontaneous potential and very low frequency (VLF); these latter two methods are considered unlikely candidates for locating underground voids in Ohio. Results of ground-penetrating radar surveys at three highway sites indicate that subsurface penetration varies widely with geologic material type and amount of cultural interference. Two highway sites were chosen over abandoned underground coal mines in eastern Ohio. A third site in western Ohio was chosen in an area known to be underlain by naturally occurring voids in lime stone. Ground-penetrating radar surveys at Interstate 470, in Belmont County, Ohio, indicate subsurface penetration of less than 15 feet over a mined coal seam that was known to vary in depth from 0 to 40 feet. Although no direct observations of voids were made, anomalous areas that may be related to collapse structures above voids were indicated. Cultural interference dominated the radar records at Interstate 70, Guernsey County, Ohio

  15. Breather mechanism of the void ordering in crystals under irradiation

    NASA Astrophysics Data System (ADS)

    Dubinko, Vladimir

    2009-09-01

    The void ordering has been observed in very different radiation environments ranging from metals to ionic crystals. In the present paper the ordering phenomenon is considered as a consequence of the energy transfer along the close packed directions provided by self-focusing discrete breathers. The self-focusing breathers are energetic, mobile and highly localized lattice excitations that propagate great distances in atomic-chain directions in crystals. This points to the possibility of atoms being ejected from the void surface by the breather-induced mechanism, which is similar to the focuson-induced mechanism of vacancy emission from voids proposed in our previous paper. The main difference between focusons and breathers is that the latter are stable against thermal motion. There is evidence that breathers can occur in various crystals, with path lengths ranging from 104 to 107 unit cells. Since the breather propagating range can be larger than the void spacing, the voids can shield each other from breather fluxes along the close packed directions, which provides a driving force for the void ordering. Namely, the vacancy emission rate for "locally ordered" voids (which have more immediate neighbors along the close packed directions) is smaller than that for the "interstitial" ones, and so they have some advantage in growth. If the void number density is sufficiently high, the competition between them makes the "interstitial" voids shrink away resulting in the void lattice formation. The void ordering is intrinsically connected with a saturation of the void swelling, which is shown to be another important consequence of the breather-induced vacancy emission from voids.

  16. A New Statistical Perspective on the Cosmic Void Distribution

    NASA Astrophysics Data System (ADS)

    Pycke, J.-R.; Russell, E.

    2016-04-01

    In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog. We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms of mass distribution affect the void size distribution.

  17. A Simple Gravitational Lens Model for Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Kantowski, Ronald; Dai, Xinyu

    2015-05-01

    We present a simple gravitational lens model to illustrate the ease of using the embedded lensing theory when studying cosmic voids. It confirms the previously used repulsive lensing models for deep voids. We start by estimating magnitude fluctuations and weak-lensing shears of background sources lensed by large voids. We find that sources behind large (˜90 Mpc) and deep voids (density contrast about -0.9) can be magnified or demagnified with magnitude fluctuations of up to ˜0.05 mag and that the weak-lensing shear can be up to the ˜10-2 level in the outer regions of large voids. Smaller or shallower voids produce proportionally smaller effects. We investigate the “wiggling” of the primary cosmic microwave background (CMB) temperature anisotropies caused by intervening cosmic voids. The void-wiggling of primary CMB temperature gradients is of the opposite sign to that caused by galaxy clusters. Only extremely large and deep voids can produce wiggling amplitudes similar to galaxy clusters, ˜15 μK by a large void of radius ˜4° and central density contrast -0.9 at redshift 0.5 assuming a CMB background gradient of ˜10 μK arcmin-1. The dipole signal is spread over the entire void area, and not concentrated at the lens center as it is for clusters. Finally, we use our model to simulate CMB sky maps lensed by large cosmic voids. Our embedded theory can easily be applied to more complicated void models and used to study gravitational lensing of the CMB, to probe dark matter profiles, to reduce the lensing-induced systematics in supernova Hubble diagrams, and to study the integrated Sachs-Wolfe effect.

  18. Molecular-dynamics simulations of void collapse in shocked model-molecular solids

    NASA Astrophysics Data System (ADS)

    Mintmire, J. W.; Robertson, D. H.; White, C. T.

    1994-06-01

    We have carried out a series of molecular-dynamics simulations on a model three-dimensional molecular solid to study the dynamics of shock-induced collapse of void defects. Molecular-dynamics methods were used for a model system of identical particles arranged as diatomic molecules aligned with the center of mass of each molecule at fcc lattice sites, using a \\{111\\} layering for the two-dimensional boundary conditions. The diatoms were internally coupled via a harmonic potential; all other interactions were modeled with Morse potentials between all particles other than the immediate diatomic partner. Using this model, we have investigated the effect of a cylindrical void at right angles to the direction of layering (and impact). Depending on the strength of the incident shock wave, the void is found to collapse either smoothly and symmetrically (like a balloon gradually losing air), or asymmetrically and turbulently. In the latter case, we note the transient formation (for periods of several hundreds of femtoseconds) of ``hot spots'' at the void location both in terms of the local effective temperature and the vibrational energies of the diatoms.

  19. Control of Urinary Drainage and Voiding

    PubMed Central

    2015-01-01

    Urine differs greatly in ion and solute composition from plasma and contains harmful and noxious substances that must be stored for hours and then eliminated when it is socially convenient to do so. The urinary tract that handles this output is composed of a series of pressurizable muscular compartments separated by sphincteric structures. With neural input, these structures coordinate the delivery, collection, and, ultimately, expulsion of urine. Despite large osmotic and chemical gradients in this waste fluid, the bladder maintains a highly impermeable surface in the face of a physically demanding biomechanical environment, which mandates recurring cycles of surface area expansion and increased wall tension during filling, followed by rapid wall compression during voiding. Afferent neuronal inflow from mucosa and submucosa communicates sensory information about bladder fullness, and voiding is initiated consciously through coordinated central and spinal efferent outflow to the detrusor, trigonal internal sphincter, and external urethral sphincter after periods of relative quiescence. Provocative new findings suggest that in some cases, lower urinary tract symptoms, such as incontinence, urgency, frequency, overactivity, and pain may be viewed as a consequence of urothelial defects (either urothelial barrier breakdown or inappropriate signaling from urothelial cells to underlying sensory afferents and potentially interstitial cells). This review describes the physiologic and anatomic mechanisms by which urine is moved from the kidney to the bladder, stored, and then released. Relevant clinical examples of urinary tract dysfunction are also discussed. PMID:24742475

  20. Early voiding dysfunction associated with prostate brachytherapy.

    PubMed

    Wagner; Nag; Young; Bahnson

    2000-12-15

    Introduction: Transperineal prostate brachytherapy is gaining popularity as a treatment for clinically localized carcinoma of the prostate. Very little prospective data exists addressing the issue of complications associated with this procedure. We present an analysis of the early voiding dysfunction associated with prostate brachytherapy. Materials and Methods: Forty-six consecutive patients who underwent Palladium-103 (Pd-103) seed placement for clinically localized prostate carcinoma were evaluated prospectively for any morbidity associated with the procedure. Twenty-three patients completed an International Prostate Symptom Score (IPSS) questionnaire preoperatively, at their first postoperative visit, and at their second postoperative visit. The total IPSS, each of the seven individual components, and the "bother" score were evaluated separately for each visit, and statistical significance was determined. Results: Urinary retention occurred in 7/46 patients (15%). Of these, 5 were able to void spontaneously after catheter removal. One patient is maintained with a suprapubic tube, and one patient is currently on continuous intermittent catheterization. Baseline IPSS was 7.1 and this went to 20.0 at the first postoperative visit (p<0.001). By the second postoperative visit, the IPSS was 8.0. Conclusions: In our experience, prostate brachytherapy for localized carcinoma of the prostate is associated with a 15% catheterization rate and a significant increase in the IPSS (7.1 to 20.0). This increase in the IPSS seems to be self-limited. Patients need to be educated on these issues prior to prostate brachytherapy. PMID:11113369

  1. Structure of void space in polymer solutions.

    PubMed

    Sung, Bong June; Yethiraj, Arun

    2010-03-01

    The structure of void space in two- and three-dimensional (3D) polymer solutions is studied using Voronoi tessellation and percolation theory. The polymer molecules are modeled as freely jointed chains of N tangent hard disks (two dimensions) or spheres (three dimensions). Polymer chains are equilibrated via Monte Carlo simulations and the pore space in configurations of equilibrated chains is mapped using Voronoi tessellation. In d dimensions a Voronoi vertex is the center of the sphere tangent to the d+1 nearest monomers. An edge of the Voronoi diagram is the shortest route between two neighboring vertices. The edge is considered connected if a monomer can pass through and disconnected otherwise. The Voronoi construction is used to calculate the percolation threshold of the void space. The most interesting result is that the polymer area fraction at the percolation threshold is a nonmonotonic function of N in two dimensions but monotonically reaches a constant value in three dimensions. The crossover behavior of the percolation threshold is also observed in pseudo-3D. The pore size distribution decreases monotonically with increasing pore size. This is markedly different from that in configurations of hard disks (monomeric fluid) where the pore size distribution is peaked at finite size. PMID:20365759

  2. Experimental study of void behavior in a suppression pool of a boiling water reactor during the blowdown period of a loss of coolant accident

    NASA Astrophysics Data System (ADS)

    Rassame, Somboon

    The possible failure of an Emergency Core Cooling System (ECCS) train due to a large amount of entrained gas in the ECCS pump suction piping in a Loss of Coolant Accident (LOCA) is one of the potential engineering problems faced in a Boiling Water Reactor (BWR) power plant. To analyze potential gas intrusion into the ECCS pump suction piping, the study of void behavior in the Suppression Pool (SP) during the LOCA is necessary. The void fraction distribution and void penetration are considered as the key parameters in the problem analysis. Two sets of experiments, namely, steady-state tests and transient tests were conducted using the Purdue University Multi-Dimensional Integral Test Assembly for ESBWR application (PUMA-E) to study void behavior in the SP during the blowdown. The design of the test apparatus used is based on the scaling analysis from a prototypical BWR containment (MARK-I) with consideration of the downcomer size, the SP water level, and the downcomer water submergence depth. Several instruments were installed to obtain the required experimental data, such as inlet gas volumetric flow, void fraction, pressure, and temperature. For the steady-state tests, the air was injected through a downcomer pipe in the SP in order to simulate the physical phenomena in the SP during the initial blowdown of LOCA. Thirty tests were performed with two different downcomer sizes (0.076 and 0.102 m), various air volumetric flow rates or flux (0.003 to 0.153 m3/s or 0.5 to 24.7 m/s), initial downcomer void conditions (fully filled with water, partially void, and completely void) and air velocity ramp rates (one to two seconds). Two phases of the experiment were observed, namely, the initial phase and the quasi-steady phase. The initial phase produced the maximum void penetration depth; and the quasi-steady phase showed less void penetration with oscillation in the void penetration. The air volumetric flow rate was found to have a minor effect on the void fraction

  3. The association of age of toilet training and dysfunctional voiding

    PubMed Central

    Hodges, Steve J; Richards, Kyle A; Gorbachinsky, Ilya; Krane, L Spencer

    2014-01-01

    Objective To determine whether age of toilet training is associated with dysfunctional voiding in children. Materials and methods We compared patients referred to the urologic clinics for voiding dysfunction with age-matched controls without urinary complaints. Characteristics including age and reason for toilet training, method of training, and encopresis or constipation were compared between both groups. Results Initiation of toilet training prior to 24 months and later than 36 months of age were associated with dysfunctional voiding. However, dysfunctional voiding due to late toilet training was also associated with constipation. Conclusion Dysfunctional voiding may be due to delayed emptying of the bowel and bladder by children. The symptoms of dysfunctional voiding are more common when toilet training early, as immature children may be less likely to empty in a timely manner, or when training late due to (or in association with) constipation. PMID:25328866

  4. Void alignment and density profile applied to measuring cosmological parameters

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang

    2015-12-01

    We study the orientation and density profiles of the cosmological voids with Sloan Digital Sky Survey (SDSS; Ahn et al.) 10 data. Using voids to test Alcock-Paczynski effect has been proposed and tested in both simulations and actual SDSS data. Previous observations imply that there exist an empirical stretching factor which plays an important role in the voids' orientation. Simulations indicate that this empirical stretching factor is caused by the void galaxies' peculiar velocities. Recently Hamaus et al. found that voids' density profiles are universal and their average velocities satisfy linear theory very well. In this paper, we first confirm that the stretching effect exists using independent analysis. We then apply the universal density profile to measure the cosmological parameters. We find that the void density profile can be a tool to measure the cosmological parameters.

  5. Investigations on Void Formation in Composite Molding Processes and Structural Damping in Fiber-Reinforced Composites with Nanoscale Reinforcements

    NASA Astrophysics Data System (ADS)

    DeValve, Caleb Joshua

    Fiber-reinforced composites (FRCs) offer a stronger and lighter weight alternative to traditional materials used in engineering components such as wind turbine blades and rotorcraft structures. Composites for these applications are often fabricated using liquid molding techniques, such as injection molding or resin transfer molding. One significant issue during these processing methods is void formation due to incomplete wet-out of the resin within the fiber preform, resulting in discontinuous material properties and localized failure zones in the material. A fundamental understanding of the resin evolution during processing is essential to designing processing conditions for void-free filling, which is the first objective of the dissertation. Secondly, FRCs used in rotorcraft experience severe vibrational loads during service, and improved damping characteristics of the composite structure are desirable. To this end, a second goal is to explore the use of matrix-embedded nanoscale reinforcements to augment the inherent damping capabilities in FRCs. The first objective is addressed through a computational modeling and simulation of the infiltrating dual-scale resin flow through the micro-architectures of woven fibrous preforms, accounting for the capillary effects within the fiber bundles. An analytical model is developed for the longitudinal permeability of flow through fibrous bundles and applied to simulations which provide detailed predictions of local air entrapment locations as the resin permeates the preform. Generalized design plots are presented for predicting the void content and processing time in terms of the Capillary and Reynolds Numbers governing the molding process. The second portion of the research investigates the damping enhancement provided to FRCs in static and rotational configurations by different types and weight fractions of matrix-embedded carbon nanotubes (CNTs) in high fiber volume fraction composites. The damping is measured using

  6. Development of a low void polyimide resin for autoclave processing of glass and graphite reinforced composites.

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.; Sheppard, C. H.; Burns, E. A.

    1971-01-01

    Experimental studies are described in which new A-type polyimide prepolymer chemical modifications were investigated with the aim of increasing the melt phase duration and temperature range permitting autoclave processing, yet retaining the addition-type cure mechanism required for low-void content composites. Several modification candidates were examined, and one specific formulation was selected for detailed investigation. This A-type polyimide prepolymer formulation is shown to possess the desired characteristics.

  7. A hierarchy of voids: more ado about nothing

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Lam, Tsz Yan; Sheth, Ravi K.

    2012-02-01

    We extend earlier work on the problem of estimating the void-volume function - the abundance and evolution of large voids which grow gravitationally in an expanding universe - in two ways. The first removes an ambiguity about how the void-in-cloud process, which erases small voids, should be incorporated into the excursion set approach. The main technical change here is to think of voids within a fully Eulerian, rather than purely Lagrangian, framework. The second accounts for correlations between different spatial scales in the initial conditions. We provide numerical and analytical arguments showing how and why both changes modify the predicted abundances substantially. In particular, we show that the predicted importance of the void-in-cloud process depends strongly on whether or not one accounts for correlations between scales. With our new formulation, the void-in-cloud process dramatically reduces the predicted abundances of voids if such correlations are ignored, but only matters for the smallest voids in the more realistic case in which the spatial correlations are included.

  8. Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.

    2013-01-01

    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness.

  9. Reconciling the local void with the CMB

    SciTech Connect

    Nadathur, Seshadri; Sarkar, Subir

    2011-03-15

    In the standard cosmological model, the dimming of distant Type Ia supernovae is explained by invoking the existence of repulsive ''dark energy'' which is causing the Hubble expansion to accelerate. However, this may be an artifact of interpreting the data in an (oversimplified) homogeneous model universe. In the simplest inhomogeneous model which fits the SNe Ia Hubble diagram without dark energy, we are located close to the center of a void modeled by a Lemaitre-Tolman-Bondi metric. It has been claimed that such models cannot fit the cosmic microwave background (CMB) and other cosmological data. This is, however, based on the assumption of a scale-free spectrum for the primordial density perturbation. An alternative physically motivated form for the spectrum enables a good fit to both SNe Ia (Constitution/Union2) and CMB (WMAP 7-yr) data, and to the locally measured Hubble parameter. Constraints from baryon acoustic oscillations and primordial nucleosynthesis are also satisfied.

  10. Subsurface void detection using seismic tomographic imaging

    SciTech Connect

    Gritto, Roland

    2003-06-26

    Tomographic imaging has been widely used in scientific and medical fields to remotely image media in a nondestructive way. This paper introduces a spectrum of seismic imaging applications to detect and characterize voids in coal mines. The application of seismic waves to detect changes in coal relies on two types of waves: body waves refracted along the interface between coal and bedrock (i.e., refracted P-waves) and channel waves that propagate directly through the coal (dispersive wave trains of the Rayleigh or Love type). For example, a P-wave tomography study to find underlying old mine workings in a coal mine in England, produced velocity patterns that revealed increases in velocity where high stress concentrations occur in the rock, which are most likely connected to old pillars left in support of the old working areas. At the same time, low velocities were found in areas of low stress concentrations, which are related to roof collapses indicating the locations of mined areas below. The application of channel wave tomography to directly image the presence of gaseous CO{sub 2} in a low velocity oil reservoir showed that the injected CO{sub 2} followed an ancient flow channel in the reservoir migrating from the injector to the producer well. The study showed how channel waves are preferable over refracted P-waves, as the latter were only marginally affected by the presence of the gas in the low-velocity channel. Similar approaches show great promise for the detection of voids in coal mines. Finally, a newly developed technique, based on scattering theory, revealed that the location and the size of a subsurface cavity could be accurately determined even in the presence of strong correlated and uncorrelated noise.

  11. The void galaxy survey: Star formation properties

    NASA Astrophysics Data System (ADS)

    Beygu, B.; Kreckel, K.; van der Hulst, J. M.; Jarrett, T. H.; Peletier, R.; van de Weygaert, R.; van Gorkom, J. H.; Aragon-Calvo, M. A.

    2016-05-01

    We study the star formation properties of 59 void galaxies as part of the Void Galaxy Survey (VGS). Current star formation rates are derived from H α and recent star formation rates from near-UV imaging. In addition, infrared 3.4, 4.6, 12 and 22 μm Wide-field Infrared Survey Explorer emission is used as star formation and mass indicator. Infrared and optical colours show that the VGS sample displays a wide range of dust and metallicity properties. We combine these measurements with stellar and H I masses to measure the specific SFRs (SFR/M*) and star formation efficiencies ({SFR/{M }_H I}). We compare the star formation properties of our sample with galaxies in the more moderate density regions of the cosmic web, `the field'. We find that specific SFRs of the VGS galaxies as a function of stellar and H I mass are similar to those of the galaxies in these field regions. Their SFR α is slightly elevated than the galaxies in the field for a given total H I mass. In the global star formation picture presented by Kennicutt-Schmidt, VGS galaxies fall into the regime of low average star formation and correspondingly low H I surface density. Their mean {SFR α /{M}_{H I} and SFR α/M* are of the order of 10- 9.9 yr- 1. We conclude that while the large-scale underdense environment must play some role in galaxy formation and growth through accretion, we find that even with respect to other galaxies in the more mildly underdense regions, the increase in star formation rate is only marginal.

  12. A Content Analysis Comparing Gender Images in Network Television Commercials Aired in Daytime, Evening, and Weekend Telecasts.

    ERIC Educational Resources Information Center

    Craig, R. Stephen

    A content analysis comparing gender portrayals in 2,209 network television commercials was conducted. Many earlier studies treated television advertising's portrayal of men as unproblematic and excluded ads aimed specifically at men from the study sample. To address this shortcoming, the sample was chosen from three different day parts: (1)…

  13. The effect of crumb rubber particle size to the optimum binder content for open graded friction course.

    PubMed

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%-7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  14. Luminosity distance in 'Swiss cheese' cosmology with randomized voids. I. Single void size

    SciTech Connect

    Vanderveld, R. Ali; Flanagan, Eanna E.; Wasserman, Ira

    2008-10-15

    Recently, there have been suggestions that the Type Ia supernova data can be explained using only general relativity and cold dark matter with no dark energy. In 'Swiss cheese' models of the Universe, the standard Friedmann-Robertson-Walker picture is modified by the introduction of mass-compensating spherical inhomogeneities, typically described by the Lemaitre-Tolman-Bondi metric. If these inhomogeneities correspond to underdense cores surrounded by mass-compensating overdense shells, then they can modify the luminosity distance-redshift relation in a way that can mimic accelerated expansion. It has been argued that this effect could be large enough to explain the supernova data without introducing dark energy or modified gravity. We show that the large apparent acceleration seen in some models can be explained in terms of standard weak field gravitational lensing together with insufficient randomization of void locations. The underdense regions focus the light less than the homogeneous background, thus dimming supernovae in a way that can mimic the effects of acceleration. With insufficient randomization of the spatial location of the voids and of the lines of sight, coherent defocusing can lead to anomalously large demagnification effects. We show that a proper randomization of the voids and lines of sight reduces the effect to the point that it can no longer explain the supernova data.

  15. 43 CFR 3.7 - Permit to become void.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Permit to become void. 3.7 Section 3.7 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.7 Permit to become void. Failure to begin work under a permit within 6 months after it is granted,...

  16. 43 CFR 3.7 - Permit to become void.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Permit to become void. 3.7 Section 3.7 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.7 Permit to become void. Failure to begin work under a permit within 6 months after it is granted,...

  17. 43 CFR 3.7 - Permit to become void.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Permit to become void. 3.7 Section 3.7 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.7 Permit to become void. Failure to begin work under a permit within 6 months after it is granted,...

  18. 43 CFR 3.7 - Permit to become void.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Permit to become void. 3.7 Section 3.7 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.7 Permit to become void. Failure to begin work under a permit within 6 months after it is granted,...

  19. 43 CFR 3.7 - Permit to become void.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Permit to become void. 3.7 Section 3.7 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.7 Permit to become void. Failure to begin work under a permit within 6 months after it is granted,...

  20. The relationship between void waves and flow regime transition

    SciTech Connect

    Lahey, R.T. Jr.; Drew, D.A.; Kalkach-Navarro, S.; Park, J.W.

    1992-12-31

    The results of an extensive experimental and analytical study on the relationship between void waves and flow regime transition are presented, in particular, the bubbly/slug flow regime transition. It is shown that void wave instability signals a flow regime transition.

  1. Void fraction measurements by quick acting valves and capacitance measurements

    NASA Astrophysics Data System (ADS)

    Chang, Jae H.; Best, Frederick R.

    1998-01-01

    Two-phase flow systems are widely estimated to have superior capability in comparison with single-phase thermal management systems for spacecraft. However, microgravity two-phase flow technology is insufficiently advanced to allow development with acceptable risk levels. A capacitance effect, void fraction measurement sensor has been developed by Creare Inc. to begin to satisfy microgravity technology needs. Under a NASA Johnson Space Center grant, microgravity tests of the capacitance void fraction sensors were performed aboard the NASA KC-135. Twelve KC-135 flights were conducted in three series. Test points were collected over a wide range of void fractions (0%-90%). Data were collected from stratified, slug, and annular flow regimes. Void fraction measurements from the capacitance sensors were compared with the void fractions from a trapped volume in the test section between two quick acting valves. Under the annular flow regime, void fractions measured by the capacitance sensors compared well with values from the trapped volume. In slug flow regime, some discrepancies between the sensors and trapped volumes were found. However, when the working fluid (Suva) mass flow rate increased from 0.00314 kg/s to 0.007756 kg/s, the void fraction measurements between the capacitance sensors and the trapped volume had better agreement. Overall, the FRIM experimental package produced satisfactory test conditions in the microgravity conditions of the KC-135 aircraft, to validate and calibrate the Creare capacitance void fraction sensors.

  2. Void nucleation in spheroidized steels during tensile deformation

    SciTech Connect

    Fisher, Jr, J R

    1980-04-01

    An investigation was conducted to determine the effects of various mechanical and material parameters on void formation at cementite particles in axisymmetric tensile specimens of spheroidized plain carbon steels. Desired microstructures for each of three steel types were obtained. Observations of void morphology with respect to various microstructural features were made using optical and scanning electron microscopy.

  3. High gain durable anti-reflective coating with oblate voids

    DOEpatents

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze'ev

    2016-06-28

    Disclosed herein are single layer transparent coatings with an anti-reflective property, a hydrophobic property, and that are highly abrasion resistant. The single layer transparent coatings contain a plurality of oblate voids. At least 1% of the oblate voids are open to a surface of the single layer transparent coatings.

  4. Warmth elevating the depths: shallower voids with warm dark matter

    NASA Astrophysics Data System (ADS)

    Yang, Lin F.; Neyrinck, Mark C.; Aragón-Calvo, Miguel A.; Falck, Bridget; Silk, Joseph

    2015-08-01

    Warm dark matter (WDM) has been proposed as an alternative to cold dark matter (CDM), to resolve issues such as the apparent lack of satellites around the Milky Way. Even if WDM is not the answer to observational issues, it is essential to constrain the nature of the dark matter. The effect of WDM on haloes has been extensively studied, but the small-scale initial smoothing in WDM also affects the present-day cosmic web and voids. It suppresses the cosmic `sub-web' inside voids, and the formation of both void haloes and subvoids. In N-body simulations run with different assumed WDM masses, we identify voids with the ZOBOV algorithm, and cosmic-web components with the ORIGAMI algorithm. As dark-matter warmth increases (i.e. particle mass decreases), void density minima grow shallower, while void edges change little. Also, the number of subvoids decreases. The density field in voids is particularly insensitive to baryonic physics, so if void density profiles and minima could be measured observationally, they would offer a valuable probe of the nature of dark matter. Furthermore, filaments and walls become cleaner, as the substructures in between have been smoothed out; this leads to a clear, mid-range peak in the density PDF.

  5. Effects of voids on delamination behavior under static and fatigue mode I and mode II

    NASA Astrophysics Data System (ADS)

    Abdelal, Nisrin Rizek

    Composite materials have become materials of choice for wind turbine blade manufacturing due to their high specific stiffness, strength and fatigue life. Glass fiber composites are used extensively in light-weight structural components for wind turbines, aircrafts, marine craft and high performance automobile because glass fiber is inexpensive and usually provides high strength to weight ratio and good in-plane mechanical properties. The high cycle fatigue resistance of composite materials used in wind turbine blades has been recognized as a major uncertainty in predicting the reliability of wind turbines over their design lifetime. Blades are expected to experience 108 to 109 fatigue cycles over a 20 to 30 year lifetime. Delamination or interlaminar failure is a serious failure mode observed in composite structures. Even partial delamination will lead to a loss of local stiffness, which can preclude buckling failure. Manufacturing process defects such as voids and fiber waviness degrade the fatigue life and delamination resistance of the blade's composite. This research describes the effect of voids on static and fatigue interlaminar fracture behavior under mode I and mode II loading of wind turbine glass fiber composites. Samples with different void volume fractions in the 0.5%-7% range were successfully obtained by varying the vacuum in the hand layup vacuum bagging manufacturing process. Void content was characterized using four different methods; ultrasonic scanning, epoxy burn off, serial sectioning and X-Ray computed tomography. The effect of voids on both mode I and mode II interlaminar fracture toughness under static and fatigue loading was investigated. Finally, fractographic analysis (using optical and scanning electron microscopy) was conducted. The results showed that voids leads to slight reduction in static modes I and II interlaminar fracture toughness. In addition, voids lead to a decrease in modes I and II maximum cyclic strain energy release

  6. Dust-void formation in a dc glow discharge.

    PubMed

    Fedoseev, A V; Sukhinin, G I; Dosbolayev, M K; Ramazanov, T S

    2015-08-01

    Experimental investigations of dusty plasma parameters of a dc glow discharge were performed in a vertically oriented discharge tube. Under certain conditions, dust-free regions (voids) were formed in the center of the dust particle clouds that levitated in the strong electric field of a stratified positive column. A model for radial distribution of dusty plasma parameters of a dc glow discharge in inert gases was developed. The behavior of void formation was investigated for different discharge conditions (type of gas, discharge pressure, and discharge current) and dust particle parameters (particle radii and particle total number). It was shown that it is the ion drag force radial component that leads to the formation of voids. Both experimental and calculated results show that the higher the discharge current the wider dust-free region (void). The calculations also show that more pronounced voids are formed for dust particles with larger radii and under lower gas pressures. PMID:26382534

  7. Late Quaternary continental and marine sediments of northeastern Buenos Aires province (Argentina): Fossil content and paleoenvironmental interpretation

    NASA Astrophysics Data System (ADS)

    Fucks, Enrique; Aguirre, Marina; Deschamps, Cecilia M.

    2005-10-01

    Abundant invertebrate and vertebrate fossil remains that exhibit excellent preservation and were collected from deposits of both continental and marine origins at Pilar (Buenos Aires, Argentina) add paleoenvironmental data from the northeastern Buenos Aires province area linked to sea-level oscillations and climate variability since approximately 120 ka BP (marine oxygen isotope stage [MOIS] 5e). Two new fossiliferous localities discovered in the Luján River Valley allow for detailed geological studies and new dating of molluscan shells and bones. The studies suggest salinity changes during the Last Interglacial (8 m above m.s.l., min. 14C>40 ka) and the mid-Holocene transgression (5 m above m.s.l., 7-3 14C ka BP) compared with the modern pattern along the adjacent littoral (Río de la Plata). The marine sequences represent the innermost boundary of the sea-level transgression in that area and contain a biogenic record (bivalves, gastropods, forams, ostracods) that indicates marginal marine environments (higher salinity than at present). Vertebrates and molluscs from the continental sequence suggest a freshwater habitat in which remains of marine fish must be allochthonous, probably incorporated by postmortem fluvial transport to the final depositional environment.

  8. Measuring Baryon Acoustic Oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-04-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependency of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1,000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  9. Measuring baryon acoustic oscillations from the clustering of voids

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhao, Cheng; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Tao, Charling

    2016-07-01

    We investigate the necessary methodology to optimally measure the baryon acoustic oscillation (BAO) signal from voids, based on galaxy redshift catalogues. To this end, we study the dependence of the BAO signal on the population of voids classified by their sizes. We find for the first time the characteristic features of the correlation function of voids including the first robust detection of BAOs in mock galaxy catalogues. These show an anti-correlation around the scale corresponding to the smallest size of voids in the sample (the void exclusion effect), and dips at both sides of the BAO peak, which can be used to determine the significance of the BAO signal without any priori model. Furthermore, our analysis demonstrates that there is a scale-dependent bias for different populations of voids depending on the radius, with the peculiar property that the void population with the largest BAO significance corresponds to tracers with approximately zero bias on the largest scales. We further investigate the methodology on an additional set of 1000 realistic mock galaxy catalogues reproducing the SDSS-III/BOSS CMASS DR11 data, to control the impact of sky mask and radial selection function. Our solution is based on generating voids from randoms including the same survey geometry and completeness, and a post-processing cleaning procedure in the holes and at the boundaries of the survey. The methodology and optimal selection of void populations validated in this work have been used to perform the first BAO detection from voids in observations, presented in a companion paper.

  10. DYSFUNCTIONAL URINARY VOIDING IN WOMEN WITH FUNCTIONAL DEFECATORY DISORDERS

    PubMed Central

    Klingele, Christopher J.; Lightner, Deborah J.; Fletcher, J.G.; Gebhart, John B.; Bharucha, Adil E.

    2010-01-01

    Background While pelvic floor dysfunction may manifest with bladder or bowel symptoms, the relationship between functional defecatory disorders and dysfunctional voiding is unclear. Our hypothesis was that patients with defecatory disorders have generalized pelvic floor dysfunction, manifesting as dysfunctional urinary voiding. Methods Voiding was assessed by a symptom questionnaire, a voiding diary, uroflowmetry, and by measuring the postvoid residual urine volume in this case-control study of 28 patients with a functional defecatory disorder (36 ± 2 years, Mean ± SEM) and 30 healthy women (36 ± 2 years). Key Results Women with a defecatory disorder frequently reported urinary symptoms: urgency (61%), frequency (36%), straining to begin (21%), or finish (50%) voiding, and the sense of incomplete emptying (54%). Fluid intake and output, the minimum voided volume, and the shortest duration between voids measured by voiding diaries were higher (p < 0.05) in patients than in controls. Uroflowmetry revealed abnormalities in 7 controls and 22 patients. The risk of abnormal voiding by uroflowmetry was higher in patients (OR 8.0; 95% CI, 2.3–26.9) than in controls. Patients took longer than controls (p< 0.01) to attain the maximum urinary flow rate (12 ± 2 versus 4 ± 0s) and to empty the bladder (29 ± 4 versus 20 ± 2s), but the maximum urinary flow rate and postvoid residual volumes were not significantly different. Conclusions and Inferences Symptoms of dysfunctional voiding and uroflowmetric abnormalities occurred more frequently, suggesting of disordered urination, in women with a defecatory disorder than in healthy controls. PMID:20557469

  11. Seismic Techniques for Subsurface Voids Detection

    NASA Astrophysics Data System (ADS)

    Gritto, Roland; Korneev, Valeri; Elobaid Elnaiem, Ali; Mohamed, Fathelrahman; Sadooni, Fadhil

    2016-04-01

    A major hazards in Qatar is the presence of karst, which is ubiquitous throughout the country including depressions, sinkholes, and caves. Causes for the development of karst include faulting and fracturing where fluids find pathways through limestone and dissolve the host rock to form caverns. Of particular concern in rapidly growing metropolitan areas that expand in heretofore unexplored regions are the collapse of such caverns. Because Qatar has seen a recent boom in construction, including the planning and development of complete new sub-sections of metropolitan areas, the development areas need to be investigated for the presence of karst to determine their suitability for the planned project. In this paper, we present the results of a study to demonstrate a variety of seismic techniques to detect the presence of a karst analog in form of a vertical water-collection shaft located on the campus of Qatar University, Doha, Qatar. Seismic waves are well suited for karst detection and characterization. Voids represent high-contrast seismic objects that exhibit strong responses due to incident seismic waves. However, the complex geometry of karst, including shape and size, makes their imaging nontrivial. While karst detection can be reduced to the simple problem of detecting an anomaly, karst characterization can be complicated by the 3D nature of the problem of unknown scale, where irregular surfaces can generate diffracted waves of different kind. In our presentation we employ a variety of seismic techniques to demonstrate the detection and characterization of a vertical water collection shaft analyzing the phase, amplitude and spectral information of seismic waves that have been scattered by the object. We used the reduction in seismic wave amplitudes and the delay in phase arrival times in the geometrical shadow of the vertical shaft to independently detect and locate the object in space. Additionally, we use narrow band-pass filtered data combining two

  12. On nonlinear excitation of voids in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-09-01

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment.

  13. Partial discharges within two spherical voids in an epoxy resin

    NASA Astrophysics Data System (ADS)

    Illias, H. A.; Chen, G.; Bakar, A. H. A.; Mokhlis, H.; Tunio, M. A.

    2013-08-01

    A void in a dielectric insulation material may exist due to imperfection in the insulation manufacturing or long term stressing. Voids have been identified as one of the common sources of partial discharge (PD) activity within an insulation system, such as in cable insulation and power transformers. Therefore, it is important to study PD phenomenon within void cavities in insulation. In this work, a model of PD activity within two spherical voids in a homogeneous dielectric material has been developed using finite element analysis software to study the parameters affecting PD behaviour. The parameters that have been taken into account are the void surface conductivity, electron generation rate and the inception and extinction fields. Measurements of PD activity within two spherical voids in an epoxy resin under ac sinusoidal applied voltage have also been performed. The simulation results have been compared with the measurement data to validate the model and to identify the parameters affecting PD behaviour. Comparison between measurements of PD activity within single and two voids in a dielectric material have also been made to observe the difference of the results under both conditions.

  14. Void collapse under distributed dynamic loading near material interfaces

    NASA Astrophysics Data System (ADS)

    Shpuntova, Galina; Austin, Joanna

    2012-11-01

    Collapsing voids cause significant damage in diverse applications from biomedicine to underwater propulsion to explosives. While shock-induced void collapse has been studied extensively, less attention has been devoted to stress wave loading, which will occur instead if there are mechanisms for wave attenuation or if the impact velocity is relatively low. A set of dynamic experiments was carried out in a model experimental setup to investigate the effect of acoustic heterogeneities in the surrounding medium on void collapse. Two tissue-surrogate polymer materials of varying acoustic properties were used to create flowfield geometries involving a boundary and a void. A stress wave, generated by projectile impact, triggered void collapse in the gelatinous polymer medium. When the length scales of features in the flow field were on the same order of magnitude as the stress wave length scale, the presence of the boundary was found to affect the void collapse process relative to collapse in the absence of a boundary. This effect was quantified for a range of geometries and impact conditions using a two-color, single-frame particle image velocimetry technique. Research supported by NSF Award #0954769, ``CAREER: Dynamics and damage of void collapse in biological materials under stress wave loading'' with Prof. Henning Winter as Program Manager.

  15. Results of a search for faint galaxies in voids.

    NASA Astrophysics Data System (ADS)

    Kuhn, B.; Hopp, U.; Elsaesser, H.

    1997-02-01

    We present the results of a search for intrinsically faint galaxies towards three regions with known voids and the Hercules supercluster. The intention was to identify galaxies of low luminosity in order to find possibly a galaxy population in the voids. Within these selected fields we increased the range of observations in comparison with the recent large field surveys which revealed the non-uniform spatial distribution of galaxies. The limiting magnitude was raised by about 5mag, the limiting surface brightness by 2mag/sq.arcsec, and the limiting diameter reduced to less than 1/3. The individual observational data of our sample are published in the previous PaperI (Hopp et al. 1995) which describes our search strategy and contains B and R magnitudes, apparent diameters, redshifts and galaxy types of about 200 newly identified objects. Their luminosity distribution demonstrates a relatively high percentage of dwarfish galaxies. As the essential result of our survey we have to point out that no clear indication of a void-population was found. The majority of our objects lie outside voids in regions where the already known galaxies are concentrated. Some are located in the middle or near the edges of voids. They appear to be rather isolated, their distances to the nearest neighbour are quite large. Only few of our objects seem to be real void galaxies. Even in the three nearest and rather well defined voids we do not find any hitherto unknown galaxy.

  16. The spreading of a void on a facet during electromigration

    SciTech Connect

    Chu, X.; Bauer, C.L.; Mullins, W.W.; Klinger, L.M.

    1997-07-01

    A void of cross sectional area A may spread perpendicular to the applied electric field E{sub a} during electromigration because its leading surface develops a facet whose advance is limited by the supply of steps. If the facet is immobile (no step source) and the remaining surface is free to move, and if E{sub a}A is less than a threshold value, then the void assumes a stationary elongated shape dictated by a balance between capillarity and electric field. If E{sub a}A exceeds the threshold value, however, a balance is no longer possible, and the void spreads along the facet without arrest. If the facet has limited mobility, a balance is possible for all values of E{sub a}A, resulting in an elongated moving steady-state shape. The treatment simplifies the void shape as rectangular but preserves the essential features of capillarity and surface electromigration. The authors argue that the motion of a facet on a void along the outward normal requires defects (e.g., intersecting screw dislocations) that act as step sources since homogeneous nucleation of steps on the facet is expected to be negligible. Since voids in fine-line interconnects are often observed to be partially faceted, restricted void motion and resultant spreading which depend sensitively on crystallographic features, such as defect structure and grain orientation, may indeed limit the lifetime of fine-line interconnects in electronic devices.

  17. Do symptoms of voiding dysfunction predict urinary retention?

    PubMed Central

    ADELOWO, Amos O.; HACKER, Michele R.; MODEST, Anna MERPORT; ELKADRY, Eman A.

    2012-01-01

    Objectives We assessed the relationship between symptoms of voiding dysfunction and elevated post void urinary residual (PVR). Methods Cross-sectional study of women presenting for initial evaluation from February through July 2011. Charts were reviewed for demographics, voiding dysfunction symptoms, and examination findings. Urinary retention was defined as PVR ≥100cc. Data are presented as median (interquartile range) or proportion; test characteristics are reported with 95% confidence intervals. Results Of 641 eligible women, 57 (8.9%) had urinary retention. Of these, 32 (56.1%) had at least one symptom of voiding dysfunction, most commonly sensation of incomplete emptying (30.1%). Sensitivity and positive predictive values of voiding dysfunction symptoms were low. Of 254 women reporting voiding symptoms, most (87.5%) had PVR<100 and were significantly more likely to have other pelvic floor symptoms and findings. Conclusions Patient symptoms do not predict urinary retention. PVR should be measured and other causes of voiding dysfunction symptoms should be considered. PMID:23143428

  18. On nonlinear excitation of voids in dusty plasmas

    SciTech Connect

    Nebbat, E.; Annou, R.; Bharuthram, R.

    2007-09-15

    The void, which is a dust-free region inside the dust cloud in the plasma, results from a balance of the electrostatic force and the ion-drag force on a dust particulate that has numerous forms, some of which are based on models whereas others are driven from first principles. To explain the generation of voids, K. Avinash, A. Bhattacharjee, and S. Hu [Phys. Rev. Lett. 90, 075001 (2003)] proposed a time-dependent nonlinear model that describes the void as a result of an instability. We augment this model by incorporating the grain drift and reintroducing the velocity convective term as well as by replacing the modeled ion-drag force by a more accurate one. The analysis is conducted in a spherical configuration. It is revealed that the void formation is a threshold phenomenon, i.e., it depends on the grain size. Furthermore, the void possesses a sharp boundary beyond which the dust density decreases and may present a corrugated aspect. For big size grains, the use of both ion-drag forces leads to voids of the same dimension, though for grains of small sizes, the Avinash force drives voids of a higher dimension. The model shows good agreement with the experiment.

  19. Local void and slip model used in BODYFIT-2PE

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE.

  20. Intrarenal Reflux: Diagnosis at Contrast-Enhanced Voiding Urosonography.

    PubMed

    Colleran, Gabrielle C; Barnewolt, Carol E; Chow, Jeanne S; Paltiel, Harriet J

    2016-08-01

    Vesicoureteral reflux (VUR) is a childhood condition that is usually diagnosed by fluoroscopic voiding cystourethrography (VCUG). Intrarenal reflux (IRR) of infected urine is believed to play an important role in the pathogenesis of reflux-associated pyelonephritis and subsequent parenchymal scarring and is traditionally depicted by fluoroscopic VCUG. This case series describes the phenomenon of IRR occurring in association with VUR in 4 children as depicted by contrast-enhanced voiding urosonography. The ability of contrast-enhanced voiding urosonography to show IRR when it occurs in conjunction with VUR compares favorably to that of fluoroscopic VCUG. PMID:27371375

  1. Void fraction correlations in two-phase horizontal flow

    SciTech Connect

    Papathanassiou, G.; Maeder, P.F.; DiPippo, R.; Dickinson, D.A.

    1983-05-01

    This study examines some physical mechanisms which impose limits on the possible existence of two-phase flow in a horizontal pipe. With the aid of this analysis and the use of the Martinelli variable, X, a method is developed which determines the range of possible void fractions for a given two-phase flow. This method affords a means of direct comparison among void fraction correlations, as well as between correlation predictions and experimental results. In this respect, four well-known void fraction correlations are compared against each other and with experimental results obtained in the Brown University Two-Phase Flow Research Facility.

  2. An initial assessment of spatial relationships between respiratory cases, soil metal content, air quality and deprivation indicators in Glasgow, Scotland, UK: relevance to the environmental justice agenda.

    PubMed

    Morrison, S; Fordyce, F M; Scott, E Marian

    2014-04-01

    There is growing interest in links between poor health and socio-environmental inequalities (e.g. inferior housing, crime and industrial emissions) under the environmental justice agenda. The current project assessed associations between soil metal content, air pollution (NO2/PM10) and deprivation and health (respiratory case incidence) across Glasgow. This is the first time that both chemical land quality and air pollution have been assessed citywide in the context of deprivation and health for a major UK conurbation. Based on the dataset 'averages' for intermediate geography areas, generalised linear modelling of respiratory cases showed significant associations with overall soil metal concentration (p = 0.0367) and with deprivation (p < 0.0448). Of the individual soil metals, only nickel showed a significant relationship with respiratory cases (p = 0.0056). Whilst these associations could simply represent concordant lower soil metal concentrations and fewer respiratory cases in the rural versus the urban environment, they are interesting given (1) possible contributions from soil to air particulate loading and (2) known associations between airborne metals like nickel and health. This study also demonstrated a statistically significant correlation (-0.213; p < 0.05) between soil metal concentration and deprivation across Glasgow. This highlights the fact that despite numerous regeneration programmes, the legacy of environmental pollution remains in post-industrial areas of Glasgow many decades after heavy industry has declined. Further epidemiological investigations would be required to determine whether there are any causal links between soil quality and population health/well-being. However, the results of this study suggest that poor soil quality warrants greater consideration in future health and socio-environmental inequality assessments. PMID:24203260

  3. Void control in the crystallization of lithium fluoride

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Perry, William D.

    1991-01-01

    The effect of tungsten-coated graphite fibers on the radiant heat transfer characteristics of salt-fiber composites was studied by measuring the onset of melting as a function of applied furnace power. As the fiber concentration was increased from 0 to 5.40 percent fiber by weight, the furnace temperature required to melt the lithium fluoride also increased. Upon cooling, each of the crystalline salt-fiber composites were cut open with a diamond saw to expose the void. Optical photographs of the voids revealed a trend in void location and size, with the largest void, and the least change in the outer dimension of the boule upon cooling, occurring in the sample with the most fiber.

  4. A dynamic void growth model governed by dislocation kinetics

    NASA Astrophysics Data System (ADS)

    Wilkerson, J. W.; Ramesh, K. T.

    2014-10-01

    Here we examine the role of dislocation kinetics and substructure evolution on the dynamic growth of voids under very high strain rates, and develop a methodology for accounting for these effects in a computationally efficient manner. In particular, we account for the combined effects of relativistic dislocation drag and an evolving mobile dislocation density on the dynamics of void growth. We compare these effects to the constraints imposed by micro-inertia and discuss the conditions under which each mechanism governs the rate of void growth. The consequences of these constraints may be seen in a number of experimental observations associated with dynamic tensile failure, including the extreme rate-sensitivity of spall strength observed in laser shock experiments, an apparent anomalous temperate dependence of spall strength, and some particular features of void size distributions on spall surfaces.

  5. Quantifying Void Ratio in Granular Materials Using Voronoi Tessellation

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; El-Saidany, Hany A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Voronoi technique was used to calculate the local void ratio distribution of granular materials. It was implemented in an application-oriented image processing and analysis algorithm capable of extracting object edges, separating adjacent particles, obtaining the centroid of each particle, generating Voronoi polygons, and calculating the local void ratio. Details of the algorithm capabilities and features are presented. Verification calculations included performing manual digitization of synthetic images using Oda's method and Voronoi polygon system. The developed algorithm yielded very accurate measurements of the local void ratio distribution. Voronoi tessellation has the advantage, compared to Oda's method, of offering a well-defined polygon generation criterion that can be implemented in an algorithm to automatically calculate local void ratio of particulate materials.

  6. Void Closure in Complex Plasmas under Microgravity Conditions

    SciTech Connect

    Lipaev, A. M.; Molotkov, V. I.; Fortov, V. E.; Khrapak, A. G.; Naumkin, V. N.; Khrapak, S. A.; Morfill, G. E.; Ivlev, A. V.; Thomas, H. M.; Ivanov, A. I.; Tretschev, S. E.; Padalka, G. I.

    2007-06-29

    We describe the first observation of a void closure in complex plasma experiments under microgravity conditions performed with the Plasma-Kristall (PKE-Nefedov) facility on board the International Space Station. The void--a grain-free region in the central part of the discharge where the complex plasma is generated--has been formed under most of the plasma conditions and thought to be an inevitable effect. However, we demonstrate in this Letter that an appropriate tune of the discharge parameters allows the void to close. This experimental achievement along with its theoretical interpretation opens new perspectives in engineering new experiments with large quasi-isotropic void-free complex plasma clouds in microgravity conditions.

  7. Influence of voids on the strength of wrought materials

    NASA Technical Reports Server (NTRS)

    Shaw, M. C.; Pai, D. M.

    1985-01-01

    Three-dimensional voids, which are present in most materials, may be satisfactorily modelled by two-dimensional holes (i.e., cylindrical voids) in sheet metal. In this study, the influence of certain orientations and shapes of voids upon the mechanical properties and fracture behavior of certain ductile materials has been studied. The presence of voids is found to exert a negligible influence on the ultimate tensile strength, owing to plastic flow neutralizing the stress intensification present before yielding occurs. The shape and orientation of the defects, however, are seen to play an important role relative to strain at fracture. The maximum intensified tensile stress criterion which holds for brittle materials is found to apply to ductile materials as well.

  8. Voids in neutron-irradiated metals and alloys

    SciTech Connect

    Hendricks, R.W.

    1980-01-01

    Small-angle x-ray and neutron scattering are powerful analytical tools for investigating long-range fluctuations in electron (x-rays) or magnetic moment (neutrons) densities in materials. In recent years they have yielded valuable information about voids, void size distributions, and swelling in aluminum, aluminum alloys, copper, molybdenum, nickel, nickel-aluminum, niobium and niobium alloys, stainless steels, graphite and silicon carbide. In the case of aluminum, information concerning the shape of the voids and the ratio of specific surface energies was obtained. The technique of small-angle scattering and its application to the study of voids is reviewed in the paper. Emphasis is placed on the conditions which limit the applicability of the technique, on the interpretation of the data, and on a comparison of the results obtained with companion techniques such as transmission electron microscopy and bulk density. 8 figures, 41 references.

  9. Correction for dynamic bias error in transmission measurements of void fraction.

    PubMed

    Andersson, P; Sundén, E Andersson; Svärd, S Jacobsson; Sjöstrand, H

    2012-12-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision. PMID:23278029

  10. Correction for dynamic bias error in transmission measurements of void fraction

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Sundén, E. Andersson; Svärd, S. Jacobsson; Sjöstrand, H.

    2012-12-01

    Dynamic bias errors occur in transmission measurements, such as X-ray, gamma, or neutron radiography or tomography. This is observed when the properties of the object are not stationary in time and its average properties are assessed. The nonlinear measurement response to changes in transmission within the time scale of the measurement implies a bias, which can be difficult to correct for. A typical example is the tomographic or radiographic mapping of void content in dynamic two-phase flow systems. In this work, the dynamic bias error is described and a method to make a first-order correction is derived. A prerequisite for this method is variance estimates of the system dynamics, which can be obtained using high-speed, time-resolved data acquisition. However, in the absence of such acquisition, a priori knowledge might be used to substitute the time resolved data. Using synthetic data, a void fraction measurement case study has been simulated to demonstrate the performance of the suggested method. The transmission length of the radiation in the object under study and the type of fluctuation of the void fraction have been varied. Significant decreases in the dynamic bias error were achieved to the expense of marginal decreases in precision.

  11. Heavy Metal Content in Airborne Dust of Childhood Leukemia Cluster Areas: Even Small Towns Have Air Pollutants

    NASA Astrophysics Data System (ADS)

    Sheppard, P. R.; Witten, M. L.

    2004-12-01

    Currently in the US, there are at least two ongoing clusters of childhood leukemia, where the incidence rate over the last several years has exceeded the national norm. In Fallon, Nevada, a town of 8,000 people, 16 children have been diagnosed with leukemia since 1995, three of whom have died. In Sierra Vista, Arizona, a town of 38,000 people, 12 children have been diagnosed since 1998, two of whom have died. A possible third cluster of childhood leukemia and other cancers is being monitored in Elk Grove, California, a suburb of Sacramento. For the purpose of characterizing the heavy metal content of airborne dust of these three communities, total suspended particulate samples were collected from each town as well as from nearby towns that could be considered as control comparisons. Sampling was done using portable high-volume blowers and glass- or quartz-fiber filter media. Filters were measured for elemental concentrations using inductively coupled plasma mass spectroscopy. To date, our most notable results are from the Nevada region. Compared to other control towns in the region, Fallon had significantly more tungsten in its airborne dust. Uranium was also higher in dust of Fallon than in other control towns. Uranium is a known health hazard, though it is not necessarily specifically related to childhood leukemia. The role of tungsten in childhood leukemia has not been widely studied. However, other research has identified tungsten exposure as an environmental concern in Fallon. A CDC study of human tissue samples from Fallon has shown high tungsten levels in people of Fallon, and a USGS study of drinking water in Fallon also has shown high tungsten there. Tree-ring research on selected trees has shown high tungsten values in recent rings compared to earlier rings. While these multiple indications of tungsten in the Fallon environment do not directly lead to the conclusion that tungsten causes leukemia, they do combine to suggest that biomedical research on the

  12. Void morphology in polyethylene/carbon black composites

    SciTech Connect

    Marr, D.W.M.; Wartenberg, M.; Schwartz, K.B.

    1996-12-31

    A combination of small angle neutron scattering (SANS) and contrast matching techniques is used to determine the size and quantity of voids incorporated during fabrication of polyethylene/carbon black composites. The analysis used to extract void morphology from SANS data is based on the three-phase model of microcrack determination via small angle x-rayscattering (SAXS) developed by W.Wu{sup 12} and applied to particulate reinforced composites.

  13. Excursion sets and non-Gaussian void statistics

    NASA Astrophysics Data System (ADS)

    D'Amico, Guido; Musso, Marcello; Noreña, Jorge; Paranjape, Aseem

    2011-01-01

    Primordial non-Gaussianity (NG) affects the large scale structure (LSS) of the Universe by leaving an imprint on the distribution of matter at late times. Much attention has been focused on using the distribution of collapsed objects (i.e. dark matter halos and the galaxies and galaxy clusters that reside in them) to probe primordial NG. An equally interesting and complementary probe however is the abundance of extended underdense regions or voids in the LSS. The calculation of the abundance of voids using the excursion set formalism in the presence of primordial NG is subject to the same technical issues as the one for halos, which were discussed e.g. in Ref. [G. D’Amico, M. Musso, J. Noreña, and A. Paranjape, arXiv:1005.1203.]. However, unlike the excursion set problem for halos which involved random walks in the presence of one barrier δc, the void excursion set problem involves two barriers δv and δc. This leads to a new complication introduced by what is called the “void-in-cloud” effect discussed in the literature, which is unique to the case of voids. We explore a path integral approach which allows us to carefully account for all these issues, leading to a rigorous derivation of the effects of primordial NG on void abundances. The void-in-cloud issue, in particular, makes the calculation conceptually rather different from the one for halos. However, we show that its final effect can be described by a simple yet accurate approximation. Our final void abundance function is valid on larger scales than the expressions of other authors, while being broadly in agreement with those expressions on smaller scales.

  14. Void Points, Rosettes, and a Brief History of Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Kosso, Peter

    2013-12-01

    Almost all models of planetary orbits, from Aristotle through Newton, include void points, empty points in space that have an essential role in defining the orbit. By highlighting the role of these void points, as well as the rosette pattern of the orbit that often results, I bring out different features in the history of planetary astronomy and place a different emphasis on its revolutionary changes, different from those rendered in terms of epicycles or the location of the earth.

  15. Excursion sets and non-Gaussian void statistics

    SciTech Connect

    D'Amico, Guido; Musso, Marcello; Paranjape, Aseem; Norena, Jorge

    2011-01-15

    Primordial non-Gaussianity (NG) affects the large scale structure (LSS) of the Universe by leaving an imprint on the distribution of matter at late times. Much attention has been focused on using the distribution of collapsed objects (i.e. dark matter halos and the galaxies and galaxy clusters that reside in them) to probe primordial NG. An equally interesting and complementary probe however is the abundance of extended underdense regions or voids in the LSS. The calculation of the abundance of voids using the excursion set formalism in the presence of primordial NG is subject to the same technical issues as the one for halos, which were discussed e.g. in Ref. [51][G. D'Amico, M. Musso, J. Norena, and A. Paranjape, arXiv:1005.1203.]. However, unlike the excursion set problem for halos which involved random walks in the presence of one barrier {delta}{sub c}, the void excursion set problem involves two barriers {delta}{sub v} and {delta}{sub c}. This leads to a new complication introduced by what is called the 'void-in-cloud' effect discussed in the literature, which is unique to the case of voids. We explore a path integral approach which allows us to carefully account for all these issues, leading to a rigorous derivation of the effects of primordial NG on void abundances. The void-in-cloud issue, in particular, makes the calculation conceptually rather different from the one for halos. However, we show that its final effect can be described by a simple yet accurate approximation. Our final void abundance function is valid on larger scales than the expressions of other authors, while being broadly in agreement with those expressions on smaller scales.

  16. A Least-Squares Transport Equation Compatible with Voids

    SciTech Connect

    Hansen, Jon; Peterson, Jacob; Morel, Jim; Ragusa, Jean; Wang, Yaqi

    2014-12-01

    Standard second-order self-adjoint forms of the transport equation, such as the even-parity, odd-parity, and self-adjoint angular flux equation, cannot be used in voids. Perhaps more important, they experience numerical convergence difficulties in near-voids. Here we present a new form of a second-order self-adjoint transport equation that has an advantage relative to standard forms in that it can be used in voids or near-voids. Our equation is closely related to the standard least-squares form of the transport equation with both equations being applicable in a void and having a nonconservative analytic form. However, unlike the standard least-squares form of the transport equation, our least-squares equation is compatible with source iteration. It has been found that the standard least-squares form of the transport equation with a linear-continuous finite-element spatial discretization has difficulty in the thick diffusion limit. Here we extensively test the 1D slab-geometry version of our scheme with respect to void solutions, spatial convergence rate, and the intermediate and thick diffusion limits. We also define an effective diffusion synthetic acceleration scheme for our discretization. Our conclusion is that our least-squares Sn formulation represents an excellent alternative to existing second-order Sn transport formulations

  17. Irradiation creep relaxation of void swelling-driven stresses

    NASA Astrophysics Data System (ADS)

    Hall, M. M.

    2013-01-01

    Swelling-driven-creep test specimens are used to measure the compressive stresses that develop due to constraint of irradiation void swelling. These specimens use a previously non-irradiated 20% CW Type 316 stainless steel holder to axially restrain two Type 304 stainless steel tubular specimens that were previously irradiated in the US Experimental Breeder Reactor (EBR-II) at 490 °C. One specimen was previously irradiated to fluence levels in the void nucleation regime (9 dpa) and the other in the quasi-steady void growth regime (28 dpa). A lift-off compliance measurement technique was used post-irradiation to determine compressive stresses developed during reirradiation of the two specimen assemblies in Row 7 of EBR-II at temperatures of 547 °C and 504 °C, respectively, to additional damage levels each of about 5 dpa. Results obtained on the higher fluence swelling-driven-creep specimen show that compressive stress due to constraint of swelling retards void swelling to a degree that is consistent with active load uniaxial compression specimens that were irradiated as part of a previously reported multiaxial in-reactor creep experiment. Swelling results obtained on the lower fluence swelling-driven creep specimen show a much larger effect of compressive stress in reducing swelling, demonstrating that the larger effect of stress on swelling is on void nucleation as compared to void growth. Test results are analyzed using a recently proposed multiaxial creep-swelling model.

  18. Void probability as a function of the void's shape and scale-invariant models

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1991-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  19. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  20. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  1. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resorbable calcium salt bone void filler device... salt bone void filler device. (a) Identification. A resorbable calcium salt bone void filler device is... entitled “Class II Special Controls Guidance: Resorbable Calcium Salt Bone Void Filler Device; Guidance...

  2. Void Management in MEPHISTO and Other Space Experiments

    NASA Technical Reports Server (NTRS)

    deGroh, Henry C., III; Johnston, J. Christopher; Wei, Bingbo

    1998-01-01

    The second flight of NASA's Shuttle Flight experiment program known as MEPHISTO suffered from a void in the liquid portion of the sample, even though a piston arrangement was in place to keep the ampoule filled. In preparations for the next flight of the MEPHISTO furnace an animated computer program, called MEPHISTO Volume Visualizer (MVV), was written to help avoid the formation of unwanted voids. A piston system on MEPHISTO has the ability to move approximately 5 mm in compression, to accommodate expansion of the solid during heating; then from the completely compressed position, the piston can move up to 25 mm in towards the sample, effectively making the ampoule smaller and hopefully eliminating any voids. Due to the nature of the piston design and ampoule and sample arrangement, the piston has gotten stuck during normal directional solidification; this creates the risk of a void. To eliminate such a void, the liquid in the hot zones of the furnace can be heated, thereby expanding the liquid and consuming any void. The problem with this approach is that if the liquid is heated too much an overpressure could result, breaking the ampoule and ending the experiment catastrophically. The MVV has been found to be a useful tool in the assessment of the risks associated with the formation of a void and the additional heating of the liquid in the hot zone of this Bridgman type furnace. The MVV software will be discussed and copies available; it is written in the Delphi 2 programming language and runs under Windows 95 and NT. The strategies used in other flight experiments, such as the Isothermal Dendritic Growth Experiment, will also be presented.

  3. Normalization of test and evaluation of biothreat detection systems: overcoming microbial air content fluctuations by using a standardized reagent bacterial mixture.

    PubMed

    Berchebru, Laurent; Rameil, Pascal; Gaudin, Jean-Christophe; Gausson, Sabrina; Larigauderie, Guilhem; Pujol, Céline; Morel, Yannick; Ramisse, Vincent

    2014-10-01

    Test and evaluation of engineered biothreat agent detection systems ("biodetectors") are a challenging task for government agencies and industries involved in biosecurity and biodefense programs. In addition to user friendly features, biodetectors need to perform both highly sensitive and specific detection, and must not produce excessive false alerts. In fact, the atmosphere displays a number of variables such as airborne bacterial content that can interfere with the detection process, thus impeding comparative tests when carried out at different times or places. To overcome these bacterial air content fluctuations, a standardized reagent bacterial mixture (SRBM), consisting in a collection of selected cultivable environmental species that are prevalent in temperate climate bioaerosols, was designed to generate a stable, reproducible, and easy to use surrogate of bioaerosol sample. The rationale, design, and production process are reported. The results showed that 8.59; CI 95%: 8.46-8.72 log cfu distributed into vials underwent a 0.95; CI 95%: 0.65-1.26 log viability decay after dehydration and subsequent reconstitution, thus advantageously mimicking a natural bioaerosol sample which is typically composed of cultivable and uncultivable particles. Dehydrated SRBM was stable for more than 12months at 4°C and allowed the reconstitution of a dead/live cells aqueous suspension that is stable for 96h at +4°C, according to plate counts. Specific detection of a simulating biothreat agent (e.g. Bacillus atrophaeus) by immuno-magnetic or PCR assays did not display any significant loss of sensitivity, false negative or positive results in the presence of SRBM. This work provides guidance on testing and evaluating detection devices, and may contribute to the establishment of suitable standards and normalized procedures. PMID:25038460

  4. Studies on Polyphenol Content, Activities and Isozymes of Polyphenol Oxidase and Peroxidase During Air-Curing in Three Tobacco Types 1

    PubMed Central

    Sheen, S. J.; Calvert, J.

    1969-01-01

    The change in polyphenol content in the primed leaves of burley, flue-cured, and Turkish tobaccos during air-curing was related to the activities and isozymes of polyphenol oxidase and peroxidase. The quantity of chlorogenic acid was rapidly reduced during the first week of curing. The decrease in rutin content during curing was less significant, especially when the concentration of chlorogenic acid was high in leaf tissues. This result was further confirmed by in vitro assays with partially purified tobacco polyphenol oxidase. The polyphenol oxidase activity did not differ at any stage of curing in the 3 tobaccos. When the activity was measured by the oxidation of 3,4-dihydroxyphenylalanine it rose rapidly during the first day of curing and then decreased sharply so that in the fully cured leaf only 15% activity remained. The increase in activity was not observed when chlorogenic acid was used as the substrate. A similar level of peroxidase activity was found in the 3 tobaccos before curing. Peroxidase activities increased rapidly during the first 24 hr of curing, declined thereafter, and remained highest in the flue-cured tobacco, less in the Turkish line, and least in the burley at the end of curing process. By polyacrylamide gel block electrophoresis, 10 peroxidase isozyme bands, 2 cationic and 8 anionic, appeared identical in all 3 tobaccos. When catechol replaced benzidine-2 HCl as the electron donor, 1 cationic and 2 anionic peroxidase isozymes did not form. Of interest is that the same 10 peroxidase isozyme bands also exhibited polyphenol oxidase activities when treated with 3,4-dihydroxyphenylalanine or chlorogenic acid. Results suggest that in the crude tobacco leaf extract the peroxidase and polyphenol oxidase may associate as protein complexes, and peroxidase isozymes may differ in electron-donor requirements. Isozyme patterns for both oxidases at various curing intervals differed only quantitatively. Images PMID:16657046

  5. A Novel Low-Cost Open-Hardware Platform for Monitoring Soil Water Content and Multiple Soil-Air-Vegetation Parameters

    PubMed Central

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost “open hardware” platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSEtraining = 2.63; RMSEvalidation = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  6. A novel low-cost open-hardware platform for monitoring soil water content and multiple soil-air-vegetation parameters.

    PubMed

    Bitella, Giovanni; Rossi, Roberta; Bochicchio, Rocco; Perniola, Michele; Amato, Mariana

    2014-01-01

    Monitoring soil water content at high spatio-temporal resolution and coupled to other sensor data is crucial for applications oriented towards water sustainability in agriculture, such as precision irrigation or phenotyping root traits for drought tolerance. The cost of instrumentation, however, limits measurement frequency and number of sensors. The objective of this work was to design a low cost "open hardware" platform for multi-sensor measurements including water content at different depths, air and soil temperatures. The system is based on an open-source ARDUINO microcontroller-board, programmed in a simple integrated development environment (IDE). Low cost high-frequency dielectric probes were used in the platform and lab tested on three non-saline soils (ECe1: 2.5 < 0.1 mS/cm). Empirical calibration curves were subjected to cross-validation (leave-one-out method), and normalized root mean square error (NRMSE) were respectively 0.09 for the overall model, 0.09 for the sandy soil, 0.07 for the clay loam and 0.08 for the sandy loam. The overall model (pooled soil data) fitted the data very well (R2 = 0.89) showing a high stability, being able to generate very similar RMSEs during training and validation (RMSE(training) = 2.63; RMSE(validation) = 2.61). Data recorded on the card were automatically sent to a remote server allowing repeated field-data quality checks. This work provides a framework for the replication and upgrading of a customized low cost platform, consistent with the open source approach whereby sharing information on equipment design and software facilitates the adoption and continuous improvement of existing technologies. PMID:25337742

  7. Separating the influence of projected changes in air temperature and wind on patterns of sea level change and ocean heat content

    NASA Astrophysics Data System (ADS)

    Saenko, Oleg A.; Yang, Duo; Gregory, Jonathan M.; Spence, Paul; Myers, Paul G.

    2015-08-01

    We present ocean model sensitivity experiments aimed at separating the influence of the projected changes in the "thermal" (near-surface air temperature) and "wind" (near-surface winds) forcing on the patterns of sea level and ocean heat content. In the North Atlantic, the distribution of sea level change is more due to the "thermal" forcing, whereas it is more due to the "wind" forcing in the North Pacific; in the Southern Ocean, the "thermal" and "wind" forcing have a comparable influence. In the ocean adjacent to Antarctica the "thermal" forcing leads to an inflow of warmer waters on the continental shelves, which is somewhat attenuated by the "wind" forcing. The structure of the vertically integrated heat uptake is set by different processes at low and high latitudes: at low latitudes it is dominated by the heat transport convergence, whereas at high latitudes it represents a small residual of changes in the surface flux and advection of heat. The structure of the horizontally integrated heat content tendency is set by the increase of downward heat flux by the mean circulation and comparable decrease of upward heat flux by the subgrid-scale processes; the upward eddy heat flux decreases and increases by almost the same magnitude in response to, respectively, the "thermal" and "wind" forcing. Regionally, the surface heat loss and deep convection weaken in the Labrador Sea, but intensify in the Greenland Sea in the region of sea ice retreat. The enhanced heat flux anomaly in the subpolar Atlantic is mainly caused by the "thermal" forcing.

  8. Macroscopic shock plasticity of brittle material through designed void patterns

    NASA Astrophysics Data System (ADS)

    Jiang, Tailong; Yu, Yin; He, Hongliang; Li, Yongqiang; Huan, Qiang; Wu, Jiankui

    2016-03-01

    The rapid propagation and coalescence of cracks and catastrophic fractures, which occur often under shock compression, compromise a brittle material's design function and restrict its scope of practical application. The shock plasticity of brittle materials can be improved significantly by introducing and designing its microstructure, which can help reduce or delay failure. We used a lattice-spring model, which can describe elastic deformation and brittle fracture of modeled material accurately, to study the influence of void distributions (random, square, hexagonal, and triangular void patterns) on the macroscopic shock response and the mesoscopic deformation feature of brittle materials. Calculated results indicate that the void patterns dominate two inelastic deformation stages on the Hugoniot stress-strain curves (the collapse deformation stage and the slippage deformation stage). It shows that the strain localization is not strong and that the broken media are closer to a round bulk when the samples exist in random and triangular void patterns. This favors an increase in deformation during the slippage deformation stage. For the samples with square and hexagonal void patterns, the strain localization is strong and the broken media are closer to columnar bulks, which favors an increase in deformation during the collapse deformation stage.

  9. Autonomous robot for detecting subsurface voids and tunnels using microgravity

    NASA Astrophysics Data System (ADS)

    Wilson, Stacy S.; Crawford, Nicholas C.; Croft, Leigh Ann; Howard, Michael; Miller, Stephen; Rippy, Thomas

    2006-05-01

    Tunnels have been used to evade security of defensive positions both during times of war and peace for hundreds of years. Tunnels are presently being built under the Mexican Border by drug smugglers and possibly terrorists. Several have been discovered at the border crossing at Nogales near Tucson, Arizona, along with others at other border towns. During this war on terror, tunnels under the Mexican Border pose a significant threat for the security of the United States. It is also possible that terrorists will attempt to tunnel under strategic buildings and possibly discharge explosives. The Center for Cave and Karst Study (CCKS) at Western Kentucky University has a long and successful history of determining the location of caves and subsurface voids using microgravity technology. Currently, the CCKS is developing a remotely controlled robot which will be used to locate voids underground. The robot will be a remotely controlled vehicle that will use microgravity and GPS to accurately detect and measure voids below the surface. It is hoped that this robot will also be used in military applications to locate other types of voids underground such as tunnels and bunkers. It is anticipated that the robot will be able to function up to a mile from the operator. This paper will describe the construction of the robot and the use of microgravity technology to locate subsurface voids with the robot.

  10. On the origin of the voids in the galaxy distribution

    NASA Astrophysics Data System (ADS)

    Hoffman, Y.; Shaham, J.

    1982-11-01

    The distribution of galaxies on scales larger than approximately 10 Mpc/h seems to be characterized by large voids, (20-40) Mpc/h in diameter and of amplitude delta approximately -(0.7-0.8). It was previously argued that the mere existence of such voids poses a severe problem to all dissipationless clustering theories. Here it is shown that the voids may, in fact, be a natural outcome of a dissipationless clustering scenario if both adiabatic and isothermal density perturbations exist primordially. When the nonlinear evolution of spherical voids of this type is followed for adiabatic perturbations with an index n greater than -1, it is seen that they become surrounded by a shell of positive density contrast. Their structure is insensitive to Omega 0 while their dynamics is quite sensitive to it. The maximum peculiar velocity (relative to Hubble flow) within the void is found to be: v(p)/v(H) approximately (0.4-0.5) for Omega 0 = 1.0, approximately (0.2-0.25) for Omega 0 = 0.45, and approximately equal to or less than 0.09 for Omega 0 = 0.1.

  11. Magnetic pattern at supergranulation scale: the void size distribution

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Scardigli, S.; Del Moro, D.

    2014-08-01

    The large-scale magnetic pattern observed in the photosphere of the quiet Sun is dominated by the magnetic network. This network, created by photospheric magnetic fields swept into convective downflows, delineates the boundaries of large-scale cells of overturning plasma and exhibits "voids" in magnetic organization. These voids include internetwork fields, which are mixed-polarity sparse magnetic fields that populate the inner part of network cells. To single out voids and to quantify their intrinsic pattern we applied a fast circle-packing-based algorithm to 511 SOHO/MDI high-resolution magnetograms acquired during the unusually long solar activity minimum between cycles 23 and 24. The computed void distribution function shows a quasi-exponential decay behavior in the range 10-60 Mm. The lack of distinct flow scales in this range corroborates the hypothesis of multi-scale motion flows at the solar surface. In addition to the quasi-exponential decay, we have found that the voids depart from a simple exponential decay at about 35 Mm.

  12. Surveying for Dwarf Galaxies Within Void FN8

    NASA Astrophysics Data System (ADS)

    McNeil, Stephen R.

    2016-06-01

    The dwarf galaxy population in low density volumes, or voids, is a test of galaxy formation models and how they treat dark matter; some models say dwarf galaxies cannot be in void centers while others say they can. Since it appears many dwarf galaxies are H-alpha emitters, a well-designed deep survey through a nearby void center will either find nothing, and thus constrain the population there to be at some percentage below the mean, or it will find H-alpha emitters and significantly challenge several otherwise successful theories. Either result is a significant step in better understanding galaxy formation and large-scale structure. In 2013, a redshifted H-alpha imaging survey was begun for dwarf galaxies with ‑14.0 ≤ Mr ≤ ‑12.0 in the heart and back of the void FN8. Our first results have been surprising, furnishing significantly more candidate objects than anticipated. Through the Gemini Fast Turnaround Program, seven spectrum have been obtained, with one spectrum being a strong candidate for habitation within the center of the void.

  13. The persistent percolation of single-stream voids

    NASA Astrophysics Data System (ADS)

    Falck, B.; Neyrinck, M. C.

    2015-07-01

    We study the nature of voids defined as single-stream regions that have not undergone shell-crossing. We use ORIGAMI to determine the cosmic web morphology of each dark matter particle in a suite of cosmological N-body simulations, which explicitly calculates whether a particle has crossed paths with others along multiple sets of axes and does not depend on a parameter or smoothing scale. The theoretical picture of voids is that of expanding underdensities with borders defined by shell-crossing. We find instead that locally underdense single-stream regions are not bounded on all sides by multi-stream regions, thus they percolate, filling the simulation volume; we show that the set of multi-stream particles also percolates. This percolation persists to high resolution, where the mass fraction of single-stream voids is low, because the volume fraction remains high; we speculate on the fraction of collapsed mass in the continuum limit of infinite resolution. By introducing a volume threshold parameter to define underdense void `cores', we create a catalogue of ORIGAMI voids which consist entirely of single-stream particles and measure their percolation properties, volume functions, and average densities.

  14. The Star Formation Properties of Void Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Moorman, Crystal; Vogeley, Michael S.

    2016-01-01

    We measure the star formation properties of two large samples of galaxies from the SDSS in large-scale cosmic voids on time scales of 10 Myr and 100 Myr, using Ha emission line strengths and GALEX FUV fluxes, respectively. The first sample consists of 109,818 optically selected galaxies. We find that void galaxies in this sample have higher specific star formation rates (SSFRs; star formation rates per unit stellar mass) than similar stellar mass galaxies in denser regions. The second sample is a subset of the optically selected sample containing 8070 galaxies with reliable S/N HI detections from ALFALFA. For the HI detected sample, SSFRs are similar regardless of large-scale environment. Investigating only the HI detected dwarf galaxies reveals a trend towards higher SSFRs in voids. Furthermore, we estimate the star formation rate per unit HI mass, known as the star formation efficiency (SFE) of a galaxy, as a function of environment. For the overall HI detected population, we notice no environmental dependence. Limiting the sample to dwarf galaxies again reveals a trend towards higher SFEs in voids. These results suggest that void environments provide a nurturing environment for dwarf galaxy evolution.

  15. Discussion of Void nucleation in constrained silver interlayers'' and Void growth and coalescence in constrained silver interlayers''

    SciTech Connect

    Kassner, M.E.; Tolle, M.C. . Dept. of Mechanical Engineering); Rosen, R.S.; Henshall, G.A.; Elmer, J.W. )

    1993-08-01

    The authors have read with some concern the two articles by Klassen, Weatherly, and Ramaswami (KWR) entitled Void Nucleation in Constrained Silver Interlayers'' and Void Growth and Coalescence in Constrained Silver Interlayers'' published recently in this journal. They have several comments to these articles. First, substantial portions of these articles appear to closely reaffirm experiments and stress analyses on fracture and other mechanical behavior of constrained silver interlayers already published. KWR appeared to be unaware of (or disregarded) much of these works and this communication is partly intended to direct KWR and perhaps others to these works. Next, although there are many scientific aspects of the articles that warrant discussion, they have focused on two principal points. First, there appear to be some odd aspects of the Nucleation (KWR) article. The authors suggest nucleation and unstable growth occur only near the fracture stress (S[sub f]). This clearly is in contradiction to their careful work, where nucleation is shown to occur at very low stress (S[sub f]/5), just above the uniaxial yield stress of the interlayer silver. Second, and more importantly, KWR do not report any void growth. This, also, is in contradiction to earlier work on void growth in constrained silver interlayers. In the case of brazed silver joints, the shrinkage voids are observed to grow until a critical void separation is reached and instability occurs. In their work, voids appear to grow from small to larger cavities with small overall plastic strain in the interlayer, including at the base-metal/silver interface. In summary, although the KWR articles reasonably reproduced some established experimental trends for constrained interlayers and observed some other phenomena particularly relevant to the case with a substantial volume fraction of dispersions, other more basic conclusions relating to final fracture do not appear to consider more reasonable approaches.

  16. Rapid assessment of methanotrophic capacity of compost-based materials considering the effects of air-filled porosity, water content and dissolved organic carbon.

    PubMed

    Mancebo, Uriel; Hettiaratchi, J Patrick A

    2015-02-01

    Since the global warming potential of CH4 is 25 times that of CO2 on a 100-year time horizon, the development of methanotrophic applications for the conversion of CH4 to CO2 is emerging as an area of interest for researchers and practicing engineers. Compost exhibits most of the characteristics required for methanotroph growth media and has been used in several projects. This paper presents results from a study that was undertaken to assess the influence of physical and chemical characteristics of compost-based materials on the biological oxidation of CH4 when used in methane biofilters. The results showed that easily-measurable parameters, such as air filled porosity, water content and dissolved organic carbon, are correlated with maximum CH4 removal rates. The results obtained were used to develop an empirical relationship that could be regarded as a rapid assessment tool for the estimation of the performance of compost-based materials in engineered methanotrophic applications. PMID:25484123

  17. Quantifying Void Ratio Variation in Sand using Computed Tomography

    NASA Technical Reports Server (NTRS)

    Alshibli, Khalid A.; Batiste, Susan N.; Swanson, Roy A.; Sture, Stein; Costes, Nicholas C.; Lankton, Mark R.

    1999-01-01

    A series of displacement-controlled, conventional, drained axisymmetric (triaxial) experiments were conducted on dry Ottawa sand specimens at very low effective confining stresses in a microgravity environment aboard the Space Shuttle during the NASA STS-89 mission. Post-flight analysis included studying the internal fabric and failure patterns of these specimens using Computed Tomography (CT). The CT scans of three specimens subjected to different compression levels (uncompressed specimen, a specimen compressed to 3.3% nominal axial strain (epsilon(sub a)), and a specimen compressed to 25% epsilon(sub a)) are presented to investigate the evolution of instability patterns and to quantify void ratio variation. The progress of failure is described and discussed. Also, specimens' densities were calibrated using standard ASTM procedures and void ratio spatial variation was calculated and represented by contour maps and histograms. The CT technique demonstrated good ability to detect specimen inhomogeneities, localization patterns, and quantifying void ratio variation within sand specimens.

  18. Voids as a precision probe of dark energy

    SciTech Connect

    Biswas, Rahul; Alizadeh, Esfandiar; Wandelt, Benjamin D.

    2010-07-15

    The shapes of cosmic voids, as measured in spectroscopic galaxy redshift surveys, constitute a promising new probe of dark energy (DE). We forecast constraints on the DE equation of state and its variation from current and future surveys and find that the promise of void shape measurements compares favorably to that of standard methods such as supernovae and cluster counts even for currently available data. Owing to the complementary nature of the constraints, void shape measurements improve the Dark Energy Task Force figure of merit by 2 orders of magnitude for a future large scale experiment such as EUCLID when combined with other probes of dark energy available on a similar time scale. Modeling several observational and theoretical systematics has only moderate effects on these forecasts. We discuss additional systematics which will require further study using simulations.

  19. Voronoi and void statistics for superhomogeneous point processes.

    PubMed

    Gabrielli, Andrea; Torquato, Salvatore

    2004-10-01

    We study the Voronoi and void statistics of superhomogeneous (or hyperuniform) point patterns in which the infinite-wavelength density fluctuations vanish. Superhomogeneous or hyperuniform point patterns arise in one-component plasmas, primordial density fluctuations in the Universe, and jammed hard-particle packings. We specifically analyze a certain one-dimensional model by studying size fluctuations and correlations of the associated Voronoi cells. We derive exact results for the complete joint statistics of the size of two Voronoi cells. We also provide a sum rule that the correlation matrix for the Voronoi cells must obey in any space dimension. In contrast to the conventional picture of superhomogeneous systems, we show that infinitely large Voronoi cells or voids can exist in superhomogeneous point processes in any dimension. We also present two heuristic conditions to identify and classify any superhomogeneous point process in terms of the asymptotic behavior of the void size distribution. PMID:15600395

  20. Tunnel and Subsurface Void Detection and Range to Target Measurement

    SciTech Connect

    Phillip B. West

    2009-06-01

    Engineers and technicians at the Idaho National Laboratory invented, designed, built and tested a device capable of detecting and measuring the distance to, an underground void, or tunnel. Preliminary tests demonstrated positive detection of, and range to, a void thru as much as 30 meters of top-soil earth. Device uses acoustic driving point impedance principles pioneered by the Laboratory for well-bore physical properties logging. Data receipts recorded by the device indicates constructive-destructive interference patterns characteristic of acoustic wave reflection from a downward step-change in impedance mismatch. Prototype tests demonstrated that interference patterns in receipt waves could depict the patterns indicative of specific distances. A tool with this capability can quickly (in seconds) indicate the presence and depth/distance of a void or tunnel. Using such a device, border security and military personnel can identify threats of intrusion or weapons caches in most all soil conditions including moist and rocky.

  1. Testing cosmic geometry without dynamic distortions using voids

    SciTech Connect

    Hamaus, Nico; Sutter, P.M.; Lavaux, Guilhem; Wandelt, Benjamin D. E-mail: sutter@iap.fr E-mail: wandelt@iap.fr

    2014-12-01

    We propose a novel technique to probe the expansion history of the Universe based on the clustering statistics of cosmic voids. In particular, we compute their two-point statistics in redshift space on the basis of realistic mock galaxy catalogs and apply the Alcock-Paczynski test. In contrast to galaxies, we find void auto-correlations to be marginally affected by peculiar motions, providing a model-independent measure of cosmological parameters without systematics from redshift-space distortions. Because only galaxy-galaxy and void-galaxy correlations have been considered in these types of studies before, the presented method improves both statistical and systematic uncertainties on the product of angular diameter distance and Hubble rate, furnishing the potentially cleanest probe of cosmic geometry available to date.

  2. ONLY THE LONELY: H I IMAGING OF VOID GALAXIES

    SciTech Connect

    Kreckel, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Yip, C.-W.; Kovac, K.; Peebles, P. J. E.

    2011-01-15

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 x 10{sup 8} to 3.8 x 10{sup 9} M{sub sun}, with one nondetection with an upper limit of 2.1 x 10{sup 8} M{sub sun}. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.

  3. Only the Lonely: H I Imaging of Void Galaxies

    NASA Astrophysics Data System (ADS)

    Kreckel, K.; Platen, E.; Aragón-Calvo, M. A.; van Gorkom, J. H.; van de Weygaert, R.; van der Hulst, J. M.; Kovač, K.; Yip, C.-W.; Peebles, P. J. E.

    2011-01-01

    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the H I imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in H I in local (d < 100 Mpc) voids. H I masses range from 3.5 × 108 to 3.8 × 109 M sun, with one nondetection with an upper limit of 2.1 × 108 M sun. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control samples of galaxies while still resolving individual galaxy kinematics and detecting faint companions in H I. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed H I disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar H I disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.

  4. Voiding trial outcome following pelvic floor repair without incontinence procedures

    PubMed Central

    Wang, Rui; Won, Sara; Haviland, Miriam J.; Bargen, Emily Von; Hacker, Michele R.; Li, Janet

    2016-01-01

    Introduction and hypothesis Our aim was to identify predictors of postoperative voiding trial failure among patients who had a pelvic floor repair without a concurrent incontinence procedure in order to identify low-risk patients in whom postoperative voiding trials may be modified. Methods We conducted a retrospective cohort study of women who underwent pelvic floor repair without concurrent incontinence procedures at two institutions from 1 November 2011 through 13 October 2013 after abstracting demographic and clinical data from medical records. The primary outcome was postoperative retrograde voiding trial failure. We used modified Poisson regression to calculate the risk ratio (RR) and 95 % confidence interval (CI). Results Of the 371 women who met eligibility criteria, 294 (79.2 %) had complete data on the variables of interest. Forty nine (16.7%) failed the trial, and those women were less likely to be white (p = 0.04), more likely to have had an anterior colporrhaphy (p = 0.001), and more likely to have had a preoperative postvoid residual (PVR) ≥150 ml (p = 0.001). After adjusting for race, women were more likely to fail their voiding trial if they had a preoperative PVR of ≥150 ml (RR: 1.9; 95 % CI: 1.1–3.2); institution also was associated with voiding trial failure (RR: 3.0; 95 % CI: 1.6–5.4). Conclusions Among our cohort, postoperative voiding trial failure was associated with a PVR of ≥150 ml and institution at which the surgery was performed. PMID:26886553

  5. Three-dimensional micromechanical modeling of voided polymeric materials

    NASA Astrophysics Data System (ADS)

    Danielsson, M.; Parks, D. M.; Boyce, M. C.

    2002-02-01

    A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states. The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix. The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality. The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for

  6. Transmutation abilities of the SFR low void effect core concept 'CFV' 3600 MWth

    SciTech Connect

    Buiron, L.; Fontaine, B.; Andriolo, L.

    2012-07-01

    This paper presents an evaluation of the potential of minor actinide transmutation in a 3600 MWth SFR core designed with the low void effect core concept (namely 'CFV concept'). This concept is based upon an axially heterogeneous design with an internal fertile zone, and two radial fuel zones with different heights. Two modes of minor actinide transmutation are considered. The homogeneous mode where the minor actinides (MA) are diluted in the fuel is studied considering different options: - MA diluted in the whole core, - MA diluted in the internal and external fuel zone, - MA diluted in the internal fertile zone, for which different isotopic vectors and contents in fuel are analyzed. The heterogeneous mode is also studied with MA placed in external blanket bearings, with contents of 20%. The results are compared to those obtained with a traditional homogenous core concept (SFRV2B type) in terms of transmutation performances. Impacts of the transmutation assumptions on transmutation performances, on fuel cycle and safety parameters (void effect, Doppler) are also presented. (authors)

  7. Ductile damage modeling based on void coalescence and percolation theories

    SciTech Connect

    Tonks, D.L.; Zurek, A.K.; Thissell, W.R.

    1995-09-01

    A general model for ductile damage in metals is presented. It includes damage induced by shear stress as well as damage caused by volumetric tension. Spallation is included as a special case. Strain induced damage is also treated. Void nucleation and growth are included, and give rise to strain rate effects. Strain rate effects also arise in the model through elastic release wave propagation between damage centers. The underlying physics of the model is the nucleation, growth, and coalescence of voids in a plastically flowing solid. The model is intended for hydrocode based computer simulation. An experimental program is underway to validate the model.

  8. Voids and constraints on nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Park, Changbom; Huchra, John P.

    1994-01-01

    Void statistics of the galaxy distribution in the Center for Astrophysics Redshift Survey provide strong constraints on galaxy clustering in the nonlinear regime, i.e., on scales R equal to or less than 10/h Mpc. Computation of high-order moments of the galaxy distribution requires a sample that (1) densely traces the large-scale structure and (2) covers sufficient volume to obtain good statistics. The CfA redshift survey densely samples structure on scales equal to or less than 10/h Mpc and has sufficient depth and angular coverage to approach a fair sample on these scales. In the nonlinear regime, the void probability function (VPF) for CfA samples exhibits apparent agreement with hierarchical scaling (such scaling implies that the N-point correlation functions for N greater than 2 depend only on pairwise products of the two-point function xi(r)) However, simulations of cosmological models show that this scaling in redshift space does not necessarily imply such scaling in real space, even in the nonlinear regime; peculiar velocities cause distortions which can yield erroneous agreement with hierarchical scaling. The underdensity probability measures the frequency of 'voids' with density rho less than 0.2 -/rho. This statistic reveals a paucity of very bright galaxies (L greater than L asterisk) in the 'voids.' Underdensities are equal to or greater than 2 sigma more frequent in bright galaxy samples than in samples that include fainter galaxies. Comparison of void statistics of CfA samples with simulations of a range of cosmological models favors models with Gaussian primordial fluctuations and Cold Dark Matter (CDM)-like initial power spectra. Biased models tend to produce voids that are too empty. We also compare these data with three specific models of the Cold Dark Matter cosmogony: an unbiased, open universe CDM model (omega = 0.4, h = 0.5) provides a good match to the VPF of the CfA samples. Biasing of the galaxy distribution in the 'standard' CDM model

  9. Evaluation and management of voiding dysfunction after midurethral sling procedures

    PubMed Central

    Çelik, Hatice; Harmanlı, Özgür

    2012-01-01

    Midurethral slings have become the most popular surgical procedure for the correction of stress urinary incontinence in women. Urinary retention or obstructive voiding symptoms may arise from partial urethral obstruction as a result of oversuspension of the urethra or exaggerated tension. Fortunately, most cases of voiding dysfunction are transient and resolve spontaneously within days. Clean intermittent self-catheterization is the mainstay of conservative treatment. If symptoms persist, tape mobilization, incision or urethrolysis may be performed. Recurrent stress urinary incontinence may occur in a small group of patients, who may benefit from another incontinence treatment. PMID:24592021

  10. Voids within the two-component dust model

    NASA Astrophysics Data System (ADS)

    Haager, Gernot

    1998-11-01

    A new family within the spherically symmetric two-component dust metrics (Haager G 1997 Class. Quantum Grav. 14 2219) with an additional homothetic vector is investigated in detail. These metrics are regular except for a big bang singularity and can be given by an asymptotic expansion of the metric coefficients for large times after the big bang. Using this family, voids can be described whose edge is not comoving in comparison with its surroundings. A concrete example is given where the edge of the void is contracting, while the dust background is expanding.

  11. Dimensionality effects in void-induced explosive sensitivity

    DOE PAGESBeta

    Herring, Stuart Davis; Germann, Timothy Clark; Gronbech-Jensen, Niels

    2016-07-06

    Here, the dimensionality of defects in high explosives controls their heat generation and the expansion of deflagrations from them. We compare the behaviour of spherical voids in three dimensions to that of circular voids in two dimensions. The behaviour is qualitatively similar, but the additional focusing along the extra transverse dimension significantly reduces the piston velocity needed to initiate reactions. However, the reactions do not grow as well in three dimensions, so detonations require larger piston velocities. Pressure exponents are seen to be similar to those for the two-dimensional system.

  12. Voiding Dysfunction Induced by Tetanus: A Case Report

    PubMed Central

    Kira, Satoru; Sawada, Norifumi; Aoki, Tadashi; Kobayashi, Hideki; Takeda, Masayuki

    2016-01-01

    A 34-year-old man presented with sudden voiding dysfunction and lower limb paraplegia. As a central nervous system disorder was suspected, he was referred to the neurology department. Under the diagnosis of neurosarcoidosis, steroid pulse therapy was initiated. To ensure the effect of this therapy, the patient was referred back for urodynamic testing. Urodynamic testing indicated that the urethral sphincter was not relaxed and could not void. Due to the sudden appearance of repeated and refractory opisthotonus, tetanus was strongly suspected. After administration of antibiotics and tetanus immune globulin, those symptoms disappeared. PMID:26793588

  13. POLAR DISK GALAXY FOUND IN WALL BETWEEN VOIDS

    SciTech Connect

    Stanonik, K.; Van Gorkom, J. H.; Platen, E.; Van de Weygaert, R.; Van der Hulst, J. M.; Aragon-Calvo, M. A.; Peebles, P. J. E.

    2009-05-01

    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an H I survey of SDSS void galaxies, with no optical counterpart to the H I polar disk. Yet the H I mass in the disk is comparable to the stellar mass in the galaxy. This suggests slow accretion of the H I material at a relatively recent time. There is also a hint of a warp in the outer parts of the H I disk. The central, stellar disk appears relatively blue, with faint near-UV emission, and is oriented (roughly) parallel to the surrounding wall, implying gas accretion from the voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies.

  14. Liquid crystals detect voids in fiber glass laminates

    NASA Technical Reports Server (NTRS)

    Hollar, W. T.

    1967-01-01

    Liquid crystal solution nondestructively detects voids or poor bond lines in fiber glass laminates. A thin coating of the solution is applied by spray or brush to the test article surface, and when heated indicates the exact location of defects by differences in color.

  15. Voiding postponement in children-a systematic review.

    PubMed

    von Gontard, Alexander; Niemczyk, Justine; Wagner, Catharina; Equit, Monika

    2016-08-01

    Voiding postponement (VP) has been defined as a habitual postponement of micturition using holding maneuvers. VP can represent both a symptom, as well as a condition. As divergent definitions are used internationally, the aim was to review the current state of knowledge on VP and provide recommendations for assessment, diagnosis and treatment. A Scopus and a Pubmed search was conducted, entering the terms 'voiding postponement' without any restrictions or specifications. Other publications relevant to the topic were added. VP can represent a symptom in healthy children. As a condition, VP in combination with nocturnal enuresis (NE) is a subtype of non-monosymptomatic NE. Most studies have focused on daytime urinary incontinence (DUI) with VP, or more aptly termed voiding postponement incontinence (VPI). It is a behaviorally defined syndrome, i.e., by the habitual deferral of micturition and DUI. VPI is associated with a low micturition frequency, urgency and behavioral problems. The most common comorbid disorder is oppositional defiant disorder (ODD). VP as a symptom and VPI as a condition should be differentiated. VPI is a common disorder with many associated problems and disorders. Urotherapy and timed voiding are the main treatment approaches. Due to the high rate of comorbid ODD, other forms of treatment, especially cognitive behavioral therapy, are often needed. PMID:26781489

  16. Voids in Jovian magnetosphere revisited - Evidence of spacecraft charging

    NASA Technical Reports Server (NTRS)

    Khurana, K. K.; Kivelson, M. G.; Walker, R. J.; Armstrong, T. P.

    1987-01-01

    The Voyager 2 Plasma Science Instrument (PLS) measuring cold plasma number density observed about a dozen 'voids', lasting from a few minutes to 20 min, in the vicinity of the Ganymede-orbit crossing, when the low-energy ion and electron fluxes recorded fell to very low levels. Original interpretations associated these 'voids' with Ganymede wake effects. In the present study, the PLS data are reexamined, in conjunction with data from the magnetic field experiment and the low-energy charged particle (LECP) experiment. The LECP data showed that the PLS voids were accompanied by large enhancements of the flux of energetic electrons and ions, while the magnetic data exhibited no systematic signatures. It is suggested that increased energetic electron fluxes in the void regions intermittently charged the spacecraft negatively to values between a few kV and a few tens of kV, and that spacecraft charging could have produce dropouts in the measured cold ion and electron fluxes and enhancements in the measured fluxes of hot particles consistent with the observations.

  17. Kinetic Monte Carlo Simulations of Void Lattice Formation During Irradiation

    SciTech Connect

    Heinisch, Howard L.; Singh, Bachu N.

    2003-12-01

    Within the last decade molecular dynamics simulations of displacement cascades have revealed that glissile clusters of self-interstitial crowdions are formed directly in cascades and that they migrate one-dimensionally along close-packed directions with extremely low activation energies. Occasionally, under various conditions, a crowdion cluster can change its Burgers vector and glide along a different close-packed direction. The recently developed Production Bias Model (PBM) of microstructure evolution under irradiation has been structured to specifically take into account the unique properties of the vacancy and interstitial clusters produced in the cascades. Atomic-scale kinetic Monte Carlo (KMC) simulations have played a useful role in understanding the defect reaction kinetics of one-dimensionally migrating crowdion clusters as a function of the frequency of direction changes. This has made it possible to incorporate the migration properties of crowdion clusters and changes in reaction kinetics into the PBM. In the present paper we utilize similar KMC simulations to investigate the significant role crowdion clusters can play in the formation and stability of void lattices. The creation of stable void lattices, starting from a random distribution of voids, is simulated by a KMC model in which vacancies migrate three-dimensionally and SIA clusters migrate one-dimensionally, interrupted by directional changes. The necessity of both one-dimensional migration and Burgers vectors changes of SIA clusters for the production of stable void lattices is demonstrated, and the effects of the frequency of Burgers vector changes are described.

  18. 3D optical tomography in the presence of void regions

    NASA Astrophysics Data System (ADS)

    Riley, J.; Dehghani, Hamid; Schweiger, Martin; Arridge, Simon R.; Ripoll, Jorge; Nieto-Vesperinas, Manuel

    2000-12-01

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  19. 3D optical tomography in the presence of void regions.

    PubMed

    Riley, J; Dehghani, H; Schweiger, M; Arridge, S; Ripoll, J; Nieto-Vesperinas, M

    2000-12-18

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example. PMID:19407898

  20. Recovery and characterization of Balanites aegyptiaca Del. kernel proteins. Effect of defatting, air classification, wet sieving and aqueous ethanol treatment on solubility, digestibility, amino acid composition and sapogenin content.

    PubMed

    Mohamed, A M; Wolf, W; Spiess, W E

    2000-02-01

    In order to find alternative protein sources in African regions where protein deficiency in nutrition is prevailing, solubility, in-vitro digestibility, amino acid composition and chemical score of Balanites aegyptiaca Del. kernel proteins were investigated as a function of different processing steps including defatting, air classification, wet sieving and aqueous ethanol treatment. Air classification delivered a fine fraction of 58.1% of the total protein. Applying a wet sieving process, a protein concentrate of 72.9% protein content was achieved but the recovery was very low (35.6%). However, in case of isoelectric precipitation followed by aqueous ethanol treatment both protein content (78.2%) and recovery (53.7%) were high. Data concerning the chemical score revealed, that lysine content of the defatted kernel flour amounted to 74.2% of the recommended FAO/WHO standard level. In-vitro protein digestibility was found to be higher than of legume proteins. The digestible protein of the full fat flour, defatted flour, air classified and wet sieved fine fractions and protein concentrate were 91.9, 93.7, 82.0, 86.4 and 94.2%, respectively. The sapogenin content per 100 g protein of the investigated protein preparations was significantly lower (46% to 62%) than of the initial material (oilcake). PMID:10702992

  1. Three-Dimensional Molecular Dynamics Simulations of Void Coalescence during Dynamic Fracture of Ductile Metals

    SciTech Connect

    Seppala, E T; Belak, J; Rudd, R E

    2004-09-02

    Void coalescence and interaction in dynamic fracture of ductile metals have been investigated using three-dimensional strain-controlled multi-million atom molecular dynamics simulations of copper. The correlated growth of two voids during the coalescence process leading to fracture is investigated, both in terms of its onset and the ensuing dynamical interactions. Void interactions are quantified through the rate of reduction of the distance between the voids, through the correlated directional growth of the voids, and through correlated shape evolution of the voids. The critical inter-void ligament distance marking the onset of coalescence is shown to be approximately one void radius based on the quantification measurements used, independent of the initial separation distance between the voids and the strain-rate of the expansion of the system. The interaction of the voids is not reflected in the volumetric asymptotic growth rate of the voids, as demonstrated here. Finally, the practice of using a single void and periodic boundary conditions to study coalescence is examined critically and shown to produce results markedly different than the coalescence of a pair of isolated voids.

  2. In Situ Void Fraction and Gas Volume in Hanford Tank 241-SY-101 as Measured with the Void Fraction Instrument

    SciTech Connect

    CW Stewart; G Chen; JM Alzheimer; PA Meyer

    1998-11-10

    The void fraction instrument (WI) was deployed in Tank 241-SY-101 three times in 1998 to confm and locate the retained gas (void) postulated to be causing the accelerating waste level rise observed since 1995. The design, operation, and data reduction model of the WI are described along with validation testing and potential sources of uncertainty. The test plans, field observations and void measurements are described in detail, including the total gas volume calculations and the gas volume model. Based on 1998 data, the void fraction averaged 0.013 i 0.001 in the mixed slurry and 0.30 ~ 0.04 in the crust. This gives gas volumes (at standard pressure and temperature) of 87 t 9 scm in the slurry and 138 ~ 22 scm in the crust for a total retained gas volume of221 *25 scm. This represents an increase of about 74 scm in the crust and a decrease of about 34 scm in the slurry from 1994/95 results. The overall conclusion is that the gas retention is occurring mainly in the crust layer and there is very little gas in the mixed slurry and loosely settled layers below. New insights on crust behavior are also revealed.

  3. The green stain on the bark of plane trees — A new probe for studying the iron content in air pollution

    NASA Astrophysics Data System (ADS)

    Hsia, Y.; Liu, R.; Engelmann, H.; Gonser, U.

    1988-02-01

    The origin of iron complexes detected several years ago in the green stain on the bark of plane trees was not clear up to now. Using Mössbauer spectroscopy, we were able to show that these iron complexes result from air pollution deposits. Since all iron compounds detected in air pollution so far are also present in green stain on the bark of plane trees in high concentrations, it seems to be a very effective indicator of air pollution.

  4. Molecular dynamics simulations of void coalescence in monocrystalline copper under loading and unloading

    NASA Astrophysics Data System (ADS)

    Peng, Xiaojuan; Zhu, Wenjun; Chen, Kaiguo; Deng, Xiaoliang; Wei, Yongkai

    2016-04-01

    Molecular dynamic calculations are used to examine the anisotropy of voids coalescence under loading and unloading conditions in monocrystalline coppers. In this paper, three typical orientations are investigated, including [100], [110], and [111]. The study shows that voids collapse after the shock loading, leaving two disordered regions at the initial voids sites. Voids re-nucleate in the disordered regions and grow by the emission of dislocations on various slip planes. The dislocation motion contributes to local stress relaxation, which causes the voids to expand to certain radius and then coalesce with each other by dislocation emission. Due to the influence of the anisotropy shear field and different slip systems around the voids, the dislocations emit more easily at specific position, which lead to the anisotropy of void coalescence. A two-dimensional analysis model based on a shear dislocation is proposed and it explains the phenomena of void coalescence in the simulations quite well.

  5. Hypobaric Conditions Within Rock Void Spaces on Mars will Likely Inhibit the Replication of Terrestrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Schuerger, A. C.; Britt, D.

    2011-03-01

    Internal void spaces within rocks outgas rapidly under simulated martian conditions. Water activity and pressure within rock void spaces are not sufficient to permit the replication of terrestrial microorganisms from spacecraft on Mars.

  6. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Treatment of uncashed or canceled (voided) CHIP... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund the... section— Canceled (voided) check means an CHIP check issued by a State or fiscal agent that prior to...

  7. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  8. Self-similarity and universality of void density profiles in simulation and SDSS data

    NASA Astrophysics Data System (ADS)

    Nadathur, S.; Hotchkiss, S.; Diego, J. M.; Iliev, I. T.; Gottlöber, S.; Watson, W. A.; Yepes, G.

    2015-06-01

    The stacked density profile of cosmic voids in the galaxy distribution provides an important tool for the use of voids for precision cosmology. We study the density profiles of voids identified using the ZOBOV watershed transform algorithm in realistic mock luminous red galaxy (LRG) catalogues from the Jubilee simulation, as well as in void catalogues constructed from the SDSS LRG and Main Galaxy samples. We compare different methods for reconstructing density profiles scaled by the void radius and show that the most commonly used method based on counts in shells and simple averaging is statistically flawed as it underestimates the density in void interiors. We provide two alternative methods that do not suffer from this effect; one based on Voronoi tessellations is also easily able to account from artefacts due to finite survey boundaries and so is more suitable when comparing simulation data to observation. Using this method, we show that the most robust voids in simulation are exactly self-similar, meaning that their average rescaled profile does not depend on the void size. Within the range of our simulation, we also find no redshift dependence of the mean profile. Comparison of the profiles obtained from simulated and real voids shows an excellent match. The mean profiles of real voids also show a universal behaviour over a wide range of galaxy luminosities, number densities and redshifts. This points to a fundamental property of the voids found by the watershed algorithm, which can be exploited in future studies of voids.

  9. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  10. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  11. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  12. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  13. Anterior vaginal wall prolapse and voiding dysfunction in urogynecology patients.

    PubMed

    Schimpf, Megan O; O'Sullivan, David M; LaSala, Christine A; Tulikangas, Paul K

    2007-07-01

    We investigated whether women with and without anterior vaginal wall prolapse have voiding differences. Women (n=109) who presented to a urogynecology practice were categorized into two groups based on anterior vaginal wall prolapse: stages 0 and 1 and stages 2, 3, and 4. Women with prolapse were older than the women without prolapse but the groups were otherwise similar demographically. There was a higher rate of activity-related urine loss and use of wetness protection amongst women without prolapse. There was no significant difference for urgency symptoms or urge incontinence. Urodynamic testing found no significant differences for maximal flow rate or maximal urethral closing pressures. Postvoid residual volume and detrusor overactivity were not different but approached significance. Anterior vaginal wall prolapse of stage 2 or greater was not associated with urge incontinence or voiding function in this population. Women without prolapse were more likely to report stress incontinence. PMID:17031486

  14. Shock wave induced damage of a protein by void collapse

    DOE PAGESBeta

    Lau, Edmond Y.; Berkowitz, Max L.; Schwegler, Eric R.

    2016-01-05

    In this study, we report on a series of molecular dynamics simulations that were used to examine the effects of shockwaves on a membrane bound ion channel. A planar shockwave was found to compress the ion channel upon impact but the protein geometry resembles the initial structure as soon as the solvent density begins to dissipate. When a void was placed in close proximity to the membrane, the shockwave proved to be much more destructive to the protein due to formation of a nanojet that results from the asymmetric collapse of the void. The nanojet was able to cause significantmore » structural changes to the protein even at low particle velocities that are not able to directly cause poration of the membrane.« less

  15. On the void explanation of the Cold Spot

    NASA Astrophysics Data System (ADS)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-04-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω, the ISW contribution due to the presence of the void does not reproduce the properties of the CS.

  16. On the void explanation of the Cold Spot

    NASA Astrophysics Data System (ADS)

    Marcos-Caballero, A.; Fernández-Cobos, R.; Martínez-González, E.; Vielva, P.

    2016-07-01

    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω, the ISW contribution due to the presence of the void does not reproduce the properties of the CS.

  17. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  18. A new least-squares transport equation compatible with voids

    SciTech Connect

    Hansen, J. B.; Morel, J. E.

    2013-07-01

    We define a new least-squares transport equation that is applicable in voids, can be solved using source iteration with diffusion-synthetic acceleration, and requires only the solution of an independent set of second-order self-adjoint equations for each direction during each source iteration. We derive the equation, discretize it using the S{sub n} method in conjunction with a linear-continuous finite-element method in space, and computationally demonstrate various of its properties. (authors)

  19. A halo bias function measured deeply into voids without stochasticity

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Aragón-Calvo, Miguel A.; Jeong, Donghui; Wang, Xin

    2014-06-01

    We study the relationship between dark-matter haloes and matter in the MIP (multum in parvo) N-body simulation ensemble, which allows precision measurements of this relationship, even deeply into voids. What enables this is a lack of discreteness, stochasticity, and exclusion, achieved by averaging over hundreds of possible sets of initial small-scale modes, while holding fixed large-scale modes that give the cosmic web. We find (i) that dark-matter-halo formation is greatly suppressed in voids; there is an exponential downturn at low densities in the otherwise power-law matter-to-halo density bias function. Thus, the rarity of haloes in voids is akin to the rarity of the largest clusters, and their abundance is quite sensitive to cosmological parameters. The exponential downturn appears both in an excursion-set model, and in a model in which fluctuations evolve in voids as in an open universe with an effective Ωm proportional to a large-scale density. We also find that (ii) haloes typically populate the average halo-density field in a super-Poisson way, i.e. with a variance exceeding the mean; and (iii) the rank-order-Gaussianized halo and dark-matter fields are impressively similar in Fourier space. We compare both their power spectra and cross-correlation, supporting the conclusion that one is roughly a strictly increasing mapping of the other. The MIP ensemble especially reveals how halo abundance varies with `environmental' quantities beyond the local matter density; (iv) we find a visual suggestion that at fixed matter density, filaments are more populated by haloes than clusters.

  20. Void-free epoxy castings for cryogenic insulators and seals

    SciTech Connect

    Quirk, J.F.

    1983-01-01

    The design of the Westinghouse Magnet for the Oak Ridge National Laboratory's Large Coil Program (LCP) incorporates a main lead bushing which transmits heat-leak loads by conduction to the supercritical helium stream. The bushing, which consists of epoxy resin cast about a copper conductor, must be electrically insulated, vacuum tight and be capable of withstanding the stresses encountered in cryognic service. The seal design of the bushing is especially important; leakage from either the helium system or the external environment into the vacuum will cause the magnet to quench. Additionally, the epoxy-resin casting must resist mechanical loads caused by the weight of leads attached to the bushing and thermal stresses transmitted to the epoxy via the conductor. The epoxy resin is cast about the conductor in such a way as to provide the required vacuum tight seal. The technique by which this is accomplished is reviewed. Equally important is the elimination of voids in the epoxy which will act as stress-concentrating discontinuities during cooling to or warming from 4K. The types of voids that could be expected and their causes are described. The paper reviews techniques employed to eliminate voids within the cast-resin portion of the bushing.

  1. Nebular metallicities in two isolated local void dwarf galaxies

    SciTech Connect

    Nicholls, David C.; Jerjen, Helmut; Dopita, Michael A.; Basurah, Hassan

    2014-01-01

    Isolated dwarf galaxies, especially those situated in voids, may provide insight into primordial conditions in the universe and the physical processes that govern star formation in undisturbed stellar systems. The metallicity of H II regions in such galaxies is key to investigating this possibility. From the SIGRID sample of isolated dwarf galaxies, we have identified two exceptionally isolated objects, the Local Void galaxy [KK98]246 (ESO 461-G036) and another somewhat larger dwarf irregular on the edge of the Local Void, MCG-01-41-006 (HIPASS J1609-04). We report our measurements of the nebular metallicities in these objects. The first object has a single low luminosity H II region, while the second is in a more vigorous star forming phase with several bright H II regions. We find that the metallicities in both galaxies are typical for galaxies of this size, and do not indicate the presence of any primordial gas, despite (for [KK98]246) the known surrounding large reservoir of neutral hydrogen.

  2. Λ effect in the cosmological expansion of void

    SciTech Connect

    Fliche, Henri-Hugues; Triay, Roland E-mail: triay@cpt.univ-mrs.fr

    2010-11-01

    We investigate the dynamical effect of the cosmological constant Λ on a single spherical vacuum void evolving in the universe within a global solution of Newton-Friedmann models. As a result, the main characteristic is that the void expands with a huge initial burst up to match asymptotically the Hubble flow. The size of voids increases with Ω{sub o} and with Λ, which is interpreted as respectively by the gravitational attraction of borders from outside regions and by the gravitational repulsion of vacuum from the inner region. The Λ-effect on the kinematics intervenes significantly by amplifying the expansion rate at redshift z ∼ 1.7 for a background density parameter Ω{sub o} ∼ 0.3. For a class of parameters values, which corresponds in GR to spatially closed Friedmann models, it is interesting to note that a test particle in the inner region moves toward the border. Such a peculiar feature shows that the empty regions are swept out; which stands as a stability criterion.

  3. The distribution of IRAS galaxies towards the Bootes void

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John

    1988-01-01

    A redshift survey was completed for 342 galaxies detected by the IRAS in the direction of the Bootes void discovered by Kirshner et al. The number density of IRAS galaxies is well determined from the shallower full-sky redshift survey of Strauss et al. Four IRAS galaxies are found within the void as defined by Kirshner et al., of which three are part of a complete sample, implying a density depression of a factor of 4. The underdense region continues to a distance of at least 4000 km/s from the nominal center of the void. Three of the IRAS galaxies studied in this paper were previously unknown. These galaxies have emission-line spectra characteristic of H II regions, and red continuum magnitudes ranging from 16 to 17.5 mag, and thus are bright enough to have been detected in a wide-angle redshift survey as deep as that of Kirshner et al. The luminosity function derived from this sample is in good agreement with that of Lawrence et al.

  4. Using Digital Radiography To Image Liquid Nitrogen in Voids

    NASA Technical Reports Server (NTRS)

    Cox, Dwight; Blevins, Elana

    2007-01-01

    Digital radiography by use of (1) a field-portable x-ray tube that emits low-energy x rays and (2) an electronic imaging x-ray detector has been found to be an effective technique for detecting liquid nitrogen inside voids in thermal-insulation panels. The technique was conceived as a means of investigating cryopumping (including cryoingestion) as a potential cause of loss of thermal insulation foam from space-shuttle external fuel tanks. The technique could just as well be used to investigate cryopumping and cryoingestion in other settings. In images formed by use of low-energy x-rays, one can clearly distinguish between voids filled with liquid nitrogen and those filled with gaseous nitrogen or other gases. Conventional film radiography is of some value, but yields only non-real-time still images that do not show time dependences of levels of liquids in voids. In contrast, the present digital radiographic technique yields a succession of images in real time at a rate of about 10 frames per second. The digitized images can be saved for subsequent analysis to extract data on time dependencies of levels of liquids and, hence, of flow paths and rates of filling and draining. The succession of images also amounts to a real-time motion picture that can be used as a guide to adjustment of test conditions.

  5. Void-containing materials with tailored Poisson's ratio

    NASA Astrophysics Data System (ADS)

    Goussev, Olga A.; Richner, Peter; Rozman, Michael G.; Gusev, Andrei A.

    2000-10-01

    Assuming square, hexagonal, and random packed arrays of nonoverlapping identical parallel cylindrical voids dispersed in an aluminum matrix, we have calculated numerically the concentration dependence of the transverse Poisson's ratios. It was shown that the transverse Poisson's ratio of the hexagonal and random packed arrays approached 1 upon increasing the concentration of voids while the ratio of the square packed array along the principal continuation directions approached 0. Experimental measurements were carried out on rectangular aluminum bricks with identical cylindrical holes drilled in square and hexagonal packed arrays. Experimental results were in good agreement with numerical predictions. We then demonstrated, based on the numerical and experimental results, that by varying the spatial arrangement of the holes and their volume fraction, one can design and manufacture voided materials with a tailored Poisson's ratio between 0 and 1. In practice, those with a high Poisson's ratio, i.e., close to 1, can be used to amplify the lateral responses of the structures while those with a low one, i.e., close to 0, can largely attenuate the lateral responses and can therefore be used in situations where stringent lateral stability is needed.

  6. The Dynamic Response of Energetic Formulations to Embedded Voids.

    NASA Astrophysics Data System (ADS)

    Glenn, Gregg; Yasuyuki, Horie; Gunger, Michael

    2007-06-01

    Programs are underway at AFRL and other labs to investigate the phenomenology of the response of energetic materials to long duration (>1 ms) loading environments. As part of these efforts, the effect of a defect, primarily in the form of a void, is the focus of the investigation. This paper will present a combined test and analytical study of multiple composite energetic formulations and will include a significant amount of test data. The primary variables associated with the loading environment are pressure, duration and loading rate. The energetic formulations primarily consist of ammonium perchlorate (AP), RDX, aluminum flake and HTPB binder. Void size and peak pressure were varied to determine safe loading margins. Post-test observations of reacted material were performed using a scanning electron microscope (SEM) to determine damage, crystal response and reaction locations within the sample. X-ray analysis was performed on unreacted samples to compare with reacted samples. The results are providing critical information on the sensitivity of an explosive formulation to void compression as a function of formulation, loading rate, peak pressure and duration. The results of these tests can be used in simulations to develop an improved understanding of mechanical and thermal initiation of energetic materials.

  7. Implementing a Systematic Voiding Program for Patients With Urinary Incontinence After Stroke.

    PubMed

    French, Beverley; Thomas, Lois H; Harrison, Joanna; Burton, Christopher R; Forshaw, Denise; Booth, Joanne; Britt, David; Cheater, Francine M; Roe, Brenda; Watkins, Caroline L

    2016-08-01

    We explored health professionals' views of implementing a systematic voiding program (SVP) in a multi-site qualitative process evaluation in stroke services recruited to the intervention arms of a cluster randomized controlled feasibility trial during 2011-2013. We conducted semi-structured group or individual interviews with 38 purposively selected nursing, managerial, and care staff involved in delivering the SVP. Content analysis of transcripts used normalization process theory (NPT) as a pre-specified organization-level exploratory framework. Barriers to implementing the SVP included perceived lack of suitability for some patient groups, patient fear of extending hospital stay, and difficulties with SVP enactment, scheduling, timing, recording, and monitoring. Enablers included the guidance provided by the SVP, patient and relative involvement, extra staff, improved nursing skill and confidence, and experience of success. Three potential mechanisms of consistency, visibility, and individualization linked the SVP process with improvements in outcome, and should be emphasized in SVP implementation. PMID:26935722

  8. Is the far border of the Local Void expanding?

    NASA Astrophysics Data System (ADS)

    Iwata, I.; Chamaraux, P.

    2011-07-01

    Context. According to models of evolution in the hierarchical structure formation scenarios, voids of galaxies are expected to expand. The Local Void (LV) is the closest large void, and it provides a unique opportunity to test observationally such an expansion. It has been found that the Local Group, which is on the border of the LV, is running away from the void center at ~260 km s-1. Aims: In this study we investigate the motion of the galaxies at the far-side border of the LV to examine the presence of a possible expansion. Methods: We selected late-type, edge-on spiral galaxies with radial velocities between 3000 km s-1 and 5000 km s-1, and carried out HI 21 cm line and H-band imaging observations. The near-infrared Tully-Fisher relation was calibrated with a large sample of galaxies and carefully corrected for Malmquist bias. It was used to compute the distances and the peculiar velocities of the LV sample galaxies. Among the 36 sample LV galaxies with good quality HI line width measurements, only 15 galaxies were selected for measuring their distances and peculiar velocities, in order to avoid the effect of Malmquist bias. Results: The average peculiar velocity of these 15 galaxies is found to be -419+208-251 km s-1, which is not significantly different from zero. Conclusions: Due to the intrinsically large scatter of Tully-Fisher relation, we cannot conclude whether there is a systematic motion against the center of the LV for the galaxies at the far-side boundary of the void. However, our result is consistent with the hypothesis that those galaxies at the far-side boundary have an average velocity of ~260 km s-1 equivalent to what is found at the position of the Local Group. Based on data taken at Nançay radiotelescope operated by Observatoire de Paris, CNRS and Université d'Orléans, Infrared Survey Facility (IRSF) which is operated by Nagoya university under the cooperation of South African Astronomical Observatory, Kyoto University, and National

  9. Quantitative void characterization in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Generazio, E. R.; Baaklini, G. Y.

    1986-01-01

    The ability of scanning laser acoustic microscopy (SLAM) to characterize artificially seeded voids in sintered silicon nitride structural ceramic specimens was investigated. Using trigonometric relationships and Airy's diffraction theory, predictions of internal void depth and size were obtained from acoustic diffraction patterns produced by the voids. Agreement was observed between actual and predicted void depths. However, predicted void diameters were generally much greater than actual diameters. Precise diameter predictions are difficult to obtain due to measurement uncertainty and the limitations of 100 MHz SLAM applied to typical ceramic specimens.

  10. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Baaklini, G. Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  11. Note: Void effects on eddy current distortion in two-phase liquid metal.

    PubMed

    Kumar, M; Tordjeman, Ph; Bergez, W; Cavaro, M

    2015-10-01

    A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid metal flow has been developed for low magnetic Reynolds number Rem. This model takes into account the distortion of the induced eddy currents due to the presence of void in the conducting medium. Specific experiments with an eddy current flow meter have been realized for two periodic void distributions. The results have shown, in agreement with the model, that the effects of velocity and void on the emf modulation are decoupled. The magnitude of the void fraction and the void spatial frequency can be determined from the spectral density of the demodulated emf. PMID:26521001

  12. Visualization study of the shrinkage void distribution in thermal energy storage capsules of different geometry

    SciTech Connect

    Revankar, Shripad T.; Croy, Travis

    2007-01-15

    The presence of concentrated shrinkage voids in thermal energy storage systems employing encapsulated phase change material can cause serious problems when one attempts to melt the solidified phase change material for the next thermal cycle. Experiments were performed and void-formation phenomena with rectangular flat plate, spherical, and torus shape capsules were investigated. The initial void growth, distribution and the total void in the capsule were photographically studied from transparent capsules using cyclohexane, hexadecane, butanediol and octadecane as phase change materials. The observations on freezing process and the shrinkage void distribution are presented. (author)

  13. Ultrasonic attenuation of a void-containing medium for very long wavelengths

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Yuece, H.

    1983-01-01

    Ultrasonic longitudinal through-thickness attenuation in an isotropic medium due to scattering by randomly distributed voids is considered analytically. The attenuation is evaluated on the assumption of no interaction between voids. The scattered power is assumed to be entirely lost, thus accounting for the ultrasonic attenuation. The scattered power due to the presence of a void is described in terms of the scattering cross section of the void. An exact solution exists for the scattering cross section of a spherical void. An approximate solution for the scattering cross section of an ellipsoidal void is developed based on the so-called Born approximation commonly used in quantum mechanics. This approximate solution is valid for k sub p a sub i 1, where k sub p is the wave number of the incident longitudinal wave and a sub i is the largest dimension of the void. It is found that the shape of the void has negligible effect on the scattering cross section and that only the volume of the void is important. Thus, it is noted that in cases where k sup p a sub i 1, the exact scattering cross section of a spherical void having the same volume as an arbitrarily shaped void can be used for evaluating ultrasonic attenuation.

  14. Ultrasonic attenuation of a void-containing medium for very long wavelengths

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Lee, S. S.; Yuce, H.

    1984-01-01

    Ultrasonic longitudinal through-thickness attenuation in an isotropic medium due to scattering by randomly distributed voids is considered analytically. The attenuation is evaluated on the assumption of no interaction between voids. The scattered power is assumed to be entirely lost, thus accounting for the ultrasonic attenuation. The scattered power due to the presence of a void is described in terms of the scattering cross section of the void. An exact solution exists for the scattering cross section of a spherical void. An approximate solution for the scattering cross section of an ellipsoidal void is developed based on the so-called Born approximation commonly used in quantum mechanics. This approximate solution is valid for k sub p a sub i much less than 1, where k sub p is the wave number of the incident longitudinal wave and a sub i is the largest dimension of the void. It is found that the shape of the void has negligible effect on the scattering cross section and that only the volume of the void is important. Thus, it is noted that in cases where k sub p a sub i is much less than 1, the exact scattering cross section of a spherical void having the same volume as an arbitrarily shaped void can be used for evaluating ultrasonic attenuation. Previously announced in STAR as N83-28466

  15. Theoretical analysis of electromigration-induced failure of metallic thin films due to transgranular void propagation

    SciTech Connect

    Gungor, M.R.; Maroudas, D.

    1999-02-01

    Failure of metallic thin films driven by electromigration is among the most challenging materials reliability problems in microelectronics toward ultra-large-scale integration. One of the most serious failure mechanisms in thin films with bamboo grain structure is the propagation of transgranular voids, which may lead to open-circuit failure. In this article, a comprehensive theoretical analysis is presented of the complex nonlinear dynamics of transgranular voids in metallic thin films as determined by capillarity-driven surface diffusion coupled with drift induced by electromigration. Our analysis is based on self-consistent dynamical simulations of void morphological evolution and it is aided by the conclusions of an approximate linear stability theory. Our simulations emphasize that the strong dependence of surface diffusivity on void surface orientation, the strength of the applied electric field, and the void size play important roles in the dynamics of the voids. The simulations predict void faceting, formation of wedge-shaped voids due to facet selection, propagation of slit-like features emanating from void surfaces, open-circuit failure due to slit propagation, as well as appearance and disappearance of soliton-like features on void surfaces prior to failure. These predictions are in very good agreement with recent experimental observations during accelerated electromigration testing of unpassivated metallic films. The simulation results are used to establish conditions for the formation of various void morphological features and discuss their serious implications for interconnect reliability. {copyright} {ital 1999 American Institute of Physics.}

  16. Direct evidence of void passivation in Cu(InGa)(SSe){sub 2} absorber layers

    SciTech Connect

    Lee, Dongho; Kim, Young-Su; Mo, Chan B.; Huh, Kwangsoo; Yang, JungYup E-mail: ddang@korea.ac.kr; Nam, Junggyu; Baek, Dohyun; Park, Sungchan; Kim, ByoungJune; Kim, Dongseop; Lee, Jaehan; Heo, Sung; Park, Jong-Bong; Kang, Yoonmook E-mail: ddang@korea.ac.kr

    2015-02-23

    We have investigated the charge collection condition around voids in copper indium gallium sulfur selenide (CIGSSe) solar cells fabricated by sputter and a sequential process of selenization/sulfurization. In this study, we found direct evidence of void passivation by using the junction electron beam induced current method, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The high sulfur concentration at the void surface plays an important role in the performance enhancement of the device. The recombination around voids is effectively suppressed by field-assisted void passivation. Hence, the generated carriers are easily collected by the electrodes. Therefore, when the S/(S + Se) ratio at the void surface is over 8% at room temperature, the device performance degradation caused by the recombination at the voids is negligible at the CIGSSe layer.

  17. THE WEIGHT OF EMPTINESS: THE GRAVITATIONAL LENSING SIGNAL OF STACKED VOIDS

    SciTech Connect

    Krause, Elisabeth; Dore, Olivier; Chang, Tzu-Ching; Umetsu, Keiichi

    2013-01-10

    The upcoming new generation of spectroscopic galaxy redshift surveys will provide large samples of cosmic voids, large distinct, underdense structures in the universe. Combining these with future galaxy imaging surveys, we study the prospects of probing the underlying matter distribution in and around cosmic voids via the weak gravitational lensing effects of stacked voids, utilizing both shear and magnification information. The statistical precision is greatly improved by stacking a large number of voids along different lines of sight, even when taking into account the impact of inherent miscentering and projection effects. We show that Dark Energy Task Force Stage IV surveys, such as the Euclid satellite and the Large Synoptic Survey Telescope, should be able to detect the void lensing signal with sufficient precision from stacking abundant medium-sized voids, thus providing direct constraints on the matter density profile of voids independent of assumptions on galaxy bias.

  18. Phase-field modeling of void evolution and swelling in materials under irradiation

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2011-05-01

    Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we developed a phase-field model to simulate the void nucleation, growth, and the change of void volume fraction. Important material processes including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution have been taken into account in our phase-field model. The thermodynamic and kinetic properties such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials are generally expressed as functions of the temperature. The developed model enables one to parametrically study critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that the volume swelling displays a quasi-bell shape distribution with temperature that was often observed in experiments.

  19. Radiation-induced formation, annealing and ordering of voids in crystals: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Dubinko, V. I.; Guglya, A. G.; Donnelly, S. E.

    2011-07-01

    Void ordering has been observed in very different radiation environments ranging from metals to ionic crystals bombarded with energetic particles. The void ordering is often accompanied by a saturation of the void swelling with increasing irradiation dose, which makes an understanding of the underlying mechanisms to be both of scientific significance and of practical importance for nuclear engineering. We show that both phenomena can be explained by the original mechanism based on the anisotropic energy transfer provided by self-focusing discrete breathers or quodons (energetic, mobile, highly localized lattice solitons that propagate great distances along close-packed crystal directions). The interaction of quodons with voids can result in radiation-induced “annealing” of selected voids, which results in the void ordering under special irradiation conditions. We observe experimentally radiation-induced void annealing by lowering the irradiation temperature of nickel and copper samples pre-irradiated to produce voids or gas bubbles. The bulk recombination of Frenkel pairs increases with decreasing temperature resulting in suppression of the production of freely migrating vacancies (the driving force of the void growth). On the other hand, the rate of radiation-induced vacancy emission from voids due to the void interaction with quodons remains essentially unchanged, which results in void dissolution. The experimental data on the void shrinkage and void lattice formation obtained for different metals and irradiating particles are explained by the present model assuming the quodon propagation length to be in the micron range, which is consistent with independent data on the irradiation-induced diffusion of interstitial ions in austenitic stainless steel.

  20. It Shall Not Return to Me Void: Teaching Religious Content to Individuals with Cognitive Disability

    ERIC Educational Resources Information Center

    Iguchi, Carolyn M.

    2010-01-01

    This research is an exploratory qualitative investigation into the challenges of teaching religious material to individuals with cognitive disabilities. The study setting was a single large evangelical Christian church known for excellence in ministry to individuals with disabilities and their families. The following issues were explored: (a)…

  1. Low void content autoclave molded titanium alloy and polyimide graphite composite structures.

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Jones, R. J.; Creedon, J. F.

    1972-01-01

    This paper discusses a resin developed for use in autoclave molding of polyimide graphite composite stiffened, titanium alloy structures. Both primary and secondary bonded structures were evaluated that were produced by autoclave processing. Details of composite processing, adhesive formulary, and bonding processes are provided in this paper, together with mechanical property data for structures. These data include -65 F, room temperature, and 600 F shear strengths; strength retention after aging; and stress rupture properties at 600 F under various stress levels for up to 1000 hours duration. Typically, shear strengths in excess of 16 ksi at room temperature with over 60% strength retention at 600 F were obtained with titanium alloy substrates.

  2. Voiding dysfunction in women: How to manage it correctly

    PubMed Central

    Abdel Raheem, A.; Madersbacher, Helmut

    2013-01-01

    Introduction Of women aged >40 years, 6% have voiding dysfunction (VD), but the definition for VD in women with respect to detrusor underactivity (DU) and bladder outlet obstruction (BOO) is not yet clear. In this review we address the current literature to define the diagnosis and treatment of VD more accurately. Methods We used the PubMed database (1975–2012) and searched for original English-language studies using the keywords ‘female voiding dysfunction’, ‘detrusor underactivity’, ‘acontractile detrusor’ and ‘bladder outlet obstruction and urinary retention in women’. We sought studies including the prevalence, aetiology, pathogenesis, diagnosis and treatment of female VD. Results In all, 20 original studies were identified using the selected search criteria, and another 45 were extracted from the reference lists of the original papers. All studies were selected according to their relevance to the current topic and the most pertinent reports were incorporated into this review. Conclusion Female VD might be related to DU or/and BOO. Voiding and storage symptoms can coexist, making the diagnosis challenging, with the need for a targeted clinical investigation, and further evaluation by imaging and urodynamics. To date there is no universally accepted precise diagnostic criterion to diagnose and quantify DU and BOO in women. For therapy, a complete cure might not be possible for patients with VD, therefore relieving the symptoms and minimising the long-term complications associated with it should be the goal. Treatment options are numerous and must be applied primarily according to the underlying pathophysiology, but also considering disease-specific considerations and the abilities and needs of the individual patient. The treatment options range from behavioural therapy, intermittent (self-)catheterisation, and electrical neuromodulation and neurostimulation, and up to urinary diversion in rare cases. PMID:26558099

  3. Evaluation and Targeted Therapy of Voiding Dysfunction in Children.

    PubMed

    Palmer, Lane S

    2016-06-01

    Significant strides have been made over the past two decades in more precisely evaluating and managing children with voiding complaints. A thorough history should offer insight into the possible causes for the presenting complaints and this should be supplemented by physical examination, urine studies, and select imaging. Uroflowmetry and external sphincter electromyography with measurement of postvoid residual urine should allow for accurate diagnosis using categories offered by the International Children's Continence Society. This ability to make an accurate diagnosis should naturally lead to the use of treatment options (urotherapy, pharmacotherapy, biofeedback, and neuromodulation) that specifically target the responsible cause of the complaints rather than simply their symptoms. PMID:26883053

  4. Reactivity effects of void formations in a solution critical assembly

    SciTech Connect

    Walters, S.G.

    1994-01-01

    SHEBA II (Solution High Energy Burst Assembly) was constructed in order to better understand the neutronics of solutions of fissile materials. In order to estimate the effect on criticality from the formation of bubbles, models were devised in MCNP (Monte Carlo Neutron Photon transport code) and THREEDANT (THREE dimensional, Diffusion-Accelerated, Neutral-Particle Transport). It was found that the formation of voids in all but the outside bottom edge of the assembly cylinder tend to act as a negative insertion of reactivity. Also, an experiment has been designed which will verify the results of the codes.

  5. Polarization and piezoelectricity in polymer films with artificial void structure

    NASA Astrophysics Data System (ADS)

    Sun, Zhuanlan; Zhang, Xiaoqing; Xia, Zhongfu; Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund; Zeng, Changchun; Zhang, Chuck; Wang, Ben

    2011-10-01

    Laminated polymer-film systems with well-defined void structures were prepared from fluoroethylenepropylene (FEP) and polytetrafluoroethylene (PTFE) layers. First the PTFE films were patterned and then fusion-bonded with the FEP films. The laminates were subjected to either corona or contact charging in order to obtain the desired piezoelectricity. The build-up of the "macro-dipoles" in the laminated films was studied by recording the electric hysteresis loops. The resulting electro-mechanical properties were investigated by means of dielectric resonance spectroscopy (DRS) and direct measurements of the stress-strain relationship. Moreover, the thermal stability of the piezoelectric d 33 coefficient was investigated at elevated temperatures and via thermally stimulated discharge (TSD) current measurements in short circuit. For 150 μm thick laminated films, consisting of one 25 μm thick PTFE layer, two 12.5 μm thick FEP layers, and a void of 100 μm height, the critical voltage necessary for the build-up of the "macro-dipoles" in the inner voids was approximately 1400 V, which agrees with the value calculated from the Paschen Law. A quasi-static piezoelectric d 33 coefficient up to 300 pC/N was observed after corona charging. The mechanical properties of the film systems are highly anisotropic. At room temperature, the Young's moduli of the laminated film system are around 0.37 MPa in the thickness direction and 274 MPa in the lateral direction, respectively. Using these values, the theoretical shape anisotropy ratio of the void was calculated, which agrees well with experimental observation. Compared with films that do not exhibit structural regularity, the laminates showed improved thermal stability of the d 33 coefficients. The thermal stability of d 33 can be further improved by pre-aging. E.g., the reduction of the d 33 value in the sample pre-aged at 150°C for 5 h was less than 5% after annealing for 30 h at a temperature of 90°C.

  6. Evidence for void formation in MBE-grown silicon

    SciTech Connect

    Simpson, P.J.; Schultz, P.J. . Dept. of Physics Ontario Centre for Materials Research, Kingston, ON ); Jackman, T.E.; Aers, G.C.; Noeel, J.; Houghton, D.C. ); Perovic, D.D.; Weatherly, G.C. )

    1991-02-01

    In this paper, the authors give evidence for reproducible formation of voids of 3 to 6 nm diameter in (100) silicon epilayers, which were grown using molecular beam epitaxy (MBE) method in a narrow temperature range below 260 {degree}C. The results are given of an experimental investigation using variable-energy positrons and transmission electron microscopy (TEM). The expression used for the positron range, derived from work done below 10 keV, appears to be inaccurate when extrapolated to higher energy. (AIP)

  7. Topology and Dark Energy: Testing Gravity in Voids

    NASA Astrophysics Data System (ADS)

    Spolyar, Douglas; Sahlén, Martin; Silk, Joe

    2013-12-01

    Modified gravity has garnered interest as a backstop against dark matter and dark energy (DE). As one possible modification, the graviton can become massive, which introduces a new scalar field—here with a Galileon-type symmetry. The field can lead to a nontrivial equation of state of DE which is density and scale dependent. Tension between type Ia supernovae and Planck could be reduced. In voids, the scalar field dramatically alters the equation of state of DE, induces a soon-observable gravitational slip between the two metric potentials, and develops a topological defect (domain wall) due to a nontrivial vacuum structure for the field.

  8. Using cosmic voids to distinguish f(R) gravity in future galaxy surveys

    NASA Astrophysics Data System (ADS)

    Zivick, Paul; Sutter, P. M.; Wandelt, Benjamin D.; Li, Baojiu; Lam, Tsz Yan

    2015-08-01

    We use properties of void populations identified in N-body simulations to forecast the ability of upcoming galaxy surveys to differentiate models of f (R) gravity from cold dark matter cosmology. We analyse multiple simulation realizations, which were designed to mimic the expected number densities, volumes, and redshifts of the upcoming Euclid satellite and a lower-redshift ground-based counterpart survey, using the public VIDE toolkit. We examine void abundances, ellipicities, radial density profiles, and radial velocity profiles at redshifts 1.0 and 0.43. We find that stronger f (R) coupling strengths eliminates small voids and produces voids up to ˜20 per cent larger in radius, leading to a significant tilt in the void number function. Additionally, under the influence of modified gravity, voids at all scales tend to be measurably emptier with correspondingly higher compensation walls. The velocity profiles reflect this, showing increased outflows inside voids and increased inflows outside voids. Using the void number function as an example, we forecast that future surveys can constrain the modified gravity coupling strength to ˜3 × 10-5 using voids.

  9. A study of void size growth in nonequilibrium stochastic systems of point defects

    NASA Astrophysics Data System (ADS)

    Kharchenko, Dmitrii O.; Kharchenko, Vasyl O.; Bashtova, Anna I.

    2016-05-01

    We study properties of voids growth dynamics in a stochastic system of point defects in solids under nonequilibrium conditions (sustained irradiation). It is shown that fluctuations of defect production rate (external noise) increase the critical void radius comparing to a deterministic system. An automodel regime of void size growth in a stochastic system is studied in detail. Considering a homogeneous system, it is found that external noise does not change the universality of the void size distribution function; the mean void size evolves according to classical nucleation theory. The noise increases the mean void size and spreads the void size distribution. Studying dynamics of spatially extended systems it was shown that vacancies remaining in a matrix phase are able to organize into vacancy enriched domains due to an instability caused by an elastic lattice deformation. It is shown that dynamics of voids growth is defined by void sinks strength with void size growth exponent varying from 1/3 up to 1/2.

  10. Advanced modeling of electron avalanche process in polymeric dielectric voids: Simulations and experimental validation

    NASA Astrophysics Data System (ADS)

    Testa, L.; Serra, S.; Montanari, G. C.

    2010-08-01

    This paper deals with aging phenomena in polymers under electric stress. In particular, we focus our efforts on the development of a novel theoretical method accounting for the discharge process (partial discharge) in well known defects present in polymers, which are essentially tiny air gaps embedded in a polymeric matrix. Such defects are believed to act as trigger points for the partial discharges and their induced aging process. The model accounts for the amplitude as well as the energy distribution of the electrons during their motion, particularly at the time in which they impact on the polymer surface. The knowledge of the number of generated electrons and of their energy distributions is fundamental to evaluate the amount of damage caused by an avalanche on the polymer-void interface and get novel insights of the basic phenomena underlying the relevant aging processes. The calculation of such quantities would require generally the combined solution of the Boltzmann equation in the energy and space/time domains. The proposed method simplifies the problem, taking into account only the main phenomena involved in the process and provides a partial discharge (PD) model virtually free of adjustable parameters. This model is validated by an accurate experimental procedure aimed at reproducing the same conditions of the simulations and regarding air gaps embedded in polymeric dielectrics. The experimental results confirm the validity and accuracy of the proposed approach.

  11. Velocity and void distribution in a counter-current two-phase flow

    SciTech Connect

    Gabriel, S.; Schulenberg, T.; Laurien, E.

    2012-07-01

    Different flow regimes were investigated in a horizontal channel. Simulating a hot leg injection in case of a loss of coolant accident or flow conditions in reflux condenser mode, the hydraulic jump and partially reversed flow were identified as major constraints for a high amount of entrained water. Trying to simulate the reflux condenser mode, the test section now includes an inclined section connected to a horizontal channel. The channel is 90 mm high and 110 mm wide. Tests were carried out for water and air at ambient pressure and temperature. High speed video-metry was applied to obtain velocities from flow pattern maps of the rising and falling fluid. In the horizontal part of the channel with partially reversed flow the fluid velocities were measured by planar particle image velocimetry. To obtain reliable results for the gaseous phase, this analysis was extended by endoscope measurements. Additionally, a new method based on the optical refraction at the interface between air and water in a back-light was used to obtain time-averaged void fraction. (authors)

  12. Modeling multiscale evolution of numerous voids in shocked brittle material

    NASA Astrophysics Data System (ADS)

    Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng

    2014-04-01

    The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.

  13. Generalized Statistical Models of Voids and Hierarchical Structure in Cosmology

    NASA Astrophysics Data System (ADS)

    Mekjian, Aram Z.

    2007-01-01

    Generalized statistical models of voids and hierarchical structure in cosmology are developed. The often quoted negative binomial model and the frequently used thermodynamic model are shown to be special cases of a more general distribution that contains a parameter a. This parameter is related to the Lévy index α and the Fisher critical exponent τ, the latter of which describes the power-law falloff of clumps of matter around a phase transition. The parameter a, exponent τ, or index α can be obtained from properties of a void scaling function. A stochastic probability variable p is introduced into a statistical model, which represents the adhesive growth of galaxy structure. The galaxy count distribution decays exponentially quickly with size for p<1/2. For p>1/2, adhesive growth can go on indefinitely, thereby forming an infinite supercluster. At p=1/2, a scale-free power-law distribution for the galaxy count distribution is present. The stochastic description also leads to consequences that have some parallels with cosmic string results, percolation theory, and phase transitions.

  14. Temperature Independent Differential Absorption Spectroscopy (tidas) and Simplified Atmospheric Air Mass Factor (samf) Techniques For The Measurement of Ozone Vertical Content From Gome Data

    NASA Astrophysics Data System (ADS)

    Zehner, C.; Casadio, S.; di Sarra, A.; Putz, E.

    A simple technique for the fast retrieval of ozone vertical amount from GOME (Global Ozone Monitoring Experiment) spectra is described in detail. The TIDAS (Tempera- ture Independent Differential Absorption Spectroscopy) technique uses GOME's ca- pability of measuring atmospheric spectra over a broad wavelength range with high spectral resolution. The ozone slant columns are retrieved by applying the Beer- Lambert law to two spectral windows where the ozone absorption cross sections show similar temperature dependence. A simple geometric air mass factor is computed for a fixed height spherical atmosphere (SAMF: Simplified Atmospheric air Mass Factor) to retrieve ozone vertical amounts. Vertical ozone values are compared to the GDP (GOME Data Processor), and to ground based ozone measurements.

  15. Electrical Resistivity Imaging of Subterranean Void Space for Assessment of Endangered Species Habitat

    NASA Astrophysics Data System (ADS)

    Weissling, B. P.; White, K.

    2007-12-01

    The challenge of identifying and delineating subterranean habitat for endangered species in karst environments has been addressed through the application of near-surface geophysical techniques. Electrical resistivity imaging (ERI) in both galvanic DC and capacitance-coupled modes has been applied to the problem of imaging subsurface voids, potentially conducive to karst invertebrate habitat, in two distinctly different geologic, geophysical, and environmental settings. Surveys were conducted in extrusive volcanic terrain on the south shore of Kauai, Hawaii, a site known for lava tube formation, and in limestone karst terrain in central Texas. The two study sites were distinctly different in their geophysical settings in terms of surface layer and subsurface background resistivities, values at the Kauai site ranging from 1000 - 5000 ohm-meters and at the Texas site 100 - 800 ohm-meters, values reflecting differing lithology, porosity, and pore fluid content. An Advanced Geosciences Inc. (AGI) Supersting R8 DC resistivity system was the primary instrumentation utilized for both surveys, with a capacitance-coupled Geometrics Inc. OhmMapper TR-2 system utilized on the Kauai site for reconnaissance profiles. Opportunities existed for direct comparisons of Supersting and OhmMapper pseudo- section profiles. Supersting lines were acquired with a mixed array combining the horizontal resolution sensitivity of the dipole-dipole array with the vertical resolution sensitivity of the Inverse Schlumberger array. At both sites, surveys were conducted over known and mapped cave passage for validation of the techniques. Forward simulation modeling was conducted to verify resistivity anomaly signatures of known void spaces. Results were highly encouraging and serve to reinforce the karst-imaging capabilities of electrical resistivity, especially when mixed array types are utilized.

  16. Preparing non-volatile resistive switching memories by tuning the content of Au@air@TiO2-h yolk-shell microspheres in a poly(3-hexylthiophene) layer

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Liu, Quan; Zhang, Chun-Yu; Jiang, Jun; Wang, Li-Hua; Chen, Dong-Yun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-11-01

    Crystalline hybrid microspheres, encapsulating a Au nanocore in the hollow cavity of a hairy semiconductor TiO2 shell (Au@air@TiO2-h microspheres) were prepared using template-assisted synthesis methods. The as-prepared microspheres are dispersed into a poly(3-hexylthiophene) (P3HT) matrix and used as a memory active layer. The electrical rewritable memory effects of Al/[Au@air@TiO2-h + P3HT]/ITO sandwich devices can be effectively and exactly controlled by tuning the microsphere content in the electroactive layer. To clarify the switching mechanism, different components in the device, such as P3HT and the microspheres, have been investigated. And it was determined that the switching mechanism can be attributed to the formation and rupture of oxygen vacancy filaments. These results suggest that the Au@air@TiO2-h microspheres are potentially capable of high density data storage. In addition, this finding could provide important guidelines for the reproducibility of nanocomposite-based memory devices and is helpful to demonstrate the switching mechanism of these devices.Crystalline hybrid microspheres, encapsulating a Au nanocore in the hollow cavity of a hairy semiconductor TiO2 shell (Au@air@TiO2-h microspheres) were prepared using template-assisted synthesis methods. The as-prepared microspheres are dispersed into a poly(3-hexylthiophene) (P3HT) matrix and used as a memory active layer. The electrical rewritable memory effects of Al/[Au@air@TiO2-h + P3HT]/ITO sandwich devices can be effectively and exactly controlled by tuning the microsphere content in the electroactive layer. To clarify the switching mechanism, different components in the device, such as P3HT and the microspheres, have been investigated. And it was determined that the switching mechanism can be attributed to the formation and rupture of oxygen vacancy filaments. These results suggest that the Au@air@TiO2-h microspheres are potentially capable of high density data storage. In addition, this

  17. Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

    NASA Astrophysics Data System (ADS)

    Song, Miao; Du, Kui; Wang, Chunyang; Wen, Shengping; Huang, Hui; Nie, Zuoren; Ye, Hengqiang

    2016-05-01

    The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

  18. Effect of Shear Deformation on Closure of a Central Void in Thin-Strip Rolling

    NASA Astrophysics Data System (ADS)

    Park, Jong-Jin

    2016-01-01

    Central voids or voids at the middle layer are often found in thin strips produced by twin-roll casting. These strips are in general so thin that they are unable to take a required reduction in thickness to close the voids. In the present investigation, equal-speed rolling and differential-speed rolling were compared to assess the effect of differential speed on closure of the voids by the rigid-plastic finite-element analysis. As a result, shear deformation developed in differential-speed rolling was found to reduce the reduction in thickness required for void closure. An increase in speed ratio, length of deformation zone, or friction coefficient at the interface expedited the progress in void closure. However, as the speed ratio exceeded thickness ratio, a portion of rolling power was dissipated extensively by excessive slip at the interface. Moreover, tensile stress developed which would cause cracks in the strip.

  19. Method of simulating spherical voids for use as a radiographic standard

    DOEpatents

    Foster, Billy E.

    1977-01-01

    A method of simulating small spherical voids in metal is provided. The method entails drilling or etching a hemispherical depression of the desired diameter in each of two sections of metal, the sections being flat plates or different diameter cylinders. A carbon bead is placed in one of the hemispherical voids and is used as a guide to align the second hemispherical void with that in the other plate. The plates are then bonded together with epoxy, tape or similar material and the two aligned hemispheres form a sphere within the material; thus a void of a known size has been created. This type of void can be used to simulate a pore in the development of radiographic techniques of actual voids (porosity) in welds and serve as a radiographic standard.

  20. Growth Kinetics, Carbohydrate, and Leaf Phosphate Content of Clover (Trifolium subterraneum L.) after Transfer to a High CO2 Atmosphere or to High Light and Ambient Air 1

    PubMed Central

    Morin, Francoise; André, Marcel; Betsche, Thomas

    1992-01-01

    Intact air-grown (photosynthetic photon flux density, 400 microeinsteins per square meter per second) clover plants (Trifolium subterraneum L.) were transfered to high CO2 (4000 microliters CO2 per liter; photosynthetic photon flux density, 400 microeinsteins per square meter per second) or to high light (340 microliters CO2 per liter; photosynthetic photon flux density, 800 microeinsteins per square meter per second) to similarly stimulate photosynthetic net CO2 uptake. The daily increment of net CO2 uptake declined transiently in high CO2, but not in high light, below the values in air/standard light. After about 3 days in high CO2, the daily increment of net CO2 uptake increased but did not reach the high light values. Nightly CO2 release increased immediately in high light, whereas there was a 3-day lag phase in high CO2. During this time, starch accumulated to a high level, and leaf deterioration was observed only in high CO2. After 12 days, starch was two- to threefold higher in high CO2 than in high light, whereas sucrose was similar. Leaf carbohydrates were determined during the first and fourth day in high CO2. Starch increased rapidly throughout the day. Early in the day, sucrose was low and similar in high CO2 and ambient air (same light). Later, sucrose increased considerably in high CO2. The findings that (a) much more photosynthetic carbon was partitioned into the leaf starch pool in high CO2 than in high light, although net CO2 uptake was similar, and that (b) rapid starch formation occurred in high CO2 even when leaf sucrose was only slightly elevated suggest that low sink capacity was not the main constraint in high CO2. It is proposed that carbon partitioning between starch (chloroplast) and sucrose (cytosol) was perturbed by high CO2 because of the lack of photorespiration. Total phosphate pools were determined in leaves. Concentrations based on fresh weight of orthophosphate, soluble esterified phosphate, and total phosphate markedly declined

  1. Glass composition and process for sealing void spaces in electrochemical devices

    DOEpatents

    Meinhardt, Kerry D.; Kirby, Brent W.

    2012-05-01

    A glass foaming material and method are disclosed for filling void spaces in electrochemical devices. The glass material includes a reagent that foams at a temperature above the softening point of the glass. Expansion of the glass fills void spaces including by-pass and tolerance channels of electrochemical devices. In addition, cassette to cassette seals can also be formed while channels and other void spaces are filled, reducing the number of processing steps needed.

  2. Characterization of partial discharge pulses in artificial voids in polypropylene films used in capacitors

    SciTech Connect

    Ramachandra, B.; Nema, R.S.

    1996-12-31

    Partial discharges in voids may cause deterioration of solid insulating materials. They often start in voids enclosed in insulation and or at the interface defects. A method of measuring fast discharge pulses with rise times below 1 ns is reported. Characterization of partial discharge pulses in artificial voids in polypropylene films at atmospheric pressure is analyzed that incorporates inception voltage, apparent and real charge, drift velocity and mobility of electrons.

  3. Quantitative analysis of damage clustering and void linking for spallation modeling in tantalum

    SciTech Connect

    Tonks, D.L.; Zurek, A.K.; Thissell, W.R.; Hixson, R.

    1997-05-01

    In a companion paper in this volume by Zurek et al, micrographs of incipient spallation damage in rolled tantalum were numerically analyzed using image analysis techniques. Void sizes, locations, and overall porosity were measured and tabulated. In this paper, we extend this analysis to include void clusters and examine the correlation between cluster size and the ranges of local instabilities between voids visible in the micrographs. The implications for spallation modeling will be given.

  4. Spatially extended void-free dusty plasmas in a laboratory radio-frequency discharge

    NASA Astrophysics Data System (ADS)

    Schmidt, C.; Arp, O.; Piel, A.

    2011-11-01

    Laboratory experiments with thermophoretic levitation of dust particles for gravity compensation are reported. The observed spatially extended dust clouds were investigated, e.g., the dependence of discharge parameters on the void structure. These investigations lead to the discovery of an extended parameter region where spatially extended void-free clouds can be found. The mechanism of void closure is accompanied by a spontaneous change in the discharge topology. This change becomes evident from a reversal of the wave propagation direction.

  5. Molecular Dynamics Study of Void Growth and Dislocations in Dynamic Fracture of FCC and BCC Metals

    SciTech Connect

    Seppala, E T; Belak, J; Rudd, R E

    2003-06-17

    Void growth with concomitant dislocation formation has been studied in single crystal face-centered-cubic and body-centered-cubic metals using molecular dynamics method with Embedded-Atom and Finnis-Sinclair potentials for copper and tantalum, respectively. We have concentrated on the quantitative analysis of the void shape evolution, on the structure of dislocations, which emerge from the void, and on the continuum measures such as plastic strain. The effects of strain-rate, differences between lattice structures, and loading conditions as uniaxial, biaxial, and triaxial expansion on the shape of the void and on the dislocations have been investigated.

  6. Study of void collapse leading to shock initiation and ignition in heterogeneous energetic material

    NASA Astrophysics Data System (ADS)

    Rai, Nirmal Kumar; Koundinyan, Sushilkumar Prabu; Udaykumar, H. S.

    2015-06-01

    In heterogeneous energetic materials like PBX, porosity plays an important role in shock initiation and ignition. This is because the collapse of voids leads to the formation of local high temperature regions termed as hot spots under the application of shock loading. The formation of hot spots can take place because of several mechanisms such as plastic deformation of voids, hydrodynamic impact on voids leading to the formation of high speed material jets etc. Once these hot spots are formed, they can lead to reaction and ignition in the explosive material. However, diffusive phenomenon like heat conduction can play an important role in shock initiation because depending on the size and intensity of void collapse hot spots, local ignition conditions can be smeared out. In the current work, void collapse leading to shock initiation and ignition in HMX has been studied using a massively parallel Eulerian code, SCIMITAR3D. The chemical kinetics of HMX decomposition and reaction has been modeled using the Henson-Smilowitz multi-step mechanism. Based on the current framework an ignition criterion has been established for single void collapse analysis for various shock strengths. Furthermore, the effects of void-void interactions have been analyzed demonstrating the important role of the combination of void fraction, reaction chemistry and heat conduction in determining the ignition threshold. This work has been funded from the AFRL-RWPC, Computational Mechanics Branch, Eglin AFB, Program Manager: Dr. Martin Schmidt.

  7. Cosmic voids in coupled dark energy cosmologies: the impact of halo bias

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Baldi, Marco; Marulli, Federico; Moscardini, Lauro

    2016-01-01

    In this work, we analyse the properties of cosmic voids in standard and coupled dark energy cosmologies. Using large numerical simulations, we investigate the effects produced by the dark energy coupling on three statistics: the filling factor, the size distribution and the stacked profiles of cosmic voids. We find that the bias of the tracers of the density field used to identify the voids strongly influences the properties of the void catalogues, and, consequently, the possibility of using the identified voids as a probe to distinguish coupled dark energy models from the standard Λ cold dark matter cosmology. In fact, on one hand coupled dark energy models are characterized by an excess of large voids in the cold dark matter distribution as compared to the reference standard cosmology, due to their higher normalization of linear perturbations at low redshifts. Specifically, these models present an excess of large voids with Reff > 20, 15, 12h-1 Mpc , at z = 0, 0.55, 1, respectively. On the other hand, we do not find any significant difference in the properties of the voids detected in the distribution of collapsed dark matter haloes. These results imply that the tracer bias has a significant impact on the possibility of using cosmic void catalogues to probe cosmology.

  8. The effect of voids on the hardening of body-centered cubic Fe

    NASA Astrophysics Data System (ADS)

    Nakai, Ryosuke; Yabuuchi, Kiyohiro; Nogami, Shuhei; Hasegawa, Akira

    2016-04-01

    The mechanical properties of metals are affected by various types of defects. Hardening is usually described through the interaction between dislocations and obstacles, in the so-called line tension theory. The strength factor in the line tension theory represents the resistance of a defect against the dislocation motion. In order to understand hardening from the viewpoint of the microstructure, an accurate determination of the strength factor of different types of defects is essential. In the present study, the strength factor of voids in body-centered cubic (BCC) Fe was investigated by two different approaches: one based on the Orowan equation to link the measured hardness with the average size and density of voids, and the other involving direct observation of the interaction between dislocations and voids by transmission electron microscope (TEM). The strength factor of voids induced by ion irradiation estimated by the Orowan equation was 0.6, whereas the strength factor estimated by the direct TEM approach was 0.8. The difference in the strength factors measured by the two approaches is due to the positional relationship between dislocations and voids: the central region of a void is stronger than the tip. Moreover, the gliding plane and the direction of dislocation may also affect the strength factor of voids. This study determined the strength factor of voids in BCC Fe accurately, and suggested that the contribution of voids to the irradiation hardening is larger than that of dislocation loops and Cu-rich precipitates.

  9. Void Fraction in a Four by Four Rod Bundle under a Stagnant Condition

    NASA Astrophysics Data System (ADS)

    Kamei, Akihiro; Hosokawa, Shigeo; Tomiyama, Akio; Kinoshita, Ikuo; Murase, Michio

    In the case of a hypothetical failure of a residual heat removal (RHR) systems under mid-loop operation, vapor generated in a reactor core forms two-phase flow in a stagnant liquid and rises the water level in the core. The vapor flows into a steam generator through a hot leg, and condenses in the steam generator. Since the flow rate of vapor from the reactor core to the hot leg depends on the water level and the void fraction α in the reactor core, the reliable analysis of the RHR failure cannot be carried out without accurately estimating the void fraction in the reactor core. Although a number of studies on void fractions in two-phase flows in rod bundles have been carried out, there are few experimental data on void fractions in rod bundles under the stagnant condition. Void fractions in four by four rod bundles under the stagnant condition were measured for a wide range of gas volume fluxes to examine the validity of available void correlations. Flow patterns were visualized by using a high-speed video camera to examine the effects of flow pattern on the void fraction. As a result, the following conclusions were obtained: (1) Dependence of the void fraction on the gas volume flux JG changed at JG ≅ 1.5 m/s due to the flow pattern transition. (2) Murase's correlation agreed well with the void fraction in the two kinds of rod bundles having different dimensions under the stagnant condition.

  10. Dislocation mechanism of void growth at twin boundary of nanotwinned nickel based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2016-08-01

    Molecular dynamics simulation was performed to investigate dislocation mechanism of void growth at twin boundary (TB) of nanotwinned nickel. Simulation results show that the deformation of nanotwinned nickel containing a void at TB is dominated by the slip involving both leading and trailing partials, where the trailing partials are the dissociation products of stair-rod dislocations formed by the leading partials. The growth of a void at TB is attributed to the successive emission of the leading partials followed by trailing partials as well as the escape of these partial dislocations from the void surface.

  11. Void-Filled SRTM Digital Elevation Model of Afghanistan

    USGS Publications Warehouse

    Chirico, Peter G.; Barrios, Boris

    2005-01-01

    EXPLANATION The purpose of this data set is to provide a single consistent elevation model to be used for national scale mapping, GIS, remote sensing applications, and natural resource assessments for Afghanistan's reconstruction. For 11 days in February of 2000, the National Aeronautics and Space Administration (NASA), the National Geospatial-Intelligence Agency ian Space Agency (ASI) flew X-band and C-band radar interferometry onboard the Space Shuttle Endeavor. The mission covered the Earth between 60?N and 57?S and will provide interferometric digital elevation models (DEMs) of approximately 80% of the Earth's land mass when processing is complete. The radar-pointing angle was approximately 55? at scene center. Ascending and descending orbital passes generated multiple interferometric data scenes for nearly all areas. Up to eight passes of data were merged to form the final processed Shuttle Radar Topography Mission (SRTM) DEMs. The effect of merging scenes averages elevation values recorded in coincident scenes and reduces, but does not completely eliminate, the amount of area with layover and terrain shadow effects. The most significant form of data processing for the Afghanistan DEM was gap-filling areas where the SRTM data contained a data void. These void areas are as a result of radar shadow, layover, standing water, and other effects of terrain as well as technical radar interferometry phase unwrapping issues. To fill these gaps, topographic contours were digitized from 1:200,000 - scale Soviet General Staff Topographic Maps which date from the middle to late 1980's. Digital contours were gridded to form elevation models for void areas and subsequently were merged with the SRTM data through GIS and image processing techniques. The data contained in this publication includes SRTM DEM quadrangles projected and clipped in geographic coordinates for the entire country. An index of all available SRTM DEM quadrangles is displayed here: Index_Geo_DD.pdf. Also

  12. Lichen recolonization following air quality improvement

    SciTech Connect

    Showman, R.E.

    1981-01-01

    Air quality improvement near a coal-fired power plant led to recolonization of Parmelia caperata (L.) Ach. in a pollution-induced void area. Recolonization was first observed about four years after pollution abatement. Least-affected sites were slowest to recover. After eight years of improved air quality, the distribution of P. caperata has returned to near normal. Lichen biomonitoring is useful not only to detect the effects of poor air quality but to document air quality improvements as well. 5 references, 4 figures.

  13. GPR surveying of transport infrastructures and buildings; underground utility and void sensing - ongoing activities in Working Group 2 of COST Action TU1208

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Plati, Christina; Derobert, Xavier

    2015-04-01

    areas.' Project 2.4 focuses on the development of 'Innovative procedures for effective GPR inspection of construction materials and structures.' The WG2 also includes Project 2.5 on the 'Determination, by using GPR, of the volumetric water content in structures, sub-structures, foundations and soil,' this is a topic of great interest in civil engineering, as water infiltration is often a relevant cause of degradation of structures, such as roads of bridges, and of rebar corrosion. During the first year of the Action, information was collected and shared about state-of-the-art, ongoing studies, problems and future research needs, in the topics covered by the five above-mentioned Projects [1-3]. Based on the experience and knowledge gained from the in-depth review work carried out by WG2, several case studies were then conducted; they were presented during the Second General Meeting and the GPR 2014 conference [5, 6]. Furthermore, the extension of GPR application to railways track ballast assessment was demonstrated [7]. The WG2 identified reference test-sites, suitable to compare inspection procedures or to test GPR equipment. The IFSTTAR geophysical test site is an open-air laboratory including a large and deep area, filled with various materials arranged in horisontal compacted slices, separated by vertical interfaces and water-tighted in surface; several objects as pipes, polystyrene hollows, boulders and masonry are embedded in the field [4]. The IFSTTAR full-scale APT facility is an outdoor circular carousel dedicated to full-scale pavement experiments, consisting of a central tower and four long arms equipped with wheels, running on a circular test track [4]. Furthermore, the WG2 is building a database of available experimental results, which are at the disposal of WG3 Members to test their electromagnetic modeling/inversion/data-processing methods. Another interesting and promising WG2 initiative that has to be mentioned is the development of a Catalogue of

  14. Preparing non-volatile resistive switching memories by tuning the content of Au@air@TiO2-h yolk-shell microspheres in a poly(3-hexylthiophene) layer.

    PubMed

    Wang, Peng; Liu, Quan; Zhang, Chun-Yu; Jiang, Jun; Wang, Li-Hua; Chen, Dong-Yun; Xu, Qing-Feng; Lu, Jian-Mei

    2015-12-14

    Crystalline hybrid microspheres, encapsulating a Au nanocore in the hollow cavity of a hairy semiconductor TiO2 shell (Au@air@TiO2-h microspheres) were prepared using template-assisted synthesis methods. The as-prepared microspheres are dispersed into a poly(3-hexylthiophene) (P3HT) matrix and used as a memory active layer. The electrical rewritable memory effects of Al/[Au@air@TiO2-h + P3HT]/ITO sandwich devices can be effectively and exactly controlled by tuning the microsphere content in the electroactive layer. To clarify the switching mechanism, different components in the device, such as P3HT and the microspheres, have been investigated. And it was determined that the switching mechanism can be attributed to the formation and rupture of oxygen vacancy filaments. These results suggest that the Au@air@TiO2-h microspheres are potentially capable of high density data storage. In addition, this finding could provide important guidelines for the reproducibility of nanocomposite-based memory devices and is helpful to demonstrate the switching mechanism of these devices. PMID:26541116

  15. Dynamic void distribution in myoglobin and five mutants.

    PubMed

    Jiang, Yingying; Kirmizialtin, Serdal; Sanchez, Isaac C

    2014-01-01

    Globular proteins contain cavities/voids that play specific roles in controlling protein function. Elongated cavities provide migration channels for the transport of ions and small molecules to the active center of a protein or enzyme. Using Monte Carlo and Molecular Dynamics on fully atomistic protein/water models, a new computational methodology is introduced that takes into account the protein's dynamic structure and maps all the cavities in and on the surface. To demonstrate its utility, the methodology is applied to study cavity structure in myoglobin and five of its mutants. Computed cavity and channel size distributions reveal significant differences relative to the wild type myoglobin. Computer visualization of the channels leading to the heme center indicates restricted ligand access for the mutants consistent with the existing interpretations. The new methodology provides a quantitative measure of cavity structure and distributions and can become a valuable tool for the structural characterization of proteins. PMID:24500195

  16. Mechanistic model for void distribution in flashing flow

    SciTech Connect

    Riznic, J.; Ishii, M.; Afgan, N.

    1987-01-01

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model. 43 refs., 4 figs.

  17. Mechanistic model for void distribution in flashing flow

    NASA Astrophysics Data System (ADS)

    Riznic, J.; Ishii, M.; Afgan, N.

    A problem of discharging of an initially subcooled liquid from a high pressure condition into a low pressure environment is quite important in several industrial systems such as nuclear reactors and chemical reactors. A new model for the flashing process is proposed here based on the wall nucleation theory, bubble growth model and drift-flux bubble transport model. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites is used. The model predictions in terms of the void fraction are compared to Moby Dick and BNL experimental data. It shows that satisfactory agreements could be obtained from the present model without any floating parameter to be adjusted with data. This result indicates that, at least for the experimental conditions considered here, the mechanistic prediction of the flashing phenomenon is possible based on the present wall nucleation based model.

  18. Observational Search for Negative Matter in Intergalactic Voids

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    Negative matter is a hypothetical form of matter with negative rest mass, inertial mass, and gravitational mass. It is not antimatter. If negative matter could be collected in macroscopic amounts, its negative inertial property could be used to make an continuously operating propulsion system which requires neither energy nor reaction mass, yet still violates no laws of physics. Negative matter has never been observed, but its existence is not forbidden by the laws of physics. We propose that NASA support an extension to an ongoing astrophysical observational effort by da Costa, et al. (1996) which could possibly determine whether or not negative matter exists in the well-documented but little-understood intergalactic voids.

  19. Southern Ocean air-sea heat flux, SST spatial anomalies, and implications for multi-decadal upper ocean heat content trends.

    NASA Astrophysics Data System (ADS)

    Tamsitt, V. M.; Talley, L. D.; Mazloff, M. R.

    2014-12-01

    The Southern Ocean displays a zonal dipole (wavenumber one) pattern in sea surface temperature (SST), with a cool zonal anomaly in the Atlantic and Indian sectors and a warm zonal anomaly in the Pacific sector, associated with the large northward excursion of the Malvinas and southeastward flow of the Antarctic Circumpolar Current (ACC). To the north of the cool Indian sector is the warm, narrow Agulhas Return Current (ARC). Air-sea heat flux is largely the inverse of this SST pattern, with ocean heat gain in the Atlantic/Indian, cooling in the southeastward-flowing ARC, and cooling in the Pacific, based on adjusted fluxes from the Southern Ocean State Estimate (SOSE), a ⅙° eddy permitting model constrained to all available in situ data. This heat flux pattern is dominated by turbulent heat loss from the ocean (latent and sensible), proportional to perturbations in the difference between SST and surface air temperature, which are maintained by ocean advection. Locally in the Indian sector, intense heat loss along the ARC is contrasted by ocean heat gain of 0.11 PW south of the ARC. The IPCC AR5 50 year depth-averaged 0-700 m temperature trend shows surprising similarities in its spatial pattern, with upper ocean warming in the ARC contrasted by cooling to the south. Using diagnosed heat budget terms from the most recent (June 2014) 6-year run of the SOSE we find that surface cooling in the ARC is balanced by heating from south-eastward advection by the current whereas heat gain in the ACC is balanced by cooling due to northward Ekman transport driven by strong westerly winds. These results suggest that spatial patterns in multi-decadal upper ocean temperature trends depend on regional variations in upper ocean dynamics.

  20. Void probability as a function of the void's shape and scale-invariant models. [in studies of spacial galactic distribution

    NASA Technical Reports Server (NTRS)

    Elizalde, E.; Gaztanaga, E.

    1992-01-01

    The dependence of counts in cells on the shape of the cell for the large scale galaxy distribution is studied. A very concrete prediction can be done concerning the void distribution for scale invariant models. The prediction is tested on a sample of the CfA catalog, and good agreement is found. It is observed that the probability of a cell to be occupied is bigger for some elongated cells. A phenomenological scale invariant model for the observed distribution of the counts in cells, an extension of the negative binomial distribution, is presented in order to illustrate how this dependence can be quantitatively determined. An original, intuitive derivation of this model is presented.

  1. The Effect of Crumb Rubber Particle Size to the Optimum Binder Content for Open Graded Friction Course

    PubMed Central

    Ibrahim, Mohd Rasdan; Katman, Herda Yati; Karim, Mohamed Rehan; Koting, Suhana; Mashaan, Nuha S.

    2014-01-01

    The main objective of this paper is to investigate the relations of rubber size, rubber content, and binder content in determination of optimum binder content for open graded friction course (OGFC). Mix gradation type B as specified in Specification for Porous Asphalt produced by the Road Engineering Association of Malaysia (REAM) was used in this study. Marshall specimens were prepared with four different sizes of rubber, namely, 20 mesh size [0.841 mm], 40 mesh [0.42 mm], 80 mesh [0.177 mm], and 100 mesh [0.149 mm] with different concentrations of rubberised bitumen (4%, 8%, and 12%) and different percentages of binder content (4%–7%). The appropriate optimum binder content is then selected according to the results of the air voids, binder draindown, and abrasion loss test. Test results found that crumb rubber particle size can affect the optimum binder content for OGFC. PMID:24574875

  2. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen

    2011-01-01

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  3. Nondestructive testing for braze voids in thin panels by use of special coatings

    NASA Technical Reports Server (NTRS)

    Gibson, J. C.

    1972-01-01

    Application of commercial coating to exterior of sandwich panel structures for determining presence of voids in brazed plates is discussed. Procedure for applying coating material and method of conducting nondestructive tests are explained. Illustrations are included to show appearance of voids.

  4. Temperature-dependent void-sheet fracture in Al-Cu-Mg-Ag-Zr

    SciTech Connect

    Haynes, M.J.; Gangloff, R.P.

    1998-06-01

    Temperature-dependent initiation fracture toughness and stable crack growth resistance are important attributes of next-generation aluminum alloys for airframe applications such as the high speed civil transport. Previous research showed that tensile fracture strain increases as temperature increases for AA2519 with Mg and Ag additions, because the void-sheet coalescence stage of microvoid fracture is retarded. The present work characterizes intravoid-strain localization (ISL) between primary voids at large constituents and secondary-void nucleation at small dispersoids, two mechanisms that may govern the temperature dependence of void sheeting. Most dispersoids nucleate secondary voids in an ISL band at 25 C, promoting further localization, while dispersoid-void nucleation at 150 C is greatly reduced. Increased strain-rate hardening with increasing temperature does not cause this behavior. Rather, a stress relaxation model predicts that flow stress and strain hardening decrease with increasing temperature or decreasing strain rate due to a transition from dislocation accumulation to diffusional relaxation around dispersoids. This transition to softening causes a sharp increase in the model-predicted applied plastic strain necessary for dispersoid/matrix interface decohesion. This reduced secondary-void nucleation and reduced ISL at elevated temperature explain retarded void sheeting and increased fracture strain.

  5. Testing cosmology with a catalogue of voids in the BOSS galaxy surveys

    NASA Astrophysics Data System (ADS)

    Nadathur, Seshadri

    2016-09-01

    We present a public catalogue of voids in the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 LOWZ and CMASS galaxy surveys. This catalogue contains information on the location, sizes, densities, shapes and bounding surfaces of 8956 independent, disjoint voids, making it the largest public void catalogue to date. Voids are identified using a version of the ZOBOV algorithm, the operation of which has been calibrated though tests on mock galaxy populations in N-body simulations, as well as on a suite of 4096 mock catalogues which fully reproduce the galaxy clustering, survey masks and selection functions. Based on this, we estimate a false positive detection rate of 3 per cent. Comparison with mock catalogues limits deviations of the void size distribution from that predicted in the ΛCDM model to be less than 6 per cent for voids with effective radius 8 < Rv < 60 h-1Mpc and in the redshift range 0.15 < z < 0.7. This could tightly constrain modified gravity scenarios and models with a varying equation of state, but we identify systematic biases which must be accounted for to reduce the theoretical uncertainty in the predictions for these models to the current level of precision attained from the data. We also examine the distribution of void densities and identify a deficit of the deepest voids relative to ΛCDM expectations, which is significant at more than the 3σ equivalent level. We discuss possible explanations for this discrepancy but at present its cause remains unknown.

  6. Characterization of the sodium void reactivity effect for advanced liquid metal reactor fuels

    SciTech Connect

    Kessler, S.F.

    1993-12-01

    This report discusses the problems of a large positive sodium void reactivity effect in liquid metal reactors which have received increased attention following the accident at Chernobyl, a light water reactor with a positive coolant void coefficient. While the probability of voiding sodium is small, a large positive sodium void reactivity effect is, in many minds, unacceptable. Analyses were performed on models of an advanced liquid metal reactors to determine the effects fuel type have on the sodium void reactivity effect. Three fuel types were considered; metal, oxide, and nitride. Calculations were performed using three-dimensional, multigroup diffusion theory. Two programs were developed to aid the analyses. One calculated the capture-to-fission ratio and the other calculated reaction rates of selected materials. A one-group equation was derived to determine a theoretical basis for the sodium void reactivity effect. An option was presented for a shortened core having a near-zero sodium-void worth. The effect on the sodium void reactivity effect of using actinides as fuel is also considered.

  7. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 4 2012-10-01 2012-10-01 false Treatment of uncashed or canceled (voided) CHIP... HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund...

  8. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 4 2011-10-01 2011-10-01 false Treatment of uncashed or canceled (voided) CHIP... HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund...

  9. 42 CFR 457.216 - Treatment of uncashed or canceled (voided) CHIP checks.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 4 2014-10-01 2014-10-01 false Treatment of uncashed or canceled (voided) CHIP... HEALTH AND HUMAN SERVICES (CONTINUED) STATE CHILDREN'S HEALTH INSURANCE PROGRAMS (SCHIPs) ALLOTMENTS AND... canceled (voided) CHIP checks. (a) Purpose. This section provides rules to ensure that States refund...

  10. Testing cosmology with a catalogue of voids in the BOSS galaxy surveys

    NASA Astrophysics Data System (ADS)

    Nadathur, Seshadri

    2016-06-01

    We present a public catalogue of voids in the Baryon Oscillation Spectroscopic Survey (BOSS) Data Release 11 LOWZ and CMASS galaxy surveys. This catalogue contains information on the location, sizes, densities, shapes and bounding surfaces of 8956 independent, disjoint voids, making it the largest public void catalogue to date. Voids are identified using a version of the ZOBOV algorithm, the operation of which has been calibrated though tests on mock galaxy populations in N-body simulations, as well as on a suite of 4096 mock catalogues which fully reproduce the galaxy clustering, survey masks and selection functions. Based on this, we estimate a false positive detection rate of 3%. Comparison with mock catalogues limits deviations of the void size distribution from that predicted in the ΛCDM model to be less than 6% for voids with effective radius 8 < Rv < 60 h-1Mpc and in the redshift range 0.15 < z < 0.7. This could tightly constrain modified gravity scenarios and models with a varying equation of state, but we identify systematic biases which must be accounted for to reduce the theoretical uncertainty in the predictions for these models to the current level of precision attained from the data. We also examine the distribution of void densities and identify a deficit of the deepest voids relative to ΛCDM expectations, which is significant at more than the 3σ equivalent level. We discuss possible explanations for this discrepancy but at present its cause remains unknown.

  11. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2010 CFR

    1998-04-01

    ... 19 Customs Duties 1 1998-04-01 1998-04-01 false Contents. 122.114 Section 122.114 AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form duplicates original manifest. Each transit air cargo manifest shall be a duplicate of the sheet presented as part of the...

  12. In search of empty places: Voids in the distribution of galaxies

    NASA Astrophysics Data System (ADS)

    Bucklein, Brian K.

    2010-12-01

    We investigate several techniques to identify voids in the galaxy distribution of matter in the universe. We utilize galaxy number counts as a function of apparent magnitude and Wolf plots to search a two- or three-dimensional data set in a pencil-beam fashion to locate voids within the field of view. The technique is able to distinguish between voids that represent simply a decrease in density as well as those that show a build up of galaxies on the front or back side of the void. This method turns out to be primarily useable only at relatively short range (out to about 200 Mpc). Beyond this distance, the characteristics indicating a void become increasingly difficult to separate from the statistical background noise. We apply the technique to a very simplified model as well as to the Millennium Run dark matter simulation. We then compare results with those obtained on the Sloan Digital Sky Survey. We also created the Watershed Void Examiner (WaVE) which treats densities in a fashion similar to elevation on a topographical map, and then we allow the "terrain" to flood. The flooded low-lying regions are identified as voids, which are allowed to grow and merge as the level of flooding becomes higher (the overdensity threshold increases). Void statistics can be calculated for each void. We also determine that within the Millennium Run semi-analytic galaxy catalog, the walls that separate the voids are permeable at a scale of 4 Mpc. For each resolution that we tested, there existed a characteristic density at which the walls could be penetrated, allowing a single void to grow to dominate the volume. With WaVE, we are able to get comparable results to those previously published, but often with fewer choices of parameters that could bias the results. We are also able to determine the the density at which the number of voids peaks for different resolutions as well as the expected number of void galaxies. The number of void galaxies is amazingly consistent at an

  13. Cold-batter mincing of hot-boned and crust-frozen air-chilled turkey breast allows for reduced sodium content in protein gels.

    PubMed

    Lee, H C; Medellin-Lopez, M; Singh, P; Sansawat, T; Chin, K B; Kang, I

    2014-09-01

    The purpose of this research was to evaluate sodium reduction in the protein gels that were prepared with turkey breasts after hot boning (HB), quarter (¼) sectioning, crust-frozen air-chilling (CFAC), and cold temperature mincing. For each of 4 replications, 36 turkeys were slaughtered and eviscerated. One-half of the carcasses were randomly assigned to water immersion chilling for chill boning (CB), whereas the remaining carcasses were immediately HB and quarter-sectioned/crust-frozen air-chilled (HB-¼CFAC) in a freezing room (-12°C, 1.0 m/s). After deboning, CB fillets were conventionally minced, whereas HB-¼CFAC fillets were cold minced up to 27 min with 1 or 2% salt. From the beginning of mincing, the batter temperatures of HB-¼CFAC were lower (P < 0.05) than those of CB batters up to 12 and 21 min for 2 and 1% salts, respectively. Upon mincing, the batter pH of the HB-¼CFAC (P < 0.05) rapidly decreased and was not different (P > 0.05) from the pH of CB batters, except for the 1% salt HB-¼CFAC batter after 15 min of mincing. The pattern of pH was not changed when the batters were stored overnight. The protein of 2% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets at 9, 12, 18, and 24 min. Similarly, the protein of 1% salt HB-¼CFAC fillets was more extractable (P < 0.05) than that of CB fillets from 12 min. Stress values of 2% salt HB-¼CFAC gels were higher (P < 0.05) than those of 1 and 2% salt CB gels, with intermediate values for 1% salt HB-¼CFAC gels. In the scanning electron microscope image, prerigor batter appears to have more open space, less protein aggregation, and more protein-coated fat particles than those of postrigor batters. Based on these results, the combination of HB-¼CFAC and cold-batter-mincing technologies appear to improve protein functionality and sodium reduction capacity. PMID:25012854

  14. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1986-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  15. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  16. Reliability of void detection in structural ceramics by use of scanning laser acoustic microscopy

    SciTech Connect

    Roth, D.J.; Klima, S.J.; Kiser, J.D.; Baaklini, G.Y.

    1986-05-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics. 20 references.

  17. Formation of void lattice after annealing of Ge quantum dot lattice in alumina matrix

    SciTech Connect

    Pinto, S. R. C.; Rolo, A. G.; Gomes, M. J. M.; Ivanda, M.; Bogdanovic-Radovic, I.; Buljan, M.; Grenzer, J.; Muecklich, A.; Barber, D. J.; Bernstorff, S.

    2010-10-25

    We report on the formation of a regularly ordered void lattice with a void size of about 4 nm in an alumina matrix. The voids were formed by thermal treatment of a well-ordered three-dimensional Ge quantum dot lattice formed earlier by self-assembled growth in an alumina matrix during magnetron sputtering codeposition of Ge+Al{sub 2}O{sub 3}. During the subsequent annealing the germanium atoms were lost from the film and so voids were produced. The positions of the voids are ordered in the same way as the Ge quantum dots that were present before annealing, while their sizes can be controlled by the deposition parameters.

  18. Probability of detection of internal voids in structural ceramics using microfocus radiography

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Roth, D. J.

    1985-01-01

    The reliability of microfocus x-radiography for detecting subsurface voids in structural ceramic test specimens was statistically evaluated. The microfocus system was operated in the projection mode using low X-ray photon energies (20 keV) and a 10 micro m focal spot. The statistics were developed for implanted subsurface voids in green and sintered silicon carbide and silicon nitride test specimens. These statistics were compared with previously-obtained statistics for implanted surface voids in similar specimens. Problems associated with void implantation are discussed. Statistical results are given as probability-of-detection curves at a 95 percent confidence level for voids ranging in size from 20 to 528 micro m in diameter.

  19. The Irradiation Effect of a Simultaneous Laser and Electron Dual-beam on Void Formation

    PubMed Central

    Yang, Zhanbing; Watanabe, Seiichi; Kato, Takahiko

    2013-01-01

    Randomly distributed lattice point defects such as supersaturated vacancies (SVs) and Frenkel-pairs (FPs, an interstitial and a vacancy) can be simultaneously introduced into the crystal by energetic beam irradiation in outer space and/or nuclear reactors, but their behavior has not been fully understood. Using a high-voltage electron microscope equipped with a laser (laser-HVEM), we show the striking effects of simultaneous laser-electron (photon-electron) dual-beam irradiation on void formation. Our results reveal that during laser-electron sequential irradiation, pre-laser irradiation enhanced void nucleation and subsequent electron irradiation enhanced void growth. However, the laser-electron dual-beam irradiation was analyzed to depress void swelling remarkably because the recombination of SVs and interstitials was enhanced. The results provide insight into the mechanism underlying the dual-beam radiation-induced depression of void swelling in solids. PMID:23383371

  20. Force field inside the void in complex plasmas under microgravity conditions

    SciTech Connect

    Kretschmer, M.; Khrapak, S.A.; Zhdanov, S.K.; Thomas, H.M.; Morfill, G.E.; Fortov, V.E.; Lipaev, A.M.; Molotkov, V.I.; Ivanov, A.I.; Turin, M.V.

    2005-05-01

    Observations of complex plasmas under microgravity conditions onboard the International Space Station performed with the Plasma-Kristall experiment-Nefedov facility are reported. A weak instability of the boundary between the central void (region free of microparticles) and the microparticle cloud is observed at low gas pressures. The instability leads to periodic injections of a relatively small number of particles into the void region (by analogy this effect is called the 'trampoline effect'). The trajectories of injected particles are analyzed providing information on the force field inside the void. The experimental results are compared with theory which assumes that the most important forces inside the void are the electric and the ion drag forces. Good agreement is found clearly indicating that under conditions investigated the void formation is caused by the ion drag force.

  1. Influence investigation of a void region on modeling light propagation in a heterogeneous medium.

    PubMed

    Yang, Defu; Chen, Xueli; Ren, Shenghan; Qu, Xiaochao; Tian, Jie; Liang, Jimin

    2013-01-20

    A void region exists in some biological tissues, and previous studies have shown that inaccurate images would be obtained if it were not processed. A hybrid radiosity-diffusion method (HRDM) that couples the radiosity theory and the diffusion equation has been proposed to deal with the void problem and has been well demonstrated in two-dimensional and three-dimensional (3D) simple models. However, the extent of the impact of the void region on the accuracy of modeling light propagation has not been investigated. In this paper, we first implemented and verified the HRDM in 3D models, including both the regular geometries and a digital mouse model, and then investigated the influences of the void region on modeling light propagation in a heterogeneous medium. Our investigation results show that the influence of the region can be neglected when the size of the void is less than a certain range, and other cases must be taken into account. PMID:23338186

  2. Local crystallography and stress voiding in Al-Si-Cu versus copper interconnects

    NASA Astrophysics Data System (ADS)

    Keller, R. R.; Kalnas, C. E.; Phelps, J. M.

    1999-07-01

    We compare the local crystallographic orientations associated with stress voids in Al-1Si-0.5Cu (wt %) with those in pure copper interconnects. Orientations were sorted by whether grains were immediately adjacent to voids. Grains adjacent to voids in Al-Si-Cu showed a <111> fiber texture that was slightly stronger than those in intact regions. This is in contrast to copper, which showed weaker local <111> texture around voids. We postulate the difference to be due to the relative effectiveness of the diffusion paths available in the lines. For Al-Si-Cu, the presence of defects associated with precipitates may allow more rapid diffusion than grain boundaries. Voiding in copper, which is free from such defects, depends more on grain boundary structure.

  3. Creating Voids by Annealing a-SiC:O:H Films Prepared by Plasma-enhanced Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, S.; Lahlouh, B.; Rajagopalan, T.; Biswas, N.; Mehta, N.; Lubguban, J. A.

    2004-03-01

    Hydrogenated amorphous silicon carbide (a-SiC:H) films were prepared by plasma-enhanced chemical vapor deposition from diethylsilane (C4H12Si) diluted in methane (CH4). The deposition conditions resulted in a highly unstable a-SiC:H film, which reacted with oxygen when exposed to air, forming Si-OH and H-OH bonds and Si-O networks as well. The Rutherford Back Scattering analysis shows 15incorporation. The Fourier transfom infra-red (FT-IR) measurement suggests the presence of a-SiC:O:H component and a-C:H moieties throughout the film. The films were then thermally annealed in vacuum at 450C to removed unstable C-H bonds and Si-OH and H-OH groups creating voids in the film. The removal of C-H, Si-OH and H-OH is evident from the FT-IR spectra. During the annealing process, the film also cross-links and formed a stable a-SiC:O:H film. After annealing, the dielectric constant of the films decreased from 4.2 to 2.1 suggesting the presence of voids/pores in the films.

  4. Void swelling of Japanese candidate martensitic steels under FFTF/MOTA irradiation

    NASA Astrophysics Data System (ADS)

    Morimura, T.; Kimura, A.; Matsui, H.

    1996-12-01

    Microstructural observations of six Japanese candidate 7-9% Cr reduced activation martensitic steels were carried out after heavy neutron irradiation in order to investigate the void swelling behavior of each steel. Neutron irradiations were performed in the FFTF/MOTA up to 67 dpa at temperatures between 638 and 873 K. Transmission electron microscope observations revealed that voids were formed in all the steels irradiated to 67 dpa at 703 K, and the highest void swelling was observed in JLM-1 which was added with 30 wt.ppm of boron (0.74%), and the minimum void swelling was observed in F82H steel (0.12%). The 9% Cr martensitic steels showed the peak of void swelling at temperatures around 700 K, where void swelling gradually increased with increasing irradiation fluence to 30 dpa and increased rapidly above it. It is considered that the incubation period of void swelling of 9% Cr martensitic steels (JLM series) is about 30 dpa. JLM-1 showed the highest void swelling rate (0.045%/dpa at most). The addition of 30 wt.ppm of boron enhanced void swelling, while it was suppressed by the addition of 100 wt.ppm Ti in the 9% Cr martensitic steel. The JLF-3 steel (7.03% Cr) and F82H (7.65% Cr) showed less void swelling than JLF-I (9.04% Cr). The alloying effects on the swelling behavior of the steels were interpreted in terms of the difference in the precipitation morphology of carbides.

  5. QSO Lyalpha Absorption Lines in Galaxy Superclusters and Voids

    NASA Astrophysics Data System (ADS)

    Stocke, J. T.; Shull, J. M.; Penton, S.; Burks, G.; Donahue, M.

    1993-12-01

    We have used the Hubble Space Telescope (HST) Goddard High Resolution Spectrograph (GHRS) to search for Lyalpha absorption clouds in nearby galaxy voids (cz <= 10,000 km s(-1) ). Thus far, we have obtained GHRS spectra (G160M, 1225 -- 1255 Angstroms, 0.25 Angstroms resolution) of three very bright Active Galactic Nuclei, Mrk 501, I Zw I, and Mrk 335, at V <= 14.5. We find 4 probable (4.0 sigma - 4.5 sigma ) and 4 definite (5 sigma - 16 sigma ) Lyalpha absorption lines, with equivalent widths W_λ = 50 - 200 m Angstroms, corresponding to column densities N(H I) = 10(13) -- 10(14) cm(-2) , assuming a typical Doppler parameter of b = 25 km s(-1) . Based on an updated version of the CfA redshift survey (Huchra and Clemens, private communication), most of these Lyalpha systems appear to be associated with supercluster - sized ``strings'' of galaxies similar to the ``Great Wall''. Toward Mrk 501, the nearest bright galaxy at the redshift of the strongest (200 m Angstroms) Lyalpha cloud lies 500 h75(-1) kpc off the line of sight. Models of H I disks exposed to the intergalactic ionizing radiation field (Dove & Shull 1994, ApJ, 423, in press) show that the N(H I) = 10(13) cm(-2) contour in a typical spiral galaxy is reached at 100 kpc radial extent. Thus, the Lyalpha absorbers associated with galaxy-string systems may be the result of H I in an extended halo, in dwarf satellite galaxies (M_B > -15), or in tidally-stripped gas. Most importantly for cosmological origins of baryons, one (4.3 sigma ) Lyalpha absorption line in the spectrum of Mrk 501 lies within the galaxy void in the foreground of the ``Great Wall''. The nearest bright galaxy, to a level M_B <= -18.5 for H_0 = 75 km s(-1) Mpc(-1) , is more than 5 Mpc away. A pencil-beam survey of faint galaxies to M_B = -16.0 finds no galaxy within 100 h75(-1) kpc of the line of sight, at or near the absorber redshift.

  6. Morphology, star formation, and nuclear activity in void galaxies

    NASA Astrophysics Data System (ADS)

    Wiedmann, Sophia; Miller, Brendan; Gallo, Elena; Pazar, Beni; Alfvin, Erik

    2015-01-01

    We report on new Chandra observations of six early-type galaxies located within cosmic voids, from a program examining the influence of Mpc-scale environment upon star formation and low-level supermassive black hole activity. Simple feedback prescriptions are predicted to operate independently of the surrounding density once outside the dark matter halo, and further link star formation quenching to black hole activity. Alternatively, mediation of the cold gas supply by the large-scale environment, for example through increased cold-stream accretion and reduced harassment or stripping within more isolated regions, could mutually enhance star formation and (perhaps indirectly) low-level supermassive black hole activity. The six targeted early-type galaxies have comparable stellar masses of 6-9e10 solar, chosen to be near the predicted "critical value" for efficient feedback, but span a wide range of star-formation rates. Specifically, they have SFRs of 6.5, 1.4, 0.45, 0.10, 0.04, and 0.03 solar masses per year. All galaxies are detected in the Chandra ACIS-S observations with 0.3-8 keV X-ray luminosities ranging from 2e39 to 1e41 erg/s. Specifically, they have log Lx values of 40.4, 41.1, 41.1, 39.3, 39.2, and 39.2, again ordered by decreasing SFR. The three galaxies with moderate-to-high star formation rates have nuclear X-ray luminosities that are significantly greater than those of the three galaxies with low star formation rates. This result is more consistent with a symbiotic relationship between current low-level star formation and supermassive black hole activity than with simple feedback quenching models. We additionally situate these galaxies in the context of void and cluster galaxies in the local universe, model their optical surface brightness profiles and color gradients, discuss caveats including the possibility of X-ray binary contamination, and consider other supermassive black hole activity indicators.

  7. Air oxidation of hydrazine. 1. Reaction kinetics on natural kaolinites, halloysites, and model substituent layers with varying iron and titanium oxide and O- center contents

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Mariner, R.; Rice, A.

    1991-01-01

    Air oxidation of hydrazine was studied by using a group of kaolinites, halloysites, and substituent oxides as models for the tetrahedral and octahedral sheets. The rate was found to be linear with oxygen. The stoichiometry showed that oxygen was the primary oxidant and that dinitrogen was the only important nitrogen-containing product. The rates on kaolinites were strongly inhibited by water. Those on three-dimensional silica and gibbsite appeared not to be. That on a supposedly layered silica formed from a natural kaolinite by acid leaching showed transitional behavior--slowed relative to that expected from a second-order reaction relative to that on the gibbsite and silica but faster than those on the kaolinites. The most striking result of the reaction was the marked increase in the rate of reaction of a constant amount of hydrazine as the amount of clay was increased. The increase was apparent (in spite of the water inhibition at high conversions) over a 2 order of magnitude variation of the clay weight. The weight dependence was taken to indicate that the role of the clay is very important, that the number of reactive centers is very small, or that they may be deactivated over the course of the reaction. In contrast to the strong dependence on overall amount of clay, the variation of amounts of putative oxidizing centers, such as structural Fe(III), admixed TiO2 or Fe2O3, or O- centers, did not result in alteration of the rate commensurate with the degree of variation of the entity in question. Surface iron does play some role, however, as samples that were pretreated with a reducing agent were less active as catalysts than the parent material. These results were taken to indicate either that the various centers interact to such a degree that they cannot be considered independently or that the reaction might proceed by way of surface complexation, rather than single electron transfers.

  8. Radiological assessment of water treatment processes in a water treatment plant in Saudi Arabia: Water and sludge radium content, radon air concentrations and dose rates.

    PubMed

    Al-Jaseem, Q Kh; Almasoud, Fahad I; Ababneh, Anas M; Al-Hobaib, A S

    2016-09-01

    There is an increase demand for clean water sources in Saudi Arabia and, yet, renewable water resources are very limited. This has forced the authorities to explore deep groundwater which is known to contain large concentrations of radionuclides, mainly radium isotopes. Lately, there has been an increase in the number of water treatment plants (WTPs) around the country. In this study, a radiological assessment of a WTP in Saudi Arabia was performed. Raw water was found to have total radium activity of 0.23Bq/L, which exceeds the international limit of 0.185Bq/L (5pCi/L). The WTP investigated uses three stages of treatment: flocculation/sedimentation, sand filtration and reverse osmosis. The radium removal efficiency was evaluated for each stage and the respective values were 33%, 22% and 98%. Moreover, the activity of radium in the solid waste generated from the WTP in the sedimentation and sand filtrations stages were measured and found to be 4490 and 6750Bq/kg, respectively, which exceed the national limit of 1000Bq/kg for radioactive waste. A radiological assessment of the air inside the WTP was also performed by measuring the radon concentrations and dose rates and were found in the ranges of 2-18Bq/m(3) and 70-1000nSv/h, respectively. The annual effective dose was calculated and the average values was found to be 0.3mSv which is below the 1mSv limit. PMID:27169731

  9. Thermographic Methods of Detecting Insulation Voids in Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2010-01-01

    Four very large (900Kgal) cryogenic liquid hydrogen and oxygen storage tanks at Kennedy Space Center's LC-39 launch pads were constructed in 1965 to support the Apollo/Saturn V Program and continue to support the Space Shuttle Program. These double-walled spherical tanks with powdered insulation in the annular region, have received minimal refurbishment or even inspection over the years. As the Shuttle Program comes to an end we now have the time to perform limited refurbishment. Thermography has been used to monitor the state of insulation as one of the four tanks was drained of cryogen and warmed to ambient temperatures. An anomalous region of insulation detected previously with thermography was confirmed by visual inspections during this period. Thermal models and a comparison of images from the cold and warm tanks suggests that the anomalous region can be detected even without cryogen in the tank. The ability to detect and correct probable insulation voids prior to filling with cryogenic fluid can provide significant cost savings by reducing commodity boil-off over many years of use.

  10. Stress-induced voiding study in integrated circuit interconnects

    NASA Astrophysics Data System (ADS)

    Hou, Yuejin; Tan, Cher Ming

    2008-07-01

    An analytical equation for an ultralarge-scale integration interconnect lifetime due to stress-induced voiding (SIV) is derived from the energy perspective. It is shown that the SIV lifetime is strongly dependent on the passivation quality at the cap layer/interconnect interface, the confinement effect by the surrounding materials to the interconnects, and the available diffusion paths in the interconnects. Contrary to the traditional power-law creep model, we find that the temperature exponent in SIV lifetime formulation is determined by the available diffusion paths for the interconnect atoms and the interconnect geometries. The critical temperature for the SIV is found to be independent of passivation integrity and dielectric confinement effect. Actual stress-free temperature (SFT) during the SIV process is also found to be different from the dielectric/cap layer deposition temperature or the final annealing temperature of the metallization, and it can be evaluated analytically once the activation energy, temperature exponent and critical temperature are determined experimentally. The smaller actual SFT indicates that a strong stress relaxation occurs before the high temperature storage test. Our results show that our SIV lifetime model can be used to predict the SIV lifetime in nano-interconnects.

  11. Detecting Underground Mine Voids Using Complex Geophysical Techniques

    NASA Astrophysics Data System (ADS)

    Kaminski, V. F.; Harbert, W. P.; Hammack, R. W.; Ackman, T. E.

    2006-12-01

    In July 2006, the National Energy Technology Laboratory in collaboration with Department of Geology and Planetary Science, University of Pittsburgh conducted complex ground geophysical surveys of an area known to be underlain by shallow coal mines. Geophysical methods including electromagnetic induction, DC resistivity and seismic reflection were conducted. The purpose of these surveys was to: 1) verify underground mine voids based on a century-old mine map that showed subsurface mine workings georeferenced to match with present location of geophysical test-site located on the territory of Bruceton research center in Pittsburgh, PA, 2) deliniate mine workings that may be potentially filled with electrically conductive water filtrate emerging from adjacent groundwater collectors and 3) establish an equipment calibration site for geophysical instruments. Data from electromagnetic and resistivity surveys were further processed and inverted using EM1DFM, EMIGMA or Earthimager 2D capablilities in order to generate conductivity/depth images. Anomaly maps were generated, that revealed the locations of potential mine openings.

  12. Void statistics of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  13. Improvements in Predicting Void Fraction in Subcooled Boiling

    SciTech Connect

    Ha, Kwi Seok; Lee, Yong Bum; No, Hee Cheon

    2005-06-15

    A simple two-phase thermal-hydraulic tool with the drift-flux model has been used to develop a subcooled boiling model. The tool is composed of four governing equations: mixture mass, vapor mass, mixture momentum, and mixture enthalpy. Using the developed tool, various subcooled boiling models were investigated through the published experimental data. In the process of evaluation, two models were developed associated with the subcooled boiling. First, the Saha and Zuber correlation predicting the point of the net vapor generation was modified to consider the thermal and dynamic effects at the high-velocity region. Second, the pumping factor model was developed using the pi-theorem based on parameters related to the bubble generation mechanism, and it produced an additional parameter: the boiling number. The proposed models and several other models were evaluated against a series of subcooled flow boiling experiments at the pressure range of 1 to 146.8 bars. From the root-mean-square analysis for the predicted void fraction in the subcooled boiling region, the results of the proposed model presented the best predictions for the whole-pressure ranges. Also, the implementation of the developed models into RELAP5/MOD3.3 brought about improved results compared to those of the default model of the code.

  14. a New Algorithm for Void Filling in a Dsm from Stereo Satellite Images in Urban Areas

    NASA Astrophysics Data System (ADS)

    Gharib Bafghi, Z.; Tian, J.; d'Angelo, P.; Reinartz, P.

    2016-06-01

    Digital Surface Models (DSM) derived from stereo-pair satellite images are the main sources for many Geo-Informatics applications like 3D change detection, object classification and recognition. However since occlusion especially in urban scenes result in some deficiencies in the stereo matching phase, these DSMs contain some voids. In order to fill the voids a range of algorithms have been proposed, mainly including interpolation alone or along with auxiliary DSM. In this paper an algorithm for void filling in DSM from stereo satellite images has been developed. Unlike common previous approaches we didn't use any external DSM to fill the voids. Our proposed algorithm uses only the original images and the unfilled DSM itself. First a neighborhood around every void in the unfilled DSM and its corresponding area in multispectral image is defined. Then it is analysed to extract both spectral and geometric texture and accordingly to assign labels to each cell in the voids. This step contains three phases comprising shadow detection, height thresholding and image segmentation. Thus every cell in void has a label and is filled by the median value of its co-labelled neighbors. The results for datasets from WorldView-2 and IKONOS are shown and discussed.

  15. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    PubMed Central

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W−1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  16. DIVE in the cosmic web: voids with Delaunay triangulation from discrete matter tracer distributions

    NASA Astrophysics Data System (ADS)

    Zhao, Cheng; Tao, Charling; Liang, Yu; Kitaura, Francisco-Shu; Chuang, Chia-Hsun

    2016-07-01

    We present a novel parameter-free cosmological void finder (DIVE, Delaunay TrIangulation Void findEr) based on Delaunay Triangulation (DT), which efficiently computes the empty spheres constrained by a discrete set of tracers. We define the spheres as DT voids, and describe their properties, including a universal density profile together with an intrinsic scatter. We apply this technique on 100 halo catalogues with volumes of 2.5 h-1Gpc side each, with a bias and number density similar to the Baryon Oscillation Spectroscopic Survey CMASS luminous red galaxies, performed with the PATCHY code. Our results show that there are two main species of DT voids, which can be characterized by the radius: they have different responses to halo redshift space distortions, to number density of tracers, and reside in different dark matter environments. Based on dynamical arguments using the tidal field tensor, we demonstrate that large DT voids are hosted in expanding regions, whereas the haloes used to construct them reside in collapsing ones. Our approach is therefore able to efficiently determine the troughs of the density field from galaxy surveys, and can be used to study their clustering. We further study the power spectra of DT voids, and find that the bias of the two populations are different, demonstrating that the small DT voids are essentially tracers of groups of haloes.

  17. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    SciTech Connect

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  18. Thermal stability of interface voids in Cu grain boundaries with molecular dynamic simulations

    NASA Astrophysics Data System (ADS)

    Xydou, A.; Parviainen, S.; Aicheler, M.; Djurabekova, F.

    2016-09-01

    By means of molecular dynamic simulations, the stability of cylindrical voids is examined with respect to the diffusion bonding procedure. To do this, the effect of grain boundaries between the grains of different crystallographic orientations on the void closing time was studied at high temperatures from 0.7 up to 0.94 of the bulk melting temperature ({{T}\\text{m}} ). The diameter of the voids varied from 3.5 to 6.5 nm. A thermal instability occurring at high temperatures at the surface of the void placed in a grain boundary triggered the eventual closure of the void at all examined temperatures. The closing time has an exponential dependence on the examined temperature values. A model based on the defect diffusion theory is developed to predict the closing time for voids of macroscopic size. The diffusion coefficient within the grain boundaries is found to be overall higher than the diffusion coefficient in the region around the void surface. The activation energy for the diffusion in the grain boundary is calculated based on molecular dynamic simulations. This value agrees well with the experimental given in the Ashby maps for the creep in copper via Coble GB diffusion.

  19. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-05-01

    Could ‘defect-considered’ void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85–95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W‑1) and excellent detectivity (2 × 1013 Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of ‘defect-considered’ Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices.

  20. Active Adoption of Void Formation in Metal-Oxide for All Transparent Super-Performing Photodetectors.

    PubMed

    Patel, Malkeshkumar; Kim, Hong-Sik; Park, Hyeong-Ho; Kim, Joondong

    2016-01-01

    Could 'defect-considered' void formation in metal-oxide be actively used? Is it possible to realize stable void formation in a metal-oxide layer, beyond unexpected observations, for functional utilization? Herein we demonstrate the effective tailoring of void formation of NiO for ultra-sensitive UV photodetection. NiO was formed onto pre-sputtered ZnO for a large size and spontaneously formed abrupt p-NiO/n-ZnO heterojunction device. To form voids at an interface, rapid thermal process was performed, resulting in highly visible light transparency (85-95%). This heterojunction provides extremely low saturation current (<0.1 nA) with an extraordinary rectifying ratio value of over 3000 and works well without any additional metal electrodes. Under UV illumination, we can observe the fast photoresponse time (10 ms) along with the highest possible responsivity (1.8 A W(-1)) and excellent detectivity (2 × 10(13) Jones) due to the existence of an intrinsic-void layer at the interface. We consider this as the first report on metal-oxide-based void formation (Kirkendall effect) for effective photoelectric device applications. We propose that the active adoption of 'defect-considered' Kirkendall-voids will open up a new era for metal-oxide based photoelectric devices. PMID:27151288

  1. Voids at the tunnel-soil interface for calculation of ground vibration from underground railways

    NASA Astrophysics Data System (ADS)

    Jones, Simon; Hunt, Hugh

    2011-01-01

    Voids at the tunnel-soil interface are not normally considered when predicting ground vibration from underground railways. The soil is generally assumed to be continuously bonded to the outer surface of the tunnel to simplify the modelling process. Evidence of voids around underground railways motivated the study presented herein to quantify the level of uncertainty in ground vibration predictions associated with neglecting to include such voids at the tunnel-soil interface. A semi-analytical method is developed which derives discrete transfers for the coupled tunnel-soil model based on the continuous Pipe-in-Pipe method. The void is simulated by uncoupling the appropriate nodes at the interface to prevent force transfer between the systems. The results from this investigation show that relatively small voids ( 4 m×90∘) can significantly affect the rms velocity predictions in the near-field and moderately affect predictions in the far-field. Sensitivity of the predictions to void length and void sector angle are both deemed to be significant. The findings from this study suggest that the uncertainty associated with assuming a perfect bond at the tunnel-soil interface in an area with known voidage can reasonably reach ±5 dB and thus should be considered in the design process.

  2. Comparison of Short-Term Oxidation Behavior of Model and Commercial Chromia-Forming Ferritic Stainless Steels in Air with Water Vapor

    SciTech Connect

    Brady, Michael P; Keiser, James R; More, Karren Leslie; Fayek, Mostafa; Walker, Larry R; Meisner, Roberta Ann; Anovitz, Lawrence {Larry} M; Wesolowski, David J; Cole, David R

    2012-01-01

    A high-purity Fe-20Cr and commercial type 430 ferritic stainless steel were exposed at 700 and 800 C in dry air and air with 10% water vapor (wet air) and characterized by SEM, XRD, STEM, SIMS, and EPMA. The Fe-20Cr alloy formed a fast growing Fe-rich oxide scale at 700 C in wet air after 24 h exposure, but formed a thin chromia scale at 700 C in dry air and at 800 C in both dry air and wet air. In contrast, thin spinel + chromia base scales with a discontinuous silica subscale were formed on 430 stainless steel under all conditions studied. Extensive void formation was observed at the alloy-oxide interface for the Fe-20Cr in both dry and wet conditions, but not for the 430 stainless steel. The Fe-20Cr alloy was found to exhibit a greater relative extent of subsurface Cr depletion than the 430 stainless steel, despite the former's higher Cr content. Depletion of Cr in the Fe-20Cr after 24 h exposure was also greater at 700 C than 800 C. The relative differences in oxidation behavior are discussed in terms of the coarse alloy grain size of the high-purity Fe-20Cr material, and the effects of Mn, Si, and C on the oxide scale formed on the 430 stainless steel.

  3. Thermal stress induced voids in nanoscale copper interconnects by in-situ TEM heating

    NASA Astrophysics Data System (ADS)

    An, Jin Ho

    Stress induced void formation in Cu interconnects, due to thermal stresses generated during the processing of semiconductors, is an increasing reliability issue in the semiconductor industry as Cu interconnects are being downscaled to follow the demand for faster chip speed. In this work, 1.8 micron and 180 nm wide Cu interconnects, fabricated by Freescale Semiconductors, were subjected to thermal cycles, in-situ in the TEM, to investigate the stress relaxation mechanisms as a function of interconnect linewidth. The experiments show that the 1.8 micron Cu interconnect lines relax the thermal stresses through dislocation nucleation and motion while the Cu interconnect 180 nm lines exhibit void formation. Void formation in 180 nm lines occurs predominantly at triple junctions where the Ta diffusion barrier meets a Cu grain boundary. In order to understand void formation in 180 nm lines, the grain orientation and local stresses are determined. In particular, Nanobeam Diffraction (NBD) in the TEM is used to obtain the diffraction pattern of each grain, from which the crystal orientation is evaluated by the ACT (Automated Crystallography for TEM) software. In addition, 2D Finite Element Method (FEM) simulations are performed using the Object Oriented Finite Modeling (OOF2) software to correlate grain orientation with local stresses, and consequently void formation. According to the experimental and simulation results obtained, void formation in 180nm Cu interconnects does not seem to be solely dependent on local stresses, but a combination of diffusion paths available, stress gradients and possibly the presence of defects. In addition, based on the in-situ TEM observations, void growth seems to occur through grain boundary and/or interfacial diffusion. However, in-situ STEM observations of fully opened voids post-failure show pileup of material at the Cu grain surfaces. This means that surface or interface diffusion is also very active during void growth in the presence

  4. A Generalized Cosmological Reduced Void Probability Distribution Function and Levy Index

    NASA Astrophysics Data System (ADS)

    Strolger, Louis-Gregory; Andrew, K.; Baxley, J.; Smailhodzic, A.; Bolen, B.; Gary, J.; Taylor, L.; Barnaby, D.

    2009-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 survey and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1 The general form of the Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a Zipf's Law probability distribution indicating an ever decreasing probability of larger and larger voids, we determine the Zipf form of the scaling power law for void frequency. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale "sponge-like” appearance with voids of all scales permeating the field of observation, hinting at the existence of an underlying scaling law. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. The resulting void probability functions are then used to determine the Levy index and the Fisher critical exponent within the context of a grand canonical ensemble analysis viewed as a percolation effect. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  5. Infrared Microspectroscopy of Bionanomaterials (Diatoms) with Careful Evaluation of Void Effects.

    PubMed

    Alipour, Leila; Hamamoto, Mai; Nakashima, Satoru; Harui, Rika; Furiki, Masanari; Oku, Osamu

    2016-03-01

    In order to characterize a representative natural bionanomaterial, present day centric diatom samples (diameter, 175-310 µm) have been analyzed and imaged by infrared (IR) micro-spectroscopy and scanning electron microscopy (SEM). Because diatom silica frustules have complex microscopic morphology, including many void areas such as micro- or nano-pores, the effects of voids on the spectral band shapes were first evaluated. With increasing void area percentage, 1220 cm(-1)/1070 cm(-1) peak height ratio (Si-O polymerization index) increases and 950 cm(-1)/800 cm(-1) peak height ratio (Si-OH/Si-O-Si) decreases, both approaching 1. Based on the void area percentage of representative diatom samples determined using SEM image analyses (51.5% to 20.5%) and spectral simulation, the 1220 cm(-1)/1070 cm(-1) ratios of diatom samples are sometimes affected by the void effect, but the 950 cm(-1)/800 cm(-1) ratios can indicate real structural information of silica. This void effect should be carefully evaluated for IR micro-spectroscopy of micro-nano-porous materials. Maturity of diatom specimens may be evaluated from: (1) void area percentages determined by SEM; (2) average thicknesses determined by optical microscope; and (3) average values of 1220 cm(-1)/1070 cm(-1) peak height ratios (opposite trend to the void effect) determined by IR micro-spectroscopy. Microscopic heterogeneities of chemical structures of silica were obtained by IR micro-spectroscopic mapping of four representative diatoms. The 950 cm(-1)/800 cm(-1) ratios show that large regions of some diatoms consist of hydrated amorphous immature silica. The successful analysis of diatoms by IR micro-spectroscopic data with careful void effect evaluation may be applied to physicochemical structures of many other bionanomaterials. PMID:26823543

  6. Aft segment dome-to-stiffener factory joint insulation void elimination

    NASA Technical Reports Server (NTRS)

    Jensen, S. K.

    1991-01-01

    Since the detection of voids in the internal insulation of the dome-to-stiffener factory joint of the 15B aft segment, all aft segment dome-to-stiffener factory joints were x-rated and all were found to contain voids. Using a full-scale process simulation article (PSA), the objective was to demonstrate that the proposed changes in the insulation layup and vacuum bagging processes will greatly reduce or eliminate voids without adversely affecting the configuration of performance of the insulation which serves as a primary seal over the factory joint. The PSA-8 aft segment was insulated and cured using standard production processes.

  7. Percolation, wave propagation, and void link up effects in ductile fracture

    SciTech Connect

    Tonks, D.L.

    1994-02-01

    This work investigates the time evolution and spatial morphology of ductile damage based on void growth and coalecence. The size enhancement of damage cluster growth, as well as wave speed limiting of growth, are treated microscopically. Simplified 2D plane strain simulations using individual voids are done with uniaxial stress and explained with a probabilistic theory. At low strain rate, fracture occurs by long, localized cracks. At high strain rates, widespread, random damage breaks the system. The Voronoi tessellation of voids can be used to map out the spatial network of still solid material in 3D ductile fracture. Using it, the spallation porosity is calculated based on percolation theory.

  8. Modeling void growth and movement with phase change in thermal energy storage canisters

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Namkoong, David; Skarda, J. R. L.

    1993-01-01

    A scheme was developed to model the thermal hydrodynamic behavior of thermal energy storage salts. The model included buoyancy, surface tension, viscosity, phases change with density difference, and void growth and movement. The energy, momentum, and continuity equations were solved using a finite volume formulation. The momentum equation was divided into two pieces. The void growth and void movement are modeled between the two pieces of the momentum equations. Results showed this scheme was able to predict the behavior of thermal energy storage salts.

  9. Improbability of void growth in aluminum via dislocation nucleation under typical laboratory conditions.

    PubMed

    Nguyen, L D; Warner, D H

    2012-01-20

    The rate at which dislocations nucleate from spherical voids subjected to shear loading is predicted from atomistic simulation. By employing the latest version of the finite temperature string method, a variational transition state theory approach can be utilized, enabling atomistic predictions at ordinary laboratory time scales, loads, and temperatures. The simulation results, in conjunction with a continuum model, show that the deformation and growth of voids in Al are not likely to occur via dislocation nucleation under typical loadings regardless of void size. PMID:22400757

  10. PLASMA EFFECTS ON FAST PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Schlickeiser, R.; Ibscher, D.; Supsar, M. E-mail: ibscher@tp4.rub.de

    2012-10-20

    The interaction of TeV gamma rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon- photon annihilation process. The created pair beam distribution is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature in the unmagnetized intergalactic medium (IGM). The maximum electrostatic growth rate occurs at angles of 39.{sup 0}2 with respect to the pair beam direction, and is more than three orders of magnitude greater than the maximum Weibel growth rate, indicating that the linear oblique electrostatic instability operates much faster than the Weibel instability. The dissipation of the generated electrostatic turbulence is different for intense and weak gamma-ray blazars. For intense blazars, the normalized number of generated pairs n {sub 22} = n{sub b} /[10{sup -22} cm{sup -3}] exceeds the critical density n{sub c} (T) = 4.8 Multiplication-Sign 10{sup -3} T {sub 4} for given normalized IGM temperature T {sub 4} = T/[10{sup 4} K] necessary for the onset of the modulation instability, so that all free kinetic pair energy is dissipated in heating the IGM in cosmic voids. For weak blazars, half of the initial energy density of the beam particles is transferred to the electrostatic and electromagnetic fluctuations on timescales smaller than the inverse Compton energy loss timescale of the pairs. In both cases, this prevents the development of a full electromagnetic pair cascade as in vacuum. For weak blazars, the superluminal electrostatic fluctuations are dissipated by the inverse Compton scattering into transverse electromagnetic waves by the relaxed relativistic pair particles to optical frequencies, implying the occurrence of optical electrostatic bremsstrahlung pair halos from weak blazars with spectral flux densities below 50 {mu}Jy.

  11. RELAXATION OF BLAZAR-INDUCED PAIR BEAMS IN COSMIC VOIDS

    SciTech Connect

    Miniati, Francesco; Elyiv, Andrii

    2013-06-10

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  12. Relaxation of Blazar-induced Pair Beams in Cosmic Voids

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Elyiv, Andrii

    2013-06-01

    The stability properties of a low-density ultrarelativistic pair beam produced in the intergalactic medium (IGM) by multi-TeV gamma-ray photons from blazars are analyzed. The problem is relevant for probes of magnetic field in cosmic voids through gamma-ray observations. In addition, dissipation of such beams could considerably affect the thermal history of the IGM and structure formation. We use a Monte Carlo method to quantify the properties of the blazar-induced electromagnetic shower, in particular the bulk Lorentz factor and the angular spread of the pair beam generated by the shower, as a function of distance from the blazar itself. We then use linear and nonlinear kinetic theory to study the stability of the pair beam against the growth of electrostatic plasma waves, employing the Monte Carlo results for our quantitative estimates. We find that the fastest growing mode, like any perturbation mode with even a very modest component perpendicular to the beam direction, cannot be described in the reactive regime. Due to the effect of nonlinear Landau damping, which suppresses the growth of plasma oscillations, the beam relaxation timescale is found to be significantly longer than the inverse Compton loss time. Finally, density inhomogeneities associated with cosmic structure induce loss of resonance between the beam particles and plasma oscillations, strongly inhibiting their growth. We conclude that relativistic pair beams produced by blazars in the IGM are stable on timescales that are long compared with the electromagnetic cascades. There appears to be little or no effect of pair beams on the IGM.

  13. Optical tomography in the presence of void regions

    PubMed

    Dehghani; Arridge; Schweiger; Delpy

    2000-09-01

    There is a growing interest in the use of near-infrared spectroscopy for the noninvasive determination of the oxygenation level within biological tissue. Stemming from this application, there has been further research in the use of this technique for obtaining tomographic images of the neonatal head, with the view of determining the levels of oxygenated and deoxygenated blood within the brain. Owing to computational complexity, methods used for numerical modeling of photon transfer within tissue have usually been limited to the diffusion approximation of the Boltzmann transport equation. The diffusion approximation, however, is not valid in regions of low scatter, such as the cerebrospinal fluid. Methods have been proposed for dealing with nonscattering regions within diffusing materials through the use of a radiosity-diffusion model. Currently, this new model assumes prior knowledge of the void region location; therefore it is instructive to examine the errors introduced in applying a simple diffusion-based reconstruction scheme in cases in which there exists a nonscattering region. We present reconstructed images of objects that contain a nonscattering region within a diffusive material. Here the forward data is calculated with the radiosity-diffusion model, and the inverse problem is solved with either the radiosity-diffusion model or the diffusion-only model. The reconstructed images show that even in the presence of only a thin nonscattering layer, a diffusion-only reconstruction will fail. When a radiosity-diffusion model is used for image reconstruction, together with a priori information about the position of the nonscattering region, the quality of the reconstructed image is considerably improved. The accuracy of the reconstructed images depends largely on the position of the anomaly with respect to the nonscattering region as well as the thickness of the nonscattering region. PMID:10975376

  14. Modeling virgin compression of reconstituted clay at different initial water contents

    NASA Astrophysics Data System (ADS)

    Bian, Xia; Qian, Sen; Ding, Jian-wen

    2015-10-01

    The observations on compressibility of reconstituted clays show that the compression line with a higher initial water content lies above the compression line with a lower initial water content for a given clay. Hence there exists additional void ratio due to initial water contents among virgin compression lines (VCLs) of reconstituted clays. In this paper, the difference in void ratio caused by different initial water contents is investigated based on the empirical equation proposed by Liu and Carter (2000) for describing the differential void ratio at the same stress between natural and reconstituted clays. The mechanism of compressibility of reconstituted clays, when the stress level is larger than the remolded yield stress, is also discussed.

  15. Influence of nickel and beryllium content on swelling behavior of copper irradiated with fast neutrons

    SciTech Connect

    Singh, B.N.; Garner, F.A.; Edwards, D.J.; Evans, J.H.

    1996-10-01

    In the 1970`s, the effects of nickel content on the evolution of dislocation microstructures and the formation and growth of voids in Cu-Ni alloys were studied using 1 MeV electrons in a high voltage electron microscope. The swelling rate was found to decrease rapidly with increasing nickel content. The decrease in the swelling rate was associated with a decreasing void growth rate with increasing nickel content at irradiation temperatures up to 450{degrees}C. At 500{degrees}C, both void size and swelling rate were found to peak at 1 and 2% Ni, respectively, and then to decrease rapidly with increasing nickel content. However, recent work has demonstrated that the swelling behavior of Cu-5%Ni irradiated with fission neutrons is very similar for that of pure copper. The present experiments were designed to investigate this apparent discrepancy.

  16. Evaluation of Helium Purge & Vent Process to Reduce Hydrogen Concentrations in the Large Diameter Container & Cask Void Volumes at T Plant

    SciTech Connect

    PACKER, M.J.

    2002-10-15

    The purpose of this document is to provide calculations for two primary activities: (1) Model a Helium Purge/Vent Cycle Process to reduce hydrogen gas concentration (i.e., H{sub 2} mole fraction) to a required limit in the Cask and Large Diameter Container (LDC) void volumes prior to T-Plant Operations activities. (2) Predict a hydrogen generation rate within each sludge-contained LDC, after the T-Plant helium purge/vent process (aka Post Purge/Vent Cycle Duration) to determine the transient hydrogen concentration. The calculations will evaluate a helium purge process to reduce the hydrogen concentration in the void spaces of the LDC after receipt at T-Plant. During transport from K-Basins to T-Plant, the hydrogen concentration will increase but the low or absent oxygen concentration from the K-Basin helium purge/vent process will ensure a non-flammable event. Upon receipt at T-Plant, the increased hydrogen concentration will require a process reduction (i.e., helium purge/vent cycling) prior to removing the Cask lid, otherwise, the removed lid permits air ingress and associated oxygen with the assumed high hydrogen concentration. In addition, once the Cask lid is removed at T-Plant, and the LDC is moved to the process cell, two threaded caps must be removed from the LDC to allow the escape of hydrogen during long-term storage. It is essential that the T-Plant helium purge/vent system reduces the hydrogen in both the Cask and LDC void volumes below the required limit. The calculations will also aide in predicting actual hydrogen generation rates and concentrations in each of the void volumes after the helium purge/vent cycle process is completed. Transient hydrogen plots or figures will be provided to help achieve this objective.

  17. Effect of Copper-Copper Direct Bonding on Voiding in Metal Thin Films

    NASA Astrophysics Data System (ADS)

    Gondcharton, P.; Imbert, B.; Benaissa, L.; Fournel, F.; Verdier, M.

    2015-11-01

    Copper-copper direct bonding is a fundamental procedure in three-dimensional integration. It has been reported that voiding occurs in bonded copper layers if process temperatures exceed 300°C; this leads to serious reliability issues. However, voiding nucleation and growth mechanisms have not been clearly established. Void characteristics were compared for different bonded structures specifically designed to identify the origin of void formation and its contribution. It seems that mechanical stress caused by different dilatation of silicon substrates and metal thin films leads to metallurgical creep. This stress-driven vacancy diffusion makes a major contribution to the reliability problem. This study provides better understanding of these physical phenomena and can be used as guideline for metal integration.

  18. Micropipes and voids at β¨SiC/Si(100) interfaces: an electron microscopy study

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Gösele, U.; Niemann, E.; Wischmeyer, F.

    The microstructure of β-SiC/Si(100) interfaces generated by carbonization and subsequent growth in a chemical vapor deposition (CVD) reactor was investigated by transmission electron microscopy (TEM). Differently prepared cross section and planar specimens allowed a detailed characterization of interface defects. Besides pyramidal voids, which were frequently reported to appear at SiC/Si interfaces within the substrate, recently discovered micropipes are of special interest. Both kinds of defects form by outdiffusion of silicon during the carbonization process. In contrast to voids. which initially remain empty, micropipes develop by simultaneous ingrowth of SiC. The area densities of micropipes were found to be orders of magnitude higher than those of voids. Micropipe formation may be due to a high density of SiC nuclei preexisting on the substrate surfaces after pretreatments. The simultaneous development of voids and micropipes is discussed on the basis of results obtained from a short-time carbonization experiment.

  19. Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes

    NASA Technical Reports Server (NTRS)

    Brahm, E. N.; Rolin, T. D.

    2010-01-01

    NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability

  20. Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps

    SciTech Connect

    Jassim, E.W.; Newell, T.A.; Chato, J.C.

    2008-04-15

    A state of the art review of two-phase void fraction models in smooth horizontal tubes is provided and a probabilistic two-phase flow regime map void fraction model is developed for refrigerants under condensation, adiabatic, and evaporation conditions in smooth, horizontal tubes. Time fraction information from a generalized probabilistic two-phase flow map is used to provide a physically based weighting of void fraction models for different flow regimes. The present model and void fraction models in the literature are compared to data from multiple sources including R11, R12, R134a, R22, R410A refrigerants, 4.26-9.58 mm diameter tubes, mass fluxes from 70 to 900 kg/m{sup 2} s, and a full quality range. The present model has a mean absolute deviation of 3.5% when compared to the collected database. (author)

  1. Voronoi-Delaunay analysis of voids in systems of nonspherical particles.

    PubMed

    Luchnikov, V A; Medvedev, N N; Oger, L; Troadec, J P

    1999-06-01

    The Voronoi network is known to be a useful tool for the structural description of voids in the packings of spheres produced by computer simulations. In this article we extend the Voronoi-Delaunay analysis to packings of nonspherical convex objects. Main properties of the Voronoi network, which are known for systems of spheres, are valid for systems of any convex objects. A general numerical algorithm for calculation of the Voronoi network in three dimensions is proposed. It is based on the calculation of the trajectory of the imaginary empty sphere of variable size, moving inside a system (the Delaunay empty sphere method). Analysis of voids is presented for an ensemble of random straight lines and for a molecular dynamics model of liquid crystal. The spatial distribution of voids and a simple percolation analysis are obtained. The distributions of the bottleneck radii and the radii of spheres inscribed in the voids are calculated. PMID:11969711

  2. Micro-CT for the quantification of 3D voids within damaged structures

    SciTech Connect

    Patterson, Brian M; Hamilton, Christopher E; Cerreta, Ellen K; Dennis - Koller, Darcie; Bronkhorst, C. A.; Hansen, B. L.

    2011-01-26

    Micro X-ray Computed Tomography (MXCT) is widely used in the materials community to examine the internal structure of materials for voids and cracks due to damage or casting, or other defects. Most research in this area focuses on the qualitative aspect of the image, simply answering; Are there voids present? Here we present an ongoing study of the quantified incipient spall voids in Cu with different grain sizes, using a gas gun with various velocities. Data analysis packages for MXCT are just now becoming able to dimensionally measure and produce statistics on the voids-present. In order to make the size of the features in the 3D image quantifiable, the question, how many radiographs are required to render the object dimensionally accurate in 3D, must be answered. A series of data sets has been coUected, varying the number of radiographs collected in order to determine the appropriate number required.

  3. Conclusive evidence of abrupt coagulation inside the void during cyclic nanoparticle formation in reactive plasma

    NASA Astrophysics Data System (ADS)

    van de Wetering, F. M. J. H.; Nijdam, S.; Beckers, J.

    2016-07-01

    In this letter, we present scanning electron microscopy (SEM) results that confirm in a direct way our earlier explanation of an abrupt coagulation event as the cause for the void hiccup. In a recent paper, we reported on the fast and interrupted expansion of voids in a reactive dusty argon-acetylene plasma. The voids appeared one after the other, each showing a peculiar, though reproducible, behavior of successive periods of fast expansion, abrupt contraction, and continued expansion. The abrupt contraction was termed "hiccup" and was related to collective coagulation of a new generation of nanoparticles growing in the void using relatively indirect methods: electron density measurements and optical emission spectroscopy. In this letter, we present conclusive evidence using SEM of particles collected at different moments in time spanning several growth cycles, which enables us to follow the nanoparticle formation process in great detail.

  4. Void-nanograting transition by ultrashort laser pulse irradiation in silica glass.

    PubMed

    Dai, Ye; Patel, Aabid; Song, Juan; Beresna, Martynas; Kazansky, Peter G

    2016-08-22

    The structural evolution from void modification to self-assembled nanogratings in fused silica is observed for moderate (NA > 0.4) focusing conditions. Void formation, appears before the geometrical focus after the initial few pulses and after subsequent irradiation, nanogratings gradually occur at the top of the induced structures. Nonlinear Schrödinger equation based simulations are conducted to simulate the laser fluence, intensity and electron density in the regions of modification. Comparing the experiment with simulations, the voids form due to cavitation in the regions where electron density exceeds 1020 cm-3 but is below critical. In this scenario, the energy absorption is insufficient to reach the critical electron density that was once assumed to occur in the regime of void formation and nanogratings, shedding light on the potential formation mechanism of nanogratings. PMID:27557213

  5. 21 CFR 888.3045 - Resorbable calcium salt bone void filler device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... a resorbable implant intended to fill bony voids or gaps of the extremities, spine, and pelvis that are caused by trauma or surgery and are not intrinsic to the stability of the bony structure....

  6. Dielectric particle and void resonators for thin film solar cell textures.

    PubMed

    Mann, Sander A; Grote, Richard R; Osgood, Richard M; Schuller, Jon A

    2011-12-01

    Using Mie theory and Rigorous Coupled Wave Analysis (RCWA) we compare the properties of dielectric particle and void resonators. We show that void resonators-low refractive index inclusions within a high index embedding medium-exhibit larger bandwidth resonances, reduced peak scattering intensity, different polarization anisotropies, and enhanced forward scattering when compared to their particle (high index inclusions in a low index medium) counterparts. We evaluate amorphous silicon solar cell textures comprising either arrays of voids or particles. Both designs support substantial absorption enhancements (up to 45%) relative to a flat cell with anti-reflection coating, over a large range of cell thicknesses. By leveraging void-based textures 90% of above-bandgap photons are absorbed in cells with maximal vertical dimension of 100 nm. PMID:22273965

  7. A Voxel-Based Approach for Imaging Voids in Three-Dimensional Point Clouds

    NASA Astrophysics Data System (ADS)

    Salvaggio, Katie N.

    Geographically accurate scene models have enormous potential beyond that of just simple visualizations in regard to automated scene generation. In recent years, thanks to ever increasing computational efficiencies, there has been significant growth in both the computer vision and photogrammetry communities pertaining to automatic scene reconstruction from multiple-view imagery. The result of these algorithms is a three-dimensional (3D) point cloud which can be used to derive a final model using surface reconstruction techniques. However, the fidelity of these point clouds has not been well studied, and voids often exist within the point cloud. Voids exist in texturally difficult areas, as well as areas where multiple views were not obtained during collection, constant occlusion existed due to collection angles or overlapping scene geometry, or in regions that failed to triangulate accurately. It may be possible to fill in small voids in the scene using surface reconstruction or hole-filling techniques, but this is not the case with larger more complex voids, and attempting to reconstruct them using only the knowledge of the incomplete point cloud is neither accurate nor aesthetically pleasing. A method is presented for identifying voids in point clouds by using a voxel-based approach to partition the 3D space. By using collection geometry and information derived from the point cloud, it is possible to detect unsampled voxels such that voids can be identified. This analysis takes into account the location of the camera and the 3D points themselves to capitalize on the idea of free space, such that voxels that lie on the ray between the camera and point are devoid of obstruction, as a clear line of sight is a necessary requirement for reconstruction. Using this approach, voxels are classified into three categories: occupied (contains points from the point cloud), free (rays from the camera to the point passed through the voxel), and unsampled (does not contain points

  8. Structural analyses of a rigid pavement overlaying a sub-surface void

    NASA Astrophysics Data System (ADS)

    Adam, Fatih Alperen

    Pavement failures are very hazardous for public safety and serviceability. These failures in pavements are mainly caused by subsurface voids, cracks, and undulation at the slab-base interface. On the other hand, current structural analysis procedures for rigid pavement assume that the slab-base interface is perfectly planar and no imperfections exist in the sub-surface soil. This assumption would be violated if severe erosion were to occur due to inadequate drainage, thermal movements, and/or mechanical loading. Until now, the effect of erosion was only considered in the faulting performance model, but not with regards to transverse cracking at the mid-slab edge. In this research, the bottom up fatigue cracking potential, caused by the combined effects of wheel loading and a localized imperfection in the form of a void below the mid-slab edge, is studied. A robust stress and surface deflection analysis was also conducted to evaluate the influence of a sub-surface void on layer moduli back-calculation. Rehabilitative measures were considered, which included a study on overlay and fill remediation. A series regression of equations was proposed that provides a relationship between void size, layer moduli stiffness, and the overlay thickness required to reduce the stress to its original pre-void level. The effect of the void on 3D pavement crack propagation was also studied under a single axle load. The amplifications to the stress intensity was shown to be high but could be mitigated substantially if stiff material is used to fill the void and impede crack growth. The pavement system was modeled using the commercial finite element modeling program Abaqus RTM. More than 10,000 runs were executed to do the following analysis: stress analysis of subsurface voids, E-moduli back-calculation of base layer, pavement damage calculations of Beaumont, TX, overlay thickness estimations, and mode I crack analysis. The results indicate that the stress and stress intensity are, on

  9. Phase-field Modeling of Void Migration and Growth Kinetics in Materials under Irradiation and Temperature Field

    SciTech Connect

    Li, Yulan; Hu, Shenyang Y.; Sun, Xin; Gao, Fei; Henager, Charles H.; Khaleel, Mohammad A.

    2010-12-15

    A phase-field model is developed to investigate the migration of vacancies, interstitials, and voids as well as void growth kinetics in materials under radiation and temperature field. The model takes into account the generation of vacancies and interstitials associated with the irradiation damage, the recombination between vacancies and interstitials, defect diffusion, and defect sinks. The effect of void sizes, vacancy concentration, vacancy generation rate, recombination rate, and temperature gradient on a single void migration and growth kinetics is parametrically studied. The results demonstrate that the temperature gradient causes void migration and defect fluxes, i.e., the Soret effect, which affects void stability and growth kinetics. It is found that 1) the void migration mobility is independent of the void size, which is in agreement with the theoretical prediction with the assumption of bulk diffusion controlled migration; 2) the void migration mobility strongly depends on temperature gradient; and 3) the effect of defect concentration, generation rate, and recombination rate on void migration mobility is minor although they strongly influence the void growth kinetics.

  10. Joints, fissures, and voids in rhyolite welded ash-flow tuff at Teton damsite, Idaho

    USGS Publications Warehouse

    Prostka, Harold J.

    1977-01-01

    Several kinds of joints, fissures, and voids are present in densely welded rhyolite ash-flow tuff at Teton damsite. Older fissures and voids probably were formed in the ash-flow sheet during secondary flowage, which probably was caused by differential compaction or settling over irregular topography. The younger, more abundant fissures are mostly steep cooling joints that probably have been opened farther by horizontal tectonic extension and gravitational creep, perhaps aided by lateral stress relief.

  11. Quantitative analysis of voids in percolating structures in two-dimensional N-body simulations

    NASA Technical Reports Server (NTRS)

    Harrington, Patrick M.; Melott, Adrian L.; Shandarin, Sergei F.

    1993-01-01

    We present in this paper a quantitative method for defining void size in large-scale structure based on percolation threshold density. Beginning with two-dimensional gravitational clustering simulations smoothed to the threshold of nonlinearity, we perform percolation analysis to determine the large scale structure. The resulting objective definition of voids has a natural scaling property, is topologically interesting, and can be applied immediately to redshift surveys.

  12. Luminosity distance in ``Swiss cheese'' cosmology with randomized voids. II. Magnification probability distributions

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Kumar, Naresh; Wasserman, Ira; Vanderveld, R. Ali

    2012-01-01

    We study the fluctuations in luminosity distances due to gravitational lensing by large scale (≳35Mpc) structures, specifically voids and sheets. We use a simplified “Swiss cheese” model consisting of a ΛCDM Friedman-Robertson-Walker background in which a number of randomly distributed nonoverlapping spherical regions are replaced by mass-compensating comoving voids, each with a uniform density interior and a thin shell of matter on the surface. We compute the distribution of magnitude shifts using a variant of the method of Holz and Wald , which includes the effect of lensing shear. The standard deviation of this distribution is ˜0.027 magnitudes and the mean is ˜0.003 magnitudes for voids of radius 35 Mpc, sources at redshift zs=1.0, with the voids chosen so that 90% of the mass is on the shell today. The standard deviation varies from 0.005 to 0.06 magnitudes as we vary the void size, source redshift, and fraction of mass on the shells today. If the shell walls are given a finite thickness of ˜1Mpc, the standard deviation is reduced to ˜0.013 magnitudes. This standard deviation due to voids is a factor ˜3 smaller than that due to galaxy scale structures. We summarize our results in terms of a fitting formula that is accurate to ˜20%, and also build a simplified analytic model that reproduces our results to within ˜30%. Our model also allows us to explore the domain of validity of weak-lensing theory for voids. We find that for 35 Mpc voids, corrections to the dispersion due to lens-lens coupling are of order ˜4%, and corrections due to shear are ˜3%. Finally, we estimate the bias due to source-lens clustering in our model to be negligible.

  13. Nonlinear plasma voids (holes) in a charge-varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Ait Gougam, Leila; Aoutou, Kamel; Zerguini, Taha Houssine

    2005-09-15

    Nonlinear large amplitude plasma voids are investigated in a charge-varying dusty plasma. Numerical solutions of highly nonlinear equations are carried out including dust charging and ion trapping. The results complement previously published results on this problem. It is found that under certain conditions the effect of dust charge variation can be quite important. In particular, it may be noted that the dust charge variation leads to an additional enlargement of the nonlinear plasma voids.

  14. The Relative Neighborhood Graph for Estimating Two-Dimensional Voids in the Cold Dark Matter Universe

    NASA Astrophysics Data System (ADS)

    Ueda, Haruhiko; Takeuchi, Tsutomu T.

    2006-04-01

    A new technique based on a graph-theoretical approach is proposed for identifying and estimating voids in two-dimensional galaxy distributions. A relative neighborhood graph is utilized for identifying two-dimensional voids. The loop angle that characterizes the size of the voids is defined, and the distribution function as well as the average of loop angles are used for estimating the voids statistically. We applied our new technique to two-dimensional voids in Cold Dark Matter (CDM) simulations. Low-density, middle-density, and high-density CDM models were adopted for examining the nature of two-dimensional voids. >From our analyses, we found that the average of the loop angle in the low-density CDM model is apparently larger than that in the middle-density or the high-density CDM models. However, the difference between the middle-density and the high-density CDM models is subtle. We also analyzed the observational two-dimensional galaxy distributions and compared the two-dimensional mock samples that are constructed from CDM simulations. From our analyses, we succeeded to restrict the density parameter of our universe.

  15. Finite Element Analysis of Transverse Compressive Loads on Superconducting Nb3Sn Wires Containing Voids

    NASA Astrophysics Data System (ADS)

    D'Hauthuille, Luc; Zhai, Yuhu; Princeton Plasma Physics Lab Collaboration; University of Geneva Collaboration

    2015-11-01

    High field superconductors play an important role in many large-scale physics experiments, particularly particle colliders and fusion devices such as the LHC and ITER. The two most common superconductors used are NbTi and Nb3Sn. Nb3Sn wires are favored because of their significantly higher Jc, allowing them to produce much higher magnetic fields. The main disadvantage is that the superconducting performance of Nb3Sn is highly strain-sensitive and it is very brittle. The strain-sensitivity is strongly influenced by two factors: plasticity and cracked filaments. Cracks are induced by large stress concentrators due to the presence of voids. We will attempt to understand the correlation between Nb3Sn's irreversible strain limit and the void-induced stress concentrations around the voids. We will develop accurate 2D and 3D finite element models containing detailed filaments and possible distributions of voids in a bronze-route Nb3Sn wire. We will apply a compressive transverse load for the various cases to simulate the stress response of a Nb3Sn wire from the Lorentz force. Doing this will further improve our understanding of the effect voids have on the wire's mechanical properties, and thus, the connection between the shape & distribution of voids and performance degradation.

  16. Electromigration induced Kirkendall void growth in Sn-3.5Ag/Cu solder joints

    SciTech Connect

    Jung, Yong; Yu, Jin

    2014-02-28

    Effects of electric current flow on the Kirkendall void formation at solder joints were investigated using Sn-3.5Ag/Cu joints specially designed to have localized nucleation of Kirkendall voids at the Cu{sub 3}Sn/Cu interface. Under the current density of 1 × 10{sup 4} A/cm{sup 2}, kinetics of Kirkendall void growth and intermetallic compound thickening were affected by the electromigration (EM), and both showed the polarity effect. Cu{sub 6}Sn{sub 5} showed a strong susceptibility to the polarity effect, while Cu{sub 3}Sn did not. The electromigration force induced additional tensile (or compressive) stress at the cathode (or anode), which accelerated (or decelerated) the void growth. From the measurements of the fraction of void at the Cu{sub 3}Sn/Cu interface on SEM micrographs and analysis of the kinetics of void growth, the magnitude of the local stress induced by EM was estimated to be 9 MPa at the anode and −7 MPa at the cathode.

  17. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: A general microscopic picture

    PubMed Central

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-01-01

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies. PMID:25382029

  18. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  19. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  20. A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-10

    We produce the most comprehensive public void catalog to date using the Sloan Digital Sky Survey Data Release 7 main sample out to redshift z = 0.2 and the luminous red galaxy sample out to z = 0.44. Using a modified version of the parameter-free void finder ZOBOV, we fully take into account the presence of the survey boundary and masks. Our strategy for finding voids is thus appropriate for any survey configuration. We produce two distinct catalogs: a complete catalog including voids near any masks, which would be appropriate for void galaxy surveys, and a bias-free catalog of voids away from any masks, which is necessary for analyses that require a fair sampling of void shapes and alignments. Our discovered voids have effective radii from 5 to 135 h {sup -1} Mpc. We discuss basic catalog statistics such as number counts and redshift distributions and describe some additional data products derived from our catalog, such as radial density profiles and projected density maps. We find that radial profiles of stacked voids show a qualitatively similar behavior across nearly two decades of void radii and throughout the full redshift range.

  1. Social stress in mice induces voiding dysfunction and bladder wall remodeling

    PubMed Central

    Chang, Andy; Butler, Stephan; Sliwoski, Joanna; Valentino, Rita; Canning, Douglas

    2009-01-01

    Several studies have anecdotally reported the occurrence of altered urinary voiding patterns in rodents exposed to social stress. A recent study characterized the urodynamic and central changes in a rat model of social defeat. Here, we describe a similar voiding phenotype induced in mice by social stress and in addition we describe potential molecular mechanisms underlying the resulting bladder wall remodeling. The mechanism leading to the altered voiding habits and underlying bladder phenotype may be relevant to the human syndrome of dysfunctional voiding which is thought to have a psychological component. To better characterize and investigate social stress-induced bladder wall hypertrophy, FVB mice (6 wk old) were randomized to either social stress or control manipulation. The stress involved repeated cycles of a 1-h direct exposure to a larger aggressive C57Bl6 breeder mouse followed by a 23-h period of barrier separation over 4 wk. Social stress resulted in altered urinary voiding patterns suggestive of urinary retention and increased bladder mass. In vivo cystometry revealed an increased volume at micturition with no change in the voiding pressure. Examination of these bladders revealed increased nuclear expression of the transcription factors MEF-2 and NFAT, as well as increased expression of the myosin heavy chain B isoform mRNA. BrdU uptake was increased within the urothelium and lamina propria layers in the social stress group. We conclude that social stress induces urinary retention that ultimately leads to shifts in transcription factors, alterations in myosin heavy chain isoform expression, and increases in DNA synthesis that mediate bladder wall remodeling. Social stress-induced bladder dysfunction in rodents may provide insight into the underlying mechanisms and potential treatment of dysfunctional voiding in humans. PMID:19587139

  2. A Functional Representation of the Cosmological Reduced Void Probability Distribution as the Fox H Function

    NASA Astrophysics Data System (ADS)

    Andrew, Keith; Smailhodzic, A.; Carini, M.; Barnaby, D.

    2010-01-01

    We use data from the Sloan Digital Sky Survey, the DEEP2 and 2dF Galaxy Redshift surveys and numerical runs of the Gadget II code to analyze the distribution of cosmological voids in the universe similar to the model proposed by Mekjian.1. The Void Probability Function focuses on a scaling model inspired from percolation theory that gives an analytical form for the distribution function. For large redshifts the early universe was smooth and the probability function has a simple mathematical form that mimics the two point correlation results leading to a generalized power law. As various large scale galactic structures emerge in a given simulation a number of relatively empty regions are isolated and characterized as voids based upon number counts in the associated volume. The number density of these regions is such that the universe has a large scale “sponge-like” appearance with voids of all scales permeating the field of observation. For these data sets we examine the range of critical void probability function parameters that give rise to the best fit to the numerical and observational data. Several expressions for the probability distribution differ at the long end tail of the distribution which is sensitive to the Levy index of the distribution. Almost all of the distributions can be expressed as special cases of the Fox H function which has an asymptotic form whose tail depends upon the Levy index. We analyze the Levy index expressions and link them to the Fox H function parameters and to an anomalous diffusion equation that gives rise to the observed LSS void pattern. We wish to thank the Kentucky Space Grant Consortium for providing the NASA grant funding this research 1. Aram Z. Mekjian , Generalized statistical models of voids and hierarchical structure in cosmology, The Astrophysical Journal, 655: 1-10, 2007, arXiv:0712.1217

  3. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...

  4. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...

  5. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...

  6. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...

  7. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2010 CFR

    2008-04-01

    ... 19 Customs Duties 1 2008-04-01 2008-04-01 false Contents. 122.114 Section 122.114 Customs Duties BUREAU OF CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...

  8. 19 CFR § 122.114 - Contents.

    Code of Federal Regulations, 2013 CFR

    2015-04-01

    ... 19 Customs Duties 1 2015-04-01 2015-04-01 false Contents. § 122.114 Section § 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a)...

  9. 19 CFR 122.114 - Contents.

    Code of Federal Regulations, 2013 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Contents. 122.114 Section 122.114 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Transit Air Cargo Manifest (TACM) Procedures § 122.114 Contents. (a) Form...

  10. An ultrasonic investigation of the effect of voids on the mechanical properties of bread dough and the role of gas cells in determining the cellular structure of freeze- dried breadcrumb

    NASA Astrophysics Data System (ADS)

    Elmehdi, Hussein Mohamed

    charge repulsion effects. In the second part of the thesis, freeze-dried breadcrumb structure was investigated. To change the size of the air cells, the dough was proofed for various times. Ultrasonic velocity and amplitude decrease with increasing φ. The experimental data were found to be in reasonable agreement with theoretical models for the elasticity of isotropic cellular foams and tortuosity. The effects of anisotropy in breadcrumb structure were studied by compressing samples uniaxially, thereby transforming the shape of the air cells from approximately spherical to elongated ellipsoids. Ultrasonic measurements were taken in the directions parallel and perpendicular to the strain. These results indicated that the path by which sound propagates is critical. The data were interpreted using the same two theoretical models, taking into account anisotropy effects. The tortuosity model was able to interpret the void fraction dependence of the velocity along the two orthogonal directions, thus giving a way of relating changes in ultrasonic velocity to changes in breadcrumb structure. This thesis demonstrates the potential for using ultrasound as a non-destructive, cheap and accurate tool for studying the effect of voids (and their expansion) on dough properties. These ultrasonic techniques can also be used to investigate the effect of air cells on the structural integrity of breadcrumb and hence be a useful tool for quantitatively assessing bread quality.

  11. Cohesive-zone laws for void growth — I. Experimental field projection of crack-tip crazing in glassy polymers

    NASA Astrophysics Data System (ADS)

    Hong, Soonsung; Chew, Huck Beng; Kim, Kyung-Suk

    2009-08-01

    A hybrid framework for inverse analysis of crack-tip cohesive-zone model is developed in this two-part paper to measure cohesive-zone laws of void growth in polymers by combining analytical, experimental, and numerical approaches. This paper focuses on experimental measurements of the cohesive-zone laws for two nonlinear fracture processes in glassy polymers, namely multiple crazing in crack-growth toughening of rubber-toughened high-impact polystyrene (HIPS) and crazing of steady-state crack growth in polymethylmethacrylate (PMMA) under a methanol environment. To this end, electronic speckle pattern interferometry (ESPI) is first applied to measure the crack-tip displacement fields surrounding the fracture process zones in these polymers. These fields are subsequently equilibrium smoothed and used in the extraction of the cohesive-zone laws via an analytical solution method of the inverse problem, the planar field projection method (P-FPM) [Hong, S., Kim, K.-S., 2003. Extraction of cohesive-zone laws from elastic far-fields of a cohesive crack tip: a field projection method. Journal of the Mechanics and Physics of Solids 51, 1267-1286]. Results show that the proposed framework of the P-FPM could provide a systematic way of finding the shape of the cohesive-zone laws governed by the different micro-mechanisms in the fracture processes. In HIPS, inter-particle multiple crazing develops and the craze zone broadens ahead of a crack-tip under mechanical loading. The corresponding cohesive-zone relationship of the multiple-craze zone is found to be highly convex, which indicates effectiveness of rubber particle toughening. It is also observed that the effective peak traction, 7 MPa, in the crack-tip cohesive zone of HIPS (30% rubber content) is lower than the uniaxial yield stress of 9 MPa, presumably due to stress multi-axiality effects. In contrast, in PMMA, methanol localizes the crack-tip craze, weakening the craze traction for craze-void initiation to about 9 MPa

  12. Voiding dysfunction in patients with nasal congestion treated with pseudoephedrine: a prospective study

    PubMed Central

    Shao, I-Hung; Wu, Chia-Chen; Tseng, Hsiao-Jung; Lee, Ta-Jen; Lin, Yu-Hsiang; Tam, Yuan-Yun

    2016-01-01

    Background Pseudoephedrine is a sympathomimetic drug widely used as a nasal decongestant. However, it can cause adverse effects, such as voiding dysfunction. The risk of voiding dysfunction remains uncertain in patients without subjective voiding problems. Methodology We prospectively enrolled patients with nasal congestion who required treatment with pseudoephedrine from May to August 2015. All patients denied concomitant subjective voiding problem. The International Prostate Symptom Score (IPSS) questionnaire was used to evaluate voiding function before and 1 week after the pseudoephedrine treatment. The results of the IPSS questionnaire were analyzed as the total (IPSS-T), voiding (IPSS-V), storage (IPSS-S), and quality of life due to urinary symptom scores. Results We enrolled 131 males with a mean age of 42.0±14.3 years. The IPSS-T, IPSS-V, and IPSS-S scores slightly increased after the medication (IPSS-T increased from 6.49 to 6.77, IPSS-V from 3.33 to 3.53, and IPSS-S from 3.17 to 3.24). The quality of life due to urinary symptom score nonsignificantly decreased from 2.02 to 1.87. We observed that older age and a higher premedication IPSS-V score yielded significant differences (P<0.05) for subclinical voiding dysfunction and unchanged voiding function. In patients aged ≥50 years, the IPSS-T, IPSS-V, and IPSS-S scores significantly increased after the pseudoephedrine treatment (IPSS-T increased from 9.95 to 11.45, IPSS-V from 5.38 to 6.07, and IPSS-S 4.57 to 5.38), whereas the quality of life due to urinary symptom score nonsignificantly decreased from 2.71 to 2.48 (P=0.057). In patients aged <50 years, all scores did not significantly differ. Conclusion Pseudoephedrine treatment for nasal congestion requires extra precautions in males >50 years, even without subjective voiding symptoms. PMID:27486310

  13. The coupled effect of fiber volume fraction and void fraction on hydraulic fluid absorption of quartz/BMI laminates

    NASA Astrophysics Data System (ADS)

    Hurdelbrink, Keith R.; Anderson, Jacob P.; Siddique, Zahed; Altan, M. Cengiz

    2016-03-01

    Bismaleimide (BMI) resin with quartz (AQ581) fiber reinforcement is a composite material frequently used in aerospace applications, such as engine cowlings and radomes. Various composite components used in aircrafts are exposed to different types of hydraulic fluids, which may lead to anomalous absorption behavior over the service life of the composite. Accurate predictive models for absorption of liquid penetrants are particularly important as the composite components are often exposed to long-term degradation due to absorbed moisture, hydraulic fluids, or similar liquid penetrants. Microstructural features such as fiber volume fraction and void fraction can have a significant effect on the absorption behavior of fiber-reinforced composites. In this paper, hydraulic fluid absorption characteristics of quartz/BMI laminates fabricated from prepregs preconditioned at different relative humidity and subsequently cured at different pressures are presented. The composite samples are immersed into hydraulic fluid at room temperature, and were not subjected to any prior degradation. To generate process-induced microvoids, prepregs were conditioned in an environmental chamber at 2% or 99% relative humidity at room temperature for a period of 24 hours prior to laminate fabrication. To alter the fiber volume fraction, the laminates were fabricated at cure pressures of 68.9 kPa (10 psi) or 482.6 kPa (70 psi) via a hot-press. The laminates are shown to have different levels of microvoids and fiber volume fractions, which were observed to affect the absorption dynamics considerably and exhibited clear non-Fickian behavior. A one-dimensional hindered diffusion model (HDM) was shown to be successful in predicting the hydraulic fluid absorption. Model prediction indicates that as the fabrication pressure increased from 68.9 kPa to 482.6 kPa, the maximum fluid content (M∞) decreased from 8.0% wt. to 1.0% wt. The degree of non-Fickian behavior, measured by hindrance coefficient (

  14. Optimum mass design of prismatic assemblies of plates with longitudinal voids

    NASA Astrophysics Data System (ADS)

    Williams, F. W.; Ye, Jianqiao

    1992-07-01

    A new family of fiber laminated plate assemblies is investigated. The assemblies covered are prismatic and consist of a series of thin, flat, rectangular plates that have a series of equally spaced voids, which run for the full length of the central layer of the plates and have constant rectangular cross-section. Optimization of an important sub-group of such plate assemblies, namely blade-stiffened panels, is studied parametrically with the objective of minimizing their mass subject to buckling constraint under pure longitudinal compression. Ply thicknesses, fiber orientation and height of the blade stiffeners are the design variables used when optimizing and the variables changed during the parametric study are the number of stiffeners, a nondimensional load parameter and the aspect ratio of the panels. The parametric study shows graphically the effects on the panel mass of the number of voids in the portion between stiffeners, the thickness of individual voids, the number of stiffeners and the effects of prescribing the values of the stiffener height or thickness. It is observed that a substantial, e.g. 16-20 percent, mass saving can be achieved by using voids in the way advocated. These percentages are very close to those obtained by using the same voids for an individual plate that is identical to the skin between blades and is simply supported.

  15. Effect of partial void filling on the lattice thermal conductivity of skutterudites

    NASA Astrophysics Data System (ADS)

    Nolas, G. S.; Cohn, J. L.; Slack, G. A.

    1998-07-01

    Polycrystalline samples of antimonides with the skutterudite crystal structure with La partially filling the voids have been prepared in an effort to quantify the impact of partial void filling on the lattice thermal conductivity of these compounds. It is observed that a relatively small concentration of La in the voids results in a relatively large decrease in the lattice thermal conductivity. In addition, the largest decrease in the lattice thermal conductivity, compared to ``unfilled'' CoSb3 is not observed near 100% filling of the voids with La, as was previously believed. This suggests a point-defect-type phonon scattering effect due to the partial, random distribution of La in the voids as well as the ``rattling'' effect of the La ions, resulting in the scattering of a larger spectrum of phonons than in the case of 100% filling. An additional benefit of partial filling in thermoelectric materials is that it may be one way of adjusting the electronic properties of these compounds. Seebeck, resistivity, Hall effect and structural data for these skutterudite compounds are also presented.

  16. Die Backside FIB Preparation for Identification and Characterization of Metal Voids

    SciTech Connect

    Antoniou, Nicholas; Campbell, Ann N.; Filter, William F.

    1999-07-28

    Both the increased complexity of integrated circuits, resulting in six or more levels of integration, and the increasing use of flip-chip packaging have driven the development of integrated circuit (IC) failure analysis tools that can be applied to the backside of the chip. Among these new approaches are focused ion beam (FIB) tools and processes for performing chip edits/repairs from the die backside. This paper describes the use of backside FIB for a failure analysis application rather than for chip repair. Specifically, they used FIB technology to prepare an IC for inspection of voided metal interconnects (lines) and vias. Conventional FIB milling was combined with a super-enhanced gas assisted milling process that uses XeF{sub 2} for rapid removal of large volumes of bulk silicon. This combined approach allowed removal of the TiW underlayer from a large number of Ml lines simultaneously, enabling rapid localization and plan view imaging of voids in lines and vias with backscattered electron (BSE) imaging in a scanning electron microscopy (SEM). Sequential cross sections of individual voided vias enabled them to develop a 3-d reconstruction of these voids. This information clarified how the voids were formed, helping to identify the IC process steps that needed to be changed.

  17. Adhesion of voids to bimetal interfaces with non-uniform energies

    NASA Astrophysics Data System (ADS)

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-01

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

  18. Adhesion of voids to bimetal interfaces with non-uniform energies

    DOE PAGESBeta

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore,more » because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.« less

  19. Adhesion of voids to bimetal interfaces with non-uniform energies

    SciTech Connect

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-10-21

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. Ultimately, this work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces.

  20. Void space inside the developing seed of Brassica napus and the modelling of its function

    PubMed Central

    Verboven, Pieter; Herremans, Els; Borisjuk, Ljudmilla; Helfen, Lukas; Ho, Quang Tri; Tschiersch, Henning; Fuchs, Johannes; Nicolaï, Bart M; Rolletschek, Hardy

    2013-01-01

    The developing seed essentially relies on external oxygen to fuel aerobic respiration, but it is currently unknown how oxygen diffuses into and within the seed, which structural pathways are used and what finally limits gas exchange. By applying synchrotron X-ray computed tomography to developing oilseed rape seeds we uncovered void spaces, and analysed their three-dimensional assembly. Both the testa and the hypocotyl are well endowed with void space, but in the cotyledons, spaces were small and poorly inter-connected. In silico modelling revealed a three orders of magnitude range in oxygen diffusivity from tissue to tissue, and identified major barriers to gas exchange. The oxygen pool stored in the voids is consumed about once per minute. The function of the void space was related to the tissue-specific distribution of storage oils, storage protein and starch, as well as oxygen, water, sugars, amino acids and the level of respiratory activity, analysed using a combination of magnetic resonance imaging, specific oxygen sensors, laser micro-dissection, biochemical and histological methods. We conclude that the size and inter-connectivity of void spaces are major determinants of gas exchange potential, and locally affect the respiratory activity of a developing seed. PMID:23692271

  1. Low void swelling in dispersion strengthened copper alloys under single-ion irradiation

    NASA Astrophysics Data System (ADS)

    Hatakeyama, M.; Watanabe, H.; Akiba, M.; Yoshida, N.

    2002-12-01

    Oxide dispersion strengthened copper (ODS-Cu) alloys GlidCop CuAl15 and CuAl25 were irradiated with Cu 2+ ions at 573-773 K up to doses of 30 dpa. Void swelling was observed in all specimens irradiated at temperatures ranging from 573 to 673 K. In CuAl15 brazed with graphite at 1083 K, mean grain size was about 800 nm. Voids were observed in grains larger than 1 μm but not in smaller than 500 nm in diameter. The CuAl25 joined with SUS316 by hot isostatic pressing (HIP) at 1323 K had a mean grain size of 60 μm because of a large grain growth during the HIP process and showed large void swelling. Small grain size is effective in suppressing void swelling due to strong sink effects of grain boundaries for the point defects. The present results indicate that joining at high temperatures may reduce the void swelling resistance of GlidCop copper alloys.

  2. Age problem in Lemaître-Tolman-Bondi void models

    NASA Astrophysics Data System (ADS)

    Yan, Xiao-Peng; Liu, De-Zi; Wei, Hao

    2015-03-01

    As is well known, one can explain the current cosmic acceleration by considering an inhomogeneous and/or anisotropic universe (which violates the cosmological principle), without invoking dark energy or modified gravity. The well-known one of this kind of models is the so-called Lemaître-Tolman-Bondi (LTB) void model, in which the universe is spherically symmetric and radially inhomogeneous, and we are living in a locally underdense void centered nearby our location. In the present work, we test various LTB void models with some old high redshift objects (OHROs). Obviously, the universe cannot be younger than its constituents. We find that an unusually large r0 (characterizing the size of the void) is required to accommodate these OHROs in LTB void models. There is a serious tension between this unusually large r0 and the much smaller r0 inferred from other observations (e.g. SNIa, CMB and so on). However, if we instead consider the lowest limit 1.7 Gyr for the quasar APM 08279+5255 at redshift z = 3.91, this tension could be greatly alleviated.

  3. Critical velocities for deflagration and detonation triggered by voids in a REBO high explosive

    SciTech Connect

    Herring, Stuart Davis; Germann, Timothy C; Jensen, Niels G

    2010-01-01

    The effects of circular voids on the shock sensitivity of a two-dimensional model high explosive crystal are considered. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. The probability of initiating chemical reactions is found to rise more suddenly with increasing piston velocity for larger voids that collapse more deterministically. A void with radius as small as 10 nm reduces the minimum initiating velocity by a factor of 4. The transition at larger velocities to detonation is studied in a micron-long sample with a single void (and its periodic images). The reaction yield during the shock traversal increases rapidly with velocity, then becomes a prompt, reliable detonation. A void of radius 2.5 nm reduces the critical velocity by 10% from the perfect crystal. A Pop plot of the time-to-detonation at higher velocities shows a characteristic pressure dependence.

  4. Adhesion of voids to bimetal interfaces with non-uniform energies

    PubMed Central

    Zheng, Shijian; Shao, Shuai; Zhang, Jian; Wang, Yongqiang; Demkowicz, Michael J.; Beyerlein, Irene J.; Mara, Nathan A.

    2015-01-01

    Interface engineering has become an important strategy for designing radiation-resistant materials. Critical to its success is fundamental understanding of the interactions between interfaces and radiation-induced defects, such as voids. Using transmission electron microscopy, here we report an interesting phenomenon in their interaction, wherein voids adhere to only one side of the bimetal interfaces rather than overlapping them. We show that this asymmetrical void-interface interaction is a consequence of differing surface energies of the two metals and non-uniformity in their interface formation energy. Specifically, voids grow within the phase of lower surface energy and wet only the high-interface energy regions. Furthermore, because this outcome cannot be accounted for by wetting of interfaces with uniform internal energy, our report provides experimental evidence that bimetal interfaces contain non-uniform internal energy distributions. This work also indicates that to design irradiation-resistant materials, we can avoid void-interface overlap via tuning the configurations of interfaces. PMID:26486278

  5. Analysis of voids in crystal structures: the methods of 'dual' crystal chemistry.

    PubMed

    Blatov, V A; Shevchenko, A P

    2003-01-01

    The theoretical basics of the analysis of voids in crystal structures by means of Voronoi-Dirichlet polyhedra (VDP) and of the graph theory are stated. Topological relations are considered between VDPs and atomic domains in a crystal field. These relations allow the separation of two non-intersecting topological subspaces in a crystal structure, whose connectednesses are defined by two finite 'reduced' graphs. The first, 'direct', subspace includes the atoms (VDP centres) and the network of interatomic bonds (VDP faces), the second, 'dual', one comprises the void centres (VDP vertices) and the system of channels (VDP edges) between them. Computer methods of geometrical-topological analysis of the 'dual' subspace are developed and implemented within the program package TOPOS. They are designed for automatically restoring the system of channels, visualizing and sizing voids and void conglomerates, dimensional analysis of continuous void systems, and comparative topological analysis of 'dual' subspaces for various substances. The methods of analysis of 'dual' and 'direct' subspaces are noted to differ from each other only in some details that allows the term 'dual' crystal chemistry to be introduced. The efficiency of the methods is shown with the analysis of compounds of different chemical nature: simple substances, ionic structures, superionic conductors, zeolites, clathrates, organic supramolecular complexes. PMID:12496460

  6. A possible cold imprint of voids on the microwave background radiation

    SciTech Connect

    Cai, Yan-Chuan; Cole, Shaun; Frenk, Carlos S.; Neyrinck, Mark C.; Szapudi, István

    2014-05-10

    We measure the average temperature decrement on the cosmic microwave background (CMB) produced by voids selected in the Sloan Digital Sky Survey Data Release 7 spectroscopic redshift galaxy catalog, spanning redshifts 0 < z < 0.44. We find an imprint amplitude between 2.6 and 2.9 μK as viewed through a compensated top-hat filter scaled to the radius of each void, we assess the statistical significance of the imprint at ∼2σ, and we make crucial use of N-body simulations to calibrate our analysis. As expected, we find that large voids produce cold spots on the CMB through the integrated Sachs-Wolfe (ISW) effect. However, we also find that small voids in the halo density field produce hot spots, because they reside in contracting, larger-scale overdense regions. This is an important effect to consider when stacking CMB imprints from voids of different radii. We have found that the same filter radius that gives the largest ISW signal in simulations also yields close to the largest detected signal in the observations. However, although it is low in significance, our measured signal has a much higher amplitude than expected from ISW in the concordance ΛCDM universe. The discrepancy is also at the ∼2σ level. We have demonstrated that our result is robust against the varying of thresholds over a wide range.

  7. ''The Incubation Period for Void Swelling and its Dependence on Temperature, Dose Rate, and Dislocation Structure Evolution''

    SciTech Connect

    Surh, M P; Sturgeon, J B; Wolfer, W G

    2002-06-13

    Void swelling in structural materials used for nuclear reactors is characterized by an incubation period whose duration largely determines the usefulness of the material for core components. Significant evolution of the dislocation and void microstructures that control radiation-induced swelling can occur during this period. Thus, a theory of incubation must treat time-dependent void nucleation in combination with dislocation evolution, in which the sink strengths of voids and dislocations change in concert. We present theoretical results for void nucleation and growth including the time-dependent, self-consistent coupling of point defect concentrations to the evolution of both void populations and dislocation density. Simulations show that the incubation radiation dose is a strong function of the starting dislocation density and of the dislocation bias factors for vacancy and interstitial absorption. Irradiation dose rate and temperature also affect the duration of incubation. The results are in general agreement with experiment for high purity metals.

  8. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  9. 14 CFR 136.39 - Air tour management plans (ATMP).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... management plan. (c) Contents. An air tour management plan for a park— (1) May prohibit commercial air tour... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Air tour management plans (ATMP). 136.39... TOURS AND NATIONAL PARKS AIR TOUR MANAGEMENT National Parks Air Tour Management § 136.39 Air...

  10. Investigation of faceted void morphologies in UO2 by phase field modelling

    NASA Astrophysics Data System (ADS)

    Zhu, Yaochan; Hallberg, Håkan

    2015-12-01

    In the present study a phase field model for high surface energy anisotropy is developed to model the morphologies of voids in UO2. In order to precisely account for the high anisotropy, an alternative forward-backward strategy based on a staggered grid with an averaged interface normal scheme is used in the numerical procedure. A variety of equilibrium void shapes are reproduced with respect to a constant volume condition. The facet areas and facet energies are calculated. The simulations show excellent agreement with the analytic predictions obtained through Wulff constructions. For the void shapes with high Miller index facets, it is discovered that a slight decrease in total surface area will result in a substantial increase in the total surface energy.

  11. Piezochromic Phenomena of Nanometer Voids Formed by Mono-Dispersed Nanometer Powders Compacting Process

    PubMed Central

    Su, Lihong; Wan, Caixia; Zhou, Jianren; Wang, Yiguang; Wang, Liang; Ai, Yanling; Zhao, Xu

    2013-01-01

    Piezochromism describes a tendency of certain materials changing colors when they are subjected to various pressure levels. It occurs particularly in some polymers or inorganic materials, such as in palladium complexes. However, piezochromism is generally believed to work at high pressure range of 0.1–10 GPa. This research work focused on unique piezochromism responses of the nanometer voids formed by the 5–20 nm inorganic ISOH nanometer powders. It was discovered that microstructures of the nanometer voids could change color at very low pressures of only 0.002–0.01 GPa; its sensitivity to pressure was increased by tens of times. It is believed that the uniform microstructures of nanometer powders contributed to the material's high sensitivity of piezochromic phenomena. One factor which quantum optical change caused by nanometer voids affected the quantum confinement effect; another is surface Plasmon Resonance of great difference dielectric property between conductive ITO powder and insulation hydroxide. PMID:24115999

  12. A reliability study on tin based lead free micro joint including intermetallic and void evolution

    NASA Astrophysics Data System (ADS)

    Feyissa, Frezer Assefa

    In microelectronics soldering to Cu pad lead to formation of two intermetallic structures in the solder -pad interface. The growth of these layers is accompanied by microscopic voids that usually cause reliability concern in the industry. Therefore it is important to understand factors that contribute for the growth of IMC using various combination of reflow time, Sn thickness and aging temperature. Systematic study was conducted on Cu-Sn system to investigate the formation and growth of intermetallic compound (IMC) as well as voiding evolution for different solder thicknesses. The growth of the Cu6Sn5 IMC layer was found to be increasing as the Sn thicknesses increase after reflow while the Cu3Sn layer were decreasing under same conditions. Also after reflow and aging more voiding were shown to occur in the thin solder than thicker one.

  13. Atomistic simulation of the deformation of nanocrystalline palladium: the effect of voids

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.; Gumbsch, P.

    2014-03-01

    Atomistic simulations of uniaxial deformation of porous nanocrystalline palladium were performed at room temperature. The porosity was varied from 1% to 3%. The diameter of the pores was varied from 1 to 4 nm. It is found that a significant part of the void volume fraction is lost during sample preparation at high temperature. During deformation, the presence of voids does not lead to an earlier onset of dislocation activity compared to the void-free sample. Poisson's ratio is found to be almost insensitive to porosity, while Young's modulus and the stress for the initiation of grain boundary mediated plastic flow moderately decrease with increasing porosity. The total strain for the onset of plastic deformation, however, is unaffected by the porosity.

  14. Orthopedic devices; classification for the resorbable calcium salt bone void filler device. Final rule.

    PubMed

    2003-06-01

    The Food and Drug Administration (FDA) is classifying the resorbable calcium salt bone void filler device intended to fill bony voids or gaps of the extremities, spine, and pelvis that are caused by trauma or surgery and are not intrinsic to the stability of the bony structure into class II (special controls). Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a class II special controls guidance entitled "Class II Special Controls Guidance Document: Resorbable Calcium Salt Bone Void Filler Device; Guidance for Industry and FDA." This action is being undertaken based on new information submitted in a classification proposal from Wright Medical Technology under the Federal Food, Drug, and Cosmetic Act as amended by the Medical Device Amendments of 1976, the Safe Medical Devices Act of 1990, and the Food and Drug Administration Modernization Act of 1997. PMID:12784825

  15. Radiographic detectability limits for seeded voids in sintered silicon carbide and silicon nitride

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.; Kiser, J. D.; Roth, D. J.

    1984-01-01

    Conventional and microfocus X-radiographic techniques were compared to determine relative detectability limits for voids in green and sintered SiC and Si3N4. The relative sensitivity of the techniques was evaluated by comparing their ability to detect voids that were artificially introduced by a seeding process. For projection microfocus radiography the sensitivity of void detection at a 90/95 probability of detection/confidence level is 1.5% of specimen thickness in sintered SiC and Si3N4. For conventional contact radiography the sensitivity is 2.5% of specimen thickness. It appears that microfocus projection radiography is preferable to conventional contact radiography in cases where increased sensitivity is required and where the additional complexity of the technique can be tolerated.

  16. Confinement of electromigration induced void propagation in Cu interconnect by a buried Ta diffusion barrier layer

    NASA Astrophysics Data System (ADS)

    Yan, M. Y.; Tu, K. N.; Vairagar, A. V.; Mhaisalkar, S. G.; Krishnamoorthy, Ahila

    2005-12-01

    Direct observation, by means of in situ scanning electron microscopy, of void heterogeneous nucleation and migration controlled electromigration failure mechanism in Cu dual damascene interconnect structures has been recently reported [A. V. Vairagar, S. G. Mhaisalkar, A. Krishnamoorthy, K. N. Tu, A. M. Gusak, M. A. Meyer, and E. Zschech, Appl. Phys. Lett. 85, 2502 (2004)] In the present study, a dual damascene structure with an additional 25nm Ta diffusion barrier embedded into the upper Cu layer was fabricated. This thin layer of diffusion barrier blocked voids from propagating into the via, thus eliminating the previously reported failure mechanism. With this structure, a lifetime improvement of at least 40 times was achieved. Analysis on failed samples suggested that failures in samples with the embedded Ta barrier layer occurred at the bottom of the via, which were caused by void migration along the bottom of the Cu lines.

  17. Void superlattice formation in electron irradiated CaF 2: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Kuzovkov, V. N.; Kotomin, E. A.; Merzlyakov, P.; Zvejnieks, G.; Li, K. D.; Ding, T. H.; Wang, L. M.

    2010-10-01

    CaF 2 is widely adopted as deep-UV window material and thin film optical coating. The void superlattice was observed experimentally under electron irradiation at room temperature. We performed kinetic Monte Carlo (kMC) simulations of the initial stages of the process when short- and intermediate-range order of defects in small Ca colloids and larger interstitial aggregates (F 2 gas voids) is created. The kMC model includes fluorine interstitial-vacancy pair creation, defect diffusion, similar defect attraction and dissimilar defect recombination. Special attention is paid to the statistical analysis of the defect aggregate distribution functions under different conditions (dose rate, defect migration and recombination rates). These simulations demonstrate that under certain conditions the dissimilar aggregate recombination is strongly suppressed which stimulates growth of mobile interstitial aggregates that is a precondition for further void ordering into a superlattice.

  18. Material transport via the emission of shear loops during void growth: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Chen, Zengtao

    2016-06-01

    The growth of a nanovoid in single-crystal copper has been studied via molecular dynamics (MD) method. The objective is to build the correlation between material transport pattern and dislocation structures. MD results are examined by characterizing the material transport via the "relative displacement" of atoms, where the homogenous elastic deformation has been excluded. Through this novel approach, we are able to illustrate the feasibility of void growth induced by shear loops/curves. At a smaller scale, the formation and emission of shear loops/curves contribute to the local mass transport. At a larger scale, a new mechanism of void growth via frustum-like dislocation structure is revealed. A phenomenological description of void growth via frustum-like dislocation structure is also proposed.

  19. Piezochromic phenomena of nanometer voids formed by mono-dispersed nanometer powders compacting process.

    PubMed

    Su, Lihong; Wan, Caixia; Zhou, Jianren; Wang, Yiguang; Wang, Liang; Ai, Yanling; Zhao, Xu

    2013-01-01

    Piezochromism describes a tendency of certain materials changing colors when they are subjected to various pressure levels. It occurs particularly in some polymers or inorganic materials, such as in palladium complexes. However, piezochromism is generally believed to work at high pressure range of 0.1-10 GPa. This research work focused on unique piezochromism responses of the nanometer voids formed by the 5-20 nm inorganic ISOH nanometer powders. It was discovered that microstructures of the nanometer voids could change color at very low pressures of only 0.002-0.01 GPa; its sensitivity to pressure was increased by tens of times. It is believed that the uniform microstructures of nanometer powders contributed to the material's high sensitivity of piezochromic phenomena. One factor which quantum optical change caused by nanometer voids affected the quantum confinement effect; another is surface Plasmon Resonance of great difference dielectric property between conductive ITO powder and insulation hydroxide. PMID:24115999

  20. Improving adsorption cryocoolers by multi-stage compression and reducing void volume

    NASA Technical Reports Server (NTRS)

    Bard, S.

    1986-01-01

    It is shown that the performance of gas adsorption cryocoolers is greatly improved by using adsorbents with low void volume within and between individual adsorbent particles (reducing void volumes in plumbing lines), and by compressing the working fluid in more than one stage. Refrigerator specific power requirements and compressor volumetric efficiencies are obtained in terms of adsorbent and plumbing line void volumes and operating pressures for various charcoal adsorbents using an analytical model. Performance optimization curves for 117.5 and 80 K charcoal/nitrogen adsorption cryocoolers are given for both single stage and multistage compressor systems, and compressing the nitrogen in two stages is shown to lower the specific power requirements by 18 percent for the 117.5 K system.