Sample records for air weather service

  1. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  2. Aviation weather : FAA and the National Weather Service are considering plans to consolidate weather service offices, but face significant challenges.

    DOT National Transportation Integrated Search

    2009-07-01

    The National Weather Services (NWS) weather products are a vital component of the Federal Aviation Administrations (FAA) air traffic control system. In addition to providing aviation weather products developed at its own facilities, NWS also pr...

  3. Operation TUMBLER-SNAPPER, Project 9.2. Air Weather Service Participation

    DTIC Science & Technology

    1953-01-01

    Charles L. Dyer, Jr. January 1953 Air Weather Service Slaicr.cra A •; »roved far public release; ia.f.öii ur.:; lited mgmst& UNCUSSIFIEO Reproduced...lHCMÜÜOOOUOOOüOOÜ \\—’ V-’ v«/ ^fc-* %»’ v^ *»/ Vrf » ^-^ ^-^ v** ’ H rH pH H H H Al pH H H ei IN Kl o o 0) (i) (u tu

  4. Weather Safety - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Safety Weather Safety This page weather safety. StormReady NOAA Weather Radio Emergency Managers Information Network U.S. Hazard Assmt

  5. National Weather Service

    MedlinePlus

    ... Data SAFETY Floods Tsunami Beach Hazards Wildfire Cold Tornadoes Fog Air Quality Heat Hurricanes Lightning Safe Boating ... Winter Weather Forecasts River Flooding Latest Warnings Thunderstorm/Tornado Outlook Hurricanes Fire Weather Outlooks UV Alerts Drought ...

  6. Operation JANGLE, Nevada Proving Ground. Project 1(8)b. Air Weather Service Participation in Operation JANGLE

    DTIC Science & Technology

    1951-12-31

    AVAIL AND/OR SPECIAL DISTRIBUTION STAMP UNANNOUNCED DATE RECEIVED IN DTIC DISTRIBUTION STATF.MFNT Ä Approved lot public releasej Distribution...es (countirio prelininary pafes) Ho. -A* AW ^q^l^^^grles A OIEUTION JINCHJB *.*?** " **** **** mOJWI l(8)b AIR WEATHER SERVICE PiRTICIPATICK Hi...Top Figh Right MediuB Top Mediua Left Medina Right Medina Top High Botton High Right High Left High PROJECT l(8)b o i M h P 9 e •a. (O

  7. Privacy Policy of NOAA's National Weather Service - NOAA's National Weather

    Science.gov Websites

    Safety Weather Radio Hazard Assmt... StormReady / TsunamiReady Skywarn(tm) Education/Outreach Information , and National Weather Service information collection practices. This Privacy Policy Statement applies only to National Weather Service web sites. Some organizations within NOAA may have other information

  8. Air Force Global Weather Central System Architecture Study. Final System/Subsystem Summary Report. Volume 8. System Specification

    DTIC Science & Technology

    1976-03-01

    Service , CSE, Scott AFB, IL 62225. aws, usaf ltr dtd 8 jul 1976 >- a. CD SYSTEM DEVELOPMENT CORPORATION 1/ 2500 Colorado Avenue Santa Monica...Government Agen-TfAf* 17 MAR 1976 cies only. Other requests for this document ’-^ must be referred to Air Weather Service /CSi^,, Scott Air Force...Air Force Communica- tions Service must be clear’y defined. The appropriate Air Force Conmunications Service Agency should be responsible for the

  9. Air Weather Service Support to the United States Army Tet and the Decade After

    DTIC Science & Technology

    1979-08-01

    than traditional air interdiction methods, and, more important, it was more humane because it saved lives. 6 1 The very nature of the project led it to...every four hours, 24 hours a day.04 Taylor stressed that he functioned primarily as a weather briefer, that the weather forecasts the 1st Cavalry... stressed to them in peacetime. "I think the Army began there," Carmell opined, "to appreciate the worth of weather in its planning," "We got our foot in

  10. National Weather Service

    Science.gov Websites

    Forecast and Warning Services of the National Weather Service Introduction Quantitative precipitation future which is an active area of research currently. 2) Evaluate HPN performance for forecast periods

  11. Weather Education/Outreach - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  12. Careers in Weather - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  13. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  14. Comparison of characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012

    NASA Astrophysics Data System (ADS)

    Chen, Huizhong; Wu, Dui; Yu, Jianzhen

    2016-04-01

    Using the data on aerosol observed hourly by Marga ADI 2080 and Grimm 180, we compared the characteristics of aerosol during rainy weather and cold air-dust weather in Guangzhou in late March 2012. The mass concentration of aerosol appeared distinct between the two weather processes. During rainy weather, the mass concentration of PM and total water-soluble components decreased obviously. During cold air-dust weather, the cleaning effect of cold air occurred much more suddenly and about a half day earlier than the dust effect. As a result, the mass concentration of PM and total water-soluble components first dropped dramatically to a below-normal level and then rose gradually to an above-normal level. The ratio of PM2.5/PM10 and PM1/PM10 decreased, suggesting that dust-storm weather mainly brought in coarse particles. The proportion of Ca2+ in the total water-soluble components significantly increased to as high as 50 % because of the effect of dust weather. We further analysed the ionic equilibrium during rainy and cold air-dust weather, and compared it with that during hazy weather during the same period. The aerosol during rainy weather was slightly acidic, whereas that during hazy weather and cold air-dust weather was obviously alkaline, with that during cold air-dust weather being significantly more alkaline. Most of the anions, including SO4 2- and NO3 -, were neutralised by NH4 + during rainy and hazy weather, and by Ca2+ during cold air-dust weather.

  15. Mexican Space Weather Service (SCiESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, J. A.; De la Luz, V.; Corona-Romero, P.; Mejia-Ambriz, J. C.; Gonzalez, L. X.; Sergeeva, M. A.; Romero-Hernandez, E.; Aguilar-Rodriguez, E.

    2017-01-01

    Legislative modifications of the General Civil Protection Law in Mexico in 2014 included specific references to space hazards and space weather phenomena. The legislation is consistent with United Nations promotion of international engagement and cooperation on space weather awareness, studies, and monitoring. These internal and external conditions motivated the creation of a space weather service in Mexico. The Mexican Space Weather Service (SCiESMEX in Spanish) (www.sciesmex.unam.mx) was initiated in October 2014 and is operated by the Institute of Geophysics at the Universidad Nacional Autonoma de Mexico (UNAM). SCiESMEX became a Regional Warning Center of the International Space Environment Services (ISES) in June 2015. We present the characteristics of the service, some products, and the initial actions for developing a space weather strategy in Mexico. The service operates a computing infrastructure including a web application, data repository, and a high-performance computing server to run numerical models. SCiESMEX uses data of the ground-based instrumental network of the National Space Weather Laboratory (LANCE), covering solar radio burst emissions, solar wind and interplanetary disturbances (by interplanetary scintillation observations), geomagnetic measurements, and analysis of the total electron content (TEC) of the ionosphere (by employing data from local networks of GPS receiver stations).

  16. Mexican Space Weather Service (SCIESMEX)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Esparza, A.; De la Luz, V.; Mejia-Ambriz, J. C.; Aguilar-Rodriguez, E.; Corona-Romero, P.; Gonzalez, L. X.

    2015-12-01

    Recent modifications of the Civil Protection Law in Mexico include now specific mentions to space hazards and space weather phenomena. During the last few years, the UN has promoted international cooperation on Space Weather awareness, studies and monitoring. Internal and external conditions motivated the creation of a Space Weather Service in Mexico (SCIESMEX). The SCIESMEX (www.sciesmex.unam.mx) is operated by the Geophysics Institute at the National Autonomous University of Mexico (UNAM). The UNAM has the experience of operating several critical national services, including the National Seismological Service (SSN); besides that has a well established scientific group with expertise in space physics and solar- terrestrial phenomena. The SCIESMEX is also related with the recent creation of the Mexican Space Agency (AEM). The project combines a network of different ground instruments covering solar, interplanetary, geomagnetic, and ionospheric observations. The SCIESMEX has already in operation computing infrastructure running the web application, a virtual observatory and a high performance computing server to run numerical models. SCIESMEX participates in the International Space Environment Services (ISES) and in the Inter-progamme Coordination Team on Space Weather (ICTSW) of the Word Meteorological Organization (WMO).

  17. Highlights of Space Weather Services/Capabilities at NASA/GSFC Space Weather Center

    NASA Technical Reports Server (NTRS)

    Fok, Mei-Ching; Zheng, Yihua; Hesse, Michael; Kuznetsova, Maria; Pulkkinen, Antti; Taktakishvili, Aleksandre; Mays, Leila; Chulaki, Anna; Lee, Hyesook

    2012-01-01

    The importance of space weather has been recognized world-wide. Our society depends increasingly on technological infrastructure, including the power grid as well as satellites used for communication and navigation. Such technologies, however, are vulnerable to space weather effects caused by the Sun's variability. NASA GSFC's Space Weather Center (SWC) (http://science.gsfc.nasa.gov//674/swx services/swx services.html) has developed space weather products/capabilities/services that not only respond to NASA's needs but also address broader interests by leveraging the latest scientific research results and state-of-the-art models hosted at the Community Coordinated Modeling Center (CCMC: http://ccmc.gsfc.nasa.gov). By combining forefront space weather science and models, employing an innovative and configurable dissemination system (iSWA.gsfc.nasa.gov), taking advantage of scientific expertise both in-house and from the broader community as well as fostering and actively participating in multilateral collaborations both nationally and internationally, NASA/GSFC space weather Center, as a sibling organization to CCMC, is poised to address NASA's space weather needs (and needs of various partners) and to help enhancing space weather forecasting capabilities collaboratively. With a large number of state-of-the-art physics-based models running in real-time covering the whole space weather domain, it offers predictive capabilities and a comprehensive view of space weather events throughout the solar system. In this paper, we will provide some highlights of our service products/capabilities. In particular, we will take the 23 January and the 27 January space weather events as examples to illustrate how we can use the iSWA system to track them in the interplanetary space and forecast their impacts.

  18. Climate Prediction - NOAA's National Weather Service

    Science.gov Websites

    Statistical Models... MOS Prod GFS-LAMP Prod Climate Past Weather Predictions Weather Safety Weather Radio National Weather Service on FaceBook NWS on Facebook NWS Director Home > Climate > Predictions Climate Prediction Long range forecasts across the U.S. Climate Prediction Web Sites Climate Prediction

  19. Next generation of weather generators on web service framework

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.; Ines, A. V. M.

    2016-12-01

    Weather generator is a statistical model that synthesizes possible realization of long-term historical weather in future. It generates several tens to hundreds of realizations stochastically based on statistical analysis. Realization is essential information as a crop modeling's input for simulating crop growth and yield. Moreover, they can be contributed to analyzing uncertainty of weather to crop development stage and to decision support system on e.g. water management and fertilizer management. Performing crop modeling requires multidisciplinary skills which limit the usage of weather generator only in a research group who developed it as well as a barrier for newcomers. To improve the procedures of performing weather generators as well as the methodology to acquire the realization in a standard way, we implemented a framework for providing weather generators as web services, which support service interoperability. Legacy weather generator programs were wrapped in the web service framework. The service interfaces were implemented based on an international standard that was Sensor Observation Service (SOS) defined by Open Geospatial Consortium (OGC). Clients can request realizations generated by the model through SOS Web service. Hierarchical data preparation processes required for weather generator are also implemented as web services and seamlessly wired. Analysts and applications can invoke services over a network easily. The services facilitate the development of agricultural applications and also reduce the workload of analysts on iterative data preparation and handle legacy weather generator program. This architectural design and implementation can be a prototype for constructing further services on top of interoperable sensor network system. This framework opens an opportunity for other sectors such as application developers and scientists in other fields to utilize weather generators.

  20. 49 CFR 232.107 - Air source requirements and cold weather operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Air source requirements and cold weather... source requirements and cold weather operations. (a) Monitoring plans for yard air sources. (1) A... to the equipment and territory of that railroad to cover safe train operations during cold weather...

  1. Disclaimer - NOAA's National Weather Service

    Science.gov Websites

    from this server through the Internet is not guaranteed. Official NWS dissemination systems which can Weather Service 1325 East West Highway Silver Spring, MD 20910 Page Author: NWS Internet Services Team

  2. Public Affairs - NOAA's National Weather Service

    Science.gov Websites

    Publications Contact Us USA.gov is the U.S. government's official web portal to all federal, state and local government web resources and services. Top Story NOAA predicts active 2013 Atlantic hurricane season In its ... Weather Favorites Finding Past Weather Alphabetical listing of NOAA's most sought after weather Web sites

  3. Models of Weather Impact on Air Traffic

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak; Wang, Yao

    2017-01-01

    Flight delays have been a serious problem in the national airspace system costing about $30B per year. About 70 of the delays are attributed to weather and upto two thirds of these are avoidable. Better decision support tools would reduce these delays and improve air traffic management tools. Such tools would benefit from models of weather impacts on the airspace operations. This presentation discusses use of machine learning methods to mine various types of weather and traffic data to develop such models.

  4. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Park, S.; Kim, Y. Y.; Wi, G.

    2015-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  5. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, KiChang; Kim, Jae-Hun; Kim, Young Yun; Kwon, Yongki; Wi, Gwan-sik

    2016-07-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  6. Space Weather Services of Korea

    NASA Astrophysics Data System (ADS)

    Yoon, K.; Hong, S.; Jangsuk, C.; Dong Kyu, K.; Jinyee, C.; Yeongoh, C.

    2016-12-01

    The Korean Space Weather Center (KSWC) of the National Radio Research Agency (RRA) is a government agency which is the official source of space weather information for Korean Government and the primary action agency of emergency measure to severe space weather condition. KSWC's main role is providing alerts, watches, and forecasts in order to minimize the space weather impacts on both of public and commercial sectors of satellites, aviation, communications, navigations, power grids, and etc. KSWC is also in charge of monitoring the space weather condition and conducting research and development for its main role of space weather operation in Korea. In this study, we will present KSWC's recent efforts on development of application-oriented space weather research products and services on user needs, and introduce new international collaborative projects, such as IPS-Driven Enlil model, DREAM model estimating electron in satellite orbit, global network of DSCOVR and STEREO satellites tracking, and ARMAS (Automated Radiation Measurement for Aviation Safety).

  7. Aviation weather service requirements, 1980 - 1990

    NASA Technical Reports Server (NTRS)

    Lieurance, N. A.

    1977-01-01

    Future aviation weather needs are discussed. Priority weather requirements and deficiencies existing for weather observations and forecast services in terminal areas are presented. Needs in en route operations up to 30 km are addressed with emphasis on turbulence, presence of suspended ice and water particles, SST to supersonic speeds, solar radiation, ozone, and sonic booms. Some conclusions are drawn and recommendations are presented.

  8. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  9. Forecasts - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  10. Observations - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  11. Severe Weather Tool using 1500 UTC Cape Canaveral Air Force Station Soundings

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2013-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  12. ISES Experience in Delivering Space Weather Services

    NASA Astrophysics Data System (ADS)

    Boteler, David

    The International Space Environment Service has over eighty years experience in providing space weather services to meet a wide variety of user needs. This started with broadcast on December 1, 2008 from the Eiffel Tower about radio conditions. The delivery of information about ionospheric effects on high frequency (HF) radio propagation continue to be a major concern in many parts of the world. The movement into space brought requirements for a new set of space weather services, ranging from radiation dangers to man in space, damage to satellites and effects on satellite communication and navigation systems. On the ground magnetic survey, power system and pipeline operators require information about magnetic disturbances that can affect their operations. In the past these services have been delivered by individual Regional Warning Centres. However, the needs of new trans-national users are stimulating the development of new collaborative international space weather services.

  13. Sources and air carrier use of aviation weather information

    DOT National Transportation Integrated Search

    1991-06-01

    This report is concerned with the use of weather information by air carriers. It : describes the type of information obtained, the sources of that information, and the : training provided to flight crews in the interpretation and use of weather infor...

  14. History of the National Weather Service - Public Affairs - NOAA's National

    Science.gov Websites

    enter or select the go button to submit request City, St Go About NWS -Mission -Strategic Plan -History and local government web resources and services. Home >> History History of the National Weather Service The National Weather Service has its beginnings in the early history of the United States. Weather

  15. 15 CFR Appendix A to Part 946 - National Weather Service Modernization Criteria

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false National Weather Service Modernization... THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE Pt. 946, App. A Appendix A to Part 946—National Weather Service Modernization Criteria I. Modernization Criteria for Actions Not...

  16. Space weather services: now and in the future

    NASA Astrophysics Data System (ADS)

    Kunches, J.; Murtagh, W.

    The NOAA Space Environment Center has provided continuous 24 hours per day 7 days per week space weather products and services to the United States and the international community via the International Space Environment Service for more than 30 years Over that time span an evolutionary process has occurred In the early days the products consisted of short text and coded messages to accommodate the communications technologies of the period The birth of the Internet made the sharing of graphical imagery and real-time data possible enabling service providers to communicate more information more quickly to the users Now in parallel with the advances in telecommunications the space weather user community has grown dramatically and is enunciating ever-stronger requirements back to the service providers The commercial airline community is probably the best example of an industry wanting more from space weather How are the users going to continue to change over the next 10-20 years and what services might they need How will they get this information and how might they use it This is the overall thrust of the presentation offering a look to the future and a challenge to the space weather community

  17. Warnings/Watches - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  18. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pigg, Scott; Cautley, Dan; Francisco, Paul

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  19. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  20. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  1. CCMC: Serving research and space weather communities with unique space weather services, innovative tools and resources

    NASA Astrophysics Data System (ADS)

    Zheng, Yihua; Kuznetsova, Maria M.; Pulkkinen, Antti; Maddox, Marlo

    2015-04-01

    With the addition of Space Weather Research Center (a sub-team within CCMC) in 2010 to address NASA’s own space weather needs, CCMC has become a unique entity that not only facilitates research through providing access to the state-of-the-art space science and space weather models, but also plays a critical role in providing unique space weather services to NASA robotic missions, developing innovative tools and transitioning research to operations via user feedback. With scientists, forecasters and software developers working together within one team, through close and direct connection with space weather customers and trusted relationship with model developers, CCMC is flexible, nimble and effective to meet customer needs. In this presentation, we highlight a few unique aspects of CCMC/SWRC’s space weather services, such as addressing space weather throughout the solar system, pushing the frontier of space weather forecasting via the ensemble approach, providing direct personnel and tool support for spacecraft anomaly resolution, prompting development of multi-purpose tools and knowledge bases, and educating and engaging the next generation of space weather scientists.

  2. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  3. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    PubMed

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. NATIONAL WEATHER SERVICE MARINE PRODUCTS VIA NOAA WEATHER RADIO

    Science.gov Websites

    ! Boating Safety Beach Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding Radio network provides voice broadcasts of local and coastal marine forecasts on a continuous cycle. The forecasts are produced by local National Weather Service Forecast Offices. Coastal stations also broadcast

  5. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  6. Synoptic weather typing applied to air pollution mortality among the elderly in 10 Canadian cities.

    PubMed

    Vanos, Jennifer K; Cakmak, Sabit; Bristow, Corben; Brion, Vladislav; Tremblay, Neil; Martin, Sara L; Sheridan, Scott S

    2013-10-01

    Synoptic circulation patterns (large-scale weather systems) affect ambient levels of air pollution, as well as the relationship between air pollution and human health. To investigate the air pollution-mortality relationship within weather types and seasons, and to determine which combination of atmospheric conditions may pose increased health threats in the elderly age categories. The relative risk of mortality (RR) due to air pollution was examined using Poisson generalized linear models (GLMs) within specific weather types. Analysis was completed by weather type and age group (all ages, ≤64, 65-74, 75-84, ≥85 years) in ten Canadian cities from 1981 to 1999. There was significant modification of RR by weather type and age. When examining the entire population, weather type was shown to have the greatest modifying effect on the risk of dying due to ozone (O3). This effect was highest on average for the dry tropical (DT) weather type, with the all-age RR of mortality at a population weighted mean (PWM) found to be 1.055 (95% CI 1.026-1.085). All-weather type risk estimates increased with age due to exposure to carbon monoxide (CO), nitrogen dioxide (NO2), and sulphur dioxide (SO2). On average, RR increased by 2.6, 3.8 and 1.5% for the respective pollutants between the ≤64 and ≥85 age categories. Conversely, mean ozone estimates remained relatively consistent with age. Elevated levels of air pollution were found to be detrimental to the health of elderly individuals for all weather types. However, the entire population was negatively effected by air pollution on the hot dry (DT) and hot humid (MT) days. We identified a significant modification of RR for mortality due to air pollution by age, which is enhanced under specific weather types. Efforts should be targeted at minimizing pollutant exposure to the elderly and/or all age groups with respect to weather type in question. Crown Copyright © 2013 Published by Elsevier Inc. All rights reserved.

  7. Media Contacts - Public Affairs - NOAA's National Weather Service

    Science.gov Websites

    Service Headquarters - Silver Spring, Md. Eastern Region - Bohemia N.Y. Main phone number, (301) 713-0622 National Weather Service 1325 East-West Highway Silver Spring, MD 20910 Page Author: NWS Internet Services

  8. Weather Webcam System for the Safety of Helicopter Emergency Medical Services in Miyazaki, Japan.

    PubMed

    Kanemaru, Katsuhiro; Katzer, Robert; Hanato, Syu; Nakamura, Koji; Matsuoka, Hiroshi; Ochiai, Hidenobu

    In Japan, the helicopter emergency medical services (HEMS) system was initiated in 2001 and introduced to Miyazaki Prefecture in 2012. Mountainous areas occupy 88% of Miyazaki's land area, and HEMS flights can be subject to the effects of weather. Therefore, ensuring safety in changing weather conditions is a necessity for HEMS. The weather webcam system (WWS) was established to observe the meteorological conditions in 29 locations. Assessments of the probability of a flight based on conventional data including a weather chart provided by the Japan Meteorological Agency and meteorological reports provided by the Miyazaki Airport were compared with the assessment based on the combination of the information obtained from the WWS and the conventional data. The results showed that the probability of a flight by HEMS increased when using the WSS, leading to an increased transportation opportunity for patients in the mountains who rely on HEMS. In addition, the results indicate that the WWS may prevent flights in unfavorable weather conditions. The WWS used in conjunction with conventional weather data within Miyazaki HEMS increased the pilot's awareness of current weather conditions throughout the Prefecture, increasing the probability of accepting a flight. Copyright © 2017 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  9. National Maps - Pacific - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News

  10. Association of weather and air pollution interactions on daily mortality in 12 Canadian cities.

    PubMed

    Vanos, J K; Cakmak, S; Kalkstein, L S; Yagouti, Abderrahmane

    It has been well established that both meteorological attributes and air pollution concentrations affect human health outcomes. We examined all cause nonaccident mortality relationships for 28 years (1981-2008) in relation to air pollution and synoptic weather type (encompassing air mass) data in 12 Canadian cities. This study first determines the likelihood of summertime extreme air pollution events within weather types using spatial synoptic classification. Second, it examines the modifying effect of weather types on the relative risk of mortality (RR) due to daily concentrations of air pollution (nitrogen dioxide, ozone, sulfur dioxide, and particulate matter <2.5 μm). We assess both single- and two-pollutant interactions to determine dependent and independent pollutant effects using the relatively new time series technique of distributed lag nonlinear modeling (DLNM). Results display dry tropical (DT) and moist tropical plus (MT+) weathers to result in a fourfold and twofold increased likelihood, respectively, of an extreme pollution event (top 5 % of pollution concentrations throughout the 28 years) occurring. We also demonstrate statistically significant effects of single-pollutant exposure on mortality ( p  < 0.05) to be dependent on summer weather type, where stronger results occur in dry moderate (fair weather) and DT or MT+ weather types. The overall average single-effect RR increases due to pollutant exposure within DT and MT+ weather types are 14.9 and 11.9 %, respectively. Adjusted exposures (two-way pollutant effect estimates) generally results in decreased RR estimates, indicating that the pollutants are not independent. Adjusting for ozone significantly lowers 67 % of the single-pollutant RR estimates and reduces model variability, which demonstrates that ozone significantly controls a portion of the mortality signal from the model. Our findings demonstrate the mortality risks of air pollution exposure to differ by weather type, with

  11. 19. DETAIL OF AIR FORCE WEATHER INFORMATION TERMINAL AND CHART ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. DETAIL OF AIR FORCE WEATHER INFORMATION TERMINAL AND CHART RECORDER LOCATED IMMEDIATELY NORTH OF CONSOLE IN PHOTOS A-15 THROUGH A-18. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Refocusing and Evolving Subseasonal-to-Seasonal Services in NOAA's National Weather Service

    NASA Astrophysics Data System (ADS)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Silva, V.; Mangan, M. R.; Meyers, J. C.; Zdrojewski, J.

    2017-12-01

    NOAA's National Weather Service (NWS) recently completed a reorganization to better support its goal to build a Weather-Ready Nation. As part of the reorganization, NWS streamlined its 11 national service programs, including climate services, to provide a more structured approach to supporting service delivery needs. As the American public increasingly requests information at sub-seasonal and seasonal time scales for decision making, the NWS Climate Services Program is striving to meet those needs by accelerating transition of research to operations, improving delivery of products and services, and enhancing partnerships to facilitate provision of seamless weather, water, and climate products and services at regional and local scales. Additionally, NWS forecasters are requesting more tools to be able to put severe weather and water events into a climate context to provide more effective impact-based decision support services (IDSS). This paper will describe the activities to more effectively integrate climate services into the NWS suite of environmental information, the roles of the NWS offices supporting or delivering sub-seasonal and seasonal information to the US public, and engaging NWS core and deep-core partners in provision of information on climatological risks and preparedness as a part of IDSS. We will discuss the process by which we collect user requests and/or needs and the NWS process that allows us to move these requests and needs through a formal requirements validation process and thus place the requirement on a path to identify a potential solution for implementation. The validation of a NWS climate-related requirement is also key to identify research, development, and transition mission delivery needs that are supported through the Office of Oceanic and Atmospheric Research (OAR) Climate Program Office (CPO). In addition, we will present the outcomes of key actions of the first ever NWS National Climate Services Meeting (NCSM) that was held in May

  13. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    PubMed

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  14. LINKS to NATIONAL WEATHER SERVICE MARINE FORECAST OFFICES

    Science.gov Websites

    Coastal Flooding Tsunamis 406 EPIRB's National Weather Service Marine Forecasts LINKS to NATIONAL WEATHER Marine Forecasts in text form ) Coastal NWS Forecast Offices have regionally focused marine webpages which are overflowing with information such as coastal forecasts, predicted tides, and buoy observations

  15. Regional input to joint European space weather service

    NASA Astrophysics Data System (ADS)

    Stanislawska, I.; Belehaki, A.; Jansen, F.; Heynderickx, D.; Lilensten, J.; Candidi, M.

    The basis for elaborating within COST 724 Action Developing the scientific basis for monitoring modeling and predicting Space Weather European space weather service is rich by many national and international activities which provide instruments and tools for global as well as regional monitoring and modeling COST 724 stimulates coordinates and supports Europe s goals of development and global cooperation by providing standards for timely and high quality information and knowledge in space weather Existing local capabilities are taken into account to develop synergies and avoid duplication The enhancement of environment monitoring networks and associated instruments technology yields mutual advantages for European service and regional services specialized for local users needs It structurally increases the integration of limited-area services generates a platform employing the same approach to each task differing mostly in input and output data In doing so it also provides complementary description of the environmental state within issued information A general scheme of regional services concept within COST 724 activity can be the processing chain from measurements trough algorithms to operational knowledge It provides the platform for interaction among the local end users who define what kind of information they need system providers who elaborate tools necessary to obtain required information and local service providers who do the actual processing of data and tailor it to specific user s needs Such initiative creates a unique possibility for small

  16. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  17. Science Education Supporting Weather Broadcasters On-Air and in the Classroom with NASA "Mini-Education Supplements"

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    NASA-Goddard Space Flight Center has initiated a new project designed to expand on existing news services and add value to classrooms through the development and distribution of two-minute 'mini-supplements' which give context and teach about current weather and Earth research phenomena. The innovative mini-supplements provide raw materials for weather forecasters to build news stories around NASA related missions without having to edit the more traditional and cumbersome long-form video format. The supplements cover different weather and climate topics and include NASA data, animations, video footage, and interviews with scientists. The supplements also include a curriculum package with educational lessons, educator guide, and hand-on activities. One goal is to give on-air broadcasters who are the primary science educators for the general public what they need to 'teach' about the science related to NASA research behind weather and climate news. This goal achieves increasing public literacy and assures higher accuracy and quality science reporting by the media. The other goal is to enable on-air broadcasters to serve as distributors of high quality, standards-based educational curricula and supplemental material when they visit 8-12 grade classrooms. The focus of 'pilot effort' centers around the success of NASA's Tropical Rainfall Measuring Mission (TRMM) but is likely expandable to other NASA earth or space science missions.

  18. Doppler Radar National Mosaic - NOAA's National Weather Service

    Science.gov Websites

    Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and Atmospheric Administration's Select to go to the NWS homepage National Weather Service Site Map News select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings

  19. AIRS Data Subsetting Service at the Goddard Earth Sciences (GES) DISC/DAAC

    NASA Technical Reports Server (NTRS)

    Vicente, Gilberto A.; Qin, Jianchun; Li, Jason; Gerasimov, Irina; Savtchenko, Andrey

    2004-01-01

    The AIRS mission, as a combination of the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU) and the Humidity Sounder for Brazil (HSB), brings climate research and weather prediction into 21st century. From NASA' Aqua spacecraft, the AIRS/AMSU/HSB instruments measure humidity, temperature, cloud properties and the amounts of greenhouse gases. The AIRS also reveals land and sea- surface temperatures. Measurements from these three instruments are analyzed . jointly to filter out the effects of clouds from the IR data in order to derive clear-column air-temperature profiles and surface temperatures with high vertical resolution and accuracy. Together, they constitute an advanced operational sounding data system that have contributed to improve global modeling efforts and numerical weather prediction; enhance studies of the global energy and water cycles, the effects of greenhouse gases, and atmosphere-surface interactions; and facilitate monitoring of climate variations and trends. The high data volume generated by the AIRS/AMSU/HSB instruments and the complexity of its data format (Hierarchical Data Format, HDF) are barriers to AIRS data use. Although many researchers are interested in only a fraction of the data they receive or request, they are forced to run their algorithms on a much larger data set to extract the information of interest. In order to better server its users, the GES DISC/DAAC, provider of long-term archives and distribution services as well science support for the AIRS/AMSU/HSB data products, has developed various tools for performing channels, variables, parameter, spatial and derived products subsetting, resampling and reformatting operations. This presentation mainly describes the web-enabled subsetting services currently available at the GES DISC/DAAC that provide subsetting functions for all the Level 1B and Level 2 data products from the AIRS/AMSU/HSB instruments.

  20. NOAA Photo Library - Historic Weather Service/Meteorological

    Science.gov Websites

    Monsters/Hurricanes - Hurricane Andrew NOAA Photo Library Banner Takes you to the Top Page the Links page. Hurricane Andrew Banner Historical Weather Service | Meteorological Monsters 1 2 3 4

  1. Great Lakes Maps - NOAA's National Weather Service

    Science.gov Websites

    Coastal Forecast System) Waves (GLERL Great Lakes Coastal Forecast System) Ice Cover (GLERL Great Lakes Coastal Forecast System) NOAA's National Weather Service Central Region Headquarters Regional Office 7220

  2. Impacts of weatherization on indoor air quality: A field study of 514 homes.

    PubMed

    Pigg, S; Cautley, D; Francisco, P W

    2018-03-01

    Residential energy efficiency retrofits continue to be common in the United States, especially through governmental and utility programs. Because of the potential for reduced air exchange, there have been concerns raised regarding the potential for negative impacts on health and safety of residents when air sealing occurs. To address this concern, a study was undertaken in 2009-2010 to evaluate the indoor air quality impacts of weatherization performed through the U.S. Department of Energy's Weatherization Assistance Program. Testing was conducted on 514 homes throughout the United States. The results show that weatherization, as performed at the time of the study, could result in small but statistically significant increases in some indoor contaminants such as radon and humidity, while also reducing exposures to elevated carbon monoxide in some homes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  4. The impact of weather changes on air quality and health in the United States in 1994-2012

    NASA Astrophysics Data System (ADS)

    Jhun, Iny; Coull, Brent A.; Schwartz, Joel; Hubbell, Bryan; Koutrakis, Petros

    2015-08-01

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994-2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May-October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November-April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 μg m-3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 μg m-3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality.

  5. National Weather Service Marine Forecasts - FAQ

    Science.gov Websites

    ! Boating Safety Beach Hazards Rip Currents Hypothermia Hurricanes Thunderstorms Lightning Coastal Flooding marine coastal areas may be found in Appendix B of the National Ocean Service's Coast Pilot's, volumes 1 Advisory (SCA): An advisory issued by coastal and Great Lakes Weather Forecast Offices (WFO) for areas

  6. National Weather Service - Strategic Planning and Policy

    Science.gov Websites

    Policy ATTN: W/SP 1325 East-West Highway Silver Spring, MD 20910-3283 Phone: (301) 713-0258; Fax: (301 Administration National Weather Service Strategic Planning and Policy Office 1325 East West Highway Silver Spring

  7. Updates on CCMC Activities and GSFC Space Weather Services

    NASA Technical Reports Server (NTRS)

    Zhengm Y.; Hesse, M.; Kuznetsova, M.; Pulkkinen, A.; Rastaetter, L.; Maddox, M.; Taktakishvili, A.; Berrios, D.; Chulaki, A.; Lee, H.; hide

    2011-01-01

    In this presentation, we provide updates on CCMC modeling activities, CCMC metrics and validation studies, and other CCMC efforts. In addition, an overview of GSFC Space Weather Services (a sibling organization to the Community Coordinated Modeling Center) and its products/capabilities will be given. We show how some of the research grade models, if running in an operational mode, can help address NASA's space weather needs by providing forecasting/now casting capabilities of significant space weather events throughout the solar system.

  8. A Mathematical Model and Algorithm for Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.

    2016-01-01

    A central challenge in managing today's commercial en route air traffic is the task of routing the aircraft in the presence of adverse weather. Such weather can make regions of the airspace unusable, so all affected flights must be re-routed. Today this task is carried out by conference and negotiation between human air traffic controllers (ATC) responsible for the involved sectors of the airspace. One can argue that, in so doing, ATC try to solve an optimization problem without giving it a precise quantitative formulation. Such a formulation gives the mathematical machinery for constructing and verifying algorithms that are aimed at solving the problem. This paper contributes one such formulation and a corresponding algorithm. The algorithm addresses weather uncertainty and has closed form, which allows transparent analysis of correctness, realism, and computational costs.

  9. Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2016-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in

  10. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  11. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  12. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  13. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  14. 32 CFR 644.406 - Transfers to Secretary of Transportation and the National Weather Service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... National Weather Service. 644.406 Section 644.406 National Defense Department of Defense (Continued... Property and Easement Interests § 644.406 Transfers to Secretary of Transportation and the National Weather... similarly authorizes transfer of meteorological facilities, without charge, to the National Weather Service. ...

  15. A Method for Correlation of Gravestone Weathering and Air Quality (SO2), West Amidlands, UK

    NASA Astrophysics Data System (ADS)

    Carlson, Michael John

    From the beginning of the Industrial Revolution through the environmental revolution of the 1970s Britain suffered the effects of poor air quality primarily from particulate matter and acid in the form of NOx and SO x compounds. Air quality stations across the region recorded SO 2 beginning in the 1960s however the direct measurement of air quality prior to 1960 is lacking and only anecdotal notations exist. Proxy records including lung tissue samples, particulates in sediments cores, lake acidification studies and gravestone weathering have all been used to reconstruct the history of air quality. A 120-year record of acid deposition reconstructed from lead-lettered marble gravestone weathering combined with SO2 measurements from the air monitoring network across the West Midlands, UK region beginning in the 1960s form the framework for this study. The study seeks to create a spatial and temporal correlation between the gravestone weathering and measured SO 2. Successful correlation of the dataset from 1960s to the 2000s would allow a paleo-air quality record to be generated from the 120-year record of gravestone weathering. Decadal gravestone weathering rates can be estimated by non-linear regression analysis of stone loss at individual cemeteries. Gravestone weathering rates are interpolated across the region through Empirical Bayesian Kriging (EBK) methods performed through ArcGISRTM and through a land use based approach based on digitized maps of land use. Both methods of interpolation allow for the direct correlation of gravestone weathering and measured SO2 to be made. Decadal scale correlations of gravestone weathering rates and measured SO2 are very weak and non-existent for both EBK and the land use based approach. Decadal results combined together on a larger scale for each respective method display a better visual correlation. However, the relative clustering of data at lower SO2 concentrations and the lack of data at higher SO2 concentrations make the

  16. Aviation & Space Weather Policy Research: Integrating Space Weather Observations & Forecasts into Operations

    NASA Astrophysics Data System (ADS)

    Fisher, G.; Jones, B.

    2006-12-01

    The American Meteorological Society and SolarMetrics Limited are conducting a policy research project leading to recommendations that will increase the safety, reliability, and efficiency of the nation's airline operations through more effective use of space weather forecasts and information. This study, which is funded by a 3-year National Science Foundation grant, also has the support of the Federal Aviation Administration and the Joint Planning and Development Office (JPDO) who is planning the Next Generation Air Transportation System. A major component involves interviewing and bringing together key people in the aviation industry who deal with space weather information. This research also examines public and industrial strategies and plans to respond to space weather information. The focus is to examine policy issues in implementing effective application of space weather services to the management of the nation's aviation system. The results from this project will provide government and industry leaders with additional tools and information to make effective decisions with respect to investments in space weather research and services. While space weather can impact the entire aviation industry, and this project will address national and international issues, the primary focus will be on developing a U.S. perspective for the airlines.

  17. Resilience of urban ambulance services under future climate, meteorology and air pollution scenarios

    NASA Astrophysics Data System (ADS)

    Pope, Francis; Chapman, Lee; Fisher, Paul; Mahmood, Marliyyah; Sangkharat, Kamolrat; Thomas, Neil; Thornes, John

    2017-04-01

    Ambulances are an integral part of a country's infrastructure ensuring its citizens and visitors are kept healthy. The impact of weather, climate and climate change on ambulance services around the world has received increasing attention in recent years but most studies have been area specific and there is a need to establish basic relationships between ambulance data (both response and illness data) and meteorological parameters. In this presentation, the effects of temperature, other meteorological and air pollution variables on ambulance call out rates for different medical categories will be investigated. We use ambulance call out obtained from various ambulance services worldwide which have significantly different meteorologies, climatologies and pollution conditions. A time-series analysis is utilized to understand the relation between meteorological conditions, air pollutants and different call out categories. We will present findings that support the opinion that ambulance attendance call outs records are an effective and well-timed source of data and can be used for health early warning systems. Furthermore the presented results can much improve our understanding of the relationships between meteorology, climate, air pollution and human health thereby allowing for better prediction of ambulance use through the application of long and short-term weather, climate and pollution forecasts.

  18. Global disparity in the supply of commercial weather and climate information services

    PubMed Central

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn

    2017-01-01

    Information about weather and climate is vital for many areas of decision-making, particularly under conditions of increasing vulnerability and uncertainty related to climate change. We have quantified the global commercial supply of weather and climate information services. Although government data are sometimes freely available, the interpretation and analysis of those data, alongside additional data collection, are required to formulate responses to specific challenges in areas such as health, agriculture, and the built environment. Using transactional data, we analyzed annual spending by private and public organizations on commercial weather and climate information in more than 180 countries by industrial sector, region, per capita, and percentage of GDP (gross domestic product) and against the country’s climate and extreme weather risk. There are major imbalances regarding access to these essential services between different countries based on region and development status. There is also no relationship between the level of climate and weather risks that a country faces and the level of per capita spending on commercial weather and climate information in that country. At the international level, action is being taken to improve access to information services. With a better understanding of the flows of commercial weather and climate information, as explored in this study, it will be possible to tackle these regional and development-related disparities and thus to increase resilience to climate and weather risks. PMID:28560335

  19. NOAA Photo Library - Historical National Weather Service Collection

    Science.gov Websites

    weather and climate services to our nation. We hope you enjoy these snapshots of the heritage of the Collections page. Takes you to the search page. Takes you to the Links page. collage banner showing clouds with images of scientific accomplishment, technological innovation and community service. The photos in

  20. The impact of weather changes on air quality and health in the United States in 1994–2012

    PubMed Central

    Jhun, Iny; Coull, Brent A; Schwartz, Joel; Hubbell, Bryan; Koutrakis, Petros

    2016-01-01

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994–2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May–October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November–April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 µg m−3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 µg m−3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality PMID:27570539

  1. Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; Chou, Shih-Hung; Jedlovec, Gary

    2012-01-01

    Improvements to global and regional numerical weather prediction (NWP) have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) that mimics the analysis methodology, domain, and observational datasets for the regional North American Mesoscale (NAM) model run at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) are run to examine the impact of each type of AIRS data set. The first configuration will assimilate the AIRS radiance data along with other conventional and satellite data using techniques implemented within the operational system; the second configuration will assimilate AIRS retrieved profiles instead of AIRS radiances in the same manner. Preliminary results of this study will be presented and focus on the analysis impact of the radiances and profiles for selected cases.

  2. Examining Projected Changes in Weather & Air Quality Extremes Between 2000 & 2030 using Dynamical Downscaling

    EPA Science Inventory

    Climate change may alter regional weather extremes resulting in a range of environmental impacts including changes in air quality, water quality and availability, energy demands, agriculture, and ecology. Dynamical downscaling simulations were conducted with the Weather Research...

  3. Geographic Region, Weather, Pilot Age and Air Carrier Crashes: a Case-Control Study

    PubMed Central

    Li, Guohua; Pressley, Joyce C.; Qiang, Yandong; Grabowski, Jurek G.; Baker, Susan P.; Rebok, George W.

    2009-01-01

    Background Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis and commuter air carriers. Methods A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (n=373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus, recorded in the National Transportation Safety Board’s aviation crash database during 1983 through 2002, and controls (n=746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration’s aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. Results With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions [adjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35 – 7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15 – 4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.57, 95% CI 0.40 – 0.87). Neither pilot age nor total flight time was significantly associated with the risk of air carrier crashes. Conclusions The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety. PMID:19378910

  4. Geographic region, weather, pilot age, and air carrier crashes: a case-control study.

    PubMed

    Li, Guohua; Pressley, Joyce C; Qiang, Yandong; Grabowski, Jurek G; Baker, Susan P; Rebok, George W

    2009-04-01

    Information about risk factors of aviation crashes is crucial for developing effective intervention programs. Previous studies assessing factors associated with crash risk were conducted primarily in general aviation, air taxis, and commuter air carriers. A matched case-control design was used to examine the associations of geographic region, basic weather condition, and pilot age with the risk of air carrier (14 CFR Part 121) crash involvement. Cases (N = 373) were air carrier crashes involving aircraft made by Boeing, McDonnell Douglas, and Airbus recorded in the National Transportation Safety Board's aviation crash database during 1983 through 2002, and controls (N = 746) were air carrier incidents involving aircraft of the same three makes selected at random from the Federal Aviation Administration's aviation incident database. Each case was matched with two controls on the calendar year when the index crash occurred. Conditional logistic regression was used for statistical analysis. With adjustment for basic weather condition, pilot age, and total flight time, the risk of air carrier crashes in Alaska was more than three times the risk for other regions ladjusted odds ratio (OR) 3.18, 95% confidence interval (CI) 1.35-7.49]. Instrument meteorological conditions were associated with an increased risk for air carrier crashes involving pilot error (adjusted OR 2.26, 95% CI 1.15-4.44) and a decreased risk for air carrier crashes without pilot error (adjusted OR 0.60, 95% CI 0.37-0.96). Neither pilot age nor total flight time were significantly associated with the risk of air carrier crashes. The excess risk of air carrier crashes in Alaska and the effect of adverse weather on pilot-error crashes underscore the importance of environmental hazards in flight safety.

  5. Analysis of weather patterns associated with air quality degradation and potential health impacts

    EPA Science Inventory

    Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...

  6. Air Pollution and Weather: Activities and Demonstrations for Science Classes

    ERIC Educational Resources Information Center

    Cole, Henry S.

    1973-01-01

    Discusses a number of concepts (turbulence, dispersion, vertical temperature distribution, atmospheric stability and instability, and inversions) which are prerequisite to understanding how weather affects air quality. Describes classroom demonstrations effective in introducing these concepts to students at the elementary, secondary and college…

  7. Farm service agency employee intentions to use weather and climate data in professional services

    Treesearch

    Rachel E. Schattman; Gabrielle Roesch-McNally; Sarah Wiener; Meredith T. Niles; David Y. Hollinger

    2018-01-01

    Agricultural service providers often work closely with producers, and are well positioned to include weather and climate change information in the services they provide. By doing so, they can help producers reduce risks due to climate variability and change. A national survey of United States Department of Agriculture Farm Service Agency (FSA) field staff (n...

  8. Time Relevance of Convective Weather Forecast for Air Traffic Automation

    NASA Technical Reports Server (NTRS)

    Chan, William N.

    2006-01-01

    The Federal Aviation Administration (FAA) is handling nearly 120,000 flights a day through its Air Traffic Management (ATM) system and air traffic congestion is expected to increse substantially over the next 20 years. Weather-induced impacts to throughput and efficiency are the leading cause of flight delays accounting for 70% of all delays with convective weather accounting for 60% of all weather related delays. To support the Next Generation Air Traffic System goal of operating at 3X current capacity in the NAS, ATC decision support tools are being developed to create advisories to assist controllers in all weather constraints. Initial development of these decision support tools did not integrate information regarding weather constraints such as thunderstorms and relied on an additional system to provide that information. Future Decision Support Tools should move towards an integrated system where weather constraints are factored into the advisory of a Decision Support Tool (DST). Several groups such at NASA-Ames, Lincoln Laboratories, and MITRE are integrating convective weather data with DSTs. A survey of current convective weather forecast and observation data show they span a wide range of temporal and spatial resolutions. Short range convective observations can be obtained every 5 mins with longer range forecasts out to several days updated every 6 hrs. Today, the short range forecasts of less than 2 hours have a temporal resolution of 5 mins. Beyond 2 hours, forecasts have much lower temporal. resolution of typically 1 hour. Spatial resolutions vary from 1km for short range to 40km for longer range forecasts. Improving the accuracy of long range convective forecasts is a major challenge. A report published by the National Research Council states improvements for convective forecasts for the 2 to 6 hour time frame will only be achieved for a limited set of convective phenomena in the next 5 to 10 years. Improved longer range forecasts will be probabilistic

  9. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chahine, Moustafa T.; Pagano, Thomas S.; Aumann, Hartmut H.; Atlas, Robert; Barnet, Christopher; Blaisdell, John; Chen, Luke; Divakarla, Murty; Fetzer, Eric J.; Goldberg, Mitch; hide

    2006-01-01

    This paper discusses the performance of AIRS and examines how it is meeting its operational and research objectives based on the experience of more than 2 yr with AIRS data. We describe the science background and the performance of AIRS in terms of the accuracy and stability of its observed spectral radiances. We examine the validation of the retrieved temperature and water vapor profiles against collocated operational radiosondes, and then we assess the impact thereof on numerical weather forecasting of the assimilation of the AIRS spectra and the retrieved temperature. We close the paper with a discussion on the retrieval of several minor tropospheric constituents from AIRS spectra.

  10. Development of an Open Source, Air-Deployable Weather Station

    NASA Astrophysics Data System (ADS)

    Krejci, A.; Lopez Alcala, J. M.; Nelke, M.; Wagner, J.; Udell, C.; Higgins, C. W.; Selker, J. S.

    2017-12-01

    We created a packaged weather station intended to be deployed in the air on tethered systems. The device incorporates lightweight sensors and parts and runs for up to 24 hours off of lithium polymer batteries, allowing the entire package to be supported by a thin fiber. As the fiber does not provide a stable platform, additional data (pitch and roll) from typical weather parameters (e.g. temperature, pressure, humidity, wind speed, and wind direction) are determined using an embedded inertial motion unit. All designs are open sourced including electronics, CAD drawings, and descriptions of assembly and can be found on the OPEnS lab website at http://www.open-sensing.org/lowcost-weather-station/. The Openly Published Environmental Sensing Lab (OPEnS: Open-Sensing.org) expands the possibilities of scientific observation of our Earth, transforming the technology, methods, and culture by combining open-source development and cutting-edge technology. New OPEnS labs are now being established in India, France, Switzerland, the Netherlands, and Ghana.

  11. Planetary Space Weather Service: Part of the the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    Grande, Manuel; Andre, Nicolas

    2016-07-01

    Over the next four years the Europlanet 2020 Research Infrastructure will set up an entirely new European Planetary Space Weather service (PSWS). Europlanet RI is a part of of Horizon 2020 (EPN2020-RI, http://www.europlanet-2020-ri.eu). The Virtual Access Service, WP5 VA1 "Planetary Space Weather Services" will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. VA1 will make five entirely new 'toolkits' accessible to the research community and to industrial partners planning for space missions: a general planetary space weather toolkit, as well as three toolkits dedicated to the following key planetary environments: Mars (in support ExoMars), comets (building on the expected success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUICE mission to be launched in 2022). This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather in the tools and models available within the partner institutes. It will also create a novel event-diary toolkit aiming at predicting and detecting planetary events like meteor showers and impacts. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. So WP10 JRA4 "Planetary Space Weather Services" (PSWS) will provide the additional research and tailoring required to apply them for these purposes. The overall objectives of this Joint Research Aactivities will be to review, test, improve and adapt methods and tools

  12. The Impact of Atmospheric InfraRed Sounder (AIRS) Profiles on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovec, Gary J.; Lapenta, William

    2007-01-01

    The Atmospheric Infrared Sounder (AIRS), together with the Advanced Microwave Sounding Unit (AMSU), represents one of the most advanced spacebased atmospheric sounding systems. The combined AlRS/AMSU system provides radiance measurements used to retrieve temperature profiles with an accuracy of 1 K over 1 km layers under both clear and partly cloudy conditions, while the accuracy of the derived humidity profiles is 15% in 2 km layers. Critical to the successful use of AIRS profiles for weather and climate studies is the use of profile quality indicators and error estimates provided with each profile Aside form monitoring changes in Earth's climate, one of the objectives of AIRS is to provide sounding information of sufficient accuracy such that the assimilation of the new observations, especially in data sparse region, will lead to an improvement in weather forecasts. The purpose of this paper is to describe a procedure to optimally assimilate highresolution AIRS profile data in a regional analysis/forecast model. The paper will focus on the impact of AIRS profiles on a rapidly developing east coast storm and will also discuss preliminary results for a 30-day forecast period, simulating a quasi-operation environment. Temperature and moisture profiles were obtained from the prototype version 5.0 EOS science team retrieval algorithm which includes explicit error information for each profile. The error profile information was used to select the highest quality temperature and moisture data for every profile location and pressure level for assimilation into the ARPS Data Analysis System (ADAS). The AIRS-enhanced analyses were used as initial fields for the Weather Research and Forecast (WRF) system used by the SPORT project for regional weather forecast studies. The ADASWRF system will be run on CONUS domain with an emphasis on the east coast. The preliminary assessment of the impact of the AIRS profiles will focus on quality control issues associated with AIRS

  13. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots

  14. Ionospheric research for space weather service support

    NASA Astrophysics Data System (ADS)

    Stanislawska, Iwona; Gulyaeva, Tamara; Dziak-Jankowska, Beata

    2016-07-01

    Knowledge of the behavior of the ionosphere is very important for space weather services. A wide variety of ground based and satellite existing and future systems (communications, radar, surveillance, intelligence gathering, satellite operation, etc) is affected by the ionosphere. There are the needs for reliable and efficient support for such systems against natural hazard and minimalization of the risk failure. The joint research Project on the 'Ionospheric Weather' of IZMIRAN and SRC PAS is aimed to provide on-line the ionospheric parameters characterizing the space weather in the ionosphere. It is devoted to science, techniques and to more application oriented areas of ionospheric investigation in order to support space weather services. The studies based on data mining philosophy increasing the knowledge of ionospheric physical properties, modelling capabilities and gain applications of various procedures in ionospheric monitoring and forecasting were concerned. In the framework of the joint Project the novel techniques for data analysis, the original system of the ionospheric disturbance indices and their implementation for the ionosphere and the ionospheric radio wave propagation are developed since 1997. Data of ionosonde measurements and results of their forecasting for the ionospheric observatories network, the regional maps and global ionospheric maps of total electron content from the navigational satellite system (GNSS) observations, the global maps of the F2 layer peak parameters (foF2, hmF2) and W-index of the ionospheric variability are provided at the web pages of SRC PAS and IZMIRAN. The data processing systems include analysis and forecast of geomagnetic indices ap and kp and new eta index applied for the ionosphere forecasting. For the first time in the world the new products of the W-index maps analysis are provided in Catalogues of the ionospheric storms and sub-storms and their association with the global geomagnetic Dst storms is

  15. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  16. Risk-Hedged Approach for Re-Routing Air Traffic Under Weather Uncertainty

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Bilimoria, Karl D.

    2016-01-01

    This presentation corresponds to: our paper explores a new risk-hedged approach for re-routing air traffic around forecast convective weather. In this work, flying through a more likely weather instantiation is considered to pose a higher level of risk. Current operational practice strategically plans re-routes to avoid only the most likely (highest risk) weather instantiation, and then tactically makes any necessary adjustments as the weather evolves. The risk-hedged approach strategically plans re-routes by minimizing the risk-adjusted path length, incorporating multiple possible weather instantiations with associated likelihoods (risks). The resulting model is transparent and is readily analyzed for realism and treated with well-understood shortest-path algorithms. Risk-hedged re-routes are computed for some example weather instantiations. The main result is that in some scenarios, relative to an operational-practice proxy solution, the risk-hedged solution provides the benefits of lower risk as well as shorter path length. In other scenarios, the benefits of the risk-hedged solution are ambiguous, because the solution is characterized by a tradeoff between risk and path length. The risk-hedged solution can be executed in those scenarios where it provides a clear benefit over current operational practice.

  17. Weather Information Communications (WINCOMM) Project: Dissemination of Weather Information for the Reduction of Aviation Weather-Related Accident Causal Factors

    NASA Technical Reports Server (NTRS)

    Jarrell, Michael; Tanger, Thomas

    2004-01-01

    Weather Information Communications (WINCOMM) is part of the Weather Accident Prevention (WxAP) Project, which is part of the NASA's Aviation Safety and Security Program. The goals of WINCOMM are to facilitate the exchange of tactical and strategic weather information between air and ground. This viewgraph presentation provides information on data link decision factors, architectures, validation goals. WINCOMM is capable of providing en-route communication air-to-ground, ground-to-air, and air-to-air, even on international or intercontinental flights. The presentation also includes information on the capacity, cost, and development of data links.

  18. [Impact of short weather changes on the population's health risk from ambient air pollution].

    PubMed

    Novikov, S M; Skvortsova, N S; Kislitsin, V A; Shashina, T A

    2007-01-01

    The paper considers the negative impact of weather changes in combination with the altered quality of ambient air on the economic and social spheres of society and on the population's health. It describes experience in assessing a possible damage to the health of the Moscow population from exposure to elevated concentrations of ambient air pollutants (suspended matter, nitrogen and sulfur dioxides, carbon oxide). The results of assessment simulation of dissemination of chemicals contained in the emission from the Moscow heat-and-power objects under poor weather conditions are presented.

  19. Airline flight planning - The weather connection

    NASA Technical Reports Server (NTRS)

    Steinberg, R.

    1981-01-01

    The history of airline flight planning is briefly reviewed. Over half a century ago, when scheduled airline services began, weather data were almost nonexistent. By the early 1950's a reliable synoptic network provided upper air reports. The next 15 years saw a rapid growth in commercial aviation, and airlines introduced computer techniques to flight planning. The 1970's saw the development of weather satellites. The current state of flight planning activities is analyzed. It is found that accurate flight planning will require meteorological information on a finer scale than can be provided by a synoptic forecast. Opportunities for a new approach are examined, giving attention to the available options, a mesoscale numerical weather prediction model, limited area fine mesh models, man-computer interactive display systems, the use of interactive techniques with the present upper air data base, and the implementation of interactive techniques.

  20. Transition of AIRS Products to the National Weather Service

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley

    2012-01-01

    Short-term Prediction Research and Transition Center (SPoRT) is a proven community leader for transitioning satellite products to operational end users and is working hard to bring data from Atmospheric Infrared Sounder (AIRS) to forecasters. SPoRT products using AIRS data are currently or will soon be evaluated at WFOs and National Centers (1) T and q profiles: HWT, Alaska WFOs, HRD/OPC, HMT (2) Ozone profiles: HPC/OPC (3) Carbon Monoxide: Southern and Western Region WFOs SPoRT is actively evaluating differences between V5 and V6 profiles for selected cases and will continue to provide feedback to the AIRS team as V6 development efforts conclude.

  1. Relationship Between Air Pollution, Weather, Traffic, and Traffic-Related Mortality

    PubMed Central

    Dastoorpoor, Maryam; Idani, Esmaeil; Khanjani, Narges; Goudarzi, Gholamreza; Bahrampour, Abbas

    2016-01-01

    Background Air pollution and weather are just two of many environmental factors contributing to traffic accidents (RTA). Objectives This study assessed the effects of these factors on traffic accidents and related mortalities in Ahvaz, Iran. Methods In this ecological study, data about RTA, traffic-related mortalities, air pollution (including NO, CO, NO2, NOx PM10, SO2, and O3 rates) and climate data from March 2008 until March 2015 was acquired from the Khuzestan State Police Force, the Environmental Protection Agency and the State Meteorological Department. Statistical analysis was performed with STATA 12 through both crude and adjusted negative binomial regression methods. Results There was a significant positive correlation between increase in the monthly average temperature, the number of rainy days, and the number of frost days with the number of RTA (P < 0.05). Increased monthly average relative humidity, evaporation, and number of sunny days were negatively correlated with the frequency of RTA (P < 0.05). We also observed an inverse significant correlation between monthly average relative humidity, evaporation, and wind speed with traffic accident mortality (P < 0.05). Some air pollutants were negatively associated with the incidence rate of RTA. Conclusions It appears that some weather variables were significantly associated with increased RTA. However, increased levels of air pollutants were not associated with increased rates of RTA and/or related mortalities. Additional studies are recommended to explore this topic in more detail. PMID:28180125

  2. Modeling the weather impact on aviation in a global air traffic model

    NASA Astrophysics Data System (ADS)

    Himmelsbach, S.; Hauf, T.; Rokitansky, C. H.

    2009-09-01

    Weather has a strong impact on aviation safety and efficiency. For a better understanding of that impact, especially of thunderstorms and similar other severe hazards, we pursued a modeling approach. We used the detailed simulation software (NAVSIM) of worldwide air traffic, developed by Rokitansky [Eurocontrol, 2005] and implemented a specific weather module. NAVSIM models each aircraft with its specific performance characteristics separately along preplanned and prescribed routes. The specific weather module in its current version simulates a thunderstorm as an impenetrable 3D object, which forces an aircraft to circumvent the latter. We refer to that object in general terms as a weather object. The Cb-weather object, as a specific weather object, is a heuristic model of a real thunderstorm, with its characteristics based on actually observed satellite and precipitation radar data. It is comprised of an upper volume, mostly the anvil, and a bottom volume, the up- and downdrafts and the lower outflow area [Tafferner and Forster, 2009; Kober and Tafferner 2009; Zinner et al, 2008]. The Cb-weather object is already implemented in NAVSIM, other weather objects like icing and turbulence will follow. This combination of NAVSIM with a weather object allows a detailed investigation of situations where conflicts exist between planned flight routes and adverse weather. The first objective is to simulate the observed circum-navigation in NAVSIM. Real occurring routes will be compared with simulated ones. Once this has successfully completed, NAVSIM offers a platform to assess existing rules and develop more efficient strategies to cope with adverse weather. An overview will be given over the implementation status of weather objects within NAVSIM and first results will be presented. Cb-object data provision by A. Tafferner, C. Forster, T. Zinner, K. Kober, M. Hagen (DLR Oberpfaffenhofen) is greatly acknowledged. References: Eurocontrol, VDL Mode 2 Capacity Analysis through

  3. ESA SSA Space Weather Services Supporting Space Surveillance and Tracking

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Hilgers, Alain; Fletcher, Emmet

    2012-07-01

    ESA Space Situational Awareness (SSA) Preparatory Programme was started in 2009. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The Space Weather (SWE) Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010. This presentation provides an overview of the ESA SSA SWE services focused on supporting the Space Surveillance and Tracking users. This services include estimates of the atmospheric drag and archive and forecasts of the geomagnetic and solar indices. In addition, the SSA SWE system will provide nowcasts of the ionospheric group delay to support mitigation of the ionospheric impact on radar signals. The paper will discuss the user requirements for the services, the data

  4. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  5. Weather and emotional state: a search for associations between weather and calls to telephone counseling services

    NASA Astrophysics Data System (ADS)

    Driscoll, Dennis; Stillman, Daniel

    2002-08-01

    Previous research has revealed that an emotional response to weather might be indicated by calls to telephone counseling services. We analyzed call frequency from such "hotlines", each serving communities in a major metropolitan area of the United States (Detroit, Washington DC, Dallas and Seattle). The periods examined were all, or parts of, the years 1997 and 1998. Associations with subjectively derived synoptic weather types for all cities except Seattle, as well as with individual weather elements [cloudiness (sky cover), precipitation, windspeed, and interdiurnal temperature change] for all four cities, were investigated. Analysis of variance and t-tests (significance of means) were applied to test the statistical significance of differences. Although statistically significant results were obtained in scattered instances, the total number was within that expected by chance, and there was little in the way of consistency to these associations. One clear exception was the increased call frequency during destructive (severe) weather, when there is obvious concern about the damage done by it.

  6. Extreme weather and air pollution effects on cardiovascular and respiratory hospital admissions in Cyprus.

    PubMed

    Tsangari, H; Paschalidou, A K; Kassomenos, A P; Vardoulakis, S; Heaviside, C; Georgiou, K E; Yamasaki, E N

    2016-01-15

    In many regions of the world, climatic change is associated with increased extreme temperatures, which can have severe effects on mortality and morbidity. In this study, we examine the effect of extreme weather on hospital admissions in Cyprus, for inland and coastal areas, through the use of synoptic weather classifications (air mass types). In addition, the effect of particulate air pollution (PM10) on morbidity is examined. Our results show that two air mass types, namely (a) warm, rainy days with increased levels of water vapour in the atmosphere and (b) cold, cloudy days with increased levels of precipitation, were associated with increased morbidity in the form of hospital admissions. This was true both for cardiovascular and respiratory conditions, for all age groups, but particularly for the elderly, aged over 65. Particulate air pollution was also associated with increased morbidity in Cyprus, where the effect was more pronounced for cardiovascular diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Crowdsourcing of weather observations at national meteorological and hydrological services in Europe

    NASA Astrophysics Data System (ADS)

    Krennert, Thomas; Pistotnik, Georg; Kaltenberger, Rainer; Csekits, Christian

    2018-05-01

    National Meteorological and Hydrological Services (NMHSs) increase their efforts to deliver impact-based weather forecasts and warnings. At the same time, a desired increase in cost-efficiency prompts these services to automatize their weather station networks and to reduce the number of human observers, which leads to a lack of ground truth information about weather phenomena and their impact. A possible alternative is to encourage the general public to submit weather observations, which may include crucial information especially in high-impact situations. We wish to provide an overview of the state and properties of existing collaborations between NMHSs and voluntary weather observers or storm spotters across Europe. For that purpose, we performed a survey among 30 European NMHSs, from which 22 NMHSs returned our questionnaire. This study summarizes the most important findings and evaluates the use of crowdsourced information. 86 % of the surveyed NMHSs utilize information provided by the general public, 50 % have established official collaborations with spotter groups, and 18 % have formalized them. The observations are most commonly used for a real-time improvement of severe weather warnings, their verification, and an establishment of a climatology of severe weather events. The importance of these volunteered weather and impact observations has strongly risen over the past decade. We expect that this trend will continue and that storm spotters will become an essential part in severe weather warning, like they have been for decades in the United States of America. A rising number of incoming reports implies that quality management will become an increasing issue, and we finally discuss an idea how to handle this challenge.

  8. Developing a robust methodology for assessing the value of weather/climate services

    NASA Astrophysics Data System (ADS)

    Krijnen, Justin; Golding, Nicola; Buontempo, Carlo

    2016-04-01

    Increasingly, scientists involved in providing weather and climate services are expected to demonstrate the value of their work for end users in order to justify the costs of developing and delivering these services. This talk will outline different approaches that can be used to assess the socio-economic benefits of weather and climate services, including, among others, willingness to pay and avoided costs. The advantages and limitations of these methods will be discussed and relevant case-studies will be used to illustrate each approach. The choice of valuation method may be influenced by different factors, such as resource and time constraints and the end purposes of the study. In addition, there are important methodological differences which will affect the value assessed. For instance the ultimate value of a weather/climate forecast to a decision-maker will not only depend on forecast accuracy but also on other factors, such as how the forecast is communicated to and consequently interpreted by the end-user. Thus, excluding these additional factors may result in inaccurate socio-economic value estimates. In order to reduce the inaccuracies in this valuation process we propose an approach that assesses how the initial weather/climate forecast information can be incorporated within the value chain of a given sector, taking into account value gains and losses at each stage of the delivery process. By this we aim to more accurately depict the socio-economic benefits of a weather/climate forecast to decision-makers.

  9. A method to assess the inter-annual weather-dependent variability in air pollution concentration and deposition based on weather typing

    NASA Astrophysics Data System (ADS)

    Pleijel, Håkan; Grundström, Maria; Karlsson, Gunilla Pihl; Karlsson, Per Erik; Chen, Deliang

    2016-02-01

    Annual anomalies in air pollutant concentrations, and deposition (bulk and throughfall) of sulphate, nitrate and ammonium, in the Gothenburg region, south-west Sweden, were correlated with optimized linear combinations of the yearly frequency of Lamb Weather Types (LWTs) to determine the extent to which the year-to-year variation in pollution exposure can be partly explained by weather related variability. Air concentrations of urban NO2, CO, PM10, as well as O3 at both an urban and a rural monitoring site, and the deposition of sulphate, nitrate and ammonium for the period 1997-2010 were included in the analysis. Linear detrending of the time series was performed to estimate trend-independent anomalies. These estimated anomalies were subtracted from observed annual values. Then the statistical significance of temporal trends with and without LWT adjustment was tested. For the pollutants studied, the annual anomaly was well correlated with the annual LWT combination (R2 in the range 0.52-0.90). Some negative (annual average [NO2], ammonia bulk deposition) or positive (average urban [O3]) temporal trends became statistically significant (p < 0.05) when the LWT adjustment was applied. In all the cases but one (NH4 throughfall, for which no temporal trend existed) the significance of temporal trends became stronger with LWT adjustment. For nitrate and ammonium, the LWT based adjustment explained a larger fraction of the inter-annual variation for bulk deposition than for throughfall. This is probably linked to the longer time scale of canopy related dry deposition processes influencing throughfall being explained to a lesser extent by LWTs than the meteorological factors controlling bulk deposition. The proposed novel methodology can be used by authorities responsible for air pollution management, and by researchers studying temporal trends in pollution, to evaluate e.g. the relative importance of changes in emissions and weather variability in annual air pollution

  10. Collaborative Aviation Weather Statement - An Impact-based Decision Support Tool

    NASA Astrophysics Data System (ADS)

    Blondin, Debra

    2016-04-01

    Historically, convection causes the highest number of air traffic constraints on the United States National Air Space (NAS). Increased NAS predictability allows traffic flow managers to more effectively initiate, amend or terminate planned or active traffic management initiatives, resulting in more efficient use of available airspace. A Collaborative Aviation Weather Statement (CAWS) is an impact-based decision support tool used for the timely delivery of high-confidence, high-relevance aviation convective weather forecasts to air traffic managers. The CAWS is a graphical and textual forecast produced by a collaborative team of meteorologists from the Aviation Weather Center (AWC), Center Weather Service Units, and airlines to bring attention to high impact areas of thunderstorms. The CAWS addresses thunderstorm initiation or movement into the airports having the highest volume of traffic or into traffic sensitive jet routes. These statements are assessed by planners at the Federal Aviation Administration's (FAA) Air Route Traffic Control Centers and are used for planning traffic management initiatives to balance air traffic flow across the United States. The FAA and the airline industry use the CAWS to plan, manage, and execute operations in the NAS, thereby improving the system efficiency and safety and also saving dollars for industry and the traveling public.

  11. The CAMI Project - Weather and Climate Services for Caribbean Food Security

    NASA Astrophysics Data System (ADS)

    Trotman, Adrian; Van Meerbeeck, Cedric

    2013-04-01

    Food security is major focus of Caribbean governments, with production being of particular concern. For the past three decades, Caribbean agriculture has been declining in relative importance, both in terms of its contribution to GDP and its share of the labour force. One of the problems Caribbean agriculture faces is the destructive impacts from weather and climate extremes. These include flood, drought, extreme temperatures, and strong winds from tropical cyclones. Other potential disasters, such as from pests and diseases attacks, are also weather and climate driven. These make weather and climate information critically important to decision-making in agriculture in the Caribbean region. In an effort to help reduce weather and climate related risks to the food security sector, The Caribbean Institute for Meteorology and Hydrology, along with its partners the Caribbean Agricultural Research and Development Institute, the World Meteorological Organization (WMO) and ten National Meteorological Services from within the Caribbean Community launched and implemented the Caribbean Agrometeorological Initiative (CAMI). From 2010 to 2013, CAMI set out to provide relevant information to farmers, and the industry in general, for decision and policy making. The project is funded by the European Union through the Science and Technology Programme of the African, Caribbean and Pacific Group of Countries' (ACP). The overarching objective of CAMI was to increase and sustain agricultural productivity at the farm level in the Caribbean region through improved applications of weather and climate information, using an integrated and coordinated approach. Currently, this is done through (i) provision of relevant climate information appropriately disseminated, (ii) predictions on seasonal rainfall and temperature, (iii) support for improved irrigation management, (iv) the development of strategically selected weather-driven pest and disease models, (v) use of crop simulation models

  12. The Copernicus Atmosphere Monitoring Service: facilitating the prediction of air quality from global to local scales

    NASA Astrophysics Data System (ADS)

    Engelen, R. J.; Peuch, V. H.

    2017-12-01

    The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.

  13. Radar Scan Strategies for the Patrick Air Force Base Weather Surveillance Radar, Model-74C, Replacement

    NASA Technical Reports Server (NTRS)

    Short, David

    2008-01-01

    The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.

  14. Altus AFB, Oklahoma Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1985-09-01

    4 _ 2; 4, InI Air Weather Service ( MAC) Aft 1 REVISED UNIFOCM SUMMAARY CW SC IL!8k 2 SURFACE WATHER OBE3RVATION$ 2b1l__ ALTUS m~F3 OK.MC 732 4 40 99...BRANCH PERCENIA6E FRECQUENCY OF OCCURRENCE OF CEILING VERSUS VISIBILIIV USAFTEAC FRON HOURLY OBSERVATIONS AIR WATHER SERVICE/HAC STATION NUMBER: 123520

  15. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; Cook, T.; Génot, V.; Guio, P.; Goutenoir, A.; Grison, B.; Hueso, R.; Indurain, M.; Jones, G. H.; Lilensten, J.; Marchaudon, A.; Matthiä, D.; Opitz, A.; Rouillard, A.; Stanislawska, I.; Soucek, J.; Tao, C.; Tomasik, L.; Vaubaillon, J.

    2018-01-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI) will include an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will make twelve new services accessible to the research community, space agencies, and industrial partners planning for space missions. These services will in particular be dedicated to the following key planetary environments: Mars (in support of the NASA MAVEN and European Space Agency (ESA) Mars Express and ExoMars missions), comets (building on the outstanding success of the ESA Rosetta mission), and outer planets (in preparation for the ESA JUpiter ICy moon Explorer mission), and one of these services will aim at predicting and detecting planetary events like meteor showers and impacts in the Solar System. This will give the European planetary science community new methods, interfaces, functionalities and/or plugins dedicated to planetary space weather as well as to space situational awareness in the tools and models available within the partner institutes. A variety of tools (in the form of web applications, standalone software, or numerical models in various degrees of implementation) are available for tracing propagation of planetary and/or solar events through the Solar System and modelling the response of the planetary environment (surfaces, atmospheres, ionospheres, and magnetospheres) to those events. But these tools were not originally designed for planetary event prediction and space weather applications. PSWS will provide the additional research and tailoring required to apply them for these purposes. PSWS will be to review, test, improve and adapt methods and tools available within the partner institutes in order to make prototype planetary event and space weather services operational in Europe at the end

  16. JPL's Real-Time Weather Processor project (RWP) metrics and observations at system completion

    NASA Technical Reports Server (NTRS)

    Loesh, Robert E.; Conover, Robert A.; Malhotra, Shan

    1990-01-01

    As an integral part of the overall upgraded National Airspace System (NAS), the objective of the Real-Time Weather Processor (RWP) project is to improve the quality of weather information and the timeliness of its dissemination to system users. To accomplish this, an RWP will be installed in each of the Center Weather Service Units (CWSUs), located in 21 of the 23 Air Route Traffic Control Centers (ARTCCs). The RWP System is a prototype system. It is planned that the software will be GFE and that production hardware will be acquired via industry competitive procurement. The ARTCC is a facility established to provide air traffic control service to aircraft operating on Instrument Flight Rules (IFR) flight plans within controlled airspace, principally during the en route phase of the flight. Covered here are requirement metrics, Software Problem Failure Reports (SPFRs), and Ada portability metrics and observations.

  17. NEW TRAINING PARADIGM IN THE NATIONAL WEATHER SERVICE LeRoy Spayd Chief, Training Division NOAA/National Weather Service Silver Spring, Maryland

    NASA Astrophysics Data System (ADS)

    Spayd, L. E.

    2012-12-01

    The National Weather Service (NWS) implemented a new Learning Management System (LMS) in June 2007 as part of a Department of Commerce (DOC)-wide Learning Center (CLC). One of the key goals of this LMS was to provide accessible, low-cost training to develop and sustain a world-class NOAA workforce. Five years of training records have been analyzed for trends and accomplishments have been summarized. The NWS leads the entire DOC in usage of this LMS. NWS workforce of 4500 employees complete over 50,000 courses per year and account for over 40% of DOC completions even though the NWS represents only 12% of the users. This paper will highlight the lessons learned in implementing training in a diverse and widespread organization. The paper will also highlight the critical role of management engagement in setting expectations for training and education which resulted in service improvements to the public. This paper also address future training trends as the NWS moves forward in implementing NOAA's Strategic Plan to make this country a WeatherReady Nation. A mix of how synchronous/asynchronous and classroom/on-line/hybrid learning options is explained.;

  18. Montana air service : opportunities and challenges.

    DOT National Transportation Integrated Search

    2007-02-01

    "This report analyzes the challenges facing Montanas commercial service airports and outlines the opportunities : for air service and air cargo development. There are 15 commercial service airports in the state. Before : opportunities could be rec...

  19. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities.

    PubMed

    Hebbern, Christopher; Cakmak, Sabit

    2015-09-01

    Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O3, NO2, SO2, PM10, PM2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O3, NO2, SO2, PM2.5 and asthma hospitalisations that differs under specific synoptic weather types. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  20. Comparison of kinetic and air temperatures in Budapest aiming applications in weather forecasting

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Nemeth, Akos; Bela Olah, Andras; Dezso, Zsuzsanna

    2010-05-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) based kinetic temperature data are compared with the surface air temperature data at the four weather stations in Budapest, Hun-gary. Dependence of these temperature characteristics on weather conditions, characterised by macrosynoptic types and by objective weather types, is in the focus of the study. Day- and night-time kinetic temperature series are used from the period 2001-2008. Four automatic stations are also used as the surface-based control variables. The four MODIS-pixels, covering one station, each, are the sites of our comparison. One of the four stations has strictly urban situation at the roof level in a strongly built-in region of Budapest. Another one, used as background rural station is at the east-west edge of the town with gar-dened environment. Two other stations are positioned near the river Danube at the northern and southern edges of Budapest, still under mezo-scale effect of the city. The number of elaborated hourly values is 4300-4400 above each pixel, depending on the cloudiness. At the four station automatic observations on air temperature, cloudiness (=0), relative humidity and wind-speed are observed in the hours of the MODIS observations. From these elements air temperature is used for comparison with the satellite-based kinetic temperature, and also as the main components of the Physiologically Equivalent Temperature (PET), de-rived to characterise usefulness of the kinetic temperature. Our first aim is to specify detailed relationship between the two temperatures consider-ing the seasonal and diurnal cycles and synoptic situation. This comparison is also performed by using the PET to establish which kind of temperature reminds this human bioclimatic in-dex better. If we could establish effective relationships with the synoptic situations (or weather types) we could use them in two further applications. The first one is the everyday forecasting of dangerous situations within the

  1. Space Weather Impacts on Spacecraft Operations: Identifying and Establishing High-Priority Operational Services

    NASA Astrophysics Data System (ADS)

    Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.

    2013-12-01

    Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit

  2. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  3. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  4. Broadcast media and the dissemination of weather information

    NASA Technical Reports Server (NTRS)

    Byrnes, J.

    1973-01-01

    Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.

  5. Weatherization Works--Summary of Findings from the Retrospective Evaluation of the U.S. DOE's Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Carroll, David; Pigg, Scott

    This report presents a summary of the studies and analyses that compose the retrospective evaluation of the U.S. Department of Energy s low-income Weatherization Assistance Program (WAP). WAP provides grants to Grantees (i.e., states) that then provide grants to Subgrantees (i.e., local weatherization agencies) to weatherize low-income homes. This evaluation focused on the WAP Program Year 2008. The retrospective evaluation produced twenty separate reports, including this summary. Four separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, small multifamily, and large multifamily. Other reports address the environmentalmore » emissions, macroeconomic, and health and household-related benefits attributable to WAP, and characterize the program, its recipients, and those eligible for the program. Major field studies are also summarized, including a major indoor air quality study and a follow-up ventilation study, an in-depth in-field assessment of weatherization work and quality, and a study that assesses reasons for variations in energy savings across homes. Results of surveys of weatherization staff, occupants, occupants satisfaction with weatherization services provided, and weatherization trainees are summarized. Lastly, this report summarizes a set of fifteen case studies of high-performing and unique local weatherization agencies.« less

  6. Interactive Forecasting with the National Weather Service River Forecast System

    NASA Technical Reports Server (NTRS)

    Smith, George F.; Page, Donna

    1993-01-01

    The National Weather Service River Forecast System (NWSRFS) consists of several major hydrometeorologic subcomponents to model the physics of the flow of water through the hydrologic cycle. The entire NWSRFS currently runs in both mainframe and minicomputer environments, using command oriented text input to control the system computations. As computationally powerful and graphically sophisticated scientific workstations became available, the National Weather Service (NWS) recognized that a graphically based, interactive environment would enhance the accuracy and timeliness of NWS river and flood forecasts. Consequently, the operational forecasting portion of the NWSRFS has been ported to run under a UNIX operating system, with X windows as the display environment on a system of networked scientific workstations. In addition, the NWSRFS Interactive Forecast Program was developed to provide a graphical user interface to allow the forecaster to control NWSRFS program flow and to make adjustments to forecasts as necessary. The potential market for water resources forecasting is immense and largely untapped. Any private company able to market the river forecasting technologies currently developed by the NWS Office of Hydrology could provide benefits to many information users and profit from providing these services.

  7. Dobbins AFB, Georgia Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-04-25

    Ii4 GL(,BAL CLIMATOLOGY BRANCH uSArETAC WEATHER CONDITIONS Ar7 WEATHFR SERVICE/MAC 2ATIN DORINS AFR TIONNAME I -A YEARS PE;?CENTAGE FREQUENCY OF...USAFETAC CEILING VERSUS VISIBILITY AIr WEATHER SF1VICE/MAC ?"󈧚’ " DORIN , 4FB GA _4-81 JU - PERCENTAGE FREQUENCY OF OCCURRENCE (FROM HOURLY OBSERVATIONS

  8. The Modernization and Associated Restructuring of the National Weather Service: An Overview.

    NASA Astrophysics Data System (ADS)

    Friday, Elbert W., Jr.

    1994-01-01

    The scientific understanding of the atmosphere and the ability to forecast large-and small-scale hydrometeorological phenomena have increased dramatically over the last two decades. As a result, the National Oceanic and Atmospheric Administration has set an ambitious goal: to modernize the National Weather Service (NWS)through the deployment of proven observational, information processing, and communications technologies, and to establish an associated cost-effective operational structure. The modernization and associated restructuring of the NWS will assure that the major advances that have been made in our ability to observe and understand the atmosphere are applied to the practical problems of providing atmospheric and hydrologic services to the nation. Implementation and practice of the new science will improve forecasts, provide more reliable detection of and warnings for severe weather and flooding, achieve more uniform hydrometeorological services across the nation, permit a more cost-effective NWS, and increase productivity among NWS employees. The changes proposed by the NWS will allow increased productivity and efficiency for any entity dependent on weather information, including local, state, and federal government agencies; researchers; private-sector meteorologists; private industry; and resource management organizations. This is the first in a series of articles intended to highlight these changes.

  9. Operational Planetary Space Weather Services for the Europlanet 2020 Research Infrastructure

    NASA Astrophysics Data System (ADS)

    André, Nicolas; Grande, Manuel

    2017-04-01

    Under Horizon 2020, the Europlanet 2020 Research Infrastructure (EPN2020-RI, http://www.europlanet-2020-ri.eu) includes an entirely new Virtual Access Service, "Planetary Space Weather Services" (PSWS) that will extend the concepts of space weather and space situational awareness to other planets in our Solar System and in particular to spacecraft that voyage through it. PSWS will provide at the end of 2017 12 services distributed over 4 different service domains - 1) Prediction, 2) Detection, 3) Modelling, 4) Alerts. These services include 1.1) A 1D MHD solar wind prediction tool, 1.2) Extensions of a Propagation Tool, 1.3) A meteor showers prediction tool, 1.4) A cometary tail crossing prediction tool, 2.1) Detection of lunar impacts, 2.2) Detection of giant planet fireballs, 2.3) Detection of cometary tail events, 3.1) A Transplanet model of magnetosphere-ionosphere coupling, 3.2) A model of the Mars radiation environment, 3.3.) A model of giant planet magnetodisc, 3.4) A model of Jupiter's thermosphere, 4) A VO-event based alert system. We will detail in the present paper some of these services with a particular emphasis on those already operational at the time of the presentation (1.1, 1.2, 1.3, 2.2, 3.1, 4). The proposed Planetary Space Weather Services will be accessible to the research community, amateur astronomers as well as to industrial partners planning for space missions dedicated in particular to the following key planetary environments: Mars, in support of ESA's ExoMars missions; comets, building on the success of the ESA Rosetta mission; and outer planets, in preparation for the ESA JUpiter ICy moon Explorer (JUICE). These services will also be augmented by the future Solar Orbiter and BepiColombo observations. This new facility will not only have an impact on planetary space missions but will also allow the hardness of spacecraft and their components to be evaluated under variety of known conditions, particularly radiation conditions, extending

  10. Recent Weather Technologies Delivered to America's Space Program by the Applied Meteorology Unit

    NASA Technical Reports Server (NTRS)

    Bauman, WIlliam, H., III; Crawford, Winifred

    2009-01-01

    The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products

  11. Classroom Exercises Concerning the Effect of Weather Conditions on Air Quality in Illinois.

    ERIC Educational Resources Information Center

    Kohler, Fred

    This paper contains sample exercises that investigate weather and air quality relationships for use in college-level introductory courses in climatology and meteorology. The exercises will provide students with an opportunity to apply meteorological principles to a specific geographic location, in an effort to better understand the significant…

  12. Energy, Weatherization and Indoor Air Quality

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  13. National Weatherization Assistance Program Impact Evaluation - Client Satisfaction Survey: WAP Service Delivery from the Client's Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Carolyn; Carroll, David; Berger, Jacqueline

    This report presents the results of a survey of recipients to measure satisfaction with services provided by local weatherization agencies being supported by funding from Department of Energy's Weatherization Assistance Program.

  14. Air Force Medical Service > Resources > Suicide Prevention

    Science.gov Websites

    Air Force Medical Service Air Force Medical Service Join the Air Force Home Your Healthcare Healthy Videos MHS Genesis AFMS Priorities Trusted Care Vision Air Force Medical Home Full Spectrum Medical ) Air Force EFMP Who is an EFM? Who must enroll? EFMP-Medical EFMP-M Objectives Family Criteria EFMP-M

  15. 14 CFR 399.86 - Payments for non-air transportation services for air cargo.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Payments for non-air transportation... Enforcement § 399.86 Payments for non-air transportation services for air cargo. The Board considers that... air carriers for non-air transportation preparation of air cargo shipments are for services ancillary...

  16. Weather impacts on space operations

    NASA Astrophysics Data System (ADS)

    Madura, J.; Boyd, B.; Bauman, W.; Wyse, N.; Adams, M.

    The efforts of the 45th Weather Squadron of the USAF to provide weather support to Patrick Air Force Base, Cape Canaveral Air Force Station, Eastern Range, and the Kennedy Space Center are discussed. Its weather support to space vehicles, particularly the Space Shuttle, includes resource protection, ground processing, launch, and Ferry Flight, as well as consultations to the Spaceflight Meteorology Group for landing forecasts. Attention is given to prelaunch processing weather, launch support weather, Shuttle launch commit criteria, and range safety weather restrictions. Upper level wind requirements are examined. The frequency of hourly surface observations with thunderstorms at the Shuttle landing facility, and lightning downtime at the Titan launch complexes are illustrated.

  17. Weather And Death On Mount Everest: An Analysis Of The Into Thin Air Storm.

    NASA Astrophysics Data System (ADS)

    Moore, G. W. K.; Semple, John L.

    2006-04-01

    Scientific interest in Mount Everest has been largely focused on the physiology of hypoxia caused by the summit's low barometric pressure. Although weather is recognized as a significant risk for climbers on the mountain, it has not been extensively studied. In this paper, we reconstruct the meteorological conditions associated with the deadly outbreak of high-impact weather on Mount Everest that occurred in May 1996 and was the subject of the best-selling book Into Thin Air. The authors show that during this event, two jet streaks—an upper-level short-wave trough and an intrusion of stratospheric air into the upper troposphere—were present in the vicinity of Mount Everest. Meanwhile, in the lower troposphere, there was convergence of water vapor transport from both the Arabian Sea and the Bay of Bengal into the region to the south of Mount Everest. The authors propose that the ageostrophic circulation associated with the upper-level features resulted in a region of large-scale ascent near Mount Everest that, in combination with the anomalous availability of moisture in the region, triggered convective activity. The resulting high-impact weather trapped over 20 climbers on Mount Everest's exposed upper slopes leading to the deaths of 8. These synoptic-scale characteristics provide some expectation of predicting life-threatening high-altitude storms in the Himalayas. In addition, the authors argue that the falling barometric pressure and the presence of ozone-rich stratospheric air that occurred near the summit of Mount Everest during this event could have shifted a coping climber from a state of brittle tolerance to physiological distress.

  18. Index of Air Weather Service Technical Publications. Headquarters AWS and Subordinate Units.

    DTIC Science & Technology

    1982-07-01

    Area," by Capt L. F. Haker , 33p. "Forecasting in the Watson Lake Area," by Capt F. F. Hooper, 28p. 105-48 "Study of Blowing Dust in the 19th Weather...Area," by Capt L. F. Haker , 33p. "Forecasting in the Watson Lake Area," by Capt F. F. Hooper, 28p. "On the Origin and Climatology of Noctilucent

  19. 14 CFR 272.5 - Determination of essential air service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO THE FREELY ASSOCIATED STATES § 272.5 Determination of essential air service. Procedures for the determination of essential air service under this... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Determination of essential air service. 272...

  20. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    NASA Astrophysics Data System (ADS)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  1. NDBC - National Weather Service Marine Forecast FZUS51 KGYX

    Science.gov Websites

    Coastal Waters Forecast National Weather Service Gray ME 1218 PM EDT Sun May 27 2018 COASTAL WATERS FROM STONINGTON ME TO MERRIMACK RIVER MA OUT TO 25 NM ANZ100-280630- 1218 PM EDT Sun May 27 2018 Synopsis for - 1218 PM EDT Sun May 27 2018 SMALL CRAFT ADVISORY IN EFFECT UNTIL 6 PM EDT THIS EVENING REST OF TODAY E

  2. The relationship between birch pollen, air pollution and weather types and their effect on antihistamine purchase in two Swedish cities.

    PubMed

    Grundström, Maria; Dahl, Åslög; Ou, Tinghai; Chen, Deliang; Pleijel, Håkan

    2017-01-01

    Exposure to elevated air pollution levels can aggravate pollen allergy symptoms. The aim of this study was to investigate the relationships between airborne birch ( Betula ) pollen, urban air pollutants NO 2 , O 3 and PM 10 and their effects on antihistamine demand in Gothenburg and Malmö, Sweden, 2006-2012. Further, the influence of large-scale weather pattern on pollen-/pollution-related risk, using Lamb weather types (LWTs), was analysed. Daily LWTs were obtained by comparing the atmospheric pressure over a 16-point grid system over southern Sweden (scale ~3000 km). They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E…). Birch pollen levels were exceptionally high under LWTs E and SE in both cities. Furthermore, LWTs with dry and moderately calm meteorological character (A, NE, E, SE) were associated with strongly elevated air pollution (NO 2 and PM 10 ) in Gothenburg. For most weather situations in both cities, simultaneously high birch pollen together with high air pollution had larger over-the-counter (OTC) sales of antihistamines than situations with high birch pollen alone. LWTs NE, E, SE and S had the highest OTC sales in both cities. In Gothenburg, the city with a higher load of both birch pollen and air pollution, the higher OTC sales were especially obvious and indicate an increased effect on allergic symptoms from air pollution. Furthermore, Gothenburg LWTs A, NE, E and SE were associated with high pollen and air pollution levels and thus classified as high-risk weather types. In Malmö, corresponding high-risk LWTs were NE, E, SE and S. Furthermore, occurrence of high pollen and air pollutants as well as OTC sales correlated strongly with vapour pressure deficit and temperature in Gothenburg (much less so in Malmö). This provides evidence that the combination of meteorological properties associated with LWTs can explain high levels of birch pollen and air

  3. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  4. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  5. NASA Weather Support 2017

    NASA Technical Reports Server (NTRS)

    Carroll, Matt

    2017-01-01

    In the mid to late 1980's, as NASA was studying ways to improve weather forecasting capabilities to reduce excessive weather launch delays and to reduce excessive weather Launch Commit Criteria (LCC) waivers, the Challenger Accident occurred and the AC-67 Mishap occurred.[1] NASA and USAF weather personnel had advance knowledge of extremely high levels of weather hazards that ultimately caused or contributed to both of these accidents. In both cases, key knowledge of the risks posed by violations of weather LCC was not in the possession of final decision makers on the launch teams. In addition to convening the mishap boards for these two lost missions, NASA convened expert meteorological boards focusing on weather support. These meteorological boards recommended the development of a dedicated organization with the highest levels of weather expertise and influence to support all of American spaceflight. NASA immediately established the Weather Support Office (WSO) in the Office of Space Flight (OSF), and in coordination with the United Stated Air Force (USAF), initiated an overhaul of the organization and an improvement in technology used for weather support as recommended. Soon after, the USAF established a senior civilian Launch Weather Officer (LWO) position to provide meteorological support and continuity of weather expertise and knowledge over time. The Applied Meteorology Unit (AMU) was established by NASA, USAF, and the National Weather Service to support initiatives to place new tools and methods into an operational status. At the end of the Shuttle Program, after several weather office reorganizations, the WSO function had been assigned to a weather branch at Kennedy Space Center (KSC). This branch was dismantled in steps due to further reorganization, loss of key personnel, and loss of budget line authority. NASA is facing the loss of sufficient expertise and leadership required to provide current levels of weather support. The recommendation proposed

  6. Operational Space Weather Activities in the US

    NASA Astrophysics Data System (ADS)

    Berger, Thomas; Singer, Howard; Onsager, Terrance; Viereck, Rodney; Murtagh, William; Rutledge, Robert

    2016-07-01

    We review the current activities in the civil operational space weather forecasting enterprise of the United States. The NOAA/Space Weather Prediction Center is the nation's official source of space weather watches, warnings, and alerts, working with partners in the Air Force as well as international operational forecast services to provide predictions, data, and products on a large variety of space weather phenomena and impacts. In October 2015, the White House Office of Science and Technology Policy released the National Space Weather Strategy (NSWS) and associated Space Weather Action Plan (SWAP) that define how the nation will better forecast, mitigate, and respond to an extreme space weather event. The SWAP defines actions involving multiple federal agencies and mandates coordination and collaboration with academia, the private sector, and international bodies to, among other things, develop and sustain an operational space weather observing system; develop and deploy new models of space weather impacts to critical infrastructure systems; define new mechanisms for the transition of research models to operations and to ensure that the research community is supported for, and has access to, operational model upgrade paths; and to enhance fundamental understanding of space weather through support of research models and observations. The SWAP will guide significant aspects of space weather operational and research activities for the next decade, with opportunities to revisit the strategy in the coming years through the auspices of the National Science and Technology Council.

  7. Training for Effective National Weather Service (NWS) Communication in Chat and Conference Calls

    ERIC Educational Resources Information Center

    Pearce, Vanessa

    2012-01-01

    Staff of the National Weather Service Offices should be able to understand interpersonal communication and public relations in order to better serve their mission to "protect lives and property" as well as work with their internal and external partners (NWS Internet Services Team). Two technologies have been developed to assist the integration of…

  8. P161 Improved Impact of Atmospheric Infrared Sounder (AIRS) Radiance Assimilation in Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley T.; Chou, Shih-Hung; Jedlovec, Gary J.

    2012-01-01

    For over 6 years, AIRS radiances have been assimilated operationally into National (e.g. Environmental Modeling Center (EMC)) and International (e.g. European Centre for Medium-Range Weather Forecasts (ECMWF)), operational centers; assimilated in the North American Mesoscale (NAM) since 2008. Due partly to data latency and operational constraints, hyperspectral radiance assimilation has had less impact on the Gridpoint Statistical Interpolation (GSI) system used in the NAM and GFS. Objective of this project is to use AIRS retrieved profiles as a proxy for the AIRS radiances in situations where AIRS radiances are unable to be assimilated in the current operational system by evaluating location and magnitude of analysis increments.

  9. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  10. A pilot evaluation of text display formats for weather information in the cockpit

    DOT National Transportation Integrated Search

    1995-10-01

    This study focuses on the weather (WX) services portion of Data Link. A : two-phase evaluation was conducted with 16 air transport (ATP) and general : aviation (GA) pilots. The pilots evaluated four data formatting options and : four data entry metho...

  11. Forest ecosystem services: Carbon and air quality

    Treesearch

    David J. Nowak; Neelam C. Poudyal; Steve G. McNulty

    2017-01-01

    Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...

  12. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  13. GNSS monitoring of the ionosphere for Space Weather services

    NASA Astrophysics Data System (ADS)

    Krankowski, A.; Sieradzki, R.; Zakharenkova, I. E.; Cherniak, I. V.

    2012-04-01

    The International GNSS Service (IGS) Ionosphere Working Group routinely provides the users global ionosphere maps (GIMs) of vertical total electron content (vTEC). The IGS GIMs are provided with spatial resolution of 5.0 degrees x 2.5 degrees in longitude and latitude, respectively. The current temporal resolution is 2 hours, however, 1-hour maps are delivered as a pilot project. There are three types IGS GIMs: the final, rapid and predicted. The latencies of the IGS ionospheric final and rapid products are 10 days and 1 day, respectively. The predicted GIMs are generated for 1 and 2 days in advance. There are four IGS Associate Analysis Centres (IAACs) that provide ionosphere maps computed with independent methodologies using GNSS data. These maps are uploaded to the IGS Ionosphere Combination and Validation Center at the GRL/UWM (Geodynamics Research Laboratory of the University of Warmia and Mazury in Olsztyn, Poland) that produces the IGS official ionospheric products, which are published online via ftp and www. On the other hand, the increasing number of permanently tracking GNSS stations near the North Geomagnetic Pole allow for using satellite observations to detect the ionospheric disturbances at high latitudes with even higher spatial resolution. In the space weather service developed at GRL/UWM, the data from the Arctic stations belonging to IGS/EPN/POLENET networks were used to study TEC fluctuations and scintillations. Since the beginning of 2011, a near real-time service presenting the conditions in the ionosphere have been operational at GRL/UWM www site. The rate of TEC index (ROTI) expressed in TECU/min is used as a measure of TEC fluctuations. The service provides 2-hour maps of the TEC variability. In addition, for each day the daily map of the ionospheric fluctuations as a function geomagnetic local time is also created. This presentation shows the architecture, algorithms, performance and future developments of the IGS GIMs and this new space

  14. An evaluation of the Royal Air Force helicopter search and rescue services in Britain with reference to Royal Air Force Valley 1980-1989.

    PubMed Central

    Liskiewicz, W J

    1992-01-01

    The Royal Air Force (RAF) operates a helicopter Search and Rescue (SAR) service in the United Kingdom and territorial waters; it also provides a similar service in several locations abroad. A 10-year retrospective study of the SAR helicopter service operating from the RAF base at Valley on the island of Anglesey in North Wales is presented, with national SAR statistics over a similar period provided for comparison. Analysis of records kept by SAR aircrew at RAF Valley shows that their assistance had been requested on 1490 occasions during the 10-year period studied; most of these requests were the result of incidents involving holidaymakers, particularly in the mountains or along the coast. The results illustrate the versatility and life-saving potential of a highly skilled and motivated service able to work in adverse weather and dangerous locations. In the light of current debate, the value of aeromedical evacuation of seriously ill patients using helicopters is discussed. PMID:1494160

  15. NOAA honors New York farmer for 84 years of service as volunteer weather

    Science.gov Websites

    Print Facebook Google StumbleUpon Digg More Destinations NOAA honors New York farmer for 84 years of Weather Service, Herbert Hoover occupied the White House. Since then the Bridgehampton, New York, farmer decades, the new 80-year service award will be named in his honor. Richard G. Hendrickson looks out over

  16. Operationalizing Space Weather Products - Process and Issues

    NASA Astrophysics Data System (ADS)

    Scro, K. D.; Quigley, S.

    2006-12-01

    Developing and transitioning operational products for any customer base is a complicated process. This is the case for operational space weather products and services for the USAF. This presentation will provide information on the current state of affairs regarding the process required to take an idea from the research field to the real-time application of 24-hour space weather operations support. General principles and specific issues are discussed and will include: customer requirements, organizations in-play, funding, product types, acquisition of engineering and validation data, security classification, version control, and various important changes that occur during the process. The author's viewpoint is as an individual developing space environmental system-impact products for the US Air Force: 1) as a member of its primary research organization (Air Force Research Laboratory), 2) working with its primary space environment technology transition organization (Technology Application Division of the Space and Missile Systems Center, SMC/WXT), and 3) delivering to the primary sponsor/customer of such system-impact products (Air Force Space Command). The experience and focus is obviously on specific military operationalization process and issues, but most of the paradigm may apply to other (commercial) enterprises as well.

  17. Weather types and strokes in the Augsburg region (Southern Germany)

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Ertl, Michael; Giemsa, Esther; Jacobeit, Jucundus; Naumann, Markus; Seubert, Stefanie

    2017-04-01

    Strokes are one of the leading causes of morbidity and mortality worldwide and the main reason for longterm care dependency in Germany. Concerning the economical impact on patients and healthcare systems it is of particular importance to prevent this disease as well as to improve the outcome of the affected persons. Beside the primary well-known risk factors like hypertension, cigarette smoking, physical inactivity and others, also weather seems to have pronounced influence on the occurrence and frequency of strokes. Previous studies most often focused on effects of singular meteorological variables like ambient air temperature, air pressure or humidity. An advanced approach is to link the entire suite of daily weather elements classified to air mass- or weather types to cerebrovascular morbidity or mortality. In a joint pilot study bringing together climatologists, environmental scientists and physicians from the University of Augsburg and the clinical centre Augsburg, we analysed relationships between singular meteorological parameters as well as combined weather effects (e.g. weather types) and strokes in the urban area of Augsburg and the surrounding rural region. A total of 17.501 stroke admissions to Neurological Clinic and Clinical Neurophysiology at Klinikum Augsburg between 2006 and 2015 are classified to either "ischaemic" (16.354) or "haemorrhagic" (1.147) subtype according to etiology (based on the International Classification of Diseases - 10th Revision). Spearman correlations between daily frequencies of ischaemic and haemorrhagic strokes and singular atmospheric parameters (T, Tmin, Tmax, air pressure, humidity etc.) measured at the DWD (German weather service) meteorological station at Augsburg Muehlhausen are rather low. However, higher correlations are achieved when considering sub-samples of "homogenous weather conditions" derived from synoptic circulation classifications: e.g. within almost all of 10 types arising from a classification of

  18. National Weather Service Marine Text Forecasts

    Science.gov Websites

    Offshore NAVTEX Bay and Coastal Surf Zone Recreational Marine Weather Statements Special Marine Warnings Marine Weather Messages Alaska Bay and Coastal Great Lakes Open Lake Great Lakes Nearshore Great Lakes

  19. A Case Study of the Impact of AIRS Temperature Retrievals on Numerical Weather Prediction

    NASA Technical Reports Server (NTRS)

    Reale, O.; Atlas, R.; Jusem, J. C.

    2004-01-01

    Large errors in numerical weather prediction are often associated with explosive cyclogenesis. Most studes focus on the under-forecasting error, i.e. cases of rapidly developing cyclones which are poorly predicted in numerical models. However, the over-forecasting error (i.e., to predict an explosively developing cyclone which does not occur in reality) is a very common error that severely impacts the forecasting skill of all models and may also present economic costs if associated with operational forecasting. Unnecessary precautions taken by marine activities can result in severe economic loss. Moreover, frequent occurrence of over-forecasting can undermine the reliance on operational weather forecasting. Therefore, it is important to understand and reduce the prdctions of extreme weather associated with explosive cyclones which do not actually develop. In this study we choose a very prominent case of over-forecasting error in the northwestern Pacific. A 960 hPa cyclone develops in less than 24 hour in the 5-day forecast, with a deepening rate of about 30 hPa in one day. The cyclone is not versed in the analyses and is thus a case of severe over-forecasting. By assimilating AIRS data, the error is largely eliminated. By following the propagation of the anomaly that generates the spurious cyclone, it is found that a small mid-tropospheric geopotential height negative anomaly over the northern part of the Indian subcontinent in the initial conditions, propagates westward, is amplified by orography, and generates a very intense jet streak in the subtropical jet stream, with consequent explosive cyclogenesis over the Pacific. The AIRS assimilation eliminates this anomaly that may have been caused by erroneous upper-air data, and represents the jet stream more correctly. The energy associated with the jet is distributed over a much broader area and as a consequence a multiple, but much more moderate cyclogenesis is observed.

  20. National Weather Service will stop using all caps in its forecasts |

    Science.gov Websites

    lines. Teleprinters only allowed the use of upper case letters, and while the hardware and software used not for lack of trying. The National Weather Service has proposed to use mixed-case letters several times since the 1990s, when widespread use of the Internet and email made teletype obsolete. In fact, in

  1. [Climate change and hygienic assessment of weather conditions in Omsk and the Omsk Region].

    PubMed

    Gudinova, Zh V; Akimova, I S; Klochikhina, A V

    2010-01-01

    The paper deals with trends in climate change in the Omsk Region: the increases in average annual air temperatures and rainfall, which are attended by the higher number of abnormal weather events, as shown by the data of the Omsk Regional Board, Russian Federal Service for Hydrometeorology and Environmental Monitoring. There is information on weather severity in 2008: there was mild weather in spring and severe weather in winter, in January in particular. A survey of physicians has revealed that medical workers are concerned about climate problems and global warming and ascertained weather events mostly affecting the population's health. People worry most frequently about a drastic temperature drop or rise (as high as 71%), atmospheric pressure change (53%), and "when it is too hot in summer (47%).

  2. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  3. Comparison of Selected Weather Translation Products

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2017-01-01

    Weather is a primary contributor to the air traffic delays within the National Airspace System (NAS). At present, it is the individual decision makers who use weather information and assess its operational impact in creating effective air traffic management solutions. As a result, the estimation of the impact of forecast weather and the quality of ATM response relies on the skill and experience level of the decision maker. FAA Weather-ATM working groups have developed a Weather-ATM integration framework that consists of weather collection, weather translation, ATM impact conversion and ATM decision support. Some weather translation measures have been developed for hypothetical operations such as decentralized free flight, whereas others are meant to be relevant in current operations. This paper does comparative study of two different weather translation products relevant in current operations and finds that these products have strong correlation with each other. Given inaccuracies in prediction of weather, these differences would not be expected to be of significance in statistical study of a large number of decisions made with a look-ahead time of two hours or more.

  4. Operation BUSTER. Project 8.2. Air Weather Service Participation in Operation BUSTER

    DTIC Science & Technology

    1951-12-31

    Nearest precipitation, acattered ahoware 55u milea to Northeast* HnOHT OROöND ZEROt U, l53 »li ft MSL. HEIQHT OP BÜRSTi 5,311«U ft MSL FRESSÖRE...17 270 27 63 MERCURY WEATHER STATION AEC TEST SITE US VEGAS, N’EVADA •*IND DATA SHEET PATE 22 Octob«r 1951 BEATTY, NEVADA TD /E 220e Z...WIND DATA SHEET TOROPAH, HET/ADA TD - ^ 0300 Z 330P 3£HäE (knots) 15 350 16 010 15 030 13 130 12 050 16 050 29 050 31 060 30 060 30 070 37

  5. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  6. Youngstown MAP, Ohio. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-05-10

    Air Weather Service ( MAC ) SCuOL2., IL 6222 R- UmmRm m "PJ M MOP Fr 4 JUN SURFACE WEATHER OSVAIWJ YOUNGSTOWN MAP OH MC #725250 N 41 16 W 080 40 ELD...percentage frequency of distribution tables OHIO YOUNGSTIOWN M "P, OHIO 20. and dew point temperatures and relative humidity); and (F) Pressure Summnary...p.ouIwuIis P i o m Qm 1 ---- .0 YN - :, 7 -AL CLIMATOLO’Y RA"CH 7 .I*.T 7C WEATHER CONDITIONS .ATH’p SEPVICE/mAC CNIIN -, JN,.S7 %N MAP OH 73-81 A U G

  7. Essential air service : changes in subsidy levels, air carrier costs, and passenger traffic

    DOT National Transportation Integrated Search

    2000-04-01

    Overall, DOT applied relevant statutory authority when determining which communities would receive air service subsidized by the EAS program. Under this authority, communities may receive subsidized air service if they were initially eligible for Ess...

  8. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  9. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study

    NASA Astrophysics Data System (ADS)

    Hong, Jiaxu; Zhong, Taoling; Li, Huili; Xu, Jianming; Ye, Xiaofang; Mu, Zhe; Lu, Yi; Mashaghi, Alireza; Zhou, Ying; Tan, Mengxi; Li, Qiyuan; Sun, Xinghuai; Liu, Zuguo; Xu, Jianjiang

    2016-04-01

    Allergic conjunctivitis is a common problem that significantly impairs patients’ quality of life. Whether air pollution serves as a risk factor for the development of allergic conjunctivitis remains elusive. In this paper, we assess the relationship between air pollutants and weather conditions with outpatient visits for allergic conjunctivitis. By using a time-series analysis based on the largest dataset ever assembled to date, we found that the number of outpatient visits for allergic conjunctivitis was significantly correlated with the levels of NO2, O3, and temperature, while its association with humidity was statistically marginal. No associations between PM10, PM2.5, SO2, or wind velocity and outpatient visits were seen. Subgroup analyses showed that sex seemed to modify the effects of humidity on outpatient visits for allergic conjunctivitis, but not for NO2, O3, or temperature. People younger than 40 were found to be susceptible to changes of all four parameters, while those older than 40 were only consistently affected by NO2 levels. Our findings revealed that higher levels of ambient NO2, O3, and temperature increase the chances of outpatient visits for allergic conjunctivitis. Ambient air pollution and weather changes may contribute to the worsening of allergic conjunctivitis.

  10. Ambient air pollution, weather changes, and outpatient visits for allergic conjunctivitis: A retrospective registry study.

    PubMed

    Hong, Jiaxu; Zhong, Taoling; Li, Huili; Xu, Jianming; Ye, Xiaofang; Mu, Zhe; Lu, Yi; Mashaghi, Alireza; Zhou, Ying; Tan, Mengxi; Li, Qiyuan; Sun, Xinghuai; Liu, Zuguo; Xu, Jianjiang

    2016-04-01

    Allergic conjunctivitis is a common problem that significantly impairs patients' quality of life. Whether air pollution serves as a risk factor for the development of allergic conjunctivitis remains elusive. In this paper, we assess the relationship between air pollutants and weather conditions with outpatient visits for allergic conjunctivitis. By using a time-series analysis based on the largest dataset ever assembled to date, we found that the number of outpatient visits for allergic conjunctivitis was significantly correlated with the levels of NO2, O3, and temperature, while its association with humidity was statistically marginal. No associations between PM10, PM2.5, SO2, or wind velocity and outpatient visits were seen. Subgroup analyses showed that sex seemed to modify the effects of humidity on outpatient visits for allergic conjunctivitis, but not for NO2, O3, or temperature. People younger than 40 were found to be susceptible to changes of all four parameters, while those older than 40 were only consistently affected by NO2 levels. Our findings revealed that higher levels of ambient NO2, O3, and temperature increase the chances of outpatient visits for allergic conjunctivitis. Ambient air pollution and weather changes may contribute to the worsening of allergic conjunctivitis.

  11. Impact of a variational objective analysis scheme on a regional area numerical model: The Italian Air Force Weather Service experience

    NASA Astrophysics Data System (ADS)

    Bonavita, M.; Torrisi, L.

    2005-03-01

    A new data assimilation system has been designed and implemented at the National Center for Aeronautic Meteorology and Climatology of the Italian Air Force (CNMCA) in order to improve its operational numerical weather prediction capabilities and provide more accurate guidance to operational forecasters. The system, which is undergoing testing before operational use, is based on an “observation space” version of the 3D-VAR method for the objective analysis component, and on the High Resolution Regional Model (HRM) of the Deutscher Wetterdienst (DWD) for the prognostic component. Notable features of the system include a completely parallel (MPI+OMP) implementation of the solution of analysis equations by a preconditioned conjugate gradient descent method; correlation functions in spherical geometry with thermal wind constraint between mass and wind field; derivation of the objective analysis parameters from a statistical analysis of the innovation increments.

  12. Using Satellite Remote Sensing to Assist the National Weather Service (NWS) in Storm Damage Surveys

    NASA Technical Reports Server (NTRS)

    Schultz, Lori A.; Molthan, Andrew; McGrath, Kevin; Bell, Jordan; Cole, Tony; Burks, Jason

    2016-01-01

    In the United States, the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) is charged with performing damage assessments when storm or tornado damage is suspected after a severe weather event. This has led to the development of the Damage Assessment Toolkit (DAT), an application for smartphones, tablets and web browsers that allows for the collection, geolocation, and aggregation of various damage indicators collected during storm surveys.

  13. AIRS Observations of DomeC in Antarctica and Comparison with Automated Weather Stations (AWS)

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, Dave; Broberg, Steve

    2006-01-01

    We compare the surface temperatures at Dome Concordia (DomeC) deduced from AIRS data and two Automatic Weather Stations at Concordia Station: AWS8989 , which has been in operation since December 1996, and AWS.it, for which data are available between January and November 2005. The AWS8989 readings are on average 3 K warmer than the AWS.it readings, with a warmer bias in the Antarctic summer than in the winter season. Although AIRS measures the skin brightness temperature, while the AWS reports the temperature of the air at 3 meter above the surface, the AIRS measurements agree well with the AWS.it readings for all data and separately for the summer and winter seasons, if data taken in the presence of strong surface inversions are filtered out. This can be done by deducing the vertical temperature gradient above the surface directly from the AIRS temperature sounding channels or indirectly by noting that extreme vertical gradients near the surface are unlikely if the wind speed is more than a few meters per second. Since the AIRS measurements are very well calibrated, the agreement with AWS.it is very encouraging. The warmer readings of AWS8989 are likely due to thermal contamination of the AWS8989 site by the increasing activity at Concordia Station. Data from an AWS.it quality station could be used for the evaluation of radiometric accuracy and stability of polar orbiting sounders at low temperatures. Unfortunately, data from AWS.it was available only for a limited time. The thermal contamination of the AWS8989 data makes long-term trends deduced from AWS8989 and possibly results about the rapid Antarctic warming deduced from other research stations on Antarctica suspect. AIRS is the first hyperspectral infrared sounder designed in support of weather forecasting and climate research. It was launched in May 2002 on the EOS Aqua spacecraft into a 704 km altitude polar sun-synchronous orbit. The lifetime of AIRS, estimated before launch to be at least 5 years is

  14. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are allocated...

  15. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 2 2012-10-01 2012-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are allocated...

  16. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are allocated...

  17. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are allocated...

  18. 47 CFR 22.805 - Channels for general aviation air-ground service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Channels for general aviation air-ground... CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service General Aviation Air-Ground Stations § 22.805 Channels for general aviation air-ground service. The following channels are allocated...

  19. Calls Forecast for the Moscow Ambulance Service. The Impact of Weather Forecast

    NASA Astrophysics Data System (ADS)

    Gordin, Vladimir; Bykov, Philipp

    2015-04-01

    We use the known statistics of the calls for the current and previous days to predict them for tomorrow and for the following days. We assume that this algorithm will work operatively, will cyclically update the available information and will move the horizon of the forecast. Sure, the accuracy of such forecasts depends on their lead time, and from a choice of some group of diagnoses. For comparison we used the error of the inertial forecast (tomorrow there will be the same number of calls as today). Our technology has demonstrated accuracy that is approximately two times better compared to the inertial forecast. We obtained the following result: the number of calls depends on the actual weather in the city as well as on its rate of change. We were interested in the accuracy of the forecast for 12-hour sum of the calls in real situations. We evaluate the impact of the meteorological errors [1] on the forecast errors of the number of Ambulance calls. The weather and the Ambulance calls number both have seasonal tendencies. Therefore, if we have medical information from one city only, we should separate the impacts of such predictors as "annual variations in the number of calls" and "weather". We need to consider the seasonal tendencies (associated, e. g. with the seasonal migration of the population) and the impact of the air temperature simultaneously, rather than sequentially. We forecasted separately the number of calls with diagnoses of cardiovascular group, where it was demonstrated the advantage of the forecasting method, when we use the maximum daily air temperature as a predictor. We have a chance to evaluate statistically the influence of meteorological factors on the dynamics of medical problems. In some cases it may be useful for understanding of the physiology of disease and possible treatment options. We can assimilate some personal archives of medical parameters for the individuals with concrete diseases and the relative meteorological archive. As a

  20. The Application of Synoptic Weather Forecasting Rules to Selected Weather Situations in the United States.

    ERIC Educational Resources Information Center

    Kohler, Fred E.

    The document describes the use of weather maps and data in teaching introductory college courses in synoptic meteorology. Students examine weather changes at three-hour intervals from data obtained from the "Monthly Summary of Local Climatological Data." Weather variables in the local summary include sky cover, air temperature, dew point, relative…

  1. DOC/WSNSO (Department of Commerce/Weather Service Nuclear Support Office) operational support to Federal Radiological Monitoring and Assessment Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, P.

    1989-01-01

    The National Weather Service (NWS) is an agency of the Department of Commerce. The NWS has hundreds of weather offices throughout the United States. The Weather Service Nuclear Support Office (WSNSO) is a highly specialized unit of NWS that provides direct support to the U.S. Department of Energy's (DOE's) underground nuclear testing program. The WSNSO has been associated with the DOE for >33 yr. As a result of the unique relationship with the DOE, all WSNSO emergency response meteorologists and meteorological technicians are allowed access to classified material. Meteorological phenomena play a significant role during a Federal Radiological Monitoring andmore » Assessment Center (FRMAC) event, and WSNSO meteorologists provide direct support to ARAC. The marriage of state-of-the-art computer systems together with proven technology provides the on-scene WSNSO meteorologist with essentially a portable fully equipped, fully functional, advanced NWS weather station. The WSNSO's emergency response personnel and hardware are at the ready and can be mobilized within 2 h. WSNSO can provide on-scene weather forecasts and critical weather data collection whenever and wherever necessary.« less

  2. Data requirements in support of the marine weather service program

    NASA Technical Reports Server (NTRS)

    Travers, J.; Mccaslin, R. W.; Mull, M.

    1972-01-01

    Data support activities for the Marine Weather Service Program are outlined. Forecasts, cover anomolous water levels, including sea and swell, surface and breakers, and storm surge. Advisories are also provided for sea ice on the Great Lake and Cook inlet in winter, and in the Bering, Chukchi, and Beaufort Seas in summer. Attempts were made to deal with ocean currents in the Gulf Stream, areas of upwelling, and thermal structure at least down through the mixed layer.

  3. Federal Aviation Administration weather program to improve aviation safety

    NASA Technical Reports Server (NTRS)

    Wedan, R. W.

    1983-01-01

    The implementation of the National Airspace System (NAS) will improve safety services to aviation. These services include collision avoidance, improved landing systems and better weather data acquisition and dissemination. The program to improve the quality of weather information includes the following: Radar Remote Weather Display System; Flight Service Automation System; Automatic Weather Observation System; Center Weather Processor, and Next Generation Weather Radar Development.

  4. Air Weather Service Master Station Catalog: USAFETAC Climatic Database Users Handbook No. 6

    DTIC Science & Technology

    1993-03-01

    4) . ... .4 • FIELD NO. DESCRIPTION OF FIELD AND COMMENTS 01 STN NUM. A 6- digit number with the first 5 digits assigned to a particular weather...reporting location lAW WMO ,ules plus a sixth digit as follows: 0 = The first five digits are the actual block/station number (WMO number) assigned to...it is considered inactive for that hour. A digit (1-9) tells how many months it has been since a report was received from the station for that hour

  5. ManUniCast: A Community Weather and Air-Quality Forecasting Teaching Portal

    NASA Astrophysics Data System (ADS)

    Schultz, David M.; Anderson, Stuart; Fairman, Jonathan G.; Lowe, Douglas; McFiggans, Gordon; Lee, Elsa; Seo-Zindy, Ryo

    2014-05-01

    Manunicast was borne out of the needs of our teaching program: students were entering a world where environmental prediction via numerical model was an essential skill, but were not exposed to the production or output of such models. Our site is an educational testbed to explain to students and the public how weather, air-quality, and air-chemistry forecasts are made using real-time predictions as examples. As far as we know, this site provides the first freely available real-time predictions for the UK. We perform two simulations a day over three domains using the most popular, freely available, community atmospheric mesoscale and chemistry models WRF-ARW and WRF-Chem: 1. a WRF-ARW domain over the North Atlantic and western Europe (20-km horizontal grid spacing) 2. a WRF-ARW domain over the UK and Ireland (4-km grid spacing, nested within the 20-km domain) 3. a WRF-Chem domain over the UK and Ireland (12-km grid spacing) Called ManUniCast (Manchester University Forecast), we offer a suite of products from horizontal maps, time series at stations (meteograms), skew-T-logp charts, and cross sections to help students better visualize the weather and the relationships between the various fields more effectively, specifically through the ability to overlay and fade between different plotted products. This presentation discusses how we funded and built ManUniCast, the struggles we faced, and its use in our classes.

  6. Revenue management of air cargo service in theory and practice

    NASA Astrophysics Data System (ADS)

    Budiarto, S.; Putro, H. P.; Pradono, P.; Yudoko, G.

    2018-05-01

    This study examines the air cargo service by comparing existing theories from previous research with the conditions on the ground. The object of the study is focused on the freight forwarder and the airport management. This study reviews the models and results of previous research that will be summarized and used to identify any issues related to the characteristics of air cargo operational services, as well as observing and monitoring literature with airlines, shipping companies, and airport management to explore and see the gap between prior research and implementation of its process in the air cargo service. The first phase in this study is to provide an overview of the air cargo industry. The second phase analyzes the characteristic differences between air cargo services and air passenger operating services. And the third phase is a literary bibliography study of air cargo operations, where the focus is on the studies using quantitative models from the perspective of the object of the study, which is the optimization of revenue management on air cargo services. From the results of the study, which is based on the gap between theory and practice, new research opportunities which are related to management of air cargo service revenue in the form of model development are found by adding booking timelines aspects of cargo that can affect the revenue of cargo airline companies and airports.

  7. NOAA SWPC / NASA CCMC Space Weather Modeling Assessment Project: Toward the Validation of Advancements in Heliospheric Space Weather Prediction Within WSA-Enlil

    NASA Astrophysics Data System (ADS)

    Adamson, E. T.; Pizzo, V. J.; Biesecker, D. A.; Mays, M. L.; MacNeice, P. J.; Taktakishvili, A.; Viereck, R. A.

    2017-12-01

    In 2011, NOAA's Space Weather Prediction Center (SWPC) transitioned the world's first operational space weather model into use at the National Weather Service's Weather and Climate Operational Supercomputing System (WCOSS). This operational forecasting tool is comprised of the Wang-Sheeley-Arge (WSA) solar wind model coupled with the Enlil heliospheric MHD model. Relying on daily-updated photospheric magnetograms produced by the National Solar Observatory's Global Oscillation Network Group (GONG), this tool provides critical predictive knowledge of heliospheric dynamics such as high speed streams and coronal mass ejections. With the goal of advancing this predictive model and quantifying progress, SWPC and NASA's Community Coordinated Modeling Center (CCMC) have initiated a collaborative effort to assess improvements in space weather forecasts at Earth by moving from a single daily-updated magnetogram to a sequence of time-dependent magnetograms to drive the ambient inputs for the WSA-Enlil model as well as incorporating the newly developed Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model. We will provide a detailed overview of the scope of this effort and discuss preliminary results from the first phase focusing on the impact of time-dependent magnetogram inputs to the WSA-Enlil model.

  8. Teaching Air Pollution in an Authentic Context

    NASA Astrophysics Data System (ADS)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-04-01

    This paper describes a teaching-learning sequence (TLS) about air pollution and the findings resulting from its implementation by pre-service elementary teachers (PET) currently undergraduate students of the Department of Primary Education in the National and Kapodistrian University of Athens, Greece. The TLS focused on the relation of air pollution with wind and topography in local conditions. An authentic context was provided to the students based on daily up-to-date meteorological data via the Internet in order to estimate air pollution. The results are encouraging given that PET can correlate wind and concentration of air pollutants through reading specialized angular diagrams and weather maps, can recognize the correlation of topography in the concentration of air pollutants, and can describe temperature inversion. However, the PET demonstrated clear difficulties in ability of orientation, in wind naming, and in interpretation of symbols on weather map. Finally, the implications on teaching air pollution are discussed.

  9. NASA GSFC Space Weather Center - Innovative Space Weather Dissemination: Web-Interfaces, Mobile Applications, and More

    NASA Technical Reports Server (NTRS)

    Maddox, Marlo; Zheng, Yihua; Rastaetter, Lutz; Taktakishvili, A.; Mays, M. L.; Kuznetsova, M.; Lee, Hyesook; Chulaki, Anna; Hesse, Michael; Mullinix, Richard; hide

    2012-01-01

    The NASA GSFC Space Weather Center (http://swc.gsfc.nasa.gov) is committed to providing forecasts, alerts, research, and educational support to address NASA's space weather needs - in addition to the needs of the general space weather community. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, custom space weather alerts and products, weekly summaries and reports, and most recently - video casts. There are many challenges in providing accurate descriptions of past, present, and expected space weather events - and the Space Weather Center at NASA GSFC employs several innovative solutions to provide access to a comprehensive collection of both observational data, as well as space weather model/simulation data. We'll describe the challenges we've faced with managing hundreds of data streams, running models in real-time, data storage, and data dissemination. We'll also highlight several systems and tools that are utilized by the Space Weather Center in our daily operations, all of which are available to the general community as well. These systems and services include a web-based application called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), two mobile space weather applications for both IOS and Android devices, an external API for web-service style access to data, google earth compatible data products, and a downloadable client-based visualization tool.

  10. The Otis Weather Test Facility at Otis ANGB, Falmouth, MA : an aviation weather resource

    DOT National Transportation Integrated Search

    2004-10-06

    The Otis Weather Test Facility (WTF) is located on the US Air National Guard Base, Cape Cod, MA. The Facility was originally established by the US Air Force Cambridge Research Laboratory [now Air Force Research Laboratory (AFRL)] in 1974 to develop a...

  11. Air ambulance services--integrated emergency care.

    PubMed

    Ferdinand, M

    1994-10-01

    In the name of cost-conscious care, air ambulance program directors and service contractors are seeing the dawn of integrated networks as a boon to their business. As integrated networks form, facilities will become increasingly specialized in the types of services they provide. Patients will need to be moved around the system, resulting in more frequent patient transport and more points of transfer. Many programs are considering aircraft replacement and additions, rather than leasing. Financial benefits could come on depreciation and the high resale value of aircraft. Unless reimbursement levels increase, more program mergers and affiliations may take place to spread and reduce cost. Air ambulance services will increasingly become part of a facility's strategic plan.

  12. KSC Weather and Research

    NASA Technical Reports Server (NTRS)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  13. National Weather Service: Watch, Warning, Advisory Display

    MedlinePlus

    ... Education & Outreach About the SPC SPC FAQ About Tornadoes About Derechos Video Lecture Series WCM Page Enh. ... Convective/Tropical Weather Flooding Winter Weather Non-Precipitation Tornado Watch Tornado Warning* Severe Thunderstorm Watch Severe Thunderstorm ...

  14. COMPUTATIONAL ASPECTS OF THE AIR QUALITY FORECASTING VERSION OF CMAQ (CMAQ-F)

    EPA Science Inventory

    The air quality forecast version of the Community Modeling Air Quality (CMAQ) model (CMAQ-F) was developed from the public release version of CMAQ (available from http://www.cmascenter.org), and is running operationally at the National Weather Service's National Centers for Envir...

  15. Space Weather: What is it, and Why Should a Meteorologist Care?

    NASA Technical Reports Server (NTRS)

    SaintCyr, Chris; Murtagh, Bill

    2008-01-01

    "Space weather" is a term coined almost 15 years ago to describe environmental conditions ABOVE Earth's atmosphere that affect satellites and astronauts. As society has become more dependent on technology, we nave found that space weather conditions increasingly affect numerous commercial and infrastructure sectors: airline operations, the precision positioning industry, and the electric power grid, to name a few. Similar to meteorology where "weather" often refers to severe conditions, "space weather" includes geomagnetic storms, radiation storms, and radio blackouts. But almost all space weather conditions begin at the Sun--our middle-age, magnetically-variable star. At NASA, the science behind space weather takes place in the Heliophysics Division. The Space Weather Prediction Center in Boulder, Colorado, is manned jointly by NCAA and US Air Force personnel, and it provides space weather alerts and warnings for disturbances that can affect people and equipment working in space and on Earth. Organizationally, it resides in NOAA's National Weather Service as one of the National Centers for Environmental Prediction. In this seminar we hope to give the audience a brief introduction to the causes of space weather, discuss some of the effects, and describe the state of the art in forecasting. Our goal is to highlight that meteorologists are increasingly becoming the "first responders" to questions about space weather causes and effects.

  16. Effects of Weather on Tourism and its Moderation

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Kim, S.; Lee, D. K.

    2016-12-01

    Tourism is weather sensitive industry (Gómez Martín, 2005). As climate change has been intensifying, the concerns about negative effects of weather on tourism also have been increasing. This study attempted to find ways that mitigate the negative effects from weather on tourism, by analyzing a path of the effects of weather on intention to revisit and its moderation. The data of the study were collected by a self-recording online questionnaire survey of South Korean domestic tourists during August 2015, and 2,412 samples were gathered. A path model of effects of weather on intention to revisit that including moderating effects from physical attraction satisfaction and service satisfaction was ran. Season was controlled in the path model. The model fit was adequate (CMIN/DF=2.372(p=.000), CFI=.974, RMSEA=.024, SRMR=0.040), and the Model Comparison, which assumes that the base model to be correct with season constrained model, showed that there was a seasonal differences in the model ( DF=24, CMIN=32.430, P=.117). By the analysis, it was figured out that weather and weather expectation affected weather satisfaction, and the weather satisfaction affected intention to revisit (spring/fall: .167**, summer: .104**, and winter: .114**). Meanwhile physical attraction satisfaction (.200**), and service satisfaction (.210**) of tourism positively moderated weather satisfaction in summer, and weather satisfaction positively moderated physical attraction (.238**) satisfaction and service satisfaction (.339**). In other words, in summer, dissatisfaction from hot weather was moderated by satisfaction from physical attractions and services, and in spring/fall, comfort weather conditions promoted tourists to accept tourism experience and be satisfied from attractions and services positively. Based on the result, it was expected that if industries focus on offering the good attractions and services based on weather conditions, there would be positive effects to alleviate tourists

  17. Weather Impact on Airport Arrival Meter Fix Throughput

    NASA Technical Reports Server (NTRS)

    Wang, Yao

    2017-01-01

    Time-based flow management provides arrival aircraft schedules based on arrival airport conditions, airport capacity, required spacing, and weather conditions. In order to meet a scheduled time at which arrival aircraft can cross an airport arrival meter fix prior to entering the airport terminal airspace, air traffic controllers make regulations on air traffic. Severe weather may create an airport arrival bottleneck if one or more of airport arrival meter fixes are partially or completely blocked by the weather and the arrival demand has not been reduced accordingly. Under these conditions, aircraft are frequently being put in holding patterns until they can be rerouted. A model that predicts the weather impacted meter fix throughput may help air traffic controllers direct arrival flows into the airport more efficiently, minimizing arrival meter fix congestion. This paper presents an analysis of air traffic flows across arrival meter fixes at the Newark Liberty International Airport (EWR). Several scenarios of weather impacted EWR arrival fix flows are described. Furthermore, multiple linear regression and regression tree ensemble learning approaches for translating multiple sector Weather Impacted Traffic Indexes (WITI) to EWR arrival meter fix throughputs are examined. These weather translation models are developed and validated using the EWR arrival flight and weather data for the period of April-September in 2014. This study also compares the performance of the regression tree ensemble with traditional multiple linear regression models for estimating the weather impacted throughputs at each of the EWR arrival meter fixes. For all meter fixes investigated, the results from the regression tree ensemble weather translation models show a stronger correlation between model outputs and observed meter fix throughputs than that produced from multiple linear regression method.

  18. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  19. Gela, Italy, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1983-11-03

    ADDRESS I2 REPORT DATE USAFETAC/ CBD 3 Nov 83 Air Weather Service (MAC) 13 NUMBER OF PAGES Scott AFB IL 62225 p. _ _ _0 r4 MONITORING AGENCY NAME & ADDRESS...temperature Lombined; tuid again for dry-bulb, wet-bulb, and dew-point tempera- tures separately. Total observations for thc .;e four Items is also

  20. Air pollution response to changing weather and power plant emissions in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  1. Department of Defense Air Traffic Control and Airspace Systems Interface with the National Airspace System

    DTIC Science & Technology

    1990-03-30

    systems on the DoD in terms of safety and operational- effectiveness and probable impacts on specific Air Force mission requirements. The report does... Systems ................................. 2-21 2.1.3 Flight Service and Weather Systems .......................... 2-22 2.1.3.1 Flight Service Automation...2-41 2.2.2 Terminal Control and Landing Systems .. ....................... 2-44 2.2.3 Flight Information and Weather Systems

  2. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  3. Complete Decoding and Reporting of Aviation Routine Weather Reports (METARs)

    NASA Technical Reports Server (NTRS)

    Lui, Man-Cheung Max

    2014-01-01

    Aviation Routine Weather Report (METAR) provides surface weather information at and around observation stations, including airport terminals. These weather observations are used by pilots for flight planning and by air traffic service providers for managing departure and arrival flights. The METARs are also an important source of weather data for Air Traffic Management (ATM) analysts and researchers at NASA and elsewhere. These researchers use METAR to correlate severe weather events with local or national air traffic actions that restrict air traffic, as one example. A METAR is made up of multiple groups of coded text, each with a specific standard coding format. These groups of coded text are located in two sections of a report: Body and Remarks. The coded text groups in a U.S. METAR are intended to follow the coding standards set by National Oceanic and Atmospheric Administration (NOAA). However, manual data entry and edits made by a human report observer may result in coded text elements that do not follow the standards, especially in the Remarks section. And contrary to the standards, some significant weather observations are noted only in the Remarks section and not in the Body section of the reports. While human readers can infer the intended meaning of non-standard coding of weather conditions, doing so with a computer program is far more challenging. However such programmatic pre-processing is necessary to enable efficient and faster database query when researchers need to perform any significant historical weather analysis. Therefore, to support such analysis, a computer algorithm was developed to identify groups of coded text anywhere in a report and to perform subsequent decoding in software. The algorithm considers common deviations from the standards and data entry mistakes made by observers. The implemented software code was tested to decode 12 million reports and the decoding process was able to completely interpret 99.93 of the reports. This

  4. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    NASA Astrophysics Data System (ADS)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  5. Airport landside operations and air service

    NASA Astrophysics Data System (ADS)

    Mandle, P. B.; Whitlock, E. M.; Lamagna, F.; Mundy, R. A.; Oberhausen, P. J.

    The following areas are discussed: airport curbside planning and design; analysis of New Orleans airport ground transportation system; time series analysis of intercity air travel volume; economic justification of air service to small communities; and general aviation and the airport and airway system (an analysis of cost allocation and recovery).

  6. REGIONAL COORDINATION OF NOAA/NATIONAL WEATHER SERVICE CLIMATE SERVICES IN THE WEST (Invited)

    NASA Astrophysics Data System (ADS)

    Bair, A.

    2009-12-01

    The climate services program is an important component in the National Weather Service’s (NWS) mission, and is one of the National Oceanic and Atmospheric Administration’s (NOAA) top five priorities. The Western Region NWS started building a regional and local climate services program in late 2001, with input from local NWS offices and key partners. The original goals of the Western Region climate services program were to strive to provide climate services that were useful, easily accessible, well understood, coordinated and supported by partners, and reflect customer needs. While the program has evolved, and lessons have been learned, these goals are still guiding the program. Regional and local level Climate Services are a fundamental part of NOAA/NWS’s current and future role in providing climate services. There is an ever growing demand for climate information and services to aid the public in decision-making and no single entity alone can provide the range of information and services needed. Coordination and building strong partnerships at the local and regional levels is the key to providing optimal climate services. Over the past 8 years, Western Region NWS has embarked on numerous coordination efforts to build the regional and local climate services programs, such as: collaboration (both internally and externally to NOAA) meetings and projects, internal staff training, surveys, and outreach efforts. In order to gain regional and local buy-in from the NWS staff, multiple committees were utilized to plan and develop goals and structure for the program. While the regional and local climate services program in the NWS Western Region has had many successes, there have been several important lessons learned from efforts that have not been as successful. These lessons, along with past experience, close coordination with partners, and the need to constantly improve/change the program as the climate changes, form the basis for future program development and

  7. Space Weather Impacts to Mariners

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts SPACE WEATHER IMPACTS TO MARINERS Marine present an even greater danger near shore or any shallow waters? Space Weather Impacts to Mariners Don't ), Notices to Mariners, Special Paragraphs: "(73) SPACE WEATHER IMPACTS. There is a growing potential

  8. Finding past weather...Fast - Public Affairs - NOAA's National Weather

    Science.gov Websites

    government web resources and services. Home >>Climate Data Finding past weather...Fast Climate data Weather Forecast Offices (WFOs). First, find the location you need climate data for on the following map the left side of the page there will be a section called Climate in yellow-colored text. You may have

  9. Weather Watchers--Activities for Young Meteorologists.

    ERIC Educational Resources Information Center

    Ludwig, Fran

    1989-01-01

    Describes science activities which were adapted from a teacher's guide entitled "For Spacious Skies" and contains resources for interdisciplinary weather studies. Includes studying properties of air, gravity, cloud movement, humidity, tornadoes, and weather instruments. (RT)

  10. GREAT LAKES FAX-BACK SERVICE

    Science.gov Websites

    available to ships participating in the Voluntary Observing Ships (VOS) program. To register as a Fax-Back Tsunamis 406 EPIRB's National Weather Service Marine Forecasts GREAT LAKES FAX-BACK SERVICE Marine Forecast months. Did you know your body can cool 25 times faster in water than in air? That water does not need to

  11. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  12. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  13. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  14. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  15. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service operations. (a) Requirement of notice. Scheduled international air services proposed to be operated pursuant to the International Air Services Transit Agreement in transit across the United States may not be...

  16. 47 CFR 22.881 - Air-Ground Radiotelephone Service subject to competitive bidding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... competitive bidding. 22.881 Section 22.881 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES Air-Ground Radiotelephone Service Commercial Aviation Air... exclusive initial applications for commercial Air-Ground Radiotelephone Service licenses are subject to...

  17. Blytheville AFB, Arkansas, Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-10-01

    A USAFETAC Air Weather Service (MAC) 3SSTAe’ REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS BLYTHEVILLE AFB AR MSC 1723408 IC N 35 58 W...I IE C It I 1-3 4-b I-Il It 1 7-2 1 2 - 4- UC 4 1-4 7 4F - U S5 1(IA " SAN I9 I 1. . 217 2.0 .i D I .lF I .2 1.? .7 1 .1 1 .2 .2- 0.1I 7 I AIR4 3tf...o o o , . . .. . . .o ..oo.o.. 17-, -7 5C.-. 1-7 ’-, F t tt 71*1. Li I I L C1.2 4 t 7 1L 1 4 uC I* I. A .o o.....oo. oo ~ oo o ooo ...... ...... .o. o

  18. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  19. Evaluating weather factors and material response during outdoor exposure to determine accelerated test protocols for predicting service life

    Treesearch

    R. Sam Williams; Steven Lacher; Corey Halpin; Christopher White

    2005-01-01

    To develop service life prediction methods for the study of sealants, a fully instrumented weather station was installed at an outdoor test site near Madison, WI. Temperature, relative humidiy, rainfall, ultraviolet (UV) radiation at 18 wavelengths, and wind speed and direction are being continuously measured and stored. The weather data can be integrated over time to...

  20. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    PubMed

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.

  1. Development and Implementation of Dynamic Scripts to Support Local Model Verification at National Weather Service Weather Forecast Offices

    NASA Technical Reports Server (NTRS)

    Zavordsky, Bradley; Case, Jonathan L.; Gotway, John H.; White, Kristopher; Medlin, Jeffrey; Wood, Lance; Radell, Dave

    2014-01-01

    Local modeling with a customized configuration is conducted at National Weather Service (NWS) Weather Forecast Offices (WFOs) to produce high-resolution numerical forecasts that can better simulate local weather phenomena and complement larger scale global and regional models. The advent of the Environmental Modeling System (EMS), which provides a pre-compiled version of the Weather Research and Forecasting (WRF) model and wrapper Perl scripts, has enabled forecasters to easily configure and execute the WRF model on local workstations. NWS WFOs often use EMS output to help in forecasting highly localized, mesoscale features such as convective initiation, the timing and inland extent of lake effect snow bands, lake and sea breezes, and topographically-modified winds. However, quantitatively evaluating model performance to determine errors and biases still proves to be one of the challenges in running a local model. Developed at the National Center for Atmospheric Research (NCAR), the Model Evaluation Tools (MET) verification software makes performing these types of quantitative analyses easier, but operational forecasters do not generally have time to familiarize themselves with navigating the sometimes complex configurations associated with the MET tools. To assist forecasters in running a subset of MET programs and capabilities, the Short-term Prediction Research and Transition (SPoRT) Center has developed and transitioned a set of dynamic, easily configurable Perl scripts to collaborating NWS WFOs. The objective of these scripts is to provide SPoRT collaborating partners in the NWS with the ability to evaluate the skill of their local EMS model runs in near real time with little prior knowledge of the MET package. The ultimate goal is to make these verification scripts available to the broader NWS community in a future version of the EMS software. This paper provides an overview of the SPoRT MET scripts, instructions for how the scripts are run, and example use

  2. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo

    2016-06-01

    Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.

  3. Economic Impact of Fire Weather Forecasts

    Treesearch

    Don Gunasekera; Graham Mills; Mark Williams

    2006-01-01

    Southeastern Australia, where the State of Victoria is located is regarded as one of the most fire prone areas in the world. The Australian Bureau of Meteorology provides fire weather services in Victoria as part of a national framework for the provision of such services. These services range from fire weather warnings to special forecasts for hazard reduction burns....

  4. Oregon Air Ambulance Services.

    DTIC Science & Technology

    1986-01-01

    Bleiler, 1982) highlights the ....~ ~ ~- - ... ._.. 15 results of non-regulation. A 42-year old woman, hospitalized with cardiovascular disease in...Humidity. Air at altitude is cold, possessing little moisture. Patients with respiratory problems can experience severe respiratory distress...services. Respiratory therapists and, consequently, specialized respiratory therapy forms were rarely used. Again, six agencies did not retain copies of the

  5. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III

    2008-01-01

    NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.

  6. NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings prepares the Annual Flood Loss summary for the U.S. Army Corps of Engineers. 2014 2013 2012 2011 2010 2009 Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and

  7. Real-Time and Near Real-Time Data for Space Weather Applications and Services

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Balch, C. C.; Biesecker, D. A.; Matsuo, T.; Onsager, T. G.

    2015-12-01

    Space weather can be defined as conditions in the vicinity of Earth and in the interplanetary environment that are caused primarily by solar processes and influenced by conditions on Earth and its atmosphere. Examples of space weather are the conditions that result from geomagnetic storms, solar particle events, and bursts of intense solar flare radiation. These conditions can have impacts on modern-day technologies such as GPS or electric power grids and on human activities such as astronauts living on the International Space Station or explorers traveling to the moon or Mars. While the ultimate space weather goal is accurate prediction of future space weather conditions, for many applications and services, we rely on real-time and near-real time observations and model results for the specification of current conditions. In this presentation, we will describe the space weather system and the need for real-time and near-real time data that drive the system, characterize conditions in the space environment, and are used by models for assimilation and validation. Currently available data will be assessed and a vision for future needs will be given. The challenges for establishing real-time data requirements, as well as acquiring, processing, and disseminating the data will be described, including national and international collaborations. In addition to describing how the data are used for official government products, we will also give examples of how these data are used by both the public and private sector for new applications that serve the public.

  8. Training Early Career Space Weather Researchers and other Space Weather Professionals at the CISM Space Weather Summer School

    NASA Astrophysics Data System (ADS)

    Gross, N. A.; Hughes, W.

    2011-12-01

    This talk will outline the organization of a summer school designed to introduce young professions to a sub-discipline of geophysics. Through out the 10 year life time of the Center for Integrated Space Weather Modeling (CISM) the CISM Team has offered a two week summer school that introduces new graduate students and other interested professional to the fundamentals of space weather. The curriculum covers basic concepts in space physics, the hazards of space weather, and the utility of computer models of the space environment. Graduate students attend from both inside and outside CISM, from all the sub-disciplines involved in space weather (solar, heliosphere, geomagnetic, and aeronomy), and from across the nation and around the world. In addition, between 1/4 and 1/3 of the participants each year are professionals involved in space weather in some way, such as: forecasters from NOAA and the Air Force, Air Force satellite program directors, NASA specialists involved in astronaut radiation safety, and representatives from industries affected by space weather. The summer school has adopted modern pedagogy that has been used successfully at the undergraduate level. A typical daily schedule involves three morning lectures followed by an afternoon lab session. During the morning lectures, student interaction is encouraged using "Timeout to Think" questions and peer instruction, along with question cards for students to ask follow up questions. During the afternoon labs students, working in groups of four, answer thought provoking questions using results from simulations and observation data from a variety of source. Through the interactions with each other and the instructors, as well as social interactions during the two weeks, students network and form bonds that will last them through out their careers. We believe that this summer school can be used as a model for summer schools in a wide variety of disciplines.

  9. Impact of Probabilistic Weather on Flight Routing Decisions

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; Sridhar, Banavar; Mulfinger, Daniel

    2006-01-01

    Flight delays in the United States have been found to increase year after year, along with the increase in air traffic. During the four-month period from May through August of 2005, weather related delays accounted for roughly 70% of all reported delays, The current weather prediction in tactical (within 2 hours) timeframe is at manageable levels, however, the state of forecasting weather for strategic (2-6 hours) timeframe is still not dependable for long-term planning. In the absence of reliable severe weather forecasts, the decision-making for flights longer than two hours is challenging. This paper deals with an approach of using probabilistic weather prediction for Traffic Flow Management use, and a general method using this prediction for estimating expected values of flight length and delays in the National Airspace System (NAS). The current state-of-the-art convective weather forecasting is employed to aid the decision makers in arriving at decisions for traffic flow and flight planing. The six-agency effort working on the Next Generation Air Transportation System (NGATS) have considered weather-assimilated decision-making as one of the principal foci out of a list of eight. The weather Integrated Product Team has considered integrated weather information and improved aviation weather forecasts as two of the main efforts (Ref. 1, 2). Recently, research has focused on the concept of operations for strategic traffic flow management (Ref. 3) and how weather data can be integrated for improved decision-making for efficient traffic management initiatives (Ref. 4, 5). An overview of the weather data needs and benefits of various participants in the air traffic system along with available products can be found in Ref. 6. Previous work related to use of weather data in identifying and categorizing pilot intrusions into severe weather regions (Ref. 7, 8) has demonstrated a need for better forecasting in the strategic planning timeframes and moving towards a

  10. Socio-Economic Impacts of Space Weather and User Needs for Space Weather Information

    NASA Astrophysics Data System (ADS)

    Worman, S. L.; Taylor, S. M.; Onsager, T. G.; Adkins, J. E.; Baker, D. N.; Forbes, K. F.

    2017-12-01

    The 2015 National Space Weather Strategy and Space Weather Action Plan (SWAP) details the activities, outcomes, and timelines to build a "Space Weather Ready Nation." NOAA's Space Weather Prediction Center and Abt Associates are working together on two SWAP initiatives: (1) identifying, describing, and quantifying the socio-economic impacts of moderate and severe space weather; and (2) outreach to engineers and operators to better understand user requirements for space weather products and services. Both studies cover four technological sectors (electric power, commercial aviation, satellites, and GNSS users) and rely heavily on industry input. Findings from both studies are essential for decreasing vulnerabilities and enhancing preparedness.

  11. Space Weather Needs of an Evolving Customer Base (Invited)

    NASA Astrophysics Data System (ADS)

    Rutledge, B.; Viereck, R. A.; Onsager, T. G.

    2013-12-01

    Great progress has been made in raising the global awareness of space weather and the associated impacts on Earth and our technological systems. However, significant gaps still exist in providing comprehensive and easily understood space weather information, products, and services to the diverse and growing customer base. As technologies, such as Global Navigation Satellite Systems (GNSS), have become more ingrained in applications and fields of work that previously did not rely on systems sensitive to space weather, the customer base has grown substantially. Furthermore, the causes and effects of space weather can be difficult to interpret without a detailed understanding of the scientific underpinnings. In response to this change, space weather service providers must address this evolution by both improving services and by representing space weather information and impacts in ways that are meaningful to each facet of this diverse customer base. The NOAA Space Weather Prediction Center (SWPC) must work with users, spanning precision agriculture, emergency management, power grid operators and beyond, to both identify unmet space weather service requirements and to ensure information and decision support services are provided in meaningful and more easily understood forms.

  12. NOAA WEATHER SATELLITES

    Science.gov Websites

    extent of snow cover. In addition, satellite sensors detect ice fields and map the movement of sea and greater danger near shore or any shallow waters? NATIONAL WEATHER SERVICE SATELLITE PRODUCTS NOAA's operational weather satellite system is composed of two types of satellites: geostationary operational

  13. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  14. Respiratory syncytial virus bronchiolitis, weather conditions and air pollution in an Italian urban area: An observational study.

    PubMed

    Nenna, Raffaella; Evangelisti, Melania; Frassanito, Antonella; Scagnolari, Carolina; Pierangeli, Alessandra; Antonelli, Guido; Nicolai, Ambra; Arima, Serena; Moretti, Corrado; Papoff, Paola; Villa, Maria Pia; Midulla, Fabio

    2017-10-01

    In this study we sought to evaluate the association between viral bronchiolitis, weather conditions, and air pollution in an urban area in Italy. We included infants hospitalized for acute bronchiolitis from 2004 to 2014. All infants underwent a nasal washing for virus detection. A regional agency network collected meteorological data (mean temperature, relative humidity and wind velocity) and the following air pollutants: sulfur dioxide, nitrogen oxide, carbon monoxide, ozone, benzene and suspended particulate matter measuring less than 10µm (PM 10 ) and less than 2.5µm (PM 2.5 ) in aerodynamic diameter. We obtained mean weekly concentration data for the day of admission, from the urban background monitoring sites nearest to each child's home address. Overdispersed Poisson regression model was fitted and adjusted for seasonality of the respiratory syncytial virus (RSV) infection, to evaluate the impact of individual characteristics and environmental factors on the probability of a being positive RSV. Of the 723 nasal washings from the infants enrolled, 266 (68%) contained RSV, 63 (16.1%) rhinovirus, 26 (6.6%) human bocavirus, 20 (5.1%) human metapneumovirus, and 16 (2.2%) other viruses. The number of RSV-positive infants correlated negatively with temperature (p < 0.001), and positively with relative humidity (p < 0.001). Air pollutant concentrations differed significantly during the peak RSV months and the other months. Benzene concentration was independently associated with RSV incidence (p = 0.0124). Seasonal weather conditions and concentration of air pollutants seem to influence RSV-related bronchiolitis epidemics in an Italian urban area. Copyright © 2017. Published by Elsevier Inc.

  15. The impact of weather on human health.

    PubMed

    Sulman, F G

    1984-01-01

    The impact of weather on human health is a well-known fact, yet, alas, neglected in the past. Bioclimatology, a vast field of medical knowledge, has only been developed in the past few years. It shows that the air we breathe has a profound influence on our well-being. Electrical charges of the air, such as ions, spherics and electrofields can affect our endocrine, vegetative and autonomous nerve system. It may even be responsible for post-operative thromboembolism. The present article describes weather reactions, electric radiations, climate rhythm, medical aspects of weather changes, and their effect on health and disease. Special devotion is also given to the manifestations of evil winds.

  16. Accuracy of National Weather Service wind-direction forecasts at Macon and Augusta, Georgia

    Treesearch

    Leonidas G. Lavdas

    1997-01-01

    National Weather Service wind forecasts and observations over a nine-year period (1985 to 1993) were analyzed to determine the usefulness of these forecasts for forestry smoke management. Data from Macon, GA indicated that forecasts were accurate to within plus or minus 22.5E about 38 percent of the time. When a wider plus or minus 67.5E window was used, accuracy...

  17. Genetically optimizing weather predictions

    NASA Astrophysics Data System (ADS)

    Potter, S. B.; Staats, Kai; Romero-Colmenero, Encarni

    2016-07-01

    humidity, air pressure, wind speed and wind direction) into a database. Built upon this database, we have developed a remarkably simple approach to derive a functional weather predictor. The aim is provide up to the minute local weather predictions in order to e.g. prepare dome environment conditions ready for night time operations or plan, prioritize and update weather dependent observing queues. In order to predict the weather for the next 24 hours, we take the current live weather readings and search the entire archive for similar conditions. Predictions are made against an averaged, subsequent 24 hours of the closest matches for the current readings. We use an Evolutionary Algorithm to optimize our formula through weighted parameters. The accuracy of the predictor is routinely tested and tuned against the full, updated archive to account for seasonal trends and total, climate shifts. The live (updated every 5 minutes) SALT weather predictor can be viewed here: http://www.saao.ac.za/ sbp/suthweather_predict.html

  18. The New Data Assimilation System at the Italian Air Force Weather Service: Design and Preliminary Results

    DTIC Science & Technology

    2002-09-01

    weather conditions (1999 Christmas storm in Europe , January 2000 snow storm over the eastern coast of the US) can be attributed to the inaccuracies in...over the normal modes of a linearized version of the model equations. These 5 normal modes can be classified (at least for the extratropics ) based

  19. ESA situational awareness of space weather

    NASA Astrophysics Data System (ADS)

    Luntama, Juha-Pekka; Glover, Alexi; Keil, Ralf; Kraft, Stefan; Lupi, Adriano

    2016-07-01

    ESA SSA Period 2 started at the beginning of 2013 and will last until the end of 2016. For the Space Weather Segment, transition to Period 2 introduced an increasing amount of development of new space weather service capability in addition to networking existing European assets. This transition was started already towards the end of SSA Period 1 with the initiation of the SSA Space Weather Segment architecture definition studies and activities enhancing existing space weather assets. The objective of Period 2 has been to initiate SWE space segment developments in the form of hosted payload missions and further expand the federated service network. A strong focus has been placed on demonstration and testing of European capabilities in the range of SWE service domains with a view to establishing core products which can form the basis of SWE service provision during SSA Period 3. This focus has been particularly addressed in the SSA Expert Service Centre (ESC) Definition and Development activity that was started in September 2015. This presentation will cover the current status of the SSA SWE Segment and the achievements during SSA Programme Periods 1 and 2. Particular attention is given to the federated approach that allow building the end user services on the best European expertise. The presentation will also outline the plans for the Space Weather capability development in the framework of the ESA SSA Programme in 2017-2020.

  20. 14 CFR 272.6 - Considerations in the determination of essential air service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... essential air service. 272.6 Section 272.6 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO THE FREELY ASSOCIATED STATES § 272.6 Considerations in the determination of essential air service. (a) In the determination of...

  1. National Weather Service Warning Performance Based on the WSR-88D.

    NASA Astrophysics Data System (ADS)

    Polger, Paul D.; Goldsmith, Barry S.; Przywarty, Richard C.; Bocchieri, Joseph R.

    1994-02-01

    The National Weather Service (NWS) began operational use of the Weather Surveillance Radar-1988 Doppler (WSR-88D) system in March 1991 at Norman, Oklahoma. WSR-88D data have been available to forecasters at five additional offices: Melbourne, Florida, and sterling, Virginia (since January 1992); St. Louis, Missouri, and Dodge City, Kansas (since March 1992); and Houston, Texas (since April 1992). The performance of the severe local storm and flash flood warning programs at the six offices before and after the availability of the WSR-88D was measured quantitatively. The verification procedures and statistical measures used in the quantitative evaluation were those used operationally by the NWS.The statistics show that the warnings improved dramatically when the WSR-88D was in operation. Specifically, the probability of detection of severe weather events increased and the number of false alarms decreased. There was also a marked improvement in the lead time for all severe local storm and flash flood events. These improvements were evident throughout the effective range of the radar. Stratification of severe local storm data by severe thunderstorms versus tornadoes revealed an improvement in the NWS's ability to differentiate between tornadic and nontornadic storms when the WSR-88D was in operation. Four individual cases are examined to illustrate how forecasters used the WSR-88D to achieve the improved results. These cases focus on the unique features of the WSR-88D that provide an advantage over conventional NWS radars.

  2. Activities of NICT space weather project

    NASA Astrophysics Data System (ADS)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  3. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  4. Sensitivity of Short-Term Weather Forecasts to Assimilated AIRS Data: Implications for NPOESS Applications

    NASA Technical Reports Server (NTRS)

    Zavodsky, Bradley; McCarty, Will; Chou, Shih-Hung; Jedlovec, Gary

    2009-01-01

    The Atmospheric Infrared Sounder (AIRS) is acting as a heritage and risk reduction instrument for the Cross-track lnfrared Sounder (CrIS) to be flown aboard the NPP and NPOESS satellites. The hyperspectral nature of AIRS and CrIS provides high-quality soundings that, along with their asynoptic observation time over North America, make them attractive sources to fill the spatial and temporal data voids in upper air temperature and moisture measurements for use in data assimilation and numerical weather prediction. Observations from AlRS can be assimilated either as direct radiances or retrieved thermodynamic profiles, and the Short-Term Prediction Research and Transition (SPORT) Center at NASA's Marshall Space Flight Center has used both data types to improve short-term (0-48h), regional forecasts. The purpose of this paper is to share SPORT'S experiences using AlRS radiances and retrieved profiles in regional data assimilation activities by showing that proper handling of issues-including cloud contamination and land emissivity characterization-are necessary to produce optimal analyses and forecasts.

  5. National Weather Service Forecast Office - Honolulu, Hawai`i

    Science.gov Websites

    Locations - Coastal Forecast Kauai Northwest Waters Kauai Windward Waters Kauai Leeward Waters Kauai Channel Coastal Wind Observations Buoy Reports, and current weather conditions for selected locations tides , sunrise and sunset information Coastal Waters Forecast general weather overview Tropical information

  6. Management and Oversight of Services Acquisition Within the United States Air Force

    DTIC Science & Technology

    2008-12-01

    Air Mobility Command AFDW Air Force District of Washington AFSPC Air Force Space Command AT&L Acquisition Technologies and Logistics CPM ...were commonly performed in industry. The types of services included advertising for Navy recruitment, custodial services on Air Force bases, and on

  7. Feedbacks between air pollution and weather, Part 1: Effects on weather

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Gong, W.; Milbrandt, J.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Im, U.; Balzarini, A.; Baró, R.; Bianconi, R.; Cheung, P.; Forkel, R.; Gravel, S.; Hirtl, M.; Honzak, L.; Hou, A.; Jiménez-Guerrero, P.; Langer, M.; Moran, M. D.; Pabla, B.; Pérez, J. L.; Pirovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zhang, J.; Galmarini, S.

    2015-08-01

    The meteorological predictions of fully coupled air-quality models running in ;feedback; versus ;no-feedback; simulations were compared against each other and observations as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the ;no-feedback; mode, the aerosol direct and indirect effects were disabled, with the models reverting to either climatologies of aerosol properties, or a no-aerosol weather simulation. In the ;feedback; mode, the model-generated aerosols were allowed to modify the radiative transfer and/or cloud formation parameterizations of the respective models. Annual simulations with and without feedbacks were conducted on domains over North America for the years 2006 and 2010, and over Europe for the year 2010. The incorporation of feedbacks was found to result in systematic changes to forecast predictions of meteorological variables, both in time and space, with the largest impacts occurring in the summer and near large sources of pollution. Models incorporating only the aerosol direct effect predicted feedback-induced reductions in temperature, surface downward and upward shortwave radiation, precipitation and PBL height, and increased upward shortwave radiation, in both Europe and North America. The feedback response of models incorporating both the aerosol direct and indirect effects varied across models, suggesting the details of implementation of the indirect effect have a large impact on model results, and hence should be a focus for future research. The feedback response of models incorporating both direct and indirect effects was also consistently larger in magnitude to that of models incorporating the direct effect alone, implying that the indirect effect may be the dominant process. Comparisons across modelling platforms suggested that direct and indirect effect feedbacks may often act in competition: the sign of residual changes associated with feedbacks often changed between those models incorporating the

  8. CITYZER - Services for effective decision making and environmental resilience

    NASA Astrophysics Data System (ADS)

    Haukka, Harri; Turtiainen, Heikki; Janka, Kauko; Palonen, Henry; Turpeinen, Jani; Viitala, Erkki; Rönkkö, Topi; Laiho, Tiina; Laitinen, Teija; Harri, Ari-Matti; Schmidt, Walter; Nousiainen, Timo; Niemi, Jarkko

    2017-04-01

    The CITYZER project develops new digital services and products to support decision making processes related to weather and air quality in cities. This includes, e.g., early warnings and forecasts (0-24 h), which allow for avoiding weather-related accidents, mitigate human distress and costs from weather-related damage and bad air quality, and generally improve the resilience and safety of the society. The project takes advantage of the latest scientific know-how and directly exploits the expertise obtained from, e.g., Tekes-funded (MMEA [1], RAVAKE) and EU-funded (HAREN, EDHIT [2]) projects. Central to the project is the Observation Network Manager NM10 [3] developed by Vaisala within the Tekes/MMEA project, on which CITYZER defines and builds new commercial services and connects new sensor networks (e.g., air quality). The target groups of the services and products (e.g., public sector, real estate and energy companies, and distributors) and related business models will be analyzed and developed in collaboration with local players (e.g., India, South America, China) taking advantage of the pre-existing contacts by the Haaga-Helia, Vaisala Ltd and CLIC Innovation. Service models are designed to account for and adapt to the special needs of different areas and customers. The developed services will be scalable (most common platforms) and responsive. CITYZER project partners include Vaisala Ltd (weather observation instrumentation and products), Sasken Ltd (mobile products), Emtele Ltd (Portable IoT ICT Service Operation Center/Environment and remote intelligent cabinet for sensor network-GW and connections), HSY (urban services), Haaga-Helia University of Applied Sciences (service business models including digital services), Finnish Meteorological Institute (implementation of and scientific research on meteorological & air quality products), and the Tampere University of Technology (definition of and scientific research on air quality products), Pegasor Ltd (support

  9. The ESA Space Weather Applications Pilot Project

    NASA Astrophysics Data System (ADS)

    Glover, A.; Hilgers, A.; Daly, E.

    Following the completion in 2001 of two parallel studies to consider the feasibility of a European Space Weather Programme ESA embarked upon a space weather pilot study with the goal of prototyping European space weather services and assessing the overall market for such within Europe This pilot project centred on a number of targeted service development activities supported by a common infrastructure and making use of only existing space weather assets Each service activity included clear participation from at least one identified service user who was requested to provide initial requirements and regular feedback during the operational phase of the service These service activities are now reaching the end of their 2-year development and testing phase and are now accessible each with an element of the service in the public domain see http www esa-spaceweathet net swenet An additional crucial element of the study was the inclusion of a comprehensive and independent analysis of the benefits both economic and strategic of embarking on a programme which would include the deployment of an infrastructure with space-based elements The results of this study will be reported together with their implication for future coordinated European activities in this field

  10. National Weather Service Forecast Office - Honolulu, Hawai`i

    Science.gov Websites

    Locations - Coastal Forecast Kauai Northwest Waters Kauai Windward Waters Kauai Leeward Waters Kauai Channel Oahu Forecast Oahu Surf Forecast Coastal Wind Observations Buoy Reports, and current weather conditions for selected locations tides, sunrise and sunset information Coastal Waters Forecast general weather

  11. Using WRF-Urban to Assess Summertime Air Conditioning Electric Loads and Their Impacts on Urban Weather in Beijing

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyu; Chen, Fei; Shen, Shuanghe; Miao, Shiguang; Barlage, Michael; Guo, Wenli; Mahalov, Alex

    2018-03-01

    The air conditioning (AC) electric loads and their impacts on local weather over Beijing during a 5 day heat wave event in 2010 are investigated by using the Weather Research and Forecasting (WRF) model, in which the Noah land surface model with multiparameterization options (Noah-MP) is coupled to the multilayer Building Effect Parameterization and Building Energy Model (BEP+BEM). Compared to the legacy Noah scheme coupled to BEP+BEM, this modeling system shows a better performance, decreasing the root-mean-square error of 2 m air temperature to 1.9°C for urban stations. The simulated AC electric loads in suburban and rural districts are significantly improved by introducing the urban class-dependent building cooled fraction. Analysis reveals that the observed AC electric loads in each district are characterized by a common double peak at 3 p.m. and at 9 p.m. local standard time, and the incorporation of more realistic AC working schedules helps reproduce the evening peak. Waste heat from AC systems has a smaller effect ( 1°C) on the afternoon 2 m air temperature than the evening one (1.5 2.4°C) if AC systems work for 24 h and vent sensible waste heat into air. Influences of AC systems can only reach up to 400 m above the ground for the evening air temperature and humidity due to a shallower urban boundary layer than daytime. Spatially varying maps of AC working schedules and the ratio of sensible to latent waste heat release are critical for correctly simulating the cooling electric loads and capturing the thermal stratification of urban boundary layer.

  12. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  13. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  14. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  15. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  16. 14 CFR 121.101 - Weather reporting facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Weather reporting facilities. 121.101... § 121.101 Weather reporting facilities. (a) Each certificate holder conducting domestic or flag operations must show that enough weather reporting services are available along each route to ensure weather...

  17. Relationship between weather conditions and admissions for ischemic stroke and subarachnoid hemorrhage

    PubMed Central

    Tarnoki, Adam D.; Türker, Acar; Tarnoki, David L.; İyisoy, Mehmet S; Szilagyi, Blanka K.; Duong, Hoang; Miskolczi, Laszlo

    2017-01-01

    Aim To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida. Methods Diagnostic data of patients with spontaneous SAH and strokes were recorded between June 2010 and July 2013. Daily synchronous forecast charts were collected from the National Weather Service and the whole data were matched prospectively. The incidence rate ratio (IRR) was calculated. Results Increased incidence rate of ischemic stroke was consistent with the daily lowest and highest air pressure (IRR 1.03, P = 0.128 and IRR 0.98, P = 0.380, respectively), highest air temperature (IRR 0.99, P = 0.375), and presence of hurricanes or storms (IRR 0.65, P = 0.054). Increased incidence of SAH cases was consistent with daily lowest and highest air pressure (IRR 0.87, P < 0.001 and IRR 1.08, P = 0.019, respectively) and highest air temperature (IRR 0.98, P < 0.001). Presence of hurricanes and/or tropical storms did not influence the frequency of SAH. We found no relationship between the presence of fronts and the admissions for ischemic stroke or SAH. Conclusion Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases. PMID:28252876

  18. Relationship between weather conditions and admissions for ischemic stroke and subarachnoid hemorrhage.

    PubMed

    Tarnoki, Adam D; Turker, Acar; Tarnoki, David L; Iyisoy, Mehmet S; Szilagyi, Blanka K; Duong, Hoang; Miskolczi, Laszlo

    2017-02-28

    To assess impacts of different weather conditions on hospitalizations of patients with ischemic strokes and subarachnoid hemorrhages (SAH) in South Florida. Diagnostic data of patients with spontaneous SAH and strokes were recorded between June 2010 and July 2013. Daily synchronous forecast charts were collected from the National Weather Service and the whole data were matched prospectively. The incidence rate ratio (IRR) was calculated. Increased incidence rate of ischemic stroke was consistent with the daily lowest and highest air pressure (IRR 1.03, P=0.128 and IRR 0.98, P=0.380, respectively), highest air temperature (IRR 0.99, P=0.375), and presence of hurricanes or storms (IRR 0.65, P=0.054). Increased incidence of SAH cases was consistent with daily lowest and highest air pressure (IRR 0.87, P<0.001 and IRR 1.08, P=0.019, respectively) and highest air temperature (IRR 0.98, P<0.001). Presence of hurricanes and/or tropical storms did not influence the frequency of SAH. We found no relationship between the presence of fronts and the admissions for ischemic stroke or SAH. Higher number of ischemic stroke and SAH cases can be expected with the daily lowest and highest air pressure, highest air temperature. Presence of hurricanes or tropical storms increased the risk of ischemic stroke but not the SAH. These findings can help to develop preventive health plans for cerebrovascular diseases.

  19. Weather Information Communication Technologies for Increased Safety and Mobility in the National Airspace System

    NASA Technical Reports Server (NTRS)

    Hilderman, Don R.

    2006-01-01

    The purpose of the NASA Glenn Research Center Weather Information Communications (WINCOMM) project was to develop advanced communications and information technologies to enable the high-quality and timely dissemination of strategic weather information between the flight deck and ground users as well as tactical turbulence hazard information between relevant aircraft and to the ground. This report will document and reference accomplishments on the dissemination of weather information during the en route phase of flight from ground-based weather information providers to the flight deck (ground-to-air), from airborne meteorological sensors to ground users (air-to-ground), and weather turbulence and icing hazard information between relevant aircraft (air-to-air). In addition, references in this report will demonstrate the architecture necessary to implement and perform successful transmission and reception of weather information to the cockpit, show that weather information flow does not impact "normal" traffic, demonstrate the feasibility of operational implementation, and lay foundation for future data link development.

  20. Essential air service : changes in passenger traffic, subsidy levels, and air carrier costs

    DOT National Transportation Integrated Search

    2000-05-25

    Over two decades have passed since the Congress phased out the federal government's control over airfares and service. Concerned that air service to some small communities would suffer in a deregulated environment, the Congress established the Essent...

  1. Flight Deck Weather Avoidance Decision Support: Implementation and Evaluation

    NASA Technical Reports Server (NTRS)

    Wu, Shu-Chieh; Luna, Rocio; Johnson, Walter W.

    2013-01-01

    Weather related disruptions account for seventy percent of the delays in the National Airspace System (NAS). A key component in the weather plan of the Next Generation of Air Transportation System (NextGen) is to assimilate observed weather information and probabilistic forecasts into the decision process of flight crews and air traffic controllers. In this research we explore supporting flight crew weather decision making through the development of a flight deck predicted weather display system that utilizes weather predictions generated by ground-based radar. This system integrates and presents this weather information, together with in-flight trajectory modification tools, within a cockpit display of traffic information (CDTI) prototype. that the CDTI features 2D and perspective 3D visualization models of weather. The weather forecast products that we implemented were the Corridor Integrated Weather System (CIWS) and the Convective Weather Avoidance Model (CWAM), both developed by MIT Lincoln Lab. We evaluated the use of CIWS and CWAM for flight deck weather avoidance in two part-task experiments. Experiment 1 compared pilots' en route weather avoidance performance in four weather information conditions that differed in the type and amount of predicted forecast (CIWS current weather only, CIWS current and historical weather, CIWS current and forecast weather, CIWS current and forecast weather and CWAM predictions). Experiment 2 compared the use of perspective 3D and 21/2D presentations of weather for flight deck weather avoidance. Results showed that pilots could take advantage of longer range predicted weather forecasts in performing en route weather avoidance but more research will be needed to determine what combinations of information are optimal and how best to present them.

  2. A study of commuter air service

    NASA Technical Reports Server (NTRS)

    Belina, F. W.; Bush, L. R.

    1977-01-01

    A regionally oriented overview of the commuter air service industry is provided. A framework for an eventual assessment of potential technology directions that may be of benefit to the industry is presented. Data are provided on the industry's market characteristics, service patterns, patronage characteristics, aircraft and airport needs, economic characteristics and institutional issues. Using personal interview and literature survey methods, investigation of a considerable cross-section of the industry was made.

  3. Implementation of a Space Weather VOEvent service at IRAP in the frame of Europlanet H2020 PSWS

    NASA Astrophysics Data System (ADS)

    Gangloff, M.; André, N.; Génot, V.; Cecconi, B.; Le Sidaner, P.; Bouchemit, M.; Budnik, E.; Jourdane, N.

    2017-09-01

    Under Horizon 2020, the Europlanet Research Infrastructure includes PSWS (Planetary Space Weather Services), a set of new services that extend the concepts of space weather and space situation awareness to other planets of our solar system. One of these services is an Alert service associated in particular with an heliospheric propagator tool for solar wind predictions at planets, a meteor shower prediction tool, and a cometary tail crossing prediction tool. This Alert service, is based on VOEvent, an international standard proposed by the IVOA and widely used by the astronomy community. The VOEvent standard provides a means of describing transient celestial events in a machine-readable format. VOEvent is associated with VTP, the VOEvent Transfer Protocol that defines the system by which VOEvents may be disseminated to the community This presentation will focus on the enhancements of the VOEvent standard necessary to take into account the needs of the Solar System community and Comet, a freely available and open source implementation of VTP used by PSWS for its Alert service. Comet is implemented by several partners of PSWS, including IRAP and Observatoire de Paris. A use case will be presented for the heliospheric propagator tool based on extreme solar wind pressure pulses predicted at planets and probes from a 1D MHD model and real time observations of solar wind parameters.

  4. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  5. Bringing Weather into Your Classroom.

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    1979-01-01

    Discusses meteorological resources available to classroom teachers. Describes in detail the National Oceanic and Atmospheric Administration (NOAA) Weather Radio and the A.M. Weather Show on Public Broadcasting Service (PBS). Includes addresses where teachers can get more information. (MA)

  6. AIRS Version 6 Products and Data Services at NASA GES DISC

    NASA Astrophysics Data System (ADS)

    Ding, F.; Savtchenko, A. K.; Hearty, T. J.; Theobald, M. L.; Vollmer, B.; Esfandiari, E.

    2013-12-01

    The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the home of processing, archiving, and distribution services for data from the Atmospheric Infrared Sounder (AIRS) mission. The AIRS mission is entering its 11th year of global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. The GES DISC, in collaboration with the AIRS Project, released data from the Version 6 algorithm in early 2013. The new algorithm represents a significant improvement over previous versions in terms of greater stability, yield, and quality of products. Among the most substantial advances are: improved soundings of Tropospheric and Sea Surface Temperatures; larger improvements with increasing cloud cover; improved retrievals of surface spectral emissivity; near-complete removal of spurious temperature bias trends seen in earlier versions; substantially improved retrieval yield (i.e., number of soundings accepted for output) for climate studies; AIRS-Only retrievals with comparable accuracy to AIRS+AMSU (Advanced Microwave Sounding Unit) retrievals; and more realistic hemispheric seasonal variability and global distribution of carbon monoxide. The GES DISC is working to bring the distribution services up-to-date with these new developments. Our focus is on popular services, like variable subsetting and quality screening, which are impacted by the new elements in Version 6. Other developments in visualization services, such as Giovanni, Near-Real Time imagery, and a granule-map viewer, are progressing along with the introduction of the new data; each service presents its own challenge. This presentation will demonstrate the most significant improvements in Version 6 AIRS products, such as newly added variables (higher resolution outgoing longwave radiation, new cloud property products, etc.), the new quality control schema, and improved retrieval yields. We will also

  7. Operational Numerical Weather Prediction at the Met Office and potential ways forward for operational space weather prediction systems

    NASA Astrophysics Data System (ADS)

    Jackson, David

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar

  8. 32 CFR Attachment 2 to Part 855 - Weather Alternate List

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Weather Alternate List 2 Attachment 2 to Part 855 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Att. 2 Attachment 2 to Part 855—Weather...

  9. 32 CFR Attachment 2 to Part 855 - Weather Alternate List

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Weather Alternate List 2 Attachment 2 to Part 855 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Att. 2 Attachment 2 to Part 855—Weather...

  10. 32 CFR Attachment 2 to Part 855 - Weather Alternate List

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Weather Alternate List 2 Attachment 2 to Part 855 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Att. 2 Attachment 2 to Part 855—Weather...

  11. 32 CFR Attachment 2 to Part 855 - Weather Alternate List

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Weather Alternate List 2 Attachment 2 to Part 855 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Att. 2 Attachment 2 to Part 855—Weather...

  12. 32 CFR Attachment 2 to Part 855 - Weather Alternate List

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Weather Alternate List 2 Attachment 2 to Part 855 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Pt. 855, Att. 2 Attachment 2 to Part 855—Weather...

  13. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  14. Latest Community Coordinated Modeling Center (CCMC) services and innovative tools supporting the space weather research and operational communities.

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M. M.; Rastaetter, L.; Kuznetsova, M. M.; Mays, M. L.; Chulaki, A.; Shim, J. S.; MacNeice, P. J.; Taktakishvili, A.; Collado-Vega, Y. M.; Weigand, C.; Zheng, Y.; Mullinix, R.; Patel, K.; Pembroke, A. D.; Pulkkinen, A. A.; Boblitt, J. M.; Bakshi, S. S.; Tsui, T.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC), with the fundamental goal of aiding the transition of modern space science models into space weather forecasting while supporting space science research, has been serving as an integral hub for over 15 years, providing invaluable resources to both space weather scientific and operational communities. CCMC has developed and provided innovative web-based point of access tools varying from: Runs-On-Request System - providing unprecedented global access to the largest collection of state-of-the-art solar and space physics models, Integrated Space Weather Analysis (iSWA) - a powerful dissemination system for space weather information, Advanced Online Visualization and Analysis tools for more accurate interpretation of model results, Standard Data formats for Simulation Data downloads, and Mobile apps to view space weather data anywhere to the scientific community. In addition to supporting research and performing model evaluations, CCMC also supports space science education by hosting summer students through local universities. In this poster, we will showcase CCMC's latest innovative tools and services, and CCMC's tools that revolutionized the way we do research and improve our operational space weather capabilities. CCMC's free tools and resources are all publicly available online (http://ccmc.gsfc.nasa.gov).

  15. Implementation of bayesian model averaging on the weather data forecasting applications utilizing open weather map

    NASA Astrophysics Data System (ADS)

    Rahmat, R. F.; Nasution, F. R.; Seniman; Syahputra, M. F.; Sitompul, O. S.

    2018-02-01

    Weather is condition of air in a certain region at a relatively short period of time, measured with various parameters such as; temperature, air preasure, wind velocity, humidity and another phenomenons in the atmosphere. In fact, extreme weather due to global warming would lead to drought, flood, hurricane and other forms of weather occasion, which directly affects social andeconomic activities. Hence, a forecasting technique is to predict weather with distinctive output, particullary mapping process based on GIS with information about current weather status in certain cordinates of each region with capability to forecast for seven days afterward. Data used in this research are retrieved in real time from the server openweathermap and BMKG. In order to obtain a low error rate and high accuracy of forecasting, the authors use Bayesian Model Averaging (BMA) method. The result shows that the BMA method has good accuracy. Forecasting error value is calculated by mean square error shows (MSE). The error value emerges at minumum temperature rated at 0.28 and maximum temperature rated at 0.15. Meanwhile, the error value of minimum humidity rates at 0.38 and the error value of maximum humidity rates at 0.04. Afterall, the forecasting error rate of wind speed is at 0.076. The lower the forecasting error rate, the more optimized the accuracy is.

  16. Validation and Verification of Operational Land Analysis Activities at the Air Force Weather Agency

    NASA Technical Reports Server (NTRS)

    Shaw, Michael; Kumar, Sujay V.; Peters-Lidard, Christa D.; Cetola, Jeffrey

    2011-01-01

    The NASA developed Land Information System (LIS) is the Air Force Weather Agency's (AFWA) operational Land Data Assimilation System (LDAS) combining real time precipitation observations and analyses, global forecast model data, vegetation, terrain, and soil parameters with the community Noah land surface model, along with other hydrology module options, to generate profile analyses of global soil moisture, soil temperature, and other important land surface characteristics. (1) A range of satellite data products and surface observations used to generate the land analysis products (2) Global, 1/4 deg spatial resolution (3) Model analysis generated at 3 hours

  17. Minor scale weather-watch and microbarograph project experiments 8620, 9415, 9416

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, J.W.; Church, H.W.

    1986-01-01

    Predictions and measurements of distant airblast propagations were made to identify, control, and document the environmental impact from this large explosion. Special meteorological observations were made to support this as well as other experiments. Rawinsonde balloon upper-air observations were made to about 30 km altitude. Pilot balloons were tracked by optical theodolite to give frequent wind observations to about 3 km above ground. A Tethersonde balloon was operated to give details on atmospheric structure below about 3 km. Rocketsondes were launched to measure temperature and wind conditions at 35- to 65-km heights, for explaining long range airblast propagations that focusmore » near 200 km distance. A meteorological towere was set up at the Admin Park to give continuous records of wind and temperature at three levels to 23 m height. An anemometer was installed near Ground Zero for reference during wind-sensitive helium bag operations. A weather advisory service was established, using WSMR observations as well as national weather data collections, and communicating through a computer terminal at the Stallion Radiosonde Station. Microbarograph (MB) airblast pressure recorders were operated at thirteen locations, from 3 km to 225 km from GZ. During the 10 days preceding MINOR SCALE, 31 ANFO charges, of 250 lb or 2500 lb yields, were fired to document the long range airblast propagation with MB recordings and upper air weather observations.« less

  18. A space weather information service based upon remote and in-situ measurements of coronal mass ejections heading for Earth

    NASA Astrophysics Data System (ADS)

    Hartkorn, O. A.; Ritter, B.; Meskers, A. J. H.; Miles, O.; Russwurm, M.; Scully, S.; Roldan, A.; Juestel, P.; Reville, V.; Lupu, S.; Ruffenach, A.

    2014-12-01

    The Earth's magnetosphere is formed as a consequence of the interaction between the planet's magnetic field and the solar wind, a continuous plasma stream from the Sun. A number of different solar wind phenomena have been studied over the past forty years with the intention of understandingand forcasting solar behavior and space weather. In particular, Earth-bound interplanetary coronal mass ejections (CMEs) can significantly disturb the Earth's magnetosphere for a short time and cause geomagnetic storms. We present a mission concept consisting of six spacecraft that are equally spaced in a heliocentric orbit at 0.72 AU. These spacecraft will monitor the plasma properties, the magnetic field's orientation and magnitude, and the 3D-propagation trajectory of CMEs heading for Earth. The primary objective of this mission is to increase space weather forecasting time by means of a near real-time information service, that is based upon in-situ and remote measurements of the CME properties. The mission secondary objective is the improvement of scientific space weather models. In-situ measurements are performed using a Solar Wind Analyzer instrumentation package and flux gate magnetometers. For remote measurements, coronagraphs are employed. The proposed instruments originate from other space missions with the intention to reduce mission costs and to streamline the mission design process. Communication with the six identical spacecraft is realized via a deep space network consisting of six ground stations. This network provides an information service that is in uninterrupted contact with the spacecraft, allowing for continuos space weather monitoring. A dedicated data processing center will handle all the data, and forward the processed data to the SSA Space Weather Coordination Center. This organization will inform the general public through a space weather forecast. The data processing center will additionally archive the data for the scientific community. This concept

  19. An Analysis of Air Force Service Contract Cases Appealed to the Armed Services Board of Contract Appeals

    DTIC Science & Technology

    1988-09-01

    DEM/88S- 1 AN ANALYSIS OF AIR FORCE SERVICE CONTRACT CASES APPEALED TO THE ARMED SERVICES BOARD OF CONTRACT APPEALS THESIS Diane L. Bowden First...CONTRACT CASES APPEALED TO THE ARMED SERVICES BOARD OF CONTRACT APPEALS THESIS Presented to the Faculty of the School of Systems and Logistics of the Air...analyze, and condense information that might be useful to contracting and contract management personnel. Armed Services Board of Contract Appeals

  20. A study of ASRS reports involving general aviation and weather encounters

    NASA Technical Reports Server (NTRS)

    Rockwell, T. H.; Roach, D. E.; Griffin, W. C.

    1981-01-01

    Consideration is given to the nature and characteristics of problems involving dissemination of weather information, use of this information by pilots, its adequacy for the purpose intended, the ability of the air traffic control system to cope with weather related incidents, and the various aspects of pilot behavior, aircraft equipment, and NAVAIDS affecting flights in which weather figures. It is concluded from the study that skill and training deficiencies of general aviation pilots are not major factors in weather related occurrences, nor is lack of aircraft equipment. Major problem causes are identified with timely and easily interpreted weather information, judgement and attitude factors of pilots, and the functioning of the air traffic control system.

  1. Cost-benefit analysis : substituting ground transportation for subsidized essential air services.

    DOT National Transportation Integrated Search

    2015-12-01

    Since the Airline Deregulation Act of 1978, the U.S. Department of Transportation (DOT) has been subsidizing air service to : small rural communities through the Essential Air Service (EAS) program. The original intent of the program was to maintain ...

  2. 77 FR 30437 - Proposed Amendment of Air Traffic Service Routes; Southwestern United States

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-23

    ...-0287; Airspace Docket No. 11-AWP-21] RIN 2120-AA66 Proposed Amendment of Air Traffic Service Routes... Federal Register proposing to amend various Air Traffic Service Routes in the Southwestern United States..., pursuant to the authority delegated to me, the NPRM for the proposed amendment of Air Traffic Service...

  3. Satellite Delivery of Aviation Weather Data

    NASA Technical Reports Server (NTRS)

    Kerczewski, Robert J.; Haendel, Richard

    2001-01-01

    With aviation traffic continuing to increase worldwide, reducing the aviation accident rate and aviation schedule delays is of critical importance. In the United States, the National Aeronautics and Space Administration (NASA) has established the Aviation Safety Program and the Aviation System Capacity Program to develop and test new technologies to increase aviation safety and system capacity. Weather is a significant contributor to aviation accidents and schedule delays. The timely dissemination of weather information to decision makers in the aviation system, particularly to pilots, is essential in reducing system delays and weather related aviation accidents. The NASA Glenn Research Center is investigating improved methods of weather information dissemination through satellite broadcasting directly to aircraft. This paper describes an on-going cooperative research program with NASA, Rockwell Collins, WorldSpace, Jeppesen and American Airlines to evaluate the use of satellite digital audio radio service (SDARS) for low cost broadcast of aviation weather information, called Satellite Weather Information Service (SWIS). The description and results of the completed SWIS Phase 1 are presented, and the description of the on-going SWIS Phase 2 is given.

  4. Keesler AFB, Biloxi, Mississippi. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1982-02-08

    30 25 W 088 55 36 BIX STATION LOCATION AND INSTRUMENTATION HISTORY OUEI, TYPE AT THIS LOCATION ELEVATION ABOVE NSIL 003 O GEOGRAPHICAL LOCATION INANE...hours used by each service for each period are as follows: Air Force Stations: U. S. Navy and National Weather Service (USWB) Beginning thru 1945 at... VAIRBL C 22.0 30.9 15.5 1.6 .1 _ 100.0 3.5 TOTAL NUMBER OF OBSERVATIONS 808 USAFETAC ’otm 0-8-5 (OL-A) PMEVOUS EDITIOrO f THIS FOOM ARE OBSOLTE ,IAL 64 6

  5. Automated Air Traffic Control Operations with Weather and Time-Constraints: A First Look at (Simulated) Far-Term Control Room Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Homola, Jeffrey R.; Martin, Lynne H.; Mercer, Joey S.; Cabrall, Christopher C.

    2011-01-01

    In this paper we discuss results from a recent high fidelity simulation of air traffic control operations with automated separation assurance in the presence of weather and time-constraints. We report findings from a human-in-the-loop study conducted in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center. During four afternoons in early 2010, fifteen active and recently retired air traffic controllers and supervisors controlled high levels of traffic in a highly automated environment during three-hour long scenarios, For each scenario, twelve air traffic controllers operated eight sector positions in two air traffic control areas and were supervised by three front line managers, Controllers worked one-hour shifts, were relieved by other controllers, took a 3D-minute break, and worked another one-hour shift. On average, twice today's traffic density was simulated with more than 2200 aircraft per traffic scenario. The scenarios were designed to create peaks and valleys in traffic density, growing and decaying convective weather areas, and expose controllers to heavy and light metering conditions. This design enabled an initial look at a broad spectrum of workload, challenge, boredom, and fatigue in an otherwise uncharted territory of future operations. In this paper we report human/system integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. We conclude that, with further refinements. air traffic control operations with ground-based automated separation assurance can be an effective and acceptable means to routinely provide very high traffic throughput in the en route airspace.

  6. METEOSPACE, solar monitoring and space weather at Calern observatory

    NASA Astrophysics Data System (ADS)

    Corbard, T.; Malherbe, J.-M.; Crussaire, D.; Morand, F.; Ruty, F.; Biree, L.; Aboudarham, J.; Fuller, N.; Renaud, C.; Meftah, M.

    2016-12-01

    METEOSPACE is a new partnership project between the Paris Observatory (OP), the Observatoire de la Côte d'Azur (OCA), the French Air Force and a service company (LUNA technology) for the development and operation of a set of small telescopes Hα / Ca II K / Ca II H / G band to be installed at on the Calern plateau (OCA). The objective is to monitor solar activity for both research and its applications in space weather through continuous optical observations of the dynamic phenomena that are visible in the chromosphere: eruptions, destabilization of the filaments triggering coronal mass ejections and associated Moreton waves.

  7. Concept of Operations for the NASA Weather Accident Prevention (WxAP) Project. Version 2.0

    NASA Technical Reports Server (NTRS)

    Green, Walter S.; Tsoucalas, George; Tanger, Thomas

    2003-01-01

    The Weather Accident Prevention Concept of Operations (CONOPS) serves as a decision-making framework for research and technology development planning. It is intended for use by the WxAP members and other related programs in NASA and the FAA that support aircraft accident reduction initiatives. The concept outlines the project overview for program level 3 elements-such as AWIN, WINCOMM, and TPAWS (Turbulence)-that develop the technologies and operating capabilities to form the building blocks for WxAP. Those building blocks include both retrofit of equipment and systems and development of new aircraft, training technologies, and operating infrastructure systems and capabilities. This Concept of operations document provides the basis for the WxAP project to develop requirements based on the operational needs ofthe system users. It provides the scenarios that the flight crews, airline operations centers (AOCs), air traffic control (ATC), and flight service stations (FSS) utilize to reduce weather related accidents. The provision to the flight crew of timely weather information provides awareness of weather situations that allows replanning to avoid weather hazards. The ability of the flight crew to locate and avoid weather hazards, such as turbulence and hail, contributes to safer flight practices.

  8. Association between Weather-Related Factors and Cardiac Arrest of Presumed Cardiac Etiology: A Prospective Observational Study Based on Out-of-Hospital Care Data.

    PubMed

    Hensel, Mario; Geppert, Daniel; Kersten, Jan F; Stuhr, Markus; Lorenz, Jürgen; Wirtz, Sebastian; Kerner, Thoralf

    2018-01-01

    The objective of this study was to determine the association between weather-related factors and out-of-hospital cardiac arrest (OHCA) of presumed cardiac etiology. This was a prospective observational study performed in a prehospital setting. Data from the Emergency Medical Service in Hamburg (Germany) and data from the local weather station were evaluated over a 5-year period. Weather data (temperature, humidity, air pressure, wind speed) were obtained every minute and matched with the associated rescue mission data. Lowess-Regression analysis was performed to assess the relationship between the above-mentioned weather-related factors and OHCA of presumed cardiac etiology. Additionally, varying measuring-ranges were defined for each weather-related factor in order to compare them with each other with regard to the probability of occurrence of OHCA. During the observation period 1,558 OHCA with presumed cardiac etiology were registered (age: 67 ± 19 yrs; 62% male; hospital admission: 37%; survival to hospital discharge: 6.7%). Compared to moderate temperatures (5 - 25°C), probability of OHCA-occurrence increased significantly at temperatures above 25°C (p = 0.028) and below 5°C p = 0.011). Regarding air humidity, probability of OHCA-occurrence increased below a threshold-value of 75% compared to values above this cut-off (p = 0.006). Decreased probability was seen at moderate atmospheric pressure (1000 hPa - 1020 hPa), whereas increased probability was seen above 1020 hPa (p = 0.023) and below 1000 hPa (p = 0.035). Probability of OHCA-occurrence increased continuously with increasing wind speed (p < 0.001). There are associations between several weather-related factors such as temperature, humidity, air pressure, and wind speed, and occurrence of OHCA of presumed cardiac etiology. Particularly dangerous seem to be cold weather, dry air and strong wind.

  9. COMMERCIAL MARITIME COAST STATIONS and WEATHER NETS

    Science.gov Websites

    Tsunamis 406 EPIRB's National Weather Service Marine Forecasts COMMERCIAL MARITIME COAST STATIONS and PRODUCTS VIA COMMERCIAL MARITIME COAST STATIONS and WEATHER NETS Commercial maritime coast stations, which ;NETS" operating on commercial marine VHF, MF and HF frequencies, where weather information is

  10. Ionosphere Waves Service (IWS) - a problem-oriented tool in ionosphere and Space Weather research produced by POPDAT project

    NASA Astrophysics Data System (ADS)

    Ferencz, Csaba; Lizunov, Georgii; Crespon, François; Price, Ivan; Bankov, Ludmil; Przepiórka, Dorota; Brieß, Klaus; Dudkin, Denis; Girenko, Andrey; Korepanov, Valery; Kuzmych, Andrii; Skorokhod, Tetiana; Marinov, Pencho; Piankova, Olena; Rothkaehl, Hanna; Shtus, Tetyana; Steinbach, Péter; Lichtenberger, János; Sterenharz, Arnold; Vassileva, Any

    2014-05-01

    In the frame of the FP7 POPDAT project the Ionosphere Waves Service (IWS) has been developed and opened for public access by ionosphere experts. IWS is forming a database, derived from archived ionospheric wave records to assist the ionosphere and Space Weather research, and to answer the following questions: How can the data of earlier ionospheric missions be reprocessed with current algorithms to gain more profitable results? How could the scientific community be provided with a new insight on wave processes that take place in the ionosphere? The answer is a specific and unique data mining service accessing a collection of topical catalogs that characterize a huge number of recorded occurrences of Whistler-like Electromagnetic Wave Phenomena, Atmosphere Gravity Waves, and Traveling Ionosphere Disturbances. IWS online service (http://popdat.cbk.waw.pl) offers end users to query optional set of predefined wave phenomena, their detailed characteristics. These were collected by target specific event detection algorithms in selected satellite records during database buildup phase. Result of performed wave processing thus represents useful information on statistical or comparative investigations of wave types, listed in a detailed catalog of ionospheric wave phenomena. The IWS provides wave event characteristics, extracted by specific software systems from data records of the selected satellite missions. The end-user can access targets by making specific searches and use statistical modules within the service in their field of interest. Therefore the IWS opens a new way in ionosphere and Space Weather research. The scientific applications covered by IWS concern beyond Space Weather also other fields like earthquake precursors, ionosphere climatology, geomagnetic storms, troposphere-ionosphere energy transfer, and trans-ionosphere link perturbations.

  11. 76 FR 2744 - Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Disclosure of Code-Share Service by Air Carriers and Sellers of Air Transportation AGENCY: Office of the Secretary, Department of Transportation..., their agents, and third party sellers of air transportation in view of recent amendments to 49 U.S.C...

  12. When Weather Matters: Science and Service to Meet Critical Societal Needs

    NASA Technical Reports Server (NTRS)

    2010-01-01

    The goal of weather prediction is to provide information people and organizations can use to reduce weather-related losses and enhance societal benefits, including protection of life and property, public health and safety, and support of economic prosperity and quality of life. In economic terms, the benefit of the investment in public weather forecasts and warnings is substantial: the estimated annualized benefit is about $31.5 billion, compared to the $5.1 billion cost of generating the information. Between 1980 and 2009, 96 weather disasters in the United States each caused at least $1 billion in damages, with total losses exceeding $700 billion. Between 1999 and 2008, there were an average of 629 direct weather fatalities per year. The annual impacts of adverse weather on the national highway system and roads are staggering: 1.5 million weather-related crashes with 7,400 deaths, more than 700,000 injuries, and $42 billion in economic losses.

  13. Air ambulance nurses as expert supplement to local emergency services.

    PubMed

    Wisborg, Torben; Bjerkan, Bjørn

    2014-01-01

    Flight nurses in the Norwegian National Air Ambulance Service are specialist nurse anesthetists or intensive care nursing specialists. For air ambulance bases far from hospitals, these nurses present otherwise unavailable competencies. This study reports a 6-year experience with flight nurse participation in local emergencies beyond the transportation phase. The fixed-wing air ambulance base in Alta, Northern Norway (20,000 inhabitants), with 2 aircraft and 2 on-call teams is 150 km by road from the nearest hospital. We did a prospective registration of all emergency nonflight missions near the air ambulance base from January 1, 2005, to December 31, 2010. The 217 completed missions corresponded to 3 missions per month, half during daytime. Twenty-three percent of patients were under age 18, injury rate was high (36%), 63% had potentially or manifest life-threatening conditions, and 11% died during treatment. One third of all missions (67/217) resulted in an air ambulance flight to the hospital. Mission frequency did not significantly reduce flight availability, and precision in case selection for this special service was good. The use of flight nurses in the local community promotes equal access to advanced medical services for populations far from hospitals. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  14. 14 CFR 272.3 - Places eligible for guaranteed essential air service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO THE FREELY ASSOCIATED STATES § 272.3 Places eligible for guaranteed essential air service. (a) Subject to the provisions of this part... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Places eligible for guaranteed essential...

  15. NOAA Weather Radio - All Hazards

    Science.gov Websites

    Station Search Coverage Maps Outages View Outages Report Outages Information General Information Receiver Information Reception Problems NWR Alarms Automated Voices FIPS Codes NWR - Special Needs SAME USING SAME SAME Weather Service (NWS) warnings, watches, forecasts and other non-weather related hazard information 24

  16. Community Coordinated Modeling Center (CCMC): Using innovative tools and services to support worldwide space weather scientific communities and networks

    NASA Astrophysics Data System (ADS)

    Mendoza, A. M.; Bakshi, S.; Berrios, D.; Chulaki, A.; Evans, R. M.; Kuznetsova, M. M.; Lee, H.; MacNeice, P. J.; Maddox, M. M.; Mays, M. L.; Mullinix, R. E.; Ngwira, C. M.; Patel, K.; Pulkkinen, A.; Rastaetter, L.; Shim, J.; Taktakishvili, A.; Zheng, Y.

    2012-12-01

    the general public about the importance and impacts of space weather effects. Although CCMC is organizationally comprised of United States federal agencies, CCMC services are open to members of the international science community and encourages interagency and international collaboration. In this poster, we provide an overview of using Community Coordinated Modeling Center (CCMC) tools and services to support worldwide space weather scientific communities and networks.;

  17. Environment and air pollution: health services bequeath to grotesque menace.

    PubMed

    Qureshi, Muhammad Imran; Rasli, Amran Md; Awan, Usama; Ma, Jian; Ali, Ghulam; Faridullah; Alam, Arif; Sajjad, Faiza; Zaman, Khalid

    2015-03-01

    The objective of the study is to establish the link between air pollution, fossil fuel energy consumption, industrialization, alternative and nuclear energy, combustible renewable and wastes, urbanization, and resulting impact on health services in Malaysia. The study employed two-stage least square regression technique on the time series data from 1975 to 2012 to possibly minimize the problem of endogeniety in the health services model. The results in general show that air pollution and environmental indicators act as a strong contributor to influence Malaysian health services. Urbanization and nuclear energy consumption both significantly increases the life expectancy in Malaysia, while fertility rate decreases along with the increasing urbanization in a country. Fossil fuel energy consumption and industrialization both have an indirect relationship with the infant mortality rate, whereas, carbon dioxide emissions have a direct relationship with the sanitation facility in a country. The results conclude that balancing the air pollution, environment, and health services needs strong policy vistas on the end of the government officials.

  18. NASA Turbulence Technologies In-Service Evaluation: Delta Air Lines Report-Out

    NASA Technical Reports Server (NTRS)

    Amaral, Christian; Dickson, Steve; Watts, Bill

    2007-01-01

    Concluding an in-service evaluation of two new turbulence detection technologies developed in the Turbulence Prediction and Warning Systems (TPAWS) element of the NASA Aviation Safety and Security Program's Weather Accident Prevention Project (WxAP), this report documents Delta's experience working with the technologies, feedback gained from pilots and dispatchers concerning current turbulence techniques and procedures, and Delta's recommendations regarding directions for further efforts by the research community. Technologies evaluated included an automatic airborne turbulence encounter reporting technology called the Turbulence Auto PIREP System (TAPS), and a significant enhancement to the ability of modern airborne weather radars to predict and display turbulence of operational significance, called E-Turb radar.

  19. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  20. Customer Management Skills for Effective Air Force Civil Engineering Customer Service.

    DTIC Science & Technology

    1986-09-01

    advertise --competence. (1) Craftsmen working closely with customer service -doing what is promised when it’s promised -if return to job site required, tell...RD-RI74 1 4 CUSTOMER MANAGEMENT SKILLS FOR EFFECTIVE AIR FORCE / I CIVIL ENGINEERING CUST (U) AIR FORCE INST OF TECH WRIGHT-PATTERSON RFS ON...I93 -A CUSTOMER MANAGEMENT SKILLS FOR EFFECTIVE AIR FORCE CIVIL ENGINEERING CUSTOMER SERVICE THESIS Danny S.- Long Captain, USAF AFIT/GEM/DEM/86S-1 7

  1. Monitoring Effective Doses Received By Air Crews With A Space Weather Application

    NASA Astrophysics Data System (ADS)

    Lantos, P.

    To fulfil new requirements of the European Community concerning monitoring of effective doses received by air crews, the French Aviation Authority has developed an operational system called Sievert. The SIEVERT system is analysed as an exam- ple of Space Weather application. One of its characteristics is to calculate the dose received on-board each flight on the basis of the specific and detailled flight given by companies. Operational models will be used. As input to the models, the system needs monitoring of galactic cosmic rays and of solar flare particles. The French neu- tron monitors located in Kerguelen Islands (South Indian Ocean) and Terre Adélie (Antarctica) will be used for this purpose. Particular attention will be devoted to evo- lution of the system in conjunction with new measurements available in the frame of a permanent validation process.

  2. Weatherization Assistance Program Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy e ciency of their homes, while ensuring their health and safety. The Program supports 8,500 jobs and provides weatherization services to approximately 35,000 homes every year using DOE funds.

  3. Aviation Weather for Pilots and Flight Operations Personnel.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    The revised Aviation Weather book discusses each aspect of weather as it relates to aircraft operations and flight safety. The book is not an aircraft operating manual and omits all reference to specific weather services. Much of the book has been devoted to marginal, hazardous, and violent weather. It teaches pilots to learn to appreciate good…

  4. CITYZER - Services for effective decision making and environmental resilience

    NASA Astrophysics Data System (ADS)

    Harri, Ari-Matti; Turtiainen, Heikki; Turpeinen, Jani; Viitala, Erkki; Janka, Kauko; Palonen, Henry; Rönkkö, Topi; Laiho, Tiina; Laitinen, Teija; Haukka, Harri; Schmidt, Walter; Nousiainen, Timo

    2016-04-01

    The CITYZER project develops new digital services and products to support decision making processes related to weather and air quality in cities. This includes, e.g., early warnings and forecasts (0-24 h), which allow for avoiding weather-related accidents, mitigate human distress and costs from weather-related damage and bad air quality, and generally improve the resilience and safety of the society. The project takes advantage of the latest scientific know-how and directly exploits the expertise obtained from, e.g., Tekes-funded (MMEA [1], RAVAKE) and EU-funded (HAREN, EDHIT [2]) projects. Central to the project is the Observation Network Manager NM10 [3] developed by Vaisala Oyj within the Tekes/MMEA project, on which CITYZER defines and builds new commercial services and connects new sensor networks (e.g., air quality). The target groups of the services and products (e.g., public sector, real estate and energy companies, and distributors) and related business models will be analyzed and developed in collaboration with local player (e.g., Asia, South America) taking advantage of the pre-existing contacts by the Haaga-Helia, Vaisala Oyj and CLIC Innovation. Service models are designed to account for and adapt to the special needs of different areas and customers. The developed services will be scalable (most common platforms) and responsive. CITYZER project partners include Vaisala Oyj (observation instrumentation, systems and products), Sasken Ltd (mobile products), Emtele Ltd (Portable IoT ICT Service Operation Center/Environment and remote intelligent cabinet for sensor network-GW and connections), HSY (urban services), Haaga-Helia University of Applied Sciences (service business models including digital services), Finnish Meteorological Institute (implementation of and scientific research on meteorological & air quality products), and the Tampere University of Technology (definition of and scientific research on air quality products), Pegasor Ltd (support for

  5. Space weather effects and commerical airlines

    NASA Astrophysics Data System (ADS)

    Jones, J.; Bentley, R.; Hunter, R.; Taylor, G.; Thomas, D.

    Space Weather (SW) phenomena can effect many areas of commercial airline operations including avionics, communications and GPS navigation systems. Of particular importance at present is the recently introduced EU legislation requiring the monitoring of aircrew radiation exposure, including any variations at aircraft altitudes due to solar activity. The Mullard Space Science Laboratory is collaborating with Virgin Atlantic Airways, the Civil Aviation Authority and the National Physical Laboratory on a 3- year project to monitor the levels of cosmic radiation on long-haul flights. The study will determine whether computer models currently used to predict radiation exposure of aircrew are adequate. It also aims to determine whether solar or geomagnetic activity can cause significant modifications to the doses. This presentation will begin by showing some of the preliminary results obtained so far. As an example, we present a comparison of flight doses measured following the 14t h July 2000 X - class flare that was accompanied by a major Solar Particle Event (SPE). The results highlight the importance of a range of external factors that can strongly influence how SPEs may effect the measured dose at aircraft altitudes. At present, any SPE contributions in the airlines' dose records can only be poorly estimated retrospectively. Ideally, it would be better to try to avoid operating during these possibly significant radiation - enhancing events by utilising SW information (alerts, warnings, etc.). However, doing so poses many difficult operational problems for such a heavily regulated international industry, in terms of safety, security and procedures. Therefore, the use of timely SW information, which is still very unreliable, in a similar manner to terrestrial weather will require agreement from the International Civil Aviation Organisation (ICAO) and International Air Transport Association (IATA) to Air Traffic Control and Aviation Regulatory Authority's. This

  6. Weather. Third Grade. Revised. Anchorage School District Elementary Science Program.

    ERIC Educational Resources Information Center

    Defendorf, Jean, Ed.

    This resource book introduces third-grade children to the environment by studying the weather and its effects. Lessons are provided including: (1) constructing a weather diary; (2) thermometers; (3) clouds; (4) barometric pressure; (5) wind vanes; (6) heating and cooling air; and (7) analyzing weather data. Each lesson includes a listing of…

  7. Objective local weather types with applications on urban air pollution and on mortality with chronicle illnesses

    NASA Astrophysics Data System (ADS)

    Mika, Janos; Ivady, Anett; Fulop, Andrea; Makra, László

    2010-05-01

    stations or months defines that the common optimum number of local weather types is nine. This set of weather types, specified for each station, was used to "explain" the possible portion of local inter-diurnal variance of seven daily urban air quality measurements, i.e. CO, NO, NO2, NOx, O3, SO2 and PM10. Another set of data for testing the types are the mortalities with chronicle illnesses, i.e. cardio-vascular and respiratory illnesses. This set of 35 years data (1971-2005) is layered for capital city (Budapest, 2 million inhabitants) and rest of the countries (max. 200 000 inhab.). The use of complex weather types is likely better than the common use of individual weather elements, e.g. diurnal mean temperature or a kind of bioclimatic index. The ability of the types to decrease the variability is also compared for both sets of target variables to the analogous ability of macrosynoptic classification by Peczely. The results are also discussed by grouping the investigated contaminants according to their origin.

  8. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  9. NASA Aviation Safety Program Weather Accident Prevention/weather Information Communications (WINCOMM)

    NASA Technical Reports Server (NTRS)

    Feinberg, Arthur; Tauss, James; Chomos, Gerald (Technical Monitor)

    2002-01-01

    Weather is a contributing factor in approximately 25-30 percent of general aviation accidents. The lack of timely, accurate and usable weather information to the general aviation pilot in the cockpit to enhance pilot situational awareness and improve pilot judgment remains a major impediment to improving aviation safety. NASA Glenn Research Center commissioned this 120 day weather datalink market survey to assess the technologies, infrastructure, products, and services of commercial avionics systems being marketed to the general aviation community to address these longstanding safety concerns. A market survey of companies providing or proposing to provide graphical weather information to the general aviation cockpit was conducted. Fifteen commercial companies were surveyed. These systems are characterized and evaluated in this report by availability, end-user pricing/cost, system constraints/limits and technical specifications. An analysis of market survey results and an evaluation of product offerings were made. In addition, recommendations to NASA for additional research and technology development investment have been made as a result of this survey to accelerate deployment of cockpit weather information systems for enhancing aviation safety.

  10. Alaska Native Weatherization Training and Jobs Program First Steps Toward Tribal Weatherization – Human Capacity Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiita, Joanne

    The Alaska Native Weatherization Training and Jobs Project expanded weatherization services for tribal members’ homes in southeast Alaska while providing weatherization training and on the job training (OJT) for tribal citizens that lead to jobs and most probably careers in weatherization-related occupations. The program resulted in; (a) 80 Alaska Native citizens provided with skills training in five weatherization training units that were delivered in cooperation with University of Alaska Southeast, in accordance with the U.S. Department of Energy Core Competencies for Weatherization Training that prepared participants for employment in three weatherizationrelated occupations: Installer, Crew Chief, and Auditor; (b) 25 paidmore » OJT training opportunities for trainees who successfully completed the training course; and (c) employed trained personnel that have begun to rehab on over 1,000 housing units for weatherization.« less

  11. National Maps - NOAA's National Weather Service

    Science.gov Websites

    information, select area of interest and click on the image below. National Weather Outlook Northeast Michigan Boston and Surrounding Areas Western New York - Buffalo Northern Vermont and New York Southern Maine California and Northwestern Arizona - Las Vegas South Central California Los Angeles Area San Francisco Area

  12. Current problems in communication from the weather forecast in the prevention of hydraulic and hydrogeological risk

    NASA Astrophysics Data System (ADS)

    Fazzini, Massimiliano; Vaccaro, Carmela

    2014-05-01

    The Italian territory is one of the most fragile hydraulic and hydro geologic of the world, due to its complexity physiographic, lithological and above meteo-climatic too. Moreover, In recent years, the unhappy urbanization, the abandonment of mountain areas and countryside have fostered hydro geological instability, ever more devastating, in relation to the extremes of meteorological events. After the dramatic floods and landscapes of the last 24 months - in which more than 50 people died - it is actually open a public debate on the issues related to prevention, forecasting and management of hydro-meteorological risk. Aim of the correct weather forecasting at different spatial and temporal scales is to avoid or minimize the potential occurrence of damage or human losses resulting from the increasingly of frequent extreme weather events. In Italy, there are two major complex problems that do not allow for effective dissemination of the correct weather forecasting. First, the absence of a national meteorological service - which can ensure the quality of information. In this regard, it is at an advanced stage the establishment of a unified national weather service - formed by technicians to national and regional civil protection and the Meteorological Service of the Air Force, which will ensure the quality of the prediction, especially through exclusive processing of national and local weather forecasting and hydro geological weather alert. At present, however, this lack favors the increasing diffusion of meteorological sites more or less professional - often totally not "ethical" - which, at different spatial scales, tend to amplify the signals from the weather prediction models, describing them the users of the web such as exceptional or rare phenomena and often causing unjustified alarmism. This behavior is almost always aimed at the desire of give a forecast before other sites and therefore looking for new commercial sponsors, with easy profits. On the other hand

  13. Research Data Alliance's Interest Group on "Weather, Climate and Air Quality"

    NASA Astrophysics Data System (ADS)

    Bretonnière, Pierre-Antoine; Benincasa, Francesco

    2016-04-01

    Research Data Alliance's Interest Group on "Weather, Climate and Air Quality" More than ever in the history of Earth sciences, scientists are confronted with the problem of dealing with huge amounts of data that grow continuously at a rate that becomes a challenge to process and analyse them using conventional methods. Data come from many different and widely distributed sources, ranging from satellite platforms and in-situ sensors to model simulations, and with different degrees of openness. How can Earth scientists deal with this diversity and big volume and extract useful information to understand and predict the relevant processes? The Research Data Alliance (RDA, https://rd-alliance.org/), an organization that promotes and develops new data policies, data standards and focuses on the development of new technical solutions applicable in many distinct areas of sciences, recently entered in its third phase. In this framework, an Interest Group (IG) comprised of community experts that are committed to directly or indirectly enable and facilitate data sharing, exchange, or interoperability in the fields of weather, climate and air quality has been created recently. Its aim is to explore and discuss the challenges for the use and efficient analysis of large and diverse datasets of relevance for these fields taking advantage of the knowledge generated and exchanged in RDA. At the same time, this IG intends to be a meeting point between members of the aforementioned communities to share experiences and propose new solutions to overcome the forthcoming challenges. Based on the collaboration between several research meteorological and European climate institutes, but also taking into account the input from the private (from the renewable energies, satellites and agriculture sectors for example) and public sectors, this IG will suggest practical and applicable solutions for Big Data issues, both at technological and policy level, encountered by these communities. We

  14. Recent Progress of Solar Weather Forecasting at Naoc

    NASA Astrophysics Data System (ADS)

    He, Han; Wang, Huaning; Du, Zhanle; Zhang, Liyun; Huang, Xin; Yan, Yan; Fan, Yuliang; Zhu, Xiaoshuai; Guo, Xiaobo; Dai, Xinghua

    The history of solar weather forecasting services at National Astronomical Observatories, Chinese Academy of Sciences (NAOC) can be traced back to 1960s. Nowadays, NAOC is the headquarters of the Regional Warning Center of China (RWC-China), which is one of the members of the International Space Environment Service (ISES). NAOC is responsible for exchanging data, information and space weather forecasts of RWC-China with other RWCs. The solar weather forecasting services at NAOC cover short-term prediction (within two or three days), medium-term prediction (within several weeks), and long-term prediction (in time scale of solar cycle) of solar activities. Most efforts of the short-term prediction research are concentrated on the solar eruptive phenomena, such as flares, coronal mass ejections (CMEs) and solar proton events, which are the key driving sources of strong space weather disturbances. Based on the high quality observation data of the latest space-based and ground-based solar telescopes and with the help of artificial intelligence techniques, new numerical models with quantitative analyses and physical consideration are being developed for the predictions of solar eruptive events. The 3-D computer simulation technology is being introduced for the operational solar weather service platform to visualize the monitoring of solar activities, the running of the prediction models, as well as the presenting of the forecasting results. A new generation operational solar weather monitoring and forecasting system is expected to be constructed in the near future at NAOC.

  15. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along

  16. Mortality from flash floods: a review of national weather service reports, 1969-81.

    PubMed Central

    French, J; Ing, R; Von Allmen, S; Wood, R

    1983-01-01

    Of all weather-related disasters that occur in the United States, floods are the main cause of death, and most flood-related deaths are attributed to flash floods. Whenever a weather-related disaster involves 30 or more deaths or more than $100 million in property damage, the National Weather Service (NWS) forms a survey team to investigate the disaster and write a report of findings. All NWS survey reports on flash floods issued during 1969-81 were reviewed to determine the mortality resulting from such floods, the effect of warnings on mortality, and the circumstances contributing to death. A total of 1,185 deaths were associated with 32 flash floods, an average of 37 deaths per flash flood. The highest average number of deaths per event was associated with the four flash floods in which dams broke after heavy rains. Although there were 18 flash floods in 1977-81 and only 14 in 1969-76, the number of deaths was 2 1/2 times greater during the earlier period. More than twice as many deaths were associated with flash floods for which the survey team considered the warnings inadequate than with those with warnings considered adequate. Ninety-three percent of the deaths were due to drowning and 42 percent of these drownings were car related. The other drownings occurred in homes, at campsites, or when persons were crossing bridges and streams. The need for monitoring dams during periods of heavy rainfall is highlighted. PMID:6419273

  17. Data Network Weather Service Reporting - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Frey

    2012-08-30

    A final report is made of a three-year effort to develop a new forecasting paradigm for computer network performance. This effort was made in co-ordination with Fermi Lab's construction of e-Weather Center.

  18. Innovative Near Real-Time Data Dissemination Tools Developed by the Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Maddox, Marlo M.; Mullinix, Richard; Mays, M. Leila; Kuznetsova, Maria; Zheng, Yihua; Pulkkinen, Antti; Rastaetter, Lutz

    2013-03-01

    Access to near real-time and real-time space weather data is essential to accurately specifying and forecasting the space environment. The Space Weather Research Center at NASA Goddard Space Flight Center's Space Weather Laboratory provides vital space weather forecasting services primarily to NASA robotic mission operators, as well as external space weather stakeholders including the Air Force Weather Agency. A key component in this activity is the iNtegrated Space Weather Analysis System which is a joint development project at NASA GSFC between the Space Weather Laboratory, Community Coordinated Modeling Center, Applied Engineering & Technology Directorate, and NASA HQ Office Of Chief Engineer. The iSWA system was developed to address technical challenges in acquiring and disseminating space weather environment information. A key design driver for the iSWA system was to generate and present vast amounts of space weather resources in an intuitive, user-configurable, and adaptable format - thus enabling users to respond to current and future space weather impacts as well as enabling post-impact analysis. Having access to near real-time and real-time data is essential to not only ensuring that relevant observational data is available for analysis - but also in ensuring that models can be driven with the requisite input parameters at proper and efficient temporal and spacial resolutions. The iSWA system currently manages over 300 unique near-real and real-time data feeds from various sources consisting of both observational and simulation data. A comprehensive suite of actionable space weather analysis tools and products are generated and provided utilizing a mixture of the ingested data - enabling new capabilities in quickly assessing past, present, and expected space weather effects. This paper will highlight current and future iSWA system capabilities including the utilization of data from the Solar Dynamics Observatory mission. http://iswa.gsfc.nasa.gov/

  19. The use of National Weather Service Data to Compute the Dose to the MEOI.

    PubMed

    Vickers, Linda

    2018-05-01

    The Turner method is the "benchmark method" for computing the stability class that is used to compute the X/Q (s m). The Turner method should be used to ascertain the validity of X/Q results determined by other methods. This paper used site-specific meteorological data obtained from the National Weather Service. The Turner method described herein is simple, quick, accurate, and transparent because all of the data, calculations, and results are visible for verification and validation with published literature.

  20. Benefits of Sharing Information from Commercial Airborne Forward-Looking Sensors in the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Schaffner, Philip R.; Harrah, Steven; Neece, Robert T.

    2012-01-01

    The air transportation system of the future will need to support much greater traffic densities than are currently possible, while preserving or improving upon current levels of safety. Concepts are under development to support a Next Generation Air Transportation System (NextGen) that by some estimates will need to support up to three times current capacity by the year 2025. Weather and other atmospheric phenomena, such as wake vortices and volcanic ash, constitute major constraints on airspace system capacity and can present hazards to aircraft if encountered. To support safe operations in the NextGen environment advanced systems for collection and dissemination of aviation weather and environmental information will be required. The envisioned NextGen Network Enabled Weather (NNEW) infrastructure will be a critical component of the aviation weather support services, providing access to a common weather picture for all system users. By taking advantage of Network Enabled Operations (NEO) capabilities, a virtual 4-D Weather Data Cube with aviation weather information from many sources will be developed. One new source of weather observations may be airborne forward-looking sensors, such as the X-band weather radar. Future sensor systems that are the subject of current research include advanced multi-frequency and polarimetric radar, a variety of Lidar technologies, and infrared imaging spectrometers.

  1. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  2. Field Studies Delve Into the Intricacies of Mountain Weather

    NASA Astrophysics Data System (ADS)

    Fernando, Harindra J. S.; Pardyjak, Eric R.

    2013-09-01

    Mountain meteorology, in particular weather prediction in complex (rugged) terrain, is emerging as an important topic for science and society. Large urban settlements such as Los Angeles, Hong Kong, and Rio de Janeiro have grown within or in the shadow of complex terrain, and managing the air quality of such cities requires a good understanding of the air flow patterns that spill off of mountains. On a daily time scale, the interconnected engineered and natural systems that sustain urban metabolism and quality of life are affected by weather [Fernando, 2010]. Further, recent military engagements in remote mountainous areas have heightened the need for better weather predictions—alpine warfare is considered to be one of the most dangerous types of combat.

  3. Clark AFB, Philippines. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1984-02-01

    DATA PROCESSING DIVISION USAFETAC Air Weather Service ( MAC) 2L._qi( .3 I-H M3,; #983270 :.15 11 E 120 33 EL --V478 FT ?.p1K I-ARTS A-F HUMS...THIS PAGE .a.. E ...d) REPORT DOCUMENTATION PAGE READ INSTRUCTIONS REPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM I REPORT NUMBER 12 GOVT ACCESSION NO. 3...62225 P. 320 14 MONITORING AGENCY NAME & ADDRESS(f dlle’. e , Ifr Controlling Offfe) 15. SECURITY CLASS. (of this report) UNCLASSIFIED T5

  4. INNOVATIVE URBAN WET-WEATHER FLOW MANAGEMENT SYSTEMS

    EPA Science Inventory

    This report describes innovative methods to improve wet weather flow (WWF) management systems, that provide drainage services at the same time as decreasing stormwater pollutant discharges, for urban developments of the 21st century. Traditionally, wet-weather collection systems...

  5. Assimilating Thor: How Airmen Integrate Weather Prediction

    DTIC Science & Technology

    2010-06-01

    atmosphere and the earth from the air and from space widened the aperture of data so as to overexpose humans to the panoply of information coming...endurance record flights circled the earth without stopping; aircraft climbed through the atmosphere into space. Weather surveillance radar...advances found congruence in the meteorological advance of ensemble weather modeling. Complex, adaptive systems like the atmosphere lend themselves to

  6. Domestic Refrigeration, Freezer, and Window Air Conditioner Service. Teacher Edition.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This curriculum guide contains six units of instruction for a course in domestic refrigerator, freezer, and window air conditioner service. The units cover the following topics: (1) service fundamentals; (2) mechanical components and functions; (3) electrical components and control devices; (4) refrigerator and freezer service; (5) domestic ice…

  7. The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems

    DTIC Science & Technology

    2003-09-30

    The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems Dr. Melvyn A. Shapiro NOAA/Office of Weather and Air Quality...predictability of extratropical cyclones. APPROACH My approach toward achieving the above objectives has been to foster national and...TITLE AND SUBTITLE The Analysis, Numerical Simulation, and Diagnosis of Extratropical Weather Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  8. FORETELL : providing integrated weather information services across the Upper-Midwest

    DOT National Transportation Integrated Search

    1998-08-19

    Weather has an enormous effect on travel and road conditions. Drifting snow, ice, fog, and gusty winds are some of the weather events that contribute to the deaths of more than 1150 U.S. and Canadian highway users every winter. Adverse conditions cut...

  9. 14 CFR 204.4 - Carriers proposing to provide essential air service.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Carriers proposing to provide essential air... (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS DATA TO SUPPORT FITNESS DETERMINATIONS Filing Requirements § 204.4 Carriers proposing to provide essential air service. Applicants proposing to provide essential air...

  10. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  11. 76 FR 52731 - On-Line Complaint Form for Service-Related Issues in Air Transportation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... for Service-Related Issues in Air Transportation AGENCY: Office of the Secretary, Department of... consumer protection and civil rights laws and regulations related to air transportation. The Enforcement... travelers, and to ensure safe and adequate service in air transportation. Filing a complaint using a web...

  12. Mission Statement - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings data, forecasts and warnings for the protection of life and property and enhancement of the national Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and

  13. What is the weather like today

    NASA Astrophysics Data System (ADS)

    Jovic, Sladjana

    2017-04-01

    Meteorology is the study of all changes in the atmosphere that surround the Earth. In this project, students will design and build some of the instruments that meteorologists use and make two school Weather Stations and placed them in different school yards so that results of weather parameters date can be follow during three months and be compared. Poster will present a procedure and a preparation how to work with weather stations that contain 1. Barometer (Air pressure) 2. Rain Gauge (Precipitation) 3. Thermometer (Temperature ) 4. Wind Vane (Wind Direction) By collecting their own data, the students found out more about weather through a process similar to the one that professional meteorologists used. Finally students compared differences between two school weather station and used these results to presented how different places had different climate and how climate changed during the months in a year. This was opportunity for cooperation between students from different schools and different grades when older students from secondary school helped younger student to make their weather station and shared knowledge and experience while they followed weather condition during the project .

  14. Air Traffic Services Performance Plan for Fiscal Years 2000-2002

    DOT National Transportation Integrated Search

    1999-10-01

    Each year, Air Traffic Services (ATS) executives and staff assess the : organization's performance and actions taken to improve aviation services : during the previous 12 months, and evaluate the current and future challenges : facing its customers. ...

  15. Climate, weather, space weather: model development in an operational context

    NASA Astrophysics Data System (ADS)

    Folini, Doris

    2018-05-01

    Aspects of operational modeling for climate, weather, and space weather forecasts are contrasted, with a particular focus on the somewhat conflicting demands of "operational stability" versus "dynamic development" of the involved models. Some common key elements are identified, indicating potential for fruitful exchange across communities. Operational model development is compelling, driven by factors that broadly fall into four categories: model skill, basic physics, advances in computer architecture, and new aspects to be covered, from costumer needs over physics to observational data. Evaluation of model skill as part of the operational chain goes beyond an automated skill score. Permanent interaction between "pure research" and "operational forecast" people is beneficial to both sides. This includes joint model development projects, although ultimate responsibility for the operational code remains with the forecast provider. The pace of model development reflects operational lead times. The points are illustrated with selected examples, many of which reflect the author's background and personal contacts, notably with the Swiss Weather Service and the Max Planck Institute for Meteorology, Hamburg, Germany. In view of current and future challenges, large collaborations covering a range of expertise are a must - within and across climate, weather, and space weather. To profit from and cope with the rapid progress of computer architectures, supercompute centers must form part of the team.

  16. The Air Force's central reference laboratory: maximizing service while minimizing cost.

    PubMed

    Armbruster, D A

    1991-11-01

    The Laboratory Services Branch (Epi Lab) of the Epidemiology Division, Brooks AFB, Texas, is designated by regulation to serve as the Air Force's central reference laboratory, providing clinical laboratory testing support to all Air Force medical treatment facilities (MTFs). Epi Lab recognized that it was not offering the MTFs a service comparable to civilian reference laboratories and that, as a result, the Air Force medical system was spending hundreds of thousands of dollars yearly for commercial laboratory support. An in-house laboratory upgrade program was proposed to and approved by the USAF Surgeon General, as a Congressional Efficiencies Add project, to launch a two-phase initiative consisting of a 1-year field trial of 30 MTFs, followed by expansion to another 60 MTFs. Major components of the program include overnight air courier service to deliver patient samples to Epi Lab, a mainframe computer laboratory information system and electronic reporting of results to the MTFs throughout the CONUS. Application of medical marketing concepts and the Total Quality Management (TQM) philosophy allowed Epi to provide dramatically enhanced reference service at a cost savings of about $1 million to the medical system. The Epi Lab upgrade program represents an innovative problem-solving approach, combining technical and managerial improvements, resulting in substantial patient care service and financial dividends. It serves as an example of successful application of TQM and marketing within the military medical system.

  17. Feedbacks between Air Pollution and Weather, Part 1: Effects on Weather

    EPA Science Inventory

    The meteorological predictions of fully coupled air-quality models running in “feedback” versus “nofeedback” simulations were compared against each other as part of Phase 2 of the Air Quality Model Evaluation International Initiative. The model simulations included a “no-feedback...

  18. Space Weather Modeling Services at the Community Coordinated Modeling Center

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2006-01-01

    The Community Coordinated Modeling Center (CCMC) is a multi-agency partnership, which aims at the creation of next generation space weather models. The goal of the CCMC is to support the research and developmental work necessary to substantially increase the present-day modeling capability for space weather purposes, and to provide models for transition to the Rapid Prototyping Centers at the space weather forecast centers. This goal requires close collaborations with and substantial involvement of the research community. The physical regions to be addressed by CCMC-related activities range from the solar atmosphere to the Earth's upper atmosphere. The CCMC is an integral part of the National Space Weather Program Implementation Plan, of NASA's Living With a Star (LWS) initiative, and of the Department of Defense Space Weather Transition Plan. CCMC includes a facility at NASA Goddard Space Flight Center. CCMC also provides, to the research community, access to state-of-the-art space research models. In this paper we will provide a description of the current CCMC status, discuss current plans, research and development accomplishments and goals, and describe the model testing and validation process undertaken as part of the CCMC mandate. Special emphasis will be on solar and heliospheric models currently residing at CCMC, and on plans for validation and verification.

  19. The Subseasonal Experiment (SubX) to Advance National Weather Service Predictions for Weeks 3-4

    NASA Astrophysics Data System (ADS)

    Mariotti, A.; Barrie, D.; Archambault, H. M.

    2017-12-01

    There is great practical interest in developing skillful predictions of extremes for lead times extending beyond the two-week theoretical predictability skill barrier for weather forecasts to the subseasonal-to-seasonal (S2S) time scale. The processes and phenomena specific to S2S are posited to require a unified approach to science, modeling, and predictions that draws expertise from both the weather and climate/seasonal communities. Based on this premise, in 2016, the NOAA Climate Program Office Modeling, Analysis, Predictions and Projections (MAPP) program, in partnership with the National Weather Service Office of Science and Technology Integration, launched a major research and transition initiative to meet NOAA's emerging research and transition needs for developing skillful S2S predictions. A major component of this initiative is an experiment to test single- and multi-model ensembles for subseasonal prediction, called the Subseasonal Experiment (SubX). SubX, which engages six modeling groups, is producing real time experimental forecasts based on weather, climate, and Earth system models for weeks 3-4. The project investigators are evaluating, testing, and optimizing this system, and the hindcast and real time forecast data are available to the broad community. SubX research is targeted at a number of important decision-making contexts including drought and extremes, as well as the broad variety of phenomena that are meaningful at subseasonal timescales (e.g., MJO, ENSO, stratosphere/troposphere coupling, etc.). This presentation will discuss the design and status of SubX in the broader context of MAPP program S2S prediction research.

  20. 13. SAC command center, weather center, underground structure, building 501, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. SAC command center, weather center, underground structure, building 501, undated - Offutt Air Force Base, Strategic Air Command Headquarters & Command Center, Command Center, 901 SAC Boulevard, Bellevue, Sarpy County, NE

  1. 76 FR 54528 - Standard Operating Procedures (SOP) of the Aircraft Certification Service (AIR) Process for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-01

    ...) of the Aircraft Certification Service (AIR) Process for the Sequencing of Certification and... on the Aircraft Certification Service (AIR) standard operating procedure (SOP) describing the process... comments on the SOP : AIR-100-001; Standard Operating Procedure--Aircraft Certification Service Project...

  2. Using Open and Interoperable Ways to Publish and Access LANCE AIRS Near-Real Time Data

    NASA Technical Reports Server (NTRS)

    Zhao, Peisheng; Lynnes, Christopher; Vollmer, Bruce; Savtchenko, Andrey; Theobald, Michael; Yang, Wenli

    2011-01-01

    The Atmospheric Infrared Sounder (AIRS) Near-Real Time (NRT) data from the Land Atmosphere Near real-time Capability for EOS (LANCE) element at the Goddard Earth Sciences Data and Information Services Center (GES DISC) provides information on the global and regional atmospheric state, with very low temporal latency, to support climate research and improve weather forecasting. An open and interoperable platform is useful to facilitate access to, and integration of, LANCE AIRS NRT data. As Web services technology has matured in recent years, a new scalable Service-Oriented Architecture (SOA) is emerging as the basic platform for distributed computing and large networks of interoperable applications. Following the provide-register-discover-consume SOA paradigm, this presentation discusses how to use open-source geospatial software components to build Web services for publishing and accessing AIRS NRT data, explore the metadata relevant to registering and discovering data and services in the catalogue systems, and implement a Web portal to facilitate users' consumption of the data and services.

  3. PRIVATE WEATHER SERVICES PROVIDERS

    Science.gov Websites

    Office Marine, Tropical, and Tsunami Services Branch Items of Interest Marine Forecasts Text, Graphic , Marine, Tropical, and Tsunami Services Branch, Items of Interest, Forecasts, Observations, Portals

  4. Satellite Sounder Data Assimilation for Improving Alaska Region Weather Forecast

    NASA Technical Reports Server (NTRS)

    Zhu, Jiang; Stevens, E.; Zhang, X.; Zavodsky, B. T.; Heinrichs, T.; Broderson, D.

    2014-01-01

    A case study and monthly statistical analysis using sounder data assimilation to improve the Alaska regional weather forecast model are presented. Weather forecast in Alaska faces challenges as well as opportunities. Alaska has a large land with multiple types of topography and coastal area. Weather forecast models must be finely tuned in order to accurately predict weather in Alaska. Being in the high-latitudes provides Alaska greater coverage of polar orbiting satellites for integration into forecasting models than the lower 48. Forecasting marine low stratus clouds is critical to the Alaska aviation and oil industry and is the current focus of the case study. NASA AIRS/CrIS sounder profiles data are used to do data assimilation for the Alaska regional weather forecast model to improve Arctic marine stratus clouds forecast. Choosing physical options for the WRF model is discussed. Preprocess of AIRS/CrIS sounder data for data assimilation is described. Local observation data, satellite data, and global data assimilation data are used to verify and/or evaluate the forecast results by the MET tools Model Evaluation Tools (MET).

  5. Commercial aviation : air service trends at small communities since October 2000

    DOT National Transportation Integrated Search

    2002-03-01

    In recent years the General Accounting Office (GAO) has reported on the effects of changes in the airline industry on service, including service at small community airports. Due to concern about air service to small communities, especially in light o...

  6. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, it wasmore » to be fuel- blind''). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.« less

  7. Winds and Weather, Teacher's Edition. Probing the Natural World/3.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee. Dept. of Science Education.

    The teacher's edtion for the Intermediate Science Curriculum Study Level III unit entitled "Winds and Weather" provides instructions for teachers for examining some principles underlying thermal convention, weather observation, closed systems, moisture and cloud formation, the heated-air model, and fronts. A brief introduction dealing…

  8. Application of ESE Data and Tools to Air Quality Management: Services for Helping the Air Quality Community use ESE Data (SHAirED)

    NASA Technical Reports Server (NTRS)

    Falke, Stefan; Husar, Rudolf

    2011-01-01

    The goal of this REASoN applications and technology project is to deliver and use Earth Science Enterprise (ESE) data and tools in support of air quality management. Its scope falls within the domain of air quality management and aims to develop a federated air quality information sharing network that includes data from NASA, EPA, US States and others. Project goals were achieved through a access of satellite and ground observation data, web services information technology, interoperability standards, and air quality community collaboration. In contributing to a network of NASA ESE data in support of particulate air quality management, the project will develop access to distributed data, build Web infrastructure, and create tools for data processing and analysis. The key technologies used in the project include emerging web services for developing self describing and modular data access and processing tools, and service oriented architecture for chaining web services together to assemble customized air quality management applications. The technology and tools required for this project were developed within DataFed.net, a shared infrastructure that supports collaborative atmospheric data sharing and processing web services. Much of the collaboration was facilitated through community interactions through the Federation of Earth Science Information Partners (ESIP) Air Quality Workgroup. The main activities during the project that successfully advanced DataFed, enabled air quality applications and established community-oriented infrastructures were: develop access to distributed data (surface and satellite), build Web infrastructure to support data access, processing and analysis create tools for data processing and analysis foster air quality community collaboration and interoperability.

  9. What Makes the Weather?

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Provides (1) background information showing how the sun, earth, air, and water work together to create weather; (2) six activities on this topic; and (3) a ready-to-copy coloring page on the water cycle. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. (JN)

  10. A coupled human-natural system to assess the operational value of weather and climate services for agriculture

    NASA Astrophysics Data System (ADS)

    Li, Yu; Giuliani, Matteo; Castelletti, Andrea

    2017-09-01

    Recent advances in weather and climate (W&C) services are showing increasing forecast skills over seasonal and longer timescales, potentially providing valuable support in informing decisions in a variety of economic sectors. Quantifying this value, however, might not be straightforward as better forecast quality does not necessarily imply better decisions by the end users, especially when forecasts do not reach their final users, when providers are not trusted, or when forecasts are not appropriately understood. In this study, we contribute an assessment framework to evaluate the operational value of W&C services for informing agricultural practices by complementing traditional forecast quality assessments with a coupled human-natural system behavioural model which reproduces farmers' decisions. This allows a more critical assessment of the forecast value mediated by the end users' perspective, including farmers' risk attitudes and behavioural factors. The application to an agricultural area in northern Italy shows that the quality of state-of-the-art W&C services is still limited in predicting the weather and the crop yield of the incoming agricultural season, with ECMWF annual products simulated by the IFS/HOPE model resulting in the most skillful product in the study area. However, we also show that the accuracy of estimating crop yield and the probability of making optimal decisions are not necessarily linearly correlated, with the overall assessment procedure being strongly impacted by the behavioural attitudes of farmers, which can produce rank reversals in the quantification of the W&C services operational value depending on the different perceptions of risk and uncertainty.

  11. National Weather Service Forecast Office Guam Home

    Science.gov Websites

    National Alerts Text Current Conditions Observations Satellite Hydrology River & Lake AHPS Radar Imagery AAFB (Guam) AAFB (Guam) Dial up CONUS Radar Forecasts Activity Planner Guam Public Marine Aviation ; Weather Topics: Local Alerts, Current Conditions, Radar, Satellite, Climate, W-GUM.Webmaster@noaa.gov

  12. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    NASA Technical Reports Server (NTRS)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  13. Space weather activities in Australia

    NASA Astrophysics Data System (ADS)

    Cole, D.

    Space Weather Plan Australia has a draft space weather plan to drive and focus appropriate research into services that meet future industry and social needs. The Plan has three main platforms, space weather monitoring and service delivery, support for priority research, and outreach to the community. The details of monitoring, service, research and outreach activities are summarised. A ground-based network of 14 monitoring stations from Antarctica to Papua New Guinea is operated by IPS, a government agency. These sites monitor ionospheric and geomagnetic characteristics, while two of them also monitor the sun at radio and optical wavelengths. Services provided through the Australian Space Forecast Centre (ASFC) include real-time information on the solar, space, ionospheric and geomagnetic environments. Data are gathered automatically from monitoring sites and integrated with data exchanged internationally to create snapshots of current space weather conditions and forecasts of conditions up to several days ahead. IPS also hosts the WDC for Solar-Terrestrial Science and specialises in ground-based solar, ionospheric, and geomagnetic data sets, although recent in-situ magnetospheric measurements are also included. Space weather activities A research consortium operates the Tasman International Geospace Environment Radar (TIGER), an HF southward pointing auroral radar operating from Hobart (Tasmania). A second cooperative radar (Unwin radar) is being constructed in the South Island of New Zealand. This will intersect with TIGER over the auroral zone and enhance the ability of the radar to image the surge of currents that herald space environment changes entering the Polar Regions. Launched in November 2002, the micro satellite FEDSAT, operated by the Cooperative Research Centre for Satellite Systems, has led to successful space science programs and data streams. FEDSAT is making measurements of the magnetic field over Australia and higher latitudes. It also carries a

  14. Microbial Air Quality and Bacterial Surface Contamination in Ambulances During Patient Services

    PubMed Central

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-01-01

    Objectives We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. Methods We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson’s correlation coefficient with a p-value of less than 0.050 considered significant. Results The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m3 and 522±581cfu/m3, respectively. Bacterial counts during patient services were 468±607cfu/m3 and fungal counts were 656±612cfu/m3. Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm2 and 1.3±1.1cfu/cm2, respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. Conclusions This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs

  15. Microbial air quality and bacterial surface contamination in ambulances during patient services.

    PubMed

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-03-01

    We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson's correlation coefficient with a p-value of less than 0.050 considered significant. The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m(3) and 522±581cfu/m(3), respectively. Bacterial counts during patient services were 468±607cfu/m(3) and fungal counts were 656±612cfu/m(3). Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm(2) and 1.3±1.1cfu/cm(2), respectively (p<0.001). The predominant isolated bacteria and fungi were Staphylococcus spp. and Aspergillus spp., respectively. Additionally, there was a significantly positive correlation between bacterial (r=0.3, p<0.010) and fungal counts (r=0.2, p=0.020) in air samples and bacterial counts on medical instruments and allocated areas. This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and

  16. Weather Observation Systems and Efficiency of Fighting Forest Fires

    NASA Astrophysics Data System (ADS)

    Khabarov, N.; Moltchanova, E.; Obersteiner, M.

    2007-12-01

    Weather observation is an essential component of modern forest fire management systems. Satellite and in-situ based weather observation systems might help to reduce forest loss, human casualties and destruction of economic capital. In this paper, we develop and apply a methodology to assess the benefits of various weather observation systems on reductions of burned area due to early fire detection. In particular, we consider a model where the air patrolling schedule is determined by a fire hazard index. The index is computed from gridded daily weather data for the area covering parts Spain and Portugal. We conduct a number of simulation experiments. First, the resolution of the original data set is artificially reduced. The reduction of the total forest burned area associated with air patrolling based on a finer weather grid indicates the benefit of using higher spatially resolved weather observations. Second, we consider a stochastic model to simulate forest fires and explore the sensitivity of the model with respect to the quality of input data. The analysis of combination of satellite and ground monitoring reveals potential cost saving due to a "system of systems effect" and substantial reduction in burned area. Finally, we estimate the marginal improvement schedule for loss of life and economic capital as a function of the improved fire observing system.

  17. Designing Crop Simulation Web Service with Service Oriented Architecture Principle

    NASA Astrophysics Data System (ADS)

    Chinnachodteeranun, R.; Hung, N. D.; Honda, K.

    2015-12-01

    Crop simulation models are efficient tools for simulating crop growth processes and yield. Running crop models requires data from various sources as well as time-consuming data processing, such as data quality checking and data formatting, before those data can be inputted to the model. It makes the use of crop modeling limited only to crop modelers. We aim to make running crop models convenient for various users so that the utilization of crop models will be expanded, which will directly improve agricultural applications. As the first step, we had developed a prototype that runs DSSAT on Web called as Tomorrow's Rice (v. 1). It predicts rice yields based on a planting date, rice's variety and soil characteristics using DSSAT crop model. A user only needs to select a planting location on the Web GUI then the system queried historical weather data from available sources and expected yield is returned. Currently, we are working on weather data connection via Sensor Observation Service (SOS) interface defined by Open Geospatial Consortium (OGC). Weather data can be automatically connected to a weather generator for generating weather scenarios for running the crop model. In order to expand these services further, we are designing a web service framework consisting of layers of web services to support compositions and executions for running crop simulations. This framework allows a third party application to call and cascade each service as it needs for data preparation and running DSSAT model using a dynamic web service mechanism. The framework has a module to manage data format conversion, which means users do not need to spend their time curating the data inputs. Dynamic linking of data sources and services are implemented using the Service Component Architecture (SCA). This agriculture web service platform demonstrates interoperability of weather data using SOS interface, convenient connections between weather data sources and weather generator, and connecting

  18. Weather forecasting support for AASE-2

    NASA Technical Reports Server (NTRS)

    Forbes, Gregory S.

    1992-01-01

    The AFEAS Contract and NASA Grant were awarded to Penn State in order to obtain real-time weather forecasting support for the NASA AASE-II Project, which was conducted between October 1991 and March 1992. Because of the special weather sensitivities of the NASA ER-2 aircraft, AASE-II planners felt that public weather forecasts issued by the National Weather Service would not be adequate for mission planning purposes. A likely consequence of resorting to that medium would have been that scientists would have had to be at work by 4 AM day after day in the hope that the aircraft could fly, only to be frustrated by a great number of 'scrubbed' missions. Thus, the Pennsylvania State University was contracted to provide real-time weather support to the AASE-II mission.

  19. Weather Forecaster Understanding of Climate Models

    NASA Astrophysics Data System (ADS)

    Bol, A.; Kiehl, J. T.; Abshire, W. E.

    2013-12-01

    Weather forecasters, particularly those in broadcasting, are the primary conduit to the public for information on climate and climate change. However, many weather forecasters remain skeptical of model-based climate projections. To address this issue, The COMET Program developed an hour-long online lesson of how climate models work, targeting an audience of weather forecasters. The module draws on forecasters' pre-existing knowledge of weather, climate, and numerical weather prediction (NWP) models. In order to measure learning outcomes, quizzes were given before and after the lesson. Preliminary results show large learning gains. For all people that took both pre and post-tests (n=238), scores improved from 48% to 80%. Similar pre/post improvement occurred for National Weather Service employees (51% to 87%, n=22 ) and college faculty (50% to 90%, n=7). We believe these results indicate a fundamental misunderstanding among many weather forecasters of (1) the difference between weather and climate models, (2) how researchers use climate models, and (3) how they interpret model results. The quiz results indicate that efforts to educate the public about climate change need to include weather forecasters, a vital link between the research community and the general public.

  20. Ionospheric effects during severe space weather events seen in ionospheric service data products

    NASA Astrophysics Data System (ADS)

    Jakowski, Norbert; Danielides, Michael; Mayer, Christoph; Borries, Claudia

    Space weather effects are closely related to complex perturbation processes in the magnetosphere-ionosphere-thermosphere systems, initiated by enhanced solar energy input. To understand and model complex space weather processes, different views on the same subject are helpful. One of the ionosphere key parameters is the Total Electron Content (TEC) which provides a first or-der approximation of the ionospheric range error in Global Navigation Satellite System (GNSS) applications. Additionally, horizontal gradients and time rate of change of TEC are important for estimating the perturbation degree of the ionosphere. TEC maps can effectively be gener-ated using ground based GNSS measurements from global receiver networks. Whereas ground based GNSS measurements provide good horizontal resolution, space based radio occultation measurements can complete the view by providing information on the vertical plasma density distribution. The combination of ground based TEC and vertical sounding measurements pro-vide essential information on the shape of the vertical electron density profile by computing the equivalent slab thickness at the ionosonde station site. Since radio beacon measurements at 150/400 MHz are well suited to trace the horizontal structure of Travelling Ionospheric Dis-turbances (TIDs), these data products essentially complete GNSS based TEC mapping results. Radio scintillation data products, characterising small scale irregularities in the ionosphere, are useful to estimate the continuity and availability of transionospheric radio signals. The different data products are addressed while discussing severe space weather events in the ionosphere e.g. events in October/November 2003. The complementary view of different near real time service data products is helpful to better understand the complex dynamics of ionospheric perturbation processes and to forecast the development of parameters customers are interested in.

  1. Weather support area, floor plan and details. ("Alter COC, Bldg. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Weather support area, floor plan and details. ("Alter COC, Bldg. 2605, Weather Support Area, Floor Plan & Details" Also includes a site plan and a finish schedule. The exact location of this construction is obscure, but it appears to be the enclosure of space at the north end of room 101, the "Display Area" or "War Room") Strategic Air Command, Civil Engineering. Drawing no. B-1081, sheet no. 1 of 2, 9 July 1968; project no. MAR-132-8; CE-562; file drawer 2605-9, also 1315. Various scales. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. Benefits Analysis of Multi-Center Dynamic Weather Routes

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  3. Introduction to the Space Weather Monitoring System at KASI

    NASA Astrophysics Data System (ADS)

    Baek, J.; Choi, S.; Kim, Y.; Cho, K.; Bong, S.; Lee, J.; Kwak, Y.; Hwang, J.; Park, Y.; Hwang, E.

    2014-05-01

    We have developed the Space Weather Monitoring System (SWMS) at the Korea Astronomy and Space Science Institute (KASI). Since 2007, the system has continuously evolved into a better system. The SWMS consists of several subsystems: applications which acquire and process observational data, servers which run the applications, data storage, and display facilities which show the space weather information. The applications collect solar and space weather data from domestic and oversea sites. The collected data are converted to other format and/or visualized in real time as graphs and illustrations. We manage 3 data acquisition and processing servers, a file service server, a web server, and 3 sets of storage systems. We have developed 30 applications for a variety of data, and the volume of data is about 5.5 GB per day. We provide our customers with space weather contents displayed at the Space Weather Monitoring Lab (SWML) using web services.

  4. Design and Testing of an Air Force Services Mystery Shopping Program.

    DTIC Science & Technology

    1998-11-01

    Base level Air Force Services’ lodging and foodservice activities use limited service quality measurement tools to determine customer perceptions of... service quality . These tools, specifically management observation and customer comment cards, do not provide a complete picture of service quality . Other... service quality measurement methods such as mystery shopping are rarely used. Bases do not consider using mystery shopping programs because of the

  5. National Space Weather Program Advances on Several Fronts

    NASA Astrophysics Data System (ADS)

    Gunzelman, Mark; Babcock, Michael

    2008-10-01

    The National Space Weather Program (NSWP; http://www.nswp.gov) is a U.S. federal government interagency initiative through the Office of the Federal Coordinator for Meteorology that was created to speed the improvement of space weather services for the nation. The Committee for Space Weather (CSW) under the NSWP has continued to advance the program on a number of fronts over the past 12 months.

  6. Relationship of Ground-level Ozone with Synoptic Weather Conditions in the Midwestern U.S.

    NASA Astrophysics Data System (ADS)

    Jing, P.

    2017-12-01

    This study investigates the relationship between ground-level ozone (O3) and synoptic weather conditions in the Midwestern U.S. over the period 1990-2015 using the air quality data obtained from the U.S. EPA Air Quality System (AQS) and meteorological data from NASA's Modern Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The results show that among the six different types of Spatial Synoptic Classification (SSC) weather, the occurrence of dry tropical (DT) weather conditions is most likely to lead to high O3 concentrations. The summertime O3 concentrations in the Midwest decreased at an average rate of 0.7 ppb yr-1 in the 95th percentiles from 1990 to 2015 in response to NO2 emission controls. However, O3 has become more dependent on temperature since 2008 and this was accompanied by more frequent DT weather and air stagnation. The results have implications for the likely effect of future climate change on O3 as a result of modified synoptic weather conditions.

  7. Statistical Correction of Air Temperature Forecasts for City and Road Weather Applications

    NASA Astrophysics Data System (ADS)

    Mahura, Alexander; Petersen, Claus; Sass, Bent; Gilet, Nicolas

    2014-05-01

    The method for statistical correction of air /road surface temperatures forecasts was developed based on analysis of long-term time-series of meteorological observations and forecasts (from HIgh Resolution Limited Area Model & Road Conditions Model; 3 km horizontal resolution). It has been tested for May-Aug 2012 & Oct 2012 - Mar 2013, respectively. The developed method is based mostly on forecasted meteorological parameters with a minimal inclusion of observations (covering only a pre-history period). Although the st iteration correction is based taking into account relevant temperature observations, but the further adjustment of air and road temperature forecasts is based purely on forecasted meteorological parameters. The method is model independent, e.g. it can be applied for temperature correction with other types of models having different horizontal resolutions. It is relatively fast due to application of the singular value decomposition method for matrix solution to find coefficients. Moreover, there is always a possibility for additional improvement due to extra tuning of the temperature forecasts for some locations (stations), and in particular, where for example, the MAEs are generally higher compared with others (see Gilet et al., 2014). For the city weather applications, new operationalized procedure for statistical correction of the air temperature forecasts has been elaborated and implemented for the HIRLAM-SKA model runs at 00, 06, 12, and 18 UTCs covering forecast lengths up to 48 hours. The procedure includes segments for extraction of observations and forecast data, assigning these to forecast lengths, statistical correction of temperature, one-&multi-days statistical evaluation of model performance, decision-making on using corrections by stations, interpolation, visualisation and storage/backup. Pre-operational air temperature correction runs were performed for the mainland Denmark since mid-April 2013 and shown good results. Tests also showed

  8. AN overview of the FLYSAFE datalink solution for the exchange of weather information: supporting aircrew decision making processes.

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Drouin, A.

    2009-09-01

    FLYSAFE is an Integrated Project of the 6th framework of the European Commission with the aim to improve flight safety through the development of an avionics solution the Next Generation Integrated Surveillance System (NGISS), which is supported by a ground based network of Weather Information Management Systems (WIMS) and access points in the form of the Ground Weather Processor (GWP). The NGISS provides information to the flight crew on the three major external hazards for aviation: weather, air traffic and terrain. The NGISS has the capability of displaying data about all three hazards on a single display screen, facilitating rapid appreciation of the situation by the flight crew. Weather Information Management Systems (WIMS) were developed to provide the NGISS and the flight crew with weather related information on in-flight icing, thunderstorms and clear-air turbulence. These products are generated on the ground from observations and model forecasts. WIMS will supply relevant information on three different scales: global, regional and local (over airport Terminal Manoeuvring Area). The Ground Weather Processor is a client-server architecture that utilises open source components, which include a geospatial database and web feature services. The GWP stores Weather Objects generated by the WIMS. An aviation user can retrieve on-demand all Weather Objects that intersect the volume of space that is of interest to them. The Weather Objects are fused with in-situ observation data and can be used by the flight management system to propose a route to avoid the hazard. In addition they can be used to display the current hazardous weather to the Flight Crew thereby raising their awareness. Within the FLYSAFE program, around 120 hours of flight trials were performed during February 2008 and August 2008. Two aircraft were involved each with separate objectives: - to assess FLYSAFE's innovative solutions for the data-link, on-board data-fusion and data-display and data

  9. A coronagraph for operational space weather predication

    NASA Astrophysics Data System (ADS)

    Middleton, Kevin F.

    2017-09-01

    Accurate prediction of the arrival of solar wind phenomena, in particular coronal mass ejections (CMEs), at Earth, and possibly elsewhere in the heliosphere, is becoming increasingly important given our ever-increasing reliance on technology. The potentially severe impact on human technological systems of such phenomena is termed space weather. A coronagraph is arguably the instrument that provides the earliest definitive evidence of CME eruption; from a vantage point on or near the Sun-Earth line, a coronagraph can provide near-definitive identification of an Earth-bound CME. Currently, prediction of CME arrival is critically dependent on ageing science coronagraphs whose design and operation were not optimized for space weather services. We describe the early stages of the conceptual design of SCOPE (the Solar Coronagraph for OPErations), optimized to support operational space weather services.

  10. Weatherization Innovation Pilot Program (WIPP): Technical Assistance Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollander, A.

    2014-09-01

    The U.S. Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Programs Office (WIPO) launched the Weatherization Innovation Pilot Program (WIPP) to accelerate innovations in whole-house weatherization and advance DOE's goal of increasing the energy efficiency and health and safety of low-income residences without the utilization of additional taxpayer funding. Sixteen WIPP grantees were awarded a total of $30 million in Weatherization Assistance Program (WAP) funds in September 2010. These projects focused on: including nontraditional partners in weatherization service delivery; leveraging significant non-federal funding; and improving the effectiveness of low-income weatherization through the use of newmore » materials, technologies, behavior-change models, and processes.« less

  11. Enhanced Fair-Weather Electric Fields Soon After Sunrise

    NASA Technical Reports Server (NTRS)

    Marshall, T. C.; Rust, W. D.; Stolzenburg, M.; Roeder, W.; Krehbiel, P. R.

    1999-01-01

    The typical fair weather electric field at the ground is between -100 and -300 V/m. At the NASA Kennedy Space Center and US Air Force Cape Canaveral Air Station (KSC) the electric field at the ground sometimes reaches -400 to -1200 V/m within an hour or two after sunrise on days that otherwise seem to be fair weather. We refer to the enhanced negative electric fields as the "sunrise enhancement." To investigate the sunrise enhancement at KSC we measured the electric field (E) in the first few hundred meters above the ground before and during several sunrise enhancements. From these E soundings we can infer the presence of charge layers and determine their thickness and charge density.

  12. Weathering Heights: The Emergence of Aeronautical Meteorology as an Infrastructural Science

    NASA Astrophysics Data System (ADS)

    Turner, Roger

    The first half of the 20th century was an era of weathering heights. As the development of powered flight made the free atmosphere militarily and economically relevant, meteorologists encountered new kinds of weather conditions at altitude. Pilots also learned to weather heights, as they struggled to survive in an atmosphere that revealed surprising dangers like squall lines, fog, icing, and turbulence. Aeronautical meteorology evolved out of these encounters, a heterogeneous body of knowledge that included guidelines for routing aircraft, networks for observing the upper air using scientific instruments, and procedures for synthesizing those observations into weather forecasts designed for pilots. As meteorologists worked to make the skies safe for aircraft, they remade their science around the physics of the free atmosphere. The dissertation tracks a small group of Scandinavian meteorologists, the "Bergen School," who came to be the dominant force in world meteorology by forecasting for Arctic exploration flights, designing airline weather services, and training thousands of military weather officers during World War II. After the war, some of these military meteorologists invented the TV weather report (now the most widely consumed genre of popular science) by combining the narrative of the pre-fight weather briefing with the visual style of comic-illustrated training manuals. The dissertation argues that aeronautical meteorology is representative of what I call the "infrastructural sciences," a set of organizationally intensive, purposefully invisible, applied sciences. These sciences enable the reliable operation of large technological systems by integrating theory-derived knowledge with routine environmental observation. The dissertation articulates a set of characteristics for identifying and understanding infrastructural science, and then argues that these culturally modest technical practices play a pervasive role in maintaining industrial lifeways. It

  13. Climate services in the tourism sector - examples and market research

    NASA Astrophysics Data System (ADS)

    Damm, Andrea; Köberl, Judith; Prettenthaler, Franz; Kortschak, Dominik; Hofer, Marianne; Winkler, Claudia

    2017-04-01

    Tourism is one of the most weather-sensitive sectors. Hence, dealing with weather and climate risks is an important part of operational risk management. WEDDA® (WEather Driven Demand Analysis), developed by Joanneum Research, represents a comprehensive and flexible toolbox for managing weather and climate risks. Modelling the demand for products or services of a particular economic sector or company and its weather and climate sensitivity usually forms the starting and central point of WEDDA®. Coupling the calibrated demand models to either long-term climate scenarios or short-term weather forecasts enables the use of WEDDA® for the following areas of application: (i) implementing short-term forecasting systems for the prediction of the considered indicator; (ii) quantifying the weather risk of a particular economic sector or company using parameters from finance (e.g. Value-at-Risk); (iii) assessing the potential impacts of changing climatic conditions on a particular economic sector or company. WEDDA® for short-term forecasts on the demand for products or services is currently used by various tourism businesses, such as open-air swimming pools, ski areas, and restaurants. It supports tourism and recreation facilities to better cope with (increasing) weather variability by optimizing the disposability of staff, resources and merchandise according to expected demand. Since coping with increasing weather variability forms one of the challenges with respect to climate change, WEDDA® may become an important component within a whole pool of weather and climate services designed to support tourism and recreation facilities to adapt to climate change. Climate change impact assessments at European scale, as conducted in the EU-FP7 project IMPACT2C, provide basic information of climate change impacts on tourism demand not only for individual tourism businesses, but also for regional and national tourism planners and policy makers interested in benchmarks for the

  14. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  15. 106. Air defense command "master plan", base map," RCA Service ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    106. Air defense command "master plan", base map," RCA Service Company tab no. F-1, sheet 1 of 2, dated 22 October, 1965. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  17. McGuire AFB, New Jersey. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.

    DTIC Science & Technology

    1987-12-01

    Air Weather Service (MAC) IS e REVISED UNIFORM SUMMARY OF SURFACE WEATHER OBSERVATIONS MCGUIRE AFB NJ MSC 724096 N 40 01 W 074 36 ELEV 133 FT KWRI...OCCUCRECVCL OF ’,UP F CE 4 1NU L DI ACT ICN v[ISSi *14U SFEEU ,,&FEICAC $AQM WOUkEY OhSFPVAIOS’ A Ti! L.ATIEP 5 3441ICE/ MSC $TA IC’. NUMFPP: 7,4𔄃t STATION...AI AELF I TOTALS I IT~ I2. .. 1 1 100.0 6.7 I19 I ’,ALNuI ~MP OF 0O"SEKhOA T I NS: ’K LLQL tL 4(L IMAI OO G’ 6Rf,H rLrCLNIIfCGE F iL CuENC9 Of uC (u

  18. Can the Weather Affect My Child's Asthma?

    MedlinePlus

    ... mold growth, and wind can blow mold and pollen through the air. If you think weather plays ... triggers and discuss them with your doctor. If pollen, mold, or other allergens make asthma symptoms worse, ...

  19. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark

    2005-01-01

    The Applied Meteorology Unit developed a forecast tool that provides an assessment of the likelihood of local convective severe weather for the day in order to enhance protection of personnel and material assets of the 45th Space Wing Cape Canaveral Air Force Station (CCAFS), and Kennedy Space Center (KSC).

  20. A Geospatial Database that Supports Derivation of Climatological Features of Severe Weather

    NASA Astrophysics Data System (ADS)

    Phillips, M.; Ansari, S.; Del Greco, S.

    2007-12-01

    The Severe Weather Data Inventory (SWDI) at NOAA's National Climatic Data Center (NCDC) provides user access to archives of several datasets critical to the detection and evaluation of severe weather. These datasets include archives of: · NEXRAD Level-III point features describing general storm structure, hail, mesocyclone and tornado signatures · National Weather Service Storm Events Database · National Weather Service Local Storm Reports collected from storm spotters · National Weather Service Warnings · Lightning strikes from Vaisala's National Lightning Detection Network (NLDN) SWDI archives all of these datasets in a spatial database that allows for convenient searching and subsetting. These data are accessible via the NCDC web site, Web Feature Services (WFS) or automated web services. The results of interactive web page queries may be saved in a variety of formats, including plain text, XML, Google Earth's KMZ, standards-based NetCDF and Shapefile. NCDC's Storm Risk Assessment Project (SRAP) uses data from the SWDI database to derive gridded climatology products that show the spatial distributions of the frequency of various events. SRAP also can relate SWDI events to other spatial data such as roads, population, watersheds, and other geographic, sociological, or economic data to derive products that are useful in municipal planning, emergency management, the insurance industry, and other areas where there is a need to quantify and qualify how severe weather patterns affect people and property.

  1. The Relationships Between Weather and Climate and Attacks of Bronchitis

    NASA Astrophysics Data System (ADS)

    Talaia, M. A. R.; Saraiva, M. A. C.; Vieira da Cruz, A. A.

    The area of Aveiro, more concretely Aveiro lagoon, a natural laboratory has been con- sidered, for promoting the development and the application of several investigations worked. The importance of the influences of weather and climate on human health has been well known since ancient teams and many decisions concerning human be- haviour it are clearly weather related. However, decisions related to weather criteria can be important and economically significant, but the real economic effect of the weather is difficult to assess. Talaia et al. (2000) and Talaia and Vieira da Cruz (2001) have shown the possible harmful effect of certain meteorological factors on respiratory conditions. Bronchitis is a disease caused by inflammation of the bronchi as a result of infectious agents or air pollutants. In this study our attention is to relate, the be- ginning of bronchitis attacks in the services of urgency of the Hospital of Aveiro with meteorological factors, and the risk group are studied. We used the medical records and the database of meteorological factors. The obtained analysis allows to conclude that some meteorological factors have correlation with the occurrences of the disease and to allow improving the work in the urgency services in the requested periods. The knowledge that will be extracted of this study can be used later in studies that inte- grate other important components for the characterisation of the environmental impact in the area. References: Talaia, M.A.R., Vieira da Cruz, A.A., Saraiva, M.A.C., Amaro, G.S., Oliveira, C.J. and Carvalho, C.F., 2000, The Influence of Meteorological Fac- tors on Pneumonia Emergencies in Aveiro, International Symposium on Human- Biometeorology, St. Petersburg (Pushkin), Russia, pp. 67-68. Talaia, M.A.R. and Vieira of Cruz, A.A., (2001), Meteorological Effects on the Resistance of the Body to Influenza - One Study in Aveiro Region, Proceedings 2nd Symposium of Meteorol- ogy and Geophysics of APMG and 3rd Meeting

  2. Web processing service for climate impact and extreme weather event analyses. Flyingpigeon (Version 1.0)

    NASA Astrophysics Data System (ADS)

    Hempelmann, Nils; Ehbrecht, Carsten; Alvarez-Castro, Carmen; Brockmann, Patrick; Falk, Wolfgang; Hoffmann, Jörg; Kindermann, Stephan; Koziol, Ben; Nangini, Cathy; Radanovics, Sabine; Vautard, Robert; Yiou, Pascal

    2018-01-01

    Analyses of extreme weather events and their impacts often requires big data processing of ensembles of climate model simulations. Researchers generally proceed by downloading the data from the providers and processing the data files ;at home; with their own analysis processes. However, the growing amount of available climate model and observation data makes this procedure quite awkward. In addition, data processing knowledge is kept local, instead of being consolidated into a common resource of reusable code. These drawbacks can be mitigated by using a web processing service (WPS). A WPS hosts services such as data analysis processes that are accessible over the web, and can be installed close to the data archives. We developed a WPS named 'flyingpigeon' that communicates over an HTTP network protocol based on standards defined by the Open Geospatial Consortium (OGC), to be used by climatologists and impact modelers as a tool for analyzing large datasets remotely. Here, we present the current processes we developed in flyingpigeon relating to commonly-used processes (preprocessing steps, spatial subsets at continent, country or region level, and climate indices) as well as methods for specific climate data analysis (weather regimes, analogues of circulation, segetal flora distribution, and species distribution models). We also developed a novel, browser-based interactive data visualization for circulation analogues, illustrating the flexibility of WPS in designing custom outputs. Bringing the software to the data instead of transferring the data to the code is becoming increasingly necessary, especially with the upcoming massive climate datasets.

  3. 15 CFR 946.4 - Menu of services.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.4 Menu of services. The following are the basic weather...) Marine Forecasts, Statements, and Warnings (g) Hydrologic Forecasts and Warnings (h) Fire Weather...

  4. 15 CFR 946.4 - Menu of services.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE REGULATIONS OF THE NATIONAL WEATHER SERVICE MODERNIZATION OF THE NATIONAL WEATHER SERVICE § 946.4 Menu of services. The following are the basic weather...) Marine Forecasts, Statements, and Warnings (g) Hydrologic Forecasts and Warnings (h) Fire Weather...

  5. Historical halo displays as past weather indicator

    NASA Astrophysics Data System (ADS)

    Neuhäuser, Dagmar; Neuhäuser, Ralph

    2017-04-01

    Certain halo displays like the 22° circle were known to indicate specific weather pattern since millennia - as specified in Babylonian omina, Aristotle's Meteorology, farmers' weather lore, etc. Today, it is known that halo phenomena are due to refraction and reflection of sun and moon light in ice crystals in cirrus and cirrostratus, so that halo observations do indicate atmospheric conditions like temperature, humidity, pressure etc. in a few km height. The Astronomical Diaries of Babylonia have recorded both halo phenomena (circles, parhelia, etc.) and weather conditions (rain, clouds, etc.), so that we can use them to show statistically, whether, which and how fast halo phenomena are related to weather - for the last few centuries BC for Babylonia. We can then also compare the observations of Babylonian priests in the given BC epoch (without air and light pollution) with the last few decades of the modern epoch (with air and light pollution), where amateur halo observers have systematically recorded such phenomena (in Europe). Weather and climate are known to be partly driven by solar activity. Hence, one could also consider whether there is an indirect relation between halo displays as weather proxy and aurorae as solar activity proxy - if low solar activity leads to low pressure systems, one could expect more halos, preliminary studies show such a hint. For the last few decades, we have many halo observations, satellite imaging of the aurora oval, and many data on solar activity. A statistically sufficient amount of aurora and halo observations should be available for the historic time to investigate such a possible connection: halos were recorded very often in antiquity and the medieval times (as found in chronicles etc.), and modern scholarly catalogs of aurorae also often contain unrecognized halo displays.

  6. Use of EOS Data in AWIPS for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Haines, Stephanie L.; Suggs, Ron J.; Bradshaw, Tom; Darden, Chris; Burks, Jason

    2003-01-01

    Operational weather forecasting relies heavily on real time data and modeling products for forecast preparation and dissemination of significant weather information to the public. The synthesis of this information (observations and model products) by the meteorologist is facilitated by a decision support system to display and integrate the information in a useful fashion. For the NWS this system is called Advanced Weather Interactive Processing System (AWIPS). Over the last few years NASA has launched a series of new Earth Observation Satellites (EOS) for climate monitoring that include several instruments that provide high-resolution measurements of atmospheric and surface features important for weather forecasting and analysis. The key to the utilization of these unique new measurements by the NWS is the real time integration of the EOS data into the AWIPS system. This is currently being done in the Huntsville and Birmingham NWS Forecast Offices under the NASA Short-term Prediction Research and Transition (SPORT) Program. This paper describes the use of near real time MODIS and AIRS data in AWIPS to improve the detection of clouds, moisture variations, atmospheric stability, and thermal signatures that can lead to significant weather development. The paper and the conference presentation will focus on several examples where MODIS and AIRS data have made a positive impact on forecast accuracy. The results of an assessment of the utility of these products for weather forecast improvement made at the Huntsville NWS Forecast Office will be presented.

  7. Weather forecasting with open source software

    NASA Astrophysics Data System (ADS)

    Rautenhaus, Marc; Dörnbrack, Andreas

    2013-04-01

    To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.

  8. Communications System Architecture Development for Air Traffic Management and Aviation Weather Information Dissemination

    NASA Technical Reports Server (NTRS)

    Gallagher, Seana; Olson, Matt; Blythe, Doug; Heletz, Jacob; Hamilton, Griff; Kolb, Bill; Homans, Al; Zemrowski, Ken; Decker, Steve; Tegge, Cindy

    2000-01-01

    This document is the NASA AATT Task Order 24 Final Report. NASA Research Task Order 24 calls for the development of eleven distinct task reports. Each task was a necessary exercise in the development of comprehensive communications systems architecture (CSA) for air traffic management and aviation weather information dissemination for 2015, the definition of the interim architecture for 2007, and the transition plan to achieve the desired End State. The eleven tasks are summarized along with the associated Task Order reference. The output of each task was an individual task report. The task reports that make up the main body of this document include Task 5, Task 6, Task 7, Task 8, Task 10, and Task 11. The other tasks provide the supporting detail used in the development of the architecture. These reports are included in the appendices. The detailed user needs, functional communications requirements and engineering requirements associated with Tasks 1, 2, and 3 have been put into a relational database and are provided electronically.

  9. Air density correction in ionization dosimetry.

    PubMed

    Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M

    2004-05-21

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.

  10. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.

    2013-10-01

    The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.

  11. Enhanced Weather Radar (EWxR) System

    NASA Technical Reports Server (NTRS)

    Kronfeld, Kevin M. (Technical Monitor)

    2003-01-01

    An airborne weather radar system, the Enhanced Weather Radar (EWxR), with enhanced on-board weather radar data processing was developed and tested. The system features additional weather data that is uplinked from ground-based sources, specialized data processing, and limited automatic radar control to search for hazardous weather. National Weather Service (NWS) ground-based Next Generation Radar (NEXRAD) information is used by the EWxR system to augment the on-board weather radar information. The system will simultaneously display NEXRAD and on-board weather radar information in a split-view format. The on-board weather radar includes an automated or hands-free storm-finding feature that optimizes the radar returns by automatically adjusting the tilt and range settings for the current altitude above the terrain and searches for storm cells near the atmospheric 0-degree isotherm. A rule-based decision aid was developed to automatically characterize cells as hazardous, possibly-hazardous, or non-hazardous based upon attributes of that cell. Cell attributes are determined based on data from the on-board radar and from ground-based radars. A flight path impact prediction algorithm was developed to help pilots to avoid hazardous weather along their flight plan and their mission. During development the system was tested on the NASA B757 aircraft and final tests were conducted on the Rockwell Collins Sabreliner.

  12. Spacebuoy: A University Nanosat Space Weather Mission (III)

    DTIC Science & Technology

    2013-10-11

    ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air Force... ionospheric forecasting models; specifically the operational Global Assimilation of Ionospheric Measurements (GAIM) model currently used by the Air...Mission Objectives • Provide critical space weather data for use in ionospheric forecasting efforts, particularly assimilated data used in the GAIM

  13. National Maps - Alaska - NOAA's National Weather Service

    Science.gov Websites

    select the go button to submit request City, St Go Sign-up for Email Alerts RSS Feeds RSS Feeds Warnings current Forecast for Alaska is produced by the NWS Anchorage Forecast Office. It is updated daily Skip Navigation Links weather.gov NOAA logo-Select to go to the NOAA homepage National Oceanic and

  14. Infrasonic Influences of Tornados and Cyclonic Weather Systems

    NASA Astrophysics Data System (ADS)

    Cook, Tessa

    2014-03-01

    Infrasound waves travel through the air at approximately 340 m/s at sea level, while experiencing low levels of friction, allowing the waves to travel over larger distances. When seismic waves travel through unconsolidated soil, the waves slow down to approximately 340 m/s. Because the speeds of waves in the air and ground are similar, a more effective transfer of energy from the atmosphere to the ground can occur. Large ring lasers can be utilized for detecting sources of infrasound traveling through the ground by measuring anomalies in the frequency difference between their two counter-rotating beams. Sources of infrasound include tornados and other cyclonic weather systems. The way systems create waves that transfer to the ground is unknown and will be continued in further research; this research has focused on attempting to isolate the time that the ring laser detected anomalies in order to investigate if these anomalies may be contributed to isolatable weather systems. Furthermore, this research analyzed the frequencies detected in each of the anomalies and compared the frequencies with various characteristics of each weather system, such as tornado width, wind speeds, and system development. This research may be beneficial for monitoring gravity waves and weather systems.

  15. Air: Simple Experiments for Young Scientists.

    ERIC Educational Resources Information Center

    White, Larry

    This book contains simple experiments through which students explore air and its properties. Some of the topics discussed include alternative energy, bacteria, carbon dioxide, motion, weather, and flight. Experiments include: blowing a balloon up in a bottle; seeing air in water; making a lunch-bag kite, weather vanes, and paper glider;…

  16. Attic or Roof? An Evaluation of Two Advanced Weatherization Packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, Ken

    2012-06-01

    This project examines implementation of advanced retrofit measures in the context of a large-scale weatherization program and the archetypal Chicago brick bungalow. One strategy applies best practice air sealing methods and a standard insulation method to the attic floor. The other strategy creates an unvented roof assembly using materials and methods typically available to weatherization contractors. Through implementations of the retrofit strategies in a total of eight (8) test homes, the research found that the two different strategies achieve similar reductions in air leakage measurement (55%) and predicted energy performance (18%) relative to the pre-retrofit conditions.

  17. Interior, equipment room, weather support area (from July, 1968 drawing) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, equipment room, weather support area (from July, 1968 drawing) at north end of display area, looking west. Window looks south towards the main console - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  18. World weather program: Plan for fiscal year 1972

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The World Weather Program which is composed of the World Weather Watch, the Global Atmospheric Research Program, and the Systems Design and Technological Development Program is presented. The U.S. effort for improving the national weather services through advances in science, technology and expanded international cooperation during FY 72 are described. The activities of the global Atmospheric Research Program for last year are highlighted and fiscal summary of U.S. programs is included.

  19. Weather Support for the 2002 Winter Olympic and Paralympic Games.

    NASA Astrophysics Data System (ADS)

    Horel, J.; Potter, T.; Dunn, L.; Steenburgh, W. J.; Eubank, M.; Splitt, M.; Onton, D. J.

    2002-02-01

    The 2002 Winter Olympic and Paralympic Games will be hosted by Salt Lake City, Utah, during February-March 2002. Adverse weather during this period may delay sporting events, while snow and ice-covered streets and highways may impede access by the athletes and spectators to the venues. While winter snowstorms and other large-scale weather systems typically have widespread impacts throughout northern Utah, hazardous winter weather is often related to local terrain features (the Wasatch Mountains and Great Salt Lake are the most prominent ones). Examples of such hazardous weather include lake-effect snowstorms, ice fog, gap winds, downslope windstorms, and low visibility over mountain passes.A weather support system has been developed to provide weather information to the athletes, games officials, spectators, and the interested public around the world. This system is managed by the Salt Lake Olympic Committee and relies upon meteorologists from the public, private, and academic sectors of the atmospheric science community. Weather forecasting duties will be led by National Weather Service forecasters and a team of private, weather forecasters organized by KSL, the Salt Lake City NBC television affiliate. Other government agencies, commercial firms, and the University of Utah are providing specialized forecasts and support services for the Olympics. The weather support system developed for the 2002 Winter Olympics is expected to provide long-term benefits to the public through improved understanding,monitoring, and prediction of winter weather in the Intermountain West.

  20. Weather Support to the Air Tasking Order

    DTIC Science & Technology

    1989-05-01

    the weapons. Once I understood how things worked, I was able to tailor the weather briefings we gave to the 7 AF/CC and his staff to zero in on...will apply across the board. However, there is an absolute lower limit below which no PGM can be successfully employed and this varies for each weapon...S N E Temp 3 Hours N E N Before TOT Wind Speed N N S Precipitation E E E Absolute N E N Humidity N = negligible; S = Significant; E = Extremely

  1. Weather impacts on single-vehicle truck crash injury severity.

    PubMed

    Naik, Bhaven; Tung, Li-Wei; Zhao, Shanshan; Khattak, Aemal J

    2016-09-01

    The focus of this paper is on illustrating the feasibility of aggregating data from disparate sources to investigate the relationship between single-vehicle truck crash injury severity and detailed weather conditions. Specifically, this paper presents: (a) a methodology that combines detailed 15-min weather station data with crash and roadway data, and (b) an empirical investigation of the effects of weather on crash-related injury severities of single-vehicle truck crashes. Random parameters ordinal and multinomial regression models were used to investigate crash injury severity under different weather conditions, taking into account the individual unobserved heterogeneity. The adopted methodology allowed consideration of environmental, roadway, and climate-related variables in single-vehicle truck crash injury severity. Results showed that wind speed, rain, humidity, and air temperature were linked with single-vehicle truck crash injury severity. Greater recorded wind speed added to the severity of injuries in single-vehicle truck crashes in general. Rain and warmer air temperatures were linked to more severe crash injuries in single-vehicle truck crashes while higher levels of humidity were linked to less severe injuries. Random parameters ordered logit and multinomial logit, respectively, revealed some individual heterogeneity in the data and showed that integrating comprehensive weather data with crash data provided useful insights into factors associated with single-vehicle truck crash injury severity. The research provided a practical method that combined comprehensive 15-min weather station data with crash and roadway data, thereby providing useful insights into crash injury severity of single-vehicle trucks. Those insights are useful for future truck driver educational programs and for truck safety in different weather conditions. Copyright © 2016 Elsevier Ltd and National Safety Council. All rights reserved.

  2. Weatherization Works II - Summary of Findings from the ARRA Period Evaluation of the U.S. Department of Energy's Weatherization Assistance Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Carroll, David; Rose, Erin M.

    2015-10-01

    This report presents a summary of the American Recovery and Reinvestment Act of 2009 (ARRA) evaluation of the U.S. Department of Energy s low-income Weatherization Program. This evaluation focused on the WAP Program Year 2010. The ARRA evaluation produced fourteen separate reports, including this summary. Three separate reports address the energy savings, energy cost savings, and cost effectiveness of WAP across four housing types: single family, mobile home, and large multifamily. Other reports address the environmental emissions benefits attributable to WAP, and characterize the program. Special studies were conducted to: estimate the impacts of weatherization and healthy homes interventions onmore » asthma-related Medicaid claims in a small cohort in Washington State; assess how weatherization recipients communicate their weatherization experiences to those in their social network, and assess processes implemented to defer homes for weatherization. Small studies addressed energy use in refrigerators, WAP as implemented in the U.S. territories for the first time, and weatherization s impacts on air conditioning energy savings. The national occupant survey was mined for additional insights on the impacts of weatherization on household budgets and energy behaviors post-weatherization. Lastly, the results of a survey of weatherization training centers are summarized.« less

  3. Weatherization Apprenticeship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housingmore » Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.« less

  4. Air quality management in U.S. Fish and Wildlife Service wilderness areas

    Treesearch

    Ellen M. Porter

    2000-01-01

    Proper management of air resources is vital to maintaining the wilderness character of an area. Air pollution can affect natural resources and has caused injury to vegetation, bioaccumulation of mercury in fish, eutrophication of coastal ecosystems and visibility impairment in U.S. Fish and Wildlife Service (FWS) wilderness areas. Sources of air pollution include power...

  5. Tornadoes and Lightning and Floods, Oh My! Weather-Related Web Sites for K-12 Science Lessons.

    ERIC Educational Resources Information Center

    Matkins, Juanita Jo; Murphy, Denise

    1999-01-01

    Reviews 30 weather-related Web sites, including readability level, under the subjects of air pressure, bad meteorology, clouds, droughts, floods, hurricanes, lightning, seasons, temperature, thunderstorms, tornadoes, water cycle, weather instruments, weather on other planets, and wind. (LRW)

  6. WMS and WFS Standards Implementation of Weather Data

    NASA Astrophysics Data System (ADS)

    Armstrong, M.

    2005-12-01

    CustomWeather is private weather company that delivers global weather data products. CustomWeather has built a mapping platform according to OGC standards. Currently, both a Web Mapping Service (WMS) and Web Feature Service (WFS) are supported by CustomWeather. Supporting open geospatial standards has lead to number of positive changes internally to the processes of CustomWeather, along with those of the clients accessing the data. Quite a number of challenges surfaced during this process, particularly with respect to combining a wide variety of raw modeling and sensor data into a single delivery platform. Open standards have, however, made the delivery of very different data products rather seamless. The discussion will address the issues faced in building an OGC-based mapping platform along with the limitations encountered. While the availability of these data products through open standards is still very young, there have already been many adopters in the utility and navigation industries. The discussion will take a closer look at the different approach taken by these two industries as they utilize interoperability standards with existing data. Insight will be given in regards to applications already taking advantage of this new technology and how this is affecting decision-making processes. CustomWeather has observed considerable interest and potential benefit in this technology from developing countries. Weather data is a key element in disaster management. Interoperability is literally opening up a world of data and has the potential to quickly enable functionality that would otherwise take considerable time to implement. The discussion will briefly touch on our experience.

  7. Weatherization Assistance Program Technical Assistance Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert Adams

    2009-01-07

    The following is a synopsis of the major achievements attributed to the operation of the Weatherization Assistance Program Technical Assistance Center (WAPTAC) by the National Association for State Community Services Programs (NASCSP). During the past five years, the WAPTAC has developed into the premier source for information related to operating the Weatherization Assistance Program (WAP) at the state and local levels. The services provide through WAPTAC include both virtual technical support as well as hands-on training and instruction in classroom and in the field. The WAPTAC achieved several important milestones during its operation including the establishment of a national Weatherizationmore » Day now celebrated in most states, the implementation of a comprehensive Public Information Campaign (PIC) to raise the awareness of the Program among policy makers and the public, the training of more than 150 new state managers and staff as they assume their duties in state offices around the country, and the creation and support of a major virtual information source on the Internet being accessed by thousands of staff each month. The Weatherization Assistance Program Technical Assistance Center serves the Department of Energy's (DOE) Office of Weatherization and Intergovernmental Program as a valuable training and technical assistance resource for the network of 54 direct state grantees (50 states, District of Columbia and three Native American tribes) and the network of 900 local subgrantees (comprised of community action agencies, units of local government, and other non-profit organizations). The services provided through WAPTAC focus on standardizing and improving the daily management of the WAP. Staff continually identify policies changes and best practices to help the network improve its effectiveness and enhance the benefits of the Program for the customers who receive service and the federal and private investors. The operations of WAPTAC are separated into

  8. A teaching-learning sequence about weather map reading

    NASA Astrophysics Data System (ADS)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-07-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a weather forecast. Sixty PET capabilities and difficulties in understanding weather maps were investigated, using inquiry-based learning activities. The results show that most PET became more capable of reading weather maps and assigning wind direction and speed on them. Our results also show that PET could be guided to understand meteorology concepts useful in everyday life and in teaching their future students.

  9. PAST AND PRESENT: 50 YEARS OF AIR QUALITY MODELING RESEARCH AND ITS APPLICATIONS BY THE NOAA ATMOSPHERIC SCIENCES MODELING DIVISION

    EPA Science Inventory

    The NOAA Atmospheric Sciences Modeling Division (ASMD) celebrated its Golden Jubilee in September 2005. The partnership between NOAA and EPA began when the Air Pollution Unit of the Public Health Service, which later became part of the EPA, requested the Weather Bureau provide ...

  10. Relationship between Weather, Traffic and Delay Based on Empirical Methods

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Swei, Sean S. M.

    2006-01-01

    The steady rise in demand for air transportation over the years has put much emphasis on the need for sophisticated air traffic flow management (TFM) within the National Airspace System (NAS). The NAS refers to hardware, software and people, including runways, radars, networks, FAA, airlines, etc., involved in air traffic management (ATM) in the US. One of the metrics that has been used to assess the performance of NAS is the actual delays provided through FAA's Air Traffic Operations Network (OPSNET). The OPSNET delay data includes those reportable delays, i.e. delays of 15 minutes or more experienced by Instrument Flight Rule (IFR) flights, submitted by the FAA facilities. These OPSNET delays are caused by the application of TFM initiatives in response to, for instance, weather conditions, increased traffic volume, equipment outages, airline operations, and runway conditions. TFM initiatives such as, ground stops, ground delay programs, rerouting, airborne holding, and miles-in-trail restrictions, are actions which are needed to control the air traffic demand to mitigate the demand-capacity imbalance due to the reduction in capacity. Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has been identified as the most important causal factor for NAS delays. Therefore, in order to accurately assess the NAS performance, it has become necessary to create a baseline for NAS performance and establish a model which characterizes the relation between weather and NAS delays.

  11. Intense atmospheric pollution modifies weather: a~case of mixed biomass burning with fossil fuel combustion pollution in the eastern China

    NASA Astrophysics Data System (ADS)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y. N.; Herrmann, E.; Zheng, L. F.; Nie, W.; Wei, X. L.; Kulmala, M.

    2013-06-01

    The influence of air pollutants, particularly aerosols, on regional and global climate is widely investigated, but only a very limited number of studies reports their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect how a mixed atmospheric pollution changes the weather with a substantial modification in air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70%, of sensible heat flux over 85%, a temperature drop by almost 10 K, and a change of rainfall during daytime and nighttime. Our results show clear air pollution - weather interactions, and quantify how air pollution affects weather with the influence of air pollution-boundary layer dynamics and aerosol-radiation-cloudy feedbacks. This study highlights a cross-disciplinary needs to study the environmental, weather and climate impact of the mixed biomass burning and fossil fuel combustion sources in the East China.

  12. Vehicular-networking- and road-weather-related research in Sodankylä

    NASA Astrophysics Data System (ADS)

    Sukuvaara, Timo; Mäenpää, Kari; Ylitalo, Riika

    2016-10-01

    Vehicular-networking- and especially safety-related wireless vehicular services have been under intensive research for almost a decade now. Only in recent years has road weather information also been acknowledged to play an important role when aiming to reduce traffic accidents and fatalities via intelligent transport systems (ITSs). Part of the progress can be seen as a result of the Finnish Meteorological Institute's (FMI) long-term research work in Sodankylä within the topic, originally started in 2006. Within multiple research projects, the FMI Arctic Research Centre has been developing wireless vehicular networking and road weather services, in co-operation with the FMI meteorological services team in Helsinki. At the beginning the wireless communication was conducted with traditional Wi-Fi type local area networking, but during the development the system has evolved into a hybrid communication system of a combined vehicular ad hoc networking (VANET) system with special IEEE 802.11p protocol and supporting cellular networking based on a commercial 3G network, not forgetting support for Wi-Fi-based devices also. For piloting purposes and further research, we have established a special combined road weather station (RWS) and roadside unit (RSU), to interact with vehicles as a service hotspot. In the RWS-RSU we have chosen to build support to all major approaches, IEEE 802.11, traditional Wi-Fi and cellular 3G. We employ road weather systems of FMI, along with RWS and vehicle data gathered from vehicles, in the up-to-date localized weather data delivered in real time. IEEE 802.11p vehicular networking is supported with Wi-Fi and 3G communications. This paper briefly introduces the research work related to vehicular networking and road weather services conducted in Sodankylä, as well as the research project involved in this work. The current status of instrumentation, available services and capabilities are presented in order to formulate a clear general view of

  13. Upgrade Summer Severe Weather Tool in MIDDS

    NASA Technical Reports Server (NTRS)

    Wheeler, Mark M.

    2010-01-01

    The goal of this task was to upgrade the severe weather database from the previous phase by adding weather observations from the years 2004 - 2009, re-analyze the data to determine the important parameters, make adjustments to the index weights depending on the analysis results, and update the MIDDS GUI. The added data increased the period of record from 15 to 21 years. Data sources included local forecast rules, archived sounding data, surface and upper air maps, and two severe weather event databases covering east-central Florida. Four of the stability indices showed increased severe weather predication. The Total Threat Score (TTS) of the previous work was verified for the warm season of 2009 with very good skill. The TTS Probability of Detection (POD) was 88% and the False alarm rate (FAR) of 8%. Based on the results of the analyses, the MIDDS Severe Weather Worksheet GUI was updated to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters and synoptic-scale dynamics.

  14. Efficient transfer of weather information to the pilot in flight

    NASA Technical Reports Server (NTRS)

    Mcfarland, R. H.

    1982-01-01

    Efficient methods for providing weather information to the pilot in flight are summarized. Use of discrete communications channels in the aeronautical, VHF band or subcarriers in the VOR navigation band are considered the best possibilities. Data rates can be provided such that inputs to the ground based transmitters from 2400 band telephone lines are easily accommodated together with additional data. The crucial weather data considered for uplinking are identified as radar reflectivity patterns relating to precipitation, spherics data, hourly sequences, nowcasts, forecasts, cloud top heights with freezing and icing conditions, the critical weather map and satellite maps. NEXRAD, the ground based, Doppler weather radar which will produce an improved weather product also encourages use of an uplink to fully utilize its capability to improve air safety.

  15. Evaluation of the National Weather Service Extreme Cold Warning Experiment in North Dakota

    PubMed Central

    Chiu, Cindy H.; Vagi, Sara J.; Wolkin, Amy F.; Martin, John Paul; Noe, Rebecca S.

    2016-01-01

    Dangerously cold weather threatens life and property. During periods of extreme cold due to wind chill, the National Weather Service (NWS) issues wind chill warnings to prompt the public to take action to mitigate risks. Wind chill warnings are based on ambient temperatures and wind speeds. Since 2010, NWS has piloted a new extreme cold warning issued for cold temperatures in wind and nonwind conditions. The North Dakota Department of Health, NWS, and the Centers for Disease Control and Prevention collaborated in conducting household surveys in Burleigh County, North Dakota, to evaluate this new warning. The objectives of the evaluation were to assess whether residents heard the new warning and to determine if protective behaviors were prompted by the warning. This was a cross-sectional survey design using the Community Assessment for Public Health Emergency Response (CASPER) methodology to select a statistically representative sample of households from Burleigh County. From 10 to 11 April 2012, 188 door-to-door household interviews were completed. The CASPER methodology uses probability sampling with weighted analysis to estimate the number and percentage of households with a specific response within Burleigh County. The majority of households reported having heard both the extreme cold and wind chill warnings, and both warnings prompted protective behaviors. These results suggest this community heard the new warning and took protective actions after hearing the warning. PMID:27239260

  16. Prediction of Weather Impacted Airport Capacity using Ensemble Learning

    NASA Technical Reports Server (NTRS)

    Wang, Yao Xun

    2011-01-01

    Ensemble learning with the Bagging Decision Tree (BDT) model was used to assess the impact of weather on airport capacities at selected high-demand airports in the United States. The ensemble bagging decision tree models were developed and validated using the Federal Aviation Administration (FAA) Aviation System Performance Metrics (ASPM) data and weather forecast at these airports. The study examines the performance of BDT, along with traditional single Support Vector Machines (SVM), for airport runway configuration selection and airport arrival rates (AAR) prediction during weather impacts. Testing of these models was accomplished using observed weather, weather forecast, and airport operation information at the chosen airports. The experimental results show that ensemble methods are more accurate than a single SVM classifier. The airport capacity ensemble method presented here can be used as a decision support model that supports air traffic flow management to meet the weather impacted airport capacity in order to reduce costs and increase safety.

  17. A Feasibility Study of a Field-specific Weather Service for Small-scale Farms in a Topographically Complex Watershed

    NASA Astrophysics Data System (ADS)

    Kim, S. O.; Shim, K. M.; Shin, Y. S.; Yun, J. I.

    2015-12-01

    Adequate downscaling of synoptic forecasts is a prerequisite for improved agrometeorological service to rural areas in South Korea where complex terrain and small farms are common. Geospatial schemes based on topoclimatology were used to scale down the Korea Meteorological Administration (KMA) temperature forecasts to the local scale (~30 m) across a rural catchment. Local temperatures were estimated at 14 validation sites at 0600 and 1500 LST in 2013/2014 using these schemes and were compared with observations. A substantial reduction in the estimation error was found for both 0600 and 1500 temperatures compared with uncorrected KMA products. Improvement was most remarkable at low lying locations for the 0600 temperature and at the locations on west- and south-facing slopes for the 1500 temperature. Using the downscaled real-time temperature data, a pilot service has started to provide field-specific weather information tailored to meet the requirements of small-scale farms. For example, the service system makes a daily outlook on the phenology of crop species grown in a given field using the field-specific temperature data. When the temperature forecast is given for tomorrow morning, a frost risk index is calculated according to a known phenology-frost injury relationship. If the calculated index is higher than a pre-defined threshold, a warning is issued and delivered to the grower's cellular phone with relevant countermeasures to help protect crops against frost damage. The system was implemented for a topographically complex catchment of 350km2with diverse agricultural activities, and more than 400 volunteer farmers are participating in this pilot service to access user-specific weather information.

  18. A Teaching-Learning Sequence about Weather Map Reading

    ERIC Educational Resources Information Center

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-01-01

    In this paper a teaching-learning sequence (TLS) introducing pre-service elementary teachers (PET) to weather map reading, with emphasis on wind assignment, is presented. The TLS includes activities about recognition of wind symbols, assignment of wind direction and wind speed on a weather map and identification of wind characteristics in a…

  19. How Satellites Have Contributed to Building a Weather Ready Nation

    NASA Astrophysics Data System (ADS)

    Lapenta, W.

    2017-12-01

    NOAA's primary mission since its inception has been to reduce the loss of life and property, as well as disruptions from, high impact weather and water-related events. In recent years, significant societal losses resulting even from well forecast extreme events have shifted attention from the forecast alone toward ensuring societal response is equal to the risks that exist for communities, businesses and the public. The responses relate to decisions ranging from coastal communities planning years in advance to mitigate impacts from rising sea level, to immediate lifesaving decisions such as a family seeking adequate shelter during a tornado warning. NOAA is committed to building a "Weather-Ready Nation" where communities are prepared for and respond appropriately to these events. The Weather-Ready Nation (WRN) strategic priority is building community resilience in the face of increasing vulnerability to extreme weather, water, climate and environmental threats. To build a Weather-Ready Nation, NOAA is enhancing Impact-Based Decision Support Services (IDSS), transitioning science and technology advances into forecast operations, applying social science research to improve the communication and usefulness of information, and expanding its dissemination efforts to achieve far-reaching readiness, responsiveness and resilience. These four components of Weather-Ready Nation are helping ensure NOAA data, products and services are fully utilized to minimize societal impacts from extreme events. Satellite data and satellite products have been important elements of the national Weather Service (NWS) operations for more than 40 years. When one examines the uses of satellite data specific to the internal forecast and warning operations of NWS, two main applications are evident. The first is the use of satellite data in numerical weather prediction models; the second is the use of satellite imagery and derived products for mesoscale and short-range weather warning and

  20. Everything You've Always Wanted to Know About Weather But Were Afraid to Ask.

    ERIC Educational Resources Information Center

    Abbott, Verlin M.

    This unit, designed for primary grades of the elementary schools, focuses on weather and is divided into the following five major parts: Weather Affects Man and His Environment; Air, Wind, and Weather; Clouds and Humidity; Precipitation; and Micro-Environments. Each part includes a list of the concepts to be taught, the behavioral objectives and…

  1. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  2. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.

    2009-01-01

    For expedience in delivering dispersion guidance in the diversity of operational situations, National Weather Service Melbourne (MLB) and Spaceflight Meteorology Group (SMG) are becoming increasingly reliant on the PC-based version of the HYSPLIT model run through a graphical user interface (GUI). While the GUI offers unique advantages when compared to traditional methods, it is difficult for forecasters to run and manage in an operational environment. To alleviate the difficulty in providing scheduled real-time trajectory and concentration guidance, the Applied Meteorology Unit (AMU) configured a Linux version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (HYSPLIT) model that ingests the National Centers for Environmental Prediction (NCEP) guidance, such as the North American Mesoscale (NAM) and the Rapid Update Cycle (RUC) models. The AMU configured the HYSPLIT system to automatically download the NCEP model products, convert the meteorological grids into HYSPLIT binary format, run the model from several pre-selected latitude/longitude sites, and post-process the data to create output graphics. In addition, the AMU configured several software programs to convert local Weather Research and Forecast (WRF) model output into HYSPLIT format.

  3. Learning at Air Navigation Services after Initial Training

    ERIC Educational Resources Information Center

    Teperi, Anna-Maria; Leppanen, Anneli

    2010-01-01

    Purpose: This study aims to find out the means used for individual, group and organizational learning at work at one air navigation service provider after the initial training period. The study also aims to find out what practices need to be improved to enhance learning at work. Design/methodology/approach: The data for the study were collected…

  4. Nationwide validation of ensemble streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service

    NASA Astrophysics Data System (ADS)

    Lee, H. S.; Liu, Y.; Ward, J.; Brown, J.; Maestre, A.; Herr, H.; Fresch, M. A.; Wells, E.; Reed, S. M.; Jones, E.

    2017-12-01

    The National Weather Service's (NWS) Office of Water Prediction (OWP) recently launched a nationwide effort to verify streamflow forecasts from the Hydrologic Ensemble Forecast Service (HEFS) for a majority of forecast locations across the 13 River Forecast Centers (RFCs). Known as the HEFS Baseline Validation (BV), the project involves a joint effort between the OWP and the RFCs. It aims to provide a geographically consistent, statistically robust validation, and a benchmark to guide the operational implementation of the HEFS, inform practical applications, such as impact-based decision support services, and to provide an objective framework for evaluating strategic investments in the HEFS. For the BV, HEFS hindcasts are issued once per day on a 12Z cycle for the period of 1985-2015 with a forecast horizon of 30 days. For the first two weeks, the hindcasts are forced with precipitation and temperature ensemble forecasts from the Global Ensemble Forecast System of the National Centers for Environmental Prediction, and by resampled climatology for the remaining period. The HEFS-generated ensemble streamflow hindcasts are verified using the Ensemble Verification System. Skill is assessed relative to streamflow hindcasts generated from NWS' current operational system, namely climatology-based Ensemble Streamflow Prediction. In this presentation, we summarize the results and findings to date.

  5. A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area

    USGS Publications Warehouse

    McCabe, Gregory J.

    1990-01-01

    A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.

  6. U.S. Air Force Engineering and Services Hardware Requirements

    DOT National Transportation Integrated Search

    1991-04-01

    This document proposes a path to meet the communications-computer systems (CSC) requirements of Air Force Engineering and Services (E and S) in the mid-to-late 1990s. It reflects the philosophies that guide E and S upper- level management as it carri...

  7. ESA SSA Programme in support of Space Weather forecasting

    NASA Astrophysics Data System (ADS)

    Luntama, J.; Glover, A.; Hilgers, A. M.

    2010-12-01

    In 2009 European Space Agency (ESA) started a new programme called Space Situational Awareness (SSA) Preparatory Programme. The objective of the programme is to support the European independent utilisation of and access to space research or services. This will be performed through providing timely and quality data, information, services and knowledge regarding the environment, the threats and the sustainable exploitation of the outer space surrounding the planet Earth. SSA serves the implementation of the strategic missions of the European Space Policy based on the peaceful uses of the outer space by all states, by supporting the autonomous capacity to securely and safely operate the critical European space infrastructures. The SSA Preparatory Program will establish the initial elements that will eventually lead into the full deployment of the European SSA services. The SWE Segment of the SSA will provide user services related to the monitoring of the Sun, the solar wind, the radiation belts, the magnetosphere and the ionosphere. These services will include near real time information and forecasts about the characteristics of the space environment and predictions of space weather impacts on sensitive spaceborne and ground based infrastructure. The SSA SWE system will also include establishment of a permanent database for analysis, model development and scientific research. These services are will support a wide variety of user domains including spacecraft designers, spacecraft operators, human space flights, users and operators of transionospheric radio links, and space weather research community. The precursor SWE services to be established starting in 2010 will include a selected subset of these services based on pre-existing space weather applications and services in Europe. This paper will present the key characteristics of the SSA SWE system that is currently being designed. The presentation will focus on the system characteristics that support space weather

  8. Progress in space weather predictions and applications

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  9. Sensor performance considerations for aviation weather observations for the NOAA Consolidated Observations Requirements List (CORL CT-AWX)

    NASA Astrophysics Data System (ADS)

    Murray, John; Helms, David; Miner, Cecilia

    2008-08-01

    Airspace system demand is expected to increase as much as 300 percent by the year 2025 and the Next Generation Air Transportation System (NextGen) is being developed to accommodate the super-density operations that this will entail. Concomitantly, significant improvements in observations and forecasting are being undertaken to support NextGen which will require greatly improved and more uniformly applied data for aviation weather hazards and constraints which typically comprise storm-scale and microscale observables. Various phenomena are associated with these hazards and constraints such as convective weather, in-flight icing, turbulence, and volcanic ash as well as more mundane aviation parameters such as cloud tops and bases and fuel-freeze temperatures at various flight levels. Emerging problems for aviation in space weather and the environmental impacts of aviation are also occurring at these scales. Until recently, the threshold and objective observational requirements for these observables had not been comprehensively documented in a single, authoritative source. Scientists at NASA and NOAA have recently completed this task and have established baseline observational requirements for the Next Generation Air Transportation System (NextGen) and expanded and updated the NOAA Consolidated Observations Requirements List (CORL) for Aviation (CT-AWX) to better inform National Weather Service investments for current and future observing systems. This paper describes the process and results of this effort. These comprehensive aviation observation requirements will now be used to conduct gap analyses for the aviation component of the Integrated Earth Observing System and to inform the investment strategies of the FAA, NASA, and NOAA that are needed to develop the observational architecture to support NextGen and other users of storm and microscale observations.

  10. A method for the determination of potentially profitable service patterns for commuter air carriers

    NASA Technical Reports Server (NTRS)

    Ransone, R. K.; Kuhlthau, A. R.; Deptula, D. A.

    1975-01-01

    A methodology for estimating market conception was developed as a part of the short-haul air transportation program. It is based upon an analysis of actual documents which provide a record of known travel history. Applying this methodology a forecast was made of the demand for an air feeder service between Charlottesville, Virginia and Dulles International Airport. Local business travel vouchers and local travel agent records were selected to provide the documentation. The market was determined to be profitable for an 8-passenger Cessna 402B aircraft flying a 2-hour daily service pattern designed to mesh to the best extent possible with the connecting schedules at Dulles. The Charlottesville - Dulles air feeder service market conception forecast and its methodology are documented.

  11. The impact of satellite temperature soundings on the forecasts of a small national meteorological service

    NASA Technical Reports Server (NTRS)

    Wolfson, N.; Thomasell, A.; Alperson, Z.; Brodrick, H.; Chang, J. T.; Gruber, A.; Ohring, G.

    1984-01-01

    The impact of introducing satellite temperature sounding data on a numerical weather prediction model of a national weather service is evaluated. A dry five level, primitive equation model which covers most of the Northern Hemisphere, is used for these experiments. Series of parallel forecast runs out to 48 hours are made with three different sets of initial conditions: (1) NOSAT runs, only conventional surface and upper air observations are used; (2) SAT runs, satellite soundings are added to the conventional data over oceanic regions and North Africa; and (3) ALLSAT runs, the conventional upper air observations are replaced by satellite soundings over the entire model domain. The impact on the forecasts is evaluated by three verification methods: the RMS errors in sea level pressure forecasts, systematic errors in sea level pressure forecasts, and errors in subjective forecasts of significant weather elements for a selected portion of the model domain. For the relatively short range of the present forecasts, the major beneficial impacts on the sea level pressure forecasts are found precisely in those areas where the satellite sounding are inserted and where conventional upper air observations are sparse. The RMS and systematic errors are reduced in these regions. The subjective forecasts of significant weather elements are improved with the use of the satellite data. It is found that the ALLSAT forecasts are of a quality comparable to the SAR forecasts.

  12. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air Service...

  13. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air Service...

  14. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air Service...

  15. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air Service...

  16. 14 CFR 93.219 - Allocation of slots for essential air service operations and applicable limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SPECIAL AIR TRAFFIC RULES Allocation of Commuter and Air Carrier IFR Operations at High Density Traffic... or from a High Density Traffic Airport under the Department of Transportation's Essential Air Service...

  17. Partnerships form the basis for implementing a National Space Weather Plan

    NASA Astrophysics Data System (ADS)

    Spann, James F.; Giles, Barbara L.

    2017-08-01

    The 2017 Space Weather Enterprise Forum, held June 27, focused on the vital role of partnerships in order to establish an effective and successful national space weather program. Experts and users from the many government agencies, industry, academia, and policy makers gathered to discuss space weather impacts and mitigation strategies, the relevant services and supporting infrastructure, and the vital role cross-cutting partnerships must play for successful implementation of the National Space Weather Action Plan.

  18. Space Weather Forecasting at the Joint Space Operations Center (JSpOC)

    NASA Astrophysics Data System (ADS)

    Nava, O.

    2012-12-01

    The Joint Space Operations Center (JSpOC) at Vandenberg Air Force Base is the command and control focal point for the operational employment of worldwide joint space forces. The JSpOC focuses on planning and executing US Strategic Command's Joint Functional Component Command for Space (JFCC SPACE) mission. Through the JSpOC, the Weather Specialty Team (WST) monitors space and terrestrial weather effects, plans and assesses weather impacts on military operations, and provides reach-back support for deployed theater solar and terrestrial needs. This presentation will detail how space weather affects the JSpOC mission set and how the scientific community can enhance the WST's capabilities and effectiveness.

  19. Winter Weather Tips: Understanding Alerts and Staying Safe this Season | Poster

    Cancer.gov

    By Jenna Seiss and Kylie Tomlin, Guest Writers, and Ashley DeVine, Staff Writer Maryland residents face the possibility of dangerous winter weather each year—from icy conditions to frigid temperatures. You may be familiar with the different types of winter weather alerts issued by the National Weather Service (NWS), but do you know what each alert means?  

  20. Operational Space Weather in USAF Education

    NASA Astrophysics Data System (ADS)

    Smithtro, C.; Quigley, S.

    2006-12-01

    Most education programs offering space weather courses are understandably and traditionally heavily weighted with theoretical space physics that is the basis for most of what is researched and modeled. While understanding the theory is a good and necessary grounding for anyone working the field of space weather, few military or commercial jobs employ such theory in real-time operations. The operations sites/centers are much more geared toward use of applied theory-resultant models, tools and products. To ensure its operations centers personnel, commanders, real-time system operators and other customers affected by the space environment are educated on available and soon-to-be operational space weather models and products, the USAF has developed applicable course/lecture material taught at various institutions to include the Air Force Institute of Technology (AFIT) and the Joint Weather Training Complex (335th/TRS/OUA). Less frequent training of operational space weather is available via other venues that will be discussed, and associated course material is also being developed for potential use at the National Security Space Institute (NSSI). This presentation provides an overview of the programs, locations, courses and material developed and/or taught by or for USAF personnel dealing with operational space weather. It also provides general information on student research project results that may be used in operational support, along with observations regarding logistical and professional benefits of teaching such non-theoretical/non-traditional material.

  1. Weather Information Communications (WINCOMM) Overview and Status

    NASA Technical Reports Server (NTRS)

    Martzaklis, K.

    2003-01-01

    The second annual project review of Weather Information Communications (WINCOMM) is presented. The topics of discussion include: 1) In-Flight Weather Information; 2) System Elements; 3) Technology Investment Areas; 4) NAS Information Exchange; 5) FIS Datalink Architecture Analyses; 6) Hybrid FIS Datalink Architecture; 7) FIS Datalink Architecture Analyses; 8) Air Transport: Ground and Satellite-based Datalinks; 9) General Aviation: Ground and Satellite-based Datalinks; 10) Low Altitude AutoMET Reporting; 11) AutoMET: Airborne-based Datalinks; 12) Network Protocols Development; and 13) FAA/NASA Collaboration. A summary of WINCOMM is also included. This paper is in viewgraph form.

  2. General-aviation's view of progress in the aviation weather system

    NASA Technical Reports Server (NTRS)

    Lundgren, Douglas J.

    1988-01-01

    For all its activity statistics, general-aviation is the most vulnerable to hazardous weather. Of concern to the general aviation industry are: (1) the slow pace of getting units of the Automated Weather Observation System (AWOS) to the field; (2) the efforts of the National Weather Service to withdraw from both the observation and dissemination roles of the aviation weather system; (3) the need for more observation points to improve the accuracy of terminal and area forecasts; (4) the need for improvements in all area forecasts, terminal forecasts, and winds aloft forecasts; (5) slow progress in cockpit weather displays; (6) the erosion of transcribed weather broadcasts (TWEB) and other deficiencies in weather information dissemination; (7) the need to push to make the Direct User Access Terminal (DUAT) a reality; and (7) the need to improve severe weather (thunderstorm) warning systems.

  3. Comparison of Weather Shows in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2009-09-01

    Comparison of Weather Shows in Eastern Europe Television weather shows in Eastern Europe have in most cases in the high graphical standard. There is though a wast difference in duration and information content in the weather shows. There are few signs and regularities by which we can see the character of the weather show. The main differences are mainly caused by the income structure of the TV station. Either it is a fully privately funded TV relying on the TV commercials income. Or it is a public service TV station funded mainly by the national budget or fixed fee structure/tax. There are wast differences in duration and even a graphical presentation of the weather. Next important aspect is a supplier of the weather information and /or the processor. Shortly we can say, that when the TV show is produced by the national met office, the TV show consists of more scientific terms, synoptic maps, satellite imagery, etc. If the supplier is the private meteorological company, the weather show is more user-friendly, laical with less scientific terms. We are experiencing a massive shift in public weather knowledge and demand for information. In the past, weather shows consisted only of maps with weather icons. In todaýs world, even the laic weather shows consist partly of numerical weather model outputs - they are of course designed to be understandable and graphically attractive. Outputs of the numerical weather models used to be only a part of daily life of a professional meteorologist, today they are common part of life of regular people. Video samples are a part of this presentation.

  4. Impact of Tactical and Strategic Weather Avoidance on Separation Assurance

    NASA Technical Reports Server (NTRS)

    Refai, Mohamad S.; Windhorst, Robert

    2011-01-01

    The ability to keep flights away from weather hazards while maintaining aircraft-to-aircraft separation is critically important. The Advanced Airspace Concept is an automation concept that implements a ground-based strategic conflict resolution algorithm for management of aircraft separation. The impact of dynamic and uncertain weather avoidance on this concept is investigated. A strategic weather rerouting system is integrated with the Advanced Airspace Concept, which also provides a tactical weather avoidance algorithm, in a fast time simulation of the Air Transportation System. Strategic weather rerouting is used to plan routes around weather in the 20 minute to two-hour time horizon. To address forecast uncertainty, flight routes are revised at 15 minute intervals. Tactical weather avoidance is used for short term trajectory adjustments (30 minute planning horizon) that are updated every minute to address any weather conflicts (instances where aircraft are predicted to pass through weather cells) that are left unresolved by strategic weather rerouting. The fast time simulation is used to assess the impact of tactical weather avoidance on the performance of automated conflict resolution as well as the impact of strategic weather rerouting on both conflict resolution and tactical weather avoidance. The results demonstrate that both tactical weather avoidance and strategic weather rerouting increase the algorithm complexity required to find aircraft conflict resolutions. Results also demonstrate that tactical weather avoidance is prone to higher airborne delay than strategic weather rerouting. Adding strategic weather rerouting to tactical weather avoidance reduces total airborne delays for the reported scenario by 18% and reduces the number of remaining weather violations by 13%. Finally, two features are identified that have proven important for strategic weather rerouting to realize these benefits; namely, the ability to revise reroutes and the use of maneuvers

  5. Premature Extinction of the Weather Observer: How Much Risk is the Air Force Assuming

    DTIC Science & Technology

    2015-12-01

    is impacted in some way by the weather and the forecast. DOD assets are exposed to haz- ardous weather conditions each year, the effects of which...discussion of ASOS accuracy follows and is accompanied by an assessment of sur- face weather observations’ impacts to operations as a function of time as well...from some back-up techniques. This section details current knowledge of AMOS and cor- responding impacts of AMOS employment. Current Fielded Systems

  6. NOAA WEATHER WIRE SERVICE

    Science.gov Websites

    Office Marine, Tropical, and Tsunami Services Branch Items of Interest Marine Forecasts Text, Graphic , Items of Interest, Forecasts, Observations, Portals, Dissemination, Publications, Links, FAQ, Contacts

  7. Controller evaluation of initial data link terminal air traffic control services : final report

    DOT National Transportation Integrated Search

    1991-01-01

    This document details the results the first Federal Aviation Administration : Technical Center investigation of the initial terminal air traffic control : services developed for transmission using Data Link technology. Initial Data : Link services we...

  8. Worldwide Marine Weather Broadcasts.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This publication is a source of marine weather broadcast information in all areas of the world where such service is provided. This publication was designed for the use of U.S. naval and merchant ships. Sections 1 through 4 contain details of radio telegraph, radio telephone, radio facsimile, and radio teleprinter transmissions, respectively. The…

  9. [Influence of the Weather on the Incidence of Fractures in the Elderly].

    PubMed

    Burget, F; Foltán, O; Kraus, J; Kudrna, K; Novák, M; Ulrych, J

    2016-01-01

    PURPOSE OF THE STUDY The incidence of geriatric fractures (proximal femur, distal radius, proximal humerus and thoracolumbar spine injuries) in the population increases with ageing. However, the role of weather conditions, such as icy and slippery winter, should not be overlooked. A deeper insight into this relationship may bring about a better understanding of the fracture aetiology and thus allow for improvement in the prevention of fractures in elderly people. MATERIAL AND METHODS This prospective study included 676 patients (469 women and 207 men) aged 65 and over. Relationships between the incidence of geriatric fractures in these patients and the season, weather phenomena (i.e., air temperature, atmospheric pressure, air humidity, wind speed, visibility, rain, snow, mist and storm) and global biometeorological data in the period from 1 January 2012 to 31 December 2013 were investigated. Patients with high velocity trauma or those with pathological fractures were excluded. Time (day/night), the place of injury (outdoor/indoor/home environment), comorbidities and chronicuse medication were also recorded. Weather forecast records with weather health loads (biotropic indices) were obtained from the commercial service Weather Underground and the Czech Hydrometeoro-logical Institute. The results were statistically analysed using the Statistika 12 programme. RESULTS The incidence of fractures was higher in winter months but there was no statistically significant correlation between the number of fractures and various weather characteristics (temperature, atmospheric pressure, air humidity, wind speed, visibility, rainfall, snow, mist or storm). On the other hand, a relationship between the incidence of geriatric fractures and the biometeorological data (biotropic index) for that day was significant (r = 0.65, p= 0.0401). The majority of fractures occurred during the daytime (83.7%) and in the indoor environment (83.1%); of the latter fractures, 85.2% were home

  10. Educating Emergency Managers About Weather -Related Hazards

    NASA Astrophysics Data System (ADS)

    Spangler, T. C.; Johnson, V.

    2006-12-01

    The most common crises that emergency managers face are those related to hazardous weather - snowstorms, floods, hurricanes, heat waves, tornadoes, etc. However, man-made disasters, such as accidental releases of hazardous substances or terrorist acts, also often have a weather component. For example, after the bombing of the Alfred P. Murrah Federal Building in Oklahoma City, emergency managers were concerned that thunderstorms in the area might cause the building to collapse, putting rescuers in further danger. Training emergency managers to recognize the importance of weather in disaster planning and response has been a small but important focus of the COMET Program's educational development effort. Topics addressed in COMET training modules that are pertinent to emergency management include fire weather, hurricanes, flood events, and air contaminant dispersion. Additionally, the module entitled Anticipating Hazardous Weather and Community Risk provides an overview of basic meteorological processes, describes a broad range of weather phenomenon, and then addresses what forecast products are available to emergency managers to assess a threat to their community. In many of the modules, learners are presented with scenarios that give them the opportunity to practice decision-making in hazardous weather situations. We will demonstrate some of those scenarios and discuss how training can be used to model good emergency management skills. We will discuss ways to communicate with the emergency management community and provide examples of how distance learning can be used to educate and train emergency managers.

  11. Integration of Weather Data into Airspace and Traffic Operations Simulation (ATOS) for Trajectory- Based Operations Research

    NASA Technical Reports Server (NTRS)

    Peters, Mark; Boisvert, Ben; Escala, Diego

    2009-01-01

    Explicit integration of aviation weather forecasts with the National Airspace System (NAS) structure is needed to improve the development and execution of operationally effective weather impact mitigation plans and has become increasingly important due to NAS congestion and associated increases in delay. This article considers several contemporary weather-air traffic management (ATM) integration applications: the use of probabilistic forecasts of visibility at San Francisco, the Route Availability Planning Tool to facilitate departures from the New York airports during thunderstorms, the estimation of en route capacity in convective weather, and the application of mixed-integer optimization techniques to air traffic management when the en route and terminal capacities are varying with time because of convective weather impacts. Our operational experience at San Francisco and New York coupled with very promising initial results of traffic flow optimizations suggests that weather-ATM integrated systems warrant significant research and development investment. However, they will need to be refined through rapid prototyping at facilities with supportive operational users We have discussed key elements of an emerging aviation weather research area: the explicit integration of aviation weather forecasts with NAS structure to improve the effectiveness and timeliness of weather impact mitigation plans. Our insights are based on operational experiences with Lincoln Laboratory-developed integrated weather sensing and processing systems, and derivative early prototypes of explicit ATM decision support tools such as the RAPT in New York City. The technical components of this effort involve improving meteorological forecast skill, tailoring the forecast outputs to the problem of estimating airspace impacts, developing models to quantify airspace impacts, and prototyping automated tools that assist in the development of objective broad-area ATM strategies, given probabilistic

  12. Air service to small communities, directions for the future. [conference

    NASA Technical Reports Server (NTRS)

    Vittek, J. F., Jr. (Editor)

    1974-01-01

    The seminar on the problems of providing air service to low and medium density points is reported. National transport policies and programs are discussed along with the technology aspects. Recommendations for ATC, CAB, and FAA are included.

  13. 76 FR 61245 - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ...--Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International... of September 28, 2011 Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International Operations Memorandum for the Secretary of Transportation By the authority...

  14. Rapid weather information dissemination in Florida

    NASA Technical Reports Server (NTRS)

    Martsolf, J. D.; Heinemann, P. H.; Gerber, J. F.; Crosby, F. L.; Smith, D. L.

    1984-01-01

    The development of the Florida Agricultural Services and Technology (FAST) plan to provide ports for users to call for weather information is described. FAST is based on the Satellite Frost Forecast System, which makes a broad base of weather data available to its users. The methods used for acquisition and dissemination of data from various networks under the FAST plan are examined. The system provides color coded IR or thermal maps, precipitation maps, and textural forecast information. A diagram of the system is provided.

  15. Acute Low Back Pain? Do Not Blame the Weather-A Case-Crossover Study.

    PubMed

    Beilken, Keira; Hancock, Mark J; Maher, Chris G; Li, Qiang; Steffens, Daniel

    2017-06-01

    To investigate the influence of various weather parameters on the risk of developing a low back pain (LBP) episode. Case-crossover study. Primary care clinics in Sydney, Australia. 981 participants with a new episode of acute LBP. Weather parameters were obtained from the Australian Bureau of Meteorology. Odds ratios (OR) and 95% confidence intervals (95% CI) were derived comparing two exposure variables in the case window-(1) the average of the weather variable for the day prior to pain onset and (2) the change in the weather variable from 2 days prior to 1 day prior to pain onset-with exposures in two control windows (1 week and 1 month before the case window). The weather parameters of precipitation, humidity, wind speed, wind gust, wind direction, and air pressure were not associated with the onset of acute LBP. For one of the four analyses, higher temperature slightly increased the odds of pain onset. Common weather parameters that had been previously linked to musculoskeletal pain, such as precipitation, humidity, wind speed, wind gust, wind direction, and air pressure, do not increase the risk of onset for LBP. © 2016 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Seasonal variation, weather and behavior in day-care children: a multilevel approach

    NASA Astrophysics Data System (ADS)

    Ciucci, Enrica; Calussi, Pamela; Menesini, Ersilia; Mattei, Alessandra; Petralli, Martina; Orlandini, Simone

    2013-11-01

    This study analyzes the effect of weather variables, such as solar radiation, indoor and outdoor air temperature, relative humidity and time spent outdoor, on the behavior of 2-year-old children and their affects across different seasons: winter, spring and summer. Participants were a group of 61 children (33 males and 28 females) attending four day-care centers in Florence (Central Italy). Mean age of children at the beginning of the study was 24.1 months ( SD = 3.6). We used multilevel linear analyses to account for the hierarchical structure of our data. The study analyzed the following behavioral variables: Activity Level, Attentional Focusing, Frustration, and Aggression. Results showed a different impact of some weather variables on children’s behavior across seasons, indicating that the weather variable that affects children’s behavior is usually the one that shows extreme values during the studied seasons, such as air temperature and relative humidity in winter and summer. Studying children and their reactions to weather conditions could have potentially wide-reaching implications for parenting and teaching practices, as well as for researchers studying social relationships development.

  17. A Conceptual Model of the Severe-Storm Environment for Inclusion into Air Weather Service Severe-Storm Analysis and Forecast Procedures.

    DTIC Science & Technology

    1984-11-16

    thunderstorm forecasting , Bull. Am. Meteorol. Soc. 34:250-252. 19. Galway , J.G. (1956) The lifted index as a prediction of latent instability, Bull...downwind, which are geographically related and can be traced through time by a forecaster . In fact, a typical Great Plains severe-storm situation has...weather station setting, only one sounding can be plotted and anal- yzed because of time constraints. Appendix C contains two single-station forecast

  18. Airline Deregulation: Addressing the Air Service Problems of Some Communities

    DOT National Transportation Integrated Search

    1997-06-25

    Airline deregulation has led to lower airfares and better service for most air : travelers, due largely to increased competition spurred by the entry of new : airlines into the industry and established airlines into new markets. However, : some airpo...

  19. New Satellite Constellation Uses Radio Occultation to Monitor Space Weather

    NASA Astrophysics Data System (ADS)

    Kumar, Mohi

    2006-05-01

    A constellation of six satellites, expected to enhance space weather research, improve terrestrial meteorology forecasts, and monitor climate change, were launched 15 April from Vandenberg Air Force Base, Calif.

  20. 14 CFR 272.6 - Considerations in the determination of essential air service.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS ESSENTIAL AIR SERVICE TO THE FREELY ASSOCIATED STATES... other factors, the following: (1) The demonstrated level of traffic demand; (2) The amount of compensation necessary to maintain a level of service sufficient to meet that demand; (3) The extent to which...

  1. Air Weather Service (AWS) Climatic Briefs: Europe.

    DTIC Science & Technology

    1982-05-01

    UNCLASSIFIED USAFETAC/DS-/81/05b SBI-AD-ESS0 187 N1 II NI I MEhhhh IIIIIIIIIIIIIIIII II hh PHOTOGRAPH THIS SHEET E /8 LEVEL INVENTORY DOCUMENT IDENTIFICATION...JUSTIFICATnON S ELE3 C T E BY S U 3M DISTRIBUTIO - D AVAILABILITY CODES DIST AVAIL AND/OR SPECIAL DATE ACCESSIONED DISTRIBUTION STAMP 82 08 02 147...publication. WAYNE E McCOLLOM Chief, chnical Information Section FOR THE COMMANDER WALTER S. BURGMANN Scientific and Technical Information Officer (STINFO) ii

  2. Air Weather Service Model Output Statistics Systems.

    DTIC Science & Technology

    1983-10-01

    LAT LONG 57^43’N 3°20’W 58°27’N 3°05*W 57°12’N 2°12’W 54051’N 4°57’W 54O05’N 4°38*W 54018’N 1 °32’W 53°29’N 1 °00’W LAT LONG 53^10’N...Region 4 LAT LONG 51°56*N "PTF’W 51°37’N 1 °05’W 51°58’N 0°30’E 51°23’N 1 °17’W 51°10’N 1 °45’W 51°15’N 0°57’W 51°17’N 0°45’W NUMBER ICAO... 1 LAT 47^46’N

  3. AWS (Air Weather Service) Climatic Briefs: Asia.

    DTIC Science & Technology

    1984-12-01

    EYR 1 1 11 10 10 151101010 10 10 15 15 15 15 151 15115 15 15 1510 1EXThi24ES INCLUDED FROM GBMO TABLES OF TEKP/RH/PRECIP OF THE WORLD . ~MAXIMUM WID...a 2 10 2 -_._ 1 P_ 4vSBT TA LA E 7 0. 0 2 O . 3 0. R ( A A __1A ____ 1... tha 18&20 0 0 0 # 3 3 2 o_ 1_ 9 -3 miles 2300 0 0 0- 1_ 3 1 0 1 i 1 4 WAR C...Awl S ’~ 6218 . - . . . .. . . .~. . . . . . C3 DATE WAR 72 GO.LE.- P1PAREDIT USAFITAC STATION KAM TAIPl lOP TAIWAN PEl00 JAN S0*,IJL 72 I STMLT6S ICTP

  4. AIRS First Light Data: Typhoon Ramasun, July 3, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    area north of Australia, does it see the surface. It is also severely affected by suspended ice particles formed by strong convection, which causes scattering and appears to be extremely cold. These blue areas indicate intense precipitation.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  5. Towards an operational high-resolution air quality forecasting system at ECCC

    NASA Astrophysics Data System (ADS)

    Munoz-Alpizar, Rodrigo; Stroud, Craig; Ren, Shuzhan; Belair, Stephane; Leroyer, Sylvie; Souvanlasy, Vanh; Spacek, Lubos; Pavlovic, Radenko; Davignon, Didier; Moran, Moran

    2017-04-01

    Urban environments are particularly sensitive to weather, air quality (AQ), and climatic conditions. Despite the efforts made in Canada to reduce pollution in urban areas, AQ continues to be a concern for the population, especially during short-term episodes that could lead to exceedances of daily air quality standards. Furthermore, urban air pollution has long been associated with significant adverse health effects. In Canada, the large percentage of the population living in urban areas ( 81%, according to the Canada's 2011 census) is exposed to elevated air pollution due to local emissions sources. Thus, in order to improve the services offered to the Canadian public, Environment and Climate Change Canada has launched an initiative to develop a high-resolution air quality prediction capacity for urban areas in Canada. This presentation will show observed pollution trends (2010-2016) for Canadian mega-cities along with some preliminary high-resolution air quality modelling results. Short-term and long-term plans for urban AQ forecasting in Canada will also be described.

  6. NOAA Environmental Satellite Measurements of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.

    2015-12-01

    For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.

  7. Configuring the HYSPLIT Model for National Weather Service Forecast Office and Spaceflight Meteorology Group Applications

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; Van Speybroeck, Kurt

    2009-01-01

    The National Weather Service Forecast Office in Melbourne, FL (NWS MLB) is responsible for providing meteorological support to state and county emergency management agencies across East Central Florida in the event of incidents involving the significant release of harmful chemicals, radiation, and smoke from fires and/or toxic plumes into the atmosphere. NWS MLB uses the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to provide trajectory, concentration, and deposition guidance during such events. Accurate and timely guidance is critical for decision makers charged with protecting the health and well-being of populations at risk. Information that can describe the geographic extent of areas possibly affected by a hazardous release, as well as to indicate locations of primary concern, offer better opportunity for prompt and decisive action. In addition, forecasters at the NWS Spaceflight Meteorology Group (SMG) have expressed interest in using the HYSPLIT model to assist with Weather Flight Rules during Space Shuttle landing operations. In particular, SMG would provide low and mid-level HYSPLIT trajectory forecasts for cumulus clouds associated with smoke plumes, and high-level trajectory forecasts for thunderstorm anvils. Another potential benefit for both NWS MLB and SMG is using the HYSPLIT model concentration and deposition guidance in fog situations.

  8. Severe weather study. [for evaluating dissemination of storm forecasts meteorological services

    NASA Technical Reports Server (NTRS)

    Mills, C. J.

    1973-01-01

    Current methods of severe weather information dissemination and the impact of this information on the general public are studied. The study is based on the responses of the general public and the local broadcasters to a severe weather incident which occurred on August 14, 1972 in the Dane County-Madison Metropolitan area. The results of the study were somewhat startling. From the sample, for instance, it was found that 45% of the Dane County population was not aware of the severe thunderstorm warning. In this case this may or may not have been critical, but had the storm been extremely severe or had a tornado and flooding been associated with the storm, a large segment of the population would have been in great danger. What this study has shown, is that the real problem with the dissemination of severe weather information is not the lack of it, but the inability to transfer it in useful form to an overwhelming majority of the general public.

  9. Maintaining a Local Data Integration System in Support of Weather Forecast Operations

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian

    2010-01-01

    Since 2000, both the National Weather Service in Melbourne, FL (NWS MLB) and the Spaceflight Meteorology Group (SMG) have used a local data integration system (LDIS) as part of their forecast and warning operations. Each has benefited from 3-dimensional analyses that are delivered to forecasters every 15 minutes across the peninsula of Florida. The intent is to generate products that enhance short-range weather forecasts issued in support of NWS MLB and SMG operational requirements within East Central Florida. The current LDIS uses the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) package as its core, which integrates a wide variety of national, regional, and local observational data sets. It assimilates all available real-time data within its domain and is run at a finer spatial and temporal resolution than current national- or regional-scale analysis packages. As such, it provides local forecasters with a more comprehensive and complete understanding of evolving fine-scale weather features. Recent efforts have been undertaken to update the LDIS through the formal tasking process of NASA's Applied Meteorology Unit. The goals include upgrading LDIS with the latest version of ADAS, incorporating new sources of observational data, and making adjustments to shell scripts written to govern the system. A series of scripts run a complete modeling system consisting of the preprocessing step, the main model integration, and the post-processing step. The preprocessing step prepares the terrain, surface characteristics data sets, and the objective analysis for model initialization. Data ingested through ADAS include (but are not limited to) Level II Weather Surveillance Radar- 1988 Doppler (WSR-88D) data from six Florida radars, Geostationary Operational Environmental Satellites (GOES) visible and infrared satellite imagery, surface and upper air observations throughout Florida from NOAA's Earth System Research Laboratory/Global Systems Division

  10. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  11. Catalog of Air Force Weather Technical Publications 1992-1993

    DTIC Science & Technology

    1994-01-01

    3-2 of DESERT STORM .................................... 3-2 of Eastern Europe ....................................... 3-3 electrooptical...for 640 Pacific (10 sets), and Europe (36 sets). EOCLIMO stations taken from Navy PC-SMOS, USAFETAC version 1.0 data files are NOT compatible with SOCS...Executive Separate chapters describe the weather during Summary, by Kenneth R. Walters, Sr., and Capt Operations DESERT SHIELD, DESERT STORM , Richard D

  12. Verification of Space Weather Forecasts using Terrestrial Weather Approaches

    NASA Astrophysics Data System (ADS)

    Henley, E.; Murray, S.; Pope, E.; Stephenson, D.; Sharpe, M.; Bingham, S.; Jackson, D.

    2015-12-01

    The Met Office Space Weather Operations Centre (MOSWOC) provides a range of 24/7 operational space weather forecasts, alerts, and warnings, which provide valuable information on space weather that can degrade electricity grids, radio communications, and satellite electronics. Forecasts issued include arrival times of coronal mass ejections (CMEs), and probabilistic forecasts for flares, geomagnetic storm indices, and energetic particle fluxes and fluences. These forecasts are produced twice daily using a combination of output from models such as Enlil, near-real-time observations, and forecaster experience. Verification of forecasts is crucial for users, researchers, and forecasters to understand the strengths and limitations of forecasters, and to assess forecaster added value. To this end, the Met Office (in collaboration with Exeter University) has been adapting verification techniques from terrestrial weather, and has been working closely with the International Space Environment Service (ISES) to standardise verification procedures. We will present the results of part of this work, analysing forecast and observed CME arrival times, assessing skill using 2x2 contingency tables. These MOSWOC forecasts can be objectively compared to those produced by the NASA Community Coordinated Modelling Center - a useful benchmark. This approach cannot be taken for the other forecasts, as they are probabilistic and categorical (e.g., geomagnetic storm forecasts give probabilities of exceeding levels from minor to extreme). We will present appropriate verification techniques being developed to address these forecasts, such as rank probability skill score, and comparing forecasts against climatology and persistence benchmarks. As part of this, we will outline the use of discrete time Markov chains to assess and improve the performance of our geomagnetic storm forecasts. We will also discuss work to adapt a terrestrial verification visualisation system to space weather, to help

  13. A survey of customers of space weather information

    NASA Astrophysics Data System (ADS)

    Schrijver, C. J.; Rabanal, J. P.

    2013-09-01

    We present an analysis of the users of space weather information based on 2783 responses to an online survey among subscribers of NOAA's Space Weather Prediction Center e-mail services. The survey requested information focused on the three NOAA space weather scales: geomagnetic storms, solar radiation storms, and radio blackouts. Space weather information is most commonly obtained for reasons of human safety and continuity or reliability of operations. The information is primarily used for situational awareness, as aid to understand anomalies, to avoid impacts on current and near-future operations by implementing mitigating strategies, and to prepare for potential near-future impacts that might occur in conjunction with contingencies that include electric power outages or GPS perturbations. Interest in, anticipated impacts from, and responses to the three main categories of space weather are quite uniform across societal sectors. Approximately 40% of the respondents expect serious to very serious impacts from space weather events if no action were taken to mitigate or in the absence of adequate space weather information. The impacts of space weather are deemed to be substantially reduced because of the availability of, and their response to, space weather forecasts and alerts. Current and near-future space weather conditions are generally highly valued, considered useful, and generally, though not fully, adequate to avoid or mitigate societal impacts. We conclude that even among those receiving space weather information, there is considerable uncertainty about the possible impacts of space weather and thus about how to act on the space weather information that is provided.

  14. 75 FR 61031 - Provision of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... for Commercial Air Carrier Service in Domestic and International Operations #0; #0; #0; Presidential... of Aviation Insurance Coverage for Commercial Air Carrier Service in Domestic and International... Constitution and the laws of the United States, including 49 U.S.C. 44302, et seq., I hereby: 1. Determine that...

  15. Effect of weather and time on trauma events determined using emergency medical service registry data.

    PubMed

    Lin, Li-Wei; Lin, Hsiao-Yu; Hsu, Chien-Yeh; Rau, Hsiao-Hsien; Chen, Ping-Ling

    2015-09-01

    Trauma admissions are associated with weather and temporal factors; however, previous study results regarding these factors are contradictory. We hypothesised that weather and temporal factors have different effects on specific trauma events in an emergency medical service (EMS) system. EMS data from January 1, 2009, to December 31, 2010, were obtained from the fire department of Taipei City and associated with the local weather data. EMS trauma events were categorised into total trauma, traffic accidents (TAs), motorbike accidents (MBAs), and falls. Hourly data on trauma patients were analysed using the zero-inflated Poisson model. The hourly incidence of total trauma increased with the magnitude of precipitation (incidence rate ratio [IRR]=1.06, 1.09, and 1.11 in light, moderate, and heavy rain, respectively), and this effect was more prominent in fall patients than in patients with other injuries (IRR=1.07, 1.21, and 1.32). However, the hourly incidence of TAs and MBAs was associated only with light rain (IRR=1.11 and 1.06, respectively). An hour of sunshine exposure was associated with an increase in the hourly incidence of all groups, and higher temperatures were associated with an increased hourly incidence of total trauma, TAs, and MBAs, but not falls. The hourly incidence of falls increased only in late fall and winter. Compared with the hourly incidence between 3 am and 7 am, the hourly incidence of all groups plateaued between 7 am and 11 pm and declined from 11 pm to 3 am. During the plateau period, 2 peaks in the incidence of TAs (IRR=5.03 and 5.07, respectively) and MBAs (IRR=5.81 and 5.51, respectively) were observed during 7-11 am and 3-7 pm. The hourly incidence of total trauma, TAs, and MBAs plateaued during workdays, peaked on Fridays, declined on Saturdays, and troughed on Sundays. The incidence of falls increased only on Mondays (IRR=1.09). Weather and temporal factors had different impacts on the incidence of traffic-related accidents and falls

  16. Development of RGB Composite Imagery for Operational Weather Forecasting Applications

    NASA Technical Reports Server (NTRS)

    Molthan, Andrew L.; Fuell, Kevin K.; Oswald, Hayden, K; Knaff, John A.

    2012-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center, in collaboration with the Cooperative Institute for Research in the Atmosphere (CIRA), is providing red-green-blue (RGB) color composite imagery to several of NOAA s National Centers and National Weather Service forecast offices as a demonstration of future capabilities of the Advanced Baseline Imager (ABI) to be implemented aboard GOES-R. Forecasters rely upon geostationary satellite imagery to monitor conditions over their regions of responsibility. Since the ABI will provide nearly three times as many channels as the current GOES imager, the volume of data available for analysis will increase. RGB composite imagery can aid in the compression of large data volumes by combining information from multiple channels or paired channel differences into single products that communicate more information than provided by a single channel image. A standard suite of RGB imagery has been developed by the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT), based upon the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The SEVIRI instrument currently provides visible and infrared wavelengths comparable to the future GOES-R ABI. In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the NASA Terra and Aqua satellites can be used to demonstrate future capabilities of GOES-R. This presentation will demonstrate an overview of the products currently disseminated to SPoRT partners within the GOES-R Proving Ground, and other National Weather Service forecast offices, along with examples of their application. For example, CIRA has used the channels of the current GOES sounder to produce an "air mass" RGB originally designed for SEVIRI. This provides hourly imagery over CONUS for looping applications while demonstrating capabilities similar to the future ABI instrument. SPoRT has developed similar "air mass" RGB imagery from MODIS, and through

  17. Investigation and Modeling of Cranberry Weather Stress.

    NASA Astrophysics Data System (ADS)

    Croft, Paul Joseph

    Cranberry bog weather conditions and weather-related stress were investigated for development of crop yield prediction models and models to predict daily weather conditions in the bog. Field investigations and data gathering were completed at the Rutgers University Blueberry/Cranberry Research Center experimental bogs in Chatsworth, New Jersey. Study indicated that although cranberries generally exhibit little or no stomatal response to changing atmospheric conditions, the evaluation of weather-related stress could be accomplished via use of micrometeorological data. Definition of weather -related stress was made by establishing critical thresholds of the frequencies of occurrence, and magnitudes of, temperature and precipitation in the bog based on values determined by a review of the literature and a grower questionnaire. Stress frequencies were correlated with cranberry yield to develop predictive models based on the previous season's yield, prior season data, prior and current season data, current season data; and prior and current season data through July 31 of the current season. The predictive ability of the prior season models was best and could be used in crop planning and production. Further examination of bog micrometeorological data permitted the isolation of those weather conditions conducive to cranberry scald and allowed for the institution of a pilot scald advisory program during the 1991 season. The micrometeorological data from the bog was also used to develop models to predict daily canopy temperature and precipitation, based on upper air data, for grower use. Models were developed for each month for maximum and minimum temperatures and for precipitation and generally performed well. The modeling of bog weather conditions is an important first step toward daily prediction of cranberry weather-related stress.

  18. An Overview of the National Weather Service National Water Model

    NASA Astrophysics Data System (ADS)

    Cosgrove, B.; Gochis, D.; Clark, E. P.; Cui, Z.; Dugger, A. L.; Feng, X.; Karsten, L. R.; Khan, S.; Kitzmiller, D.; Lee, H. S.; Liu, Y.; McCreight, J. L.; Newman, A. J.; Oubeidillah, A.; Pan, L.; Pham, C.; Salas, F.; Sampson, K. M.; Sood, G.; Wood, A.; Yates, D. N.; Yu, W.

    2016-12-01

    The National Weather Service (NWS) Office of Water Prediction (OWP), in conjunction with the National Center for Atmospheric Research (NCAR) and the NWS National Centers for Environmental Prediction (NCEP) recently implemented version 1.0 of the National Water Model (NWM) into operations. This model is an hourly cycling uncoupled analysis and forecast system that provides streamflow for 2.7 million river reaches and other hydrologic information on 1km and 250m grids. It will provide complementary hydrologic guidance at current NWS river forecast locations and significantly expand guidance coverage and type in underserved locations. The core of this system is the NCAR-supported community Weather Research and Forecasting (WRF)-Hydro hydrologic model. It ingests forcing from a variety of sources including Multi-Sensor Multi-Radar (MRMS) radar-gauge observed precipitation data and High Resolution Rapid Refresh (HRRR), Rapid Refresh (RAP), Global Forecast System (GFS) and Climate Forecast System (CFS) forecast data. WRF-Hydro is configured to use the Noah-Multi Parameterization (Noah-MP) Land Surface Model (LSM) to simulate land surface processes. Separate water routing modules perform diffusive wave surface routing and saturated subsurface flow routing on a 250m grid, and Muskingum-Cunge channel routing down National Hydrogaphy Dataset Plus V2 (NHDPlusV2) stream reaches. River analyses and forecasts are provided across a domain encompassing the Continental United States (CONUS) and hydrologically contributing areas, while land surface output is available on a larger domain that extends beyond the CONUS into Canada and Mexico (roughly from latitude 19N to 58N). The system includes an analysis and assimilation configuration along with three forecast configurations. These include a short-range 15 hour deterministic forecast, a medium-Range 10 day deterministic forecast and a long-range 30 day 16-member ensemble forecast. United Sates Geologic Survey (USGS) streamflow

  19. AIRS Data Service at NASA Goddard Earth Sciences Data and Information Services (GES DISC) and Its Application to Climate Change Study

    NASA Technical Reports Server (NTRS)

    Won, Young-In; Vollimer, Bruce; Theobald, Mike; Hua, Xin-Min

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) instrument suite is designed to observe and characterize the entire atmospheric column from the surface to the top of the atmosphere in terms of surface emissivity and temperature, atmospheric temperature and humidity profiles, cloud amount and height, and the spectral outgoing infrared radiation on a global scale. The AIRS Data Support Team at the GES DISC provides data support to assist others in understanding, retrieving and extracting information from the AIRS/AMSU/HSB data products. Because a number of years has passed since its operation started, the amount of data has reached a certain level of maturity where we can address the climate change study utilizing AIRS data, In this presentation we will list various service we provide and to demonstrate how to utilize/apply the existing service to long-term and short-term variability study.

  20. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6)…

  1. The Weather Forecast Using Data Mining Research Based on Cloud Computing.

    NASA Astrophysics Data System (ADS)

    Wang, ZhanJie; Mazharul Mujib, A. B. M.

    2017-10-01

    Weather forecasting has been an important application in meteorology and one of the most scientifically and technologically challenging problem around the world. In my study, we have analyzed the use of data mining techniques in forecasting weather. This paper proposes a modern method to develop a service oriented architecture for the weather information systems which forecast weather using these data mining techniques. This can be carried out by using Artificial Neural Network and Decision tree Algorithms and meteorological data collected in Specific time. Algorithm has presented the best results to generate classification rules for the mean weather variables. The results showed that these data mining techniques can be enough for weather forecasting.

  2. Cost characteristics of tilt-rotor, conventional air and high speed rail short-haul intercity passenger service

    NASA Technical Reports Server (NTRS)

    Schoendorfer, David L.; Morlok, Edward K.

    1985-01-01

    The cost analysis done to support an assessment of the potential for a small tilt-rotor aircraft to operate in short-haul intercity passenger service is described in detail. Anticipated costs of tilt-rotor air service were compared to the costs of two alternatives: conventional air and high speed rail (HSR). Costs were developed for corridor service, varying key market characteristics including distance, passenger volumes, and minimum frequency standards. The resulting cost vs output information can then be used to compare modal costs for essentially identical service quality and passenger volume or for different service levels and volumes for each mode, as appropriate. Extensive sensitivity analyses are performed. The cost-output features of these technologies are compared. Tilt-rotor is very attractive compared to HSR in terms of costs over the entire range of volume. It also has costs not dramatically different from conventional air, but tilt-rotor costs are generally higher. Thus some of its other advantages, such as the VTOL capability, must offset the cost disadvantage for it to be a preferred or competitive mode in any given market. These issues are addressed in the companion report which considers strategies for tilt-rotor development in commercial air service.

  3. Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Watson, Leela R.; Bauman, William H., III; Hoeth, Brian

    2009-01-01

    This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.

  4. 75 FR 57519 - Weather Shield Manufacturing, Medford, WI; Notice of Negative Determination Regarding Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... DEPARTMENT OF LABOR Employment and Training Administration [TA-W-72,673] Weather Shield...), applicable to workers and former workers of Weather Shield Manufacturing, Inc., Medford, Wisconsin (subject... administrative support services related to the production of doors and windows at various Weather Shield...

  5. Federal Air Marshall Service : actions taken to fulfill core mission and address workforce issues.

    DOT National Transportation Integrated Search

    2009-07-01

    "By deploying armed air marshals onboard selected flights, the Federal Air Marshal Service (FAMS), a component of the Transportation Security Administration (TSA), plays a key role in helping to protect approximately 29,000 domestic and international...

  6. Program evaluation: Weatherization Residential Assistance Partnership (WRAP) Program. Volume 1, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    The Connecticut low income weatherization program was developed in response to a 1987 rate docket order from the Connecticut Department of Public Utility Control (DPUC) to Connecticut Light & Power Co., an operating subsidiary of Northeast Utilities (NU). (Throughout this report, NU is referred to as the operator of the program.) This program, known as the Weatherization Residential Assistance Partnership, or WRAP, was configured utilizing input from a collaborative group of interested parties to the docket. It was agreed that this program would be put forth by the electric utility, but would not ignore oil and gas savings (thus, itmore » was to be ``fuel- blind``). The allocated cost of conservation services for each fuel source, however, should be cost effective. It was to be offered to those utility customers at or below 200 percent of the federal poverty levels, and provide a wide array of energy saving measures directed toward heating, water heating and lighting. It was felt by the collaborative group that this program would raise the level of expenditures per participant for weatherization services provided by the state, and by linking to and revising the auditing process for weatherization, would lower the audit unit cost. The program plans ranged from the offering of low-cost heating, water heating and infiltration measures, increased insulation levels, carpentry and plumbing services, to furnace or burner replacement. The program was configured to allow for very comprehensive weatherization and heating system servicing.« less

  7. The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.

    2015-07-01

    Synoptic meteorology can have a significant influence on UK air quality. Cyclonic (anticyclonic) conditions lead to the dispersion (accumulation) of air pollutants away from (over) source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to determine the controlling factors. We show that AQUM successfully captures the observed relationships, when sampled under the Lamb Weather Types, an objective classification of midday UK circulation patterns. By using a range of idealised NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK column NO2 field can be explained by the idealised model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.

  8. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany

    NASA Astrophysics Data System (ADS)

    Wanka, E. R.; Bayerstadler, A.; Heumann, C.; Nowak, D.; Jörres, R. A.; Fischer, R.

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m3 change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  9. Seasonality and weather conditions jointly drive flight activity patterns of aquatic and terrestrial chironomids.

    PubMed

    Vebrová, Lucie; van Nieuwenhuijzen, Andre; Kolář, Vojtěch; Boukal, David S

    2018-06-19

    Chironomids, a major invertebrate taxon in many standing freshwaters, rely on adult flight to reach new suitable sites, yet the impact of weather conditions on their flight activity is little understood. We investigated diel and seasonal flight activity patterns of aquatic and terrestrial chironomids in a reclaimed sandpit area and analysed how weather conditions and seasonality influenced their total abundance and species composition. Air temperature, relative humidity, wind speed, and air pressure significantly affected total flight activity of both groups, but not in the same way. We identified an intermediate temperature and humidity optimum for the flight activity of terrestrial chironomids, which contrasted with weaker, timescale-dependent relationships in aquatic species. Flight activity of both groups further declined with wind speed and increased with air pressure. Observed flight patterns also varied in time on both daily and seasonal scale. Flight activity of both groups peaked in the evenings after accounting for weather conditions but, surprisingly, aquatic and terrestrial chironomids used partly alternating time windows for dispersal during the season. This may be driven by different seasonal trends of key environmental variables in larval habitats and hence implies that species phenologies and conditions experienced by chironomid larvae (and probably other aquatic insects with short-lived adults) influence adult flight patterns more than weather conditions. Our results provide detailed insights into the drivers of chironomid flight activity and highlight the methodological challenges arising from the inherent collinearity of weather characteristics and their diurnal and seasonal cycles.

  10. AIRS First Light Data: Eastern Mediterranean, June 14, 2002

    NASA Technical Reports Server (NTRS)

    2002-01-01

    climate change, determining if the global water cycle is accelerating, and detecting the effects of increased greenhouse gases.

    The AIRS sounding suite is a tightly integrated remote sensing system that will be used to create global three-dimensional maps of temperature, humidity and clouds in the Earth's atmosphere with unprecedented accuracy. This will lead to better weather forecasts as well as a wealth of data that will be used to study and characterize and eventually predict the global climate. The AIRS system is made up of three of the six Aqua instruments - AIRS itself, which is an infrared sounder with an unprecedented 2378 spectral channels, complemented with a 4-channel visible/near-infrared imaging module; AMSU-A, which is a 15-channel microwave temperature sounder; and HSB, which is a 4-channel microwave humidity sounder. These instruments are carefully aligned with each other and scan the atmosphere in a synchronized way, giving us simultaneous multispectral views of a highly variable target.

    The Atmospheric Infrared Sounder is an instrument onboard NASA's Aqua satellite under the space agency's Earth Observing System. The sounding system is making highly accurate measurements of air temperature, humidity, clouds and surface temperature. Data will be used to better understand weather and climate. It will also be used by the National Weather Service and the National Oceanic and Atmospheric Administration to improve the accuracy of their weather and climate models.

    The instrument was designed and built by Lockheed Infrared Imaging Systems (recently acquired by British Aerospace) under contract with JPL. The Aqua satellite mission is managed by NASA's Goddard Space Flight Center.

  11. Weathering Grade Classification of Granite Stone Monument Using Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hyun, C.; Roh, T.; Choi, M.; Park, H.

    2009-05-01

    Stone monument has been placed in field and exposed to rain and wind. This outdoor environment and air pollution induced weathering of stone monument. Weathering grade classification is necessary to manage and conserve stone monuments. Visual interpretation by geologist and laboratory experiments using specimens fallen off from the monument to avoid damage on the monument have been applied to classify weathering grade conventionally. Rocks and minerals absorb some particular wavelength ranges of electromagnetic energy by electronic process and vibrational process of composing elements and these phenomena produce intrinsic diagnostic spectral reflectance curve. Non-destructive technique for weathering degree assessment measures those diagnostic absorption features of weathering products and converts the depths of features related to abundance of the materials to relative weathering degree. We selected granite outcrop to apply conventional six folded weathering grade classification method using Schmidt hammer rebound teste. The correlations between Schmidt hammer rebound values and absorption depths of iron oxides such as ferric oxide in the vicinity of 0.9 micrometer wavelength and clay minerals such as illite and kaolinite in the vicinity of 2.2 micrometer wavelength, representative weathering products of granite, were analyzed. The Schmidt hammer rebound value decreased according to increase of absorption depths induced from those weathering products. Weathering grade classification on the granite stone monument was conducted by using absorption depths of weathering products This research is supported from National Research Institute of Cultural Heritage and we appreciate for this.

  12. The Impact of the Assimilation of AIRS Radiance Measurements on Short-term Weather Forecasts

    NASA Technical Reports Server (NTRS)

    McCarty, Will; Jedlovec, Gary; Miller, Timothy L.

    2009-01-01

    Advanced spaceborne instruments have the ability to improve the horizontal and vertical characterization of temperature and water vapor in the atmosphere through the explicit use of hyperspectral thermal infrared radiance measurements. The incorporation of these measurements into a data assimilation system provides a means to continuously characterize a three-dimensional, instantaneous atmospheric state necessary for the time integration of numerical weather forecasts. Measurements from the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) are incorporated into the gridpoint statistical interpolation (GSI) three-dimensional variational (3D-Var) assimilation system to provide improved initial conditions for use in a mesoscale modeling framework mimicking that of the operational North American Mesoscale (NAM) model. The methodologies for the incorporation of the measurements into the system are presented. Though the measurements have been shown to have a positive impact in global modeling systems, the measurements are further constrained in this system as the model top is physically lower than the global systems and there is no ozone characterization in the background state. For a study period, the measurements are shown to have positive impact on both the analysis state as well as subsequently spawned short-term (0-48 hr) forecasts, particularly in forecasted geopotential height and precipitation fields. At 48 hr, height anomaly correlations showed an improvement in forecast skill of 2.3 hours relative to a system without the AIRS measurements. Similarly, the equitable threat and bias scores of precipitation forecasts of 25 mm (6 hr)-1 were shown to be improved by 8% and 7%, respectively.

  13. Convective Weather Forecast Quality Metrics for Air Traffic Management Decision-Making

    NASA Technical Reports Server (NTRS)

    Chatterji, Gano B.; Gyarfas, Brett; Chan, William N.; Meyn, Larry A.

    2006-01-01

    Since numerical weather prediction models are unable to accurately forecast the severity and the location of the storm cells several hours into the future when compared with observation data, there has been a growing interest in probabilistic description of convective weather. The classical approach for generating uncertainty bounds consists of integrating the state equations and covariance propagation equations forward in time. This step is readily recognized as the process update step of the Kalman Filter algorithm. The second well known method, known as the Monte Carlo method, consists of generating output samples by driving the forecast algorithm with input samples selected from distributions. The statistical properties of the distributions of the output samples are then used for defining the uncertainty bounds of the output variables. This method is computationally expensive for a complex model compared to the covariance propagation method. The main advantage of the Monte Carlo method is that a complex non-linear model can be easily handled. Recently, a few different methods for probabilistic forecasting have appeared in the literature. A method for computing probability of convection in a region using forecast data is described in Ref. 5. Probability at a grid location is computed as the fraction of grid points, within a box of specified dimensions around the grid location, with forecast convection precipitation exceeding a specified threshold. The main limitation of this method is that the results are dependent on the chosen dimensions of the box. The examples presented Ref. 5 show that this process is equivalent to low-pass filtering of the forecast data with a finite support spatial filter. References 6 and 7 describe the technique for computing percentage coverage within a 92 x 92 square-kilometer box and assigning the value to the center 4 x 4 square-kilometer box. This technique is same as that described in Ref. 5. Characterizing the forecast, following

  14. An Automatic Weather Station Network for Low-Altitude Wind Shear Investigations

    DTIC Science & Technology

    1984-09-18

    information exchange. The United States Government assumes no liability for its contents or use thereof. 4 . ... . . . . . . . . . . . ... ° TECHNICAL REPORT...technical issues asso- ciated with unique FAA needs for weather information used by pilots, air traffic controllers and meteorologists. The weather radar...warnings be free of false alarms and be issued in a timely manner. During the summer of 1983, Lincoln began a long term study that places emphasis on

  15. Research and development of weathering resistant bridge steel of Shougang

    NASA Astrophysics Data System (ADS)

    Yang, Yongda; Wang, Yanfeng; Huang, Leqing; Di, Guobiao; Ma, Changwen; Ma, Qingshen

    2017-09-01

    To introduce the composition design and mechanical properties and microstructure of the weathering bridge steel which would be used for bridge of Guanting reservoir. We adopt cyclic immersion corrosion test to study corrosion resistance difference of weathering bridge steel and common bridge steel. At the same corrosion time, the weight loss and corrosion rate of weathering bridge steel are lower than the common bridge steel's. Testing phase composition of rust layer by X-ray diffraction, two kinds of test steel's rust layer is mainly composed of Goethite and Fe3O4 and Fe2O3. At the same corrosion time, the percentage composition of goethite in rust layer of weathering bridge steel are significantly higher than common bridge steel's, the higher goethite content is, the compacter rust layer structure is. The compact rust layer would prevent the water and air passing the rust layer, and then preventing the further corrosion reaction, improving the corrosion resistance performance of weathering bridge steel.

  16. A synoptic approach to weather conditions discloses a relationship with ambulatory blood pressure in hypertensives.

    PubMed

    Morabito, Marco; Crisci, Alfonso; Orlandini, Simone; Maracchi, Giampiero; Gensini, Gian F; Modesti, Pietro A

    2008-07-01

    Higher blood pressure (BP) values in cold than in hot months has been documented in hypertensives. These changes may potentially contribute to the observed excess winter cardiovascular mortality. However, the association with weather has always been investigated by considering the relationship with a single variable rather than considering the combination of ground weather variables characterizing a specific weather pattern (air mass (AM)). We retrospectively investigate in Florence (Italy) the relationship between BP and specific AMs in hypertensive subjects (n = 540) referred to our Hypertension Unit for 24-h ambulatory BP monitoring during the period of the year characterized by the highest weather variability (winter). Five different winter daily AMs were classified according to the combination of ground weather data (air temperature, cloud cover, relative humidity, atmospheric pressure, wind speed, and direction). Multiple variable analysis selected the AM as a significant predictor of mean 24-h BP (P < 0.01 for diastolic BP (DBP) and P < 0.05 for systolic BP (SBP)), daytime DBP (P < 0.001) and nighttime BP (P < 0.01 for both SBP and DBP), with higher BP values observed in cyclonic (unstable, cloudy, and mild weather) than in anticyclonic (settled, cloudless, and cold weather) days. When the association with 2-day sequences of AMs was considered, an increase in ambulatory BP followed a sudden day-to-day change of weather pattern going from anticyclonic to cyclonic days. The weather considered as a combination of different weather variables may affect BP. The forecast of a sudden change of AM could provide important information helpful for hypertensives during winter.

  17. 1954 forest fire weather in western Oregon and Washington.

    Treesearch

    Owen P. Cramer

    1954-01-01

    For the second successive fire season forest fire weather in western Oregon and Washington was far below normal severity. The low danger is reflected in record low numbers of fires reported by forestry offices of both States and by the U. S. Forest Service for their respective protection areas. Although spring and fall fire weather was near normal, a rain-producing...

  18. An analysis of asthma hospitalizations, air pollution, and weather conditions in Los Angeles County, California.

    PubMed

    Delamater, Paul L; Finley, Andrew O; Banerjee, Sudipto

    2012-05-15

    There is now a large body of literature supporting a linkage between exposure to air pollutants and asthma morbidity. However, the extent and significance of this relationship varies considerably between pollutants, location, scale of analysis, and analysis methods. Our primary goal is to evaluate the relationship between asthma hospitalizations, levels of ambient air pollution, and weather conditions in Los Angeles (LA) County, California, an area with a historical record of heavy air pollution. County-wide measures of carbon monoxide (CO), nitrogen dioxide (NO(2)), ozone (O(3)), particulate matter<10 μm (PM(10)), particulate matter<2.5 μm (PM(2.5)), maximum temperature, and relative humidity were collected for all months from 2001 to 2008. We then related these variables to monthly asthma hospitalization rates using Bayesian regression models with temporal random effects. We evaluated model performance using a goodness of fit criterion and predictive ability. Asthma hospitalization rates in LA County decreased between 2001 and 2008. Traffic-related pollutants, CO and NO(2), were significant and positively correlated with asthma hospitalizations. PM(2.5) also had a positive, significant association with asthma hospitalizations. PM(10), relative humidity, and maximum temperature produced mixed results, whereas O(3) was non-significant in all models. Inclusion of temporal random effects satisfies statistical model assumptions, improves model fit, and yields increased predictive accuracy and precision compared to their non-temporal counterparts. Generally, pollution levels and asthma hospitalizations decreased during the 9 year study period. Our findings also indicate that after accounting for seasonality in the data, asthma hospitalization rate has a significant positive relationship with ambient levels of CO, NO(2), and PM(2.5). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Demonstrating the Operational Value of Atmospheric Infrared Sounder (AIRS) Retrieved Profiles in the Pre-Convective Environment

    NASA Technical Reports Server (NTRS)

    Kozlowski, Danielle M.; Zavodsky, T.; Jedloved, Gary J.

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. One operational forecast challenge is forecasting convective weather in data-void regions such as large bodies of water (e.g. Gulf of Mexico). To address this forecast challenge, SPoRT produces a twice-daily three-dimensional analysis that blends a model first-guess from the Advanced Research Weather Research and Forecasting (WRF-ARW) model with retrieved profiles from the Atmospheric Infrared Sounder (AIRS) -- a hyperspectral sounding instrument aboard NASA's Aqua satellite that provides temperature and moisture profiles of the atmosphere. AIRS profiles are unique in that they give a three dimensional view of the atmosphere that is not available through the current rawinsonde network. AIRS has two overpass swaths across North America each day, one valid in the 0700-0900 UTC timeframe and the other in the 1900-2100 UTC timeframe. This is helpful because the rawinsonde network only has data from 0000 UTC and 1200 UTC at specific land-based locations. Comparing the AIRS analysis product with control analyses that include no AIRS data demonstrates the value of the retrieved profiles to situational awareness for the pre-convective (and convective) environment. In an attempt to verify that the AIRS analysis was a good representation of the vertical structure of the atmosphere, both the AIRS and control analyses are compared to a Rapid Update Cycle (RUC) analysis used by operational forecasters. Using guidance from operational forecasters, convective available potential energy (CAPE) was determined to be a vital variable in making convective forecasts and is used herein to demonstrate the utility of the AIRS profiles in changing the vertical

  20. 41 CFR 301-10.138 - In what circumstances is foreign air carrier service deemed a matter of necessity?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Air Carriers § 301-10.138 In what circumstances is foreign air carrier service deemed a matter of... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false In what circumstances is foreign air carrier service deemed a matter of necessity? 301-10.138 Section 301-10.138 Public Contracts...