Sample records for air-launched space booster

  1. Athena: Advanced air launched space booster

    NASA Astrophysics Data System (ADS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-06-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  2. Athena: Advanced air launched space booster

    NASA Technical Reports Server (NTRS)

    Booker, Corey G.; Ziemer, John; Plonka, John; Henderson, Scott; Copioli, Paul; Reese, Charles; Ullman, Christopher; Frank, Jeremy; Breslauer, Alan; Patonis, Hristos

    1994-01-01

    The infrastructure for routine, reliable, and inexpensive access of space is a goal that has been actively pursued over the past 50 years, but has yet not been realized. Current launch systems utilize ground launching facilities which require the booster vehicle to plow up through the dense lower atmosphere before reaching space. An air launched system on the other hand has the advantage of being launched from a carrier aircraft above this dense portion of the atmosphere and hence can be smaller and lighter compared to its ground based counterpart. The goal of last year's Aerospace Engineering Course 483 (AE 483) was to design a 227,272 kg (500,000 lb.) air launched space booster which would beat the customer's launch cost on existing launch vehicles by at least 50 percent. While the cost analysis conducted by the class showed that this goal could be met, the cost and size of the carrier aircraft make it appear dubious that any private company would be willing to invest in such a project. To avoid this potential pitfall, this year's AE 483 class was to design as large an air launched space booster as possible which can be launched from an existing or modification to an existing aircraft. An initial estimate of the weight of the booster is 136,363 kg (300,000 lb.) to 159,091 kg (350,000 lb.).

  3. GRYPHON: Air launched space booster

    NASA Astrophysics Data System (ADS)

    1993-06-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  4. GRYPHON: Air launched space booster

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The project chosen for the winter semester Aero 483 class was the design of a next generation Air Launched Space Booster. Based on Orbital Sciences Corporation's Pegasus concept, the goal of Aero 483 was to design a 500,000 pound air launched space booster capable of delivering 17,000 pounds of payload to Low Earth Orbit and 8,000 pounds of payload to Geosynchronous Earth Orbit. The resulting launch vehicle was named the Gryphon. The class of forty senior aerospace engineering students was broken down into eight interdependent groups. Each group was assigned a subsystem or responsibility which then became their field of specialization. Spacecraft Integration was responsible for ensuring compatibility between subsystems. This group kept up to date on subsystem redesigns and informed those parties affected by the changes, monitored the vehicle's overall weight and dimensions, and calculated the mass properties of the booster. This group also performed the cost/profitability analysis of the Gryphon and obtained cost data for competing launch systems. The Mission Analysis Group was assigned the task of determining proper orbits, calculating the vehicle's flight trajectory for those orbits, and determining the aerodynamic characteristics of the vehicle. The Propulsion Group chose the engines that were best suited to the mission. This group also set the staging configurations for those engines and designed the tanks and fuel feed system. The commercial satellite market, dimensions and weights of typical satellites, and method of deploying satellites was determined by the Payloads Group. In addition, Payloads identified possible resupply packages for Space Station Freedom and identified those packages that were compatible with the Gryphon. The guidance, navigation, and control subsystems were designed by the Mission Control Group. This group identified required tracking hardware, communications hardware telemetry systems, and ground sites for the location of the Gryphon

  5. Design of an airborne launch vehicle for an air launched space booster

    NASA Technical Reports Server (NTRS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-01-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  6. Design of an airborne launch vehicle for an air launched space booster

    NASA Astrophysics Data System (ADS)

    Chao, Chin; Choi, Rich; Cohen, Scott; Dumont, Brian; Gibin, Mauricius; Jorden, Rob; Poth, Stefan

    1993-12-01

    A conceptual design is presented for a carrier vehicle for an air launched space booster. This airplane is capable of carrying a 500,000 pound satellite launch system to an altitude over 40,000 feet for launch. The airplane features a twin fuselage configuration for improved payload and landing gear integration, a high aspect ratio wing for maneuverability at altitude, and is powered by six General Electric GE-90 engines. The analysis methods used and the systems employed in the airplane are discussed. Launch costs are expected to be competitive with existing launch systems.

  7. Pegasus air-launched space booster

    NASA Astrophysics Data System (ADS)

    Lindberg, Robert E.; Mosier, Marty R.

    The launching of small satellites with the mother- aircraft-launched Pegasus booster yields substantial cost improvements over ground launching and enhances operational flexibility, since it allows launches to be conducted into any orbital inclination. The Pegasus launch vehicle is a three-stage solid-rocket-propelled system with delta-winged first stage. The major components of airborne support equipment, located on the mother aircraft, encompass a launch panel operator console, an electronic pallet, and a pylon adapter. Alternatives to the currently employed B-52 launch platform aircraft have been identified for future use. Attention is given to the dynamic, thermal, and acoustic environments experienced by the payload.

  8. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  9. Space Launch System Booster Passes Major Ground Test

    NASA Image and Video Library

    2015-03-11

    The largest, most powerful rocket booster ever built successfully fired up Wednesday for a major-milestone ground test in preparation for future missions to help propel NASA’s Space Launch System (SLS) rocket and Orion spacecraft to deep space destinations, including an asteroid and Mars. The booster fired for two minutes, the same amount of time it will fire when it lifts the SLS off the launch pad, and produced about 3.6 million pounds of thrust. The test was conducted at the Promontory, Utah test facility of commercial partner Orbital ATK.

  10. NASA's Space Launch System: Developing the World's Most Powerful Solid Booster

    NASA Technical Reports Server (NTRS)

    Priskos, Alex

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are under way with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances the odds of mission success. SLS will be powered by four liquid fuel RS-25 engines and two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant

  11. Output-Based Adaptive Meshing Applied to Space Launch System Booster Separation Analysis

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.

    2015-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid code with comparisons to Overflow viscous CFD results and a wind tunnel test performed at NASA Langley Research Center's Unitary PlanWind Tunnel. The Space Launch System (SLS) launch vehicle includes two solid-rocket boosters that burn out before the primary core stage and thus must be discarded during the ascent trajectory. The main challenges for creating an aerodynamic database for this separation event are the large number of basis variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by the booster separation motors. The solid-rocket boosters are modified from their form when used with the Space Shuttle Launch Vehicle, which has a rich flight history. However, the differences between the SLS core and the Space Shuttle External Tank result in the boosters separating with much narrower clearances, and so reducing aerodynamic uncertainty is necessary to clear the integrated system for flight. This paper discusses an approach that has been developed to analyze about 6000 wind tunnel simulations and 5000 flight vehicle simulations using Cart3D in adaptive-meshing mode. In addition, a discussion is presented of Overflow viscous CFD runs used for uncertainty quantification. Finally, the article presents lessons learned and improvements that will be implemented in future separation databases.

  12. In-flight evaluation of aerodynamic predictions of an air-launched space booster

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1993-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent.

  13. State Machine Modeling of the Space Launch System Solid Rocket Boosters

    NASA Technical Reports Server (NTRS)

    Harris, Joshua A.; Patterson-Hine, Ann

    2013-01-01

    The Space Launch System is a Shuttle-derived heavy-lift vehicle currently in development to serve as NASA's premiere launch vehicle for space exploration. The Space Launch System is a multistage rocket with two Solid Rocket Boosters and multiple payloads, including the Multi-Purpose Crew Vehicle. Planned Space Launch System destinations include near-Earth asteroids, the Moon, Mars, and Lagrange points. The Space Launch System is a complex system with many subsystems, requiring considerable systems engineering and integration. To this end, state machine analysis offers a method to support engineering and operational e orts, identify and avert undesirable or potentially hazardous system states, and evaluate system requirements. Finite State Machines model a system as a finite number of states, with transitions between states controlled by state-based and event-based logic. State machines are a useful tool for understanding complex system behaviors and evaluating "what-if" scenarios. This work contributes to a state machine model of the Space Launch System developed at NASA Ames Research Center. The Space Launch System Solid Rocket Booster avionics and ignition subsystems are modeled using MATLAB/Stateflow software. This model is integrated into a larger model of Space Launch System avionics used for verification and validation of Space Launch System operating procedures and design requirements. This includes testing both nominal and o -nominal system states and command sequences.

  14. Space Launch System Accelerated Booster Development Cycle

    NASA Technical Reports Server (NTRS)

    Arockiam, Nicole; Whittecar, William; Edwards, Stephen

    2012-01-01

    With the retirement of the Space Shuttle, NASA is seeking to reinvigorate the national space program and recapture the public s interest in human space exploration by developing missions to the Moon, near-earth asteroids, Lagrange points, Mars, and beyond. The would-be successor to the Space Shuttle, NASA s Constellation Program, planned to take humans back to the Moon by 2020, but due to budgetary constraints was cancelled in 2010 in search of a more "affordable, sustainable, and realistic" concept2. Following a number of studies, the much anticipated Space Launch System (SLS) was unveiled in September of 2011. The SLS core architecture consists of a cryogenic first stage with five Space Shuttle Main Engines (SSMEs), and a cryogenic second stage using a new J-2X engine3. The baseline configuration employs two 5-segment solid rocket boosters to achieve a 70 metric ton payload capability, but a new, more capable booster system will be required to attain the goal of 130 metric tons to orbit. To this end, NASA s Marshall Space Flight Center recently released a NASA Research Announcement (NRA) entitled "Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction." The increased emphasis on affordability is evident in the language used in the NRA, which is focused on risk reduction "leading to an affordable Advanced Booster that meets the evolved capabilities of SLS" and "enabling competition" to "enhance SLS affordability. The purpose of the work presented in this paper is to perform an independent assessment of the elements that make up an affordable and realistic path forward for the SLS booster system, utilizing advanced design methods and technology evaluation techniques. The goal is to identify elements that will enable a more sustainable development program by exploring the trade space of heavy lift booster systems and focusing on affordability, operability, and reliability at the system and subsystem levels5. For this study

  15. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  16. In-flight Evaluation of Aerodynamic Predictions of an Air-launched Space Booster

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Mendenhall, Michael R.; Moulton, Bryan

    1992-01-01

    Several analytical aerodynamic design tools that were applied to the Pegasus (registered trademark) air-launched space booster were evaluated using flight measurements. The study was limited to existing codes and was conducted with limited computational resources. The flight instrumentation was constrained to have minimal impact on the primary Pegasus missions. Where appropriate, the flight measurements were compared with computational data. Aerodynamic performance and trim data from the first two flights were correlated with predictions. Local measurements in the wing and wing-body interference region were correlated with analytical data. This complex flow region includes the effect of aerothermal heating magnification caused by the presence of a corner vortex and interaction of the wing leading edge shock and fuselage boundary layer. The operation of the first two missions indicates that the aerodynamic design approach for Pegasus was adequate, and data show that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which the design margins may be more stringent.

  17. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster is seen through the window of a camera bunker, Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  18. Booster Test for Space Launch System Rocket

    NASA Image and Video Library

    2016-06-26

    The quench system arm and nozzle are seen at the test area where the second and final qualification motor (QM-2) test for the Space Launch System’s booster will take place, Sunday, June 26, 2016, at Orbital ATK Propulsion Systems test facilities in Promontory, Utah. The test is scheduled for Tuesday, June 28 at 10:05 a.m. EDT (8:05 a.m. MDT). Photo Credit: (NASA/Bill Ingalls)

  19. Space Launch System Booster Test- Behind the Scenes

    NASA Image and Video Library

    2016-06-24

    Get a sneak peek behind the scenes of how engineers and technicians at Orbital ATK in Promontory, Utah, are coming together to test the most powerful booster for NASA’s new rocket, the Space Launch System. SLS will make missions possible to an asteroid and the journey to Mars. For more information on SLS, visit www.nasa.gov/sls.

  20. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    NASA Astrophysics Data System (ADS)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  1. Inviscid and Viscous CFD Analysis of Booster Separation for the Space Launch System Vehicle

    NASA Technical Reports Server (NTRS)

    Dalle, Derek J.; Rogers, Stuart E.; Chan, William M.; Lee, Henry C.

    2016-01-01

    This paper presents details of Computational Fluid Dynamic (CFD) simulations of the Space Launch System during solid-rocket booster separation using the Cart3D inviscid and Overflow viscous CFD codes. The discussion addresses the use of multiple data sources of computational aerodynamics, experimental aerodynamics, and trajectory simulations for this critical phase of flight. Comparisons are shown between Cart3D simulations and a wind tunnel test performed at NASA Langley Research Center's Unitary Plan Wind Tunnel, and further comparisons are shown between Cart3D and viscous Overflow solutions for the flight vehicle. The Space Launch System (SLS) is a new exploration-class launch vehicle currently in development that includes two Solid Rocket Boosters (SRBs) modified from Space Shuttle hardware. These SRBs must separate from the SLS core during a phase of flight where aerodynamic loads are nontrivial. The main challenges for creating a separation aerodynamic database are the large number of independent variables (including orientation of the core, relative position and orientation of the boosters, and rocket thrust levels) and the complex flow caused by exhaust plumes of the booster separation motors (BSMs), which are small rockets designed to push the boosters away from the core by firing partially in the direction opposite to the motion of the vehicle.

  2. Space Launch System Booster Separation Aerodynamic Database Development and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Chan, David T.; Pinier, Jeremy T.; Wilcox, Floyd J., Jr.; Dalle, Derek J.; Rogers, Stuart E.; Gomez, Reynaldo J.

    2016-01-01

    The development of the aerodynamic database for the Space Launch System (SLS) booster separation environment has presented many challenges because of the complex physics of the ow around three independent bodies due to proximity e ects and jet inter- actions from the booster separation motors and the core stage engines. This aerodynamic environment is dicult to simulate in a wind tunnel experiment and also dicult to simu- late with computational uid dynamics. The database is further complicated by the high dimensionality of the independent variable space, which includes the orientation of the core stage, the relative positions and orientations of the solid rocket boosters, and the thrust lev- els of the various engines. Moreover, the clearance between the core stage and the boosters during the separation event is sensitive to the aerodynamic uncertainties of the database. This paper will present the development process for Version 3 of the SLS booster separa- tion aerodynamic database and the statistics-based uncertainty quanti cation process for the database.

  3. Aerothermal test results from the first flight of the Pegasus air-launched space booster

    NASA Technical Reports Server (NTRS)

    Noffz, Gregory K.; Curry, Robert E.; Haering, Edward A., Jr.; Kolodziej, Paul

    1991-01-01

    A survey of temperature measurements at speeds through Mach 8.0 on the first flight of the Pegasus air-launched booster system is discussed. In addition, heating rates were derived from the temperature data obtained on the fuselage in the vicinity of the wing shock interaction. Sensors were distributed on the wing surfaces, leading edge, and on the wing-body fairing or fillet. Side-by-side evaluations were obtained for a variety of sensor installations. Details of the trajectory reconstruction through first-stage separation are provided. Given here are indepth descriptions of the sensor installations, temperature measurements, and derived heating rates along with interpretations of the results.

  4. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  5. NASA's Space Launch System Advanced Booster Engineering Demonstration and Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; May, Todd; Dumbacher, Daniel

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, and its stated intent was to reduce risks leading to an affordable Advanced Booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the Advanced Boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the Advanced Boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit, opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable Advanced Booster that meets the SLS performance requirements. Demonstrations and

  6. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-15

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  7. The Unitary Plan Wind Tunnel(UPWT) Test 1891 Space Launch System

    NASA Image and Video Library

    2014-10-14

    Stage Separation Test of the Space Launch System(SLS) in the Langley Unitary Plan Wind Tunnel (UPWT). The model used High Pressure air blown through the solid rocket boosters. (SRB) to simulate the booster separation motors (BSM) firing.

  8. NASA's Space Launch System Advanced Booster Engineering Demonstration and/or Risk Reduction Efforts

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Dumbacher, Daniel L.; May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) formally initiated the Space Launch System (SLS) development in September 2011, with the approval of the program s acquisition plan, which engages the current workforce and infrastructure to deliver an initial 70 metric ton (t) SLS capability in 2017, while using planned block upgrades to evolve to a full 130 t capability after 2021. A key component of the acquisition plan is a three-phased approach for the first stage boosters. The first phase is to complete the development of the Ares and Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for initial exploration missions in 2017 and 2021. The second phase in the booster acquisition plan is the Advanced Booster Risk Reduction and/or Engineering Demonstration NASA Research Announcement (NRA), which was recently awarded after a full and open competition. The NRA was released to industry on February 9, 2012, with a stated intent to reduce risks leading to an affordable advanced booster and to enable competition. The third and final phase will be a full and open competition for Design, Development, Test, and Evaluation (DDT&E) of the advanced boosters. There are no existing boosters that can meet the performance requirements for the 130 t class SLS. The expected thrust class of the advanced boosters is potentially double the current 5-segment solid rocket booster capability. These new boosters will enable the flexible path approach to space exploration beyond Earth orbit (BEO), opening up vast opportunities including near-Earth asteroids, Lagrange Points, and Mars. This evolved capability offers large volume for science missions and payloads, will be modular and flexible, and will be right-sized for mission requirements. NASA developed the Advanced Booster Engineering Demonstration and/or Risk Reduction NRA to seek industry participation in reducing risks leading to an affordable advanced booster that meets the SLS performance requirements

  9. NASA's Space Launch System Booster Passes Major Milestone on Journey to Mars (QM-2)

    NASA Image and Video Library

    2016-06-28

    A booster for the most powerful rocket in the world, NASA’s Space Launch System (SLS), was fired up Tuesday, June 28 at 11:05 a.m. EDT for a second qualification ground test at Orbital ATK's test facilities in Promontory, Utah. This was the last full-scale test for the booster before SLS is ready in 2018 for the first uncrewed test flight with NASA’s Orion spacecraft, marking a key milestone on the agency’s Journey to Mars. The booster was tested at a cold motor conditioning target of 40 degrees Fahrenheit –the colder end of its accepted propellant temperature range. When ignited, temperatures inside the booster reached nearly 6,000 degrees. The two-minute, full-duration ground qualification test provided NASA with critical data on 82 qualification objectives that will support certification of the booster for flight. Engineers now will evaluate test data captured by more than 530 instrumentation channels on the booster.

  10. The Crossbow Air Launch Trade Space

    NASA Technical Reports Server (NTRS)

    Bonometti, Joseph A.; Sorensen, Kirk F.

    2006-01-01

    Effective air launching of a rocket is approached from a broad systems engineering viewpoint. The elementary reasons for why and how a rocket might be launched from a carrier aircraft are examined. From this, a carefully crafted set of guiding principles is presented. Rules are generated from a fundamental foundation, derived from NASA systems study analyses and from an academic vantage point. The Appendix includes the derivation of a revised Mass Multiplier Equation, useful in understanding the rocket equation as it applies to real vehicles, without the need of complicated weight and sizing programs. The rationale for air launching, being an enormously advantageous Earth-To-Orbit (ETO) methodology, is presented along with the realization that the appropriate air launch solution may lie in a very large class of carrier aircraft; the pod-hauler. Finally, a unique area of the system trade space is defined and branded Crossbow. Crossbow is not a specific hardware design for air launch, but represents a comprehensive vision for commercial, military and space transportation. This document serves as a starting point for future technical papers that evaluate the air launch hypotheses and assertions produced during the past several years of study on the subject.

  11. Pegasus air-launched space booster flight test program

    NASA Astrophysics Data System (ADS)

    Elias, Antonio L.; Knutson, Martin A.

    1995-03-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  12. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, P.; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuffle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuffle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper 'Conceptual Design for a Space Shuttle Liquid Flyback Booster' will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  13. Dual Liquid Flyback Booster for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Blum, C.; Jones, Patti; Meinders, B.

    1998-01-01

    Liquid Flyback Boosters provide an opportunity to improve shuttle safety, increase performance, and reduce operating costs. The objective of the LFBB study is to establish the viability of a LFBB configuration to integrate into the shuttle vehicle and meet the goals of the Space Shuttle upgrades program. The design of a technically viable LFBB must integrate into the shuttle vehicle with acceptable impacts to the vehicle elements, i.e. orbiter and external tank and the shuttle operations infrastructure. The LFBB must also be capable of autonomous return to the launch site. The smooth integration of the LFBB into the space shuttle vehicle and the ability of the LFBB to fly back to the launch site are not mutually compatible capabilities. LFBB wing configurations optimized for ascent must also provide flight quality during the powered return back to the launch site. This paper will focus on the core booster design and ascent performance. A companion paper, "Conceptual Design for a Space Shuttle Liquid Flyback Booster" will focus on the flyback system design and performance. The LFBB study developed design and aerodynamic data to demonstrate the viability of a dual booster configuration to meet the shuttle upgrade goals, i.e. enhanced safety, improved performance and reduced operations costs.

  14. The StarBooster System: A Cargo Aircraft for Space

    NASA Technical Reports Server (NTRS)

    Davis, Hubert P.; Dula, Arthur M.; McLaughlin, Don; Frassanito, John; Andrews, Jason (Editor)

    1999-01-01

    Starcraft Boosters has developed a different approach for lowering the cost of access to space. We propose developing a new aircraft that will house an existing expendable rocket stage. This vehicle, termed StarBooster, will be the first stage of a family of launch vehicles. By combining these elements, we believe we can reduce the cost and risk of fielding a new partially reusable launch system. This report summarizes the work performed on the StarBooster concept since the company's inception in 1996. Detailed analyses are on-going and future reports will focus on the maturation of the vehicle and system design.

  15. Expendable second stage reusable space shuttle booster. Volume 2: Technical summary. Book 3: Booster vehicle modifications and ground systems definition

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A definition of the expendable second stage and space shuttle booster separation system is presented. Modifications required on the reusable booster for expendable second stage/payload flight and the ground systems needed to operate the expendable second stage in conjuction with the space shuttle booster are described. The safety, reliability, and quality assurance program is explained. Launch complex operations and services are analyzed.

  16. The benefits of in-flight LOX collection for airbreathing space boosters

    NASA Astrophysics Data System (ADS)

    Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.

    1992-12-01

    In-flight LOX collection using a propulsion fluid system known as ACES (Air Collection and Enrichment System) yields large reductions in launch weights of airbreathing space boosters. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The superiority of ACES type space boosters over their LOX-carrying counterparts has been thoroughly documented in the past. This paper extends that work by presenting a direct comparison between single-stage and two-stage ACES and scramjet powered vehicles carrying similar payloads. ACES vehicles are shown to be weight competitive with scramjet powered vehicles, and require airbreathing function only up to Mach 5 to 8.

  17. Air-to-air view of STS-32 Columbia, OV-102, launch

    NASA Image and Video Library

    1990-01-09

    STS-32 Columbia, Orbiter Vehicle (OV) 102, pierces a layer of low lying clouds as it makes its ascent to Earth orbit for a 10-day mission. In this air-to-air view, OV-102 rides atop the external tank (ET) with flames created by solid rocket boosters (SRBs) appearing directly underneath it and a long plume of exhaust smoke trailing behind it and extending to Kennedy Space Center (KSC) Launch Complex (LC) Pad 39A below. OV-102 left KSC LC Pad 39A at 7:34:59:98 am Eastern Standard Time (EST) some 24 hours after dubious weather at the return-to-landing site (RTLS) had cancelled a scheduled launch. The photo was taken by astronaut Michael L. Coats, acting chief of the Astronaut Office, from the Shuttle Training Aircraft (STA).

  18. Commercial winged booster to launch satellites from B-52

    NASA Astrophysics Data System (ADS)

    Covault, Craig

    1988-06-01

    A newly developed commercial winged space booster, the Pegasus, which will launch satellites from a B-52, is described. The booster will be able to launch a 600 lb, 72 in long craft into a 250 nm equatorial orbit. The Pegasus is 49.2 ft long with a 22 ft wing span and a weight of 40,000 lb. The winged design allows for an angle of attack of 20 degrees and a supersonic lift over drag ratio of 4:1. It operates with three solid rocket motors and will be launched from a B-52 at an altitude of 40,000 ft. The first motor provides an average of 112,000 lbs of thrust for about 82 seconds; burnout occurs at 208,000 ft and Mach 8.7. The third stage provides 9,000 lbs of thrust for 65 seconds, accelerating the vehicle into 25,000 fps orbital velocity. The first launch will be a 400 lb relay satellite targeted for July 1989 over the Pacific Ocean. Future launches will be possible from any site and will cost 10 million dollars. The Pegasus can also carry a 1500 payload at high altitude Mach cruise flights that do not achieve orbit, providing data to validate spaceplane conceptual fluid dynamic codes generated by computer.

  19. A Monte Carlo Analysis of the Thrust Imbalance for the Space Launch System Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.

  20. he second X-43A and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7.

  1. Control of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    VanZwieten, Tannen S.

    2014-01-01

    The flight control system for the NASA Space Launch System (SLS) employs a control architecture that evolved from Saturn, Shuttle & Ares I-X while also incorporating modern enhancements. This control system, baselined for the first unmanned launch, has been verified and successfully flight-tested on the Ares I-X rocket and an F/A-18 aircraft. The development of the launch vehicle itself came on the heels of the Space Shuttle retirement in 2011, and will deliver more payload to orbit and produce more thrust than any other vehicle, past or present, opening the way to new frontiers of space exploration as it carries the Orion crew vehicle, equipment, and experiments into new territories. The initial 70 metric ton vehicle consists of four RS-25 core stage engines from the Space Shuttle inventory, two 5- segment solid rocket boosters which are advanced versions of the Space Shuttle boosters, and a core stage that resembles the External Tank and carries the liquid propellant while also serving as the vehicle's structural backbone. Just above SLS' core stage is the Interim Cryogenic Propulsion Stage (ICPS), based upon the payload motor used by the Delta IV Evolved Expendable Launch Vehicle (EELV).

  2. Space transportation booster engine configuration study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and to explore innovative approaches to the follow-on full-scale development (FSD) phase for the STBE.

  3. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    A United Launch Alliance Atlas V rocket booster arrives at the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  4. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    A United Launch Alliance Atlas V rocket booster is transported to the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  5. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster bound for nearby Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  6. TDRS-M Atlas V Booster and Centaur Stages Arrival, Offload, and Transport (Booster) to ASOC

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster and centaur upper stage bounded for Cape Canaveral Air Force Station. The centaur upper stage is transported from the company's Mariner ship to the Delta Operations Center. The booster stage is transported to the Atlas Spaceflight Operations Center. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  7. Space shuttle: Aerodynamic characteristics of a composite booster/040A orbiter launch configuration with fin and booster body configuration effect contribution

    NASA Technical Reports Server (NTRS)

    Ainsworth, R. W.; Johnson, J. C.; Watts, L. L.

    1972-01-01

    An investigation was made of the fin configuration and booster body configuration effects on a composite booster/040A orbiter launch configuration. Aerodynamic performance and stability characteristics in pitch and yaw were obtained. Configurations tested included two stepped cylindrical bodies of different lengths with a conical nose, four fin shapes of various sizes and aspect ratios mounted in different positions around the base of the bodies, two base flare angles and three 040A orbiter configurations. The orbiter variations included a tailless configuration and two tail sizes. A tailless booster launch configuration with deflected petals (expanded flare sectors) was also tested. The model scale was 0.003366. Data were converted to coefficient form in near real time, punched on cards, and tabulated. The cards used in conjunction with a Benson-Lehner plotter were used to provide plotted data. At the end of the test, tabulated input forms were completed for the SADSAC computer program to aid in publishing the final test data report.

  8. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – The core booster for the United Launch Alliance Delta IV heavy for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, was transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station in Florida. The core booster and starboard booster arrived by barge at the U.S. Army Outpost wharf at Port Canaveral. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  9. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – A barge arrives at the U.S. Army Outpost wharf at Port Canaveral in Florida, carrying two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  10. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster will be offloaded and then transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  11. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster were offloaded and are being transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  12. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster, shown in this photo, and starboard booster were offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  13. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, have arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster are being offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  14. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster and starboard booster have been offloaded and will be transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  15. Orion Core Stage & Booster Offload, Move to HIF

    NASA Image and Video Library

    2014-03-04

    CAPE CANAVERAL, Fla. – Two of the three United Launch Alliance Delta IV heavy boosters for NASA’s upcoming Exploration Flight Test-1, or EFT-1, mission with the Orion spacecraft, arrived by barge at the U.S. Army Outpost wharf at Port Canaveral in Florida. The core booster, shown in this photo, and starboard booster were offloaded and transported to the Horizontal Integration Facility, or HIF, at Space Launch Complex 37 on Cape Canaveral Air Force Station. The port booster and the upper stage are planned to be shipped to Cape Canaveral in April. At the HIF, all three boosters will be processed and checked out before being moved to the nearby launch pad and hoisted into position. During the EFT-1 mission, Orion will travel farther into space than any human spacecraft has gone in more than 40 years. The data gathered during the flight will influence design decisions, validate existing computer models and innovative new approaches to space systems development, as well as reduce overall mission risks and costs for later Orion flights. Liftoff of Orion on EFT-1 is planned for fall 2014. Photo credit: NASA/Kim Shiflett

  16. Next generation solid boosters

    NASA Technical Reports Server (NTRS)

    Lund, R. K.

    1991-01-01

    Space transportation solid rocket motor systems; Shuttle derived heavy lift launch vehicles; advanced launch system (ALS) derived heavy lift launch vehicles; large launch solid booster vehicles are outlined. Performance capabilities and concept objectives are presented. Small launch vehicle concepts; enabling technologies; reusable flyback booster system; and high-performance solid motors for space are briefly described. This presentation is represented by viewgraphs.

  17. 104. SIGNAL CONDITIONERS FOR BOOSTER INSTRUMENTATION, SOUTHWEST SIDE OF LANDLINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    104. SIGNAL CONDITIONERS FOR BOOSTER INSTRUMENTATION, SOUTHWEST SIDE OF LANDLINE INSTRUMENTATION ROOM (106), LSB (BLDG. 770) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  18. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    At Port Canaveral in Florida, a United Launch Alliance Atlas V rocket booster is transported from the company's Mariner ship to the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  19. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket waits the arrival of the mobile service tower with three additional solid rocket boosters (SRBs). Nine 46-inch-diameter, stretched SRBs will help launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  20. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) arrives at Launch Complex 17-B, Cape Canaveral Air Force Station. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  1. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    A paint technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, uses an air gun to apply paint to the right hand aft skirt for NASA’s SLS rocket inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station. The space shuttle-era aft skirt, was inspected and resurfaced to prepare it for primer and paint. The aft skirt will be used on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  2. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) was offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. The booster will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  3. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. The booster will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  4. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  5. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andy; Greene, William D.

    2017-01-01

    Goals of NASA's Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS. (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. SLS Block 1 vehicle is being designed to carry 70 mT to LEO: (1) Uses two five-segment solid rocket boosters (SRBs) similar to the boosters that helped power the space shuttle to orbit. Evolved 130 mT payload class rocket requires an advanced booster with more thrust than any existing U.S. liquid-or solid-fueled boosters

  6. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) for the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF) is lifted off its transporter on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be added to the launch vehicle in the background. The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. SIRTF, consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  7. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The design, development, production, and launch support analysis for determining the solid propellant rocket engine to be used with the space shuttle are discussed. Specific program objectives considered were: (1) definition of engine designs to satisfy the performance and configuration requirements of the various vehicle/booster concepts, (2) definition of requirements to produce booster stages at rates of 60, 40, 20, and 10 launches per year in a man-rated system, and (3) estimation of costs for the defined SRM booster stages.

  8. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    A technician with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, preps a section of the right hand aft skirt for primer and paint in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  9. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  10. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  11. Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, Solid Rocket Booster Disassembly & Refurbishment Complex, Thrust Vector Control Deservicing Facility, Hangar Road, Cape Canaveral, Brevard County, FL

  12. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-29

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of NASA's Space Launch System rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  13. Analysis of the staging maneuver and booster glideback guidance for a two-stage, winged, fully reusable launch vehicle. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Naftel, J. Christopher; Powell, Richard W.

    1993-01-01

    One of the promising launch concepts that could replace the current space shuttle launch system is a two-stage, winged, vertical-takeoff, fully reusable launch vehicle. During the boost phase of ascent, the booster provides propellant for the orbiter engines through a cross-feed system. When the vehicle reaches a Mach number of 3, the booster propellants are depleted and the booster is staged and glides unpowered to a horizontal landing at a launch site runway. Two major design issues for this class of vehicle are the staging maneuver and the booster glideback. For the staging maneuver analysis, a technique was developed that provides for a successful separation of the booster from the orbiter over a wide range of staging angles of attack. A longitudinal flight control system was developed for control of the booster during the staging maneuver. For the booster glide back analysis, a guidance algorithm was developed that successfully guides the booster from the completion of the staging maneuver to a launch site runway while encountering many off-nominal atmospheric, aerodynamic, and staging conditions.

  14. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter, and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 2) of the report -- Booster Configuration.

  15. Space shuttle phase B wind tunnel model and test information. Volume 1: Booster configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel test data acquired in the Phase B development have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include the booster, the orbiter and the launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configuration types include straight and delta wings, lifting body, drop tanks, and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. This is Volume 1 (Part 1) of the report -- Booster Configuration.

  16. Small Space Launch: Origins & Challenges

    NASA Astrophysics Data System (ADS)

    Freeman, T.; Delarosa, J.

    2010-09-01

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft, and in the development of constellations of spacecraft. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by an old, unresponsive and relatively expensive set of launchers in the Expandable, Expendable Launch Vehicles (EELV) platforms; Delta IV and Atlas V. The United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. On 1 Aug 06, Air Force Space Command activated the Space Development & Test Wing (SDTW) to perform development, test and evaluation of Air Force space systems and to execute advanced space deployment and demonstration projects to exploit new concepts and technologies, and rapidly migrate capabilities to the warfighter. The SDTW charged the Launch Test Squadron (LTS) with the mission to develop the capability of small space launch, supporting government research and development space launches and missile defense target missions, with operationally responsive spacelift for Low-Earth-Orbit Space Situational Awareness assets as a future mission. This new mission created new challenges for LTS. The LTS mission tenets of developing space launches and missile defense target vehicles were an evolution from the squadrons previous mission of providing sounding rockets under the Rocket

  17. CFD Simulation of the Space Shuttle Launch Vehicle with Booster Separation Motor and Reaction Control System Plumes

    NASA Technical Reports Server (NTRS)

    Gea, L. M.; Vicker, D.

    2006-01-01

    The primary objective of this paper is to demonstrate the capability of computational fluid dynamics (CFD) to simulate a very complicated flow field encountered during the space shuttle ascent. The flow field features nozzle plumes from booster separation motor (BSM) and reaction control system (RCS) jets with a supersonic incoming cross flow at speed of Mach 4. The overset Navier-Stokes code OVERFLOW, was used to simulate the flow field surrounding the entire space shuttle launch vehicle (SSLV) with high geometric fidelity. The variable gamma option was chosen due to the high temperature nature of nozzle flows and different plume species. CFD predicted Mach contours are in good agreement with the schlieren photos from wind tunnel test. Flow fields are discussed in detail and the results are used to support the debris analysis for the space shuttle Return To Flight (RTF) task.

  18. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster departs building 7525 at Vandenberg Air Force Base in California on its way to Space Launch Complex 3. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  19. Air Force Reusable Booster System A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    Presents work supporting the Air force Reusable Booster System (RBS) - A Cost Study with Goals as follows: Support US launch systems decision makers, esp. in regards to the research, technology and demonstration investments required for reusable systems to succeed. Encourage operable directions in Reusable Booster / Launch Vehicle Systems technology choices, system design and product and process developments. Perform a quick-look cost study, while developing a cost model for more refined future analysis.

  20. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Appendix F: Performance and trajectory for ALS/LRB launch vehicles

    NASA Technical Reports Server (NTRS)

    1989-01-01

    By simply combining two baseline pump-fed LOX/RP-1 Liquid Rocket Boosters (LRBs) with the Denver core, a launch vehicle (Option 1 Advanced Launch System (ALS)) is obtained that can perform both the 28.5 deg (ALS) mission and the polar orbit ALS mission. The Option 2 LRB was obtained by finding the optimum LOX/LH2 engine for the STS/LRB reference mission (70.5 K lb payload). Then this engine and booster were used to estimate ALS payload for the 28.5 deg inclination ALS mission. Previous studies indicated that the optimum number of STS/LRB engines is four. When the engine/booster sizing was performed, each engine had 478 K lb sea level thrust and the booster carried 625,000 lb of useable propellant. Two of these LRBs combined with the Denver core provided a launch vehicle that meets the payload requirements for both the ALS and STS reference missions. The Option 3 LRB uses common engines for the cores and boosters. The booster engines do not have the nozzle extension. These engines were sized as common ALS engines. An ALS launch vehicle that has six core engines and five engines per booster provides 109,100 lb payload for the 28.5 deg mission. Each of these LOX/LH2 LRBs carries 714,100 lb of useable propellant. It is estimated that the STS/LRB reference mission payload would be 75,900 lb.

  1. KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster (SRB) is lifted to vertical on Launch Complex 17-B, Cape Canaveral Air Force Station. The SRB will be attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). The Delta II Heavy features nine 46-inch-diameter, stretched SRBs. Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  2. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, a solid rocket booster (SRB) is lifted into the mobile service tower, joining two others. They are three of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  3. KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - Workers on Launch Complex 17-B, Cape Canaveral Air Force Station, help steady a solid rocket booster (SRB) being lifted into the mobile service tower. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  4. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, another solid rocket booster (SRB) is being raised from its transporter to lift it to vertical. It is one of nine 46-inch-diameter, stretched SRBs that are being attached to the Delta II Heavy rocket that will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  5. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy rocket (background) is framed by the solid rocket boosters (foreground) suspended in the mobile service tower. The SRBs will be added to those already attached to the rocket. The Delta II Heavy will launch the Space Infrared Telescope Facility (SIRTF). Consisting of three cryogenically cooled science instruments and an 0.85-meter telescope, SIRTF is one of NASA's largest infrared telescopes to be launched. SIRTF will obtain images and spectra by detecting the infrared energy, or heat, radiated by objects in space. Most of this infrared radiation is blocked by the Earth's atmosphere and cannot be observed from the ground.

  6. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare the right hand aft skirt for NASA’s SLS rocket for primer and painting inside a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the journey to Mars.

  7. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-28

    Technicians with Orbital ATK, prime contractor for the Space Launch System (SLS) Booster, prepare a paint mixture for the right hand aft skirt for NASA’s SLS in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt, was inspected and resurfaced, and will be primed and painted for use on the right hand booster of the SLS rocket for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep-space missions, and the Journey to Mars.

  8. OA-7 Atlas V Centaur mate to Booster

    NASA Image and Video Library

    2017-02-23

    The Centaur upper stage of the United Launch Alliance (ULA) Atlas V rocket arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Centaur stage is lifted and mated to the first stage booster. The rocket is being prepared for Orbital ATK's seventh commercial resupply mission, CRS-7, to the International Space Station. Orbital ATK's CYGNUS pressurized cargo module is scheduled to launch atop ULA's Atlas V rocket from Pad 41 on March 19, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station

  9. Going Boldly Beyond: Progress on NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Singer, Jody; Crumbly, Chris

    2013-01-01

    NASA's Space Launch System is implementing an evolvable configuration approach to system development in a resource-constrained era. Legacy systems enable non-traditional development funding and contribute to sustainability and affordability. Limited simultaneous developments reduce cost and schedule risk. Phased approach to advanced booster development enables innovation and competition, incrementally demonstrating affordability and performance enhancements. Advanced boosters will provide performance for the most capable heavy lift launcher in history, enabling unprecedented space exploration benefiting all of humanity.

  10. Cape Canaveral Air Force Station, Launch Complex 39, The Solid ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cape Canaveral Air Force Station, Launch Complex 39, The Solid Rocket Booster Assembly and Refurbishment Facility Manufacturing Building, Southeast corner of Schwartz Road and Contractors Road, Cape Canaveral, Brevard County, FL

  11. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will be positioned on the pad to launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  12. Space Shuttle Solid Rocket Booster Lightweight Recovery System

    NASA Technical Reports Server (NTRS)

    Wolf, Dean; Runkle, Roy E.

    1995-01-01

    The cancellation of the Advanced Solid Rocket Booster Project and the earth-to-orbit payload requirements for the Space Station dictated that the National Aeronautics and Space Administration (NASA) look at performance enhancements from all Space Transportation System (STS) elements (Orbiter Project, Space Shuttle Main Engine Project, External Tank Project, Solid Rocket Motor Project, & Solid Rocket Booster Project). The manifest for launching of Space Station components indicated that an additional 12-13000 pound lift capability was required on 10 missions and 15-20,000 pound additional lift capability is required on two missions. Trade studies conducted by all STS elements indicate that by deleting the parachute Recovery System (and associated hardware) from the Solid Rocket Boosters (SRBS) and going to a lightweight External Tank (ET) the 20,000 pound additional lift capability can be realized for the two missions. The deletion of the parachute Recovery System means the loss of four SRBs and this option is two expensive (loss of reusable hardware) to be used on the other 10 Space Station missions. Accordingly, each STS element looked at potential methods of weight savings, increased performance, etc. As the SRB and ET projects are non-propulsive (i.e. does not have launch thrust elements) their only contribution to overall payload enhancement can be achieved by the saving of weight while maintaining adequate safety factors and margins. The enhancement factor for the SRB project is 1:10. That is for each 10 pounds saved on the two SRBS; approximately 1 additional pound of payload in the orbiter bay can be placed into orbit. The SRB project decided early that the SRB recovery system was a prime candidate for weight reduction as it was designed in the early 1970s and weight optimization had never been a primary criteria.

  13. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  14. Space transportation booster engine configuration study. Volume 2: Design definition document and environmental analysis

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine (STBE) Configuration Study is to contribute to the Advanced Launch System (ALS) development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine configurations which enhance vehicle performance and provide operational flexibility at low cost, and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  15. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59146 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  16. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59150 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  17. Soyuz TMA-3 and booster rocket transport and raise on launch pad at Baikonur Cosmodrome

    NASA Image and Video Library

    2003-10-15

    JSC2003-E-59158 (16 October 2003) --- The Soyuz TMA-3 spacecraft and its booster rocket were transported on a rail car to its launch pad and raised to its vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003, in preparation for liftoff October 18 to carry astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer; cosmonaut Alexander Kaleri, Soyuz commander and flight engineer, representing Rosaviakosmos; and European Space Agency (ESA) astronaut Pedro Duque of Spain to the International Space Station (ISS). Photo Credit: "NASA/Bill Ingalls"

  18. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Workers continue stacking the twin solid rocket boosters in highbay 1 inside Kennedy Space Center's Vehicle Assembly Building. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  19. Study of solid rocket motors for a space shuttle booster. Appendix E: Environmental impact statement, solid rocket motor, space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the combustion products resulting from the solid propellant rocket engines of the space shuttle booster is presented. Calculation of the degree of pollution indicates that the only potentially harmful pollutants, carbon monoxide and hydrochloric acid, will be too diluted to constitute a hazard. The mass of products ejected during a launch within the troposphere is insignificant in terms of similar materials that enter the atmosphere from other sources. Noise pollution will not exceed that obtained from the Saturn 5 launch vehicle.

  20. Space Launch System—New Exterior Markings (2017 Animation)

    NASA Image and Video Library

    2017-06-13

    Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration in deep space. Black-and-white checkerboard targets on the exterior of the SLS heavy-lift rocket will enable photogrammetrists to measure critical distances during spaceflight, including booster separation from the core stage. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. For more information on SLS, visit https://www.nasa.gov/exploration/systems/sls

  1. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – Workers prepare to lift the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, from its transportation trailer in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  2. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lifted from its transportation trailer in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  3. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-19

    VANDENBERG AIR FORCE BASE, Calif. – The truck transporting the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, backs toward the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  4. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is lowered onto a transportation hardware cradle in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  5. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – Workers secure the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, onto a transportation hardware cradle in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  6. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, and its transportation hardware cradle roll into the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is positioned inside the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is towed to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-19

    VANDENBERG AIR FORCE BASE, Calif. – Preparations are underway to offload the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, into the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives at the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  11. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is suspended above its transportation trailer in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  12. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-19

    VANDENBERG AIR FORCE BASE, Calif. – The truck transporting the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, arrives outside the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  13. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, secured in a transportation hardware cradle, is towed to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  14. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – A worker maneuvers the transporter towing the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, at the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  15. EM-1 Booster Prep, Right Aft Skirt Work-In-Progress

    NASA Image and Video Library

    2016-10-30

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is ready for the assembly process in the Booster Fabrication Facility at the agency's Kennedy Space Center in Florida. The aft skirt was refurbished and painted in support facilities at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  16. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel test data are available for flyback booster or other alternate recoverable configuration as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle, including contractor data for an extensive variety of configurations with an array of wing and body planforms. The test data have been compiled into a database and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration. Basic components include booster, orbiter, and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbiter configurations include straight and delta wings, lifting body, drop tanks and double delta wings. Launch configurations include booster and orbiter components in various stacked and tandem combinations. The digital database consists of 220 files containing basic tunnel data. Database structure is documented in a series of reports which include configuration sketches for the various planforms tested. This is Volume 3 -- launch configurations.

  17. Ram booster

    NASA Technical Reports Server (NTRS)

    Brand, Vance D. (Inventor); Morgan, Walter Ray (Inventor)

    2011-01-01

    The present invention is a space launch system and method to propel a payload bearing craft into earth orbit. The invention has two, or preferably, three stages. The upper stage has rocket engines capable of carrying a payload to orbit and provides the capability of releasably attaching to the lower, or preferably, middle stage. Similar to the lower stage, the middle stage is a reusable booster stage that employs all air breathing engines, is recoverable, and can be turned-around in a short time between missions.

  18. Investigation of the McDonnell-Douglas orbiter and booster shuttle models in proximity at Mach numbers 2.0 to 6.0. Volume 7: Proximity data at Mach 4 and 6, interference free and launch vehicle data

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Love, D. A.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.; Rampy, J. M.

    1972-01-01

    Aerodynamic data obtained from a space shuttle abort stage separation wind tunnel test are presented. The .00556 scale models of the orbiter and booster configuration were tested in close proximity using dual balances during the time period of April 21 to April 27 1971. Data were obtained for both booster and orbiter over an angle of attack range from -10 to 10 deg for zero degree sideslip angle. The models were tested at several relative incidence angles and separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, 25 and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Pitch control effectiveness data were obtained for both booster and orbiter with power on and off. In addition, launch vehicle data with and without booster power were obtained utilizing a single balance in the booster model. Data were also obtained with the booster canard off in close proximity and for the launch configuration.

  19. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Cook, Jerry; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100 metric tons and, ultimately, to 130 metric tons. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and

  20. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article

  1. Operationally Responsive Space Launch for Space Situational Awareness Missions

    NASA Astrophysics Data System (ADS)

    Freeman, T.

    The United States Space Situational Awareness capability continues to be a key element in obtaining and maintaining the high ground in space. Space Situational Awareness satellites are critical enablers for integrated air, ground and sea operations, and play an essential role in fighting and winning conflicts. The United States leads the world space community in spacecraft payload systems from the component level into spacecraft and in the development of constellations of spacecraft. This position is founded upon continued government investment in research and development in space technology, which is clearly reflected in the Space Situational Awareness capabilities and the longevity of these missions. In the area of launch systems that support Space Situational Awareness, despite the recent development of small launch vehicles, the United States launch capability is dominated by unresponsive and relatively expensive launchers in the Expandable, Expendable Launch Vehicles (EELV). The EELV systems require an average of six to eight months from positioning on the launch table until liftoff. Access to space requires maintaining a robust space transportation capability, founded on a rigorous industrial and technology base. To assure access to space, the United States directed Air Force Space Command to develop the capability for operationally responsive access to space and use of space to support national security, including the ability to provide critical space capabilities in the event of a failure of launch or on-orbit capabilities. Under the Air Force Policy Directive, the Air Force will establish, organize, employ, and sustain space forces necessary to execute the mission and functions assigned including rapid response to the National Command Authorities and the conduct of military operations across the spectrum of conflict. Air Force Space Command executes the majority of spacelift operations for DoD satellites and other government and commercial agencies. The

  2. A Technology Pathway for Airbreathing, Combined-Cycle, Horizontal Space Launch Through SR-71 Based Trajectory Modeling

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Ratnayake, Nalin A.; Clark, Casie M.

    2011-01-01

    Access to space is in the early stages of commercialization. Private enterprises, mainly under direct or indirect subsidy by the government, have been making headway into the LEO launch systems infrastructure, of small-weight-class payloads of approximately 1000 lbs. These moderate gains have emboldened the launch industry and they are poised to move into the middle-weight class (roughly 5000 lbs). These commercially successful systems are based on relatively straightforward LOX-RP, two-stage, bi-propellant rocket technology developed by the government 40 years ago, accompanied by many technology improvements. In this paper we examine a known generic LOX-RP system with the focus on the booster stage (1st stage). The booster stage is then compared to modeled Rocket-Based and Turbine-Based Combined Cycle booster stages. The air-breathing propulsion stages are based on/or extrapolated from known performance parameters of ground tested RBCC (the Marquardt Ejector Ramjet) and TBCC (the SR-71/J-58 engine) data. Validated engine models using GECAT and SCCREAM are coupled with trajectory optimization and analysis in POST-II to explore viable launch scenarios using hypothetical aerospaceplane platform obeying the aerodynamic model of the SR-71. Finally, and assessment is made of the requisite research technology advances necessary for successful commercial and government adoption of combined-cycle engine systems for space access.

  3. InSight Atlas V Booster Prep for Transport

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V booster is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  4. Shuttle Boosters stacked in the VAB

    NASA Image and Video Library

    2007-01-04

    Lighting inside Kennedy Space Center's Vehicle Assembly Building seems to bathe the highbay 1 area in a golden hue as workers continue stacking the twin solid rocket boosters. The solid rocket boosters are being prepared for NASA's next Space Shuttle launch, mission STS-117. The mission is scheduled to launch aboard Atlantis no earlier than March 16, 2007.

  5. NASA's Space Launch System: Progress Report

    NASA Technical Reports Server (NTRS)

    Cook, Jerry; Lyles, Garry

    2017-01-01

    After more than four decades exploring the space environment from low Earth orbit and developing long-duration spaceflight operational experience with the International Space Station (ISS), NASA is once again preparing to send explorers into deep space. Development, test and manufacturing is now underway on the launch vehicle, the crew spacecraft and the ground processing and launch facilities to support human and robotic missions to the moon, Mars and the outer solar system. The enabling launch vehicle for these ambitious new missions is the Space Launch System (SLS), managed by NASA's Marshall Space Flight Center (MSFC). Since the program began in 2011, the design has passed Critical Design Review, and extensive development, test and flight hardware has been produced by every major element of the SLS vehicle. Testing continues on engines, boosters, tanks and avionics. While the program has experienced engineering challenges typical of a new development, it continues to make steady progress toward the first SLS mission in roughly two years and a sustained cadence of missions thereafter. This paper will discuss these and other technical and SLS programmatic successes and challenges over the past year and provide a preview of work ahead before first flight.

  6. OCO-2 Booster Arrival

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – A worker surveys the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, secured in a transportation hardware cradle, that he delivered to the Horizontal Processing Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, is suspended midair during its transfer from its transportation trailer to a transportation hardware cradle in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – Workers steady the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, as it is lifted from its transportation trailer in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. OCO-2 Booster Offload

    NASA Image and Video Library

    2014-03-20

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, rests on a transportation hardware cradle in the Building 836 hangar at Space Launch Complex 2 on Vandenberg Air Force Base in California awaiting installation on the pad. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  10. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  11. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perched on the Mobile Launch Platform, in the early morning hours Space Shuttle Discovery approaches Launch Complex Pad 39B after a 6-hour, 4.2-mile trip from the Vehicle Assembly Building. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  12. OA-7 Atlas Booster and Centaur Stages Arrival

    NASA Image and Video Library

    2017-02-06

    The Mariner cargo ship arrives at the Army Outpost wharf at Port Canaveral, Florida, near the Kennedy Space Center. Aboard is the United Launch Alliance (ULA) Atlas V booster and centaur stages for the Orbital ATK CRS-7 commercial resupply mission to the International Space Station. After the rocket is offloaded, a transport truck takes the Atlas V vehicle hardware to the hangar at the Atlas Spaceflight Operations Center (ASOC), located south of Space Launch Complex 41 at Cape Canaveral Air Force Station. Scheduled to launch a Cygnus spacecraft on March 19, 2017, the Orbital ATK CRS-7 mission will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  13. 78 FR 32241 - U.S. Air Force Seeks Industry Input for National Security Space Launch Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... Security Space Launch Assessment AGENCY: Office of the Deputy Under Secretary of the Air Force for Space... that the United States Air Force, Office of the Deputy Under Secretary of the Air Force for Space.... Robert Long, 703-693-4978, Office of the Deputy Under Secretary of the Air Force for Space, 1670 Air...

  14. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  15. Developing the World's Most Powerful Solid Booster

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.; Frame, Kyle L.

    2016-01-01

    NASA's Journey to Mars has begun. Indicative of that challenge, this will be a multi-decadal effort requiring the development of technology, operational capability, and experience. The first steps are underway with more than 15 years of continuous human operations aboard the International Space Station (ISS) and development of commercial cargo and crew transportation capabilities. NASA is making progress on the transportation required for deep space exploration - the Orion crew spacecraft and the Space Launch System (SLS) heavy-lift rocket that will launch Orion and large components such as in-space stages, habitat modules, landers, and other hardware necessary for deep-space operations. SLS is a key enabling capability and is designed to evolve with mission requirements. The initial configuration of SLS - Block 1 - will be capable of launching more than 70 metric tons (t) of payload into low Earth orbit, greater mass than any other launch vehicle in existence. By enhancing the propulsion elements and larger payload fairings, future SLS variants will launch 130 t into space, an unprecedented capability that simplifies hardware design and in-space operations, reduces travel times, and enhances two solid propellant five-segment boosters, both based on space shuttle technologies. This paper will focus on development of the booster, which will provide more than 75 percent of total vehicle thrust at liftoff. Each booster is more than 17 stories tall, 3.6 meters (m) in diameter and weighs 725,000 kilograms (kg). While the SLS booster appears similar to the shuttle booster, it incorporates several changes. The additional propellant segment provides additional booster performance. Parachutes and other hardware associated with recovery operations have been deleted and the booster designated as expendable for affordability reasons. The new motor incorporates new avionics, new propellant grain, asbestos-free case insulation, a redesigned nozzle, streamlined manufacturing

  16. EM-1 Booster Prep, Left Aft Skirt Work-In-Progress

    NASA Image and Video Library

    2016-10-30

    Inside the Booster Fabrication Facility at NASA's Kennedy Space Center in Florida, the left hand aft skirt for the agency's Space Launch System (SLS) rocket is ready for the assembly process. From left, are Chad Goetz, quality technician with Orbital ATK, and Robbie Blaue, quality assurance specialist with the Defense Contract Management Agency. The aft skirt was refurbished and painted in support facilities at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the left hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  17. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    After being offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida, the United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  18. Space shuttle phase B wind tunnel model and test information. Volume 3: Launch configuration

    NASA Technical Reports Server (NTRS)

    Glynn, J. L.; Poucher, D. E.

    1988-01-01

    Archived wind tunnel data are available for flyback booster or other alternative recoverable configurations as well as reusable orbiters studied during initial development (Phase B) of the Space Shuttle. Considerable wind tunnel data was acquired by the competing contractors and the NASA Centers for an extensive variety of configurations with an array of wing and body planforms. All contractor and NASA wind tunnel data acquired in the Phase B development have been compiled into a data base and are available for application to current winged flyback or recoverable booster aerodynamic studies. The Space Shuttle Phase B Wind Tunnel Database is structured by vehicle component and configuration type. Basic components include booster, orbiter and launch vehicle. Booster configuration types include straight and delta wings, canard, cylindrical, retroglide and twin body. Orbital configuration types include straight and delta wings, lifting body, drop tanks and double delta wings. This is Volume 3 (Part 2) of the report -- Launch Configuration -- which includes booster and orbiter components in various stacked and tandem combinations.

  19. NASA's Space Launch System Takes Shape

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2017-01-01

    Significant hardware and software for NASA's Space Launch System (SLS) began rolling off assembly lines in 2016, setting the stage for critical testing in 2017 and the launch of new capability for deep-space human exploration. (Figure 1) At NASA's Michoud Assembly Facility (MAF) near New Orleans, LA, full-scale test articles are being joined by flight hardware. Structural test stands are nearing completion at NASA's Marshall Space Flight Center (MSFC), Huntsville, AL. An SLS booster solid rocket motor underwent test firing, while flight motor segments were cast. An RS-25 and Engine Control Unit (ECU) for early SLS flights were tested at NASA's Stennis Space Center (SSC). The upper stage for the first flight was completed, and NASA completed Preliminary Design Review (PDR) for a new, powerful upper stage. The pace of production and testing is expected to increase in 2017. This paper will discuss the technical and programmatic highlights and challenges of 2016 and look ahead to plans for 2017.

  20. Orion EM-1 Booster Preps - Aft Skirt Preps/Painting

    NASA Image and Video Library

    2016-10-31

    The right hand aft skirt for NASA's Space Launch System (SLS) rocket has been refurbished and painted and is in a drying cell in a support building at the Hangar AF facility at Cape Canaveral Air Force Station in Florida. The space shuttle-era aft skirt will be used on the right hand booster of the SLS for Exploration Mission 1 (EM-1). NASA is preparing for EM-1, deep space missions, and the Journey to Mars.

  1. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Doering, Kimberly B; Meadows, Robert G.; Lariviere, Brian W.; Graham, Jerry B.

    2015-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS; and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. For NASA's SLS ABEDRR procurement, Dynetics and AR formed a team to offer a series of full-scale risk mitigation hardware demonstrations for an affordable booster approach that meets the evolved capabilities of the SLS. To establish a basis for the risk reduction activities, the Dynetics Team developed a booster design that takes advantage of the flight-proven Apollo-Saturn F-1. Using NASA's vehicle assumptions for the SLS Block 2, a two-engine, F-1-based booster design delivers 150 mT (331 klbm) payload to LEO, 20 mT (44 klbm) above NASA's requirements. This enables a low-cost, robust approach to structural design. During the ABEDRR effort, the Dynetics Team has modified proven Apollo-Saturn components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the

  2. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster and Centaur stage for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) are offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. They will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  3. Update on Risk Reduction Activities for a Liquid Advanced Booster for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Crocker, Andrew M.; Greene, William D.

    2017-01-01

    The stated goals of NASA's Research Announcement for the Space Launch System (SLS) Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) are to reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS and enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Dynetics, Inc. and Aerojet Rocketdyne (AR) formed a team to offer a wide-ranging set of risk reduction activities and full-scale, system-level demonstrations that support NASA's ABEDRR goals. During the ABEDRR effort, the Dynetics Team has modified flight-proven Apollo-Saturn F-1 engine components and subsystems to improve affordability and reliability (e.g., reduce parts counts, touch labor, or use lower cost manufacturing processes and materials). The team has built hardware to validate production costs and completed tests to demonstrate it can meet performance requirements. State-of-the-art manufacturing and processing techniques have been applied to the heritage F-1, resulting in a low recurring cost engine while retaining the benefits of Apollo-era experience. NASA test facilities have been used to perform low-cost risk-reduction engine testing. In early 2014, NASA and the Dynetics Team agreed to move additional large liquid oxygen/kerosene engine work under Dynetics' ABEDRR contract. Also led by AR, the objectives of this work are to demonstrate combustion stability and measure performance of a 500,000 lbf class Oxidizer-Rich Staged Combustion (ORSC) cycle main injector. A trade study was completed to investigate the feasibility, cost effectiveness, and technical maturity of a domestically-produced engine that could potentially both replace the RD-180 on Atlas V and satisfy NASA SLS payload-to-orbit requirements via an advanced booster application. Engine physical dimensions and performance parameters resulting from this study provide the system level requirements for the ORSC risk reduction test article

  4. NASA's Space Launch System: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS), supported by NASA's commercial partners, and robotic probes, are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) that will carry out a series of increasingly challenging missions that will eventually lead to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (t) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 t through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any rocket in history, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward first launch readiness of the Block 1 vehicle in 2018. Every major element of SLS continued to make significant progress in 2015. The Boosters element fired Qualification Motor 1 (QM-1) in March 2015, to test the 5-segment motor, including new insulation, joint, and propellant grain designs. The Stages element marked the completion of more than 70 major components of test article and flight core stage tanks. The Liquid Engines element conducted seven test firings of an RS-25 engine under SLS conditions. The Spacecraft

  5. Alternate propellants for the space shuttle solid rocket booster motors. [for reducing environmental impact of launches

    NASA Technical Reports Server (NTRS)

    1973-01-01

    As part of the Shuttle Exhaust Effects Panel (SEEP) program for fiscal year 1973, a limited study was performed to determine the feasibility of minimizing the environmental impact associated with the operation of the solid rocket booster motors (SRBMs) in projected space shuttle launches. Eleven hypothetical and two existing limited-experience propellants were evaluated as possible alternates to a well-proven state-of-the-art reference propellant with respect to reducing emissions of primary concern: namely, hydrogen chloride (HCl) and aluminum oxide (Al2O3). The study showed that it would be possible to develop a new propellant to effect a considerable reduction of HCl or Al2O3 emissions. At the one extreme, a 23% reduction of HCl is possible along with a ll% reduction in Al2O3, whereas, at the other extreme, a 75% reduction of Al2O3 is possible, but with a resultant 5% increase in HCl.

  6. OCO-2 1st Stage Booster Preps

    NASA Image and Video Library

    2014-03-21

    VANDENBERG AIR FORCE BASE, Calif. – The Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, rests on a transportation cradle in the Horizontal Integration Facility at Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  7. OCO-2 1st Stage Booster Preps

    NASA Image and Video Library

    2014-03-21

    VANDENBERG AIR FORCE BASE, Calif. – A worker in the Horizontal Integration Facility inspects the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, before its move to Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  8. OCO-2 1st Stage Booster Preps

    NASA Image and Video Library

    2014-03-21

    VANDENBERG AIR FORCE BASE, Calif. – A tethered worker in the Horizontal Integration Facility prepares the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, for its move to Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. National Security Space Launch at a Crossroads

    DTIC Science & Technology

    2016-05-13

    questions over individual launch costs, along with legal challenges to the Air Force EELV program by SpaceX , have contributed to Congress recently taking...Russian RD-180 Main Engine ......................................................................... 7 SpaceX Challenges to the EELV Acquisition...unresolved questions over individual launch costs, along with legal challenges to the Air Force EELV program by SpaceX , have contributed to Congress recently

  10. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    Preparations are underway to offload the United Launch Alliance Atlas V booster and Centaur stage for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. They will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  11. NASA’s Space Launch System Engine Testing Heats Up

    NASA Image and Video Library

    2017-05-23

    NASA engineers successfully conducted the second in a series of RS-25 flight controller tests on May 23, 2017, for the world’s most-powerful rocket. The 500-second test on the A-1 Test Stand at NASA’s Stennis Space Center in Mississippi marked another milestone toward launch of NASA’s new Space Launch System (SLS) rocket on its inaugural flight, the Exploration Mission-1 (EM-1). The SLS rocket, powered by four RS-25 engines, will provide 2 million pounds of thrust and work in conjunction with two solid rocket boosters. These are former space shuttle main engines, modified to perform at a higher level and with a new controller.

  12. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  13. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is lifted for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  14. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  15. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A crane lifts a solid rocket booster (SRB) for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  16. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  17. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    Technicians and engineers prepare to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  18. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted by a crane for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  19. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  20. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    In the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted by a crane for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  1. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  2. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  3. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians support operations to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  4. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians support operations to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  5. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, solid rocket boosters (SRBs) have been mated to a United Launch Alliance Atlas V first stage. The SRBs will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  6. KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - The Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, is having solid rocket boosters (SRBs) installed that will help launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  7. NASA SLS Booster Nozzle Plug Pieces Fly During Test

    NASA Image and Video Library

    2016-06-28

    On June 28, a test version of the booster that will help power NASA's new rocket, the Space Launch System, fired up at nearly 6,000 degrees Fahrenheit for a successful, two-minute qualification test at Orbital ATK's test facilities in Promontory, Utah. This video shows the booster's nozzle plug intentionally breaking apart. The smoky ring coming off the booster is condensed water vapor created by a pressure difference between the motor gas and normal air. The nozzle plug is an environmental barrier to prevent heat, dust and moisture from getting inside the booster before it ignites. The plug isn't always part of a static test but was included on this one due to changes made to the hardware. The foam on the plug is denser than previous NASA launch vehicles, as the engines are now in the same plane as the boosters. A numbered grid was placed on the exterior of the plug before the test so the pieces retrieved could support plug breakup assessment and reconstruction. Along with video, collecting the pieces helps determine the size and speed of them when they break apart. Nozzle plug pieces were found as far as 1,500 to 2,000 feet away from the booster. This is the last full-scale qualification test for the booster before the first, uncrewed flight of SLS with the Orion spacecraft in 2018.

  8. OCO-2 1st Stage Booster Preps

    NASA Image and Video Library

    2014-03-21

    VANDENBERG AIR FORCE BASE, Calif. – A technician working inside the Delta first-stage booster for NASA's Orbiting Carbon Observatory-2 mission, or OCO-2, completes final tasks in preparation for its move from the Horizontal Integration Facility to Space Launch Complex 2 on Vandenberg Air Force Base in California. OCO-2 is scheduled to launch aboard a United Launch Alliance Delta II rocket in July. The observatory will collect precise global measurements of carbon dioxide in the Earth's atmosphere and provide scientists with a better idea of the chemical compound's impacts on climate change. Scientists will analyze this data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important atmospheric gas. To learn more about OCO-2, visit http://oco.jpl.nasa.gov. Photo credit: NASA/Randy Beaudoin

  9. Solid-liquid staged combustion space boosters

    NASA Technical Reports Server (NTRS)

    Culver, D. W.

    1990-01-01

    NASA has begun to evaluate solid-liquid hybrid propulsion for launch vehicle booster. A three-phase program was outlined to identify, acquire, and demonstrate technology needed to approximate solid and liquid propulsion state of the art. Aerojet has completed a Phase 1 study and recommends a solid-liquid staged combustion concept in which turbopump fed LO2 is burned with fuel-rich solid propellant effluent in aft-mounted thrust chambers.These reasonably sized thrust chambers are LO2 regeneratively cooled, supplemented with fuel-rich barrier cooling. Turbopumps are driven by the resulting GO2 coolant in an expander-bleed-burnoff cycle. Turbine exhaust pressurizes the LO2 tankage directly, and the excess is bled into supersonic nozzle splitlines, where it combusts with the fuel rich boundary layer. Thrust vector control is enhanced by supersonic nozzle movement on flexseal mounts. Every hybrid solid-liquid concept examined improves booster energy management and launch propellant safety compared to current solid boosters. Solid-liquid staged combustion improves hybrid performance by improving both combustion efficiency and combustion stability, especially important for large boosters. These improvements result from careful fluid management and use of smaller combustors. The study shows NASA safety, reliability, cost, and performance criteria are best met with this concept, wherein simple hardware relies on several separate emerging technologies, all of which have been demonstrated successfully.

  10. National Launch System Space Transportation Main Engine

    NASA Technical Reports Server (NTRS)

    Hoodless, Ralph M., Jr.; Monk, Jan C.; Cikanek, Harry A., III

    1991-01-01

    The present liquid-oxygen/liquid-hydrogen engine is described as meeting the specific requirements of the National Launch System (NLS) Program including cost-effectiveness and robustness. An overview of the NLS and its objectives is given which indicates that the program aims to develop a flexible launch system to meet security, civil, and commercial needs. The Space Transportation Main Engine (STME) provides core and boost propulsion for the 1.5-stage vehicle and core propulsion for the solid booster vehicle. The design incorporates step-throttling, order-of-magnitude reductions in welds, and configuration targets designed to optimize robustness. The STME is designed to provide adaptable and dependable propulsion while minimizing recurring costs and is designed to meet the needs of NLS and other typical space-transportation programs currently being planned.

  11. STS-95 Space Shuttle Discovery rollout to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As daylight creeps over the horizon, STS-95 Space Shuttle Discovery, on the Mobile Launch Platform, arrives at Launch Complex Pad 39B after a 4.2-mile trip taking approximately 6 hours. At the left is the 'white room,' attached to the orbiter access arm. The white room is an environmental chamber that mates with the orbiter and holds six persons. At the launch pad, the orbiter, external tank and solid rocket boosters will undergo final preparations for the launch, scheduled to lift off Oct. 29. The mission includes research payloads such as the Spartan solar- observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  12. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    The second stage of a United Launch Alliance Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  13. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    The second stage of a United Launch Alliance Delta IV Heavy is being mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  14. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis of the solid propellant rocket engines for use with the space shuttle booster was conducted. A definition of the specific solid propellant rocket engine stage designs, development program requirements, production requirements, launch requirements, and cost data for each program phase were developed.

  15. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  16. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster arrives at Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  17. Space Launch System Resource Reel 2017

    NASA Image and Video Library

    2017-12-01

    NASA's new heavy-lift rocket, the Space Launch System, will be the most powerful rocket every built, launching astronauts in NASA's Orion spacecraft on missions into deep space. Two solid rocket boosters and four RS-25 engines will power the massive rocket, providing 8 million pounds of thrust during launch. Production and testing are underway for much of the rocket's critical hardware. With major welding complete on core stage hardware for the first integrated flight of SLS and Orion, the liquid hydrogen tank, intertank and liquid oxygen tank are ready for further outfitting. NASA's barge Pegasus has transported test hardware the first SLS hardware, the engine section to NASA's Marshall Space Flight Center in Huntsville, Alabama, for testing. In preparation for testing and handling operations, engineers have built the core stage pathfinder, to practice transport without the risk of damaging flight hardware. Integrated structural testing is complete on the top part of the rocket, including the Orion stage adapter, launch vehicle stage adapter and interim cryogenic propulsion stage. The Orion Stage Adapter for SLS's first flight, which will carry 13 CubeSats as secondary payloads, is ready to be outfitted with wiring and brackets. Once structural testing and flight hardware production are complete, the core stage will undergo "green run" testing in the B-2 test stand at NASA's Stennis Space Center in Bay St. Louis, Mississippi. For more information about SLS, visit nasa.gov/sls.

  18. Mars Science Laboratory Atlas V First Stage Booster

    NASA Image and Video Library

    2011-09-07

    NASA Administrator Charles Bolden walks around the United Launch Alliance Atlas V first stage booster with United Launch Alliance Vice President of Mission operations Jim Sponnick, NASA Mission Manager for Launch Services Wanda Harding, NASA Senior Advisor Mike French, and White House Fellow Debra Kurshan, Wednesday, Sept. 7, 2011, at the Cape Canaveral Air Force Station in Cape Canaveral, Fla. The booster will help send NASA's Mars Science Laboratory Curiosity rover to Mars later this year. Photo Credit: (NASA/Bill Ingalls)

  19. Motivation for Air-Launch: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Kelly, John W.; Rogers, Charles E.; Brierly, Gregory T.; Martin, J Campbell; Murphy, Marshall G.

    2017-01-01

    Air-launch is defined as two or more air-vehicles joined and working together, that eventually separate in flight, and that have a combined performance greater than the sum of the individual parts. The use of the air-launch concept has taken many forms across civil, commercial, and military contexts throughout the history of aviation. Air-launch techniques have been applied for entertainment, movement of materiel and personnel, efficient execution of aeronautical research, increasing aircraft range, and enabling flexible and efficient launch of space vehicles. For each air-launch application identified in the paper, the motivation for that application is discussed.

  20. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians and engineers offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  1. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is offloaded from a transport vehicle at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  2. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians and engineers assist as a crane lifts a solid rocket booster (SRB) for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  3. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A technician prepares to offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  4. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    Technicians prepare to offload a solid rocket booster (SRB) that just arrived at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  5. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    A technician monitors activity as a solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  6. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A transport vehicle carrying a solid rocket booster (SRB) arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be mated to a United Launch Alliance Atlas V first stage to help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  7. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core arrives by truck at Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  8. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    A United Launch Alliance Delta IV Heavy common booster core is transported by truck inside Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  9. General view of a fully assembled Solid Rocket Booster sitting ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of a fully assembled Solid Rocket Booster sitting atop the Mobile Launch Platform in the Vehicle Assembly Building at Kennedy Space Center - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    One of two new work platforms for NASA's Space Launch System booster engines is secured on dunnage inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  11. Status of NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA's Space Launch System (SLS) continued to make significant progress in 2015 and 2016, completing hardware and testing that brings NASA closer to a new era of deep space exploration. Programmatically, SLS completed Critical Design Review (CDR) in 2015. A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just five years after program start, every major element has amassed development and flight hardware and completed key tests that will lead to an accelerated pace of manufacturing and testing in 2016 and 2017. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The existing fleet of RS-25 engines is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with a fifth propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100t and, ultimately, to 130t. Among the program's major 2015-2016 accomplishments were two booster qualification hotfire tests, a series of RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the completion of welding for all qualification and flight EM-1 core stage components and testing of flight avionics, completion of core stage structural test stands, casting of the EM-1 solid rocket motors, additional testing

  12. Delta II ICESat-2 Booster Transport

    NASA Image and Video Library

    2018-04-17

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, on Tuesday, April 17, 2018, a United Launch Alliance (ULA) Delta II booster is transported to Space Launch Complex-2 where it will launch NASA's Ice, Cloud and land Elevation Satellite-2, or ICESat-2, satellite. This will be the last flight for the venerable Delta II rocket. ICESat-2, which is being built and tested by Orbital ATK in Gilbert, Arizona, will carry a single instrument called the Advanced Topographic Laser Altimeter System, or ATLAS. The ATLAS instrument is being built and tested at NASA’s Goddard Space Flight Center in Greenbelt Maryland. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. ICESat-2 will help scientists investigate why, and how much, Earth’s frozen and icy areas, called the cryosphere, are changing.

  13. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance (ULA) worker monitors the progress as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  14. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    United Launch Alliance (ULA) workers monitor the progress as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  15. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    United Launch Alliance (ULA) workers assist as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  16. Delta IV Heavy Centaur Stage Mate to Booster - Parker Solar Prob

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance (ULA) worker on a scissor lift watches as the second stage of a ULA Delta IV Heavy is mated to the common booster core inside the Horizontal Integration Facility near Space Launch Complex 37 at Cape Canaveral Air Force Station in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission in July 2018. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection.

  17. Propulsion Progress for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.; Priskos, Alex S.; Kynard, Michael H.; Lavoie, Anthony R.

    2012-01-01

    Leaders from NASA's Space Launch System (SLS) will participate in a panel discussing the progress made on the program's propulsion systems. The SLS will be the nation's next human-rated heavy-lift vehicle for new missions beyond Earth's orbit. With a first launch slated for 2017, the SLS Program is turning plans into progress, with the initial rocket being built in the U.S.A. today, engaging the aerospace workforce and infrastructure. Starting with an overview of the SLS mission and programmatic status, the discussion will then delve into progress on each of the primary SLS propulsion elements, including the boosters, core stage engines, upper stage engines, and stage hardware. Included will be a discussion of the 5-segment solid rocket motors (ATK), which are derived from Space Shuttle and Ares developments, as well as the RS-25 core stage engines from the Space Shuttle inventory and the J- 2X upper stage engine now in testing (Pratt and Whitney Rocketdyne). The panel will respond to audience questions about this important national capability for human and scientific space exploration missions.

  18. Performance evaluation of Space Shuttle SRB parachutes from air drop and scaled model wind tunnel tests. [Solid Rocket Booster recovery system

    NASA Technical Reports Server (NTRS)

    Moog, R. D.; Bacchus, D. L.; Utreja, L. R.

    1979-01-01

    The aerodynamic performance characteristics have been determined for the Space Shuttle Solid Rocket Booster drogue, main, and pilot parachutes. The performance evaluation on the 20-degree conical ribbon parachutes is based primarily on air drop tests of full scale prototype parachutes. In addition, parametric wind tunnel tests were performed and used in parachute configuration development and preliminary performance assessments. The wind tunnel test data are compared to the drop test results and both sets of data are used to determine the predicted performance of the Solid Rocket Booster flight parachutes. Data from other drop tests of large ribbon parachutes are also compared with the Solid Rocket Booster parachute performance characteristics. Parameters assessed include full open terminal drag coefficients, reefed drag area, opening characteristics, clustering effects, and forebody interference.

  19. Mars Science Laboratory Atlas V First Stage Booster

    NASA Image and Video Library

    2011-09-07

    NASA Administrator Charles Bolden, second from left, talks with United Launch Alliance Vice President of Mission operations Jim Sponnick, along with NASA Mission Manager for Launch Services Wanda Harding, left, White House Fellow Debra Kurshan, right, and NASA Senior Advisor Mike French, background, in front of the United Launch Alliance Atlas V first stage booster, Wednesday, Sept. 7, 2011, at the Cape Canaveral Air Force Station in Cape Canaveral, Fla. The booster will help send NASA's Mars Science Laboratory Curiosity rover to Mars later this year. Photo Credit: (NASA/Bill Ingalls)

  20. SpaceX CRS-13 Live Launch Coverage

    NASA Image and Video Library

    2017-12-15

    Live Launch Coverage of the SpaceX Falcon 9 launch vehicle lift off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying the Dragon spacecraft filled with research and supplies to the International Space Station. Liftoff was at 10:36 a.m. EST. On its 13th commercial resupply services mission to the International Space Station, Dragon will bring up nearly 4,800 pounds of supplies and new science experiments and equipment for technology research.

  1. The liquid rocket booster as an element of the U.S. national space transportation system

    NASA Astrophysics Data System (ADS)

    Bialla, Paul H.; Simon, Michael C.

    Liquid rocket boosters (LRBs) were first considered for the U.S. Space Transportation System (STS) during the early conceptual phases of the Space Shuttle program. However, solid rocket boosters (SRBs) were ultimately selected for the STS, primarily due to near-term economics. Liquid rocket boosters are once again being considered as a possible future upgrade to the Shuttle. This paper addresses the findings of these studies to date, with emphasis on the feasibility, benefits, and implementation strategy for a LRB program. The principal issue relating to LRB feasibility is their ability to be integrated into the STS with minimal vehicle and facility impacts. Booster size has been shown to have a significant influence on compatibility with the STS. The physical dimensions of the Orbiter and STS support facilities place an inherent limitation on the size of any booster to be used with this system. In addition, excessively large diameter boosters can cause increased airloads to be induced on the Orbiter wings, requiring modification of STS launch trajectory and possible performance losses. However, trajectory and performance analyses have indicated that LRBs can be designed within these sizing constraints and still have sufficient performance to meet Space Shuttle mission requirements. In fact, several configurations have been developed to meet a design goal of providing a 20,000 lb performance improvement to low Earth-orbit (LEO), as compared with current SRBs. Several major system trade studies have been performed to establish a baseline design which is most compatible with the existing Space Transportation System. These trades include propellant selection (storable, hydrogen-oxygen, hydrocarbon-oxygen, and advanced propellants); pump-fed vs pressure-fed propellant feed system design; engine selection (Space Shuttle Main Engine, Titan LR-87, and advanced new engines); number of engines per booster; and reusability vs expendability. In general, it was determined

  2. Ares I First Stage Booster Deceleration System: An Overview

    NASA Technical Reports Server (NTRS)

    King, Ron; Hengel, John E.; Wolf, Dean

    2009-01-01

    In 2005, the Congressional NASA Authorization Act enacted a new space exploration program, the "Vision for Space Exploratien". The Constellation Program was formed to oversee the implementation of this new mission. With an intent not simply to support the International Space Station, but to build a permanent outpost on the Moon and then travel on to explore ever more distant terrains, the Constellation Program is supervising the development of a brand new fleet of launch vehicles, the Ares. The Ares lineup will include two new launch vehicles: the Ares I Crew Launch Vehicle and the Ares V Cargo Launch Vehicle. A crew exploration vehicle, Orion, will be launched on the Ares I. It will be capable of docking with the Space Station, the lunar lander, Altair, and the Earth Departure Stage of Ares V. The Ares V will be capable of lifting both large-scale hardware and the Altair into space. The Ares First Stage Team is tasked with developing the propulsion system necessary to liftoff from the Earth and loft the entire Ares vehicle stack toward low Earth orbit. The Ares I First Stage booster is a 12-foot diameter, five-segment, reusable solid rocket booster derived from the Space Shuttle's four segment reusable solid rocket booster (SRB). It is separated from the Upper Stage through the use of a Deceleration Subsystem (DSS). Booster Tumble Motors are used to induce the pitch tumble following separation from the Upper Stage. The spent Ares I booster must be recoverable using a parachute deceleration system similar to that of the Shuttle SRB heritage system. Since Ares I is much heavier and reenters the Earth's atmosphere from a higher altitude at a much higher velocity than the SRB, all of the parachutes must be redesigned to reliably meet the operational requisites of the new launch vehicles. This paper presents an overview of this new booster deceleration system. It includes comprehensive detail of the parachute deceleration system, its design and deployment sequences

  3. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines nears the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the VAB, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  4. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs up inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  5. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines backs in to the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  6. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives inside the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  7. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines arrives at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be stored in the VAB, where they will be used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  8. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    New service platforms for NASA's Space Launch System booster engines, secured on two flatbed trucks, are on their way to the agency's Kennedy Space Center in Florida. They are being transported from fabricator Met-Con Inc. in Cocoa, Florida. The platforms will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  9. SLS Booster Engine Service Platforms Delivery

    NASA Image and Video Library

    2017-07-31

    A flatbed truck carrying one of two new service platforms for NASA's Space Launch System booster engines makes its way along the NASA Causeway to the agency's Kennedy Space Center in Florida. The platforms were transported from fabricator Met-Con Inc. in Cocoa, Florida. They will be delivered to the Vehicle Assembly Building, where they will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  10. ULA Delta IV Heavy Second Stage & Port Common Booster Core for t

    NASA Image and Video Library

    2017-08-30

    A United Launch Alliance Delta IV Heavy common booster core arrives at the Horizontal Integration Facility at Cape Canaveral Air Force Station for preflight processing. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  11. Earth-to-orbit reusable launch vehicles: A comparative assessment

    NASA Technical Reports Server (NTRS)

    Chase, R. L.

    1978-01-01

    A representative set of space systems, functions, and missions for NASA and DoD from which launch vehicle requirements and characteristics was established as well as a set of air-breathing launch vehicles based on graduated technology capabilities corresponding to increasingly higher staging Mach numbers. The utility of the air-breathing launch vehicle candidates based on lift-off weight, performance, technology needs, and risk was assessed and costs were compared to alternative concepts. The results indicate that a fully reusable launch vehicle, whether two stage or one stage, could potentially reduce the cost per flight 60-80% compared to that for a partially reusable vehicle but would require advances in thermal protection system technology. A two-stage-to-orbit, parallel-lift vehicle with an air-breathing booster would cost approximately the same as a single-stage-to-orbit vehicle, but the former would have greater flexibility and a significantly reduced developmental risk. A twin-booster, subsonic-staged, parallel-lift vehicle represents the lowest system cost and developmental risk. However, if a large supersonic turbojet engine in the 350,000-N thrust class were available, supersonic staging would be preferred, and the investment in development would be returned in reduced program cost.

  12. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  13. Delta II ICESat-2 Booster Arrival

    NASA Image and Video Library

    2018-03-09

    A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  14. NASA's Space Launch System: Momentum Builds Towards First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum programmatically and technically toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. Its first mission will be the launch of the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back. SLS will also launch the first Orion crewed flight in 2021. SLS can evolve to a 130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Managed by NASA's Marshall Space Flight Center, the SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. At KDP-C, the Agency Planning Management Council determines the readiness of a program to go to the next life-cycle phase and makes technical, cost, and schedule commitments to its external stakeholders. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015, and a launch readiness date of November 2018. Every SLS element is currently in testing or test preparations. The Program shipped its first flight hardware in 2014 in preparation for Orion's Exploration Flight Test-1 (EFT-1) launch on a Delta IV Heavy rocket in December, a significant first step toward human journeys into deep space. Accomplishments during 2014 included manufacture of Core Stage test articles and preparations for qualification testing the Solid Rocket Boosters and the RS-25 Core Stage engines. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment

  15. Impact of combustion products from Space Shuttle launches on ambient air quality

    NASA Technical Reports Server (NTRS)

    Dumbauld, R. K.; Bowers, J. F.; Cramer, H. E.

    1974-01-01

    The present work describes some multilayer diffusion models and a computer program for these models developed to predict the impact of ground clouds formed during Space Shuttle launches on ambient air quality. The diffusion models are based on the Gaussian plume equation for an instantaneous volume source. Cloud growth is estimated on the basis of measurable meteorological parameters: standard deviation of the wind azimuth angle, standard deviation of wind elevation angle, vertical wind-speed shear, vertical wind-direction shear, and depth of the surface mixing layer. Calculations using these models indicate that Space Shuttle launches under a variety of meteorological regimes at Kennedy Space Center and Vandenberg AFB are unlikely to endanger the exposure standards for HCl; similar results have been obtained for CO and Al2O3. However, the possibility that precipitation scavenging of the ground cloud might result in an acidic rain that could damage vegetation has not been investigated.

  16. Space Launch System NASA Research Announcement Advanced Booster Engineering Demonstration and/or Risk Reduction

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Craig, Kellie D.

    2011-01-01

    The intent of the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort is to: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability. Key Concepts (1) Offerors must propose an Advanced Booster concept that meets SLS Program requirements (2) Engineering Demonstration and/or Risk Reduction must relate to the Offeror s Advanced Booster concept (3) NASA Research Announcement (NRA) will not be prescriptive in defining Engineering Demonstration and/or Risk Reduction

  17. STS-26 solid rocket booster post flight structural assessment

    NASA Technical Reports Server (NTRS)

    Herda, David A.; Finnegan, Charles J.

    1988-01-01

    A post flight assessment of the Space Shuttle's Solid Rocket Boosters was conducted at the John F. Kennedy Space Center in Florida after the launch of STS-26. The two boosters were inspected for structural damage and the results of this inspection are presented. Overall, the boosters were in good condition. However, there was some minor damage attributed to splash down. Some of this damage is a recurring problem. Explanations of these problems are provided.

  18. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  19. NASA's SPACE LAUNCH SYSTEM: Development and Progress

    NASA Technical Reports Server (NTRS)

    Honeycutt, John; Lyles, Garry

    2016-01-01

    NASA is embarked on a new era of space exploration that will lead to new capabilities, new destinations, and new discoveries by both human and robotic explorers. Today, the International Space Station (ISS) and robotic probes are yielding knowledge that will help make this exploration possible. NASA is developing both the Orion crew vehicle and the Space Launch System (SLS) (Figure 1), that will carry out a series of increasingly challenging missions leading to human exploration of Mars. This paper will discuss the development and progress on the SLS. The SLS architecture was designed to be safe, affordable, and sustainable. The current configuration is the result of literally thousands of trade studies involving cost, performance, mission requirements, and other metrics. The initial configuration of SLS, designated Block 1, will launch a minimum of 70 metric tons (mT) (154,324 pounds) into low Earth orbit - significantly greater capability than any current launch vehicle. It is designed to evolve to a capability of 130 mT (286,601 pounds) through the use of upgraded main engines, advanced boosters, and a new upper stage. With more payload mass and volume capability than any existing rocket, SLS offers mission planners larger payloads, faster trip times, simpler design, shorter design cycles, and greater opportunity for mission success. Since the program was officially created in fall 2011, it has made significant progress toward launch readiness in 2018. Every major element of SLS continued to make significant progress in 2015. Engineers fired Qualification Motor 1 (QM-1) in March 2015 to test the 5-segment motor, including new insulation, joint, and propellant grain designs. More than 70 major components of test article and flight hardware for the Core Stage have been manufactured. Seven test firings have been completed with an RS-25 engine under SLS operating conditions. The test article for the Interim Cryogenic Propulsion Stage (ICPS) has also been completed

  20. Structural Sizing of a Horizontal Take-Off Launch Vehicle with an Air Collection and Enrichment System

    NASA Technical Reports Server (NTRS)

    McCurdy, David R.; Roche, Joseph M.

    2004-01-01

    In support of NASA's Next Generation Launch Technology (NGLT) program, the Andrews Gryphon booster was studied. The Andrews Gryphon concept is a horizontal lift-off, two-stage-to-orbit, reusable launch vehicle that uses an air collection and enrichment system (ACES). The purpose of the ACES is to collect atmospheric oxygen during a subsonic flight loiter phase and cool it to cryogenic temperature, ultimately resulting in a reduced initial take-off weight To study the performance and size of an air-collection based booster, an initial airplane like shape was established as a baseline and modeled in a vehicle sizing code. The code, SIZER, contains a general series of volume, surface area, and fuel fraction relationships that tie engine and ACES performance with propellant requirements and volumetric constraints in order to establish vehicle closure for the given mission. A key element of system level weight optimization is the use of the SIZER program that provides rapid convergence and a great deal of flexibility for different tank architectures and material suites in order to study their impact on gross lift-off weight. This paper discusses important elements of the sizing code architecture followed by highlights of the baseline booster study.

  1. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, has arrived at the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be stored in the VAB and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  2. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines has been offloaded from a flatbed truck and is being prepared for the move into the Vehicle Assembly Building (VAB) at the agency's Kennedy Space Center in Florida. The platform was transported from fabricator Met-Con Inc. in Cocoa, Florida. It will be stored in the VAB, and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1. EM-1 will launch an uncrewed Orion spacecraft to a stable orbit beyond the Moon and bring it back to Earth for a splashdown in the Pacific Ocean.

  3. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the Vehicle Assembly Building, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  4. Space Shuttle Solid Rocket Booster decelerator subsystem - Air drop test vehicle/B-52 design

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Drobnik, R. F.

    1979-01-01

    The air drop development test program for the Space Shuttle Solid Rocket Booster Recovery System required the design of a large drop test vehicle that would meet all the stringent requirements placed on it by structural loads, safety considerations, flight recovery system interfaces, and sequence. The drop test vehicle had to have the capability to test the drogue and the three main parachutes both separately and in the total flight deployment sequence and still be low-cost to fit in a low-budget development program. The design to test large ribbon parachutes to loads of 300,000 pounds required the detailed investigation and integration of several parameters such as carrier aircraft mechanical interface, drop test vehicle ground transportability, impact point ground penetration, salvageability, drop test vehicle intelligence, flight design hardware interfaces, and packaging fidelity.

  5. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-28

    Framed by a series of cabbage palms, a United Launch Alliance Delta IV Heavy common booster core is transported by truck to Cape Canaveral Air Force Station's Launch Complex 37 Horizontal Processing Facility after arriving at Port Canaveral. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  6. Hydrogen disposal investigation for the Space Shuttle launch complex at Vandenberg Air Force Base

    NASA Technical Reports Server (NTRS)

    Breit, Terry J.; Elliott, George

    1987-01-01

    The concern of an overpressure condition on the aft end of the Space Shuttle caused by ignition of unburned hydrogen being trapped in the Space Shuttle Main Engine exhaust duct at the Vandenberg AFB launch complex has been investigated for fifteen months. Approximately twenty-five concepts have been reviewed, with four concepts being thoroughly investigated. The four concepts investigated were hydrogen burnoff ignitors (ignitors located throughout the exhaust duct to continuously ignite any unburned hydrogen), jet mixing (utilizing large volumes of high pressure air to ensure complete combustion of the hydrogen), steam inert (utilizing flashing hot water to inert the duct with steam) and open duct concept (design an open duct or above grade J-deflector to avoid trapping hydrogen gas). Extensive studies, analyses and testing were performed at six test sites with technical support from twenty-two major organizations. In December 1986, the Air Force selected the steam inert concept to be utilized at the Vandenberg launch complex and authorized the design effort.

  7. KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A third solid rocket booster (SRB) is lifted up the launch tower on Launch Complex 17-A, Cape Canaveral Air Force Station. They are three of nine SRBs that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  8. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, workers complete raising a solid rocket booster to a vertical position. It will be lifted up the launch tower and mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  9. Liquid boosters for Shuttle?

    NASA Astrophysics Data System (ADS)

    Robertson, Donald F.

    1989-12-01

    The use of liquid rocket boosters (LRBs) for the Space Shuttle is proposed. The advantages LRBs provide are improved flight safety due to the use of four engines instead of two and less environmental pollution than solid rocket boosters because LRBs utilize clean-burning fuels. The LRBs also permit very high launch rates and increased safety in assembly and mating of the Shuttle. Concerns about LRBs such as costs, diameter, support capability, and water recovery are examined.

  10. General view of the Solid Rocket Booster's (SRB) Solid Rocket ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Solid Rocket Booster's (SRB) Solid Rocket Motor Segments in the Surge Building of the Rotation Processing and Surge Facility at Kennedy Space Center awaiting transfer to the Vehicle Assembly Building and subsequent mounting and assembly on the Mobile Launch Platform. - Space Transportation System, Solid Rocket Boosters, Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. SpaceX CRS-14 Live Launch Coverage

    NASA Image and Video Library

    2018-04-02

    Live Launch Coverage of the SpaceX Falcon 9 lift off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida carrying the Dragon spacecraft filled with research and supplies to the International Space Station. Liftoff occurred at 4:30 p.m. EDT., on Monday April 2. On its 14th commercial resupply services mission to the International Space Station, Dragon will bring up nearly 5,800 pounds of research, crew supplies, and hardware to the orbiting laboratory.

  12. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations program is transforming Kennedy Space Center into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE

  13. SpaceX CRS-14 Post Launch Conference

    NASA Image and Video Library

    2018-04-02

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-14, a commercial resupply services mission to the International Space Station. Participants included Josh Finch of NASA Communications, Joel Montalbano, deputy manager of the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-14 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT.

  14. Booster Engine Service Platforms Delivered to VAB

    NASA Image and Video Library

    2018-04-17

    A new service platform for NASA's Space Launch System booster engines, secured on a flatbed truck, is on its way to the Vehicle Assembly Building (VAB), in view in the distance, at the agency's Kennedy Space Center in Florida. It was transported from fabricator Met-Con Inc. in Cocoa, Florida. The platform will be delivered to the VAB, where it will be stored and used for processing and checkout of the engines for the rocket's twin five-segment solid rocket boosters for Exploration Mission-1 (EM-1). During EM-1, an uncrewed Orion spacecraft will launch on the SLS to a stable orbit beyond the Moon and return to Earth for a splashdown in the Pacific Ocean.

  15. Electrochemical Investigation of Corrosion in the Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2004-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. It has been estimated that 70 tons of hydrochloric acid (HC1) are produced during a launch. The Corrosion Laboratory at NASA/KSC was established in 1985 to conduct electrochemical studies of corrosion on materials and coatings under conditions similar to those encountered at the launch pads. I will present highlights of some of these investigations.

  16. Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of NASA's Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than three years after formal program approval. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of Core Stage test panels; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for testing the RS-25 Core Stage engine; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. Objectives of this Earth-orbit flight include validating the performance of Orion's heat shield and the MSA design, which will be manufactured again for SLS missions to deep space. The Program successfully completed Preliminary Design Review in 2013 and Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven

  17. A Change of Inertia-Supporting the Thrust Vector Control of the Space Launch System

    NASA Technical Reports Server (NTRS)

    Dziubanek, Adam J.

    2012-01-01

    The Space Launch System (SLS) is America's next launch vehicle. To utilize the vehicle more economically, heritage hardware from the Space Transportation System (STS) will be used when possible. The Solid Rocket Booster (SRB) actuators could possibly be used in the core stage of the SLS. The dynamic characteristics of the SRB actuator will need to be tested on an Inertia Load Stand (ILS) that has been converted to Space Shuttle Main Engine (SSME). The inertia on the pendulum of the ILS will need to be changed to match the SSME inertia. In this testing environment an SRB actuator can be tested with the equivalent resistence of an SSME.

  18. KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - A solid rocket booster arrives at Launch Complex 17-A, Cape Canaveral Air Force Station. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  19. Delta II ICESat-2 Booster Offload onto Transporter

    NASA Image and Video Library

    2018-04-16

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster has been removed from its shipping container. Preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  20. Delta II ICESat-2 Booster Offload onto Transporter

    NASA Image and Video Library

    2018-04-16

    A United Launch Alliance Delta II booster arrives at NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California. It will be offloaded and begin preliminary checkouts and preflight processing for launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  1. Air Force Reusable Booster System: A Quick-look, Design Focused Modeling and Cost Analysis Study

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar

    2011-01-01

    This paper presents a method and an initial analysis of the costs of a reusable booster system (RBS) as envisioned by the US Department of Defense (DoD) and numerous initiatives that form the concept of Operationally Responsive Space (ORS). This paper leverages the knowledge gained from decades of experience with the semi-reusable NASA Space Shuttle to understand how the costs of a military next generation semi-reusable space transport might behave in the real world - and how it might be made as affordable as desired. The NASA Space Shuttle had a semi-expendable booster, that being the reusable Solid Rocket MotorslBoosters (SRMlSRB) and the expendable cryogenic External Tank (ET), with a reusable cargo and crew capable orbiter. This paper will explore DoD concepts that invert this architectural arrangement, using a reusable booster plane that flies back to base soon after launch, with the in-space elements of the launch system being the expendable portions. Cost estimating in the earliest stages of any potential, large scale program has limited usefulness. As a result, the emphasis here is on developing an approach, a structure, and the basic concepts that could continue to be matured as the program gains knowledge. Where cost estimates are provided, these results by necessity carry many caveats and assumptions, and this analysis becomes more about ways in which drivers of costs for diverse scenarios can be better understood. The paper is informed throughout with a design-for-cost philosophy whereby the design and technology features of the proposed RBS (who and what, the "architecture") are taken as linked at the hip to a desire to perform a certain mission (where and when), and together these inform the cost, responsiveness, performance and sustainability (how) of the system. Concepts for developing, acquiring, producing or operating the system will be shown for their inextricable relationship to the "architecture" of the system, and how these too relate to costs

  2. Space Launch System Spacecraft and Payload Elements: Progress Toward Crewed Launch and Beyond

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Smith, David Alan; Holcomb, Shawn; Hitt, David

    2017-01-01

    While significant and substantial progress continues to be accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already underway on preparations for the second flight - using an upgraded version of the vehicle - and beyond. Designed to support human missions into deep space, SLS is the most powerful human-rated launch vehicle the United States has ever undertaken, and is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development division. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit (LEO), and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into a next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton (t) Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress is on track to meet the initial targeted launch date. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. Providing the Orion crew capsule/launch vehicle interface and in-space propulsion via a cryogenic upper stage, the Spacecraft/Payload Integration and Evolution (SPIE) element serves a key role in achieving SLS goals and objectives. The SPIE element

  3. Space Shuttle Five-Segment Booster (Short Course)

    NASA Technical Reports Server (NTRS)

    Graves, Stanley R.; Rudolphi, Michael (Technical Monitor)

    2002-01-01

    NASA is considering upgrading the Space Shuttle by adding a fifth segment (FSB) to the current four-segment solid rocket booster. Course materials cover design and engineering issues related to the Reusable Solid Rocket Motor (RSRM) raised by the addition of a fifth segment to the rocket booster. Topics cover include: four segment vs. five segment booster, abort modes, FSB grain design, erosive burning, enhanced propellant burn rate, FSB erosive burning model development and hardware configuration.

  4. USBI Booster Production Company's Hazardous Waste Management Program at the Kennedy Space Center, FL

    NASA Technical Reports Server (NTRS)

    Venuto, Charles

    1987-01-01

    In response to the hazardous-waste generating processes associated with the launch of the Space Shuttle, a hazardous waste management plan has been developed. It includes waste recycling, product substitution, waste treatment, and waste minimization at the source. Waste material resulting from the preparation of the nonmotor segments of the solid rocket boosters include waste paints (primer, topcoats), waste solvents (methylene chloride, freon, acetone, toluene), waste inorganic compounds (aluminum anodizing compound, fixer), and others. Ways in which these materials are contended with at the Kennedy Space Center are discussed.

  5. STS-1 - LAUNCH - KSC

    NASA Image and Video Library

    1981-04-15

    The Space Shuttle Columbia begins a new era of space transportation when it lifts off from NASA Kennedy Space Center (KSC). The reusable Orbiter, its two (2) fuel tanks and two (2) Solid Rocket Boosters (SRB) has just cleared the launch tower. Aboard the spacecraft are Astronauts John W. Young, Commander, and Robert L. Crippen, Pilot . 1. STS-I - LAUNCH KSC, FL KSC, FL Also available in 4x5 BW

  6. The Space Shuttle: An Attempt at Low-Cost, Routine Access to Space

    DTIC Science & Technology

    1990-09-01

    thinking on new heavy-lift launch systems. The thesis objective is to show the Space Shuttle was an attempt at developing a routine, low-cost access to... development costs were those used to create a launch facility at Vandenburg Air Force Base. DOD agreed in 1971 not to develop any new launch vehicles...booster. • To reduce the design weight of the Shuttle so as not to decrease the 65,000 pound payload capability. * To develop a new thermal protection

  7. Conceptual design of two-stage-to-orbit hybrid launch vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The object of this design class was to design an earth-to orbit vehicle to replace the present NASA space shuttle. The major motivations for designing a new vehicle were to reduce the cost of putting payloads into orbit and to design a vehicle that could better service the space station with a faster turn-around time. Another factor considered in the design was that near-term technology was to be used. Materials, engines and other important technologies were to be realized in the next 10 to 15 years. The first concept put forth by NASA to meet these objectives was the National Aerospace Plane (NASP). The NASP is a single-stage earth-to-orbit air-breathing vehicle. This concept ran into problems with the air-breathing engine providing enough thrust in the upper atmosphere, among other things. The solution of this design class is a two-stage-to-orbit vehicle. The first stage is air-breathing and the second stage is rocket-powered, similar to the space shuttle. The second stage is mounted on the top of the first stage in a piggy-back style. The vehicle takes off horizontally using only air-breathing engines, flies to Mach six at 100,000 feet, and launches the second stage towards its orbital path. The first stage, or booster, will weigh approximately 800,000 pounds and the second stage, or orbiter will weigh approximately 300,000 pounds. The major advantage of this design is the full recoverability of the first stage compared with the present solid rocket booster that are only partially recoverable and used only a few times. This reduces the cost as well as providing a more reliable and more readily available design for servicing the space station. The booster can fly an orbiter up, turn around, land, refuel, and be ready to launch another orbiter in a matter of hours.

  8. NASA Marches on with Test of RS-25 Engine for New Space Launch System

    NASA Image and Video Library

    2016-07-29

    NASA engineers conducted a successful developmental test of RS-25 rocket engine No. 0528 July 29, 2016, to collect critical performance data for the most powerful rocket in the world – the Space Launch System (SLS). The engine roared to life for a full 650-second test on the A-1 Test Stand at NASA’s Stennis Space Center, near Bay St. Louis, Mississippi, marking another step forward in development of the SLS, which will launch humans deeper into space than ever before, including on the journey to Mars. Four RS-25 engines, joined with a pair of solid rocket boosters, will power the SLS core stage at launch. The RS-25 engines used on the first four SLS flights are former space shuttle main engines, modified to operate at a higher performance level and with a new engine controller, which allows communication between the vehicle and engine.

  9. Space shuttle abort separation pressure investigation. Volume 1, Part A: Booster data at Mach 5

    NASA Technical Reports Server (NTRS)

    Trimmer, L. L.; Love, D. A.; Rampy, J. M.; Decker, J. P.; Blackwell, K. L.; Strike, W. T.

    1972-01-01

    Pressure data obtained from a joint Langley Research Center (LaRC)/Marshall Space Flight Center (MSFC) Space Shuttle about stage separation wind tunnel test are presented. The .00556 scale models of the McDonnell-Douglas orbiter and booster configurations were tested in proximity in Tunnel A of the Von Karman Facility (VKF), Arnold Engineering Development Center (AEDC). Mach numbers were 5.0, 3.0, and 2.0 and nominal Reynolds numbers were 1.09, 1.60, and 1.74 million per foot, respectively. Pressure data were obtained for the booster upper surface and orbiter lower surface at angles of attack of -10 deg, -5, 0, 5, and 10 deg for zero degrees sideslip. The models were tested at incidence angles of 0 and 5 deg for several separation distances and power conditions. Plug nozzles utilizing air were used to simulate booster and orbiter plumes at various altitudes along a nominal ascent trajectory. Powered conditions were 100, 50, and 0 percent of full power for the orbiter and 100, 50 and 0 percent of full power for the booster. Data were also obtained with the booster canard off in close proximity.

  10. SpaceX CRS-13 Post Launch News Conference

    NASA Image and Video Library

    2017-12-15

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, from left, Stephanie Martin of NASA Communications, speaks to media at a post-launch news conference following the liftoff of SpaceX CRS-13. The flight is a commercial resupply services mission to the International Space Station. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station at 10:36 a.m. EST with supplies and equipment and new science experiments for technology research.

  11. The Space Launch System -The Biggest, Most Capable Rocket Ever Built, for Entirely New Human Exploration Missions Beyond Earth's Orbit

    NASA Technical Reports Server (NTRS)

    Shivers, C. Herb

    2012-01-01

    NASA is developing the Space Launch System -- an advanced heavy-lift launch vehicle that will provide an entirely new capability for human exploration beyond Earth's orbit. The Space Launch System will provide a safe, affordable and sustainable means of reaching beyond our current limits and opening up new discoveries from the unique vantage point of space. The first developmental flight, or mission, is targeted for the end of 2017. The Space Launch System, or SLS, will be designed to carry the Orion Multi-Purpose Crew Vehicle, as well as important cargo, equipment and science experiments to Earth's orbit and destinations beyond. Additionally, the SLS will serve as a backup for commercial and international partner transportation services to the International Space Station. The SLS rocket will incorporate technological investments from the Space Shuttle Program and the Constellation Program in order to take advantage of proven hardware and cutting-edge tooling and manufacturing technology that will significantly reduce development and operations costs. The rocket will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25D/E from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage. SLS will also use solid rocket boosters for the initial development flights, while follow-on boosters will be competed based on performance requirements and affordability considerations.

  12. Delta II ICESat-2 Booster Offload onto Transporter

    NASA Image and Video Library

    2018-04-16

    At NASA's Building 836, the Spacecraft Labs Telemetry Station at Vandenberg Air Force Base in California, a United Launch Alliance Delta II booster is removed from its shipping container. After it is offloaded, preliminary checkouts and preflight processing will begin leading to launch of the agency's Ice, Cloud and land Elevation Satellite-2, or ICESat-2. Liftoff from Space Launch Complex-2 at Vandenberg is scheduled for Sept. 12, 2018, and will be the last for the venerable Delta II rocket. Once in orbit, the satellite is designed to measure the height of a changing Earth, one laser pulse at a time, 10,000 laser pulses a second. The satellite will carry a single instrument, the Advanced Topographic Laser Altimeter System. ICESat-2 will help scientists investigate why, and how much, Earth's frozen and icy areas are changing. These area make up Earth's the cryosphere.

  13. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is raised off the transporter. When vertical, it will be lifted up the launch tower and mated to the Delta rocket (in the background) to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  14. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-14

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-A, Cape Canaveral Air Force Station, a solid rocket booster is moved into position to raise to vertical and lift up the launch tower. It is one of nine that will be mated to the Delta rocket to launch Mars Exploration Rover 2. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  15. Overview of the Space Launch System Ascent Aeroacoustic Environment Test Program

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Crosby, William A.; Reed, Darren K.

    2016-01-01

    Characterization of accurate flight vehicle unsteady aerodynamics is critical for component and secondary structure vibroacoustic design. The Aerosciences Branch at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center has conducted a test at the NASA Ames Research Center (ARC) Unitary Plan Wind Tunnels (UPWT) to determine such ascent aeroacoustic environments for the Space Launch System (SLS). Surface static pressure measurements were also collected to aid in determination of local environments for venting, CFD substantiation, and calibration of the flush air data system located on the launch abort system. Additionally, this test supported a NASA Engineering and Safety Center study of alternate booster nose caps. Testing occurred during two test campaigns: August - September 2013 and December 2013 - January 2014. Four primary model configurations were tested for ascent aeroacoustic environment definition. The SLS Block 1 vehicle was represented by a 2.5% full stack model and a 4% truncated model. Preliminary Block 1B payload and manned configurations were also tested, using 2.5% full stack and 4% truncated models respectively. This test utilized the 11 x 11 foot transonic and 9 x 7 foot supersonic tunnel sections at the ARC UPWT to collect data from Mach 0.7 through 2.5 at various total angles of attack. SLS Block 1 design environments were developed primarily using these data. SLS Block 1B preliminary environments have also been prepared using these data. This paper discusses the test and analysis methodology utilized, with a focus on the unsteady data collection and processing.

  16. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. Launch Pad 39B of the Kennedy Space Flight Center (KSC), currently used for Space Shuttle launches, will be revised to host the Ares launch vehicles. The fixed and rotating service structures standing at the pad will be dismantled sometime after the Ares I-X test flight. A new launch tower for Ares I will be built onto a new mobile launch platform. The gantry for the shuttle doesn't reach much higher than the top of the four segments of the solid rocket booster. Pad access above the current shuttle launch pad structure will not be required for Ares I-X because the stages above the solid rocket booster are inert. For the test scheduled in 2012 or for the crewed flights, workers and astronauts will need access to the highest levels of the rocket and capsule. When the Ares I rocket rolls out to the launch pad on the back of the same crawler-transporters used now, its launch gantry will be with it. The mobile launchers will nestle under three lightning protection towers to be erected around the pad area. Ares time at the launch pad will be significantly less than the three weeks or more the shuttle requires. This “clean pad” approach minimizes equipment and servicing at the launch pad. It is the same plan NASA used with the Saturn V rockets and industry employs it with more modern launchers. The launch pad will also get a new emergency escape system for astronauts, one that looks very much like a roller coaster. Cars riding on a rail will replace the familiar baskets hanging from steel cables. This artist's concept illustrates the Ares I on launch pad 39B.

  17. System and Method for Air Launch from a Towed Aircraft

    NASA Technical Reports Server (NTRS)

    Budd, Gerald D (Inventor)

    2018-01-01

    The invention is a system and method of air launching a powered launch vehicle into space or high altitude. More specifically, the invention is a tow aircraft which tows an unpowered glider, with the powered launch vehicle attached thereto, to launch altitude. The powered launch vehicle is released from the unpowered glider and powered on for launch.

  18. Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.; Ogles, Michael; Hitt, David

    2016-01-01

    Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations (GSDO) program is transforming Kennedy Space Center (KSC) into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton Block 1 configuration, and will then evolve to an ultimate capability of 130 metric tons. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS - Exploration Mission-1 (EM-1), an uncrewed mission to orbit the moon and return, and progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility (MAF) in Louisiana, the world's largest spacecraft welding tool is producing tanks for the SLS core stage. This paper will particularly focus on

  19. NASA's Space Launch System Development Status

    NASA Technical Reports Server (NTRS)

    Lyles, Garry

    2014-01-01

    Development of the National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) heavy lift rocket is shifting from the formulation phase into the implementation phase in 2014, a little more than 3 years after formal program establishment. Current development is focused on delivering a vehicle capable of launching 70 metric tons (t) into low Earth orbit. This "Block 1" configuration will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017, followed by its first crewed flight in 2021. SLS can evolve to a130t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. Benefits associated with its unprecedented mass and volume include reduced trip times and simplified payload design. Every SLS element achieved significant, tangible progress over the past year. Among the Program's many accomplishments are: manufacture of core stage test barrels and domes; testing of Solid Rocket Booster development hardware including thrust vector controls and avionics; planning for RS- 25 core stage engine testing; and more than 4,000 wind tunnel runs to refine vehicle configuration, trajectory, and guidance. The Program shipped its first flight hardware - the Multi-Purpose Crew Vehicle Stage Adapter (MSA) - to the United Launch Alliance for integration with the Delta IV heavy rocket that will launch an Orion test article in 2014 from NASA's Kennedy Space Center. The Program successfully completed Preliminary Design Review in 2013 and will complete Key Decision Point C in 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015 and a December 2017 first launch. The Program's success to date is due to prudent use of proven technology, infrastructure, and workforce from the Saturn and Space Shuttle programs, a streamlined management

  20. Engineering design manual of parachute decelerator characteristics for space shuttle solid rocket booster recovery

    NASA Technical Reports Server (NTRS)

    Mansfield, D. L.

    1973-01-01

    The design criteria and characteristics of parachutes for recovery of the solid rocket boosters used with the space shuttle launch are presented. A computer program for analyzing the requirements of the parachute decelerators is described. The computer inputs for both the drogue and main parachute decelerators are; (1) parachute size, (2) deployment conditions, (3) inflation times, (4) reefing times, (5) mass properties, (6) spring properties, and (7) aerodynamic coefficients. Graphs of the parachute performance are included.

  1. Space shuttle booster separation motor design

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1976-01-01

    The separation characteristics of the space shuttle solid rocket boosters (SRBs) are introduced along with the system level requirements for the booster separation motors (BSMs). These system requirements are then translated into specific motor requirements that control the design of the BSM. Each motor component is discussed including its geometry, material selection, and fabrication process. Also discussed is the propellant selection, grain design, and performance capabilities of the motor. The upcoming test program to develop and qualify the motor is outlined.

  2. SpaceX CRS-13 Post Launch News Conference

    NASA Image and Video Library

    2017-12-15

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-13, a commercial resupply services mission to the International Space Station. Participants included Stephanie Martin of NASA Communications, Ven Feng, NASA manager of the Transportation Integration Office with the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:36 a.m. EST.

  3. Next generation earth-to-orbit space transportation systems: Unmanned vehicles and liquid/hybrid boosters

    NASA Technical Reports Server (NTRS)

    Hueter, Uwe

    1991-01-01

    The United States civil space effort when viewed from a launch vehicle perspective tends to categorize into pre-Shuttle and Shuttle eras. The pre-Shuttle era consisted of expendable launch vehicles where a broad set of capabilities were matured in a range of vehicles, followed by a clear reluctance to build on and utilize those systems. The Shuttle era marked the beginning of the U.S. venture into reusable space launch vehicles and the consolidation of launch systems used to this one vehicle. This led to a tremendous capability, but utilized men on a few missions where it was not essential and compromised launch capability resiliency in the long term. Launch vehicle failures, between the period of Aug. 1985 and May 1986, of the Titan 34D, Shuttle Challenger, and the Delta vehicles resulted in a reassessment of U.S. launch vehicle capability. The reassessment resulted in President Reagan issuing a new National Space Policy in 1988 calling for more coordination between Federal agencies, broadening the launch capabilities and preparing for manned flight beyond the Earth into the solar system. As a result, the Department of Defense (DoD) and NASA are jointly assessing the requirements and needs for this nations's future transportation system. Reliability/safety, balanced fleet, and resiliency are the cornerstone to the future. An insight is provided into the current thinking in establishing future unmanned earth-to-orbit (ETO) space transportation needs and capabilities. A background of previous launch capabilities, future needs, current and proposed near term systems, and system considerations to assure future mission need will be met, are presented. The focus is on propulsion options associated with unmanned cargo vehicles and liquid booster required to assure future mission needs will be met.

  4. Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Calle, L. M.

    2011-01-01

    Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.

  5. Booster Interface Loads

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Wood, Bill; Nettles, Mindy

    2015-01-01

    The interaction between shock waves and the wake shed from the forward booster/core attach hardware results in unsteady pressure fluctuations, which can lead to large buffeting loads on the vehicle. This task investigates whether computational tools can adequately predict these flows, and whether alternative booster nose shapes can reduce these loads. Results from wind tunnel tests will be used to validate the computations and provide design information for future Space Launch System (SLS) configurations. The current work combines numerical simulations with wind tunnel testing to predict buffeting loads caused by the boosters. Variations in nosecone shape, similar to the Ariane 5 design (fig. 1), are being evaluated with regard to lowering the buffet loads. The task will provide design information for the mitigation of buffet loads for SLS, along with validated simulation tools to be used to assess future SLS designs.

  6. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner enters Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System

  7. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  8. B-52 Launch Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's venerable B-52 mothership is seen here photographed from a KC-135 Tanker aircraft. The X-43 adapter is visible attached to the right wing. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and is also both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported

  9. Liquid Rocket Booster (LRB) for the Space Transportation System (STS) systems study. Volume 2: Addendum 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The potential of a common Liquid Rocket Booster (LRB) design was evaluated for use with both the Space Transportation System (STS) and the Advanced Launch System (ALS). A goal is to have a common Liquid Oxygen/Liquid Hydrogen (LO2/LH2) engine developed for both the ALS booster and the core stage. The LO2/LH2 option for the STS was evaluated to identify potential LRB program cost reductions. The objective was to identify the structural impacts to the external tank (ET), and to determine if any significant ET re-development costs are required as a result of the larger LO2/LH2 LRB. The potential ET impacts evaluated are presented.

  10. NASA's Space Launch System: Momentum Builds Toward First Launch

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Lyles, Garry M.

    2014-01-01

    NASA's Space Launch System (SLS) is gaining momentum toward the first launch of a new exploration-class heavy lift launch vehicle for international exploration and science initiatives. The SLS comprises an architecture that begins with a vehicle capable of launching 70 metric tons (t) into low Earth orbit. It will launch the Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back in December 2017. Its first crewed flight follows in 2021. SLS can evolve to a130-t lift capability and serve as a baseline for numerous robotic and human missions ranging from a Mars sample return to delivering the first astronauts to explore another planet. The SLS Program formally transitioned from the formulation phase to implementation with the successful completion of the rigorous Key Decision Point C review in 2014. As a result, the Agency authorized the Program to move forward to Critical Design Review, scheduled for 2015. In the NASA project life cycle process, SLS has completed 50 percent of its major milestones toward first flight. Every SLS element manufactured development hardware for testing over the past year. Accomplishments during 2013/2014 included manufacture of core stage test articles, preparations for qualification testing the solid rocket boosters and the RS-25 main engines, and shipment of the first flight hardware in preparation for the Exploration Flight Test-1 (EFT-1) in 2014. SLS was conceived with the goals of safety, affordability, and sustainability, while also providing unprecedented capability for human exploration and scientific discovery beyond Earth orbit. In an environment of economic challenges, the SLS team continues to meet ambitious budget and schedule targets through the studied use of hardware, infrastructure, and workforce investments the United States made in the last half century, while selectively using new technologies for design, manufacturing, and testing, as well as streamlined management approaches

  11. NASA's Space Launch System: SmallSat Deployment to Deep Space

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Creech, Stephen D.

    2017-01-01

    Leveraging the significant capability it offers for human exploration and flagship science missions, NASA's Space Launch System (SLS) also provides a unique opportunity for lower-cost deep-space science in the form of small-satellite secondary payloads. Current plans call for such opportunities to begin with the rocket's first flight; a launch of the vehicle's Block 1 configuration, capable of delivering 70 metric tons (t) to Low Earth Orbit (LEO), which will send the Orion crew vehicle around the moon and return it to Earth. On that flight, SLS will also deploy 13 CubeSat-class payloads to deep-space destinations. These secondary payloads will include not only NASA research, but also spacecraft from industry and international partners and academia. The payloads also represent a variety of disciplines including, but not limited to, studies of the moon, Earth, sun, and asteroids. While the SLS Program is making significant progress toward that first launch, preparations are already under way for the second, which will see the booster evolve to its more-capable Block 1B configuration, able to deliver 105t to LEO. That configuration will have the capability to carry large payloads co-manifested with the Orion spacecraft, or to utilize an 8.4-meter (m) fairing to carry payloads several times larger than are currently possible. The Block 1B vehicle will be the workhorse of the Proving Ground phase of NASA's deep-space exploration plans, developing and testing the systems and capabilities necessary for human missions into deep space and ultimately to Mars. Ultimately, the vehicle will evolve to its full Block 2 configuration, with a LEO capability of 130 metric tons. Both the Block 1B and Block 2 versions of the vehicle will be able to carry larger secondary payloads than the Block 1 configuration, creating even more opportunities for affordable scientific exploration of deep space. This paper will outline the progress being made toward flying smallsats on the first

  12. Space Shuttle Project

    NASA Image and Video Library

    1972-03-07

    This early chart conceptualizes the use of two parallel Solid Rocket Motor Boosters in conjunction with three main engines to launch the proposed Space Shuttle to orbit. At approximately twenty-five miles altitude, the boosters would detach from the Orbiter and parachute back to Earth where they would be recovered and refurbished for future use. The Shuttle was designed as NASA's first reusable space vehicle, launching vertically like a spacecraft and landing on runways like conventional aircraft. Marshall Space Flight Center had management responsibility for the Shuttle's propulsion elements, including the Solid Rocket Boosters.

  13. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. The launch vehicle's first stage is a single, five-segment reusable solid rocket booster derived from the Space Shuttle Program's reusable solid rocket motor that burns a specially formulated and shaped solid propellant called polybutadiene acrylonitrile (PBAN). The second or upper stage will be propelled by a J-2X main engine fueled with liquid oxygen and liquid hydrogen. This HD video image depicts a test firing of a 40k subscale J2X injector at MSFC's test stand 115. (Highest resolution available)

  14. Hybrid propulsion for launch vehicle boosters: A program status update

    NASA Technical Reports Server (NTRS)

    Carpenter, R. L.; Boardman, T. A.; Claflin, S. E.; Harwell, R. J.

    1995-01-01

    Results obtained in studying the origin and suppression of large-amplitude pressure oscillations in a 24 in. diameter hybrid motor using a liquid oxygen/hydroxylterminated polybutadiene/polycyclopentadiene propellant system are discussed. Tests conducted with liquid oxygen flow rates varying from 10 to 40 lbm/sec were designed to gauge the effectiveness of various vaporization chamber flow fields, injector designs, and levels of heat addition in suppressing high-frequency longitudinal mode oscillations. Longitudinal acoustic modes did not arise in any tests. However, initial testing revealed the presence of high-amplitude, sinusoidal, nonacoustic oscillations persisting throughout the burn durations. Analysis showed this to be analogous to chug mode instability in liquid rocket engines brought about by a coupling of motor combustion processes and the liquid oxygen feed system. Analytical models were developed and verified by test data to predict the amplitude and frequency of feed-system-coupled combustion pressure oscillations. Subsequent testing showed that increasing the feed system impedance eliminated the bulk mode instability. This paper documents the work completed to date in performance of the Hybrid Propulsion Technology for Launch Vehicle Boosters Program (NAS8-39942) sponsored by NASA's George C. Marshall Space Flight Center.

  15. KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - Workers on the launch tower of Complex 17-A, Cape Canaveral Air Force Station, stand by while a solid rocket booster (SRB) is lifted to vertical. It is one of nine that will help launch Mars Exploration Rover 2 (MER-2). NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch June 5 as MER-A. MER-1 (MER-B) will launch June 25.

  16. A study of two statistical methods as applied to shuttle solid rocket booster expenditures

    NASA Technical Reports Server (NTRS)

    Perlmutter, M.; Huang, Y.; Graves, M.

    1974-01-01

    The state probability technique and the Monte Carlo technique are applied to finding shuttle solid rocket booster expenditure statistics. For a given attrition rate per launch, the probable number of boosters needed for a given mission of 440 launches is calculated. Several cases are considered, including the elimination of the booster after a maximum of 20 consecutive launches. Also considered is the case where the booster is composed of replaceable components with independent attrition rates. A simple cost analysis is carried out to indicate the number of boosters to build initially, depending on booster costs. Two statistical methods were applied in the analysis: (1) state probability method which consists of defining an appropriate state space for the outcome of the random trials, and (2) model simulation method or the Monte Carlo technique. It was found that the model simulation method was easier to formulate while the state probability method required less computing time and was more accurate.

  17. Space Launch System Spacecraft and Payload Elements: Making Progress Toward First Launch

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew A.; Creech, Stephen D.

    2016-01-01

    Significant and substantial progress continues to be accomplished in the design, development, and testing of the Space Launch System (SLS), the most powerful human-rated launch vehicle the United States has ever undertaken. Designed to support human missions into deep space, SLS is one of three programs being managed by the National Aeronautics and Space Administration's (NASA's) Exploration Systems Development directorate. The Orion spacecraft program is developing a new crew vehicle that will support human missions beyond low Earth orbit, and the Ground Systems Development and Operations program is transforming Kennedy Space Center into next-generation spaceport capable of supporting not only SLS but also multiple commercial users. Together, these systems will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. SLS will deliver a near-term heavy-lift capability for the nation with its 70 metric ton (t) Block 1 configuration, and will then evolve to an ultimate capability of 130 t. The SLS program marked a major milestone with the successful completion of the Critical Design Review in which detailed designs were reviewed and subsequently approved for proceeding with full-scale production. This marks the first time an exploration class vehicle has passed that major milestone since the Saturn V vehicle launched astronauts in the 1960s during the Apollo program. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS -- Exploration Mission-1 (EM-1), an un-crewed mission to orbit the moon and return. Encompassing hardware qualification, structural testing to validate hardware compliance and analytical modeling, progress in on track to meet the initial targeted launch date in 2018. In Utah and Mississippi, booster and engine testing are verifying upgrades made to proven shuttle hardware. At Michoud Assembly Facility in Louisiana, the world's largest spacecraft welding

  18. The Next Great Ship: NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2013-01-01

    Topics covered include: Most Capable U.S. Launch Vehicle; Liquid engines Progress; Boosters Progress; Stages and Avionics Progress; Systems Engineering and Integration Progress; Spacecraft and Payload Integration Progress; Advanced Development Progress.

  19. NASA'S Space Launch System: Progress Toward the Proving Ground

    NASA Technical Reports Server (NTRS)

    Jackman, Angie; Johnson, Les

    2017-01-01

    With significant and substantial progress being accomplished toward readying the Space Launch System (SLS) rocket for its first test flight, work is already also underway on preparations for the second flight – using an upgraded version of the vehicle – and beyond. Designed to support human missions into deep space, Space Launch System (SLS), is the most powerful human-rated launch vehicle the United States has ever undertaken, and together with the Orion spacecraft will support human exploration missions into the proving ground of cislunar space and ultimately to Mars. For its first flight, SLS will deliver a near-term heavy-lift capability for the nation with its 70-metric-ton Block 1 configuration. Each element of the vehicle now has flight hardware in production in support of the initial flight of the SLS, which will propel Orion around the moon and back. For its second flight, SLS will be upgraded to the more-capable Block 1B configuration. While the Block 1 configuration is capable of delivering more than 70 metric tons to low Earth orbit, the Block 1B vehicle will increase that capability to 105 metric tons. For that flight, the new configuration introduces two major new elements to the vehicle – an Exploration Upper Stage (EUS) that will be used for both ascent and in-space propulsion, and a Universal Stage Adapter (USA) that serves as a “payload bay” for the rocket, allowing the launch of large exploration systems along with the Orion spacecraft. Already, flight hardware is being prepared for the Block 1B vehicle. Beyond the second flight, additional upgrades will be made to the vehicle. The Block 1B vehicle will also be able to launch 8.4-meter-diameter payload fairings, larger than any previously flown, and the Spacecraft Payload Integration and Evolution (SPIE) Element will oversee development and production of those fairings. Ultimately, SLS will be evolved to a Block 2 configuration, which will replace the solid rocket boosters on the Block

  20. Liquid rocket booster integration study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the executive summary of the five volume series.

  1. Liquid Rocket Booster Integration Study. Volume 2: Study synopsis

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the study summary of the five volume series.

  2. Space Shuttle Atlantis is on Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Atop the mobile launcher platform, Space Shuttle Atlantis, with its orange external tank and white solid rocket boosters, sits on Launch Pad 39B after rollout from the Vehicle Assembly Building. Seen on either side of the orbiters tail are the tail service masts. They support the fluid, gas and electrical requirements of the orbiters liquid oxygen and liquid hydrogen aft umbilicals. The Shuttle is targeted for launch no earlier than July 12 on mission STS-104, the 10th flight to the International Space Station. The payload on the 11- day mission is the Joint Airlock Module, which will allow astronauts and cosmonauts in residence on the Station to perform future spacewalks without the presence of a Space Shuttle. The module, which comprises a crew lock and an equipment lock, will be connected to the starboard (right) side of Node 1 Unity. Atlantis will also carry oxygen and nitrogen storage tanks, vital to operation of the Joint Airlock, on a Spacelab Logistics Double Pallet in the payload bay. The tanks, to be installed on the perimeter of the Joint Module during the missions spacewalks, will support future spacewalk operations and experiments plus augment the resupply system for the Stations Service Module.

  3. Advanced Space Transportation Program (ASTP)

    NASA Image and Video Library

    2000-04-03

    This is a computer generated image of a Shuttle launch utilizing 2nd generation Reusable Launch Vehicle (RLV) flyback boosters, a futuristic concept that is currently undergoing study by NASA's Space Launch Initiative (SLI) Propulsion Office, managed by the Marshall Space Fight Center in Huntsville, Alabama, working in conjunction with the Agency's Glenn Research Center in Cleveland, Ohio. Currently, after providing thrust to the Space Shuttle, the solid rocket boosters are parachuted into the sea and are retrieved for reuse. The SLI is considering vehicle concepts that would fly first-stage boosters back to a designated landing site after separation from the orbital vehicle. These flyback boosters would be powered by several jet engines integrated into the booster capable of providing over 100,000 pounds of thrust. The study will determine the requirements for the engines, identify risk mitigation activities, and identify costs associated with risk mitigation and jet engine development and production, as well as determine candidate jet engine options to pursue for the flyback booster.

  4. Monitoring Direct Effects of Delta, Atlas, and Titan Launches from Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Boyle, Shannon R.; Hall, Patrice; Oddy, Donna M.; Hensley, Melissa A.; Stolen, Eric D.; Duncan, Brean W.

    1998-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects that could arise from direct impacts of the launch exhaust (e.g., blast, heat), deposition of exhaust products of the solid rocket motors (hydrogen chloride, aluminum oxide), or other effects such as noise. Here we: 1) review previous reports, environmental assessments, and environmental impact statements for Delta, Atlas, and Titan vehicles and pad areas to clarity the magnitude of potential impacts; 2) summarize observed effects of 15 Delta, 22 Atlas, and 8 Titan launches; and 3) develop a spatial database of the distribution of effects from individual launches and cumulative effects of launches. The review of previous studies indicated that impacts from these launches can occur from the launch exhaust heat, deposition of exhaust products from the solid rocket motors, and noise. The principal effluents from solid rocket motors are hydrogen chloride (HCl), aluminum oxide (Al2O3), water (H2O), hydrogen (H2), carbon monoxide (CO), and carbon dioxide (CO2). The exhaust plume interacts with the launch complex structure and water deluge system to generate a launch cloud. Fall out or rain out of material from this cloud can produce localized effects from acid or particulate deposition. Delta, Atlas, and Titan launch vehicles differ in the number and size of solid rocket boosters and in the amount of deluge water used. All are smaller and use less water than the Space Shuttle. Acid deposition can cause damage to plants and animals exposed to it, acidify surface water and soil, and cause long-term changes to community composition and structure from repeated exposure. The magnitude of these effects depends on the intensity and frequency of acid deposition.

  5. Space Shuttle Atlantis rolls back to Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Photographed from the top of the Vehicle Assembly Building, Space Shuttle Atlantis creeps along the crawlerway for the 3.4-mile trek to Launch Pad 39A (upper left). In the background is the Atlantic Ocean; on either side is water from the Banana Creek (left) and Banana River (right). The Shuttle has been in the VAB undergoing tests on the solid rocket booster cables. A prior extensive evaluation of NASA's SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis, causing return of the Shuttle to the VAB a week ago. Launch of Atlantis on STS-98 has been rescheduled to Feb. 7 at 6:11 p.m. EST.

  6. Design optimization of space launch vehicles using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Bayley, Douglas James

    The United States Air Force (USAF) continues to have a need for assured access to space. In addition to flexible and responsive spacelift, a reduction in the cost per launch of space launch vehicles is also desirable. For this purpose, an investigation of the design optimization of space launch vehicles has been conducted. Using a suite of custom codes, the performance aspects of an entire space launch vehicle were analyzed. A genetic algorithm (GA) was employed to optimize the design of the space launch vehicle. A cost model was incorporated into the optimization process with the goal of minimizing the overall vehicle cost. The other goals of the design optimization included obtaining the proper altitude and velocity to achieve a low-Earth orbit. Specific mission parameters that are particular to USAF space endeavors were specified at the start of the design optimization process. Solid propellant motors, liquid fueled rockets, and air-launched systems in various configurations provided the propulsion systems for two, three and four-stage launch vehicles. Mass properties models, an aerodynamics model, and a six-degree-of-freedom (6DOF) flight dynamics simulator were all used to model the system. The results show the feasibility of this method in designing launch vehicles that meet mission requirements. Comparisons to existing real world systems provide the validation for the physical system models. However, the ability to obtain a truly minimized cost was elusive. The cost model uses an industry standard approach, however, validation of this portion of the model was challenging due to the proprietary nature of cost figures and due to the dependence of many existing systems on surplus hardware.

  7. The space shuttle launch vehicle aerodynamic verification challenges

    NASA Technical Reports Server (NTRS)

    Wallace, R. O.; Austin, L. D.; Hondros, J. G.; Surber, T. E.; Gaines, L. M.; Hamilton, J. T.

    1985-01-01

    The Space Shuttle aerodynamics and performance communities were challenged to verify the Space Shuttle vehicle (SSV) aerodynamics and system performance by flight measurements. Historically, launch vehicle flight test programs which faced these same challenges were unmanned instrumented flights of simple aerodynamically shaped vehicles. However, the manned SSV flight test program made these challenges more complex because of the unique aerodynamic configuration powered by the first man-rated solid rocket boosters (SRB). The analyses of flight data did not verify the aerodynamics or performance preflight predictions of the first flight of the Space Transportation System (STS-1). However, these analyses have defined the SSV aerodynamics and verified system performance. The aerodynamics community also was challenged to understand the discrepancy between the wind tunnel and flight defined aerodynamics. The preflight analysis challenges, the aerodynamic extraction challenges, and the postflight analyses challenges which led to the SSV system performance verification and which will lead to the verification of the operational ascent aerodynamics data base are presented.

  8. Solid rocket booster thermal protection system materials development. [space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1978-01-01

    A complete run log of all tests conducted in the NASA-MSFC hot gas test facility during the development of materials for the space shuttle solid rocket booster thermal protection system are presented. Lists of technical reports and drawings generated under the contract are included.

  9. Use of Shuttle Heritage Hardware in Space Launch System (SLS) Application-Structural Assessment

    NASA Technical Reports Server (NTRS)

    Aggarwal, Pravin; Booker, James N.

    2018-01-01

    NASA is moving forward with the development of the next generation system of human spaceflight to meet the Nation's goals of human space exploration. To meet these goals, NASA is aggressively pursuing the development of an integrated architecture and capabilities for safe crewed and cargo missions beyond low-Earth orbit. Two important tenets critical to the achievement of NASA's strategic objectives are Affordability and Safety. The Space Launch System (SLS) is a heavy-lift launch vehicle being designed/developed to meet these goals. The SLS Block 1 configuration (Figure 1) will be used for the first Exploration Mission (EM-1). It utilizes existing hardware from the Space Shuttle inventory, as much as possible, to save cost and expedite the schedule. SLS Block 1 Elements include the Core Stage, "Heritage" Boosters, Heritage Engines, and the Integrated Spacecraft and Payload Element (ISPE) consisting of the Launch Vehicle Stage Adapter (LVSA), the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA), and an Interim Cryogenic Propulsion Stage (ICPS) for Earth orbit escape and beyond-Earth orbit in-space propulsive maneuvers. When heritage hardware is used in a new application, it requires a systematic evaluation of its qualification. In addition, there are previously-documented Lessons Learned (Table -1) in this area cautioning the need of a rigorous evaluation in any new application. This paper will exemplify the systematic qualification/assessment efforts made to qualify the application of Heritage Solid Rocket Booster (SRB) hardware in SLS. This paper describes the testing and structural assessment performed to ensure the application is acceptable for intended use without having any adverse impact to Safety. It will further address elements such as Loads, Material Properties and Manufacturing, Testing, Analysis, Failure Criterion and Factor of Safety (FS) considerations made to reach the conclusion and recommendation.

  10. EELV Booster Assist Options for CEV

    NASA Technical Reports Server (NTRS)

    McNeal, Curtis, Jr.

    2005-01-01

    Medium lift EELVs may still play a role in manned space flight. To be considered for manned flight, medium lift EELVs must address the short comings in their current boost assist motors. Two options exist: redesign and requalify the solid rocket motors. Replace solid rocket motors (SRMs) with hybrid rocket motors. Hybrid rocket motors are an attractive alternative. They are safer than SRMs. The TRL's Lockheed Martin Small Launch Vehicle booster development substantially lowers the development risk, cost risk, and the schedule risk for developing hybrid boost assist for EELVs. Hybrid boosters testability offsets SRMs higher inherent reliability.Hybrid booster development and recurring costs are lower than SRMs. Performance gains are readily achieved.

  11. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Schorr, Andrew; Robinson, Kimberly F.; Hitt, David

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 t to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 t to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the lunar vicinity

  12. NASA's Space Launch System: Enabling Exploration and Discovery

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Schorr, Andrew

    2017-01-01

    As NASA's new Space Launch System (SLS) launch vehicle continues to mature toward its first flight and beyond, so too do the agency's plans for utilization of the rocket. Substantial progress has been made toward the production of the vehicle for the first flight of SLS - an initial "Block 1" configuration capable of delivering more than 70 metric tons (t) to Low Earth Orbit (LEO). That vehicle will be used for an uncrewed integrated test flight, propelling NASA's Orion spacecraft into lunar orbit before it returns safely to Earth. Flight hardware for that launch is being manufactured at facilities around the United States, and, in the case of Orion's service module, beyond. At the same time, production has already begun on the vehicle for the second SLS flight, a more powerful Block 1B configuration capable of delivering more than 105 metric tons to LEO. This configuration will be used for crewed launches of Orion, sending astronauts farther into space than anyone has previously ventured. The 1B configuration will introduce an Exploration Upper Stage, capable of both ascent and in-space propulsion, as well as a Universal Stage Adapter - a payload bay allowing the flight of exploration hardware with Orion - and unprecedentedly large payload fairings that will enable currently impossible spacecraft and mission profiles on uncrewed launches. The Block 1B vehicle will also expand on the initial configuration's ability to deploy CubeSat secondary payloads, creating new opportunities for low-cost access to deep space. Development work is also underway on future upgrades to SLS, which will culminate in about a decade in the Block 2 configuration, capable of delivering 130 metric tons to LEO via the addition of advanced boosters. As the first SLS draws closer to launch, NASA continues to refine plans for the human deep-space exploration it will enable. Planning currently focuses on use of the vehicle to assemble a Deep Space Gateway, which would comprise a habitat in the

  13. Air-to-air view of STS-26 Discovery, OV-103, launch from KSC

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Air-to-air view of STS-26 Discovery, Orbiter Vehicle (OV) 103, launch taken by T. Haydee Laguna, an airline passenger bound for Paradise Island in the Bahamas. She sent the photo of what she called 'the most beautiful sight this side of Heaven' to NASA along with a congratulatory letter. OV-103 is a small dot as it rises through the clouds from Kennedy Space Center Launch Complex (LC) pad 39B with a exhaust plume trailing behind it.

  14. Monitoring biological impacts of space shuttle launches from Vandenberg Air Force Base: Establishment of baseline conditions

    NASA Technical Reports Server (NTRS)

    Schmaizer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Space shuttle launches produce environmental impacts resulting from the formation of an exhaust cloud containing hydrogen chloride aerosols and aluminum oxide particulates. Studies have shown that most impacts occur near-field (within 1.5 km) of the launch site while deposition from launches occurs far-field (as distant as 22 km). In order to establish baseline conditions of vegetation and soils in the areas likely to be impacted by shuttle launches from Vandenberg Air Force Base (VAFB), vegetation and soils in the vicinity of Space Launch Complex-6 (SLC-6) were sampled and a vegetation map prepared. The areas likely to be impacted by launches were determined considering the structure of the launch complex, the prevailing winds, the terrain, and predictions of the Rocket Exhaust Effluent Diffusion Model (REEDM). Fifty vegetation transects were established and sampled in March 1986 and resampled in September 1986. A vegetation map was prepared for six Master Planning maps surrounding SLC-6 using LANDSAT Thematic Mapper imagery as well as color and color infrared aerial photography. Soil samples were collected form the 0 to 7.5 cm layer at all transects in the wet season and at a subsample of the transects in the dry season and analyzed for pH, organic matter, conductivity, cation exchange capacity, exchangeable Ca, Mg, Na, K, and Al, available NH3-N, PO4-P, Cu, Fe, Mn, Zn, and TKN.

  15. Liquid rocket booster integration study. Volume 5, part 1: Appendices

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is the appendices of the five volume series.

  16. Canadian Space Launch: Exploiting Northern Latitudes For Efficient Space Launch

    DTIC Science & Technology

    2015-04-01

    9  Peoples’ Republic of China .........................................................................................11  USA Launch... taxation and legislation that make Canada an attractive destination for commercial space companies.3 General Definitions Highly Inclined Orbit...launches from sites north of the 35th parallel.33 USA Launch Facilities There are 3 US based launch facilities that conduct launch operations north

  17. Aerodynamic characteristics of several launch configurations utilizing the Titan 3 L booster and MMC DTO-7 Orbiter

    NASA Technical Reports Server (NTRS)

    Michna, D. J.

    1972-01-01

    The .00429 scale model Titan 3 booster was mated with the DTO-7 space shuttle orbiter with drop tanks and tested for aerodynamic performance in a 14 x 14 inch trisonic wind tunnel. Six component aerodynamic force and moment data were measured on several variations of the above component in a launch configuration over a Mach number range from 0.6 to 3.48. Angle of attack ranged from -12 deg to 12 deg at 0 deg and -6 deg sideslip angle and sideslip angle ranged from -12 deg to 12 deg at 0 deg angle of attack. Date are presented in plotted form in both the stability and body axis system.

  18. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner enters Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  19. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner is secured to the dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  20. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner prepares to dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  1. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner approaches the mouth of Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  2. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner nears the dock in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  3. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner travels through Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  4. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner docks in Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  5. Space Shuttle Discovery Launch

    NASA Image and Video Library

    2008-05-31

    NASA Shuttle Launch Director Michael Leinbach, left, STS-124 Assistant Launch Director Ed Mango, center, and Flow Director for Space Shuttle Discovery Stephanie Stilson clap in the the Launch Control Center after the main engine cut off and successful launch of the Space Shuttle Discovery (STS-124) Saturday, May 31, 2008, at the Kennedy Space Center in Cape Canaveral, Fla. The Shuttle lifted off from launch pad 39A at 5:02 p.m. EDT. Photo Credit: (NASA/Bill Ingalls)

  6. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  7. Space Launch System Base Heating Test: Environments and Base Flow Physics

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Knox, Kyle S.; Seaford, C. Mark; Dufrene, Aaron T.

    2016-01-01

    The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen-hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during flight. Due to the complex nature of rocket plume-induced flows within the launch vehicle base during ascent and a new vehicle configuration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot-fire test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate flight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative effort that has not been attempted in 40+ years for a NASA vehicle. This paper discusses the various trends of base convective heat flux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base flow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi-empirical numerical models to determine exceedance and conservatism of the flight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.

  8. Dryden B-52 Launch Aircraft on Dryden Ramp

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership sits on the ramp in front of the Dryden Flight Research Center, Edwards, California. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  9. Throttleable GOX/ABS launch assist hybrid rocket motor for small scale air launch platform

    NASA Astrophysics Data System (ADS)

    Spurrier, Zachary S.

    Aircraft-based space-launch platforms allow operational flexibility and offer the potential for significant propellant savings for small-to-medium orbital payloads. The NASA Armstrong Flight Research Center's Towed Glider Air-Launch System (TGALS) is a small-scale flight research project investigating the feasibility for a remotely-piloted, towed, glider system to act as a versatile air launch platform for nano-scale satellites. Removing the crew from the launch vehicle means that the system does not have to be human rated, and offers a potential for considerable cost savings. Utah State University is developing a small throttled launch-assist system for the TGALS platform. This "stage zero" design allows the TGALS platform to achieve the required flight path angle for the launch point, a condition that the TGALS cannot achieve without external propulsion. Throttling is required in order to achieve and sustain the proper launch attitude without structurally overloading the airframe. The hybrid rocket system employs gaseous-oxygen and acrylonitrile butadiene styrene (ABS) as propellants. This thesis summarizes the development and testing campaign, and presents results from the clean-sheet design through ground-based static fire testing. Development of the closed-loop throttle control system is presented.

  10. StarBooster Demonstrator Cluster Configuration Analysis/Verification Program

    NASA Technical Reports Server (NTRS)

    DeTurris, Dianne J.

    2003-01-01

    In order to study the flight dynamics of the cluster configuration of two first stage boosters and upper-stage, flight-testing of subsonic sub-scale models has been undertaken using two glideback boosters launched on a center upper-stage. Three high power rockets clustered together were built and flown to demonstrate vertical launch, separation and horizontal recovery of the boosters. Although the boosters fly to conventional aircraft landing, the centerstage comes down separately under its own parachute. The goal of the project has been to collect data during separation and flight for comparison with a six degree of freedom simulation. The configuration for the delta wing canard boosters comes from a design by Starcraft Boosters, Inc. The subscale rockets were constructed of foam covered in carbon or fiberglass and were launched with commercially available solid rocket motors. The first set of boosters built were 3-ft tall with a 4-ft tall centerstage, and two additional sets of boosters were made that were each over 5-ft tall with a 7.5 ft centerstage. The rocket cluster is launched vertically, then after motor bum out the boosters are separated and flown to a horizontal landing under radio-control. An on-board data acquisition system recorded data during both the launch and glide phases of flight.

  11. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A mockup of a solid rocket booster nozzle is lowered into the waters of the Atlantic during a test of a new booster retrieval method. A one-man submarine known as DeepWorker 2000 is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  12. Economics of the solid rocket booster for space shuttle

    NASA Technical Reports Server (NTRS)

    Rice, W. C.

    1979-01-01

    The paper examines economics of the solid rocket booster for the Space Shuttle. Costs have been held down by adapting existing technology to the 146 in. SRB selected, with NASA reducing the cost of expendables and reusing the expensive nonexpendable hardware. Drop tests of Titan III motor cases and nozzles proved that boosters can survive water impact at vertical velocities of 100 ft/sec so that SRB components can be reused. The cost of expendables was minimized by selecting proven propellants, insulation, and nozzle ablatives of known costs; the propellant has the lowest available cost formulation, and low cost ablatives, such as pitch carbon fibers, will be used when available. Thus, the use of proven technology and low cost expendables will make the SRB an economical booster for the Space Shuttle.

  13. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  14. Pressure-Equalizing Cradle for Booster Rocket Mounting

    NASA Technical Reports Server (NTRS)

    Rutan, Elbert L. (Inventor)

    2015-01-01

    A launch system and method improve the launch efficiency of a booster rocket and payload. A launch aircraft atop which the booster rocket is mounted in a cradle, is flown or towed to an elevation at which the booster rocket is released. The cradle provides for reduced structural requirements for the booster rocket by including a compressible layer, that may be provided by a plurality of gas or liquid-filled flexible chambers. The compressible layer contacts the booster rocket along most of the length of the booster rocket to distribute applied pressure, nearly eliminating bending loads. Distributing the pressure eliminates point loading conditions and bending moments that would otherwise be generated in the booster rocket structure during carrying. The chambers may be balloons distributed in rows and columns within the cradle or cylindrical chambers extending along a length of the cradle. The cradle may include a manifold communicating gas between chambers.

  15. SLS EM-1 Launch Animation

    NASA Image and Video Library

    2017-10-31

    Animation depicting NASA’s Space Launch System, the world's most powerful rocket for a new era of human exploration beyond Earth’s orbit. With its unprecedented capabilities, SLS will launch astronauts in the agency’s Orion spacecraft on missions to explore multiple, deep-space destinations, including Mars. Traveling to deep space requires a large vehicle that can carry huge payloads, and future evolutions of SLS with the exploration upper stage and advanced boosters will increase the rocket’s lift capability and flexibility for multiple types of mission needs.

  16. KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

    NASA Image and Video Library

    2003-05-15

    KENNEDY SPACE CENTER, FLA. - At right is the Delta II rocket on Launch Complex 17-A, Cape Canaveral Air Force Station, that will launch Mars Exploration Rover 2 (MER-2) on June 5. In the center are three more solid rocket boosters that will be added to the Delta, which will carry nine in all. NASA’s twin Mars Exploration Rovers are designed to study the history of water on Mars. These robotic geologists are equipped with a robotic arm, a drilling tool, three spectrometers, and four pairs of cameras that allow them to have a human-like, 3D view of the terrain. Each rover could travel as far as 100 meters in one day to act as Mars scientists' eyes and hands, exploring an environment where humans can’t yet go. MER-2 is scheduled to launch as MER-A. MER-1 (MER-B) will launch June 25.

  17. Space Shuttle: Static pressure distribution on Chrysler Corporation Space Division SERV booster configuration

    NASA Technical Reports Server (NTRS)

    Price, E. A.; Hull, J. J.; Rawls, E. A.

    1971-01-01

    A dual purpose test was conducted in the propulsion wind tunnel (PWT) to evaluate the performance of an aerospike engine, in the presence of a booster, and obtain forebody and base pressure distributions on the booster in which it is installed. The test item was a 2.5 percent scaled replica of the SERV booster employing a 5 percent spike length aerospike engine installed in the base region of the model. Cold flow air was used to simulate engine jet operation. Two booster configurations were investigated, one on which reentry aerospike engine thermal protection doors were installed, and another where the doors were removed. The data presented are representative of the latter configuration for a Mach number range of 0 to 1.25 at angles of attack of 0 and 8 degrees and 0 degrees angle of sideslip.

  18. Mercury: testing of the Little Joe booster

    NASA Image and Video Library

    1959-08-02

    Testing of the Little Joe booster on its launcher. The launcher is positioned at its normal launch angle of 80 degrees. Joseph Shortal wrote (vol. 3, p. 33): The Little Joe booster was assembled at Wallops on its special launcher in a vertical attitude. It is shown in the on the left with the work platform in place. The launcher was located on a special concrete slab in Launching Area 1. The capsule was lowered onto the booster by crane.... After the assembly was completed, the scaffolding was disassembled and the launcher pitched over to its normal launch angle of 80 degrees.... Little Joe had a diameter of 80 inches and an overall length, including the capsule and escape tower of 48 feet. The total weight at launch was about 43,000 pounds. The overall span of the stabilizing fins was 21.3 feet. Although in comparison with the overall Mercury Project, Little Joe was a simple undertaking, the fact that an attempt was made to condense a normal two-year project into a 6-month one with in house labor turned it into a major undertaking for Langley. -- Published in Joseph A. Shortal, History of Wallops Station: Origins and Activities Through 1949, (Wallops Island, VA: National Aeronautics and Space Administration, Wallops Station, nd), Comment Edition.

  19. Survey of Advanced Booster Options for Potential Shuttle Derivative Vehicles

    NASA Technical Reports Server (NTRS)

    Sackheim, Robert L.; Ryan, Richard; Threet, Ed; Kennedy, James W. (Technical Monitor)

    2001-01-01

    A never-ending major goal for the Space Shuttle program is to continually improve flight safety, as long as this launch system remains in operational service. One of the options to improve system safety and to enhance vehicle performance as well, that has been seriously studied over the past several decades, is to replace the existing strap-on four segment solid rocket boosters (SRB's) with more capable units. A number of booster upgrade options have been studied in some detail, ranging from five segment solids through hybrids and a wide variety of liquid strap-ons (both pressure and pump fed with various propellants); all the way to a completely reusable liquid fly back booster (complete with air breathing engines for controlled landing and return). All of these possibilities appear to offer improvements in varying degrees; and each has their strengths and weaknesses from both programmatic and technical points of view. The most beneficial booster upgrade/design, if the shuttle program were to continue long enough to justify the required investment, would be an approach that greatly increased both vehicle and crew safety. This would be accomplished by increasing the minimum range/minimum altitude envelope that would readily allow abort to orbit (ATO), possibly even to zero/zero, and possibly reduce or eliminate the Return to Launch Site (RTLS) and even the Trans Atlantic Landing (TAL) abort mode requirements. This paper will briefly survey and discuss all of the various booster'upgrade options studied previously, and compare their relative attributes. The survey will explicitly discuss, in summary comparative form, options that include: five segment solids; several hybrid possibilities; pressure and/or pump-fed liquids using either LO2/kerosene, H2O/kerosene and LO2/J2, any of which could be either fully expendable, partly or fully reusable; and finally a fully reusable liquid fly back booster system, with a number of propellant and propulsion system options

  20. Space Launch System (SLS) Program Overview NASA Research Announcement (NRA) Advanced Booster (AB) Engineering Demonstration and Risk Reduction (EDRR) Industry Day

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2011-01-01

    SLS is a national capability that empowers entirely new exploration for missions of national importance. Program key tenets are safety, affordability, and sustainability. SLS builds on a solid foundation of experience and current capacities to enable a timely initial capability and evolve to a flexible heavy-lift capability through competitive opportunities: (1) Reduce risks leading to an affordable Advanced Booster that meets the evolved capabilities of SLS (2) Enable competition by mitigating targeted Advanced Booster risks to enhance SLS affordability and performance The road ahead promises to be an exciting journey for present and future generations, and we look forward to working with you to continue America fs space exploration.

  1. Delta Mariner arrival with EFT-1 Booster

    NASA Image and Video Library

    2014-03-03

    CAPE CANAVERAL, Fla. – The United Launch Alliance barge Delta Mariner glides past the jetties as it enters Port Canaveral in Florida. The barge is carrying two of the booster stages for the Delta IV Heavy rocket slated for Orion's Exploration Flight Test-1, or EFT-1. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep-space return velocities. The first unpiloted test flight of Orion is scheduled to launch in September 2014 atop a Delta IV Heavy rocket and in 2017 on NASA’s Space Launch System rocket. For more information, visit www.nasa.gov/orion. Photo credit: NASA/Frankie Martin

  2. Dryden B-52 Launch Aircraft in Flight over Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable B-52 mothership flies over the main building at the Dryden Flight Research Center, Edwards, California. The B-52, used for launching experimental aircraft and for other flight research projects, has been a familiar sight in the skies over Edwards for more than 40 years and has also been both the oldest B-52 still flying and the aircraft with the lowest flight time of any B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of

  3. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  4. Sensitivity of Space Launch System Buffet Forcing Functions to Buffet Mitigation Options

    NASA Technical Reports Server (NTRS)

    Piatak, David J.; Sekula, Martin K.; Rausch, Russ D.

    2016-01-01

    Time-varying buffet forcing functions arise from unsteady aerodynamic pressures and are one of many load environments, which contribute to the overall loading condition of a launch vehicle during ascent through the atmosphere. The buffet environment is typically highest at transonic conditions and can excite the vehicle dynamic modes of vibration. The vehicle response to these buffet forcing functions may cause high structural bending moments and vibratory environments, which can exceed the capabilities of the structure, or of vehicle components such as payloads and avionics. Vehicle configurations, protuberances, payload fairings, and large changes in stage diameter can trigger undesirable buffet environments. The Space Launch System (SLS) multi-body configuration and its structural dynamic characteristics presented challenges to the load cycle design process with respect to buffet-induced loads and responses. An initial wind-tunnel test of a 3-percent scale SLS rigid buffet model was conducted in 2012 and revealed high buffet environments behind the booster forward attachment protuberance, which contributed to reduced vehicle structural margins. Six buffet mitigation options were explored to alleviate the high buffet environments including modified booster nose cones and fences/strakes on the booster and core. These studies led to a second buffet test program that was conducted in 2014 to assess the ability of the buffet mitigation options to reduce buffet environments on the vehicle. This paper will present comparisons of buffet forcing functions from each of the buffet mitigation options tested, with a focus on sectional forcing function rms levels within regions of the vehicle prone to high buffet environments.

  5. Space shuttle booster multi-engine base flow analysis

    NASA Technical Reports Server (NTRS)

    Tang, H. H.; Gardiner, C. R.; Anderson, W. A.; Navickas, J.

    1972-01-01

    A comprehensive review of currently available techniques pertinent to several prominent aspects of the base thermal problem of the space shuttle booster is given along with a brief review of experimental results. A tractable engineering analysis, capable of predicting the power-on base pressure, base heating, and other base thermal environmental conditions, such as base gas temperature, is presented and used for an analysis of various space shuttle booster configurations. The analysis consists of a rational combination of theoretical treatments of the prominent flow interaction phenomena in the base region. These theories consider jet mixing, plume flow, axisymmetric flow effects, base injection, recirculating flow dynamics, and various modes of heat transfer. Such effects as initial boundary layer expansion at the nozzle lip, reattachment, recompression, choked vent flow, and nonisoenergetic mixing processes are included in the analysis. A unified method was developed and programmed to numerically obtain compatible solutions for the various flow field components in both flight and ground test conditions. Preliminary prediction for a 12-engine space shuttle booster base thermal environment was obtained for a typical trajectory history. Theoretical predictions were also obtained for some clustered-engine experimental conditions. Results indicate good agreement between the data and theoretical predicitons.

  6. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - With nearly 7 million pounds of thrust generated by twin solid rocket boosters and three main engines, space shuttle Atlantis zooms into the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kenny Allen

  7. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - With nearly 7 million pounds of thrust generated by twin solid rocket boosters and three main engines, space shuttle Atlantis races to orbit over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two ExPRESS Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kenny Allen

  8. Study of solid rocket motor for a space shuttle booster

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The study of solid rocket motors for a space shuttle booster was directed toward definition of a parallel-burn shuttle booster using two 156-in.-dia solid rocket motors. The study effort was organized into the following major task areas: system studies, preliminary design, program planning, and program costing.

  9. Achieving Space Shuttle Abort-to-Orbit Using the Five-Segment Booster

    NASA Technical Reports Server (NTRS)

    Craft, Joe; Ess, Robert; Sauvageau, Don

    2003-01-01

    The Five-Segment Booster design concept was evaluated by a team that determined the concept to be feasible and capable of achieving the desired abort-to-orbit capability when used in conjunction with increased Space Shuttle main engine throttle capability. The team (NASA Johnson Space Center, NASA Marshall Space Flight Center, ATK Thiokol Propulsion, United Space Alliance, Lockheed-Martin Space Systems, and Boeing) selected the concept that provided abort-to-orbit capability while: 1) minimizing Shuttle system impacts by maintaining the current interface requirements with the orbiter, external tank, and ground operation systems; 2) minimizing changes to the flight-proven design, materials, and processes of the current four-segment Shuttle booster; 3) maximizing use of existing booster hardware; and 4) taking advantage of demonstrated Shuttle main engine throttle capability. The added capability can also provide Shuttle mission planning flexibility. Additional performance could be used to: enable implementation of more desirable Shuttle safety improvements like crew escape, while maintaining current payload capability; compensate for off nominal performance in no-fail missions; and support missions to high altitudes and inclinations. This concept is a low-cost, low-risk approach to meeting Shuttle safety upgrade objectives. The Five-Segment Booster also has the potential to support future heavy-lift missions.

  10. STS-111/Endeavour/ISS UF2 Pre-Launch Activities: Launch with Playbacks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This video of the preflight preparations for and launch of Space Shuttle Endeavour on STS-111 begins with a view of Endeavour on the launch pad. Additional launch pad views leading up to liftoff are interspersed with footage from the Firing Room at Kennedy Space Center, the crew's prelaunch activities, and inspection of the crew members in the White Room before boarding Endeavour. The crew is introduced by a narrator during the preflight banquet and suiting up, and a later clip shows them departing to the launch site. The crew consists of Commander Kenneth Cockrell, Pilot Paul Lockhart, Mission Specialists Philippe Perrin and Franklin Chang-Diaz, and the Expedition 5 crew of the International Space Station (ISS) (Commander Valery Korzun and Flight Engineers Peggy Whitsun and Sergei Treschev). The nozzles on Endeavour's Space Shuttle Main Engine (SSME) are swiveled before liftoff, and the launch is shown past the separation of the solid rocket boosters. After a brief clip from the Mission Control Center at Johnson Space Center, the following launch replays are shown: Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, and OTV-070.

  11. Rocket stage - Trans-orbit booster Fregat

    NASA Astrophysics Data System (ADS)

    Asyushkin, V. A.; Papkov, O. V.

    1993-10-01

    This paper discusses a proposal for increasing the payload-carrying capability of a launch vehicle by using the Fregat booster stage (as the fourth stage for the R-7A launcher and as the fifth stage for the Proton launch vehicle). Particular attention is given to the tasks which the Fregat booster stage is designed to fulfill, the systems which are part of the Fregat, and the launch vehicles which will use Fregat as the upper stage. The main performance parameters of the Fregat stage are presented, as well as diagrams illustrating the performance of the Fregat booster stage.

  12. Space shuttle with common fuel tank for liquid rocket booster and main engines (supertanker space shuttle)

    NASA Technical Reports Server (NTRS)

    Thorpe, Douglas G.

    1991-01-01

    An operation and schedule enhancement is shown that replaces the four-body cluster (Space Shuttle Orbiter (SSO), external tank, and two solid rocket boosters) with a simpler two-body cluster (SSO and liquid rocket booster/external tank). At staging velocity, the booster unit (liquid-fueled booster engines and vehicle support structure) is jettisoned while the remaining SSO and supertank continues on to orbit. The simpler two-bodied cluster reduces the processing and stack time until SSO mate from 57 days (for the solid rocket booster) to 20 days (for the liquid rocket booster). The areas in which liquid booster systems are superior to solid rocket boosters are discussed. Alternative and future generation vehicles are reviewed to reveal greater performance and operations enhancements with more modifications to the current methods of propulsion design philosophy, e.g., combined cycle engines, and concentric propellant tanks.

  13. Liquid rocket booster integration study. Volume 3, part 1: Study products

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part one of the study products section of the five volume series.

  14. Little Joe Launch

    NASA Image and Video Library

    1959-10-04

    Launching of the LJ6 Little Joe on Oct. 4, 1959 took place at Wallops Island, Va. This was the first attempt to launch an instrumented capsule with a Little Joe booster. Only the LJ1A and the LJ6 used the space metal chevron plates as heat reflector shields, as they kept shattering. Caption title ...and ascending skyward on a plume of exhaust. Photograph published in Winds of Change, 75th Anniversary NASA publication, page 77, by James Schultz

  15. Space Shuttle Discovery Launch

    NASA Image and Video Library

    2008-05-31

    NASA Administrator, Michael Griffin watches the launch of the Space Shuttle Discovery (STS-124) from the Launch Control Center Saturday, May 31, 2008, at the Kennedy Space Center in Cape Canaveral, Fla. The Shuttle lifted off from launch pad 39A at 5:02 p.m. EDT. Photo Credit: (NASA/Bill Ingalls)

  16. Closeup view of the External Tank and Solid Rocket Boosters ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Close-up view of the External Tank and Solid Rocket Boosters at the Launch Pad at Kennedy Space Center. Note the Hydrogen Vent Arm extending out from the Fixed Service Structure at attached to the Intertank segment of the External Tank. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  17. Pyro thruster for performing rocket booster attachment, disconnect, and jettison functions

    NASA Technical Reports Server (NTRS)

    Hornyak, Stephen

    1989-01-01

    The concept of a pyro thruster, combining an automatic structural attachment with quick disconnect and thrusting capability, is described. The purpose of the invention is to simplify booster installation, disengagement, and jettison functions for the U.S. Air Force Advanced Launch Systems (ALS) program.

  18. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The one-man submarine dubbed DeepWorker 2000 sits on the deck of Liberty Star, one of two KSC solid rocket booster recovery ships. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  19. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    From the deck of Liberty Star, one of two KSC solid rocket booster recovery ships, a crane lowers a one-man submarine into the ocean near Cape Canaveral, Fla. Called DeepWorker 2000, the sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  20. Deep Space 1 is encapsulated on launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    On Launch Pad 17A at Cape Canaveral Air Station, released from its protective payload transportation container, Deep Space 1 waits to have the fairing attached before launch. Targeted for launch aboard a Boeing Delta 7326 rocket on Oct. 25, Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999.

  1. Space Launch System Advanced Development Office, FY 2013 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2013-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 34 separate tasks were funded by ADO in FY 2013.

  2. NASA's Space Launch System: Systems Engineering Approach for Affordability and Mission Success

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; Whitehead, Josh; Hanson, John

    2017-01-01

    NASA is working toward the first launch of a new, unmatched capability for deep space exploration, with launch readiness planned for 2018. The initial Block 1 configuration of the Space Launch System will more than double the mass and volume to Low Earth Orbit (LEO) of any launch vehicle currently in operation - with a path to evolve to the greatest capability ever developed. The program formally began in 2011. The vehicle successfully passed Preliminary Design Review (PDR) in 2013, Key Decision Point C (KDPC) in 2014 and Critical Design Review (CDR) in October 2015 - nearly 40 years since the last CDR of a NASA human-rated rocket. Every major SLS element has completed components of test and flight hardware. Flight software has completed several development cycles. RS-25 hotfire testing at NASA Stennis Space Center (SSC) has successfully demonstrated the space shuttle-heritage engine can perform to SLS requirements and environments. The five-segment solid rocket booster design has successfully completed two full-size motor firing tests in Utah. Stage and component test facilities at Stennis and NASA Marshall Space Flight Center are nearing completion. Launch and test facilities, as well as transportation and other ground support equipment are largely complete at NASA's Kennedy, Stennis and Marshall field centers. Work is also underway on the more powerful Block 1 B variant with successful completion of the Exploration Upper Stage (EUS) PDR in January 2017. NASA's approach is to develop this heavy lift launch vehicle with limited resources by building on existing subsystem designs and existing hardware where available. The systems engineering and integration (SE&I) of existing and new designs introduces unique challenges and opportunities. The SLS approach was designed with three objectives in mind: 1) Design the vehicle around the capability of existing systems; 2) Reduce work hours for nonhardware/ software activities; 3) Increase the probability of mission

  3. Aerogel Insulation Systems for Space Launch Applications

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.

    2005-01-01

    New developments in materials science in the areas of solution gelation processes and nanotechnology have led to the recent commercial production of aerogels. Concurrent with these advancements has been the development of new approaches to cryogenic thermal insulation systems. For example, thermal and physical characterizations of aerogel beads under cryogenic-vacuum conditions have been performed at the Cryogenics Test Laboratory of the NASA Kennedy Space Center. Aerogel-based insulation system demonstrations have also been conducted to improve performance for space launch applications. Subscale cryopumping experiments show the thermal insulating ability of these fully breathable nanoporous materials. For a properly executed thermal insulation system, these breathable aerogel systems are shown to not cryopump beyond the initial cooldown and thermal stabilization phase. New applications are being developed to augment the thermal protection systems of space launch vehicles, including the Space Shuttle External Tank. These applications include a cold-boundary temperature of 90 K with an ambient air environment in which both weather and flight aerodynamics are important considerations. Another application is a nitrogen-purged environment with a cold-boundary temperature of 20 K where both initial cooldown and launch ascent profiles must be considered. Experimental results and considerations for these flight system applications are discussed.

  4. Solid rocket motors for the Space Shuttle booster.

    NASA Technical Reports Server (NTRS)

    Odom, J. B.

    1972-01-01

    The evolution of the space shuttle booster system is reviewed from its initial concepts based on liquid-propellant reusable boosters to the final selection of recoverable, solid-fuel rocket motors. The rationale associated with each of the several major decisions in the evolution process is discussed. It is shown that the external tank orbiter configuration emerging from the latest studies takes maximum advantage of the solid rocket motor development experience and promises to be the optimum configuration for fulfilling the paramount shuttle program requirements of minimum total development risk within acceptable costs.

  5. Vibro-Acoustic Analysis of NASA's Space Shuttle Launch Pad 39A Flame Trench Wall

    NASA Technical Reports Server (NTRS)

    Margasahayam, Ravi N.

    2009-01-01

    A vital element to NASA's manned space flight launch operations is the Kennedy Space Center Launch Complex 39's launch pads A and B. Originally designed and constructed In the 1960s for the Saturn V rockets used for the Apollo missions, these pads were modified above grade to support Space Shuttle missions. But below grade, each of the pad's original walls (including a 42 feet deep, 58 feet wide, and 450 feet long tunnel designed to deflect flames and exhaust gases, the flame trench) remained unchanged. On May 31, 2008 during the launch of STS-124, over 3500 of the. 22000 interlocking refractory bricks that lined east wall of the flame trench, protecting the pad structure were liberated from pad 39A. The STS-124 launch anomaly spawned an agency-wide initiative to determine the failure root cause, to assess the impact of debris on vehicle and ground support equipment safety, and to prescribe corrective action. The investigation encompassed radar imaging, infrared video review, debris transport mechanism analysis using computational fluid dynamics, destructive testing, and non-destructive evaluation, including vibroacoustic analysis, in order to validate the corrective action. The primary focus of this paper is on the analytic approach, including static, modal, and vibro-acoustic analysis, required to certify the corrective action, and ensure Integrity and operational reliability for future launches. Due to the absence of instrumentation (including pressure transducers, acoustic pressure sensors, and accelerometers) in the flame trench, defining an accurate acoustic signature of the launch environment during shuttle main engine/solid rocket booster Ignition and vehicle ascent posed a significant challenge. Details of the analysis, including the derivation of launch environments, the finite element approach taken, and analysistest/ launch data correlation are discussed. Data obtained from the recent launch of STS-126 from Pad 39A was instrumental in validating the

  6. CFD Assessment of Forward Booster Separation Motor Ignition Overpressure on ET XT 718 Ice/Frost Ramp

    NASA Technical Reports Server (NTRS)

    Tejnil, Edward; Rogers, Stuart E.

    2012-01-01

    Computational fluid dynamics assessment of the forward booster separation motor ignition over-pressure was performed on the space shuttle external tank X(sub T) 718 ice/frost ramp using the flow solver OVERFLOW. The main objective of this study was the investigation of the over-pressure during solid rocket booster separation and its affect on the local pressure and air-load environments. Delta pressure and plume impingement were investigated as a possible contributing factor to the cause of the debris loss on shuttle missions STS-125 and STS-127. A simplified computational model of the Space Shuttle Launch Vehicle was developed consisting of just the external tank and the solid rocket boosters with separation motor nozzles and plumes. The simplified model was validated by comparison to full fidelity computational model of the Space Shuttle without the separation motors. Quasi steady-state plume solutions were used to calibrate the thrust of the separation motors. Time-accurate simulations of the firing of the booster-separation motors were performed. Parametric studies of the time-step size and the number of sub-iterations were used to find the best converged solution. The computed solutions were compared to previous OVERFLOW steady-state runs of the separation motors with reaction control system jets and to ground test data. The results indicated that delta pressure from the overpressure was small and within design limits, and thus was unlikely to have contributed to the foam losses.

  7. Assessment and forecasting of lightning potential and its effect on launch operations at Cape Canaveral Air Force Station and John F. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Weems, J.; Wyse, N.; Madura, J.; Secrist, M.; Pinder, C.

    1991-01-01

    Lightning plays a pivotal role in the operation decision process for space and ballistic launches at Cape Canaveral Air Force Station and Kennedy Space Center. Lightning forecasts are the responsibility of Detachment 11, 4th Weather Wing's Cape Canaveral Forecast Facility. These forecasts are important to daily ground processing as well as launch countdown decisions. The methodology and equipment used to forecast lightning are discussed. Impact on a recent mission is summarized.

  8. Launch Pad Activities

    NASA Image and Video Library

    1959-09-08

    Big Joe Capsule Launch Pad Activities: This film covers both the Big Joe and a Little Joe Project Mercury flight test with a research and development version of the Mercury capsule. Big Joe was an Atlas missile that successfully launched a boilerplate model of the Mercury capsule on September 9, 1959. The lower half of the capsule was created at NASA Lewis. The scenes include coverage of the assembly and erection of the boosters, delivery of the capsules, mating of the capsules to the boosters, prelaunch views of the capsule and boosters on launchers, mission control, the launches, and recovery.

  9. Launch - STS-6 - KSC

    NASA Image and Video Library

    1983-04-12

    S83-30222 (4 April 1983) --- The second reusable spacecraft in history successfully launches from Launch Pad 39A at 1:30:00:88 p.m. (EST) on April 4, 1983, and heads for its history making five-day mission in Earth orbit. The space shuttle Challenger, its two solid rocket boosters (SRB), and a new lightweight?external fuel tank were captured on film by an automatically-tripped camera in a protected station nearer to the launch pad than human beings are able to be at launch time. Onboard the spacecraft are astronauts Paul J. Wietz, Karol J. Bobko, Dr. Story Musgrave and Donald H. Peterson. Photo credit: NASA

  10. SpaceX Jason-3 Live Launch Broadcast - Part 1 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  11. SpaceX Jason-3 Live Launch Broadcast - Part 4 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  12. SpaceX Jason-3 Live Launch Broadcast - Part 3 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  13. SpaceX Jason-3 Live Launch Broadcast - Part 2 of 4

    NASA Image and Video Library

    2016-01-17

    At Space Launch Complex 4 at Vandenberg Air Force Base in California, a SpaceX Falcon 9 rocket launches the Jason-3 spacecraft into orbit for NOAA, the National Oceanic and Atmospheric Administration, and EUMETSAT, the European Organization for the Exploitation of Meteorological Satellites. Built by Thales Alenia of France, Jason-3 will measure the topography of the ocean surface for a four-agency international partnership consisting of NOAA, NASA, Centre National d’Etudes Spatiales, France’s space agency, and the European Organization for the Exploitation of Meteorological Satellites.

  14. Space shuttle: Longitudinal and lateral aerodynamic characteristics of the 0.0035-scale GD/C aerospace booster (B-15B-1)

    NASA Technical Reports Server (NTRS)

    Debevoise, J. M.; Mcginnis, R. F.

    1972-01-01

    Force tests on a 0.0035-scale model of the General Dynamics/Convair space shuttle B-15B-1 booster were conducted in the MSFC trisonic wind tunnel during February and March 1971. Longitudinal and lateral characteristics were obtained at Mach numbers from 0.6 to 4.96. The configuration tested had a low delta wing, all-movable canard controls of delta planform, and a single vertical tail. Most of the test was devoted to obtaining data relevant to the transition from atmospheric reentry to subsonic cruise. In that portion of the test the angles of attack ranged from 6 degrees to 60 degrees, and yaw runs were made at angles of attack of 15 and 35 degrees. The rest of the test was devoted to obtaining booster-alone buildup data relevant to the launch phase. For the launch phase, the Mach number range was from 0.6 to 2.0, the angles of attack were from -10 to +10 degrees, and yaw runs were made at zero angle of attack.

  15. Advanced transportation system study: Manned launch vehicle concepts for two way transportation system payloads to LEO. Program cost estimates document

    NASA Technical Reports Server (NTRS)

    Duffy, James B.

    1993-01-01

    This report describes Rockwell International's cost analysis results of manned launch vehicle concepts for two way transportation system payloads to low earth orbit during the basic and option 1 period of performance for contract NAS8-39207, advanced transportation system studies. Vehicles analyzed include the space shuttle, personnel launch system (PLS) with advanced launch system (ALS) and national launch system (NLS) boosters, foreign launch vehicles, NLS-2 derived launch vehicles, liquid rocket booster (LRB) derived launch vehicle, and cargo transfer and return vehicle (CTRV).

  16. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A Diver Operator Plug (DOP) is being pulled down into the ocean by a newly designed one-man submarine known as DeepWorker 2000. The activity is part of an operation to attach the plug to a mockup of a solid rocket booster nozzle. DeepWorker 2000 is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach the DOP to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  17. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    After a successful dive, the one-man submarine known as DeepWorker 2000 is lifted from Atlantic waters near Cape Canaveral, Fla., onto the deck of the Liberty Star, one of two KSC solid rocket booster recovery ships. Inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  18. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    At left, a manipulator arm on a one-man submarine demonstrates its ability to cut tangled parachute riser lines and place a Diver Operator Plug (top right) inside a mock solid rocket booster nozzle (center). Known as DeepWorker 2000, the sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach the DOP to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  19. NASA's Space Launch Transitions: From Design to Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce; Robinson, Kimberly

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block I, SLS will a minimum of 70 metric tons (t) of payload to low Earth orbit (LEO). It can evolve to a 130 t payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility. Renovations to the B-2 test stand for stage green run testing were completed at NASA Stennis Space Center. Core stage test stands are rising at NASA Marshall Space Flight Center. The modified Pegasus barge for core stage transportation from manufacturing

  20. Exploring the Solid Rocket Boosters and Properties of Matter

    NASA Technical Reports Server (NTRS)

    Moffett, Amy

    2007-01-01

    I worked for the United Space Alliance, LLC (USA) with the Solid Rocket Booster (SRB) Materials and Process engineers (M&P). I was assigned a project in which I needed to research and collect chemical and physical properties information, material safety data sheets (MSDS), and other product information from the vendor's websites and existing "inhouse" files for a select group of materials used in building and refurbishing the SRBs. This information was then compiled in a report that summarized the information collected. My work site was at the Kennedy Space Center (KSC). This allowed for many opportunities to visit and tour sites operated by NASA, by USA, and by the Air Force. This included the vehicle assembly building (VAB), orbital processing facilities (OPF), the crawler with the mobile launch pad (MLP), and the SRB assembly and refurbishment facility (ARF), to name a few. In addition, the launch, of STS- 117 took place within the first week of employment allowing a day by day following of that mission including post flight operations for the SRBs. Two Delta II rockets were also launched during these 7 weeks. The sights were incredible and the operations witnessed were amazing. I learned so many things I never knew about the entire program and the shuttle itself. The entire experience, especially my work with the SRB materials, inspired my plan for implementation into the classroom.

  1. Modular Approach to Launch Vehicle Design Based on a Common Core Element

    NASA Technical Reports Server (NTRS)

    Creech, Dennis M.; Threet, Grady E., Jr.; Philips, Alan D.; Waters, Eric D.; Baysinger, Mike

    2010-01-01

    With a heavy lift launch vehicle as the centerpiece of our nation's next exploration architecture's infrastructure, the Advanced Concepts Office at NASA's Marshall Space Flight Center initiated a study to examine the utilization of elements derived from a heavy lift launch vehicle for other potential launch vehicle applications. The premise of this study is to take a vehicle concept, which has been optimized for Lunar Exploration, and utilize the core stage with other existing or near existing stages and boosters to determine lift capabilities for alternative missions. This approach not only yields a vehicle matrix with a wide array of capabilities, but also produces an evolutionary pathway to a vehicle family based on a minimum development and production cost approach to a launch vehicle system architecture, instead of a purely performance driven approach. The upper stages and solid rocket booster selected for this study were chosen to reflect a cross-section of: modified existing assets in the form of a modified Delta IV upper stage and Castor-type boosters; potential near term launch vehicle component designs including an Ares I upper stage and 5-segment boosters; and longer lead vehicle components such as a Shuttle External Tank diameter upper stage. The results of this approach to a modular launch system are given in this paper.

  2. NASA on a Strong Roll in Preparing Space Launch System Flight Engines

    NASA Image and Video Library

    2017-08-09

    NASA is on a roll when it comes to testing engines for its new Space Launch System (SLS) rocket that will send astronauts to deep-space destinations, including Mars. Just two weeks after the third test of a new RS-25 engine flight controller, the space agency recorded its fourth full-duration controller test Aug. 9 at Stennis Space Center near Bay St. Louis, Mississippi. Engineers conducted a 500-second test of the RS-25 engine controller on the A-1 Test Stand at Stennis. The test involved installing the controller on an RS-25 development engine and firing it in the same manner, and for the same length of time, as needed during an actual SLS launch. The test marked another milestone toward launch of the first integrated flight of the SLS rocket and Orion crew vehicle. Exploration Mission-1 will be an uncrewed mission into lunar orbit, designed to provide a final check-out test of rocket and Orion capabilities before astronauts are returned to deep space. The SLS rocket will be powered at launch by four RS-25 engines, providing a combined 2 million pounds of thrust, and with a pair of solid rocket boosters, providing more than 8 million pounds of total thrust. The RS-25 engines for the initial SLS flights are former space shuttle main engines that are now being used to launch the larger and heavier SLS rocket and with the new controller. The controller is a critical component that operates as the engine “brain” that communicates with SLS flight computers to receive operation performance commands and to provide diagnostic data on engine health and status. Engineers conducted early prototype tests at Stennis to collect data for development of the new controller by NASA, RS-25 prime contractor Aerojet Rocketdyne and subcontractor Honeywell. Testing of actual flight controllers began at Stennis in March. NASA is testing all controllers and engines designated for the EM-1 flight at Stennis. It also will test the SLS core stage for the flight at Stennis, which will

  3. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Space launch vehicles develop day-of-launch steering commands based upon the upper-level atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, upper-level wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA's) Kennedy Space Center co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution rawinsondes. One inherent limitation with rawinsondes consists of taking approximately one hour to generate a vertically complete wind profile. Additionally, rawinsonde drift during ascent by the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during rawinsonde ascent as a function of season and discuss an alternative method to measure upper level wind environments in closer proximity to the vehicle trajectory launching from the ER.

  4. Analysis of Rawinsonde Spatial Separation for Space Launch Vehicle Applications at the Eastern Range

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.

    2017-01-01

    Space launch vehicles use day-of-launch steering commands based upon the upper-level (UL) atmospheric environments in order to alleviate wind induced structural loading and optimize ascent trajectory. Historically, UL wind measurements to support launch operations at the National Aeronautics and Space Administration's (NASA) Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station use high-resolution (HR) rawinsondes. One inherent limitation with rawinsondes is the approximately one-hour sampling time necessary to measure tropospheric winds. Additionally, rawinsonde drift during ascent due to the ambient wind environment can result in the balloon being hundreds of kilometers down range, which results in questioning whether the measured winds represent the wind environment the vehicle will experience during ascent. This paper will describe the use of balloon profile databases to statistically assess the drift distance away from the ER launch complexes during HR rawinsonde ascent as a function of season. Will also discuss an alternative method to measure UL wind environments in closer proximity to the vehicle trajectory when launching from the ER.

  5. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will start its missions in 2017 with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the capability of SLS to meet those requirements and enable those missions. It will explain how the SLS Program is executing this development within flat budgetary guidelines by using existing engines assets and developing advanced technology based on heritage systems, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. It will also detail the significant progress that has already been made toward its first launch in 2017. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they will need for extended trips to explore new frontiers. In addition, this paper will summarize the SLS rocket's capability to support science and robotic precursor missions to other worlds, or uniquely high-mass space facilities in Earth orbit. As this paper will explain, the SLS is making measurable progress toward becoming a global

  6. Reusable Boosters in a European-Russian Perspective

    NASA Astrophysics Data System (ADS)

    Deneu, François; Ramiandrasoa, Fabienne

    2002-01-01

    In 2001, EADS and Khrunichev SRPSC have initiated and carried out a working group devoted to the analysis of potential common studies and developments in the field of space activities. This working group came up with several propositions of interest, among which, the use of reusable boosters issued from Khrunichev previous design appeared to be promising when applied to heavy type launchers. Although the results required to be confirmed by detailed studies prior to final conclusions, preliminary studies have shown the interest of Ariane 5 configurations using such reusable booster in view of reducing the specific and launch cost as well as potentially increasing the performance. In November 2001, EADS and KHRUNICHEV SRPSC have started a study on an Ariane 5 plus reusable boosters configuration. This study aims at obtaining a better understanding of the advantages and drawbacks attached to such a use. Technical feasibility is more in depth analysed, with all recurring and not recurring aspects (including launch infrastructure modifications). Programmatic aspects are also addressed in order to better assess potential economic advantages and unavoidable drawbacks. Beyond that the identification of what could be, for western Europe and Russian players, an efficient and pay- off industrial organisation, is also a study theme of importance. This papers intends to present the main results achieved within this study and the propositions for the future which are likely to provide western Europe and Russia with stronger positions in the competitive field of launch business.

  7. STS-99 RSS rollback from Space Shuttle Endeavour on Launch Pad 39A

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Just after sundown, the Rotating Service Structure is rolled back to reveal Space Shuttle Endeavour, mated with its solid rocket boosters (left and right) and external tank (center), poised for launch on mission STS-99. Known as the Shuttle Radar Topography Mission (SRTM), STS-99 is scheduled to lift off 12:47 p.m. EST from Launch Pad 39A. The SRTM will chart a new course to produce unrivaled 3-D images of the Earth's surface, using two antennae and a 200-foot-long section of space station-derived mast protruding from the payload bay. The result of the Shuttle Radar Topography Mission could be close to 1 trillion measurements of the Earth's topography. Besides contributing to the production of better maps, these measurements could lead to improved water drainage modeling, more realistic flight simulators, better locations for cell phone towers, and enhanced navigation safety. The mission is expected to last about 11days, with Endeavour landing at KSC Friday, Feb. 11, at 4:55 p.m. EST.

  8. Space Shuttle Solid Rocket Booster Decelerator Subsystem Drop Test 3 - Anatomy of a failure

    NASA Technical Reports Server (NTRS)

    Runkle, R. E.; Woodis, W. R.

    1979-01-01

    A test failure dramatically points out a design weakness or the limits of the material in the test article. In a low budget test program, with a very limited number of tests, a test failure sparks supreme efforts to investigate, analyze, and/or explain the anomaly and to improve the design such that the failure will not recur. The third air drop of the Space Shuttle Solid Rocket Booster Recovery System experienced such a dramatic failure. On air drop 3, the 54-ft drogue parachute was totally destroyed 0.7 sec after deployment. The parachute failure investigation, based on analysis of drop test data and supporting ground element test results is presented. Drogue design modifications are also discussed.

  9. Liquid rocket booster integration study. Volume 3: Study products. Part 2: Sections 8-19

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The impacts of introducing liquid rocket booster engines (LRB) into the Space Transportation System (STS)/Kennedy Space Center (KSC) launch environment are identified and evaluated. Proposed ground systems configurations are presented along with a launch site requirements summary. Prelaunch processing scenarios are described and the required facility modifications and new facility requirements are analyzed. Flight vehicle design recommendations to enhance launch processing are discussed. Processing approaches to integrate LRB with existing STS launch operations are evaluated. The key features and significance of launch site transition to a new STS configuration in parallel with ongoing launch activities are enumerated. This volume is part two of the study products section of the five volume series.

  10. Orbit decay analysis of STS upper stage boosters

    NASA Technical Reports Server (NTRS)

    Graf, O. F., Jr.; Mueller, A. C.

    1979-01-01

    An orbit decay analysis of the space transportation system upper stage boosters is presented. An overview of the computer trajectory programs, DSTROB, algorithm is presented. Atmospheric drag and perturbation models are described. The development of launch windows, such that the transfer orbit will decay within two years, is discussed. A study of the lifetimes of geosynchronous transfer orbits is presented.

  11. Launch Pad Flame Trench Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  12. Advanced aviation technology for reusable launch vehicle improvement

    NASA Astrophysics Data System (ADS)

    Filatyev, Alexander S.; Buzuluk, Valentin; Yanova, Olga; Ryabukha, Nikolay; Petrov, Andrey

    2014-07-01

    The new project of a spacecraft launcher (SL) with reusable winged 1st stage boosters (RWB) developed by Khrunichev Space Center is considered. Since SL is operated in the atmosphere only, it makes sense to employ technologies which may be new for the space industry but have been applied in aviation. Particular attention is given to RWB power-off reentry to a suitable airfield along the ascent lane instead of direct flying back to the launch site after staging, as well as a profound controlled RWB reconfiguration before reentry. The paper talks about results of integrated analysis of aerodynamics, through-optimized trajectories and masses of the RWB and SL, as well as an expert assessment of the maintenance costs sufficient to substantiate effectiveness of the recovery airfields solution in terms of the payload mass, launch reliability, and operational costs reduction. Four RWB layouts are considered, including ones with a delta- and unswept tilting wing, with and without subsonic air-breathing engines, and the original RWB-transformer. Objective peculiarities of the RWB recovery are highlighted for Russian and Kourou cosmodromes.

  13. Space Launch System Base Heating Test: Experimental Operations & Results

    NASA Technical Reports Server (NTRS)

    Dufrene, Aaron; Mehta, Manish; MacLean, Matthew; Seaford, Mark; Holden, Michael

    2016-01-01

    NASA's Space Launch System (SLS) uses four clustered liquid rocket engines along with two solid rocket boosters. The interaction between all six rocket exhaust plumes will produce a complex and severe thermal environment in the base of the vehicle. This work focuses on a recent 2% scale, hot-fire SLS base heating test. These base heating tests are short-duration tests executed with chamber pressures near the full-scale values with gaseous hydrogen/oxygen engines and RSRMV analogous solid propellant motors. The LENS II shock tunnel/Ludwieg tube tunnel was used at or near flight duplicated conditions up to Mach 5. Model development was based on the Space Shuttle base heating tests with several improvements including doubling of the maximum chamber pressures and duplication of freestream conditions. Test methodology and conditions are presented, and base heating results from 76 runs are reported in non-dimensional form. Regions of high heating are identified and comparisons of various configuration and conditions are highlighted. Base pressure and radiometer results are also reported.

  14. Five-Segment Reusable Solid Rocket Booster Upgrade

    NASA Technical Reports Server (NTRS)

    Sauvageau, Don

    1999-01-01

    The Five Segment Reusable Solid Rocket Booster (RSRB) feasibility status is presented in viewgraph form. The Five Segment Booster (FSB) objective is to provide a low cost, low risk approach to increase reliability and safety of the Shuttle system. Topics include: booster upgrade requirements; design summary; reliability issues; booster trajectories; launch site assessment; and enhanced abort modes.

  15. Chinese modify CZ-2/3 rocket boosters, focus on commercial launch market

    NASA Astrophysics Data System (ADS)

    Covault, C.

    1985-07-01

    A program underway in the People's Republic of China to modify the Titan-class CZ-2/3 satellite-launch and ICBM boosters is described on the basis of a recent visit to the manufacturing plant in Shanghai. The present two-stage CZ-2 and three-stage CZ-3 can place 5000 lbs in LEO or 3080 lbs in GEO, respectively, and are produced on a custom basis with a delivery time of about 2 yrs. Modifications introduced include 4 x 6-ft fins and a pogo-suppression system for the four-engine first stage and a steel support band for the combustion chamber of the 80-ton-thrust second-stage main engine.

  16. Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    NASA Technical Reports Server (NTRS)

    Leadbetter, S. A.; Stephens, W.; Sewall, J. L.; Majka, J. W.; Barret, J. R.

    1976-01-01

    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results.

  17. Why Major Programs Need Innovation Support Labs: An Example from the Space Shuttle Launch Program at KSC

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Starr, Stanley O.; Stevenson, G.; Rivera, Jorge E.; Sullivan, Steven J.

    2011-01-01

    For over 30 years the Kennedy Space Center (KSC) has processed the Space Shuttle; handling all hands-on aspects from receiving the Orbiter, External Tanks, Solid Rocket Booster Segments, and Payloads, through certification, check-out, and assembly, and ending with fueling, count-down, and launch. A team of thousands have worked this highly complicated, yet supremely organized, process and have, as a consequence, generated an exceptional amount of technology to solve a host of problems. This paper describes the contributions of one team that formed with the express purpose to help solve some of these diverse Shuttle ground processing problems.

  18. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this side view of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry

  19. Ten-year space launch technology plan

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document is the response to the National Space Policy Directive-4 (NSPD-4), signed by the President on 10 Jul. 1991. Directive NSPD-4 calls upon the Department of Defense (DoD), the Department of Energy (DOE), and the National Aeronautics and Space Administration (NASA) to coordinate national space launch technology efforts and to jointly prepare a 10-year space launch technology plan. The nation's future in space rests on the strength of its national launch technology program. This plan documents our current launch technology efforts, plans for future initiatives in this arena, and the overarching philosophy that links these activities into an integrated national technology program.

  20. A new one-man submarine is tested as vehicle for solid rocket booster retrieval

    NASA Technical Reports Server (NTRS)

    2000-01-01

    - The one-man submarine known as DeepWorker 2000 is tested in Atlantic waters near Cape Canaveral, Fla. Nearby are divers; inside the sub is the pilot, Anker Rasmussen. The sub is being tested on its ability to duplicate the sometimes hazardous job United Space Alliance (USA) divers perform to recover the expended boosters in the ocean after a launch. The boosters splash down in an impact area about 140 miles east of Jacksonville and after recovery are towed back to KSC for refurbishment by the specially rigged recovery ships. DeepWorker 2000 will be used in a demonstration during retrieval operations after the upcoming STS-101 launch. The submarine pilot will demonstrate capabilities to cut tangled parachute riser lines using a manipulator arm and attach a Diver Operator Plug to extract water and provide flotation for the booster. DeepWorker 2000 was built by Nuytco Research Ltd., North Vancouver, British Columbia. It is 8.25 feet long, 5.75 feet high, and weighs 3,800 pounds. USA is a prime contractor to NASA for the Space Shuttle program.

  1. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  2. Soyuz Spacecraft Transported to Launch Pad

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: 'NASA/Bill Ingalls'

  3. WESTAR-V launch on delta

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The WESTAR-V, the second in a series of second-generation, large, 24-transponder communications satellites developed for the Space Communications Company is discussed. It is scheduled to be launched on a Delta vehicle from the Eastern Space and Missile Center no earlier than June 8, 1982. The launch support for this mission will be provided by NASA, on a reimbursable basis, to the Space Communications Company for a fixed price of $25.OM. The launch vehicle for the WESTAR-V mission will be the Delta 3910 configuration which incorporates an extended long tank Thor booster, nine Castor IV strap-on motors, a TR-201 second stage, and an 8-foot fairing. The Delta launch vehicle will place the spacecraft along a suborbital trajectory. The PAM-D stage will then thrust it to a synchronous transfer orbit. Three days after launch, the spacecraft apogee kick motor will be fired to circularize its orbit at geosynchronous altitude of 19,300 NM above the equator at approxmately 75 degrees west longitude.

  4. NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable, Exploration

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2014-01-01

    Development of NASA's Space Launch System (SLS) exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated December 2017. SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. For the United States current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. This version will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. SLS is designed to evolve to a 130 t lift capability that can reduce mission costs, simplify payload design, reduce trip times, and lower overall risk. Each vehicle element completed its respective Preliminary Design Reviews, followed by the SLS Program. The Program also completed the Key Decision Point-C milestone to move from formulation to implementation in 2014. NASA hasthorized the program to proceed to Critical Design Review, scheduled for 2015. Accomplihments to date include: manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. This paper will discuss SLS Program successes over the past year and examine milestones and challenges ahead. The SLS Program and its elements are managed at NASA's Marshall Space Flight Center (MSFC).

  5. Recommendations for a wind profiling network to support Space Shuttle launches

    NASA Technical Reports Server (NTRS)

    Zamora, R. J.

    1992-01-01

    The feasibility is examined of a network of clear air radar wind profilers to forecast wind conditions before Space Shuttle launches during winter. Currently, winds are measured only in the vicinity of the shuttle launch site and wind loads on the launch vehicle are estimated using these measurements. Wind conditions upstream of the Cape are not monitored. Since large changes in the wind shear profile can be associated with weather systems moving over the Cape, it may be possible to improve wind forecasts over the launch site if wind measurements are made upstream. A radar wind profiling system is in use at the Space Shuttle launch site. This system can monitor the wind profile continuously. The existing profiler could be combined with a number of radars located upstream of the launch site. Thus, continuous wind measurements would be available upstream and at the Cape. NASA-Marshall representatives have set the requirements for radar wind profiling network. The minimum vertical resolution of the network must be set so that the wind shears over the depths greater than or = 1 km will be detected. The network should allow scientists and engineers to predict the wind profile over the Cape 6 hours before a Space Shuttle launch.

  6. Performing a Launch Depressurization Test on an Inflatable Space Habitat

    NASA Technical Reports Server (NTRS)

    Martin, Patrick J.; Van Velzer, Paul

    2014-01-01

    In July, 2014 JPL's Environmental Test Laboratory successfully performed a launch depressurization test on an inflatable space habitat proposed to be installed on the International Space Station. The inflatable habitat is to be launched in the SpaceX Dragon Trunk. During the launch, the unpressurized Dragon Trunk will rapidly change from ground level atmospheric pressure to the vacuum of space. Since the inflatable habitat is tightly folded during launch with multiple layers of bladder, Kevlar fabric sections, and micro-meteoroid shielding, it was not possible to analyze or simulate how the residual air pockets would behave during the launch. If the inflatable habitat does not vent adequately and expands, it could rupture the payload bay of the launch vehicle. A launch depressurization test was chosen as the best way to qualify the inflatable habitat. When stowed, the inflatable habitat measured approximately 241 cm (95 inches) in diameter by 152 cm (60 inches) high and weighed close to 1361 kg (3,000 pounds). Two vacuum chambers connected by a large vacuum line were used to perform this test. The inflatable habitat was mounted in the smaller chamber, which was 396 cm (13 feet) in diameter and 1128 cm (37 feet) high. The larger chamber, which was 823 cm (27 feet) in diameter and 2,591 cm (85 feet) high, was rough pumped and used as a vacuum reservoir. A two stage axial type compressor and ten Stokes vacuum pumps were also used during the depressurization. Opening a butterfly valve on the vacuum line, at the smaller chamber, was manually controlled so that the smaller chamber's depressurization rate matched the launch pressure profile.

  7. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The configuration of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, attached to a Pegasus launch vehicle is displayed in this three-foot-long model at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43

  8. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- United Space Alliance SRB technician Richard Bruns attaches a cable end cover to a cable pulled from the solid rocket booster on Space Shuttle Atlantis. The Shuttle was rolled back from Launch Pad 39A in order to conduct tests on the SRB cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  9. Orbital Payload Reductions Resulting from Booster and Trajectory Modifications for Recovery of a Large Rocket Booster

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Hopkins, Edward J.

    1961-01-01

    An analysis was made to determine the reduction in payload for a 300 nautical mile orbit resulting from the addition of inert weight, representing recovery gear, to the first-stage booster of a three-stage rocket vehicle. The values of added inert weight investigated ranged from 0 to 18 percent of gross weight at lift off. The study also included the effects on the payload in orbit and the distance from the launch site at burnout and at impact caused by variation in the vertical rise time before the programmed tilt. The vertical rise times investigated ranged from 16-7 to 100 percent of booster burning time. For a vertical rise of 16.7 percent of booster burning time it was found that a 50-percent increase in the weight of the empty booster resulted in only a 10-percent reduction of the payload in orbit. For no added booster weight, increasing vertical rise time from 16-7 to 100 percent of booster burning time (so that the spent booster would impact in the launch area) reduced the payload by 37 percent. Increasing the vertical rise time from 16-7 to 50 percent of booster burning time resulted in about a 15-percent reduction in the impact distance, and for vertical rise times greater than 50-percent the impact distance decreased rapidly.

  10. SpaceX CRS-11 Launch Coverage

    NASA Image and Video Library

    2017-06-03

    NASA Television conducted a live broadcast from Kennedy Space Center as SpaceX’s CRS-11 launched atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft will deliver almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The crucial materials will directly support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. Launch commentary conducted by: -Mike Curie, NASA Launch Commentator -Tori McLendon, NASA Communications Special guests included: -Derrick Matthews, NASA Communications -Kirk Shireman, ISS Program -Amanda Griffin, NASA Communications -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Robert Lightfoot, NASA Acting Administrator -Jeremy Banik, Principal Investigator, ROSA -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX

  11. Launch, Jupiter-C, Explorer 1

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. After the Vanguard rocket exploded on the pad in December 1957, the ability to orbit a satellite became a matter of national prestige. On January 31, 1958, slightly more than four weeks after the launch of Sputnik.The ABMA (Army Ballistic Missile Agency) in Redstone Arsenal, Huntsville, Alabama, in cooperation with the Jet Propulsion Laboratory, launched a Jupiter from Cape Canaveral, Florida. The rocket consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  12. Peak Wind Forecasts for the Launch-Critical Wind Towers on Kennedy Space Center/Cape Canaveral Air Force Station, Phase IV

    NASA Technical Reports Server (NTRS)

    Crawford, Winifred

    2011-01-01

    This final report describes the development of a peak wind forecast tool to assist forecasters in determining the probability of violating launch commit criteria (LCC) at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The peak winds arc an important forecast clement for both the Space Shuttle and Expendable Launch Vehicle (ELV) programs. The LCC define specific peak wind thresholds for each launch operation that cannot be exceeded in order to ensure the safety of the vehicle. The 45th Weather Squadron (45 WS) has found that peak winds are a challenging parameter to forecast, particularly in the cool season months of October through April. Based on the importance of forecasting peak winds, the 45 WS tasked the Applied Meteorology Unit (AMU) to update the statistics in the current peak-wind forecast tool to assist in forecasting LCC violations. The tool includes onshore and offshore flow climatologies of the 5-minute mean and peak winds and probability distributions of the peak winds as a function of the 5-minute mean wind speeds.

  13. SpaceX Falcon Heavy Demo Flight - Booster Separation

    NASA Image and Video Library

    2018-02-06

    The SpaceX Falcon Heavy rocket’s two side cores separate from the center core as the vehicle performs its demonstration flight. The rocket lifted off at 3:45 p.m. EST from Launch Complex 39A at NASA's Kennedy Space Center in Florida. This is a significant milestone for the world's premier multi-user spaceport. In 2014, NASA signed a property agreement with SpaceX for the use and operation of the center's pad 39A, where the company has launched Falcon 9 rockets and prepared for the first Falcon Heavy. NASA also has Space Act Agreements in place with partners, such as SpaceX, to provide services needed to process and launch rockets and spacecraft.

  14. Space shuttle solid rocket booster recovery system definition, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The performance requirements, preliminary designs, and development program plans for an airborne recovery system for the space shuttle solid rocket booster are discussed. The analyses performed during the study phase of the program are presented. The basic considerations which established the system configuration are defined. A Monte Carlo statistical technique using random sampling of the probability distribution for the critical water impact parameters was used to determine the failure probability of each solid rocket booster component as functions of impact velocity and component strength capability.

  15. Launch Vehicles

    NASA Image and Video Library

    2007-09-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, the first stage reentry 1/2% model is undergoing pressure measurements inside the wind tunnel testing facility at MSFC. (Highest resolution available)

  16. Electrets used in measuring rocket exhaust effluents from the space shuttle's solid rocket booster during static test firing, DM-3

    NASA Technical Reports Server (NTRS)

    Susko, M.

    1979-01-01

    The purpose of this experimental research was to compare Marshall Space Flight Center's electrets with Thiokol's fixed flow air samplers during the Space Shuttle Solid Rocket Booster Demonstration Model-3 static test firing on October 19, 1978. The measurement of rocket exhaust effluents by Thiokol's samplers and MSFC's electrets indicated that the firing of the Solid Rocket Booster had no significant effect on the quality of the air sampled. The highest measurement by Thiokol's samplers was obtained at Plant 3 (site 11) approximately 8 km at a 113 degree heading from the static test stand. At sites 11, 12, and 5, Thiokol's fixed flow air samplers measured 0.0048, 0.00016, and 0.00012 mg/m3 of CI. Alongside the fixed flow measurements, the electret counts from X-ray spectroscopy were 685, 894, and 719 counts. After background corrections, the counts were 334, 543, and 368, or an average of 415 counts. An additional electred, E20, which was the only measurement device at a site approximately 20 km northeast from the test site where no power was available, obtained 901 counts. After background correction, the count was 550. Again this data indicate there was no measurement of significant rocket exhaust effluents at the test site.

  17. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), workers place an anti-static blanket over the lower portion of Deep Space 1, to protect the spacecraft during transport to the launch pad. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  18. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated

  19. Achieving Space Shuttle ATO Using the Five-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; McCool, Alex (Technical Monitor)

    2001-01-01

    As part of the continuing effort to identify approaches to improve the safety and reliability of the Space Shuttle system, a Five-Segment Booster (FSB) design was conceptualized as a replacement for the current Space Shuttle boosters. The FSB offers a simple, unique approach to improve astronaut safety and increase performance margin. To determine the feasibility of the FSB, a Phase A study effort was sponsored by NASA and directed by the Marshall Space Flight Center. This study was initiated in March of 1999 and completed in December of 2000. The basic objective of this study was to assess the feasibility of the FSB design concept and also estimate the cost and scope of a full-scale development program for the FSB. In order to ensure an effective and thorough evaluation of the FSB concept, four team members were put on contract to support various areas of importance in assessing the overall feasibility of the design approach.

  20. Hyper-X and Pegasus Launch Vehicle: A Three-Foot Model of the Hypersonic Experimental Research Vehic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A close-up view of the X-43A Hypersonic Experimental Research Vehicle, or Hyper-X, portion of a three-foot-long model of the vehicle/booster combination at NASA's Dryden Flight Research Center, Edwards, California. Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will be able to carry heavier payloads. Another unique aspect of the X-43A vehicle is

  1. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- NASA and United Space Alliance SRB technicians hook up solid rocket booster cables to a Cirris Signature Touch 1 cable tester. From left are Loren Atkinson and Steve Swichkow, with NASA, and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  2. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- In the Vehicle Assembly Building, United Space Alliance SRB technician Frank Meyer pulls cables out of the solid rocket booster system tunnel. Cable end covers are in a box near his feet. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  3. NASA's Space Launch System Takes Shape: Progress Toward Safe, Affordable Exploration

    NASA Technical Reports Server (NTRS)

    Askins, Bruce

    2014-01-01

    Development of NASA's Space Launch System exploration-class heavy lift rocket has moved from the formulation phase to implementation in 3 years and will make significant progress this year toward its first launch, slated for December 2017. In recognition of the current fiscal realities, SLS represents a safe, affordable, and evolutionary path to development of an unprecedented capability for future human and robotic exploration and use of space. Current development is focused on a configuration with a 70 metric ton (t) payload to low Earth orbit (LEO), more than double any operational vehicle. It is this version that will launch NASA's Orion Multi-Purpose Crew Vehicle (MPCV) on its first autonomous flight beyond the Moon and back, as well as the first crewed Orion flight. This configuration is also designed to evolve to 130 t lift capability that offers several benefits, such as reduced mission costs, simplified payload design, faster trip times, and lower overall risk for missions of national significance. The SLS Program formally transitioned from the formulation phase to implementation during the past year, passing its Preliminary Design Review in 2013 and completion of Key Decision Point C in early 2014. NASA has authorized the Program to move forward to Critical Design Review, scheduled for 2015. Among the Program's many accomplishments are manufacture of core stage test hardware, as well as preparations for testing the world's most powerful solid rocket boosters and the main engines that flew 135 successful Space Shuttle missions. The Program's success to date is due to prudent use of existing technology, infrastructure, and workforce; streamlined management approach; and judicious use of new technologies. The result is a launch vehicle that will carry human and robotic exploration on the history-making missions in the coming decades. This paper will discuss the program and technical successes over the past year and provide a look at the milestones and

  4. Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment

    NASA Technical Reports Server (NTRS)

    Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.

    2005-01-01

    Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were

  5. Space Logistics: Launch Capabilities

    NASA Technical Reports Server (NTRS)

    Furnas, Randall B.

    1989-01-01

    The current maximum launch capability for the United States are shown. The predicted Earth-to-orbit requirements for the United States are presented. Contrasting the two indicates the strong National need for a major increase in Earth-to-orbit lift capability. Approximate weights for planned payloads are shown. NASA is studying the following options to meet the need for a new heavy-lift capability by mid to late 1990's: (1) Shuttle-C for near term (include growth versions); and (2) the Advanced Lauching System (ALS) for the long term. The current baseline two-engine Shuttle-C has a 15 x 82 ft payload bay and an expected lift capability of 82,000 lb to Low Earth Orbit. Several options are being considered which have expanded diameter payload bays. A three-engine Shuttle-C with an expected lift of 145,000 lb to LEO is being evaluated as well. The Advanced Launch System (ALS) is a potential joint development between the Air Force and NASA. This program is focused toward long-term launch requirements, specifically beyond the year 2000. The basic approach is to develop a family of vehicles with the same high reliability as the Shuttle system, yet offering a much greater lift capability at a greatly reduced cost (per pound of payload). The ALS unmanned family of vehicles will provide a low end lift capability equivalent to Titan IV, and a high end lift capability greater than the Soviet Energia if requirements for such a high-end vehicle are defined.In conclusion, the planning of the next generation space telescope should not be constrained to the current launch vehicles. New vehicle designs will be driven by the needs of anticipated heavy users.

  6. Booster propulsion/vehicle impact study

    NASA Technical Reports Server (NTRS)

    Weldon, Vincent; Dunn, Michael; Fink, Lawrence; Phillips, Dwight; Wetzel, Eric

    1988-01-01

    The use of hydrogen RP-1, propane, and methane as fuels for booster engines of launch vehicles is discussed. An automated procedure for integrated launch vehicle, engine sizing, and design optimization was used to define two stage and single stage concepts for minimum dry weight. The two stage vehicles were unmanned and used a flyback booster and partially reusable orbiter. The single stage designs were fully reusable, manned flyback vehicles. Comparisons of these vehicle designs, showing the effects of using different fuels, as well as sensitivity and trending data, are presented. In addition, the automated design technique utilized for the study is described.

  7. Preliminary 2-D shell analysis of the space shuttle solid rocket boosters

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Gillian, Ronnie E.; Nemeth, Michael P.

    1987-01-01

    A two-dimensional shell model of an entire solid rocket booster (SRB) has been developed using the STAGSC-1 computer code and executed on the Ames CRAY computer. The purpose of these analyses is to calculate the overall deflection and stress distributions for the SRB when subjected to mechanical loads corresponding to critical times during the launch sequence. The mechanical loading conditions for the full SRB arise from the external tank (ET) attachment points, the solid rocket motor (SRM) pressure load, and the SRB hold down posts. The ET strut loads vary with time after the Space Shuttle main engine (SSME) ignition. The SRM internal pressure varies axially by approximately 100 psi. Static analyses of the full SRB are performed using a snapshot picture of the loads. The field and factory joints are modeled by using equivalent stiffness joints instead of detailed models of the joint. As such, local joint behavior cannot be obtained from this global model.

  8. Space Transportation Booster Engine (STBE) configuration study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The overall objective of this Space Transportation Booster Engine (STBE) study is to identify candidate engine configurations which enhance vehicle performance and provide operational flexibility at low cost. The specific objectives are as follows: (1) to identify and evaluate candidate LOX/HC engine configurations for the Advanced Space Transportation System for an early 1995 IOC and a late 2000 IOC; (2) to select one optimum engine for each time period; 3) to prepare a conceptual design for each configuration; (4) to develop a technology plan for the 2000 IOC engine; and, (5) to prepare preliminary programmatic planning and analysis for the 1995 IOC engine.

  9. NASA's Space Launch System Program Update

    NASA Technical Reports Server (NTRS)

    May, Todd; Lyles, Garry

    2015-01-01

    Hardware and software for the world's most powerful launch vehicle for exploration is being welded, assembled, and tested today in high bays, clean rooms and test stands across the United States. NASA's Space Launch System (SLS) continued to make significant progress in 2014 with more planned for 2015, including firing tests of both main propulsion elements and the program Critical Design Review (CDR). Developed with the goals of safety, affordability, and sustainability, SLS will still deliver unmatched capability for human and robotic exploration. The initial Block 1 configuration will deliver more than 70 metric tons of payload to low Earth orbit (LEO). The evolved Block 2 design will deliver some 130 metric tons to LEO. Both designs offer enormous opportunity and flexibility for larger payloads, simplifying payload design as well as ground and on-orbit operations, shortening interplanetary transit times, and decreasing overall mission risk. Over the past year, every vehicle element has manufactured or tested hardware. An RS-25 liquid propellant engine was hotfire-tested at NASA's Stennis Space Center, Miss. for the first time since 2009 exercising and validating the new engine controller, the renovated A-1 test stand, and the test teams. Four RS-25s will power the SLS core stage. A qualification five-segment solid rocket motor incorporating several design, material, and process changes was scheduled to be test-fired in March at the prime contractor's facility in Utah. The booster also successfully completed its Critical Design Review (CDR) validating the planned design. All six major manufacturing tools for the core stage are in place at the Michoud Assembly Facility in Louisiana, and have been used to build numerous pieces of confidence, qualification, and even flight hardware, including barrel sections, domes and rings used to assemble the world's largest rocket stage. SLS Systems Engineering accomplished several key tasks including vehicle avionics software

  10. Pad Safety Personnel Launch Support For STS-200

    NASA Technical Reports Server (NTRS)

    Guarino, Jennifer

    2007-01-01

    The launch of a space shuttle is a complex and lengthy procedure. There are many places and components to look at and prepare. The components are the orbiter, solid rocket boosters, external tank, and ground equipment. Some of the places are the launch pad, fuel locations, and surrounding structures. Preparations for a launch include equipment checks, system checks, sniff checks for hazardous commodities, and countless walkdowns. Throughout these preparations, pad safety personnel must always be on call. This requires three shifts of multiple people to be ready when needed. Also, the pad safety personnel must be available for the non-launch tasks that are always present for both launch pads

  11. Apollo 6 unmanned space mission launch

    NASA Image and Video Library

    1968-04-04

    S68-27364 (4 April 1968) --- The Apollo 6 (Spacecraft 020/Saturn 502) unmanned space mission was launched from Pad A, Launch Complex 39, Kennedy Space Center (KSC), Florida. The liftoff of the huge Apollo/Saturn V space vehicle occurred at 7:00:01.5 a.m. (EST), April 4, 1968.

  12. 66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. DETAIL OF LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS IN CONSOLE LOCATED CENTRALLY IN SLC-3E CONTROL ROOM. FROM LEFT TO RIGHT IN BACKGROUND: LAUNCH OPERATOR, LAUNCH ANALYST, AND FACILITIES PANELS. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  13. Space Shuttle with rail system and aft thrust structure securing solid rocket boosters to external tank

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1984-01-01

    The configuration and relationship of the external propellant tank and solid rocket boosters of space transportation systems such as the space shuttle are described. The space shuttle system with the improved propellant tank is shown. The external tank has a forward pressure vessel for liquid hydrogen and an aft pressure vessel for liquid oxygen. The solid rocket boosters are joined together by a thrust frame which extends across and behind the external tank. The thrust of the orbiter's main rocket engines are transmitted to the aft portion of the external tank and the thrust of the solid rocket boosters are transmitted to the aft end of the external tank.

  14. Hyper-X Research Vehicle - Artist Concept Mounted on Pegasus Rocket Attached to B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This artist's concept depicts the Hyper-X research vehicle riding on a booster rocket prior to being launched by the Dryden Flight Research Center's B-52 at about 40,000 feet. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  15. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Dryden Experimental Fabrication Shop's Andy Blua and Jeff Doughty make sure the new pylon for the X-38 fits precisely during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California in 1997. The 1,200-pound steel pylon, fabricated at Dryden, was an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the bomber. The X-38 was a designed as a technology demonstrator to help develop an emergency Crew Return Vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research

  16. Launch of Jupiter-C/Explorer 1

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Launch of Jupiter-C/Explorer 1 at Cape Canaveral, Florida on January 31, 1958. After the Russian Sputnik 1 was launched in October 1957, the launching of an American satellite assumed much greater importance. After the Vanguard rocket exploded on the pad in December 1957, the ability to orbit a satellite became a matter of national prestige. On January 31, 1958, slightly more than four weeks after the launch of Sputnik.The ABMA (Army Ballistic Missile Agency) in Redstone Arsenal, Huntsville, Alabama, in cooperation with the Jet Propulsion Laboratory, launched a Jupiter from Cape Canaveral, Florida. The rocket consisted of a modified version of the Redstone rocket's first stage and two upper stages of clustered Baby Sergeant rockets developed by the Jet Propulsion Laboratory and later designated as Juno boosters for space launches

  17. NASA's Space Launch System: One Vehicle, Many Destinations

    NASA Technical Reports Server (NTRS)

    May, Todd A.; Creech, Stephen D.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for exploration beyond Earth orbit (BEO). Developed with the goals of safety, affordability and sustainability in mind, SLS will start with 10 percent more thrust than the Saturn V rocket that launched astronauts to the Moon 40 years ago. From there it will evolve into the most powerful launch vehicle ever flown, via an upgrade approach that will provide building blocks for future space exploration and development. The International Space Exploration Coordination Group, representing 12 of the world's space agencies, has worked together to create the Global Exploration Roadmap, which outlines paths towards a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for all three destinations. This paper will explore the requirements needed for missions to BEO destinations, and the capability of SLS to meet those requirements and enable those missions. It will explain how NASA will execute this development within flat budgetary guidelines by using existing engines assets and heritage technology, from the initial 70 metric ton (t) lift capability through a block upgrade approach to an evolved 130-t capability. The SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for extended trips to asteroids, the Moon, and Mars. In addition, this paper will detail SLS's capability to support missions beyond the human exploration roadmap, including robotic precursor missions to other worlds or uniquely high-mass space operation facilities in Earth orbit. As this paper will explain, the SLS provides game-changing mass and volume lift capability that makes it enhancing or enabling for a variety of

  18. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Defense Satellite Communications Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), after covering the lower portion of Deep Space 1, workers adjust the anti-static blanket covering the upper portion. The blanket will protect the spacecraft during transport to the launch pad. Deep Space 1 is the first flight in NASA's New Millennium Program, and is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  19. SpaceX CRS-12 Live Launch Coverage

    NASA Image and Video Library

    2017-08-14

    Live Launch Coverage of the SpaceX Falcon 9 launch vehicle lift off from Launch Complex 39A at NASA's Kennedy Space Center carrying the Dragon resupply spacecraft to the International Space Station. Liftoff was at 12:31 p.m. EDT. On its 12th commercial resupply services mission to the International Space Station, Dragon will bring up more than 6,400 pounds of supplies and new science experiments and equipment for technology research.

  20. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-058 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, shuttle launch director Michael Leinbach (standing), assistant launch director Peter Nickolenko and Atlantis flow director Angie Brewer (both seated), applaud the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  1. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  2. Performance Efficient Launch Vehicle Recovery and Reuse

    NASA Technical Reports Server (NTRS)

    Reed, John G.; Ragab, Mohamed M.; Cheatwood, F. McNeil; Hughes, Stephen J.; Dinonno, J.; Bodkin, R.; Lowry, Allen; Brierly, Gregory T.; Kelly, John W.

    2016-01-01

    For decades, economic reuse of launch vehicles has been an elusive goal. Recent attempts at demonstrating elements of launch vehicle recovery for reuse have invigorated a debate over the merits of different approaches. The parameter most often used to assess the cost of access to space is dollars-per-kilogram to orbit. When comparing reusable vs. expendable launch vehicles, that ratio has been shown to be most sensitive to the performance lost as a result of enabling the reusability. This paper will briefly review the historical background and results of recent attempts to recover launch vehicle assets for reuse. The business case for reuse will be reviewed, with emphasis on the performance expended to recover those assets, and the practicality of the most ambitious reuse concept, namely propulsive return to the launch site. In 2015, United Launch Alliance (ULA) announced its Sensible, Modular, Autonomous Return Technology (SMART) reuse plan for recovery of the booster module for its new Vulcan launch vehicle. That plan employs a non-propulsive approach where atmospheric entry, descent and landing (EDL) technologies are utilized. Elements of such a system have a wide variety of applications, from recovery of launch vehicle elements in suborbital trajectories all the way to human space exploration. This paper will include an update on ULA's booster module recovery approach, which relies on Hypersonic Inflatable Aerodynamic Decelerator (HIAD) and Mid-Air Retrieval (MAR) technologies, including its concept of operations (ConOps). The HIAD design, as well as parafoil staging and MAR concepts, will be discussed. Recent HIAD development activities and near term plans including scalability, next generation materials for the inflatable structure and heat shield, and gas generator inflation systems will be provided. MAR topics will include the ConOps for recovery, helicopter selection and staging, and the state of the art of parachute recovery systems using large parafoils

  3. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts confidence testing of a manufactured aluminum panel that will fabricate the Ares I upper stage barrel. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  4. Launch Vehicles

    NASA Image and Video Library

    2006-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  5. Launch Vehicles

    NASA Image and Video Library

    2007-07-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, an Ares I x-test involves the upper stage separating from the first stage. This particular test was conducted at the NASA Langley Research Center in July 2007. (Highest resolution available)

  6. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. In this HD video image, processes for upper stage barrel fabrication are talking place. Aluminum panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Largest resolution available)

  7. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts the manufacturing of aluminum panels that will be used to form the Ares I barrel. The panels are manufacturing process demonstration articles that will undergo testing until perfected. The panels are built by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  8. SpaceX CRS-11 Post-Launch News Conference

    NASA Image and Video Library

    2017-06-03

    NASA Television held a post launch news conference from Kennedy Space Center’s Press Site recapping the successful launch of SpaceX CRS-11 atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. SpaceX’s Dragon spacecraft carried almost 6,000 pounds of cargo to the orbiting laboratory as SpaceX’s eleventh commercial resupply services mission to the International Space Station. The Falcon 9 rocket returned successfully to the pad about eight minutes after launching. Participants included: -Mike Curie, NASA Communications -Kirk Shireman, Manager, International Space Station Program -Hans Koenigsmann, Vice President of Flight Reliability, SpaceX

  9. Developing Primary Propulsion for the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Priskos, Alex S.; Williams, Thomas L.; Ezell, Timothy G.; Burt, Rick

    2007-01-01

    In accordance with the U.S. Vision for Space Exploration, NASA has been tasked to send human beings to the moon, Mars, and beyond. The first stage of NASA's new Ares I crew launch vehicle (Figure 1), which will loft the Orion crew exploration vehicle into low-Earth orbit early next decade, will consist of a Space Shuttle-derived five-segment Reusable Solid Rocket Booster (RSRB); a pair of similar RSRBs also will be used on the Ares V cargo launch vehicle's core stage propulsion system. This paper will discuss the basis for choosing this particular propulsion system; describe the activities the Exploration Launch Projects (ELP) Office is engaged in at present to develop the first stage; and offer a preview of future development activities related to the first Ares l integrated test flight, which is planned for 2009.

  10. Redstone Missile on Launch Pad

    NASA Technical Reports Server (NTRS)

    1958-01-01

    Redstone missile No. 1002 on the launch pad at Cape Canaveral, Florida, on May 16, 1958. The Redstone ballistic missile was a high-accuracy, liquid-propelled, surface-to-surface missile developed by the Army Ballistic Missile Agency, Redstone Arsenal, in Huntsville, Alabama, under the direction of Dr. von Braun. The Redstone engine was a modified and improved version of the Air Force's Navaho cruise missile engine of the late forties. The A-series, as this would be known, utilized a cylindrical combustion chamber as compared with the bulky, spherical V-2 chamber. By 1951, the Army was moving rapidly toward the design of the Redstone missile, and production was begun in 1952. Redstone rockets became the 'reliable workhorse' for America's early space program. As an example of the versatility, Redstone was utilized in the booster for Explorer 1, the first American satellite, with no major changes to the engine or missile

  11. LauncherOne: Virgin Orbit's Dedicated Launch Vehicle for Small Satellites & Impact to the Space Enterprise Vision

    NASA Astrophysics Data System (ADS)

    Vaughn, M.; Kwong, J.; Pomerantz, W.

    Virgin Orbit is developing a space transportation service to provide an affordable, reliable, and responsive dedicated ride to orbit for smaller payloads. No longer will small satellite users be forced to make a choice between accepting the limitations of flight as a secondary payload, paying dramatically more for a dedicated launch vehicle, or dealing with the added complexity associated with export control requirements and international travel to distant launch sites. Virgin Orbit has made significant progress towards first flight of a new vehicle that will give satellite developers and operators a better option for carrying their small satellites into orbit. This new service is called LauncherOne (See the figure below). LauncherOne is a two stage, air-launched liquid propulsion (LOX/RP) rocket. Air launched from a specially modified 747-400 carrier aircraft (named “Cosmic Girl”), this system is designed to conduct operations from a variety of locations, allowing customers to select various launch azimuths and increasing available orbital launch windows. This provides small satellite customers an affordable, flexible and dedicated option for access to space. In addition to developing the LauncherOne vehicle, Virgin Orbit has worked with US government customers and across the new, emerging commercial sector to refine concepts for resiliency, constellation replenishment and responsive launch elements that can be key enables for the Space Enterprise Vision (SEV). This element of customer interaction is being led by their new subsidiary company, VOX Space. This paper summarizes technical progress made on LauncherOne in the past year and extends the thinking of how commercial space, small satellites and this new emerging market can be brought to bear to enable true space system resiliency.

  12. Study of solid rocket motor for space shuttle booster, volume 2, book 5, appendices E thru H

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Preliminary parametric studies were performed to establish size, weight and packaging arrangements for aerodynamic decelerator devices that could be used for recovery of the expended solid propellant rocket motors used in the launch phase of the Space Shuttle System. Computations were made using standard engineering analysis techniques. Terminal stage parachutes were sized to provide equilibrium descent velocities for water entry that are presently thought to be acceptable without developing loads that could exceed the boosters structural integrity. The performance characteristics of the aerodynamic parachute decelerator devices considered are based on analysis and prior test results for similar configurations and are assumed to be maintained at the scale requirements of the present problem.

  13. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-056 (16 Nov. 2009) --- Members of the space shuttle launch team watch Space Shuttle Atlantis' launch through the newly installed windows of Firing Room 4 in the Launch Control Center at NASA's Kennedy Space Center in Florida. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  14. NASA's Space Launch System Transitions From Design To Production

    NASA Technical Reports Server (NTRS)

    Askins, Bruce R.; Robinson, Kimberly F.

    2016-01-01

    NASA's Space Launch System (SLS) successfully completed its Critical Design Review (CDR) in 2015, a major milestone on the journey to an unprecedented era of exploration for humanity. CDR formally marked the program's transition from design to production phase just four years after the program's inception and the first such milestone for a human launch vehicle in 40 years. While challenges typical of a complex development program lie ahead, CDR evaluators concluded that the design is technically and programmatically sound and ready to press forward to Design Certification Review (DCR) and readiness for launch of Exploration Mission 1 (EM-1) in the 2018 timeframe. SLS is prudently based on existing propulsion systems, infrastructure and knowledge with a clear, evolutionary path as required by mission needs. In its initial configuration, designated Block 1, SLS will a minimum of 70 metric tons (t) (154,324 pounds) of payload to low Earth orbit (LEO). It will evolve to a 130 t (286,601 pound) payload capacity by upgrading its engines, boosters, and upper stage, dramatically increasing the mass and volume of human and robotic exploration while decreasing mission risk, increasing safety, and simplifying ground and mission operations. CDR was the central programmatic accomplishment among many technical accomplishments that will be described in this paper. The government/industry SLS team successfully test-fired a flight-like five-segment solid rocket motor, as well as seven hotfire development tests of the RS-25 core stage engine. The majority of the major test article and flight barrels, rings, and domes for the core stage liquid oxygen, liquid hydrogen, engine section, intertank, and forward skirt were manufactured at NASA's Michoud Assembly Facility in New Orleans, Louisiana. Renovations to the B-2 test stand for stage green run testing were completed at NASA's Stennis Space Center (SSC), near Bay St. Louis, Mississippi. Core stage test stands are reaching completion

  15. SpaceX Launches Tenth Cargo Mission to the International Space Station

    NASA Image and Video Library

    2017-02-19

    On Feb. 19, SpaceX launched almost 5,500 pounds of scientific research and other supplies on a Dragon spacecraft to the International Space Station. The Dragon launched on top of the company’s Falcon 9 rocket from historic Launch Complex 39A at NASA’s Kennedy Space Center, where Apollo and Shuttle missions flew. This was the first commercial launch from Kennedy, and highlights the center’s transition to providing support for both government and commercial aerospace activities.

  16. Expendable second stage reusable space shuttle booster. Volume 4: Detail mass properties data

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Mass properties data are presented to describe the characteristics of an expendable second stage with a reusable space shuttle booster. The final mass characteristics of the vehicle configurations for three specified payloads are presented in terms of weight, center of gravity, and mass moments of inertia. Three basic subjects are the integrated vehicle system, the expendable second stage, and the booster modifications.

  17. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-27

    The United Launch Alliance Delta IV Heavy common booster core arrives aboard the company's Mariner ship at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  18. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-08-01

    A United Launch Alliance Delta IV Heavy common booster core is offloaded from the company's Mariner ship at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  19. ULA Delta IV Heavy Common Booster Cores for the Parker Solar Pro

    NASA Image and Video Library

    2017-07-27

    The United Launch Alliance Delta IV Heavy common booster core arrives aboard the company's Mariner ship and prepared for offload at Port Canaveral in Florida. The Delta IV Heavy will launch NASA's upcoming Parker Solar Probe mission. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  20. Assimilation of Wind Profiles from Multiple Doppler Radar Wind Profilers for Space Launch Vehicle Applications

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Walker, John R.; Barbre, Robert E., Jr.; Leach, Richard D.

    2015-01-01

    Atmospheric wind data are required by space launch vehicles in order to assess flight vehicle loads and performance on day-of-launch. Space launch ranges at NASA's Kennedy Space Center co-located with the United States Air Force's (USAF) Eastern Range (ER) at Cape Canaveral Air Force Station and USAF's Western Range (WR) at Vandenberg Air Force Base have extensive networks of in-situ and remote sensing instrumentation to measure atmospheric winds. Each instrument's technique to measure winds has advantages and disadvantages in regards to use within vehicle trajectory analyses. Balloons measure wind at all altitudes necessary for vehicle assessments, but two primary disadvantages exist when applying balloon output. First, balloons require approximately one hour to reach required altitudes. Second, balloons are steered by atmospheric winds down range of the launch site that could significantly differ from those winds along the vehicle ascent trajectory. These issues are mitigated by use of vertically pointing Doppler Radar Wind Profilers (DRWPs). However, multiple DRWP instruments are required to provide wind data over altitude ranges necessary for vehicle trajectory assessments. The various DRWP systems have different operating configurations resulting in different temporal and spatial sampling intervals. Therefore, software was developed to combine data from both DRWP-generated profiles into a single profile for use in vehicle trajectory analyses. This paper will present details of the splicing software algorithms and will provide sample output.

  1. SpaceX TESS Live Launch Coverage

    NASA Image and Video Library

    2018-04-18

    NASA’s Transiting Exoplanet Survey Satellite (TESS) was launched April 18 on a SpaceX Falcon 9 rocket, from Cape Canaveral Air Force Station in Florida. TESS is NASA’s next mission to search for planets outside of our solar system, known as exoplanets, including those that could support life. The mission is expected to catalog thousands of planet candidates and vastly increase the current number of known exoplanets. TESS will find the most promising exoplanets orbiting relatively nearby stars, giving future researchers a rich set of new targets for more comprehensive follow-up studies, including the potential to assess their capacity to harbor life.

  2. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-059 (16 Nov. 2009) --- In Firing Room 4 of NASA Kennedy Space Center's Launch Control Center, Kennedy Director Bob Cabana congratulates the launch team upon the successful launch of Space Shuttle Atlantis. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  3. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Andy Blua and Jeff Doughty of Dryden's Experimental Fabrication Shop, along with B-52 Crew Chief Dan Bains and assistant Mark Thompson, all eye the new X-38 pylon during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California. The fit-check was the first time the 1,200-pound steel pylon, which was fabricated at Dryden, was mated to the B-52. The pylon served as an 'adapter' that allowed the X-38 to be attached to the B-52's wing. Earlier flight research vehicles had used the X-15 pylon for attachment to and launch from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the Hi

  4. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Tom McMullen, Chief of Dryden's Experimental Fabrication Shop, makes adjustments to the new pylon for NASA's X-38 during a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 to be attached to and launched from the B-52's wing. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST

  5. Close-up of Wing Fit Check of Pylon to Carry the X-38 on B-52 Launch Aircraft

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The new pylon for the X-38 following a fit-check on NASA's B-52 at the Dryden Flight Research Center, Edwards, California, in 1997. The fit-check was the first time the 1,200-pound steel pylon was mated to the B-52 following fabrication at Dryden by the Center's Experimental Fabrication Shop. The pylon was built as an 'adapter' to allow the X-38 research vehicle to be carried aloft and launched from the B-52. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the

  6. 65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. DETAIL OF ASSISTANT LAUNCH CONTROLLER AND LAUNCH CONTROLLER PANELS LOCATED NEAR CENTER OF SLC-3E CONTROL ROOM. NOTE 30-CHANNEL COMMUNICATIONS PANELS. PAYLOAD ENVIRONMENTAL CONTROL AND MONITORING PANELS (LEFT) AND LAUNCH OPERATORS PANEL (RIGHT) IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Launch Vehicles

    NASA Image and Video Library

    1990-06-01

    The Delta II expendable launch vehicle with the ROSAT (Roentgen Satellite), cooperative space X-ray astronomy mission between NASA, Germany and United Kingdom, was launched from the Cape Canaveral Air Force Station on June 1, 1990.

  8. M2-F3 In-flight Launch from B-52

    NASA Technical Reports Server (NTRS)

    1971-01-01

    significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also supported eight orbiter (space shuttle) drag chute tests in 1990. In addition, the B-52 served as the air launch platform for the first six Pegasus space boosters. During its many years of service, the B-52 has undergone several modifications. The first major modification was made by North American Aviation (now part of Boeing) in support of the X-15 program. This involved creating a launch-panel-operator station for monitoring the status of the test vehicle being carried, cutting a large notch in the right inboard wing flap to accommodate the vertical tail of the X-15 aircraft, and installing a wing pylon that enables

  9. STS-103 Discovery reaches to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery arrives at Launch Pad 39B where the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch. The mission is a 'call-up' due to the need to replace and repair portions of the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, both with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST aboard Space Shuttle Discovery.

  10. A Monte Carlo Analysis of the Thrust Imbalance for the RSRMV Booster During Both the Ignition Transient and Steady State Operation

    NASA Technical Reports Server (NTRS)

    Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.

    2014-01-01

    This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle

  11. KSC-08pd0741

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, nears Hangar AF at Cape Canaveral Air Force Station with a solid rocket booster alongside. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  12. KSC-08pd0740

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, tows a solid rocket booster alongside, heading for Hangar AF at Cape Canaveral Air Force Station. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  13. Emerging national space launch programs: Economics and safeguards

    NASA Astrophysics Data System (ADS)

    Chow, Brian G.

    Most ballistic missile nonproliferation studies have focused on trends in the numbers and performance of missiles and the resulting security threats. This report concentrates on the economic viability of emerging national space launch programs and the prospects for imposing effective safeguards against the use of space launch technology for military missiles. For the convenience of discussion in this report, a reference to ballistic missiles hereafter means surface-to-surface guided ballistic missiles only. Space launch vehicles (SLV's) are surface-to-space ballistic missiles, and they will be referred to explicitly as 'space launch vehicles' or 'space launchers'. Surface-to-surface unguided ballistic missiles will be referred to as 'rockets.'

  14. STS-113 Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    2002-01-01

    KENNEDY SPACE CENTER, FLA. - Water near Launch Pad 39A provides a mirror image of Space Shuttle Endeavour blazing a path into the night sky after launch on mission STS-113. Liftoff occurred ontime at 7:49:47 p.m. EST. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station, carrying another structure for the Station, the P1 integrated truss. Also onboard are the Expedition 6 crew, who will replace Expedition 5. Endeavour is scheduled to land at KSC after an 11-day journey.

  15. NASA's B-52B launch aircraft takes off carrying the second X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 7.

  16. NASA's B-52B launch aircraft takes off carrying the third X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, California, on November 16, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 10.

  17. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  18. KSC-08pd0739

    NASA Image and Video Library

    2008-03-12

    KENNEDY SPACE CENTER, FLA. -- The Freedom Star, one of NASA's solid rocket booster retrieval ships, tows a solid rocket booster alongside, heading for Hangar AF at Cape Canaveral Air Force Station. Barely visible in the background at right is the Vehicle Assembly Building at NASA's Kennedy Space Center. The booster is from space shuttle Endeavour, which launched the STS-123 mission on March 11. The space shuttle’s solid rocket booster casings and associated flight hardware are recovered at sea. The boosters impact the Atlantic Ocean approximately seven minutes after liftoff. The splashdown area is a square of about 6 by 9 nautical miles located about 140 nautical miles downrange from the launch pad. The retrieval ships are stationed approximately 8 to 10 nautical miles from the impact area at the time of splashdown. As soon as the boosters enter the water, the ships accelerate to a speed of 15 knots and quickly close on the boosters, which they tow back to port. After transfer to a position alongside the ship, the booster will be towed to Hangar AF at Cape Canaveral Air Force Station. There, the expended boosters are disassembled, refurbished and reloaded with solid propellant for reuse. Photo credit: NASA/Jack Pfaller

  19. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a Cirris Signature Touch 1 cable tester. From left are Steve Swichkow, with NASA, and Jim Silviano (back to camera) and Jeff Suter, with USA. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  20. KENNEDY SPACE CENTER, FLA. - A high-flying bird takes a closer look at the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it as it crawls toward Launch Pad 39A, in the background. The crawler is moving along the crawlerway at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - A high-flying bird takes a closer look at the Mobile Launcher Platform (MLP) number 3 with twin solid rocket boosters bolted to it as it crawls toward Launch Pad 39A, in the background. The crawler is moving along the crawlerway at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  1. Launch of the STS 51-F Challenger

    NASA Image and Video Library

    1985-07-29

    51F-S-157 (29 July 1985) --- Just moments following ignition, the Space Shuttle Challenger, mated to its two solid rocket boosters and an external fuel tank, soars toward a week-long mission in Earth orbit. Note the diamond shock effect in the vicinity of the three main engines. Launch occurred at 5:00 p.m. (EDT), July 29, 1985.

  2. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts friction stir welding used in manufacturing aluminum panels that will fabricate the Ares I upper stage barrel. The panels are subjected to confidence tests in which the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  3. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image, depicts a manufactured aluminum panel, that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  4. Launch Vehicles

    NASA Image and Video Library

    2007-08-09

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel, that will fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  5. Launch Vehicles

    NASA Image and Video Library

    2006-08-08

    Under the goals of the Vision for Space Exploration, Ares I is a chief component of the cost-effective space transportation infrastructure being developed by NASA's Constellation Program. This transportation system will safely and reliably carry human explorers back to the moon, and then onward to Mars and other destinations in the solar system. The Ares I effort includes multiple project element teams at NASA centers and contract organizations around the nation, and is managed by the Exploration Launch Projects Office at NASA's Marshall Space Flight Center (MFSC). ATK Launch Systems near Brigham City, Utah, is the prime contractor for the first stage booster. ATK's subcontractor, United Space Alliance of Houston, is designing, developing and testing the parachutes at its facilities at NASA's Kennedy Space Center in Florida. NASA's Johnson Space Center in Houston hosts the Constellation Program and Orion Crew Capsule Project Office and provides test instrumentation and support personnel. Together, these teams are developing vehicle hardware, evolving proven technologies, and testing components and systems. Their work builds on powerful, reliable space shuttle propulsion elements and nearly a half-century of NASA space flight experience and technological advances. Ares I is an inline, two-stage rocket configuration topped by the Crew Exploration Vehicle, its service module, and a launch abort system. This HD video image depicts a manufactured aluminum panel that will be used to fabricate the Ares I upper stage barrel, undergoing a confidence panel test. In this test, the bent aluminum is stressed to breaking point and thoroughly examined. The panels are manufactured by AMRO Manufacturing located in El Monte, California. (Highest resolution available)

  6. Space Launch System Panel Discussion

    NASA Image and Video Library

    2013-11-12

    Jim Crocker, Vice President and General Manager, civil space, Lockheed Martin Space Systems, gestures while speaking at a panel discussion on deep space exploration using the Space Launch System and Orion spacecraft at the Newseum in Washington on Tuesday, November 12, 2013. Photo Credit: (NASA/Jay Westcott)

  7. Space Launch System for Exploration and Science

    NASA Astrophysics Data System (ADS)

    Klaus, K.

    2013-12-01

    Introduction: The Space Launch System (SLS) is the most powerful rocket ever built and provides a critical heavy-lift launch capability enabling diverse deep space missions. The exploration class vehicle launches larger payloads farther in our solar system and faster than ever before. The vehicle's 5 m to 10 m fairing allows utilization of existing systems which reduces development risks, size limitations and cost. SLS lift capacity and superior performance shortens mission travel time. Enhanced capabilities enable a myriad of missions including human exploration, planetary science, astrophysics, heliophysics, planetary defense and commercial space exploration endeavors. Human Exploration: SLS is the first heavy-lift launch vehicle capable of transporting crews beyond low Earth orbit in over four decades. Its design maximizes use of common elements and heritage hardware to provide a low-risk, affordable system that meets Orion mission requirements. SLS provides a safe and sustainable deep space pathway to Mars in support of NASA's human spaceflight mission objectives. The SLS enables the launch of large gateway elements beyond the moon. Leveraging a low-energy transfer that reduces required propellant mass, components are then brought back to a desired cislunar destination. SLS provides a significant mass margin that can be used for additional consumables or a secondary payloads. SLS lowers risks for the Asteroid Retrieval Mission by reducing mission time and improving mass margin. SLS lift capacity allows for additional propellant enabling a shorter return or the delivery of a secondary payload, such as gateway component to cislunar space. SLS enables human return to the moon. The intermediate SLS capability allows both crew and cargo to fly to translunar orbit at the same time which will simplify mission design and reduce launch costs. Science Missions: A single SLS launch to Mars will enable sample collection at multiple, geographically dispersed locations and a

  8. KSC-2011-1886

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- The Solid Rocket Booster Retrieval Ship Freedom Star tows a booster to the dock at Hangar AF on Cape Canaveral Air Force Station in Florida. The booster was used during space shuttle Discovery's STS-133 launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24. The shuttle’s two solid rocket booster casings and associated flight hardware are recovered in the Atlantic Ocean after every launch by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  9. KSC-2011-1894

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  10. KSC-2011-1891

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  11. KSC-2011-1892

    NASA Image and Video Library

    2011-02-28

    CAPE CANAVERAL, Fla. -- One of the solid rocket boosters used during space shuttle Discovery's STS-133 launch is unloaded onto a hoisting slip at the Solid Rocket Booster Disassembly Facility at Hangar AF on Cape Canaveral Air Force Station in Florida. Following the launch from NASA Kennedy Space Center's Launch Pad 39A on Feb. 24, the shuttle's two boosters fell into the Atlantic Ocean. There, the booster casings and associated flight hardware were recovered by Liberty Star and Freedom Star. The boosters impact the Atlantic about seven minutes after liftoff and the retrieval ships are stationed about 10 miles from the impact area at the time of splashdown. After the spent segments are processed, they will be transported to Utah, where they will be refurbished and stored, if needed. Photo credit: NASA/Jim Grossmann

  12. Aerospace News: Space Shuttle Commemoration. Volume 2, No. 7

    NASA Technical Reports Server (NTRS)

    2011-01-01

    The complex space shuttle design was comprised of four components: the external tank, two solid rocket boosters (SRB), and the orbiter vehicle. Six orbiters were used during the life of the program. In order of introduction into the fleet, they were: Enterprise (a test vehicle), Columbia, Challenger, Discovery, Atlantis and Endeavour. The space shuttle had the unique ability to launch into orbit, perform on-orbit tasks, return to earth and land on a runway. It was an orbiting laboratory, International Space Station crew delivery and supply replenisher, satellite launcher and payload delivery vehicle, all in one. Except for the external tank, all components of the space shuttle were designed to be reusable for many flights. ATK s reusable solid rocket motors (RSRM) were designed to be flown, recovered, and the metal components reused 20 times. Following each space shuttle launch, the SRBs would parachute into the ocean and be recovered by the Liberty Star and Freedom Star recovery ships. The recovered boosters would then be received at the Cape Canaveral Air Force Station Hangar AF facility for disassembly and engineering post-flight evaluation. At Hangar AF, the RSRM field joints were demated and the segments prepared to be returned to Utah by railcar. The segments were then shipped to ATK s facilities in Clearfield for additional evaluation prior to washout, disassembly and refurbishment. Later the refurbished metal components would be transported to ATK s Promontory facilities to begin a new cycle. ATK s RSRMs were manufactured in Promontory, Utah. During the Space Shuttle Program, ATK supported NASA s Marshall Space Flight Center whose responsibility was for all propulsion elements on the program, including the main engines and solid rocket motors. On launch day for the space shuttle, ATK s Launch Site Operations employees at Kennedy Space Center (KSC) provided lead engineering support for ground operations and NASA s chief engineer. It was ATK s responsibility

  13. Space Transportation Booster Engine Configuration Study. Volume 3: Program Cost estimates and work breakdown structure and WBS dictionary

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objective of the Space Transportation Booster Engine Configuration Study is to contribute to the ALS development effort by providing highly reliable, low cost booster engine concepts for both expendable and reusable rocket engines. The objectives of the Space Transportation Booster Engine (STBE) Configuration Study were: (1) to identify engine development configurations which enhance vehicle performance and provide operational flexibility at low cost; and (2) to explore innovative approaches to the follow-on Full-Scale Development (FSD) phase for the STBE.

  14. KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - The crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  15. KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

    NASA Image and Video Library

    2003-11-21

    KENNEDY SPACE CENTER, FLA. - A crawler-transporter carrying Mobile Launcher Platform (MLP) number 3, with a set of twin solid rocket boosters bolted atop, crawls to the intersection in the crawlerway in support of the second engineering analysis vibration test on the crawler and MLP. From this perspective, the Launch Control Center (left) and the 525-foot-tall Vehicle Assembly Building (right) in the background appear dwarfed by the 184-foot-tall boosters. The crawler is moving at various speeds up to 1 mph in an effort to achieve vibration data gathering goals as it leaves the VAB, travels toward Launch Pad 39A and then returns. The boosters are braced at the top for stability. The primary purpose of these rollout tests is to gather data to develop future maintenance requirements on the transport equipment and the flight hardware. Various parts of the MLP and crawler transporter have been instrumented with vibration data collection equipment.

  16. Space transportation booster engine configuration study. Addendum: Design definition document

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Gas generator engine characteristics and results of engine configuration refinements are discussed. Updated component mechanical design, performance, and manufacturing information is provided. The results are also provided of ocean recovery studies and various engine integration tasks. The details are provided of the maintenance plan for the Space Transportation Booster Engine.

  17. ULA Delta IV Heavy Second Stage & Port Common Booster Core for t

    NASA Image and Video Library

    2017-08-30

    The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  18. ULA Delta IV Heavy Second Stage & Port Common Booster Core for t

    NASA Image and Video Library

    2017-08-26

    The United Launch Alliance Mariner arrives at Port Canaveral's Army Warf carrying the third Delta IV Heavy common booster core and second stage for NASA's upcoming Parker Solar Probe spacecraft. The mission will perform the closest-ever observations of a star when it travels through the Sun's atmosphere, called the corona. The probe will rely on measurements and imaging to revolutionize our understanding of the corona and the Sun-Earth connection. Liftoff atop the Delta IV Heavy rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 37 in summer 2018.

  19. Study of solid rocket motors for a space shuttle booster. Volume 3: Program acquisition planning

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    Plans for conducting Phase C/D for a solid rocket motor booster vehicle are presented. Methods for conducting this program with details of scheduling, testing, and program management and control are included. The requirements of the space shuttle program to deliver a minimum cost/maximum reliability booster vehicle are examined.

  20. Space Launch System Spacecraft/Payloads Integration and Evolution Office Advanced Development FY 2014 Annual Report

    NASA Technical Reports Server (NTRS)

    Crumbly, C. M.; Bickley, F. P.; Hueter, U.

    2015-01-01

    The Advanced Development Office (ADO), part of the Space Launch System (SLS) program, provides SLS with the advanced development needed to evolve the vehicle from an initial Block 1 payload capability of 70 metric tons (t) to an eventual capability Block 2 of 130 t, with intermediary evolution options possible. ADO takes existing technologies and matures them to the point that insertion into the mainline program minimizes risk. The ADO portfolio of tasks covers a broad range of technical developmental activities. The ADO portfolio supports the development of advanced boosters, upper stages, and other advanced development activities benefiting the SLS program. A total of 36 separate tasks were funded by ADO in FY 2014.

  1. Hybrid boosters for future launch vehicles

    NASA Astrophysics Data System (ADS)

    Dargies, E.; Lo, R. E.

    1987-10-01

    Hybrid rocket propulsion systems furnish the advantages of much higher safety levels, due both to shut-down capability in case of ignition failure to one unit and the potential choice of nontoxic propellant combinations, such as LOX/polyethylene; they nevertheless yield performance levels comparable or superior to those of solid rocket boosters. Attention is presently given to the results of DFVLR analytical model studies of hybrid propulsion systems, with attention to solid fuel grain geometrical design and propellant grain surface ablation rate. The safety of hybrid rockets recommends them for use by manned spacecraft.

  2. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-055 (16 Nov. 2009) --- The space shuttle launch team monitors the progress of Space Shuttle Atlantis' countdown from consoles on the main floor of Firing Room 4 in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  3. STS-103 Discovery reaches to Launch Pad 39B

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Space Shuttle Discovery approaches Launch Pad 39B where the orbiter, external tank and solid rocket boosters will undergo final preparations for the STS-103 launch. The mission is a 'call-up' due to the need to replace and repair portions of the Hubble Space Telescope. Although Hubble is operating normally and conducting its scientific observations, only three of its six gyroscopes are working properly. Four EVA's are planned to make the necessary repairs and replacements on the telescope. The STS-103 crew members are Commander Curtis L. Brown Jr., Pilot Scott J. Kelly, Steven L. Smith, C. Michael Foale (Ph.D.), John M. Grunsfeld (Ph.D.), and Claude Nicollier of Switzerland and Jean-Frangois Clervoy of France, both with the European Space Agency. The mission is targeted for launch Dec. 6 at 2:37 a.m. EST.

  4. Illustration of Ares I and Ares V Launch Vehicles

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the vehicle depicted on the left is the Ares I. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to its primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. The Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the second stage of the Apollo vehicle will power the Ares V second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. The vehicle illustrated on the right is the Ares V, a heavy lift launch vehicle that will use five RS-68 liquid oxygen/liquid hydrogen engines mounted below a larger version of the space shuttle external tank, and two five-segment solid propellant rocket boosters for the first stage. The upper stage will use the same J-2X engine as the Ares I. The Ares V can lift more than 286,000 pounds to low Earth orbit and stands approximately 360 feet tall. This versatile system will be used to carry cargo and the components into orbit needed to go to the moon and later to Mars. Both vehicles are subject to configuration changes before they are actually launched. This illustration reflects the latest configuration as of September 2006.

  5. Optimum space shuttle launch times relative to natural environment

    NASA Technical Reports Server (NTRS)

    King, R. L.

    1977-01-01

    The probabilities of favorable and unfavorable weather conditions for launch and landing of the STS under different criteria were computed for every three hours on a yearly basis using 14 years of weather data. These temporal probability distributions were considered for three sets of weather criteria encompassing benign, moderate and severe weather conditions for both Kennedy Space Center and for Edwards Air Force Base. In addition, the conditional probabilities were computed for unfavorable weather conditions occurring after a delay which may or may not be due to weather conditions. Also for KSC, the probabilities of favorable landing conditions at various times after favorable launch conditions have prevailed. The probabilities were computed to indicate the significance of each weather element to the overall result.

  6. eLaunch Hypersonics: An Advanced Launch System

    NASA Technical Reports Server (NTRS)

    Starr, Stanley

    2010-01-01

    This presentation describes a new space launch system that NASA can and should develop. This approach can significantly reduce ground processing and launch costs, improve reliability, and broaden the scope of what we do in near earth orbit. The concept (not new) is to launch a re-usable air-breathing hypersonic vehicle from a ground based electric track. This vehicle launches a final rocket stage at high altitude/velocity for the final leg to orbit. The proposal here differs from past studies in that we will launch above Mach 1.5 (above transonic pinch point) which further improves the efficiency of air breathing, horizontal take-off launch systems. The approach described here significantly reduces cost per kilogram to orbit, increases safety and reliability of the boost systems, and reduces ground costs due to horizontal-processing. Finally, this approach provides significant technology transfer benefits for our national infrastructure.

  7. Space Shuttle solid rocket booster

    NASA Technical Reports Server (NTRS)

    Hardy, G. B.

    1979-01-01

    Details of the design, operation, testing and recovery procedures of the reusable solid rocket boosters (SRB) are given. Using a composite PBAN propellant, they will provide the primary thrust (six million pounds maximum at 20 s after ignition) within a 3 g acceleration constraint, as well as thrust vector control for the Space Shuttle. The drogues were tested to a load of 305,000 pounds, and the main parachutes to 205,000. Insulation in the solid rocket motor (SRM) will be provided by asbestos-silica dioxide filled acrylonitrile butadiene rubber ('asbestos filled NBR') except in high erosion areas (principally in the aft dome), where a carbon-filled ethylene propylene diene monomer-neopreme rubber will be utilized. Furthermore, twenty uses for the SRM nozzle will be allowed by its ablative materials, which are principally carbon cloth and silica cloth phenolics.

  8. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life

  9. Test report for 120-inch-diameter Solid Rocket Booster (SRB) model tests. [floating and towing characteristics of space shuttle boosters

    NASA Technical Reports Server (NTRS)

    Jones, W. C.

    1973-01-01

    The space shuttle solid rocket boosters (SRB's) will be jettisoned to impact in the ocean within a 200-mile radius of the launch site. Tests were conducted at Long Beach, California, using a 12-inch diameter Titan 3C model to simulate the full-scale characteristics of the prototype SRB during retrieval operations. The objectives of the towing tests were to investigate and assess the following: (1) a floating and towing characteristics of the SRB; (2) need for plugging the SRB nozzle prior to tow; (3) attach point locations on the SRB; (4) effects of varying the SRB configuration; (5) towing hardware; and (6) difficulty of attaching a tow line to the SRB in the open sea. The model was towed in various sea states using four different types and varying lengths of tow line at various speeds. Three attach point locations were tested. Test data was recorded on magnetic tape for the tow line loads and for model pitch, roll, and yaw characteristics and was reduced by computer to tabular printouts and X-Y plots. Profile and movie photography provided documentary test data.

  10. Kennedy Space Center Launch and Landing Support

    NASA Technical Reports Server (NTRS)

    Wahlberg, Jennifer

    2010-01-01

    The presentations describes Kennedy Space Center (KSC) payload processing, facilities and capabilities, and research development and life science experience. Topics include launch site processing, payload processing, key launch site processing roles, leveraging KSC experience, Space Station Processing Facility and capabilities, Baseline Data Collection Facility, Space Life Sciences Laboratory and capabilities, research payload development, International Space Station research flight hardware, KSC flight payload history, and KSC life science expertise.

  11. Lightning Launch Commit Criteria for America's Space Program

    NASA Technical Reports Server (NTRS)

    Roeder, W. P.; Sardonia, J. E.; Jacobs, S. C.; Hinson, M. S.; Harms, D. E.; Madura, J. T.; DeSordi, S. P.

    1999-01-01

    The danger of natural and triggered lightning significantly impacts space launch operations supported by the USAF. The lightning Launch Commit Criteria (LCC) are used by the USAF to avoid these lightning threats to space launches. This paper presents a brief overview of the LCC.

  12. Liquid Rocket Booster Study. Volume 2, Book 1

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The recommended Liquid Rocket Booster (LRB) concept is shown which uses a common main engine with the Advanced Launch System (ALS) which burns LO2 and LH2. The central rationale is based on the belief that the U.S. can only afford one big new rocket engine development in the 1990's. A LO2/LH2 engine in the half million pound thrust class could satisfy STS LRB, ALS, and Shuttle C (instead of SSMEs). Development costs and higher production rates can be shared by NASA and USAF. If the ALS program does not occur, the LO2/RP-1 propellants would produce slight lower costs for and STS LRB. When the planned Booster Engine portion of the Civil Space Transportation Initiatives has provided data on large pressure fed LO2/RP-1 engines, then the choice should be reevaluated.

  13. Workers in the VAB test SRB cables on STS-98 solid rocket boosters

    NASA Technical Reports Server (NTRS)

    2001-01-01

    KENNEDY SPACE CENTER, Fla. -- Working near the top of a solid rocket booster, NASA and United Space Alliance SRB technicians hook up SRB cables to a CIRRUS computer for testing. From left are Jim Glass, with USA, performing a Flex test on the cable; Steve Swichkow, with NASA, and Jim Silviano, with USA, check the results on a computer. The SRB is part of Space Shuttle Atlantis, rolled back from Launch Pad 39A in order to conduct tests on the cables. A prior extensive evaluation of NASA'''s SRB cable inventory on the shelf revealed conductor damage in four (of about 200) cables. Shuttle managers decided to prove the integrity of the system tunnel cables already on Atlantis before launching. Workers are conducting inspections, making continuity checks and conducting X-ray analysis on the cables. The launch has been rescheduled no earlier than Feb. 6.

  14. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    STS129-S-057 (16 Nov. 2009) --- From left, LeRoy Cain, NASA's deputy manager, Space Shuttle Program; Michael Coats, director of NASA's Johnson Space Center; and Bob Cabana, director of NASA's Kennedy Space Center, watch the launch of Space Shuttle Atlantis from the Operations Management Room, a glass partitioned area overlooking the main floor of Firing Room 4, in Kennedy's Launch Control Center. Liftoff of Atlantis from Launch Pad 39A on its STS-129 mission to the International Space Station came at 2:28 p.m. (EST) Nov. 16, 2009.

  15. Numerical study for flame deflector design of a space launch vehicle

    NASA Astrophysics Data System (ADS)

    Oh, Hwayoung; Lee, Jungil; Um, Hyungsik; Huh, Hwanil

    2017-04-01

    A flame deflector is a structure that prevents damage to a launch vehicle and a launch pad due to exhaust plumes of a lifting-off launch vehicle. The shape of a flame deflector should be designed to restrain the discharged gas from backdraft inside the deflector and to reflect the impact to the surrounding environment and the engine characteristics of the vehicle. This study presents the five preliminary flame deflector configurations which are designed for the first-stage rocket engine of the Korea Space Launch Vehicle-II and surroundings of the Naro space center. The gas discharge patterns of the designed flame deflectors are investigated using the 3D flow field analysis by assuming that the air, in place of the exhaust gas, forms the plume. In addition, a multi-species unreacted flow model is investigated through 2D analysis of the first-stage engine of the KSLV-II. The results indicate that the closest Mach number and temperature distributions to the reacted flow model can be achieved from the 4-species unreacted flow model which employs H2O, CO2, and CO and specific heat-corrected plume.

  16. Deep Space 1 is prepared for transport to launch pad

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Workers in the Defense Satellite Communication Systems Processing Facility (DPF), Cape Canaveral Air Station (CCAS), move to the workstand the second conical section leaf of the payload transportation container for Deep Space 1. The first flight in NASA's New Millennium Program, Deep Space 1 is designed to validate 12 new technologies for scientific space missions of the next century, including the engine. Propelled by the gas xenon, the engine is being flight-tested for future deep space and Earth-orbiting missions. Deceptively powerful, the ion drive emits only an eerie blue glow as ionized atoms of xenon are pushed out of the engine. While slow to pick up speed, over the long haul it can deliver 10 times as much thrust per pound of fuel as liquid or solid fuel rockets. Other onboard experiments include software that tracks celestial bodies so the spacecraft can make its own navigation decisions without the intervention of ground controllers. Deep Space 1 will complete most of its mission objectives within the first two months, but will also do a flyby of a near-Earth asteroid, 1992 KD, in July 1999. Deep Space 1 will be launched aboard a Boeing Delta 7326 rocket from Launch Pad 17A, CCAS.

  17. Airbreathing space boosters using in-flight oxidizer collection

    NASA Astrophysics Data System (ADS)

    Maurice, Lourdes Q.; Leingang, John L.; Carreiro, Louis R.

    1992-07-01

    A condensed historical review of the development of a propulsion fluid system known as ACES (Air Collection and Enrichment System) is presented. The role of the ACES system is to acquire and store liquid oxygen en route to orbit for rocket use beyond the airbreathing envelope. Earth-to-orbit capability is achieved without carrying liquid oxygen from take-off or relying on scramjets. The performance advantages of using ACES is mathematically formulated. Results from a recent vehicle study aimed at comparing ACES and Sanger type (LOX carrying) propulsion schemes are presented. The payload fractions achievable with ACES are shown to be superior to those of Sanger type vehicles and competitive with scramjet-powered space launch vehicles without relying on airbreathing propulsion beyond the speed of conventional turboramjet engines.

  18. Study of solid rocket motors for a space shuttle booster. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Vonderesch, A. H.

    1972-01-01

    The factors affecting the choice of the 156 inch diameter, parallel burn, solid propellant rocket engine for use with the space shuttle booster are presented. Primary considerations leading to the selection are: (1) low booster vehicle cost, (2) the largest proven transportable system, (3) a demonstrated design, (4) recovery/reuse is feasible, (5) abort can be easily accomplished, and (6) ecological effects are minor.

  19. Illustration of Ares I Launch Vehicle With Call Outs

    NASA Technical Reports Server (NTRS)

    2006-01-01

    Named for the Greek god associated with Mars, the NASA developed Ares launch vehicles will return humans to the moon and later take them to Mars and other destinations. This is an illustration of the Ares I with call outs. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. In addition to the primary mission of carrying crews of four to six astronauts to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station, or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I employs a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine derived from the J-2 engine used on the Apollo second stage will power the Ares I second stage. The Ares I can lift more than 55,000 pounds to low Earth orbit. Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of January 2007.

  20. Illustration of Ares I During Launch

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The NASA developed Ares rockets, named for the Greek god associated with Mars, will return humans to the moon and later take them to Mars and other destinations. In this early illustration, the Ares I is illustrated during lift off. Ares I is an inline, two-stage rocket configuration topped by the Orion crew vehicle and its launch abort system. With a primary mission of carrying four to six member crews to Earth orbit, Ares I may also use its 25-ton payload capacity to deliver resources and supplies to the International Space Station (ISS), or to 'park' payloads in orbit for retrieval by other spacecraft bound for the moon or other destinations. Ares I uses a single five-segment solid rocket booster, a derivative of the space shuttle solid rocket booster, for the first stage. A liquid oxygen/liquid hydrogen J-2X engine, derived from the J-2 engine used on the second stage of the Apollo vehicle, will power the Ares I second stage. Ares I can lift more than 55,000 pounds to low Earth orbit. The Ares I is subject to configuration changes before it is actually launched. This illustration reflects the latest configuration as of September 2006.