Sample records for air-sea exchanges oceanologica

  1. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    NASA Astrophysics Data System (ADS)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in <span class="hlt">air</span> <span class="hlt">sea</span> <span class="hlt">exchange</span> models. Based on these the contribution of spume drops to overall <span class="hlt">air</span> <span class="hlt">sea</span> gas <span class="hlt">exchange</span> at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas <span class="hlt">exchange</span> but may account for a significant amount of gas <span class="hlt">exchange</span> at higher wind speeds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16271812','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16271812"><span>Atmospheric concentrations and <span class="hlt">air-sea</span> <span class="hlt">exchanges</span> of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the North <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhiyong; Lakaschus, Soenke; Ebinghaus, Ralf; Caba, Armando; Ruck, Wolfgang</p> <p>2006-07-01</p> <p>Concentrations of nonylphenol isomers (NP), tertiary octylphenol (t-OP) and nonylphenol monoethoxylate isomers (NP1EO) have been simultaneously determined in the <span class="hlt">sea</span> water and atmosphere of the North <span class="hlt">Sea</span>. A decreasing concentration profile appeared following the distance increasing from the coast to the central part of the North <span class="hlt">Sea</span>. <span class="hlt">Air-sea</span> <span class="hlt">exchanges</span> of t-OP and NP were estimated using the two-film resistance model based upon relative <span class="hlt">air</span>-water concentrations and experimentally derived Henry's law constant. The average of <span class="hlt">air-sea</span> <span class="hlt">exchange</span> fluxes was -12+/-6 ng m(-2)day(-1) for t-OP and -39+/-19 ng m(-2)day(-1) for NP, which indicates a net deposition is occurring. These results suggest that the <span class="hlt">air-sea</span> vapour <span class="hlt">exchange</span> is an important process that intervenes in the mass balance of alkylphenols in the North <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850005886&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dheat%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850005886&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dheat%2Bexchange"><span><span class="hlt">Air-sea</span> heat <span class="hlt">exchange</span>, an element of the water cycle</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chahine, M. T.</p> <p>1984-01-01</p> <p>The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy <span class="hlt">exchange</span> and evaporation at the <span class="hlt">air-sea</span> interface, which are also important elements of <span class="hlt">air-sea</span> interaction studies. The overall aim of <span class="hlt">air-sea</span> interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of <span class="hlt">air-sea</span> <span class="hlt">exchanges</span> involve a large number of physica, chemical and dynamical processes including heat flux, radiation, <span class="hlt">sea</span>-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA282842','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA282842"><span>Oceanic Whitecaps and Associated, Bubble-Mediated, <span class="hlt">Air-Sea</span> <span class="hlt">Exchange</span> Processes</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-10-01</p> <p>experiments performed in laboratory conditions using <span class="hlt">Air-Sea</span> <span class="hlt">Exchange</span> Monitoring System (A-SEMS). EXPERIMENTAL SET-UP In a first look, the <span class="hlt">Air-Sea</span> <span class="hlt">Exchange</span>...Model 225, equipped with a Model 519 plug-in module. Other complementary information on A-SEMS along with results from first tests and calibration...between 9.50C and 22.40C within the first 24 hours after transferring the water sample into laboratory conditions. The results show an enhancement of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1611343P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1611343P"><span>Surfactant control of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> across contrasting biogeochemical regimes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert</p> <p>2014-05-01</p> <p><span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> is important to the global partitioning of CO2.<span class="hlt">Exchange</span> fluxes are products of an <span class="hlt">air-sea</span> gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the <span class="hlt">air-sea</span> interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> ...(Takahashi et al., 2009). One important control on kw is exerted by <span class="hlt">sea</span> surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas <span class="hlt">exchange</span> in two fundamental ways: as a monolayer physical barrier and through modifying <span class="hlt">sea</span> surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North <span class="hlt">Sea</span> in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the <span class="hlt">sea</span> surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas <span class="hlt">exchange</span> experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas <span class="hlt">exchange</span> suppression in the summer</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21141036','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21141036"><span>Advances in quantifying <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> and environmental forcing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wanninkhof, Rik; Asher, William E; Ho, David T; Sweeney, Colm; McGillis, Wade R</p> <p>2009-01-01</p> <p>The past decade has seen a substantial amount of research on <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the flux of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of <span class="hlt">air-sea</span> gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the <span class="hlt">exchange</span> of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas <span class="hlt">exchange</span> relationships that incorporate the main forcing factors will lead to improved estimates of global and regional <span class="hlt">air-sea</span> gas fluxes based on better fundamental physical, chemical, and biological foundations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6719V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6719V"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> over Black <span class="hlt">Sea</span> estimated from high resolution regional climate simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Velea, Liliana; Bojariu, Roxana; Cica, Roxana</p> <p>2013-04-01</p> <p>Black <span class="hlt">Sea</span> is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other <span class="hlt">seas</span>, standard observations of the atmosphere are limited in time and space and available observation-based estimations of <span class="hlt">air-sea</span> <span class="hlt">exchange</span> terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of <span class="hlt">air-sea</span> <span class="hlt">exchange</span> over Black <span class="hlt">Sea</span>, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: <span class="hlt">Air-sea</span> <span class="hlt">exchange</span> in the Black <span class="hlt">Sea</span> estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.agu.org/journals/jc/v096/iC04/90JC02642/','USGSPUBS'); return false;" href="http://www.agu.org/journals/jc/v096/iC04/90JC02642/"><span>Atmospheric organochlorine pollutants and <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of hexachlorocyclohexane in the Bering and Chukchi <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.</p> <p>1991-01-01</p> <p>Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi <span class="hlt">Seas</span> (August 1988), high-volume <span class="hlt">air</span> samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (<span class="hlt">sea</span> to <span class="hlt">air</span>) to 122 ng m-2 d-1 (<span class="hlt">air</span> to <span class="hlt">sea</span>) and averaged 25 ng m-2 d-1 <span class="hlt">air</span> to <span class="hlt">sea</span>. All fluxes of gamma-HCH were from <span class="hlt">air</span> to <span class="hlt">sea</span>, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7664L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7664L"><span>Atmospheric deposition and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> fluxes of DDT and HCH in the Yangtze River Estuary, East China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang</p> <p>2017-07-01</p> <p>The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the <span class="hlt">air</span>-water interface under the influences of river input and atmospheric transport. The <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> reached equilibrium because of low HCH levels in the <span class="hlt">air</span> and seawater after the long-term banning of HCH and the degradation. The gas <span class="hlt">exchange</span> flux of HCH was comparable to the dry and wet deposition fluxes at the <span class="hlt">air</span>-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas <span class="hlt">exchange</span> flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006GeoRL..3314803Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006GeoRL..3314803Z"><span>Impacts of winter storms on <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Weiqing; Perrie, Will; Vagle, Svein</p> <p>2006-07-01</p> <p>The objective of this study is to investigate <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on <span class="hlt">sea</span> state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the flux rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980Tell...32..470H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980Tell...32..470H"><span>Gas <span class="hlt">exchange</span> across the <span class="hlt">air-sea</span> interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasse, L.; Liss, P. S.</p> <p>1980-10-01</p> <p>The physics of gas <span class="hlt">exchange</span> at the <span class="hlt">air-sea</span> interface are reviewed. In order to describe the transfer of gases in the liquid near the boundary, a molecular plus eddy diffusivity concept is used, which has been found useful for smooth flow over solid surfaces. From consideration of the boundary conditions, a similar dependence of eddy diffusivity on distance from the interface can be derived for the flow beneath a gas/liquid interface, at least in the absence of waves. The influence of waves is then discussed. It is evident from scale considerations that the effect of gravity waves is small. It is known from wind tunnel work that capillary waves enhance gas transfer considerably. The existing hypotheses are apparently not sufficient to explain the observations. Examination of field data is even more frustrating since the data do not show the expected increase of gas <span class="hlt">exchange</span> with wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27617333','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27617333"><span>Persistent organochlorine pesticides and polychlorinated biphenyls in <span class="hlt">air</span> of the North <span class="hlt">Sea</span> region and <span class="hlt">air-sea</span> <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard</p> <p>2016-12-01</p> <p>Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North <span class="hlt">Sea</span> in spring and summer 2009-2010. In general, the concentrations found in <span class="hlt">air</span> are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North <span class="hlt">Sea</span>. Here atmospheric deposition dominates the <span class="hlt">air-sea</span> <span class="hlt">exchange</span>. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the <span class="hlt">air</span> masses of central England. A net depositional flux of p,p'-DDE into the North <span class="hlt">Sea</span> was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open <span class="hlt">sea</span>. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North <span class="hlt">Sea</span>. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...35a2003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...35a2003A"><span>The potential role of <span class="hlt">sea</span> spray droplets in facilitating <span class="hlt">air-sea</span> gas transfer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreas, E. L.; Vlahos, P.; Monahan, E. C.</p> <p>2016-05-01</p> <p>For over 30 years, <span class="hlt">air-sea</span> interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. To our knowledge, no one, however, has studied the mirror image process of whether <span class="hlt">sea</span> spray droplets can facilitate <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on <span class="hlt">air-sea</span> gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the <span class="hlt">exchange</span>: τ <span class="hlt">air</span> , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the <span class="hlt">exchange</span> rate across the <span class="hlt">air</span>-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43C0283L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43C0283L"><span><span class="hlt">Air-sea</span> <span class="hlt">Exchange</span> of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.</p> <p>2015-12-01</p> <p>The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the <span class="hlt">sea</span> surface may turn to a secondary source by reversal of diffusive <span class="hlt">air-sea</span> mass <span class="hlt">exchange</span>. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in <span class="hlt">air</span> and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in <span class="hlt">air</span> and fluxes were quantified based on Eddy covariance. Diffusive <span class="hlt">air-sea</span> <span class="hlt">exchange</span> fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open <span class="hlt">seas</span> more pollutants are undergoing reversal of the direction of <span class="hlt">air-sea</span> <span class="hlt">exchange</span>. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of <span class="hlt">air-sea</span> <span class="hlt">exchange</span>. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..176....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..176....1M"><span>Temporal variability of <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> in a low-emission estuary</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte</p> <p>2016-07-01</p> <p>There is the need for further study of whether global estimates of <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The <span class="hlt">air-sea</span> CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized <span class="hlt">air-sea</span> CO2 <span class="hlt">exchanges</span> and changed the net <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17874769','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17874769"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> fluxes of synthetic polycyclic musks in the North <span class="hlt">Sea</span> and the Arctic.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang</p> <p>2007-08-15</p> <p>Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in <span class="hlt">air</span> and seawater in the Arctic and the North <span class="hlt">Sea</span> and in the rural <span class="hlt">air</span> of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North <span class="hlt">Sea</span>, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-<span class="hlt">air</span> volatilization is a significant process to eliminate HHCB and AHTN from the North <span class="hlt">Sea</span>. In the Arctic, deposition fluxes dominated the <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PrOce.144...15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PrOce.144...15W"><span>Biofilm-like properties of the <span class="hlt">sea</span> surface and predicted effects on <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier</p> <p>2016-05-01</p> <p>Because the <span class="hlt">sea</span> surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The <span class="hlt">sea</span> surface is the gateway for the <span class="hlt">exchange</span> of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the <span class="hlt">sea</span> surface are essential. The uppermost part of the water column is defined as the <span class="hlt">sea</span>-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the <span class="hlt">sea</span> surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China <span class="hlt">Sea</span>, and Baltic <span class="hlt">Sea</span>. We found a significant lower enrichment of TEP (up to 6) in non-slick <span class="hlt">sea</span> surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> based on literature data. We estimate that slicks can reduce CO2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17379807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17379807"><span>Bottom-up determination of <span class="hlt">air-sea</span> momentum <span class="hlt">exchange</span> under a major tropical cyclone.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J</p> <p>2007-03-23</p> <p>As a result of increasing frequency and intensity of tropical cyclones, an accurate forecasting of cyclone evolution and ocean response is becoming even more important to reduce threats to lives and property in coastal regions. To improve predictions, accurate evaluation of the <span class="hlt">air-sea</span> momentum <span class="hlt">exchange</span> is required. Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the <span class="hlt">air-sea</span> interface, and we discuss it in terms of the drag coefficient. For winds between 20 and 48 meters per second, this coefficient initially increases and peaks at winds of about 32 meters per second before decreasing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..874S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..874S"><span>Observational Studies of Parameters Influencing <span class="hlt">Air-sea</span> Gas <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.</p> <p></p> <p>A physically-based modeling of the <span class="hlt">air-sea</span> gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the <span class="hlt">exchange</span> process at the <span class="hlt">air</span>/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the <span class="hlt">air/sea</span> interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas <span class="hlt">exchange</span> in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port processes across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22103582','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22103582"><span>Distribution and <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf</p> <p>2012-01-03</p> <p>Surface seawater and marine boundary layer <span class="hlt">air</span> samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China <span class="hlt">Sea</span> to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic <span class="hlt">air</span> samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the <span class="hlt">Sea</span> of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi <span class="hlt">Seas</span>. The dissolved CUPs in ocean water ranged widely from <MDL to 111 pg/L. Latitudinal trends of α-endosulfan, chlorpyrifos, and dicofol in seawater were roughly consistent with their latitudinal trends in <span class="hlt">air</span>. Trifluralin in seawater was relatively high in the <span class="hlt">Sea</span> of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi <span class="hlt">Sea</span>. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi <span class="hlt">Sea</span> and in East Asia. The <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi <span class="hlt">Sea</span>, while trifluralin showed stronger deposition in Chukchi <span class="hlt">Sea</span> (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). <span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li class="active"><span>1</span></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_1 --> <div id="page_2" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="21"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.178...31J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.178...31J"><span>Seasonal atmospheric deposition and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China <span class="hlt">Sea</span>: Implications for source-sink processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong</p> <p>2018-04-01</p> <p>In this work, <span class="hlt">air</span> samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the <span class="hlt">air-sea</span> interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of PAHs was the dominant process at the <span class="hlt">air-sea</span> interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH <span class="hlt">exchange</span> flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the <span class="hlt">air-sea</span> interface in the YRE play a crucial role in regional cycling of PAHs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24C2606P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24C2606P"><span>Surfactant control of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> from North <span class="hlt">Sea</span> coastal waters and the Atlantic Meridional Transect</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, R.</p> <p>2016-02-01</p> <p> suppression and SA is much weaker (r2 = <0.01, n = 22). While organic matter composition and sources may have variable control on <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> between the provinces, the poor relationship observed between SA and k660 suggests that other environmental factors maybe more influential on <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> in the open ocean compared to North <span class="hlt">Sea</span> coastal waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412324M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412324M"><span>Enrichment of Extracellular Carbonic Anhydrase in the <span class="hlt">Sea</span> Surface Microlayer and Its Effect on <span class="hlt">Air-Sea</span> CO2 <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mustaffa, N. I. H.; Striebel, M.; Wurl, O.</p> <p>2017-12-01</p> <p>This paper describes the quantification of extracellular carbonic anhydrase (eCA) concentrations in the <span class="hlt">sea</span> surface microlayer (SML), the boundary layer between the ocean and the atmosphere of the Indo-West Pacific. We demonstrated that the SML is enriched with eCA by 1.5 ± 0.7 compared to the mixed underlying water. Enrichment remains up to a wind speed of 7 m s-1 (i.e., under typical oceanic conditions). As eCA catalyzes the interconversion of HCO3- and CO2, it has been hypothesized that its enrichment in the SML enhances the <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span>. We detected concentrations in the range of 0.12 to 0.76 n<fi>M</fi>, which can enhance the <span class="hlt">exchange</span> by up to 15% based on the model approach described in the literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43G2559J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43G2559J"><span>Seasonal atmospheric deposition and <span class="hlt">air-sea</span> gaseous <span class="hlt">exchange</span> of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China <span class="hlt">Sea</span>: Implication for the source-sink processes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Y.; Guo, Z.</p> <p>2017-12-01</p> <p>As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China <span class="hlt">Sea</span> (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of <span class="hlt">air</span> samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal fluxes of <span class="hlt">air-sea</span> gaseous <span class="hlt">exchange</span> and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the <span class="hlt">air-sea</span> interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous <span class="hlt">exchange</span> of PAHs was referred as the dominant process at the <span class="hlt">air-sea</span> interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH <span class="hlt">exchange</span> flux was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and <span class="hlt">air-sea</span> concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at <span class="hlt">air-sea</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17706251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17706251"><span><span class="hlt">Air--sea</span> gaseous <span class="hlt">exchange</span> of PCB at the Venice lagoon (Italy).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P</p> <p>2007-10-01</p> <p>Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open <span class="hlt">sea</span>. The <span class="hlt">air</span>-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional processes and where they may be emitted by gaseous <span class="hlt">exchange</span>. In this work the parallel collection of <span class="hlt">air</span>, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in <span class="hlt">air</span> varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the <span class="hlt">air-sea</span> interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL20011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL20011S"><span>Boundary layers at a dynamic interface: <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of heat and mass</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szeri, Andrew</p> <p>2017-11-01</p> <p><span class="hlt">Exchange</span> of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in <span class="hlt">air-sea</span> transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from <span class="hlt">air</span> to <span class="hlt">sea</span> or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43G2558W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43G2558W"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.; Guo, Z.</p> <p>2017-12-01</p> <p>We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China <span class="hlt">Sea</span> (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three- to five-ring PAHs) were influenced by upwind land pollution. In addition, <span class="hlt">air-sea</span> <span class="hlt">exchange</span> fluxes of gaseous PAHs were estimated to be -54.2 to 107.4 ng m-2 d-1, and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure, with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic <span class="hlt">air</span> masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling Kp for oceanic <span class="hlt">air</span> masses than those for continental <span class="hlt">air</span> masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of <span class="hlt">air-sea</span> <span class="hlt">exchange</span>. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental <span class="hlt">air</span> masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.147..200O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.147..200O"><span>Determination of temperature dependent Henry's law constants of polychlorinated naphthalenes: Application to <span class="hlt">air-sea</span> <span class="hlt">exchange</span> in Izmir Bay, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Odabasi, Mustafa; Adali, Mutlu</p> <p>2016-12-01</p> <p>The Henry's law constant (H) is a crucial variable to investigate the <span class="hlt">air</span>-water <span class="hlt">exchange</span> of persistent organic pollutants. H values for 32 polychlorinated naphthalene (PCN) congeners were measured using an inert gas-stripping technique at five temperatures ranging between 5 and 35 °C. H values in deionized water (at 25 °C) varied between 0.28 ± 0.08 Pa m3 mol-1 (PCN-73) and 18.01 ± 0.69 Pa m3 mol-1 (PCN-42). The agreement between the measured and estimated H values from the octanol-water and octanol-<span class="hlt">air</span> partition coefficients was good (measured/estimated ratio = 1.00 ± 0.41, average ± SD). The calculated phase change enthalpies (ΔHH) were within the interval previously determined for other several semivolatile organic compounds (42.0-106.4 kJ mol-1). Measured H values, paired atmospheric and aqueous concentrations and meteorological variables were also used to reveal the level and direction of <span class="hlt">air-sea</span> <span class="hlt">exchange</span> fluxes of PCNs at the coast of Izmir Bay, Turkey. The net PCN <span class="hlt">air-sea</span> <span class="hlt">exchange</span> flux varied from -0.55 (volatilization, PCN-24/14) to 2.05 (deposition, PCN-23) ng m-2 day-1. PCN-19, PCN-24/14, PCN-42, and PCN-33/34/37 were mainly volatilized from seawater while the remaining congeners were mainly deposited. The overall number of the cases showing deposition was higher (67.9%) compared to volatilization (21.4%) and near equilibrium (10.7%).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28675854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28675854"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Zilan; Lin, Tian; Li, Zhongxia; Jiang, Yuqing; Li, Yuanyuan; Yao, Xiaohong; Gao, Huiwang; Guo, Zhigang</p> <p>2017-11-01</p> <p>We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China <span class="hlt">Sea</span> (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, <span class="hlt">air-sea</span> <span class="hlt">exchange</span> fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m -2 d -1 , and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logK p ) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logP L 0 ), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic <span class="hlt">air</span> masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling K p for oceanic <span class="hlt">air</span> masses than those for continental <span class="hlt">air</span> masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of <span class="hlt">air-sea</span> <span class="hlt">exchange</span>. Meanwhile, significant linear regressions between logK p and logK oa (logK sa ) for PAHs were observed for continental <span class="hlt">air</span> masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A23A..04C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A23A..04C"><span><span class="hlt">Air-Sea</span> Momentum and Enthalpy <span class="hlt">Exchange</span> in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Curcic, M.; Chen, S. S.</p> <p>2016-02-01</p> <p>The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating <span class="hlt">air-sea</span> momentum and enthalpy <span class="hlt">exchange</span> in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of <span class="hlt">sea</span> surface temperature and upper ocean parameterization on <span class="hlt">air-sea</span> enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of <span class="hlt">air-sea</span> coupling processes in coupled prediction models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.5793S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.5793S"><span>Biology and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> controls on the distribution of carbon isotope ratios (δ13C) in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.</p> <p>2013-09-01</p> <p>Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. <span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1313285B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1313285B"><span><span class="hlt">Air/sea</span> DMS gas transfer in the North Atlantic: evidence for limited interfacial gas <span class="hlt">exchange</span> at high wind speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.</p> <p>2013-05-01</p> <p>Shipboard measurements of eddy covariance DMS <span class="hlt">air/sea</span> fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of <span class="hlt">air/sea</span> gas flux at higher wind speeds appears to be related to <span class="hlt">sea</span> state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the <span class="hlt">air/sea</span> <span class="hlt">exchange</span> of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70120200','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70120200"><span><span class="hlt">Air-sea</span> interactions during strong winter extratropical storms</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John</p> <p>2014-01-01</p> <p>A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–<span class="hlt">sea</span> interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and <span class="hlt">sea</span> surface temperature (SST) from the Regional Ocean Modeling System are <span class="hlt">exchanged</span> via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, <span class="hlt">sea</span> level pressure, 10 m <span class="hlt">air</span> temperature, and <span class="hlt">sea</span> surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled <span class="hlt">air</span> temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–<span class="hlt">sea</span> interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm <span class="hlt">sea</span> (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold <span class="hlt">air</span> outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–<span class="hlt">sea</span> interactions affecting momentum and buoyancy flux <span class="hlt">exchanges</span> in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18186331','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18186331"><span>Variability of the gaseous elemental mercury <span class="hlt">sea-air</span> flux of the Baltic <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kuss, Joachim; Schneider, Bernd</p> <p>2007-12-01</p> <p>The importance of the <span class="hlt">sea</span> as a sink for atmospheric mercury has been established quantitatively through models based on wet and dry deposition data, but little is known about the release of mercury from <span class="hlt">sea</span> areas. The concentration of elemental mercury (Hg0) in <span class="hlt">sea</span> surface water and in the marine atmosphere of the Baltic <span class="hlt">Sea</span> was measured at high spatial resolution in February, April, July, and November 2006. Wind-speed records and the gas-<span class="hlt">exchange</span> transfer velocity were then used to calculate Hg0 <span class="hlt">sea-air</span> fluxes on the basis of Hg0 <span class="hlt">sea-air</span> concentration differences. Our results show that the spatial resolution of the surface water Hg0 data can be significantly improved by continuous measurements of Hg0 in <span class="hlt">air</span> equilibrated with water instead of quantitative extraction of Hg0 from seawater samples. A spatial and highly seasonal variability of the Hg0 <span class="hlt">sea-air</span> flux was thus determined. In winter, the flux was low and changed in direction. In summer, a strong emission flux of up to 150 ng m(-2) day(-1) in the central Baltic <span class="hlt">Sea</span> was recorded. The total emission of Hg0 from the studied area (235000 km2) was 4300 +/- 1600 kg in 2006 and exceeded deposition estimates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1311073B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1311073B"><span><span class="hlt">Air-sea</span> dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas <span class="hlt">exchange</span> at high wind speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.</p> <p>2013-11-01</p> <p>Shipboard measurements of eddy covariance dimethylsulfide (DMS) <span class="hlt">air-sea</span> fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of <span class="hlt">air-sea</span> gas flux at higher wind speeds appears to be related to <span class="hlt">sea</span> state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714679M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714679M"><span>Carbon speciation at the <span class="hlt">air-sea</span> interface during rain</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McGillis, Wade; Hsueh, Diana; Takeshita, Yui; Donham, Emily; Markowitz, Michele; Turk, Daniela; Martz, Todd; Price, Nicole; Langdon, Chris; Najjar, Raymond; Herrmann, Maria; Sutton, Adrienne; Loose, Brice; Paine, Julia; Zappa, Christopher</p> <p>2015-04-01</p> <p>This investigation demonstrates the surface ocean dilution during rain events on the ocean and quantifies the lowering of surface pCO2 affecting the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of carbon dioxide. Surface salinity was measured during rain events in Puerto Rico, the Florida Keys, East Coast USA, Panama, and the Palmyra Atoll. End-member analysis is used to determine the subsequent surface ocean carbonate speciation. Surface ocean carbonate chemistry was measured during rain events to verify any approximations made. The physical processes during rain (cold, fresh water intrusion and buoyancy, surface waves and shear, microscale mixing) are described. The role of rain on surface mixing, biogeochemistry, and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26931659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26931659"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China <span class="hlt">Sea</span>, the Hainan Island, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei</p> <p>2016-06-01</p> <p>The <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying <span class="hlt">air</span> in the tropical coast (Luhuitou fringing reef) of the South China <span class="hlt">Sea</span> (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in <span class="hlt">air</span> and surface waters, estimate the <span class="hlt">air-sea</span> Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in <span class="hlt">air</span> and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to <span class="hlt">air</span> (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The <span class="hlt">air-sea</span> Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040729','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040729"><span>The impact of lower <span class="hlt">sea</span>-ice extent on Arctic greenhouse-gas <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.</p> <p>2013-01-01</p> <p>In September 2012, Arctic <span class="hlt">sea</span>-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in <span class="hlt">sea</span>-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced <span class="hlt">sea</span>-ice cover in the Arctic Ocean for marine–atmosphere CO2 <span class="hlt">exchange</span>. <span class="hlt">Sea</span>-ice decline has been connected to increasing <span class="hlt">air</span> temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial <span class="hlt">exchange</span> of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing <span class="hlt">sea</span>-ice extent with changes in the interaction of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower <span class="hlt">sea</span>-ice cover on Arctic greenhouse-gas <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A34C2670V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A34C2670V"><span>Setting an Upper Limit on Gas <span class="hlt">Exchange</span> Through <span class="hlt">Sea</span>-Spray</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlahos, P.; Monahan, E. C.; Andreas, E. L.</p> <p>2016-02-01</p> <p><span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> parameterization is critical to understanding both climate forcing and feedbacks and is key in biogeochemistry cycles. Models based on wind speed have provided empirical estimates of gas <span class="hlt">exchange</span> that are useful though it is likely that at high wind speeds of over 10 m/s there are important gas <span class="hlt">exchange</span> parameters including bubbles and <span class="hlt">sea</span> spray that have not been well constrained. Here we address the <span class="hlt">sea</span>-spray component of gas <span class="hlt">exchange</span> at these high wind speeds to set sn upper boundary condition for the gas <span class="hlt">exchange</span> of the six model gases including; nobel gases helium, neon and argon, diatomic gases nitrogen and oxygen and finally, the more complex gas carbon dioxide. Estimates are based on the spray generation function of Andreas and Monahan and the gases are tested under three scenarios including 100 percent saturation and complete droplet evaporation, 100 percent saturation and a more realistic scenario in which a fraction of droplets evaporate completely, a fraction evaporate to some degree and a fraction returns to the water side without significant evaporation. Finally the latter scenario is applied to representative under saturated concentrations of the gases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS23B2025O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS23B2025O"><span>Field Observations of Coastal <span class="hlt">Air-Sea</span> Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.</p> <p>2016-12-01</p> <p>In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the <span class="hlt">exchange</span> of momentum, heat, and mass across the <span class="hlt">air-sea</span> interface. For decades, the focus of <span class="hlt">air-sea</span> interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and <span class="hlt">air-sea</span> gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured <span class="hlt">air-sea</span> flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the <span class="hlt">air-sea</span> fluxes. Preliminary findings show that interactions between the local wind-<span class="hlt">sea</span> and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-<span class="hlt">air-sea</span> interactions will also be investigated.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li class="active"><span>2</span></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_2 --> <div id="page_3" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="41"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26975003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26975003"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> of gaseous mercury in the East China <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan</p> <p>2016-05-01</p> <p>Two oceanographic cruises were carried out in the East China <span class="hlt">Sea</span> (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in <span class="hlt">air</span> and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the <span class="hlt">air</span> masses with high GEM levels during fall largely originated from the land, while the <span class="hlt">air</span> masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open <span class="hlt">sea</span>. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open <span class="hlt">sea</span> than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) flux (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) flux: 3.6 ± 2.8 ng m(-2) h(-1)). The emission flux of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GMS...127..141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GMS...127..141S"><span>A model of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> incorporating the physics of the turbulent boundary layer and the properties of the <span class="hlt">sea</span> surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, Alexander; Schluessel, Peter</p> <p></p> <p>The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> can be extended to the global scale, using remote sensing techniques.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2781S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2781S"><span>Boundary layers at a dynamic interface: <span class="hlt">Air-sea</span> <span class="hlt">exchange</span> of heat and mass</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szeri, Andrew J.</p> <p>2017-04-01</p> <p><span class="hlt">Exchange</span> of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in <span class="hlt">air-sea</span> transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from <span class="hlt">air</span> to <span class="hlt">sea</span> or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO51D..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO51D..01B"><span>Intercomparison of <span class="hlt">Air-Sea</span> Fluxes in the Bay of Bengal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.</p> <p>2016-02-01</p> <p>Heat and momentum <span class="hlt">exchange</span> between the <span class="hlt">air</span> and <span class="hlt">sea</span> in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm <span class="hlt">sea</span> surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to <span class="hlt">air-sea</span> flux values calculated from shipboard observations from four cruises and an <span class="hlt">air-sea</span> flux mooring in the Bay of Bengal as part of the <span class="hlt">Air-Sea</span> Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the <span class="hlt">air-sea</span> flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in <span class="hlt">air</span> temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry <span class="hlt">air</span> can reduce net heat into the ocean for minutes to a few days, significantly effecting <span class="hlt">air-sea</span> heat transfer, upper ocean stratification, and ocean surface temperature and salinity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JPhy4.139..211E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JPhy4.139..211E"><span>Occurrence and <span class="hlt">air/sea-exchange</span> of novel organic pollutants in the marine environment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebinghaus, R.; Xie, Z.</p> <p>2006-12-01</p> <p>A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface <span class="hlt">sea</span> water and atmosphere of the North <span class="hlt">Sea</span>. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North <span class="hlt">Sea</span> is an important input pathway. The net fluxes indicate that the <span class="hlt">air</span> <span class="hlt">sea</span> <span class="hlt">exchange</span> is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4951643','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4951643"><span>Biopolymers form a gelatinous microlayer at the <span class="hlt">air-sea</span> interface when Arctic <span class="hlt">sea</span> ice melts</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Galgani, Luisa; Piontek, Judith; Engel, Anja</p> <p>2016-01-01</p> <p>The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. <span class="hlt">Sea</span> ice harbors high amounts of polymeric substances that are produced by cells growing within the <span class="hlt">sea</span>-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the <span class="hlt">air-sea</span> interface when the <span class="hlt">sea</span> ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between <span class="hlt">sea</span> ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....10.8415S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....10.8415S"><span>Biology and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> controls on the distribution of carbon isotope ratios (δ13C) in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.</p> <p>2013-05-01</p> <p>Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. <span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022999"><span>Improvement of the GEOS-5 AGCM upon Updating the <span class="hlt">Air-Sea</span> Roughness Parameterization</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.</p> <p>2011-01-01</p> <p>The impact of an <span class="hlt">air-sea</span> roughness parameterization over the ocean that more closely matches recent observations of <span class="hlt">air-sea</span> <span class="hlt">exchange</span> is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their <span class="hlt">air-sea</span> roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.1379C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.1379C"><span>Technical Note: A simple method for <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> measurements in mesocosms and its application in carbon budgeting</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Czerny, J.; Schulz, K. G.; Ludwig, A.; Riebesell, U.</p> <p>2013-03-01</p> <p>Mesocosms as large experimental units provide the opportunity to perform elemental mass balance calculations, e.g. to derive net biological turnover rates. However, the system is in most cases not closed at the water surface and gases <span class="hlt">exchange</span> with the atmosphere. Previous attempts to budget carbon pools in mesocosms relied on educated guesses concerning the <span class="hlt">exchange</span> of CO2 with the atmosphere. Here, we present a simple method for precise determination of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> in mesocosms using N2O as a deliberate tracer. Beside the application for carbon budgeting, transfer velocities can be used to calculate <span class="hlt">exchange</span> rates of any gas of known concentration, e.g. to calculate aquatic production rates of climate relevant trace gases. Using an arctic KOSMOS (Kiel Off Shore Mesocosms for future Ocean Simulation) experiment as an exemplary dataset, it is shown that the presented method improves accuracy of carbon budget estimates substantially. Methodology of manipulation, measurement, data processing and conversion to CO2 fluxes are explained. A theoretical discussion of prerequisites for precise gas <span class="hlt">exchange</span> measurements provides a guideline for the applicability of the method under various experimental conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000880','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000880"><span><span class="hlt">Air-sea</span> interaction and remote sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Katsaros, Kristina B.; Ataktuerk, Serhad S.</p> <p>1992-01-01</p> <p>The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> processes and the <span class="hlt">sea</span> state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared <span class="hlt">sea</span> surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface fluxes (of momentum, sensible heat, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31..901E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31..901E"><span>Impacts of ENSO on <span class="hlt">air-sea</span> oxygen <span class="hlt">exchange</span>: Observations and mechanisms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eddebbar, Yassir A.; Long, Matthew C.; Resplandy, Laure; Rödenbeck, Christian; Rodgers, Keith B.; Manizza, Manfredi; Keeling, Ralph F.</p> <p>2017-05-01</p> <p>Models and observations of atmospheric potential oxygen (APO ≃ O2 + 1.1 * CO2) are used to investigate the influence of El Niño-Southern Oscillation (ENSO) on <span class="hlt">air-sea</span> O2 <span class="hlt">exchange</span>. An atmospheric transport inversion of APO data from the Scripps flask network shows significant interannual variability in tropical APO fluxes that is positively correlated with the Niño3.4 index, indicating anomalous ocean outgassing of APO during El Niño. Hindcast simulations of the Community Earth System Model (CESM) and the Institut Pierre-Simon Laplace model show similar APO sensitivity to ENSO, differing from the Geophysical Fluid Dynamics Laboratory model, which shows an opposite APO response. In all models, O2 accounts for most APO flux variations. Detailed analysis in CESM shows that the O2 response is driven primarily by ENSO modulation of the source and rate of equatorial upwelling, which moderates the intensity of O2 uptake due to vertical transport of low-O2 waters. These upwelling changes dominate over counteracting effects of biological productivity and thermally driven O2 <span class="hlt">exchange</span>. During El Niño, shallower and weaker upwelling leads to anomalous O2 outgassing, whereas deeper and intensified upwelling during La Niña drives enhanced O2 uptake. This response is strongly localized along the central and eastern equatorial Pacific, leading to an equatorial zonal dipole in atmospheric anomalies of APO. This dipole is further intensified by ENSO-related changes in winds, reconciling apparently conflicting APO observations in the tropical Pacific. These findings suggest a substantial and complex response of the oceanic O2 cycle to climate variability that is significantly (>50%) underestimated in magnitude by ocean models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017DSRI..122...17M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017DSRI..122...17M"><span>The <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of mercury in the low latitude Pacific and Atlantic Oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mason, Robert P.; Hammerschmidt, Chad R.; Lamborg, Carl H.; Bowman, Katlin L.; Swarr, Gretchen J.; Shelley, Rachel U.</p> <p>2017-04-01</p> <p><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> is an important component of the global mercury (Hg) cycle as it mediates the rate of increase in ocean Hg, and therefore the rate of change in levels of methylmercury (MeHg), the most toxic and bioaccumulative form of Hg in seafood and the driver of human health concerns. Gas evasion of elemental Hg (Hg0) from the ocean is an important sink for ocean Hg with previous studies suggesting that evasion is not uniform across ocean basins. To understand further the factors controlling Hg0 evasion, and its relationship to atmospheric Hg deposition, we made measurements of dissolved Hg0 (DHg0) in surface waters, along with measurements of Hg in precipitation and on aerosols, and Hg0 in marine <span class="hlt">air</span>, during two GEOTRACES cruises; GP16 in the equatorial South Pacific and GA03 in the North Atlantic. We contrast the concentrations and estimated evasion fluxes of Hg0 during these cruises, and the factors influencing this <span class="hlt">exchange</span>. Concentrations of DHg0 and fluxes were lower during the GP16 cruise than during the GA03 cruise, and likely reflect the lower atmospheric deposition in the South Pacific. An examination of Hg/Al ratios for aerosols from the cruises suggests that they were anthropogenically-enriched relative to crustal material, although to a lesser degree for the South Pacific than the aerosols over the North Atlantic. Both regions appear to be net sources of Hg0 to the atmosphere (evasion>deposition) and the reasons for this are discussed. Overall, the studies reported here provide further clarification on the factors controlling evasion of Hg0 from the ocean surface, and the role of anthropogenic inputs in influencing ocean Hg concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007GBioC..21.2015S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007GBioC..21.2015S"><span>Constraining global <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> for CO2 with recent bomb 14C measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sweeney, Colm; Gloor, Emanuel; Jacobson, Andrew R.; Key, Robert M.; McKinley, Galen; Sarmiento, Jorge L.; Wanninkhof, Rik</p> <p>2007-06-01</p> <p>The 14CO2 released into the stratosphere during bomb testing in the early 1960s provides a global constraint on <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> of soluble atmospheric gases like CO2. Using the most complete database of dissolved inorganic radiocarbon, DI14C, available to date and a suite of ocean general circulation models in an inverse mode we recalculate the ocean inventory of bomb-produced DI14C in the global ocean and confirm that there is a 25% decrease from previous estimates using older DI14C data sets. Additionally, we find a 33% lower globally averaged gas transfer velocity for CO2 compared to previous estimates (Wanninkhof, 1992) using the NCEP/NCAR Reanalysis 1 1954-2000 where the global mean winds are 6.9 m s-1. Unlike some earlier ocean radiocarbon studies, the implied gas transfer velocity finally closes the gap between small-scale deliberate tracer studies and global-scale estimates. Additionally, the total inventory of bomb-produced radiocarbon in the ocean is now in agreement with global budgets based on radiocarbon measurements made in the stratosphere and troposphere. Using the implied relationship between wind speed and gas transfer velocity ks = 0.27<u102>(Sc/660)-0.5 and standard partial pressure difference climatology of CO2 we obtain an net <span class="hlt">air-sea</span> flux estimate of 1.3 ± 0.5 PgCyr-1 for 1995. After accounting for the carbon transferred from rivers to the deep ocean, our estimate of oceanic uptake (1.8 ± 0.5 PgCyr-1) compares well with estimates based on ocean inventories, ocean transport inversions using ocean concentration data, and model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..716Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..716Z"><span>Typhoon <span class="hlt">air-sea</span> drag coefficient in coastal regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua</p> <p>2015-02-01</p> <p>The <span class="hlt">air-sea</span> drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China <span class="hlt">Sea</span>. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing <span class="hlt">air-sea</span> momentum <span class="hlt">exchanges</span> over shallow water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........17O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........17O"><span>Observations and Modeling of Turbulent <span class="hlt">Air-Sea</span> Coupling in Coastal and Strongly Forced Condition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz-Suslow, David G.</p> <p></p> <p>The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and <span class="hlt">air-sea</span> gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial <span class="hlt">exchange</span> rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the <span class="hlt">air-sea</span> fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial <span class="hlt">exchange</span>; in order to achieve this, a broad investigation into <span class="hlt">air-sea</span> coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, <span class="hlt">air</span>, and <span class="hlt">sea</span> in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, <span class="hlt">sea</span> spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of <span class="hlt">air-sea</span> fluxes in terms of empirical relationships developed from a relatively narrow set of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001asi..book.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001asi..book.....C"><span><span class="hlt">Air-Sea</span> Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Csanady, G. T.</p> <p>2001-03-01</p> <p>In recent years <span class="hlt">air-sea</span> interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both <span class="hlt">air</span> and <span class="hlt">sea</span>. <span class="hlt">Air-Sea</span> Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23636599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23636599"><span>Neutral poly- and perfluoroalkyl substances in <span class="hlt">air</span> and seawater of the North <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhiyong; Zhao, Zhen; Möller, Axel; Wolschke, Hendrik; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf</p> <p>2013-11-01</p> <p>Concentrations of neutral poly- and perfluoroalkyl substances (PFASs), such as fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sufonamidoethanols (FASEs), and fluorotelomer acrylates (FTACs), have been simultaneously determined in surface seawater and the atmosphere of the North <span class="hlt">Sea</span>. Seawater and <span class="hlt">air</span> samples were taken aboard the German research vessel Heincke on the cruise 303 from 15 to 24 May 2009. The concentrations of FTOHs, FASAs, FASEs, and FTACs in the dissolved phase were 2.6-74, <0.1-19, <0.1-63, and <1.0-9.0 pg L(-1), respectively. The highest concentrations were determined in the estuary of the Weser and Elbe rivers and a decreasing concentration profile appeared with increasing distance from the coast toward the central part of the North <span class="hlt">Sea</span>. Gaseous FTOHs, FASAs, FASEs, and FTACs were in the range of 36-126, 3.1-26, 3.7-19, and 0.8-5.6 pg m(-3), which were consistent with the concentrations determined in 2007 in the North <span class="hlt">Sea</span>, and approximately five times lower than those reported for an urban area of Northern Germany. These results suggested continuous continental emissions of neutral PFASs followed by transport toward the marine environment. <span class="hlt">Air</span>-seawater gas <span class="hlt">exchanges</span> of neutral PFASs were estimated using fugacity ratios and the two-film resistance model based upon paired <span class="hlt">air</span>-seawater concentrations and estimated Henry's law constant values. Volatilization dominated for all neutral PFASs in the North <span class="hlt">Sea</span>. The <span class="hlt">air</span>-seawater gas <span class="hlt">exchange</span> fluxes were in the range of 2.5×10(3)-3.6×10(5) pg m(-2) for FTOHs, 1.8×10(2)-1.0×10(5) pg m(-2) for FASAs, 1.1×10(2)-3.0×10(5) pg m(-2) for FASEs and 6.3×10(2)-2.0×10(4) pg m(-2) for FTACs, respectively. These results suggest that the <span class="hlt">air</span>-seawater gas <span class="hlt">exchange</span> is an important process that intervenes in the transport and fate for neutral PFASs in the marine environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......266B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......266B"><span>On the physical <span class="hlt">air-sea</span> fluxes for climate modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonekamp, J. G.</p> <p>2001-02-01</p> <p>At the <span class="hlt">sea</span> surface, the atmosphere and the ocean <span class="hlt">exchange</span> momentum, heat and freshwater. Mechanisms for the <span class="hlt">exchange</span> are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an important role in not only the mean atmospheric and oceanic circulation, but also in the generation and sustainment of coupled climate fluctuations such as the El Niño/La Niña phenomenon. Therefore, a good knowledge of <span class="hlt">air-sea</span> fluxes is required for the understanding and prediction of climate changes. As part of long-term comprehensive atmospheric reanalyses with `Numerical Weather Prediction/Data assimilation' systems, data sets of global <span class="hlt">air-sea</span> fluxes are generated. A good example is the 15-year atmospheric reanalysis of the European Centre for Medium--Range Weather Forecasts (ECMWF). <span class="hlt">Air-sea</span> flux data sets from these reanalyses are very beneficial for climate research, because they combine a good spatial and temporal coverage with a homogeneous and consistent method of calculation. However, atmospheric reanalyses are still imperfect sources of flux information due to shortcomings in model variables, model parameterizations, assimilation methods, sampling of observations, and quality of observations. Therefore, assessments of the errors and the usefulness of <span class="hlt">air-sea</span> flux data sets from atmospheric (re-)analyses are relevant contributions to the quantitative study of climate variability. Currently, much research is aimed at assessing the quality and usefulness of the reanalysed <span class="hlt">air-sea</span> fluxes. Work in this thesis intends to contribute to this assessment. In particular, it attempts to answer three relevant questions. The first question is: What is the best parameterization of the momentum flux? A comparison is made of the wind stress parameterization of the ERA15 reanalysis, the currently generated ERA40 reanalysis and the wind stress measurements over the open ocean. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.6352P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.6352P"><span>Importance of ocean mesoscale variability for <span class="hlt">air-sea</span> interactions in the Gulf of Mexico</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.</p> <p>2017-06-01</p> <p>Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and <span class="hlt">air-sea</span> heat <span class="hlt">exchanges</span>, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and <span class="hlt">air-sea</span> heat <span class="hlt">exchanges</span>. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between <span class="hlt">sea</span> surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and <span class="hlt">air-sea</span> latent heat <span class="hlt">exchanges</span>. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51A2037B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51A2037B"><span>Observational analysis of <span class="hlt">air-sea</span> fluxes and <span class="hlt">sea</span> water temperature offshore South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bi, X.; Huang, J.; Gao, Z.; Liu, Y.</p> <p>2017-12-01</p> <p>This paper investigates the <span class="hlt">air-sea</span> fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China <span class="hlt">Sea</span> from January 2009 to December 2016 and <span class="hlt">sea</span> water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the <span class="hlt">sea</span> averages about 15 m. This study presents the in-situ measurements of continuous <span class="hlt">air-sea</span> fluxes and SWT at different depths. Seasonal and diurnal variations in <span class="hlt">air-sea</span> fluxes and SWT on different depths are examined. Results show that <span class="hlt">air-sea</span> fluxes and all SWT changed seasonally; <span class="hlt">sea</span>-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between <span class="hlt">sea</span> surface temperature (SST) and <span class="hlt">sea</span> temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_1");'>1</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li class="active"><span>3</span></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_3 --> <div id="page_4" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="61"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool"><span>Tropical Intraseasonal <span class="hlt">Air-Sea</span> <span class="hlt">Exchanges</span> during the 1997 Pacific Warming</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou</p> <p>1999-01-01</p> <p>The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and <span class="hlt">sea</span> level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced <span class="hlt">air-sea</span> interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with <span class="hlt">air-sea</span> fluxes and upper ocean responses during the period of September 1996 to June 1997. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AtmRe.196...62S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AtmRe.196...62S"><span>Intense <span class="hlt">air-sea</span> <span class="hlt">exchanges</span> and heavy orographic precipitation over Italy: The role of Adriatic <span class="hlt">sea</span> surface temperature uncertainty</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stocchi, Paolo; Davolio, Silvio</p> <p>2017-11-01</p> <p>Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense <span class="hlt">air-sea</span> interactions and it is reasonable to hypothesize that the Adriatic <span class="hlt">sea</span> surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic <span class="hlt">Sea</span> have been developed and applied in order to characterize the <span class="hlt">air</span> mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of <span class="hlt">air</span> that flows over the Adriatic <span class="hlt">Sea</span>. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31D..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31D..01L"><span>Gas <span class="hlt">exchange</span> in the ice zone: the role of small waves and big animals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; Takahashi, A.; Bigdeli, A.</p> <p>2016-12-01</p> <p>The balance of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> and net biological carbon fixation determine the transport and transformation of carbon dioxide and methane in the ocean. <span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> is mostly driven by upper ocean physics, but biology can also play a role. In the open ocean, gas <span class="hlt">exchange</span> increases proportionate to the square of wind speed. When <span class="hlt">sea</span> ice is present, this dependence breaks down in part because breaking waves and <span class="hlt">air</span> bubble entrainment are damped out by interactions between <span class="hlt">sea</span> ice and the wave field. At the same time, <span class="hlt">sea</span> ice motions, formation, melt, and even <span class="hlt">sea</span> ice-associated organisms can act to introduce turbulence and <span class="hlt">air</span> bubbles into the upper ocean, thereby enhancing <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. We take advantage of the knowledge advances of upper ocean physics including bubble dynamics to formulate a model for <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> in the <span class="hlt">sea</span> ice zone. Here, we use the model to examine the role of small-scale waves and diving animals that trap <span class="hlt">air</span> for insulation, including penguins, seals and polar bears. We compare these processes to existing parameterizations of wave and bubble dynamics in the open ocean, to observe how <span class="hlt">sea</span> ice both mitigates and locally enhances <span class="hlt">air-sea</span> gas transfer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED259926.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED259926.pdf"><span>Heat Recovery Ventilation for Housing: <span class="hlt">Air-to-Air</span> Heat <span class="hlt">Exchangers</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Corbett, Robert J.; Miller, Barbara</p> <p></p> <p>The <span class="hlt">air-to-air</span> heat <span class="hlt">exchanger</span> (a fan powered ventilation device that recovers heat from stale outgoing <span class="hlt">air</span>) is explained in this six-part publication. Topic areas addressed are: (1) the nature of <span class="hlt">air-to-air</span> heat <span class="hlt">exchangers</span> and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6001G"><span>The effects of <span class="hlt">sea</span> spray and atmosphere-wave coupling on <span class="hlt">air-sea</span> <span class="hlt">exchange</span> during a tropical cyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth</p> <p>2018-04-01</p> <p>The study investigates the role of the <span class="hlt">air-sea</span> interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and <span class="hlt">sea</span> spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and <span class="hlt">sea</span> spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a <span class="hlt">sea</span> spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how <span class="hlt">sea</span> spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the <span class="hlt">sea</span>- state-dependent momentum flux, the <span class="hlt">sea</span>-spray-mediated heat flux, and a combination of the former two processes with the <span class="hlt">sea</span>-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the <span class="hlt">sea</span>-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307735&keyword=environmental+AND+assessment+AND+natural+AND+environment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=307735&keyword=environmental+AND+assessment+AND+natural+AND+environment&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Review of <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate Models for <span class="hlt">Air</span> Pollution Exposure Assessments</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>A critical aspect of <span class="hlt">air</span> pollution exposure assessments is estimation of the <span class="hlt">air</span> <span class="hlt">exchange</span> rate (AER) for various buildings, where people spend their time. The AER, which is rate the <span class="hlt">exchange</span> of indoor <span class="hlt">air</span> with outdoor <span class="hlt">air</span>, is an important determinant for entry of outdoor <span class="hlt">air</span> pol...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B33J..01T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B33J..01T"><span>Western Pacific <span class="hlt">Air-Sea</span> Interaction Study (W-PASS), Introduction and Highlights (Invited)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tsuda, A.</p> <p>2010-12-01</p> <p>Western Pacific <span class="hlt">Air-Sea</span> Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, <span class="hlt">air</span> quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal <span class="hlt">seas</span> and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal <span class="hlt">seas</span> are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific <span class="hlt">Air-Sea</span> interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve <span class="hlt">air-sea</span> interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on <span class="hlt">air-sea</span> interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China <span class="hlt">Sea</span> in the spring 2008. A few weak Kosa (dust) events, anthropogenic <span class="hlt">air</span> outflows, typical local <span class="hlt">air</span> and occupation of marine background <span class="hlt">air</span> were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> processes, biogeochemical responses to dust depositions and its modeling. We also</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA629222','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA629222"><span>Microphysics of <span class="hlt">Air-Sea</span> <span class="hlt">Exchanges</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-09-30</p> <p>intensities of the three color components at each point of the image . The ISG imaged an area of the water surface of up to 45 cm (downwind) x 30 cm...notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not...satellite-derived <span class="hlt">sea</span>-surface temperature (SST) fields into meaningful climatologies and to more physically-based applications of satellite data to studies</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820015568','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820015568"><span>Size distribution of oceanic <span class="hlt">air</span> bubbles entrained in <span class="hlt">sea</span>-water by wave-breaking</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Resch, F.; Avellan, F.</p> <p>1982-01-01</p> <p>The size of oceanic <span class="hlt">air</span> bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the <span class="hlt">sea</span> surface is predicted. These liquid aerosols are at the origin of most of the particulate materials <span class="hlt">exchanged</span> between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large <span class="hlt">air-sea</span> interaction simulating facility. Experimental results are given in the form of size spectrum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995TellB..47..447I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995TellB..47..447I"><span><span class="hlt">Air-sea</span> <span class="hlt">exchange</span> of CO2 in the central and western equatorial Pacific in 1990</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishii, Masao; Yoshikawa Inoue, Hisayuki</p> <p>1995-09-01</p> <p>Measurements of CO2 in marine boundary <span class="hlt">air</span> and in surface seawater of the central and western Pacific west of 150°W were made during the period from September to December 1990. The meridional section along 150°W showed pCO2(<span class="hlt">sea</span>) maximum over 410 µatm between the equator and 3°S due to strong equatorial upwelling. In the equatorial Pacific between 150°W and 179°E, pCO2(<span class="hlt">sea</span>) decreased gradually toward the west as a result of biological CO2 uptake and surface <span class="hlt">sea</span> temperature increase. Between 179°E and 170°E, the pCO2(<span class="hlt">sea</span>) decreased steeply from 400 µatm to 350 µatm along with a decrease of salinity. West of 170°E, where the salinity is low owing to the heavy rainfall, pCO2(<span class="hlt">sea</span>) was nearly equal to pCO2(<span class="hlt">air</span>). The distribution of the atmospheric CO2 concentration showed a considerable variability (±3ppm) in the area north of the Intertropical Convergence Zone due to the regional net source-sink strength of the terrestrial biosphere. The net CO2 flux from the <span class="hlt">sea</span> to the atmosphere in the equatorial region of the central and western Pacific (15°S-10°N, 140°E-150°W) was evaluated from the ΔpCO2 distribution and the several gas transfer coefficients reported so far. It ranged from 0.13 GtC year<img src="/entityImage/script/2212.gif" alt="-" border="0" style="font-weight: bold"></img>1-0.29 GtC year<img src="/entityImage/script/2212.gif" alt="-" border="0" style="font-weight: bold"></img>1. This CO2 outflux is thought to almost disappear during the period of an El Niño event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4297L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4297L"><span>Using eddy covariance to measure the dependence of <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> rate on friction velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian</p> <p>2018-03-01</p> <p>Parameterisation of the <span class="hlt">air-sea</span> gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of <span class="hlt">air-sea</span> interaction research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for <span class="hlt">air-sea</span> flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of <span class="hlt">air-sea</span> CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50...83B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50...83B"><span>Greenland coastal <span class="hlt">air</span> temperatures linked to Baffin Bay and Greenland <span class="hlt">Sea</span> ice conditions during autumn through regional blocking patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.</p> <p>2018-01-01</p> <p>Variations in <span class="hlt">sea</span> ice freeze onset and regional <span class="hlt">sea</span> surface temperatures (SSTs) in Baffin Bay and Greenland <span class="hlt">Sea</span> are linked to autumn surface <span class="hlt">air</span> temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland <span class="hlt">Sea</span>. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern <span class="hlt">sea</span> ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm <span class="hlt">air</span> from lower latitudes and local warm <span class="hlt">air</span> advection onshore from ocean-atmosphere sensible heat <span class="hlt">exchange</span> through ice-free or thin ice-covered <span class="hlt">seas</span> bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3696L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3696L"><span>How well does wind speed predict <span class="hlt">air-sea</span> gas transfer in the <span class="hlt">sea</span> ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.</p> <p>2017-05-01</p> <p>We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort <span class="hlt">Sea</span>. Including these 34, there are presently 58 published radon-deficit estimates of <span class="hlt">air-sea</span> gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% <span class="hlt">sea</span> ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the <span class="hlt">sea</span> ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of <span class="hlt">sea</span> ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> with no impact from <span class="hlt">air</span>-ice gas <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62405&keyword=FAN&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=62405&keyword=FAN&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>FACTORS AFFECTING <span class="hlt">AIR</span> <span class="hlt">EXCHANGE</span> IN TWO HOUSES</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><span class="hlt">Air</span> <span class="hlt">exchange</span> rate is critical to determining the relationship between indoor and outdoor concentrations of hazardous pollutants. Approximately 150 <span class="hlt">air</span> <span class="hlt">exchange</span> experiments were completed in two residences: a two-story detached house located in Redwood City, CA and a three-story...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1512690S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1512690S"><span>The <span class="hlt">Air-Sea</span> Interface and Surface Stress under Tropical Cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac</p> <p>2013-04-01</p> <p> of the drag coefficient wind speed dependence around 65 m/s. This minimum may contribute to the rapid intensification of storms to major tropical cyclones. The subsequent slow increase of the drag coefficient with wind above 65 m/s serves as an obstacle for further intensification of tropical cyclones. Such dependence may explain the observed bi-modal distribution of tropical cyclone intensity. Implementation of the new parameterization into operational models is expected to improve predictions of tropical cyclone intensity and the associated wave field. References: Donelan, M. A., B. K. Haus, N. Reul, W. Plant, M. Stiassnie, H. Graber, O. Brown, and E. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds, Farrell, B.F, and P.J. Ioannou, 2008: The stochastic parametric mechanism for growth of wind-driven surface water waves. Journal of Physical Oceanography 38, 862-879. Kelly, R.E., 1965: The stability of an unsteady Kelvin-Helmholtz flow. J. Fluid Mech. 22, 547-560. Koga, M., 1981: Direct production of droplets from breaking wind-waves-Its observation by a multi-colored overlapping exposure technique, Tellus 33, 552-563. Miles, J.W., 1959: On the generation of surface waves by shear flows, part 3. J. Fluid. Mech. 6, 583-598. Soloviev, A.V. and R. Lukas, 2010: Effects of bubbles and <span class="hlt">sea</span> spray on <span class="hlt">air-sea</span> <span class="hlt">exchanges</span> in hurricane conditions. Boundary-Layer Meteorology 136, 365-376. Soloviev, A., A. Fujimura, and S. Matt, 2012: <span class="hlt">Air-sea</span> interface in hurricane conditions. J. Geophys. Res. 117, C00J34.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29593081','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29593081"><span>Cuticular gas <span class="hlt">exchange</span> by Antarctic <span class="hlt">sea</span> spiders.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lane, Steven J; Moran, Amy L; Shishido, Caitlin M; Tobalske, Bret W; Woods, H Arthur</p> <p>2018-04-25</p> <p>Many marine organisms and life stages lack specialized respiratory structures, like gills, and rely instead on cutaneous respiration, which they facilitate by having thin integuments. This respiratory mode may limit body size, especially if the integument also functions in support or locomotion. Pycnogonids, or <span class="hlt">sea</span> spiders, are marine arthropods that lack gills and rely on cutaneous respiration but still grow to large sizes. Their cuticle contains pores, which may play a role in gas <span class="hlt">exchange</span>. Here, we examined alternative paths of gas <span class="hlt">exchange</span> in <span class="hlt">sea</span> spiders: (1) oxygen diffuses across pores in the cuticle, a common mechanism in terrestrial eggshells, (2) oxygen diffuses directly across the cuticle, a common mechanism in small aquatic insects, or (3) oxygen diffuses across both pores and cuticle. We examined these possibilities by modeling diffusive oxygen fluxes across all pores in the body of <span class="hlt">sea</span> spiders and asking whether those fluxes differed from measured metabolic rates. We estimated fluxes across pores using Fick's law parameterized with measurements of pore morphology and oxygen gradients. Modeled oxygen fluxes through pores closely matched oxygen consumption across a range of body sizes, which means the pores facilitate oxygen diffusion. Furthermore, pore volume scaled hypermetrically with body size, which helps larger species facilitate greater diffusive oxygen fluxes across their cuticle. This likely presents a functional trade-off between gas <span class="hlt">exchange</span> and structural support, in which the cuticle must be thick enough to prevent buckling due to external forces but porous enough to allow sufficient gas <span class="hlt">exchange</span>. © 2018. Published by The Company of Biologists Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1064S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1064S"><span><span class="hlt">Exchanges</span> between the open Black <span class="hlt">Sea</span> and its North West shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapiro, Georgy; Wobus, Fred; Zhou, Feng</p> <p>2014-05-01</p> <p><span class="hlt">Exchanges</span> between the vast NW shelf and the deep basin of the Black <span class="hlt">Sea</span> play a significant role in maintaining the balance of nutrients, heat content and salinity of the shelf waters. Nearly 87 % of the Black <span class="hlt">Sea</span> is entirely anoxic below 70 to 200m and contains high levels of hydrogen sulphide (Zaitsev et al, 2001), and this makes the shelf waters particularly valuable for maintaining the Black <span class="hlt">Sea</span> ecosystem in good health. The increase in salinity of shelf waters occurs partially due to <span class="hlt">exchanges</span> with more saline open <span class="hlt">sea</span> waters and represents a threat to relics and endemic species. The shelf-break is commonly considered the bottle-neck of the shelf-deep <span class="hlt">sea</span> <span class="hlt">exchanges</span> (e.g. (Huthnance, 1995, Ivanov et al, 1997). Due to conservation of potential vorticity, the geostrophic currents flow along the contours of constant depth. However the ageostrophic flows (Ekman drift, mesoscale eddies, filaments, internal waves) are not subject to the same constraints. It has been shown that during the winter well mixed cold waters formed on the North West shelf propagate into the deep <span class="hlt">sea</span>, providing an important mechanism for the replenishment of the Cold Intermediate Layer ( Staneva and Stanev, 1997). However, much less is known about <span class="hlt">exchanges</span> in the warm season. In this study, the transports of water, heat and salt between the northwestern shelf and the adjacent deep basin of the Black <span class="hlt">Sea</span> are investigated using a high-resolution three-dimensional primitive equation model, NEMO-SHELF-BLS (Shapiro et al, 2013). It is shown that during the period from April to August, 2005, both onshore and offshore cross-shelf break transports in the top 20 m were as high as 0.24 Sv on average, which was equivalent to the replacement of 60% of the volume of surface shelf waters (0 - 20 m) per month. Two main <span class="hlt">exchange</span> mechanisms are studied: (i) Ekman transport, and (ii) transport by mesoscale eddies and associated meanders of the Rim Current. The Ekman drift causes nearly uniform onshore or</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17.9019B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17.9019B"><span>Estimation of bubble-mediated <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> from concurrent DMS and CO2 transfer velocities at intermediate-high wind speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, Thomas G.; Landwehr, Sebastian; Miller, Scott D.; de Bruyn, Warren J.; Callaghan, Adrian H.; Scanlon, Brian; Ward, Brian; Yang, Mingxi; Saltzman, Eric S.</p> <p>2017-07-01</p> <p>Simultaneous <span class="hlt">air-sea</span> fluxes and concentration differences of dimethylsulfide (DMS) and carbon dioxide (CO2) were measured during a summertime North Atlantic cruise in 2011. This data set reveals significant differences between the gas transfer velocities of these two gases (Δkw) over a range of wind speeds up to 21 m s-1. These differences occur at and above the approximate wind speed threshold when waves begin breaking. Whitecap fraction (a proxy for bubbles) was also measured and has a positive relationship with Δkw, consistent with enhanced bubble-mediated transfer of the less soluble CO2 relative to that of the more soluble DMS. However, the correlation of Δkw with whitecap fraction is no stronger than with wind speed. Models used to estimate bubble-mediated transfer from in situ whitecap fraction underpredict the observations, particularly at intermediate wind speeds. Examining the differences between gas transfer velocities of gases with different solubilities is a useful way to detect the impact of bubble-mediated <span class="hlt">exchange</span>. More simultaneous gas transfer measurements of different solubility gases across a wide range of oceanic conditions are needed to understand the factors controlling the magnitude and scaling of bubble-mediated gas <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.2293B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.2293B"><span>Wave Attenuation and Gas <span class="hlt">Exchange</span> Velocity in Marginal <span class="hlt">Sea</span> Ice Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bigdeli, A.; Hara, T.; Loose, B.; Nguyen, A. T.</p> <p>2018-03-01</p> <p>The gas transfer velocity in marginal <span class="hlt">sea</span> ice zones exerts a strong control on the input of anthropogenic gases into the ocean interior. In this study, a <span class="hlt">sea</span> state-dependent gas <span class="hlt">exchange</span> parametric model is developed based on the turbulent kinetic energy dissipation rate. The model is tuned to match the conventional gas <span class="hlt">exchange</span> parametrization in fetch-unlimited, fully developed <span class="hlt">seas</span>. Next, fetch limitation is introduced in the model and results are compared to fetch limited experiments in lakes, showing that the model captures the effects of finite fetch on gas <span class="hlt">exchange</span> with good fidelity. Having validated the results in fetch limited waters such as lakes, the model is next applied in <span class="hlt">sea</span> ice zones using an empirical relation between the <span class="hlt">sea</span> ice cover and the effective fetch, while accounting for the <span class="hlt">sea</span> ice motion effect that is unique to <span class="hlt">sea</span> ice zones. The model results compare favorably with the available field measurements. Applying this parametric model to a regional Arctic numerical model, it is shown that, under the present conditions, gas flux into the Arctic Ocean may be overestimated by 10% if a conventional parameterization is used.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8.1093P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8.1093P"><span>The potential of using remote sensing data to estimate <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase</p> <p>2017-12-01</p> <p>In this article, we present the first climatological map of <span class="hlt">air-sea</span> CO2 flux over the Baltic <span class="hlt">Sea</span> based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic <span class="hlt">Sea</span>, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open <span class="hlt">sea</span> (-4 mmol m-2 d-1). In its entirety, the Baltic <span class="hlt">Sea</span> acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_2");'>2</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li class="active"><span>4</span></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_4 --> <div id="page_5" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="81"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA615405','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA615405"><span>Forecasting Foreign Currency <span class="hlt">Exchange</span> Rates for <span class="hlt">Air</span> Force Budgeting</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-03-26</p> <p>FORECASTING FOREIGN CURRENCY <span class="hlt">EXCHANGE</span> RATES FOR <span class="hlt">AIR</span> FORCE BUDGETING THESIS MARCH 2015...States. AFIT-ENV-MS-15-M-178 FORECASTING FOREIGN CURRENCY <span class="hlt">EXCHANGE</span> RATES FOR <span class="hlt">AIR</span> FORCE BUDGETING THESIS Presented to the Faculty...FORECASTING FOREIGN CURRENCY <span class="hlt">EXCHANGE</span> RATES FOR <span class="hlt">AIR</span> FORCE BUDGETING Nicholas R. Gardner, BS Captain, USAF Committee Membership: Lt Col Jonathan</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....910331C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....910331C"><span>CO2 <span class="hlt">exchange</span> in a temperate marginal <span class="hlt">sea</span> of the Mediterranean <span class="hlt">Sea</span>: processes and carbon budget</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cossarini, G.; Querin, S.; Solidoro, C.</p> <p>2012-08-01</p> <p>Marginal <span class="hlt">seas</span> play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal <span class="hlt">seas</span> are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal <span class="hlt">seas</span> and assist in the compilation of a complete global budget. In this study, we investigated the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean <span class="hlt">Sea</span> (the Adriatic <span class="hlt">Sea</span>) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic <span class="hlt">Sea</span> is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO2 sequestration in the Mediterranean <span class="hlt">Sea</span>. The results of the model simulation show that the Adriatic <span class="hlt">Sea</span>, as a whole, is a CO2 sink with a mean annual flux of 36 mg m-2 day-1. The northern part absorbs more carbon (68 mg m-2 day-1) due to an efficient continental shelf pump process, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic <span class="hlt">Sea</span> accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3887K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3887K"><span><span class="hlt">Air-Sea</span> <span class="hlt">exchange</span> of biogenic volatile organic compounds and the impact on aerosol particle size distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Michelle J.; Novak, Gordon A.; Zoerb, Matthew C.; Yang, Mingxi; Blomquist, Byron W.; Huebert, Barry J.; Cappa, Christopher D.; Bertram, Timothy H.</p> <p>2017-04-01</p> <p>We report simultaneous, underway eddy covariance measurements of the vertical flux of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene <span class="hlt">sea-to-air</span> vertical fluxes were significantly lower than mean DMS fluxes. While rare, intense monoterpene <span class="hlt">sea-to-air</span> fluxes were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical flux and short wave radiation was not observed, suggesting that photochemical processes in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is on average <0.1 μg m-3 d-1. Despite modest PSOA, low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PrOce.109..104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PrOce.109..104C"><span><span class="hlt">Sea</span> surface microlayers: A unified physicochemical and biological perspective of the <span class="hlt">air</span>-ocean interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunliffe, Michael; Engel, Anja; Frka, Sanja; Gašparović, Blaženka; Guitart, Carlos; Murrell, J. Colin; Salter, Matthew; Stolle, Christian; Upstill-Goddard, Robert; Wurl, Oliver</p> <p>2013-02-01</p> <p>The <span class="hlt">sea</span> surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PalOc..25.3201J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PalOc..25.3201J"><span>Response of <span class="hlt">air-sea</span> carbon fluxes and climate to orbital forcing changes in the Community Climate System Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.</p> <p>2010-07-01</p> <p>A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic <span class="hlt">sea</span> ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in <span class="hlt">air-sea</span> carbon fluxes of the same order. However, the differences in global net <span class="hlt">air-sea</span> carbon fluxes are small, which is due to several effects, two of which stand out: first, colder <span class="hlt">sea</span> surface temperature leads to a more effective solubility pump but also to increased <span class="hlt">sea</span> ice concentration which blocks <span class="hlt">air-sea</span> <span class="hlt">exchange</span>, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12095811','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12095811"><span>Effects of humidified and dry <span class="hlt">air</span> on corneal endothelial cells during vitreal fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cekiç, Osman; Ohji, Masahito; Hayashi, Atsushi; Fang, Xiao Y; Kusaka, Shunji; Tano, Yasuo</p> <p>2002-07-01</p> <p>To report the immediate anatomic and functional alterations in corneal endothelial cells following use of humidified <span class="hlt">air</span> and dry <span class="hlt">air</span> during vitreal fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> in rabbits. Experimental study. Rabbits undergoing pars plana vitrectomy and lensectomy were perfused with either dry or humidified <span class="hlt">air</span> during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> for designated durations. Three different experiments were performed. First, control and experimental corneas were examined by scanning electron microscopy (SEM). Second, corneas were stained with Phalloidin-FITC and examined by fluorescein microscopy. Finally, third, transendothelial permeability for carboxyfluorescein was determined using a diffusion chamber. While different from the corneal endothelial cells, those cells exposed to humidified <span class="hlt">air</span> were less stressed than cells exposed to dry <span class="hlt">air</span> by SEM. Actin cytoskeleton was found highly disorganized with dry <span class="hlt">air</span> exposure. Humidified <span class="hlt">air</span> maintained the normal actin cytoskeleton throughout the 20 minutes of fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>. Paracellular carboxyfluorescein leakage was significantly higher in dry <span class="hlt">air</span> insufflated eyes compared with that of the humidified <span class="hlt">air</span> after 5, 10, and 20 minutes of fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> (P =.002, P =.004, and P =.002, respectively). Dry <span class="hlt">air</span> stress during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> causes significant immediate alterations in monolayer appearance, actin cytoskeleton, and barrier function of corneal endothelium in aphakic rabbit eyes. Use of humidified <span class="hlt">air</span> largely prevents the alterations in monolayer appearance, actin cytoskeleton, and barrier function of corneal endothelial cells.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRC..107.3196S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRC..107.3196S"><span>An Oceanic General Circulation Model (OGCM) investigation of the Red <span class="hlt">Sea</span> circulation, 1. <span class="hlt">Exchange</span> between the Red <span class="hlt">Sea</span> and the Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sofianos, Sarantis S.; Johns, William E.</p> <p>2002-11-01</p> <p>The mechanisms involved in the seasonal <span class="hlt">exchange</span> between the Red <span class="hlt">Sea</span> and the Indian Ocean are studied using an Oceanic General Circulation Model (OGCM), namely the Miami Isopycnic Coordinate Ocean Model (MICOM). The model reproduces the basic characteristics of the seasonal circulation observed in the area of the strait of Bab el Mandeb. There is good agreement between model results and available observations on the strength of the <span class="hlt">exchange</span> and the characteristics of the water masses involved, as well as the seasonal flow pattern. During winter, this flow consists of a typical inverse estuarine circulation, while during summer, the surface flow reverses, there is an intermediate inflow of relatively cold and fresh water, and the hypersaline outflow at the bottom of the strait is significantly reduced. Additional experiments with different atmospheric forcing (seasonal winds, seasonal thermohaline <span class="hlt">air-sea</span> fluxes, or combinations) were performed in order to assess the role of the atmospheric forcing fields in the <span class="hlt">exchange</span> flow at Bab el Mandeb. The results of both the wind- and thermohaline-driven experiments exhibit a strong seasonality at the area of the strait, which is in phase with the observations. However, it is the combination of both the seasonal pattern of the wind stress and the seasonal thermohaline forcing that can reproduce the observed seasonal variability at the strait. The importance of the seasonal cycle of the thermohaline forcing on the <span class="hlt">exchange</span> flow pattern is also emphasized by these results. In the experiment where the thermohaline forcing is represented by its annual mean, the strength of the <span class="hlt">exchange</span> is reduced almost by half.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060029193&hterms=air+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dair%2Bmeasurement','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060029193&hterms=air+measurement&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dair%2Bmeasurement"><span><span class="hlt">Sea</span> surface temperature measurements with <span class="hlt">AIRS</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Aumann, H.</p> <p>2003-01-01</p> <p>The comparison of global <span class="hlt">sea</span> surface skin temperature derived from cloud-free <span class="hlt">AIRS</span> super window channel at 2616 cm-1 (sst2616) with the Real-Time Global <span class="hlt">Sea</span> Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25827140','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25827140"><span><span class="hlt">Air</span>-Seawater <span class="hlt">Exchange</span> of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun</p> <p>2015-05-05</p> <p>Gaseous <span class="hlt">exchange</span> fluxes of organochlorine pesticides (OCPs) across the <span class="hlt">air</span>-water interface of the coastal East China <span class="hlt">Sea</span> were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in <span class="hlt">air</span> and water. <span class="hlt">Air</span>-water <span class="hlt">exchange</span> was mainly characterized by net volatilization for all measured OCPs. The net gaseous <span class="hlt">exchange</span> flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean <span class="hlt">air</span> masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-08-14/pdf/2013-19756.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-08-14/pdf/2013-19756.pdf"><span>78 FR 49484 - <span class="hlt">Exchange</span> of <span class="hlt">Air</span> Force Real Property for Non-<span class="hlt">Air</span> Force Real Property</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-08-14</p> <p>... DEPARTMENT OF DEFENSE Department of <span class="hlt">Air</span> Force <span class="hlt">Exchange</span> of <span class="hlt">Air</span> Force Real Property for Non-<span class="hlt">Air</span> Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States <span class="hlt">Air</span> Force it intends to <span class="hlt">exchange</span> for real property not currently owned by the...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..227a2104P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..227a2104P"><span>Numerical calculation of a <span class="hlt">sea</span> water heta <span class="hlt">exchanger</span> using Simulink softwear</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Preda, A.; Popescu, L. L.; Popescu, R. S.</p> <p>2017-08-01</p> <p>To highlight the heat <span class="hlt">exchange</span> taking place between seawater as primary agent and the working fluid (water, glycol or Freon) as secondary agent, I have used the Simulink softwear in order to creat a new sequence for numerical calculation of heat <span class="hlt">exchanging</span>. For optimum heat transfer we opted for a counter movement. The model developed to view the dynamic behavior of the <span class="hlt">exchanger</span> consists of four interconnected levelsess. In the simulations was found that a finer mesh of the whole <span class="hlt">exchanger</span> lead to results much closer to reality. There have been various models meshing, starting from a single cell and then advancing noticed an improvement in resultsSimulations were made in both the summer and the winter, using as a secondary agent process water and glycol solution. Studying heat transfer that occurs in the primary <span class="hlt">exchanger</span> of a heat pump, having the primary fluid <span class="hlt">sea</span> water with this program, we get the data plausible and worthy of consideration. Inserting into the program, the seasonal water temperatures of Black <span class="hlt">Sea</span> water layers, we get a encouraging picture about storage capacity and heat transfer of <span class="hlt">sea</span> water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014594"><span>Ocean Winds and Turbulent <span class="hlt">Air-Sea</span> Fluxes Inferred From Remote Sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.</p> <p>2010-01-01</p> <p><span class="hlt">Air-sea</span> turbulent fluxes determine the <span class="hlt">exchange</span> of momentum, heat, freshwater, and gas between the atmosphere and ocean. These <span class="hlt">exchange</span> processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the <span class="hlt">air/sea</span> interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10369593','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10369593"><span>Effect of humidity on posterior lens opacification during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Harlan, J B; Lee, E T; Jensen, P S; de Juan, E</p> <p>1999-06-01</p> <p>To study the relationship of humidity and the rate of lens opacity formation during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> using an animal model. Vitrectomy and fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> was carried out using 16 eyes of 8 pigmented rabbits. One eye of each rabbit was exposed to dry <span class="hlt">air</span> and the fellow eye received humidified <span class="hlt">air</span> using an intraocular <span class="hlt">air</span> humidifier. In each case, the percent humidity of the intraocular <span class="hlt">air</span> was measured using an in-line hygrometer. Elapsed time from initial <span class="hlt">air</span> entry to lens feathering was recorded for each eye, with the surgeon-observer unaware of the percent humidity of the <span class="hlt">air</span> infusion. In each rabbit, use of humidified <span class="hlt">air</span> resulted in a delay in lens feathering (P<.02), with an overall increase in time to feathering of 80% for humidified <span class="hlt">air</span> vs room <span class="hlt">air</span>. Use of a humidifier during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> prolongs intraoperative lens clarity in the rabbit model, suggesting that humidified <span class="hlt">air</span> should prolong lens clarity during phakic fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> in patients. Use of humidified <span class="hlt">air</span> during vitrectomy and fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> may retard the intraoperative loss of lens clarity, promoting better visualization of the posterior segment and enhancing surgical performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/467654-air-sea-interaction-subtropical-convergence-south-africa','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/467654-air-sea-interaction-subtropical-convergence-south-africa"><span><span class="hlt">Air-sea</span> interaction at the subtropical convergence south of Africa</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van</p> <p>1994-12-31</p> <p>The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and <span class="hlt">air-sea</span> interaction measurements. The <span class="hlt">air-sea</span> interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere <span class="hlt">exchanges</span>.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA519623','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA519623"><span>The <span class="hlt">Air</span> Land <span class="hlt">Sea</span> Bulletin. Issue No. 2006-2, May 2006</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-05-01</p> <p>THE <span class="hlt">AIR</span> LAND <span class="hlt">SEA</span> BULLETIN Issue No. 2006-2 <span class="hlt">Air</span> Land <span class="hlt">Sea</span> Application (ALSA) Center May 2006 IN HOUSE Director’s Comments— Final Thoughts...4 US <span class="hlt">Air</span> Force Predator UAVs Have Moved Into a More Overt Strike Role [Jane’s Defence Weekly Reprint] ........................6...SUBTITLE The <span class="hlt">Air</span> Land <span class="hlt">Sea</span> Bulletin. Issue No. 2006-2, May 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5038955','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5038955"><span>A Sensitivity Analysis of the Impact of Rain on Regional and Global <span class="hlt">Sea-Air</span> Fluxes of CO2</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.</p> <p>2016-01-01</p> <p>The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the <span class="hlt">sea</span> surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas <span class="hlt">exchange</span> through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the <span class="hlt">sea</span> skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net <span class="hlt">sea-air</span> fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net <span class="hlt">sea-air</span> fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of <span class="hlt">sea-air</span> gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net <span class="hlt">sea-air</span> fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..3621605V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..3621605V"><span>A generalized model for the <span class="hlt">air-sea</span> transfer of dimethyl sulfide at high wind speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlahos, Penny; Monahan, Edward C.</p> <p>2009-11-01</p> <p>The <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the <span class="hlt">air-sea</span> flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (<10 m/s) but that these DMS transfer rates may diverge from other gases as wind speeds increase. Herein we provide a mechanism that predicts the attenuation of DMS transfer rates at high wind speeds. The model is based on the amphiphilic nature of DMS that leads to transfer delay at the water-bubble interface and becomes significant at wind speeds above >10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010OcSci...6...91F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010OcSci...6...91F"><span>Thermodynamic properties of <span class="hlt">sea</span> <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.</p> <p>2010-02-01</p> <p>Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid <span class="hlt">air</span> covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid <span class="hlt">air</span>, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid <span class="hlt">air</span> and water/ice/seawater. Particular attention is given to equilibria between seawater and humid <span class="hlt">air</span>, referred to as "<span class="hlt">sea</span> <span class="hlt">air</span>" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to <span class="hlt">air-sea</span> interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009OcScD...6.2193F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009OcScD...6.2193F"><span>Thermodynamic properties of <span class="hlt">sea</span> <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.</p> <p>2009-10-01</p> <p>Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid <span class="hlt">air</span> covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid <span class="hlt">air</span>, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid <span class="hlt">air</span> and water/ice/seawater. Particular attention is given to equilibria between seawater and humid <span class="hlt">air</span>, referred to as ''<span class="hlt">sea</span> <span class="hlt">air</span>'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to <span class="hlt">air-sea</span> interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..633N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..633N"><span>Increasing transnational <span class="hlt">sea</span>-ice <span class="hlt">exchange</span> in a changing Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Newton, Robert; Pfirman, Stephanie; Tremblay, Bruno; DeRepentigny, Patricia</p> <p>2017-06-01</p> <p>The changing Arctic <span class="hlt">sea</span>-ice cover is likely to impact the trans-border <span class="hlt">exchange</span> of <span class="hlt">sea</span> ice between the exclusive economic zones (EEZs) of the Arctic nations, affecting the risk of ice-rafted contamination. We apply the Lagrangian Ice Tracking System (LITS) to identify <span class="hlt">sea</span>-ice formation events and track <span class="hlt">sea</span> ice to its melt locations. Most ice (52%) melts within 100 km of where it is formed; ca. 21% escapes from its EEZ. Thus, most contaminants will be released within an ice parcel's originating EEZ, while material carried by over 1 00,000 km2 of ice—an area larger than France and Germany combined—will be released to other nations' waters. Between the periods 1988-1999 and 2000-2014, <span class="hlt">sea</span>-ice formation increased by ˜17% (roughly 6 million km2 vs. 5 million km2 annually). Melting peaks earlier; freeze-up begins later; and the central Arctic Ocean is more prominent in both formation and melt in the later period. The total area of ice transported between EEZs increased, while transit times decreased: for example, Russian ice reached melt locations in other nations' EEZs an average of 46% faster while North American ice reached destinations in Eurasian waters an average of 37% faster. Increased trans-border <span class="hlt">exchange</span> is mainly a result of increased speed (˜14% per decade), allowing first-year ice to escape the summer melt front, even as the front extends further north. Increased trans-border <span class="hlt">exchange</span> over shorter times is bringing the EEZs of the Arctic nations closer together, which should be taken into account in policy development—including establishment of marine-protected areas.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910054028&hterms=study+motivation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dstudy%2Bmotivation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910054028&hterms=study+motivation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dstudy%2Bmotivation"><span>Overview of the Frontal <span class="hlt">Air-Sea</span> Interaction Experiment (FASINEX) - A study of <span class="hlt">air-sea</span> interaction in a region of strong oceanic gradients</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weller, Robert A.</p> <p>1991-01-01</p> <p>From 1984 to 1986 the cooperative Frontal <span class="hlt">Air-Sea</span> Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study <span class="hlt">air-sea</span> interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and <span class="hlt">sea</span> surface properties. Ocean fronts provided both large spatial gradients in <span class="hlt">sea</span> surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23715084','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23715084"><span>A review of <span class="hlt">air</span> <span class="hlt">exchange</span> rate models for <span class="hlt">air</span> pollution exposure assessments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther</p> <p>2014-11-01</p> <p>A critical aspect of <span class="hlt">air</span> pollution exposure assessments is estimation of the <span class="hlt">air</span> <span class="hlt">exchange</span> rate (AER) for various buildings where people spend their time. The AER, which is the rate of <span class="hlt">exchange</span> of indoor <span class="hlt">air</span> with outdoor <span class="hlt">air</span>, is an important determinant for entry of outdoor <span class="hlt">air</span> pollutants and for removal of indoor-emitted <span class="hlt">air</span> pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of <span class="hlt">air</span> pollution exposure assessments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6061C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6061C"><span>Importance of <span class="hlt">air-sea</span> interaction on wind waves, storm surge and hurricane simulations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Yingjian; Yu, Xiping</p> <p>2017-04-01</p> <p>It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the <span class="hlt">air-sea</span> interaction process as well as the energy dissipation due to the presence of <span class="hlt">sea</span> spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum <span class="hlt">exchange</span> at the <span class="hlt">air-sea</span> interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum <span class="hlt">sea</span> level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990TellB..42..481A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990TellB..42..481A"><span>Time constants for the evolution of <span class="hlt">sea</span> spray droplets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Andreas, Edgar L.</p> <p>1990-11-01</p> <p><span class="hlt">Sea</span> spray droplets start with the same temperature as the ocean surface from which they form. In high-latitude, polar-low conditions, they therefore cool and evaporate in a relatively cold wind and may alter the <span class="hlt">air</span> <span class="hlt">sea</span> <span class="hlt">exchange</span> of heat and moisture. This paper presents equations that model the thermal and size (moisture) evolution of a spray droplet from the time it forms until it reaches equilibrium with its environment. The model does well when tested against some of the scanty data available on the evolution of saline droplets. We parameterize the thermal and size evolution of spray droplets with the time constants τT and τr, which are, respectively, the times required for a droplet to come to within e<img src="/entityImage/script/2212.gif" alt="-" border="0" style="font-weight: bold"></img>1 of its equilibrium temperature and within e<img src="/entityImage/script/2212.gif" alt="-" border="0" style="font-weight: bold"></img>1 of its equilibrium radius. τr is always about three orders of magnitude larger than τT; the thermal <span class="hlt">exchange</span> is thus complete before the moisture <span class="hlt">exchange</span> even starts. Consequently, the ambient humidity has little effect on the thermal <span class="hlt">exchange</span> rate, and the initial droplet temperature has negligible effect on the moisture <span class="hlt">exchange</span> rate. We also parameterize the gravitational settling of droplets and their potential for turbulent suspension with the time scales τf and τw, respectively. Comparing the four time scales, we see that spray droplets with initial radii less than 10μm reach both thermal and size equilibrium with the ambient <span class="hlt">air</span>. Droplets with initial radii greater than 300μm, on the other hand, fall back into the <span class="hlt">sea</span> before <span class="hlt">exchanging</span> appreciable heat or moisture; they thus have little impact on <span class="hlt">air</span> <span class="hlt">sea</span> <span class="hlt">exchange</span>. In the mid-range, droplets with initial radii between 10 and 300μm, the physics is more complex. Even after comparing τT and τr with τf and τw, we still cannot say unequivocally which process is fastest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS22B..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS22B..07M"><span>Wintertime <span class="hlt">Air-Sea</span> Gas Transfer Rates and <span class="hlt">Air</span> Injection Fluxes at Station Papa in the NE Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McNeil, C.; Steiner, N.; Vagle, S.</p> <p>2008-12-01</p> <p>In recent studies of <span class="hlt">air-sea</span> fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of <span class="hlt">air-sea</span> gas flux to estimate simultaneous values of gas transfer rate, KT, and <span class="hlt">air</span> injection flux, VT. The model assumes <span class="hlt">air-sea</span> gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) <span class="hlt">air</span> injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on <span class="hlt">air-sea</span> gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC54B1327H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC54B1327H"><span>First System-Wide Estimates of <span class="hlt">Air-Sea</span> <span class="hlt">Exchange</span> of Carbon Dioxide in the Chesapeake Bay</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Herrmann, M.; Najjar, R.; Menendez, A.</p> <p>2016-02-01</p> <p>Estuaries are estimated to play a major role in the global carbon cycle by degassing between 0.25 and 0.4 Pg C y-1, comparable to the uptake of atmospheric CO2 by continental shelf waters and as much as one quarter of the uptake of atmospheric CO2 by the open ocean. However, the global estimates of estuarine CO2 gas <span class="hlt">exchange</span> are highly uncertain mostly due to limited data availability and extreme heterogeneity of coastal systems. Notably, the <span class="hlt">air</span>-water CO2 flux for the largest U.S. estuary, the Chesapeake Bay, is yet unknown. Here we provide first system-level CO2 gas <span class="hlt">exchange</span> estimates for the Chesapeake Bay, using data from the Chesapeake Bay Water Quality Monitoring Program (CBWQMP) and other data sources. We focus on the main stem of the Chesapeake Bay; hence, tributaries, such as the tidal portions of the Potomac and James Rivers, are not included in this first estimation of the flux. The preliminary results show the Bay to be a net source of CO2 to the atmosphere, outgassing on average 0.2 Tg C yr-1 over the study period, between 1985 and 2013. The spatial and temporal variability of the gas <span class="hlt">exchange</span> will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMS...165..124H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMS...165..124H"><span>The importance of <span class="hlt">sea</span> ice for <span class="hlt">exchange</span> of habitat-specific protist communities in the Central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hardge, Kristin; Peeken, Ilka; Neuhaus, Stefan; Lange, Benjamin A.; Stock, Alexandra; Stoeck, Thorsten; Weinisch, Lea; Metfies, Katja</p> <p>2017-01-01</p> <p><span class="hlt">Sea</span> ice is one of the main features influencing the Arctic marine protist community composition and diversity in <span class="hlt">sea</span> ice and <span class="hlt">sea</span> water. We analyzed protist communities within <span class="hlt">sea</span> ice, melt pond water, under-ice water and deep-chlorophyll maximum water at eight <span class="hlt">sea</span> ice stations sampled during summer of the 2012 record <span class="hlt">sea</span> ice minimum year. Using Illumina sequencing, we identified characteristic communities associated with specific habitats and investigated protist <span class="hlt">exchange</span> between these habitats. The highest abundance and diversity of unique taxa were found in <span class="hlt">sea</span> ice, particularly in multi-year ice (MYI), highlighting the importance of <span class="hlt">sea</span> ice as a unique habitat for <span class="hlt">sea</span> ice protists. Melting of <span class="hlt">sea</span> ice was associated with increased <span class="hlt">exchange</span> of communities between <span class="hlt">sea</span> ice and the underlying water column. In contrast, <span class="hlt">sea</span> ice formation was associated with increased <span class="hlt">exchange</span> between all four habitats, suggesting that brine rejection from the ice is an important factor for species redistribution in the Central Arctic. Ubiquitous taxa (e.g. Gymnodinium) that occurred in all habitats still had habitat-preferences. This demonstrates a limited ability to survive in adjacent but different environments. Our results suggest that the continued reduction of <span class="hlt">sea</span> ice extent, and particularly of MYI, will likely lead to diminished protist <span class="hlt">exchange</span> and subsequently, could reduce species diversity in all habitats of the Central Arctic Ocean. An important component of the unique <span class="hlt">sea</span> ice protist community could be endangered because specialized taxa restricted to this habitat may not be able to adapt to rapid environmental changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/2329','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/2329"><span>Alternative Fuels Data Center: <span class="hlt">Sea</span>-Tac and Alaska <span class="hlt">Air</span> Group Achieve</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>pilot project, Alaska <span class="hlt">Air</span> <em>Group</em> encountered a few hurdles during the switch to eGSE. <em>One</em> was Sky-High Results with Electric Ground Support Equipment</A> <span class="hlt">Sea</span>-Tac and Alaska <span class="hlt">Air</span> <em>Group</em> Achieve Data Center: <span class="hlt">Sea</span>-Tac and Alaska <span class="hlt">Air</span> <em>Group</em> Achieve Sky-High Results with Electric Ground Support</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.5758P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.5758P"><span>The Impact of a Lower <span class="hlt">Sea</span> Ice Extent on Arctic Greenhouse Gas <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parmentier, Frans-Jan W.; Christensen, Torben R.; Lotte Sørensen, Lise; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.</p> <p>2013-04-01</p> <p> years has the potential to influence greenhouse gas <span class="hlt">exchange</span> across terrestrial ecosystems and the Arctic Ocean, but the overall impact remains unclear. In this study, we therefore try to reduce this uncertainty by addressing the influence of the decline in <span class="hlt">sea</span> ice extent on all affected greenhouse gas fluxes in the high latitudes. Also, we will address the need for more research, on the ocean and on the land, to understand the impact of a lower <span class="hlt">sea</span> ice extent on Arctic greenhouse gas <span class="hlt">exchange</span>. References: Bates, N. R., Moran, S. B., Hansell, D. A. and Mathis, J. T.: An increasing CO2 sink in the Arctic Ocean due to <span class="hlt">sea</span>-ice loss, Geophys. Res. Lett., 33, L23609, doi:10.1029/2006GL027028, 2006. Cai, W.-J., Chen, L., Chen, B., Gao, Z., Lee, S. H., Chen, J., Pierrot, D., Sullivan, K., Wang, Y., Hu, X., Huang, W.-J., et al.: Decrease in the CO2 Uptake Capacity in an Ice-Free Arctic Ocean Basin, Science, 329(5991), 556-559, doi:10.1126/science.1189338, 2010. Kort, E. A., Wofsy, S. C., Daube, B. C., Diao, M., Elkins, J. W., Gao, R. S., Hintsa, E. J., Hurst, D. F., Jimenez, R., Moore, F. L., Spackman, J. R., et al.: Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north, Nature Geosci., 5(5), 318-321, doi:10.1038/NGEO1452, 2012. Nomura, D., Yoshikawa-Inoue, H. and Toyota, T.: The effect of <span class="hlt">sea</span>-ice growth on <span class="hlt">air-sea</span> CO2 flux in a tank experiment, vol. 58, pp. 418-426. 2006. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., Fox, A. D., Gilg, O., Hik, D. S., Høye, T. T., Ims, R. A., et al.: Ecological Dynamics Across the Arctic Associated with Recent Climate Change, Science, 325(5946), 1355-1358, doi:10.1126/science.1173113, 2009. Rysgaard, S., Glud, R. N., Sejr, M. K., Bendtsen, J. and Christensen, P. B.: Inorganic carbon transport during <span class="hlt">sea</span> ice growth and decay: A carbon pump in polar <span class="hlt">seas</span>, J. Geophys. Res., 112, C03016, doi:10.1029/2006JC003572, 2007. Schuur, E. A. G., Abbott, B. and Network, P. C</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6547Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6547Y"><span><span class="hlt">Air-sea</span> interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.</p> <p>2017-08-01</p> <p>This study analyzed shipboard <span class="hlt">air-sea</span> measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and <span class="hlt">air</span> temperature, leading to consequential effects on <span class="hlt">air-sea</span> variables and fluxes. Major effort was made to estimate the <span class="hlt">air-sea</span> fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the <span class="hlt">sea</span>-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong <span class="hlt">sea</span>-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat <span class="hlt">exchanges</span> between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.<abstract type="synopsis"><title type="main">Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5595B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5595B"><span>Continuous measurement of <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> by underwater eddy covariance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Berg, Peter; Pace, Michael L.</p> <p>2017-12-01</p> <p><span class="hlt">Exchange</span> of gases, such as O2, CO2, and CH4, over the <span class="hlt">air</span>-water interface is an important component in aquatic ecosystem studies, but <span class="hlt">exchange</span> rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas <span class="hlt">exchanges</span> such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the <span class="hlt">air</span>-water interface (˜ 4 cm) to determine gas <span class="hlt">exchange</span> rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the <span class="hlt">air</span>-water interface were derived, and gas <span class="hlt">exchange</span> coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas <span class="hlt">exchange</span> coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in <span class="hlt">air</span>-water <span class="hlt">exchange</span> of O2 that was controlled largely by physical processes (e.g., diurnal variations in <span class="hlt">air</span> temperature and associated <span class="hlt">air</span>-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas <span class="hlt">exchange</span> can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas <span class="hlt">exchange</span> - but we found gas <span class="hlt">exchange</span> coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...93L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...93L"><span>Influence of <span class="hlt">air-sea</span> coupling on Indian Ocean tropical cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lengaigne, Matthieu; Neetu, S.; Samson, Guillaume; Vialard, Jérôme; Krishnamohan, K. S.; Masson, Sébastien; Jullien, Swen; Suresh, I.; Menkes, Christophe E.</p> <p>2018-02-01</p> <p>This paper assesses the impact of <span class="hlt">air-sea</span> coupling on Indian Ocean tropical cyclones (TCs) by comparing a 20-year long simulation of a ¼° regional coupled ocean-atmosphere model with a twin experiment, where the atmospheric component is forced by <span class="hlt">sea</span> surface temperature from the coupled simulation. The coupled simulation reproduces the observed spatio-temporal TCs distribution and TC-induced surface cooling reasonably well, but overestimates the number of TCs. <span class="hlt">Air-sea</span> coupling does not affect the cyclogenesis spatial distribution but reduces the number of TCs by 20% and yields a better-resolved bimodal seasonal distribution in the northern hemisphere. Coupling also affects intensity distribution, inducing a four-fold decrease in the proportion of intense TCs (Cat-2 and stronger). <span class="hlt">Air-sea</span> coupling damps TCs growth through a reduction of inner-core upward enthalpy fluxes due to the TC-induced cooling. This reduction is particularly large for the most intense TCs of the northern Indian Ocean (up to 250 W m-2), due to higher ambient surface temperatures and larger TC-induced cooling there. The negative feedback of <span class="hlt">air-sea</span> coupling on strongest TCs is mainly associated with slow-moving storms, which spend more time over the cold wake they induce. Sensitivity experiments using a different convective parameterization yield qualitatively similar results, with a larger ( 65%) reduction in the number of TCs. Because of their relatively coarse resolution (¼°), both set of experiments however fail to reproduce the most intense observed TCs. Further studies with finer resolution models in the Bay of Bengal will be needed to assess the expectedly large impact of <span class="hlt">air-sea</span> coupling on those intense and deadly TCs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.8109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.8109L"><span>Climate change impacts on <span class="hlt">sea-air</span> fluxes of CO2 in three Arctic <span class="hlt">seas</span>: a sensitivity study using Earth observation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Land, P. E.; Shutler, J. D.; Cowling, R. D.; Woolf, D. K.; Walker, P.; Findlay, H. S.; Upstill-Goddard, R. C.; Donlon, C. J.</p> <p>2013-12-01</p> <p>We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated <span class="hlt">sea-air</span> fluxes of CO2 in three Arctic <span class="hlt">seas</span> (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and <span class="hlt">sea</span> ice duration arising from future climate scenarios. During the study period the Greenland and Barents <span class="hlt">seas</span> were net sinks for atmospheric CO2, with integrated <span class="hlt">sea-air</span> fluxes of -36 ± 14 and -11 ± 5 Tg C yr-1, respectively, and the Kara <span class="hlt">Sea</span> was a weak net CO2 source with an integrated <span class="hlt">sea-air</span> flux of +2.2 ± 1.4 Tg C yr-1. The combined integrated CO2 <span class="hlt">sea-air</span> flux from all three was -45 ± 18 Tg C yr-1. In a sensitivity analysis we varied temperature, salinity and <span class="hlt">sea</span> ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated <span class="hlt">sea-air</span> flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced <span class="hlt">sea</span> ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced <span class="hlt">sea</span> ice duration. Collectively these effects gave an integrated <span class="hlt">sea-air</span> flux change of +4.0 Tg C in the Greenland <span class="hlt">Sea</span>, +6.0 Tg C in the Barents <span class="hlt">Sea</span> and +1.7 Tg C in the Kara <span class="hlt">Sea</span>, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara <span class="hlt">Sea</span> source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents <span class="hlt">Sea</span> is the most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.5566F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.5566F"><span>Effects of <span class="hlt">sea</span>-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for <span class="hlt">sea-air</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian</p> <p>2017-07-01</p> <p>We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic <span class="hlt">sea</span> ice from January to June 2015 during the Norwegian young <span class="hlt">sea</span> ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the <span class="hlt">sea</span> ice partly prevented direct CO2 <span class="hlt">exchange</span> between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted <span class="hlt">sea-air</span> CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum <span class="hlt">sea-air</span> CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and <span class="hlt">sea-air</span> CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, <span class="hlt">sea-air</span> CO2 fluxes 16%, and temperature and salinity insignificant.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A51E0162M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A51E0162M"><span><span class="hlt">Sea</span> spray contributions to the <span class="hlt">air-sea</span> fluxes at moderate and hurricane wind speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, J. A.; Veron, F.</p> <p>2009-12-01</p> <p>At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of <span class="hlt">sea</span> spray drops, which can account for a significant fraction of the total <span class="hlt">air-sea</span> surface area and thus make important contributions to the aggregate <span class="hlt">air-sea</span> momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the <span class="hlt">sea</span> spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative <span class="hlt">air-sea</span> fluxes at high wind speeds as well as the development and sustainment of hurricanes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.1015G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.1015G"><span>Evaluation of the swell effect on the <span class="hlt">air-sea</span> gas transfer in the coastal zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.</p> <p>2016-04-01</p> <p><span class="hlt">Air-sea</span> gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the <span class="hlt">air-sea</span> interaction and gas flux behavior must be validated. In this study, as part of the "<span class="hlt">Sea</span> Surface Roughness as <span class="hlt">Air-Sea</span> Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas <span class="hlt">exchange</span> in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas <span class="hlt">exchange</span> modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7300088-operating-experiences-rotary-air-air-heat-exchangers-hospitals-schools-nursing-homes-swimming-pools','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7300088-operating-experiences-rotary-air-air-heat-exchangers-hospitals-schools-nursing-homes-swimming-pools"><span>Operating experiences with rotary <span class="hlt">air-to-air</span> heat <span class="hlt">exchangers</span>: hospitals, schools, nursing homes, swimming pools</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pearson, R.J.</p> <p>1976-01-01</p> <p>Systems utilizing rotary <span class="hlt">air-to-air</span> heat <span class="hlt">exchangers</span> are discussed. Basic considerations of use (fresh <span class="hlt">air</span> requirements, system configurations, cost considerations), typical system layout/design considerations, and operating observations by engineers, staff and maintenance personnel are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28645049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28645049"><span>Gaseous elemental mercury in the marine boundary layer and <span class="hlt">air-sea</span> flux in the Southern Ocean in austral summer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui</p> <p>2017-12-15</p> <p>Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted <span class="hlt">air</span> from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross <span class="hlt">Sea</span> implying the influence of the <span class="hlt">sea</span> ice environment. Diminishing <span class="hlt">sea</span> ice could cause more mercury evasion from the ocean to the <span class="hlt">air</span>. Using the thin film gas <span class="hlt">exchange</span> model, the <span class="hlt">air-sea</span> fluxes of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.891a2135C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.891a2135C"><span>Research on Heat <span class="hlt">Exchange</span> Process in Aircraft <span class="hlt">Air</span> Conditioning System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chichindaev, A. V.</p> <p>2017-11-01</p> <p>Using of heat-<span class="hlt">exchanger</span>-condenser in the <span class="hlt">air</span> conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed <span class="hlt">air</span> by the cold <span class="hlt">air</span> with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat <span class="hlt">exchange</span> surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-<span class="hlt">exchanger</span>-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat <span class="hlt">exchangers</span> in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat <span class="hlt">exchange</span> surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat <span class="hlt">exchange</span> surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-<span class="hlt">exchanger</span>-condenser freezing surface area, including using of variable ratio of thermal resistances.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29195200','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29195200"><span>Spatial distribution and seasonal variation of four current-use pesticides (CUPs) in <span class="hlt">air</span> and surface water of the Bohai <span class="hlt">Sea</span>, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Lin; Tang, Jianhui; Zhong, Guangcai; Zhen, Xiaomei; Pan, Xiaohui; Tian, Chongguo</p> <p>2018-04-15</p> <p>Current-use pesticides (CUPs) are widely used in agriculture, and some are listed as persistent organic pollutants (POPs) due to their bioaccumulative and toxic properties. China is one of the largest producers and users of pesticides in the world. However, very limited data are available about the environmental fates of CUPs. Four CUPs (trifluralin, chlorothalonil, chlorpyrifos, and dicofol) in surface seawater and low atmospheric samples taken during research cruises on the Bohai <span class="hlt">Sea</span> in August and December 2016 and February 2017 were analyzed, we added the spring data sampled in May 2012 to the discussion of seasonal variation. In our study, chlorpyrifos was the most abundant CUPs in the gas phase with a mean abundance of 59.06±126.94pgm -3 , and dicofol had the highest concentration dissolved in seawater (mean: 115.94±123.16pgL -1 ). The concentrations of all target compounds were higher during May and August due to intensive use and relatively high temperatures in the spring and summer. Backward trajectories indicated that <span class="hlt">air</span> masses passing through the eastern coast of the Bohai <span class="hlt">Sea</span> contained high concentrations of pollutants, while the <span class="hlt">air</span> masses from the Bohai and Yellow <span class="hlt">Seas</span> were less polluted. The high concentration of pollutants in seawater was not only influenced by high yields from the source region of production or usage, but also by input from polluted rivers. Volatilization from surface water was found to be an important source of trifluralin and chlorpyrifos in the <span class="hlt">air</span>. <span class="hlt">Air-sea</span> gas <span class="hlt">exchange</span> of chlorothalonil underwent strong net deposition (mean FRs: 51.67), which was driven by higher concentrations in <span class="hlt">air</span> and indicates that the Bohai <span class="hlt">Sea</span> acted as a sink for chlorothalonil. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612517W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612517W"><span>Seasonal variability of the Red <span class="hlt">Sea</span>, from GRACE time-variable gravity and altimeter <span class="hlt">sea</span> surface height measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wahr, John; Smeed, David; Leuliette, Eric; Swenson, Sean</p> <p>2014-05-01</p> <p>Seasonal variability of <span class="hlt">sea</span> surface height and mass within the Red <span class="hlt">Sea</span>, occurs mostly through the <span class="hlt">exchange</span> of heat with the atmosphere and wind-driven inflow and outflow of water through the strait of Bab el Mandab that opens into the Gulf of Aden to the south. The seasonal effects of precipitation and evaporation, of water <span class="hlt">exchange</span> through the Suez Canal to the north, and of runoff from the adjacent land, are all small. The flow through the Bab el Mandab involves a net mass transfer into the Red <span class="hlt">Sea</span> during the winter and a net transfer out during the summer. But that flow has a multi-layer pattern, so that in the summer there is actually an influx of cool water at intermediate (~100 m) depths. Thus, summer water in the southern Red <span class="hlt">Sea</span> is warmer near the surface due to higher <span class="hlt">air</span> temperatures, but cooler at intermediate depths (especially in the far south). Summer water in the northern Red <span class="hlt">Sea</span> experiences warming by <span class="hlt">air-sea</span> <span class="hlt">exchange</span> only. The temperature profile affects the water density, which impacts the <span class="hlt">sea</span> surface height but has no effect on vertically integrated mass. Here, we study this seasonal cycle by combining GRACE time-variable mass estimates, altimeter (Jason-1, Jason-2, and Envisat) measurements of <span class="hlt">sea</span> surface height, and steric <span class="hlt">sea</span> surface height contributions derived from depth-dependent, climatological values of temperature and salinity obtained from the World Ocean Atlas. We find good consistency, particularly in the northern Red <span class="hlt">Sea</span>, between these three data types. Among the general characteristics of our results are: (1) the mass contributions to seasonal SSHT variations are much larger than the steric contributions; (2) the mass signal is largest in winter, consistent with winds pushing water into the Red <span class="hlt">Sea</span> through the Strait of Bab el Mandab in winter, and out during the summer; and (3) the steric signal is largest in summer, consistent with summer <span class="hlt">sea</span> surface warming.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860034311&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcurrent%2Bfeedback','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860034311&hterms=current+feedback&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dcurrent%2Bfeedback"><span><span class="hlt">Sea</span> surface temperature anomalies, planetary waves, and <span class="hlt">air-sea</span> feedback in the middle latitudes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Frankignoul, C.</p> <p>1985-01-01</p> <p>Current analytical models for large-scale <span class="hlt">air-sea</span> interactions in the middle latitudes are reviewed in terms of known <span class="hlt">sea</span>-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the <span class="hlt">air-sea</span> feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020044134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020044134"><span>Sensitivity of Global <span class="hlt">Sea-Air</span> CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of <span class="hlt">Sea</span> Surface Temperature and Salinity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McClain, Charles R.; Signorini, Sergio</p> <p>2002-01-01</p> <p>Sensitivity analyses of <span class="hlt">sea-air</span> CO2 flux to gas transfer algorithms, climatological wind speeds, <span class="hlt">sea</span> surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global <span class="hlt">sea-air</span> flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global <span class="hlt">sea-air</span> flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global <span class="hlt">sea-air</span> flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing <span class="hlt">sea-air</span> flux algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15683168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15683168"><span><span class="hlt">Air</span>-water gas <span class="hlt">exchange</span> of chlorinated pesticides in four lakes spanning a 1,205 meter elevation range in the Canadian Rocky Mountains.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilkinson, Andrew C; Kimpe, Lynda E; Blais, Jules M</p> <p>2005-01-01</p> <p>Concentrations of selected persistent organic pollutants (POPs) in <span class="hlt">air</span> and water were measured from four lakes that transect the Canadian Rocky Mountains. These data were used in combination with wind velocity and temperature-adjusted Henry's law constants to estimate the direction and magnitude of chemical <span class="hlt">exchange</span> across the <span class="hlt">air</span>-water interface of these lakes. Bow Lake (1,975 m above <span class="hlt">sea</span> level [masl]) was studied during the summers of 1998 through 2000; Donald (770 masl) was studied during the summer of 1999; Dixon Dam Lake (946 masl) and Kananaskis Lake (1,667 masl) were studied during the summer of 2000. Hexachlorobenzene (HCB) and dieldrin volatilized from Bow Lake in spring and summer of 1998 to 2000 at a rate of 0.92 +/-1.1 and 0.55+/-0.37 ng m(-2) d(-1), respectively. The alpha-endosulfan deposited to Bow Lake at a rate of 3.4+/-2.2 ng m(-2) d(-1). Direction of gas <span class="hlt">exchange</span> for gamma-hexachlorocyclohexane (gamma-HCH) changed from net deposition in 1998 to net volatilization in 1999, partly because of a surge in y-HCH concentrations in the water at Bow Lake in 1999. Average gamma-HCH concentrations in <span class="hlt">air</span> declined steadily over the three-year period, from 0.021 ng m(-3) in 1998, to 0.0023 ng m(-3) in 2000, and to volatilization in 1999 and 2000. Neither the concentrations of organochlorine compounds (OCs) in <span class="hlt">air</span> and water, nor the direction and rate of <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> correlate with temperature or elevation. In general, losses of pesticides by outflow were greater than the amount <span class="hlt">exchanged</span> across the <span class="hlt">air</span>-water interface in these lakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..11512054V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..11512054V"><span>Upper ocean bubble measurements from the NE Pacific and estimates of their role in <span class="hlt">air-sea</span> gas transfer of the weakly soluble gases nitrogen and oxygen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vagle, Svein; McNeil, Craig; Steiner, Nadja</p> <p>2010-12-01</p> <p>Simultaneous observations of upper-ocean bubble clouds, and dissolved gaseous nitrogen (N2) and oxygen (O2) from three winter storms are presented and analyzed. The data were collected on the Canadian Surface Ocean Lower Atmosphere Study (C-SOLAS) mooring located near Ocean Station Papa (OSP) at 50°N, 145°W in the NE Pacific during winter of 2003/2004. The bubble field was measured using an upward looking 200 kHz echosounder. Direct estimates of bubble mediated gas fluxes were made using assumed bubble size spectra and the upward looking echosounder data. A one-dimensional biogeochemical model was used to help compare data and various existing models of bubble mediated <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. The direct bubble flux calculations show an approximate quadratic/cubic dependence on mean bubble penetration depth. After scaling from N2/O2 to carbon dioxide, near surface, nonsupersaturating, <span class="hlt">air-sea</span> transfer rates, KT, for U10 > 12 m s-1 fall between quadratic and cubic relationships. Estimates of the subsurface bubble induced <span class="hlt">air</span> injection flux, VT, show an approximate quadratic/cubic dependence on mean bubble penetration depth. Both KT and VT are much higher than those measured during Hurricane Frances over the wind speed range 12 < U10 < 23 m s-1. This result implies that over the open ocean and this wind speed range, older and more developed <span class="hlt">seas</span> which occur during winter storms are more effective in <span class="hlt">exchanging</span> gases between the atmosphere and ocean than younger less developed <span class="hlt">seas</span> which occur during the rapid passage of a hurricane.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002539','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002539"><span>Assessing <span class="hlt">Air-Sea</span> Interaction in the Evolving NASA GEOS Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Clayson, Carol Anne; Roberts, J. Brent</p> <p>2015-01-01</p> <p>In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of <span class="hlt">exchanges</span> of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled <span class="hlt">air-sea</span> phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the <span class="hlt">air-sea</span> interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A41P..05C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A41P..05C"><span>Assessing <span class="hlt">air-sea</span> interaction in the evolving NASA GEOS model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clayson, C. A.; Roberts, J. B.</p> <p>2014-12-01</p> <p>In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of <span class="hlt">exchanges</span> of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled <span class="hlt">air-sea</span> phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the <span class="hlt">air-sea</span> interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000037970&hterms=gas+natural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dgas%2Bnatural','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000037970&hterms=gas+natural&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dgas%2Bnatural"><span>The Effect of Rain on <span class="hlt">Air</span>-Water Gas <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter</p> <p>1997-01-01</p> <p>The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-<span class="hlt">Sea</span> Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/864049','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/864049"><span>Fluidized bed heat <span class="hlt">exchanger</span> with water cooled <span class="hlt">air</span> distributor and dust hopper</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Jukkola, Walfred W.; Leon, Albert M.; Van Dyk, Jr., Garritt C.; McCoy, Daniel E.; Fisher, Barry L.; Saiers, Timothy L.; Karstetter, Marlin E.</p> <p>1981-11-24</p> <p>A fluidized bed heat <span class="hlt">exchanger</span> is provided in which <span class="hlt">air</span> is passed through a bed of particulate material containing fuel. A steam-water natural circulation system is provided for heat <span class="hlt">exchange</span> and the housing of the heat <span class="hlt">exchanger</span> has a water-wall type construction. Vertical in-bed heat <span class="hlt">exchange</span> tubes are provided and the <span class="hlt">air</span> distributor is water-cooled. A water-cooled dust hopper is provided in the housing to collect particulates from the combustion gases and separate the combustion zone from a volume within said housing in which convection heat <span class="hlt">exchange</span> tubes are provided to extract heat from the exiting combustion gases.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1212391','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1212391"><span>Metal-<span class="hlt">air</span> cell with ion <span class="hlt">exchange</span> material</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan</p> <p>2015-08-25</p> <p>Embodiments of the invention are related to anion <span class="hlt">exchange</span> membranes used in electrochemical metal-<span class="hlt">air</span> cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020902','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020902"><span>Technology Candidates for <span class="hlt">Air-to-Air</span> and <span class="hlt">Air</span>-to-Ground Data <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Haynes, Brian D.</p> <p>2015-01-01</p> <p>Technology Candidates for <span class="hlt">Air-to-Air</span> and <span class="hlt">Air</span>-to-Ground Data <span class="hlt">Exchange</span> is a two-year research effort to visualize the U. S. aviation industry at a point 50 years in the future, and to define potential communication solutions to meet those future data <span class="hlt">exchange</span> needs. The research team, led by XCELAR, was tasked with identifying future National Airspace System (NAS) scenarios, determining requirements and functions (including gaps), investigating technical and business issues for <span class="hlt">air</span>, ground, & <span class="hlt">air</span>-to-ground interactions, and reporting on the results. The project was conducted under technical direction from NASA and in collaboration with XCELAR's partner, National Institute of Aerospace, and NASA technical representatives. Parallel efforts were initiated to define the information <span class="hlt">exchange</span> functional needs of the future NAS, and specific communication link technologies to potentially serve those needs. Those efforts converged with the mapping of each identified future NAS function to potential enabling communication solutions; those solutions were then compared with, and ranked relative to, each other on a technical basis in a structured analysis process. The technical solutions emerging from that process were then assessed from a business case perspective to determine their viability from a real-world adoption and deployment standpoint. The results of that analysis produced a proposed set of future solutions and most promising candidate technologies. Gap analyses were conducted at two points in the process, the first examining technical factors, and the second as part of the business case analysis. In each case, no gaps or unmet needs were identified in applying the solutions evaluated to the requirements identified. The future communication solutions identified in the research comprise both specific link technologies and two enabling technologies that apply to most or all specific links. As a result, the research resulted in a new analysis approach, viewing the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PrOce.138...18D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PrOce.138...18D"><span>Nitrous oxide and methane in Atlantic and Mediterranean waters in the Strait of Gibraltar: <span class="hlt">Air-sea</span> fluxes and inter-basin <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de la Paz, M.; Huertas, I. E.; Flecha, S.; Ríos, A. F.; Pérez, F. F.</p> <p>2015-11-01</p> <p>The global ocean plays an important role in the overall budget of nitrous oxide (N2O) and methane (CH4), as both gases are produced within the ocean and released to the atmosphere. However, for large parts of the open and coastal oceans there is little or no spatial data coverage for N2O and CH4. Hence, a better assessment of marine emissions estimates is necessary. As a contribution to remedying the scarcity of data on marine regions, N2O and CH4 concentrations have been determined in the Strait of Gibraltar at the ocean Fixed Time series (GIFT). During six cruises performed between July 2011 and November 2014 samples were collected at the surface and various depths in the water column, and subsequently measured using gas chromatography. From this we were able to quantify the temporal variability of the gas <span class="hlt">air-sea</span> <span class="hlt">exchange</span> in the area and examine the vertical distribution of N2O and CH4 in Atlantic and Mediterranean waters. Results show that surface Atlantic waters are nearly in equilibrium with the atmosphere whereas deeper Mediterranean waters are oversaturated in N2O, and a gradient that gradually increases with depth was detected in the water column. Temperature was found to be the main factor responsible for the seasonal variability of N2O in the surface layer. Furthermore, although CH4 levels did not reveal any feature clearly associated with the circulation of water masses, vertical distributions showed that higher concentrations are generally observed in the Atlantic layer, and that the deeper Mediterranean waters are considerably undersaturated (by up to 50%). Even though surface waters act as a source of atmospheric N2O during certain periods, on an annual basis the net N2O flux in the Strait of Gibraltar is only 0.35 ± 0.27 μmol m-2 d-1, meaning that these waters are almost in a neutral status with respect to the atmosphere. Seasonally, the region behaves as a slight sink for atmospheric CH4 in winter and as a source in spring and fall. Approximating</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJWC..6702023D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJWC..6702023D"><span>Heat <span class="hlt">exchanger</span> design for hot <span class="hlt">air</span> ericsson-brayton piston engine</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ďurčanský, P.; Lenhard, R.; Jandačka, J.</p> <p>2014-03-01</p> <p>One of the solutions without negative consequences for the increasing energy consumption in the world may be use of alternative energy sources in micro-cogeneration. Currently it is looking for different solutions and there are many possible ways. Cogeneration is known for long time and is widely used. But the installations are often large and the installed output is more suitable for cities or industry companies. When we will speak about decentralization, the small machines have to be used. The article deals with the principle of hot-<span class="hlt">air</span> engines, their use in combined heat and electricity production from biomass and with heat <span class="hlt">exchangers</span> as primary energy transforming element. In the article is hot <span class="hlt">air</span> engine presented as a heat engine that allows the conversion of heat into mechanical energy while heat supply can be external. In the contribution are compared cycles of hot-<span class="hlt">air</span> engine. Then are compared suitable heat <span class="hlt">exchangers</span> for use with hot <span class="hlt">air</span> Ericsson-Brayton engine. In the final part is proposal of heat <span class="hlt">exchanger</span> for use in closed Ericsson-Brayton cycle.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.1533S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.1533S"><span>Inter-annual variability of <span class="hlt">exchange</span> processes at the outer Black <span class="hlt">Sea</span> shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapiro, Georgy; Wobus, Fred; Yuan, Dongliang; Wang, Zheng</p> <p>2014-05-01</p> <p>The advection of cold water below the surface mixed layer has a significant role in shaping the properties of the Cold Intermediate Layer (CIL) in the Black <span class="hlt">Sea</span>, and thus the horizontal redistribution of nutrients. The minimal temperature of the CIL in the southwest deep region of the <span class="hlt">sea</span> in summer was shown to be lower than the winter surface temperature at the same location, indicating the horizontal advective nature of CIL formation in the area (Kolesnikov, 1953). In addition to advection in the deep area of the <span class="hlt">sea</span>, the transport of cold waters from the northwest Black <span class="hlt">Sea</span> shelf across the shelf break in winter was shown to contribute to the formation of the CIL (Filippov, 1968; Staneva and Stanev, 1997). However less is known of the <span class="hlt">exchanges</span> between the CIL waters and the outer shelf areas in summer, when a surface mixed layer and the underlying seasonal thermocline are formed. Ivanov et al. (1997) suggested that the cross frontal <span class="hlt">exchange</span> within the CIL is strongly inhibited, so that CIL waters formed in the deep <span class="hlt">sea</span> (i.e. offshore of the Rim Current) do not replenish the CIL waters onshore of the Rim Current (also known as near-bottom shelf waters, or BSW), due to strong cross frontal gradients in potential vorticity (PV). To the contrary, Shapiro et al. (2011) analysed in-situ observations over the period of 1950-2001 and showed a high correlation between the CIL temperatures in the open <span class="hlt">sea</span> and outer shelf. However, the statistical methods alone were not able to clearly establish the relation between the cause and the consequences. In this study we use a 3D numerical model of the Black <span class="hlt">Sea</span> (NEMO-SHELF-BLS) to quantify the <span class="hlt">exchange</span> of CIL waters between the open <span class="hlt">sea</span> and the outer northwest Black <span class="hlt">Sea</span> shelf and to assess its significance for the replenishment of BSW on the outer shelf. The model has a resolution of 1/16º latitude × 1/12º longitude and 33 levels in the vertical. In order to represent near-bottom processes better, the model uses a hybrid</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C11A0352L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C11A0352L"><span>Radon and radium in the ice-covered Arctic Ocean, and what they reveal about gas <span class="hlt">exchange</span> in the <span class="hlt">sea</span> ice zone.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; Kelly, R. P.; Bigdeli, A.; Moran, S. B.</p> <p>2014-12-01</p> <p>The polar <span class="hlt">sea</span> ice zones are regions of high primary productivity and interior water mass formation. Consequently, the seasonal <span class="hlt">sea</span> ice cycle appears important to both the solubility and biological carbon pumps. To estimate net CO2 transfer in the <span class="hlt">sea</span> ice zone, we require accurate estimates of the <span class="hlt">air-sea</span> gas transfer velocity. In the open ocean, the gas transfer velocity is driven by wind, waves and bubbles - all of which are strongly altered by the presence of <span class="hlt">sea</span> ice, making it difficult to translate open ocean estimates of gas transfer to the ice zone. In this study, we present profiles of 222Rn and 226Ra throughout the mixed-layer and euphotic zone. Profiles were collected spanning a range of <span class="hlt">sea</span> ice cover conditions from 40 to 100%. The profiles of Rn/Ra can be used to estimate the gas transfer velocity, but the 3.8 day half-life of 222Rn implies that mixed layer radon will have a memory of the past ~20 days of gas <span class="hlt">exchange</span> forcing, which may include a range of <span class="hlt">sea</span> ice cover conditions. Here, we compare individual estimates of the gas transfer velocity to the turbulent forcing conditions constrained from shipboard and regional reanalysis data to more appropriately capture the time history upper ocean Rn/Ra.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CSR...152...14Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CSR...152...14Z"><span><span class="hlt">Air-sea</span> heat flux control on the Yellow <span class="hlt">Sea</span> Cold Water Mass intensity and implications for its prediction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong</p> <p>2018-01-01</p> <p>The Yellow <span class="hlt">Sea</span> Cold Water Mass (YSCWM), which occurs during summer in the central Yellow <span class="hlt">Sea</span>, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow <span class="hlt">Sea</span>, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, <span class="hlt">air-sea</span> heat flux, wind, evaporation, precipitation and <span class="hlt">sea</span> level pressure to those in the strong year of 1984, respectively. The results showed that the <span class="hlt">air-sea</span> heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the <span class="hlt">air-sea</span> heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the <span class="hlt">sea</span> surface temperature before the cooling season and the <span class="hlt">air-sea</span> heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......178W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......178W"><span>Aqueous turbulence structure immediately adjacent to the <span class="hlt">air</span> - water interface and interfacial gas <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Binbin</p> <p></p> <p><span class="hlt">Air-sea</span> interaction and the interfacial <span class="hlt">exchange</span> of gas across the <span class="hlt">air</span>-water interface are of great importance in coupled atmospheric-oceanic environmental systems. Aqueous turbulence structure immediately adjacent to the <span class="hlt">air</span>-water interface is the combined result of wind, surface waves, currents and other environmental forces and plays a key role in energy budgets, gas fluxes and hence the global climate system. However, the quantification of turbulence structure sufficiently close to the <span class="hlt">air</span>-water interface is extremely difficult. The physical relationship between interfacial gas <span class="hlt">exchange</span> and near surface turbulence remains insufficiently investigated. This dissertation aims to measure turbulence in situ in a complex environmental forcing system on Lake Michigan and to reveal the relationship between turbulent statistics and the CO2 flux across the <span class="hlt">air</span>-water interface. The major objective of this dissertation is to investigate the physical control of the interfacial gas <span class="hlt">exchange</span> and to provide a universal parameterization of gas transfer velocity from environmental factors, as well as to propose a mechanistic model for the global CO2 flux that can be applied in three dimensional climate-ocean models. Firstly, this dissertation presents an advanced measurement instrument, an in situ free floating Particle Image Velocimetry (FPIV) system, designed and developed to investigate the small scale turbulence structure immediately below the <span class="hlt">air</span>-water interface. Description of hardware components, design of the system, measurement theory, data analysis procedure and estimation of measurement error were provided. Secondly, with the FPIV system, statistics of small scale turbulence immediately below the <span class="hlt">air</span>-water interface were investigated under a variety of environmental conditions. One dimensional wave-number spectrum and structure function sufficiently close to the water surface were examined. The vertical profiles of turbulent dissipation rate were intensively studied</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5673F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5673F"><span><span class="hlt">Air-sea</span> Forcing and Thermohaline Changes In The Ross <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fusco, G.; Budillon, G.</p> <p></p> <p>Heat <span class="hlt">exchanges</span> between <span class="hlt">sea</span> and atmosphere from 1986 to 2000 in the Ross <span class="hlt">Sea</span> (Antarctica) were computed from climatological data obtained from the European Centre for Medium Range Weather Forecasts. They have been related with the thermo- haline changes observed during 5 hydrological surveys performed between the austral summer 1994-1995 and 2000-2001 in the western sector of the Ross <span class="hlt">Sea</span>. The esti- mated heat fluxes show extremely strong spatial and temporal variability over all the Ross <span class="hlt">Sea</span>. As can be expected the largest heat losses occur between May and August, while during the period November-February the heat budget becomes positive. In the first six years of the investigated period the heat loss is very strong with its maximum about 166 Wm-2; while during the period 1992-2000 the yearly heat losses are the lowest. Thermohaline changes in the surface layer (upper pycnocline) of the western Ross <span class="hlt">Sea</span> follow the expected seasonal pattern of warming and freshening from the be- ginning to the end of the austral summer. The heating changes are substantially lower than the estimated heat supplied by the atmosphere during the summer, which under- lines the importance in this season of the advective component carried by the currents in the total heat budget of this area. The year to year differences are about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the in- termediate and deep layers, the summer heat and salt variability is of the same order as or one order higher than from one summer to the next. Moreover a freshening of the near bottom layer has been observed, it is consistent with the High Salinity Shelf Water salinity decrease recently detected in the Ross <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO44C3165S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO44C3165S"><span>Monsoon-driven variability in the southern Red <span class="hlt">Sea</span> and the <span class="hlt">exchange</span> with the Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sofianos, S. S.; Papadopoulos, V. P.; Abualnaja, Y.; Nenes, A.; Hoteit, I.</p> <p>2016-02-01</p> <p>Although progress has been achieved in describing and understanding the mean state and seasonal cycle of the Red <span class="hlt">Sea</span> dynamics, their interannual variability is not yet well evaluated and explained. The thermohaline characteristics and the circulation patterns present strong variability at various time scales and are affected by the strong and variable atmospheric forcing and the <span class="hlt">exchange</span> with the Indian Ocean and the gulfs located at the northern end of the basin. <span class="hlt">Sea</span> surface temperature time-series, derived from satellite observations, show considerable trends and interannual variations. The spatial variability pattern is very diverse, especially in the north-south direction. The southern part of the Red <span class="hlt">Sea</span> is significantly influenced by the Indian Monsoon variability that affects the <span class="hlt">sea</span> surface temperature through the surface fluxes and the circulation patterns. This variability has also a strong impact on the lateral fluxes and the <span class="hlt">exchange</span> with the Indian Ocean through the strait of Bab el Mandeb. During summer, there is a reversal of the surface flow and an intermediate intrusion of a relatively cold and fresh water mass. This water originates from the Gulf of Aden (the Gulf of Aden Intermediate Water - GAIW), is identified in the southern part of the basin and spreads northward along the eastern Red <span class="hlt">Sea</span> boundary to approximately 24°N and carried across the Red <span class="hlt">Sea</span> by basin-size eddies. The GAIW intrusion plays an important role in the heat and freshwater budget of the southern Red <span class="hlt">Sea</span>, especially in summer, impacting the thermohaline characteristics of the region. It is a permanent feature of the summer <span class="hlt">exchange</span> flow but it exhibits significant variation from year to year. The intrusion is controlled by a monsoon-driven pressure gradient in the two ends of the strait and thus monsoon interannual variability can laterally impose its signal to the southern Red <span class="hlt">Sea</span> thermohaline patterns.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8034B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8034B"><span>Wind Speed and <span class="hlt">Sea</span> State Dependencies of <span class="hlt">Air-Sea</span> Gas Transfer: Results From the High Wind Speed Gas <span class="hlt">Exchange</span> Study (HiWinGS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.</p> <p>2017-10-01</p> <p>A variety of physical mechanisms are jointly responsible for facilitating <span class="hlt">air-sea</span> gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and <span class="hlt">sea</span> state in a complex manner, with k660 CO2 increasing as the wind <span class="hlt">sea</span> approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a <span class="hlt">sea</span> state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5228218','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5228218"><span>Impacts of Changes of Indoor <span class="hlt">Air</span> Pressure and <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate in Vapor Intrusion Scenarios</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shen, Rui; Suuberg, Eric M.</p> <p>2016-01-01</p> <p>There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor <span class="hlt">air</span> contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor <span class="hlt">air</span> pressure and the <span class="hlt">air</span> <span class="hlt">exchange</span> rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor <span class="hlt">air</span> pressure and <span class="hlt">air</span> <span class="hlt">exchange</span> rate are seen to contribute to significant variations in indoor <span class="hlt">air</span> contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor <span class="hlt">air</span> concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor <span class="hlt">air</span> exposures. PMID:28090133</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28090133','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28090133"><span>Impacts of Changes of Indoor <span class="hlt">Air</span> Pressure and <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate in Vapor Intrusion Scenarios.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shen, Rui; Suuberg, Eric M</p> <p>2016-02-01</p> <p>There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor <span class="hlt">air</span> contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor <span class="hlt">air</span> pressure and the <span class="hlt">air</span> <span class="hlt">exchange</span> rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor <span class="hlt">air</span> pressure and <span class="hlt">air</span> <span class="hlt">exchange</span> rate are seen to contribute to significant variations in indoor <span class="hlt">air</span> contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor <span class="hlt">air</span> concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor <span class="hlt">air</span> exposures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23D1175M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23D1175M"><span><span class="hlt">Sea</span> ice-induced cold <span class="hlt">air</span> advection as a mechanism controlling tundra primary productivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macias-Fauria, M.; Karlsen, S. R.</p> <p>2015-12-01</p> <p>The recent sharp decline in Arctic <span class="hlt">sea</span> ice extent, concentration, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with <span class="hlt">sea</span> ice dynamics on the basis that most tundra ecosystems lay close to the <span class="hlt">sea</span>. Although some studies have addressed the potential effect of <span class="hlt">sea</span> ice decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that <span class="hlt">sea</span> ice might influence tundra productivity through 1) cold <span class="hlt">air</span> advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in <span class="hlt">sea</span> ice (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with <span class="hlt">sea</span> ice when <span class="hlt">sea</span> ice remains close enough from land vegetation during the growing season for cold <span class="hlt">air</span> advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and <span class="hlt">sea</span> ice data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that <span class="hlt">sea</span> ice-induced cold <span class="hlt">air</span> advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain <span class="hlt">sea</span> ice/tundra productivity dynamics in other Arctic areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16508435','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16508435"><span>Retinal damage caused by <span class="hlt">air</span>-fluid <span class="hlt">exchange</span> during pars plana vitrectomy.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Sam S; McDonald, H Richard; Everett, A I; Johnson, Robert N; Jumper, J Michael; Fu, Arthur D</p> <p>2006-03-01</p> <p>To report two cases of retinal damage associated with <span class="hlt">air</span> infusion during pars plana vitrectomy. Observational case report. The authors reviewed the course of two patients who had retinal damage during par plana vitrectomy and <span class="hlt">air</span>-fluid <span class="hlt">exchange</span> for the treatment of macular hole and optic pit-related macular detachment, respectively. The intraoperative observations, postoperative course, and outcomes were reported. As a result of high <span class="hlt">air</span> infusion flow during <span class="hlt">air</span>-fluid <span class="hlt">exchange</span>, retinal damage was created in the area contralateral to the infusion port. In Case 1, an oval area of whitening was noted on the first postoperative day. This area subsequently developed into a large retinal break associated with retinal detachment. In the second case, retinal whitening was noted intraoperatively. This region of pallor resolved quickly during the early postoperative period but resulted in a corresponding inferotemporal visual field defect. High infusion flow during <span class="hlt">air</span>-fluid <span class="hlt">exchange</span> in eyes undergoing vitrectomy surgery may result in significant retinal damage. This pressure-induced trauma initially causes retinal whitening that may be seen intraoperatively or during the early postoperative period. The region of damaged retina may develop a retinal break and detachment or a corresponding visual field defect.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10970675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10970675"><span>Turbulence and wave breaking effects on <span class="hlt">air</span>-water gas <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boettcher; Fineberg; Lathrop</p> <p>2000-08-28</p> <p>We present an experimental characterization of the effects of turbulence and breaking gravity waves on <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate <span class="hlt">air</span>-water <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4893S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4893S"><span><span class="hlt">Exchanges</span> between the shelf and the deep Black <span class="hlt">Sea</span>: an integrated analysis of physical mechanisms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapiro, Georgy; Wobus, Fred; Zatsepin, Andrei; Akivis, Tatiana; Zhou, Feng</p> <p>2017-04-01</p> <p>This study provides an integrated analysis of <span class="hlt">exchanges</span> of water, salt and heat between the north-western Black <span class="hlt">Sea</span> shelf and the deep basin. Three contributing physical mechanisms are quantified, namely: Ekman drift, transport by mesoscale eddies at the edge of the NW Black <span class="hlt">Sea</span> shelf and non-local cascading assisted by the rim current and mesoscale eddies. The semi-enclosed nature of the Black <span class="hlt">Sea</span> together with its unique combination of an extensive shelf area in the North West and the deep central part make it sensitive to natural variations of fluxes, including the fluxes between the biologically productive shelf and predominantly anoxic deep <span class="hlt">sea</span>. <span class="hlt">Exchanges</span> between the shelf and deep <span class="hlt">sea</span> play an important role in forming the balance of waters, nutrients and pollution within the coastal areas, and hence the level of human-induced eutrophication of coastal waters (MSFD Descriptor 5). In this study we analyse physical mechanisms and quantify shelf-deep <span class="hlt">sea</span> <span class="hlt">exchange</span> processes in the Black <span class="hlt">Sea</span> sector using the NEMO ocean circulation model. The model is configured and optimized taking into account specific features of the Black <span class="hlt">Sea</span>, and validated against in-situ and satellite observations. The study uses NEMO-BLS24 numerical model which is based on the NEMO codebase v3.2.1 with amendments introduced by the UK Met Office. The model has a horizontal resolution of 1/24×1/24° and a hybrid s-on-top-of-z vertical coordinate system with a total of 33 layers. The horizontal viscosity/diffusivity operator is rotated to reduce the contamination of vertical diffusion/viscosity by large values of their horizontal counterparts. The bathymetry is processed from ETOPO5 and capped to 1550m. Atmospheric forcing for the period 1989-2012 is given by the Drakkar Forcing Set v5.2. For comparison, the NCEP atmospheric forcing also used for 2005. The climatological runoff from 8 major rivers is included. We run the model individually for 24 calendar years without data assimilation. For</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25597683','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25597683"><span><span class="hlt">Air</span>-soil <span class="hlt">exchange</span> of organochlorine pesticides in a sealed chamber.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng</p> <p>2015-01-01</p> <p>So far little is known about <span class="hlt">air</span>-soil <span class="hlt">exchange</span> under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-<span class="hlt">air</span>-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive <span class="hlt">air</span> sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). <span class="hlt">Air</span> was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between <span class="hlt">air</span> temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying <span class="hlt">air</span>. The sampler used for addressing <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of persistent organic pollutants in any sealed conditions is discussed. Copyright © 2014. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA586557','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA586557"><span>Investigation of the <span class="hlt">Air-Wave-Sea</span> Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL Data Taken using DYNAMO</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-07</p> <p>Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken using DYNAMO 5a. CONTRACT NUMBER N0001411C0464 5b. GRANT...efficiency of energy, mass and momentum <span class="hlt">exchange</span> at the bottom and top of the ABL. 15. SUBJECT TERMS DYNAMO , ABL 16. SECURITY CLASSIFICATION OF: 17...Investigation of the <span class="hlt">Air-Wave-Sea</span> Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken during DYNAMO George</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.6385L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.6385L"><span>MP3 - A Meteorology and Physical Properties Package to explore <span class="hlt">Air:Sea</span> interaction on Titan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenz, R. D.</p> <p>2012-04-01</p> <p>The <span class="hlt">exchange</span> of mass, heat and momentum at the <span class="hlt">air:sea</span> interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The <span class="hlt">sea</span> sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize <span class="hlt">air:sea</span> <span class="hlt">exchange</span>. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure <span class="hlt">air</span> and <span class="hlt">sea</span> temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=heat+AND+exchange&pg=3&id=EJ582662','ERIC'); return false;" href="https://eric.ed.gov/?q=heat+AND+exchange&pg=3&id=EJ582662"><span>Balloons and Bottles: Activities on <span class="hlt">Air-Sea</span> Heat <span class="hlt">Exchange</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Murphree, Tom</p> <p>1998-01-01</p> <p>Presents an activity designed to demonstrate how heating and cooling an <span class="hlt">air</span> mass affects its temperature, volume, density, and pressure. Illustrates how thermal energy can cause atmospheric motion such as expansion, contraction, and winds. (Author/WRM)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19778365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19778365"><span>Why and how terrestrial plants <span class="hlt">exchange</span> gases with <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cieslik, S; Omasa, K; Paoletti, E</p> <p>2009-11-01</p> <p>This work is intended as a review of gas <span class="hlt">exchange</span> processes between the atmosphere and the terrestrial vegetation, which have been known for more than two centuries since the discovery of photosynthesis. The physical and biological mechanisms of <span class="hlt">exchange</span> of carbon dioxide, water vapour, volatile organic compounds emitted by plants and <span class="hlt">air</span> pollutants taken up by them, is critically reviewed. The role of stomatal physiology is emphasised, as it controls most of these processes. The techniques used for measurement of gas <span class="hlt">exchange</span> fluxes between the atmosphere and vegetation are outlined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.3851H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.3851H"><span>Effects of <span class="hlt">air-sea</span> coupling over the North <span class="hlt">Sea</span> and the Baltic <span class="hlt">Sea</span> on simulated summer precipitation over Central Europe</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ho-Hagemann, Ha Thi Minh; Gröger, Matthias; Rockel, Burkhardt; Zahn, Matthias; Geyer, Beate; Meier, H. E. Markus</p> <p>2017-12-01</p> <p>This study introduces a new approach to investigate the potential effects of <span class="hlt">air-sea</span> coupling on simulated precipitation inland over Central Europe. We present an inter-comparison of two regional climate models (RCMs), namely, the COSMO-CLM (hereafter CCLM) and RCA4 models, which are configured for the EURO-CORDEX domain in the coupled and atmosphere-only modes. Two versions of the CCLM model, namely, 4.8 and 5.0, join the inter-comparison being almost two different models while providing pronouncedly different summer precipitation simulations because of many changes in the dynamics and physics of CCLM in version 5.0. The coupling effect on the prominent summer dry bias over Central Europe is analysed using seasonal (JJA) mean statistics for the 30-year period from 1979 to 2009, with a focus on extreme precipitation under specific weather regimes. The weather regimes are compared between the coupled and uncoupled simulations to better understand the mechanism of the coupling effects. The comparisons of the coupled systems with the atmosphere-only models show that coupling clearly reduces the dry bias over Central Europe for CCLM 4.8, which has a large dry summer bias, but not for CCLM 5.0 and RCA4, which have smaller dry biases. This result implies that if the atmosphere-only model already yields reasonable summer precipitation over Central Europe, not much room for improvement exists that can be caused by the <span class="hlt">air-sea</span> coupling over the North <span class="hlt">Sea</span> and the Baltic <span class="hlt">Sea</span>. However, if the atmosphere-only model shows a pronounced summer dry bias because of a lack of moisture transport from the <span class="hlt">seas</span> into the region, the considered coupling may create an improved simulation of summer precipitation over Central Europe, such as for CCLM 4.8. For the latter, the benefit of coupling varies over the considered timescales. The precipitation simulations that are generated by the coupled system COSTRICE 4.8 and the atmosphere-only CCLM 4.8 are mostly identical for the summer mean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23932146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23932146"><span>The <span class="hlt">sea-air</span> <span class="hlt">exchange</span> of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion flux.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bagnato, E; Sproveri, M; Barra, M; Bitetto, M; Bonsignore, M; Calabrese, S; Di Stefano, V; Oliveri, E; Parello, F; Mazzola, S</p> <p>2013-11-01</p> <p>The first attempt to systematically investigate the atmospheric mercury (Hg) in the MBL of the Augusta basin (SE Sicily, Italy) has been undertaken. In the past the basin was the receptor for Hg from an intense industrial activity which contaminated the bottom sediments of the Bay, making this area a potential source of pollution for the surrounding Mediterranean. Three oceanographic cruises have been thus performed in the basin during the winter and summer 2011/2012, where we estimated averaged Hgatm concentrations of about 1.5±0.4 (range 0.9-3.1) and 2.1±0.98 (range 1.1-3.1) ng m(-3) for the two seasons, respectively. These data are somewhat higher than the background Hg atm value measured over the land (range 1.1±0.3 ng m(-3)) at downtown Augusta, while are similar to those detected in other polluted regions elsewhere. Hg evasion fluxes estimated at the <span class="hlt">sea/air</span> interface over the Bay range from 3.6±0.3 (unpolluted site) to 72±0.1 (polluted site of the basin) ng m(-2) h(-1). By extending these measurements to the entire area of the Augusta basin (~23.5 km(2)), we calculated a total <span class="hlt">sea-air</span> Hg evasion flux of about 9.7±0.1 g d(-1) (~0.004 tyr(-1)), accounting for ~0.0002% of the global Hg oceanic evasion (2000 tyr(-1)). The new proposed data set offers a unique and original study on the potential outflow of Hg from the <span class="hlt">sea-air</span> interface at the basin, and it represents an important step for a better comprehension of the processes occurring in the marine biogeochemical cycle of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110011892','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110011892"><span>Observations of Recent Arctic <span class="hlt">Sea</span> Ice Volume Loss and Its Impact on Ocean-Atmosphere Energy <span class="hlt">Exchange</span> and Ice Production</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kurtz, N. T.; Markus, T.; Farrell, S. L.; Worthen, D. L.; Boisvert, L. N.</p> <p>2011-01-01</p> <p>Using recently developed techniques we estimate snow and <span class="hlt">sea</span> ice thickness distributions for the Arctic basin through the combination of freeboard data from the Ice, Cloud, and land Elevation Satellite (ICESat) and a snow depth model. These data are used with meteorological data and a thermodynamic <span class="hlt">sea</span> ice model to calculate ocean-atmosphere heat <span class="hlt">exchange</span> and ice volume production during the 2003-2008 fall and winter seasons. The calculated heat fluxes and ice growth rates are in agreement with previous observations over multiyear ice. In this study, we calculate heat fluxes and ice growth rates for the full distribution of ice thicknesses covering the Arctic basin and determine the impact of ice thickness change on the calculated values. Thinning of the <span class="hlt">sea</span> ice is observed which greatly increases the 2005-2007 fall period ocean-atmosphere heat fluxes compared to those observed in 2003. Although there was also a decline in <span class="hlt">sea</span> ice thickness for the winter periods, the winter time heat flux was found to be less impacted by the observed changes in ice thickness. A large increase in the net Arctic ocean-atmosphere heat output is also observed in the fall periods due to changes in the areal coverage of <span class="hlt">sea</span> ice. The anomalously low <span class="hlt">sea</span> ice coverage in 2007 led to a net ocean-atmosphere heat output approximately 3 times greater than was observed in previous years and suggests that <span class="hlt">sea</span> ice losses are now playing a role in increasing surface <span class="hlt">air</span> temperatures in the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS43A1400S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS43A1400S"><span>Validation of the Fully-Coupled <span class="hlt">Air-Sea</span>-Wave COAMPS System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.</p> <p>2017-12-01</p> <p>A fully-coupled, <span class="hlt">air-sea</span>-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled <span class="hlt">air-sea</span>-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. <span class="hlt">Air-sea</span> interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcScD..11.1895G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcScD..11.1895G"><span>Deriving a <span class="hlt">sea</span> surface climatology of CO2 fugacity in support of <span class="hlt">air-sea</span> gas flux studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.</p> <p>2014-07-01</p> <p>Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway <span class="hlt">sea</span> surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous <span class="hlt">sea</span> surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating <span class="hlt">air-sea</span> CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the <span class="hlt">air-sea</span> CO2 flux, and hence the presented fCO2 distributions can be used in <span class="hlt">air-sea</span> gas flux calculations together with climatologies of other climate variables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010cosp...38.3367R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010cosp...38.3367R"><span><span class="hlt">Air</span> Circulation and Heat <span class="hlt">Exchange</span> under Reduced Pressures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip</p> <p></p> <p>Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat <span class="hlt">exchange</span> mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat <span class="hlt">exchange</span> reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -<span class="hlt">air</span> circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat <span class="hlt">exchange</span> slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; <span class="hlt">Air</span> circulation is an important constituent of controlled environments and plays crucial role in material and heat <span class="hlt">exchange</span>. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS11B1654B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS11B1654B"><span>Skin Temperature Processes in the Presence of <span class="hlt">Sea</span> Ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.</p> <p>2013-12-01</p> <p>Monitoring the <span class="hlt">sea</span>-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-<span class="hlt">air</span> interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and <span class="hlt">sea</span> ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at <span class="hlt">sea</span>-ice margins, but also to measure <span class="hlt">air-sea</span> <span class="hlt">exchanges</span> near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of <span class="hlt">sea</span> ice affects the momentum <span class="hlt">exchange</span> between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided <span class="hlt">air</span> and water temperature, salinity, subsurface currents and wave height. <span class="hlt">Air</span> side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-<span class="hlt">air</span> interface; in particular how <span class="hlt">sea</span> ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28334669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28334669"><span>Distribution and <span class="hlt">sea-to-air</span> flux of isoprene in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> during summer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng</p> <p>2017-07-01</p> <p>Spatial distribution and <span class="hlt">sea-to-air</span> flux of isoprene in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal <span class="hlt">seas</span>. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, <span class="hlt">sea-to-air</span> fluxes of isoprene approximately ranged from 22.17 nmol m -2  d -1 -537.2 nmol m -2  d -1 , with an average of 161.5 ± 133.3 nmol m -2  d -1 . These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=261773&keyword=Human+AND+interaction&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=261773&keyword=Human+AND+interaction&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Spatiotemporally‐Resolved <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate as a Modifier of Acute <span class="hlt">Air</span> Pollution‐Related Morbidity in AtlantaMorbidity in Atlanta</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Epidemiological studies frequently use central site concentrations as surrogates of exposure to <span class="hlt">air</span> pollutants. Variability in <span class="hlt">air</span> pollutant infiltration due to differential <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) is potentially a major factor affecting the relationship between central site c...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....1015641F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....1015641F"><span>Synoptic evaluation of carbon cycling in Beaufort <span class="hlt">Sea</span> during summer: contrasting river inputs, ecosystem metabolism and <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.</p> <p>2013-10-01</p> <p>The accelerated decline in Arctic <span class="hlt">sea</span> ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates <span class="hlt">air-sea</span> CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort <span class="hlt">Sea</span> (Arctic Ocean), we synthesize information on <span class="hlt">sea</span> ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span>, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against <span class="hlt">air-sea</span> CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A33G3274G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A33G3274G"><span>Updating <span class="hlt">Sea</span> Spray Aerosol Emissions in the Community Multiscale <span class="hlt">Air</span> Quality Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gantt, B.; Bash, J. O.; Kelly, J.</p> <p>2014-12-01</p> <p><span class="hlt">Sea</span> spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include <span class="hlt">sea</span> surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of <span class="hlt">sea</span>-salt and secondary aerosols affected by <span class="hlt">sea</span>-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of <span class="hlt">Air</span> Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast <span class="hlt">Air</span> Basin where clean marine <span class="hlt">air</span> mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine <span class="hlt">air</span> masses and mixtures of clean marine and polluted conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23098675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23098675"><span>The cycling and <span class="hlt">sea-air</span> <span class="hlt">exchange</span> of mercury in the waters of the Eastern Mediterranean during the 2010 MED-OCEANOR cruise campaign.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fantozzi, L; Manca, G; Ammoscato, I; Pirrone, N; Sprovieri, F</p> <p>2013-03-15</p> <p>An oceanographic cruise campaign on-board the Italian research vessel Urania was carried out from the 26th of August to the 13th of September 2010 in the Eastern Mediterranean. The campaign sought to investigate the mercury cycle at coastal and offshore locations in different weather conditions. The experimental activity focused on measuring mercury speciation in both seawater and in <span class="hlt">air</span>, and using meteorological parameters to estimate elemental mercury <span class="hlt">exchange</span> at the <span class="hlt">sea</span>-atmosphere interface. Dissolved gaseous mercury (DGM), unfiltered total mercury (UTHg) and filtered total mercury (FTHg) surface concentrations ranged from 16 to 114, 300 to 18,760, and 230 to 10,990pgL(-1), respectively. The highest DGM, UTHg and FTHg values were observed close to Augusta (Sicily), a highly industrialized area of the Mediterranean region, while the lowest values were recorded at offshore stations. DGM vertical profiles partially followed the distribution of sunlight, as a result of the photoinduced transformations of elemental mercury in the surface layers of the water column. However, at some stations, we observed higher DGM concentrations in samples taken from the bottom of the water column, suggesting biological mercury production processes or the presence of tectonic activity. Moreover, two days of continuous measurement at one location demonstrated that surface DGM concentration is affected by solar radiation and atmospheric turbulence intensity. Atmospheric measurements of gaseous elemental mercury (GEM) showed an average concentration (1.6ngm(-3)) close to the background level for the northern hemisphere. For the first time this study used a numerical scheme based on a two-thin film model with a specific parameterization for mercury to estimate elemental mercury flux. The calculated average mercury flux during the entire cruise was 2.2±1.5ngm(-2)h(-1). The analysis of flux data highlights the importance of the wind speed on the mercury evasion from <span class="hlt">sea</span> surfaces</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00429.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00429.html"><span>Hurricane Isabel, <span class="hlt">AIRS</span> Infrared and <span class="hlt">Sea</span>Winds Scatterometer Data Combined</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-09-20</p> <p>These two images show Hurricane Isabel as viewed by <span class="hlt">AIRS</span> and <span class="hlt">Sea</span>Winds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. <span class="hlt">AIRS</span> data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1255696-low-gwp-refrigerants-modelling-study-room-air-conditioner-having-microchannel-heat-exchangers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1255696-low-gwp-refrigerants-modelling-study-room-air-conditioner-having-microchannel-heat-exchangers"><span>Low GWP Refrigerants Modelling Study for a Room <span class="hlt">Air</span> Conditioner Having Microchannel Heat <span class="hlt">Exchangers</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shen, Bo; Bhandari, Mahabir S</p> <p></p> <p>Microchannel heat <span class="hlt">exchangers</span> (MHX) have found great successes in residential and commercial <span class="hlt">air</span> conditioning applications, being compact heat <span class="hlt">exchangers</span>, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room <span class="hlt">air</span> conditioners (RAC), per fundamental heat <span class="hlt">exchanger</span> and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat <span class="hlt">exchanger</span> models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heatmore » <span class="hlt">exchanger</span> models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room <span class="hlt">air</span> conditioner application are recommended.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A44C..08M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A44C..08M"><span>The Role of <span class="hlt">Air-sea</span> Coupling in the Response of Climate Extremes to Aerosols</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mahajan, S.</p> <p>2017-12-01</p> <p><span class="hlt">Air-sea</span> interactions dominate the climate of surrounding regions and thus also modulate the climate response to local and remote aerosol forcings. To clearly isolate the role of <span class="hlt">air-sea</span> coupling in the climate response to aerosols, we conduct experiments with a full complexity atmosphere model that is coupled to a series of ocean models progressively increasing in complexity. The ocean models range from a data ocean model with prescribed SSTs, to a slab ocean model that only allows thermodynamic interactions, to a full dynamic ocean model. In a preliminary study, we have conducted single forcing experiments with black carbon aerosols in an atmosphere GCM coupled to a data ocean model and a slab ocean model. We find that while black carbon aerosols can intensify mean and extreme summer monsoonal precipitation over the Indian sub-continent, <span class="hlt">air-sea</span> coupling can dramatically modulate this response. Black carbon aerosols in the vicinity of the Arabian <span class="hlt">Sea</span> result in an increase of <span class="hlt">sea</span> surface temperatures there in the slab ocean model, which intensify the low-level Somali Jet. The associated increase in moisture transport into Western India enhances the mean as well as extreme precipitation. In prescribed SST experiments, where SSTs are not allowed to respond BC aerosols, the response is muted. We will present results from a hierarchy of GCM simulations that investigate the role of <span class="hlt">air-sea</span> coupling in the climate response to aerosols in more detail.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange"><span><span class="hlt">Sea</span> Ice, Climate and Fram Strait</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunkins, K.</p> <p>1984-01-01</p> <p>When <span class="hlt">sea</span> ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. <span class="hlt">Sea</span> ice also partially seals off the ocean from the atmosphere, reducing the <span class="hlt">exchange</span> of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of processes controlling the edge of the ice pack in that area including the interactions between <span class="hlt">sea</span>, <span class="hlt">air</span> and ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023751&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023751&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia"><span>High Lapse Rates in <span class="hlt">AIRS</span> Retrieved Temperatures in Cold <span class="hlt">Air</span> Outbreaks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan</p> <p>2004-01-01</p> <p>The Atmospheric Infrared Sounder (<span class="hlt">AIRS</span>) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of <span class="hlt">AIRS</span> provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of <span class="hlt">AIRS</span> temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low <span class="hlt">air</span> temperatures, large <span class="hlt">sea-air</span> temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the <span class="hlt">AIRS</span> experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold <span class="hlt">air</span> mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows <span class="hlt">AIRS</span> to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface <span class="hlt">air</span> temperatures. The bias in near-surface <span class="hlt">air</span> temperature is seen to be independent of <span class="hlt">sea</span> surface temperature, however. <span class="hlt">AIRS</span> is therefore sensitive to <span class="hlt">air-sea</span> temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct <span class="hlt">AIRS</span> near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this <span class="hlt">air-sea</span> temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29520064','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29520064"><span>Sedimentary noise and <span class="hlt">sea</span> levels linked to land-ocean water <span class="hlt">exchange</span> and obliquity forcing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Mingsong; Hinnov, Linda A; Huang, Chunju; Ogg, James G</p> <p>2018-03-08</p> <p>In ancient hothouses lacking ice sheets, the origins of large, million-year (myr)-scale <span class="hlt">sea</span>-level oscillations remain a mystery, challenging current models of <span class="hlt">sea</span>-level change. To address this mystery, we develop a sedimentary noise model for <span class="hlt">sea</span>-level changes that simultaneously estimates geologic time and <span class="hlt">sea</span> level from astronomically forced marginal marine stratigraphy. The noise model involves two complementary approaches: dynamic noise after orbital tuning (DYNOT) and lag-1 autocorrelation coefficient (ρ 1 ). Noise modeling of Lower Triassic marine slope stratigraphy in South China reveal evidence for global <span class="hlt">sea</span>-level variations in the Early Triassic hothouse that are anti-phased with continental water storage variations in the Germanic Basin. This supports the hypothesis that long-period (1-2 myr) astronomically forced water mass <span class="hlt">exchange</span> between land and ocean reservoirs is a missing link for reconciling geological records and models for <span class="hlt">sea</span>-level change during non-glacial periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA622312','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA622312"><span>Operationalizing <span class="hlt">Air-Sea</span> Battle in the Pacific</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-02-01</p> <p>Joumall 25 \\/ FEATURE Ballard, Harysch, Cole, & Hall Operationalizing Ait’-<span class="hlt">Sea</span> Battle in the Pacific tribes and nomadic marauders such as the...communications in general, the former focuses on the digital data links between different platforms. The original CSBA operational con- cept touches on this...very capable fourth-generation fighters; and it has fielded layers of upgraded and double- digit surface-to-<span class="hlt">air</span> missile systems and antiaircraft</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1953j0089J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1953j0089J"><span>Experimental temperature analysis of simple & hybrid earth <span class="hlt">air</span> tunnel heat <span class="hlt">exchanger</span> in series connection at Bikaner Rajasthan India</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jakhar, O. P.; Sharma, Chandra Shekhar; Kukana, Rajendra</p> <p>2018-05-01</p> <p>The Earth <span class="hlt">Air</span> Tunnel Heat <span class="hlt">Exchanger</span> System is a passive <span class="hlt">air</span>-conditioning system which has no side effect on earth climate and produces better cooling effect and heating effect comfortable to human body. It produces heating effect in winter and cooling effect in summer with the minimum power consumption of energy as compare to other <span class="hlt">air</span>-conditioning devices. In this research paper Temperature Analysis was done on the two systems of Earth <span class="hlt">Air</span> Tunnel Heat <span class="hlt">Exchanger</span> experimentally for summer cooling purpose. Both the system was installed at Mechanical Engineering Department Government Engineering College Bikaner Rajasthan India. Experimental results concludes that the Average <span class="hlt">Air</span> Temperature Difference was found as 11.00° C and 16.27° C for the Simple and Hybrid Earth <span class="hlt">Air</span> Tunnel Heat <span class="hlt">Exchanger</span> in Series Connection System respectively. The Maximum <span class="hlt">Air</span> Temperature Difference was found as 18.10° C and 23.70° C for the Simple and Hybrid Earth <span class="hlt">Air</span> Tunnel Heat <span class="hlt">Exchanger</span> in Series Connection System respectively. The Minimum <span class="hlt">Air</span> Temperature Difference was found as 5.20° C and 11.70° C for the Simple and Hybrid Earth <span class="hlt">Air</span> Tunnel Heat <span class="hlt">Exchanger</span> in Series Connection System respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21A1356K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21A1356K"><span>Methanethiol Concentrations and <span class="hlt">Sea-Air</span> Fluxes in the Subarctic NE Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.</p> <p>2017-12-01</p> <p><span class="hlt">Exchange</span> of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and <span class="hlt">sea-air</span> fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. <span class="hlt">Sea-air</span> fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20000740-coupling-phytoplankton-uptake-air-water-exchange-persistent-organic-pollutants','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20000740-coupling-phytoplankton-uptake-air-water-exchange-persistent-organic-pollutants"><span>Coupling of phytoplankton uptake and <span class="hlt">air</span>-water <span class="hlt">exchange</span> of persistent organic pollutants</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dachs, J.; Eisenreich, S.J.; Baker, J.E.</p> <p>1999-10-15</p> <p>A dynamic model that couples <span class="hlt">air</span>-water <span class="hlt">exchange</span> and phytoplankton uptake of persistent organic pollutants has been developed and then applied to PCB data from a small experimental lake. A sensitivity analysis of the model, taking into account the influence of physical environmental conditions such as temperature, wind speed, and mixing depth as well as plankton-related parameters such as biomass and growth rate was carried out for a number of PCBs with different physical-chemical properties. The results indicate that <span class="hlt">air</span>-water <span class="hlt">exchange</span> dynamics are influenced not only by physical parameters but also by phytoplankton biomass and growth rate. New phytoplankton production resultsmore » in substantially longer times to reach equilibrium. Phytoplankton uptake-induced depletion of the dissolved phase concentration maintains <span class="hlt">air</span> and water phases out of equilibrium. Furthermore, PCBs in phytoplankton also take longer times to reach equilibrium with the dissolved water phase when the latter is supported by diffusive <span class="hlt">air</span>-water <span class="hlt">exchange</span>. However, both model analysis and model application to the Experimental Lakes Area of northwestern Ontario (Canada) suggest that the gas phase supports the concentrations of persistent organic pollutants, such as PCBs, in atmospherically driven aquatic environments.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGeo...11.2827F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGeo...11.2827F"><span>Synoptic evaluation of carbon cycling in the Beaufort <span class="hlt">Sea</span> during summer: contrasting river inputs, ecosystem metabolism and <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.</p> <p>2014-05-01</p> <p>The accelerated decline in Arctic <span class="hlt">sea</span> ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates <span class="hlt">air-sea</span> CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort <span class="hlt">Sea</span> (Arctic Ocean), we synthesize information on <span class="hlt">sea</span> ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span>, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against <span class="hlt">air-sea</span> CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335530&Lab=NERL&keyword=smith&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=335530&Lab=NERL&keyword=smith&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Probabilistic estimation of residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates for population-based human exposure modeling</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) are a key determinant in the infiltration of ambient <span class="hlt">air</span> pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to <span class="hlt">air</span> pollutants have relied on input distributions from AER meas...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA524620','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA524620"><span><span class="hlt">Air-Sea</span> Enthalpy and Momentum <span class="hlt">Exchange</span> at Major Hurricane Wind Speeds</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-06-01</p> <p>momentum fluxes. Hurricane simulations using the Navy Coupled Ocean / Atmosphere Mesoscale Prediction System are also sensitive to the surface flux and <span class="hlt">sea</span>... Atmospheric Research NWP Numerical Weather Prediction NOAA National Oceanic and Atmospheric Administration PTH Pressure, Temperature, relative Humidity RE87... Oceanic and Atmospheric Administration for organizing the CBLAST field program and collecting the data used for this study. xx THIS PAGE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2200027C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2200027C"><span>Industrial applications of the <span class="hlt">air</span> direct-contact, gravel, ground heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cepiński, Wojciech; Besler, Maciej</p> <p>2017-11-01</p> <p>The paper describes the analysis of possibility of using the <span class="hlt">air</span> direct-contact, gravel, ground heat <span class="hlt">exchanger</span> (Polish acronym BGWCiM), patented at the Wroclaw University of Science and Technology to prepare <span class="hlt">air</span> for conditioning rooms in the industry. Indicated the industry sectors where the application may be the most beneficial.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59799&keyword=Exchange+AND+gaseous&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59799&keyword=Exchange+AND+gaseous&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE EFFECT OF SALINITY ON RATES OF ELEMENTAL MERCURY <span class="hlt">AIR</span>/WATER <span class="hlt">EXCHANGE</span></span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The U.S. EPA laboratory in Athens, Georgia i spursuing the goal of developing a model for describing toxicant vapor phase <span class="hlt">air</span>/water <span class="hlt">exchange</span> under all relevant environmental conditions. To date, the two-layer <span class="hlt">exchange</span> model (suitable for low wind speed conditions) has been modif...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617029','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617029"><span>Radar Remote Sensing of Ice and <span class="hlt">Sea</span> State and <span class="hlt">Air-Sea</span> Interaction in the Marginal Ice Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and <span class="hlt">Sea</span> State and <span class="hlt">Air-Sea</span>...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25686886','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25686886"><span>The effects of rice canopy on the <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive <span class="hlt">air</span> samplers.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong</p> <p>2015-05-01</p> <p>The rice canopy in paddy fields can influence the <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of organic chemicals. We used paired passive <span class="hlt">air</span> samplers to assess the <span class="hlt">exchange</span> of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the <span class="hlt">air</span> below and above the rice canopy, implying contributions of different sources. Paired passive <span class="hlt">air</span> samplers can be used effectively to assess the in situ <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of PAHs and OCPs in subtropical paddy fields. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811365W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811365W"><span>Impacts of South East Biomass Burning on local <span class="hlt">air</span> quality in South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi</p> <p>2016-04-01</p> <p>Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local <span class="hlt">air</span> pollution, but also regional <span class="hlt">air</span> pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (<span class="hlt">SEA</span>) as well as its contribution to the local <span class="hlt">air</span> pollution in East and South China <span class="hlt">Sea</span>, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from <span class="hlt">SEA</span> with a sinking motion that worsened the surface <span class="hlt">air</span> quality (tropospheric downwash from the free troposphere). The major sources of <span class="hlt">SEA</span> biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of <span class="hlt">SEA</span> biomass burning on local <span class="hlt">air</span> quality. The correlation between long-range transport events from the particles dispersion results and locally observed <span class="hlt">air</span> quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140005396','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140005396"><span>Surface Ocean pCO2 Seasonality and <span class="hlt">Sea-Air</span> CO2 Flux Estimates for the North American East Coast</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Signorini, Sergio; Mannino, Antonio; Najjar, Raymond G., Jr.; Friedrichs, Marjorie A. M.; Cai, Wei-Jun; Salisbury, Joe; Wang, Zhaohui Aleck; Thomas, Helmuth; Shadwick, Elizabeth</p> <p>2013-01-01</p> <p>Underway and in situ observations of surface ocean pCO2, combined with satellite data, were used to develop pCO2 regional algorithms to analyze the seasonal and interannual variability of surface ocean pCO2 and <span class="hlt">sea-air</span> CO2 flux for five physically and biologically distinct regions of the eastern North American continental shelf: the South Atlantic Bight (SAB), the Mid-Atlantic Bight (MAB), the Gulf of Maine (GoM), Nantucket Shoals and Georges Bank (NS+GB), and the Scotian Shelf (SS). Temperature and dissolved inorganic carbon variability are the most influential factors driving the seasonality of pCO2. Estimates of the <span class="hlt">sea-air</span> CO2 flux were derived from the available pCO2 data, as well as from the pCO2 reconstructed by the algorithm. Two different gas <span class="hlt">exchange</span> parameterizations were used. The SS, GB+NS, MAB, and SAB regions are net sinks of atmospheric CO2 while the GoM is a weak source. The estimates vary depending on the use of surface ocean pCO2 from the data or algorithm, as well as with the use of the two different gas <span class="hlt">exchange</span> parameterizations. Most of the regional estimates are in general agreement with previous studies when the range of uncertainty and interannual variability are taken into account. According to the algorithm, the average annual uptake of atmospheric CO2 by eastern North American continental shelf waters is found to be between 3.4 and 5.4 Tg C/yr (areal average of 0.7 to 1.0 mol CO2 /sq m/yr) over the period 2003-2010.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=306710&Lab=NRMRL&keyword=urease&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=306710&Lab=NRMRL&keyword=urease&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Processes of Ammonia <span class="hlt">Air</span>-Surface <span class="hlt">Exchange</span> in a Fertilized Zea Mays Canopy</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Recent incorporation of coupled soil biogeochemical and bi-directional NH3 <span class="hlt">air</span>-surface <span class="hlt">exchange</span> algorithms into regional <span class="hlt">air</span> quality models holds promise for further reducing uncertainty in estimates of NH3 emissions from fertilized soils. While this advancement represents a sig...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015CG.....77...77D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015CG.....77...77D"><span>Spatio-temporal visualization of <span class="hlt">air-sea</span> CO2 flux and carbon budget using volume rendering</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi</p> <p>2015-04-01</p> <p>This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The <span class="hlt">air-sea</span> carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived <span class="hlt">air-sea</span> CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for <span class="hlt">Air-sea</span> CO2 Flux (IssCO2) for the research and assessment of <span class="hlt">air-sea</span> CO2 flux in the China <span class="hlt">Seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A54A..05M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A54A..05M"><span>Gulf of Mexico <span class="hlt">Air/Sea</span> Interaction: Measurements and Initial Data Characterization</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.</p> <p>2011-12-01</p> <p>Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and <span class="hlt">air-sea</span> interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and <span class="hlt">air</span> quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and <span class="hlt">air</span> quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and <span class="hlt">sea</span> surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; <span class="hlt">sea</span> surface temperature; wave height statistics; downwelling solar and infrared radiation; and <span class="hlt">air-sea</span> turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150018068','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150018068"><span>National <span class="hlt">Air</span> Space (NAS) Data <span class="hlt">Exchange</span> Environment Through 2060</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roy, Aloke</p> <p>2015-01-01</p> <p>NASA's NextGen Concepts and Technology Development (CTD) Project focuses on capabilities to improve safety, capacity and efficiency of the National <span class="hlt">Air</span> Space (NAS). In order to achieve those objectives, NASA sought industry-Government partnerships to research and identify solutions for traffic flow management, dynamic airspace configuration, separation assurance, super density operations, airport surface operations and similar forward-looking <span class="hlt">air</span>-traffic modernization (ATM) concepts. Data <span class="hlt">exchanges</span> over NAS being the key enabler for most of these ATM concepts, the Sub-Topic area 3 of the CTD project sought to identify technology candidates that can satisfy <span class="hlt">air-to-air</span> and <span class="hlt">air</span>/ground communications needs of the NAS in the year 2060 timeframe. Honeywell, under a two-year contract with NASA, is working on this communications technology research initiative. This report summarizes Honeywell's research conducted during the second year of the study task.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2784W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2784W"><span>Sustained Observations of <span class="hlt">Air-Sea</span> Fluxes and <span class="hlt">Air-Sea</span> Interaction at the Stratus Ocean Reference Station</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weller, Robert</p> <p>2014-05-01</p> <p>Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net <span class="hlt">air-sea</span> heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of <span class="hlt">sea</span> water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in <span class="hlt">sea</span> surface temperature. This process is proving hard to accurately model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A21A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A21A..04P"><span>Motion-Correlated Flow Distortion and Wave-Induced Biases in <span class="hlt">Air-Sea</span> Flux Measurements From Ships</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.</p> <p>2016-02-01</p> <p>Direct measurements of the turbulent <span class="hlt">air-sea</span> fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the <span class="hlt">air</span> flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas <span class="hlt">Exchange</span> Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the <span class="hlt">air-sea</span> fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GBioC..31..961W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GBioC..31..961W"><span>The impact of changing wind speeds on gas transfer and its effect on global <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wanninkhof, R.; Triñanes, J.</p> <p>2017-06-01</p> <p>An increase in global wind speeds over time is affecting the global uptake of CO2 by the ocean. We determine the impact of changing winds on gas transfer and CO2 uptake by using the recently updated, global high-resolution, cross-calibrated multiplatform wind product (CCMP-V2) and a fixed monthly pCO2 climatology. In particular, we assess global changes in the context of regional wind speed changes that are attributed to large-scale climate reorganizations. The impact of wind on global CO2 gas fluxes as determined by the bulk formula is dependent on several factors, including the functionality of the gas <span class="hlt">exchange</span>-wind speed relationship and the regional and seasonal differences in the <span class="hlt">air</span>-water partial pressure of CO2 gradient (ΔpCO2). The latter also controls the direction of the flux. Fluxes out of the ocean are influenced more by changes in the low-to-intermediate wind speed range, while ingassing is impacted more by changes in higher winds because of the regional correlations between wind and ΔpCO2. Gas <span class="hlt">exchange</span>-wind speed parameterizations with a quadratic and third-order polynomial dependency on wind, each of which meets global constraints, are compared. The changes in <span class="hlt">air-sea</span> CO2 fluxes resulting from wind speed trends are greatest in the equatorial Pacific and cause a 0.03-0.04 Pg C decade-1 increase in outgassing over the 27 year time span. This leads to a small overall decrease of 0.00 to 0.02 Pg C decade-1 in global net CO2 uptake, contrary to expectations that increasing winds increase net CO2 uptake.<abstract type="synopsis"><title type="main">Plain Language SummaryThe effects of changing winds are isolated from the total change in trends in global <span class="hlt">air-sea</span> CO2 fluxes over the last 27 years. The overall effect of increasing winds over time has a smaller impact than expected as the impact in regions of outgassing is greater than for the regions acting as a CO2 sink.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920016738','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920016738"><span>NASA Wallops Flight Facility <span class="hlt">Air-Sea</span> Interaction Research Facility</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Long, Steven R.</p> <p>1992-01-01</p> <p>This publication serves as an introduction to the <span class="hlt">Air-Sea</span> Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013232"><span>US Navy Submarine <span class="hlt">Sea</span> Trial of the NASA <span class="hlt">Air</span> Quality Monitor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.</p> <p>2017-01-01</p> <p>For the past four years, the <span class="hlt">Air</span> Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses <span class="hlt">air</span> as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of <span class="hlt">air</span> quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine <span class="hlt">air</span> monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine <span class="hlt">sea</span> trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM <span class="hlt">sea</span> trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the <span class="hlt">sea</span> trial. Only one AQM will be deployed during the <span class="hlt">sea</span> trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the <span class="hlt">sea</span> trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28132774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28132774"><span>Distribution and <span class="hlt">sea-to-air</span> fluxes of volatile halocarbons in the Bohai <span class="hlt">Sea</span> and North Yellow <span class="hlt">Sea</span> during spring.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Zhen; Liu, Qiu-Lin; Zhang, Ying-Jie; Yang, Gui-Peng</p> <p>2017-04-15</p> <p>Concentrations of volatile halocarbons (VHCs), such as CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 , in the Bohai <span class="hlt">Sea</span> (BS) and North Yellow <span class="hlt">Sea</span> (NYS) were measured during the spring of 2014. The VHC concentrations varied widely and decreased with distance from the coast in the investigated area, with low values observed in the open <span class="hlt">sea</span>. Depth profiles of the VHCs were characterized by the highest concentration generally found in the upper water column. The distributions of the VHCs in the BS and NYS were clearly influenced by the combined effects of biological production, anthropogenic activities, and riverine input. The <span class="hlt">sea-to-air</span> fluxes of CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 in the study area were estimated to be 47.17, 56.63, 162.56, and 104.37nmolm -2 d -1 , respectively, indicating that the investigated area may be a source of atmospheric CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 in spring. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104827&keyword=applications+AND+thermodynamic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=104827&keyword=applications+AND+thermodynamic&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>A CRITICAL ASSESSMENT OF ELEMENTAL MERCURY <span class="hlt">AIR</span>/WATER <span class="hlt">EXCHANGE</span> PARTNERS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Although evasion of elemental mercury from aquatic systems can significantly deplete net mercury accumulation resulting from atmospheric deposition, the current ability to model elemental mercury <span class="hlt">air</span>/water <span class="hlt">exchange</span> is limited by uncertainties in our understanding of all gaseous a...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A23F2429Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A23F2429Z"><span>Role of North Indian Ocean <span class="hlt">Air-Sea</span> Interaction in Summer Monsoon Intraseasonal Oscillation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, L.; Han, W.; Li, Y.</p> <p>2017-12-01</p> <p><span class="hlt">Air-sea</span> coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying <span class="hlt">sea</span> surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent heat flux (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. <span class="hlt">Air-sea</span> interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local <span class="hlt">air-sea</span> coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local <span class="hlt">air-sea</span> coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMS...155...35I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMS...155...35I"><span>Carbonate chemistry dynamics and biological processes along a river-<span class="hlt">sea</span> gradient (Gulf of Trieste, northern Adriatic <span class="hlt">Sea</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ingrosso, Gianmarco; Giani, Michele; Cibic, Tamara; Karuza, Ana; Kralj, Martina; Del Negro, Paola</p> <p>2016-03-01</p> <p>In this paper we investigated, for two years and with a bi-monthly frequency, how physical, chemical, and biological processes affect the marine carbonate system in a coastal area characterized by high alkalinity riverine discharge (Gulf of Trieste, northern Adriatic <span class="hlt">Sea</span>, Mediterranean <span class="hlt">Sea</span>). By combining synoptic measurements of the carbonate system with in situ determinations of the primary production (14C incorporation technique) and secondary prokaryotic carbon production (3H-leucine incorporation) along a river-<span class="hlt">sea</span> gradient, we showed that the conservative mixing between river endmember and off-shore waters was the main driver of the dissolved inorganic carbon (DIC) distribution and seasonal variation. However, during spring and summer seasons also the influence of biological uptake and release of DIC was significant. In the surface water of June 2012, the spreading and persistence of nutrient-rich freshwater stimulated the primary production (3.21 μg C L- 1 h- 1) and net biological DIC decrease (- 100 μmol kg- 1), reducing the dissolved CO2 concentration and increasing the pHT. Below the pycnocline of August 2012, instead, an elevated bacterial carbon production rate (0.92 μg C L- 1 h- 1) was related with net DIC increase (92 μmol kg- 1), low dissolved oxygen concentration, and strong pHT reduction, suggesting the predominance of bacterial heterotrophic respiration over primary production. The flux of carbon dioxide estimated at the <span class="hlt">air-sea</span> interface exerted a low influence on the seasonal variation of the carbonate system. A complex temporal and spatial dynamic of the <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> was also detected, due to the combined effects of seawater temperature, river discharge, and water circulation. On annual scale the system was a sink of atmospheric CO2. However, in summer and during elevated riverine discharges, the area close to the river's mouth acted as a source of carbon dioxide. Also the wind speed was crucial in controlling the <span class="hlt">air-sea</span> CO2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.U33A0028H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.U33A0028H"><span>Intraseasonal Cold <span class="hlt">Air</span> Outbreak over East Asia and the preceding atmospheric condition over the Barents-Kara <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hori, M. E.; Inoue, J.</p> <p>2011-12-01</p> <p>Frequent occurrence of cold <span class="hlt">air</span> outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold <span class="hlt">air</span> outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold <span class="hlt">air</span> outflow. Reduced <span class="hlt">sea</span> ice and increase in turbulence heat flux is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara <span class="hlt">sea</span> and the following cold <span class="hlt">air</span> buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara <span class="hlt">sea</span> which creates a cold <span class="hlt">air</span> advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold <span class="hlt">air</span> buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold <span class="hlt">air</span> outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara <span class="hlt">sea</span> correlated well with the seasonal dominance of cold <span class="hlt">air</span> over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold <span class="hlt">air</span> outbreak over East Asia from an atmosphere - <span class="hlt">sea</span> ice - land surafce interaction point of view for paritular cold winter years.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1170410','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1170410"><span>Solid oxide fuel cell power plant having a fixed contact oxidation catalyzed section of a multi-section cathode <span class="hlt">air</span> heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Saito, Kazuo; Lin, Yao</p> <p>2015-02-17</p> <p>The multi-section cathode <span class="hlt">air</span> heat <span class="hlt">exchanger</span> (102) includes at least a first heat <span class="hlt">exchanger</span> section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet <span class="hlt">air</span> flows through cool <span class="hlt">air</span> channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot <span class="hlt">air</span> channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot <span class="hlt">air</span> channels (112) of the first section (104) of the cathode <span class="hlt">air</span> heat <span class="hlt">exchanger</span> (102). The cool and hot <span class="hlt">air</span> channels (110, 112) are secured in direct heat <span class="hlt">exchange</span> relationship with each other so that temperatures of the heat <span class="hlt">exchanger</span> (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12806145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12806145"><span>Mercury <span class="hlt">exchange</span> at the <span class="hlt">air</span>-water-soil interface: an overview of methods.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fang, Fengman; Wang, Qichao; Liu, Ruhai</p> <p>2002-06-12</p> <p>An attempt is made to assess the present knowledge about the methods of determining mercury (Hg) <span class="hlt">exchange</span> at the <span class="hlt">air</span>-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water) are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg <span class="hlt">exchange</span> among <span class="hlt">air</span>-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210133Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210133Z"><span><span class="hlt">Air-sea</span> fluxes of momentum and mass in the presence of wind waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zülicke, Christoph</p> <p>2010-05-01</p> <p>An <span class="hlt">air-sea</span> interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the <span class="hlt">air</span>-side turbulent stress and lead to an increasing drag coefficient. In the <span class="hlt">sea</span>, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the <span class="hlt">air</span>-side momentum transfer (drag coefficient) and the <span class="hlt">sea</span>-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of <span class="hlt">air-sea</span> interaction for medium winds between 2 and 20 m s^-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp.2362W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp.2362W"><span>Potential regulation on the climatic effect of Tibetan Plateau heating by tropical <span class="hlt">air-sea</span> coupling in regional models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ziqian; Duan, Anmin; Yang, Song</p> <p>2018-05-01</p> <p>Based on the conventional weather research and forecasting (WRF) model and the <span class="hlt">air-sea</span> coupled mode WRF-OMLM, we investigate the potential regulation on the climatic effect of Tibetan Plateau (TP) heating by the <span class="hlt">air-sea</span> coupling over the tropical Indian Ocean and western Pacific. Results indicate that the TP heating significantly enhances the southwesterly monsoon circulation over the northern Indian Ocean and the South Asia subcontinent. The intensified southwesterly wind cools the <span class="hlt">sea</span> surface mainly through the wind-evaporation-SST (<span class="hlt">sea</span> surface temperature) feedback. Cold SST anomaly then weakens monsoon convective activity, especially that over the Bay of Bengal, and less water vapor is thus transported into the TP along its southern slope from the tropical oceans. As a result, summer precipitation decreases over the TP, which further weakens the TP local heat source. Finally, the changed TP heating continues to influence the summer monsoon precipitation and atmospheric circulation. To a certain extent, the <span class="hlt">air-sea</span> coupling over the adjacent oceans may weaken the effect of TP heating on the mean climate in summer. It is also implied that considerations of <span class="hlt">air-sea</span> interaction are necessary in future simulation studies of the TP heating effect.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24555308','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24555308"><span>Does Arctic <span class="hlt">sea</span> ice reduction foster shelf-basin <span class="hlt">exchange</span>?</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ivanov, Vladimir; Watanabe, Eiji</p> <p>2013-12-01</p> <p>The recent shift in Arctic ice conditions from prevailing multi-year ice to first-year ice will presumably intensify fall-winter <span class="hlt">sea</span> ice freezing and the associated salt flux to the underlying water column. Here, we conduct a dual modeling study whose results suggest that the predicted catastrophic consequences for the global thermohaline circulation (THC), as a result of the disappearance of Arctic <span class="hlt">sea</span> ice, may not necessarily occur. In a warmer climate, the substantial fraction of dense water feeding the Greenland-Scotland overflow may form on Arctic shelves and cascade to the deep basin, thus replenishing dense water, which currently forms through open ocean convection in the sub-Arctic <span class="hlt">seas</span>. We have used a simplified model for estimating how increased ice production influences shelf-basin <span class="hlt">exchange</span> associated with dense water cascading. We have carried out case studies in two regions of the Arctic Ocean where cascading was observed in the past. The baseline range of buoyancy-forcing derived from the columnar ice formation was calculated as part of a 30-year experiment of the pan-Arctic coupled ice-ocean general circulation model (GCM). The GCM results indicate that mechanical <span class="hlt">sea</span> ice divergence associated with lateral advection accounts for a significant part of the interannual variations in <span class="hlt">sea</span> ice thermal production in the coastal polynya regions. This forcing was then rectified by taking into account sub-grid processes and used in a regional model with analytically prescribed bottom topography and vertical stratification in order to examine specific cascading conditions in the Pacific and Atlantic sectors of the Arctic Ocean. Our results demonstrate that the consequences of enhanced ice formation depend on geographical location and shelf-basin bathymetry. In the Pacific sector, strong density stratification in slope waters impedes noticeable deepening of shelf-origin water, even for the strongest forcing applied. In the Atlantic sector, a 1.5x increase of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15330437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15330437"><span>[Comparison of <span class="hlt">air</span>/soil mercury <span class="hlt">exchange</span> between warm and cold season in Hongfeng Reservoir region].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Shao-feng; Feng, Xin-bin; Qiu, Guang-le; Fu, Xue-wu</p> <p>2004-01-01</p> <p>In July 2002 and March 2003, the mercury <span class="hlt">exchange</span> flux between soil and <span class="hlt">air</span> was measured using dynamic flux chamber method in Hongfeng Reservoir region. Mercury <span class="hlt">exchange</span> flux is (27.4 +/- 40.1) ng x (m2 x h)(-1) (n = 255) and (5.6 +/- 19.4) ng x (m2 x h)(-1) (n = 192) in summer and winter respectively. The correlation coefficient between mercury flux and solar radiation, <span class="hlt">air</span> temperature, soil temperature is 0.74, 0.83 and 0.80 in summer, and 0.88, 0.56 and 0.59 in winter. From the data, it was found that the mercury emission is stronger in summer than that in winter, and compared to winter, mercury <span class="hlt">exchange</span> between soil and <span class="hlt">air</span> depends more on meteorological conditions in summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12719071','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12719071"><span>Experimental study of viscoelastic in the prevention of corneal endothelial desiccation injury from vitreal fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cekiç, Osman; Ohji, Masahito; Zheng, Yuping; Hayashi, Atsushi; Kusaka, Shunji; Tano, Yasuo</p> <p>2003-05-01</p> <p>To evaluate the usefulness of viscoelastic in protecting the corneal endothelium from desiccation injury associated with fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> in a rabbit model. Experimental study. Rabbit eyes undergoing pars plana lensectomy and vitrectomy were insufflated with either dry or humidified <span class="hlt">air</span> for 20 minutes following introduction of either Opegan (sodium hyaluronate 1.0%; Santen, Osaka, Japan) or Viscoat (sodium hyaluronate 3%-chondroitin sulfate 4%; Alcon, Tokyo, Japan) into the anterior chamber. In two other groups of rabbit eyes, the same procedure was performed without using any viscoelastic agent. Corneas obtained from rabbits undergoing surgery were compared with corneas obtained from rabbits not undergoing surgery. Potential alterations in the corneal endothelium were investigated by scanning electron microscopy, by Phalloidin-FITC staining of actin and by in vitro measurements of corneal permeability for carboxyfluorescein using a diffusion chamber. Scanning electron microscopy displayed less distortion of corneal endothelium with Opegan and Viscoat compared with the dry <span class="hlt">air</span>-only exposed corneas. Using humidified <span class="hlt">air</span> in Opegan and Viscoat coated corneas maintained the normal actin cytoskeleton during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>. Paracellular leakage was much less with Opegan and Viscoat use following infusion of dry <span class="hlt">air</span> comparing to that of dry <span class="hlt">air</span>-only group (P =.026 and P =.041). The difference was much more striking following humidified <span class="hlt">air</span> infusion in Opegan or Viscoat coated corneas comparing to dry <span class="hlt">air</span>-only infused corneas (P <.002 and P <.002). Coating of rabbit corneal endothelium with Opegan or Viscoat before fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> largely prevents dry <span class="hlt">air</span> damage to the endothelium. Infusion of humidified <span class="hlt">air</span> further protects corneal endothelium during fluid-<span class="hlt">air</span> <span class="hlt">exchange</span> in aphakic rabbit eyes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1358252','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1358252"><span>Miniaturized <span class="hlt">Air</span>-to-Refrigerant Heat <span class="hlt">Exchangers</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Radermacher, Reinhard; Bacellar, Daniel; Aute, Vikrant</p> <p></p> <p><span class="hlt">Air</span>-to-refrigerant Heat <span class="hlt">eXchangers</span> (HX) are an essential component of Heating, Ventilation, <span class="hlt">Air</span>-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized <span class="hlt">air</span>-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs andmore » also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat <span class="hlt">exchanger</span> geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW <span class="hlt">air</span>-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW <span class="hlt">air</span>-to-water HX applications, also yielded optimized HX</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21827644','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21827644"><span>Performance evaluation on an <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> for alumina nanofluid under laminar flow.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong</p> <p>2011-08-09</p> <p>This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> to assess its heat <span class="hlt">exchange</span> capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat <span class="hlt">exchange</span> capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat <span class="hlt">exchange</span>. The maximum enhanced ratio of heat <span class="hlt">exchange</span> and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat <span class="hlt">exchange</span> and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat <span class="hlt">exchanger</span> is another important factor to be taken into consideration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3212002','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3212002"><span>Performance evaluation on an <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> for alumina nanofluid under laminar flow</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2011-01-01</p> <p>This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> to assess its heat <span class="hlt">exchange</span> capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat <span class="hlt">exchange</span> capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat <span class="hlt">exchange</span>. The maximum enhanced ratio of heat <span class="hlt">exchange</span> and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat <span class="hlt">exchange</span> and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat <span class="hlt">exchanger</span> is another important factor to be taken into consideration. PMID:21827644</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8779S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8779S"><span>The Effect of the South Asia Monsoon on the Wind <span class="hlt">Sea</span> and Swell Patterns in the Arabian <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro</p> <p>2015-04-01</p> <p>Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the <span class="hlt">exchanges</span> of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-<span class="hlt">sea</span> and swell. Wind-<span class="hlt">sea</span> waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the <span class="hlt">air-sea</span> interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the <span class="hlt">air-sea</span> coupling is different depending on the wave regime. Waves modulate the <span class="hlt">exchange</span> of momentum, heat, and mass across the <span class="hlt">air-sea</span> interface, and this modulation is different and dependent on the prevalence of one type of waves: wind <span class="hlt">sea</span> or swell. For fully developed <span class="hlt">seas</span> the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal <span class="hlt">seas</span>, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian <span class="hlt">Sea</span>, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian <span class="hlt">sea</span> is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24A2561T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24A2561T"><span>Impact of Ocean Surface Waves on <span class="hlt">Air-Sea</span> Momentum Flux</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.</p> <p>2016-02-01</p> <p>In this study, we investigated the structure of turbulent <span class="hlt">air</span> flow over ocean waves. Observations of wind and waves were retrieved by <span class="hlt">air-sea</span> interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind <span class="hlt">sea</span> conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970036015','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970036015"><span>Research in Observations of Oceanic <span class="hlt">Air/Sea</span> Interaction</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Long, David G.; Arnold, David V.</p> <p>1995-01-01</p> <p>The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of <span class="hlt">air/sea</span> interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in <span class="hlt">air/sea</span> interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=180684&keyword=global+AND+water+AND+issues&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=180684&keyword=global+AND+water+AND+issues&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ISSUES IN SIMULATING ELEMENTAL MERCURY <span class="hlt">AIR</span>/WATER <span class="hlt">EXCHANGE</span> AND AQUEOUS MONOMETHYLMERCURY SPECIATION</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>This presentation focuses on two areas relevant to assessing the global fate and bioavailability of mercury: elemental mercury <span class="hlt">air</span>/water <span class="hlt">exchange</span> and aqueous environmental monomethylmercury speciation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=246298','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=246298"><span>Atmospheric deposition flux estimates for chlorpyrifos and trifluralin in the chukchi <span class="hlt">sea</span></span></a></p> <p><a target="_blank" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>During the 1993 U.S.-Russian BERPAC expedition, residues of agricultural pesticides were detected in seawater, ice, surface microlayer, fog, and <span class="hlt">air</span> of the Bering and Chukchi <span class="hlt">Seas</span>. Gas <span class="hlt">exchange</span>, wet deposition, and dry particle deposition fluxes of trifluralin and chlorpyrifos were estimated using m...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..03J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..03J"><span><span class="hlt">Air-Sea</span> Interaction in the Somali Current Region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, T. G.; Rydbeck, A.</p> <p>2017-12-01</p> <p>The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the <span class="hlt">air-sea</span> interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of <span class="hlt">Sea</span> Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on <span class="hlt">air-sea</span> fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PolSc..10..323Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PolSc..10..323Y"><span>Mapping of the <span class="hlt">air-sea</span> CO2 flux in the Arctic Ocean and its adjacent <span class="hlt">seas</span>: Basin-wide distribution and seasonal to interannual variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik</p> <p>2016-09-01</p> <p>We produced 204 monthly maps of the <span class="hlt">air-sea</span> CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent <span class="hlt">seas</span>, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent <span class="hlt">seas</span> were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian <span class="hlt">Seas</span> (>15 mmol m-2 day-1) and the Barents <span class="hlt">Sea</span> (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi <span class="hlt">Sea</span> (∼10 mmol m-2 day-1) because of the <span class="hlt">sea</span>-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian <span class="hlt">Sea</span> and decreased in the southern Barents <span class="hlt">Sea</span>, owing to increased and decreased <span class="hlt">air-sea</span> pCO2 differences, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JGRC..121.7495L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JGRC..121.7495L"><span>Vernal distribution and turnover of dimethylsulfide (DMS) in the surface water of the Yellow <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Cheng-Xuan; Yang, Gui-Peng; Wang, Bao-Dong; Xu, Zong-Jun</p> <p>2016-10-01</p> <p>The spatial and interannual variations of dimethylsulfide (DMS) and its precursors, dissolved and particulate dimethylsulfoniopropionate (DMSP), were discussed on the basis of field observations in the surface waters of the Yellow <span class="hlt">Sea</span> during spring 2007. Maxima of dimethylated sulfur compounds and low chlorophyll a concentrations were found in the central southern Yellow <span class="hlt">Sea</span>, whereas low concentrations of DMS and DMSP were detected at the boundary between the northern and southern parts of the Yellow <span class="hlt">Sea</span>. This frontal region is influenced by active water currents, <span class="hlt">air-sea</span> interface <span class="hlt">exchanges</span>, and biological turnover. The horizontal variations in DMS production and consumption rates showed a decreasing tendency from the coastal to offshore areas mainly due to the complicated biological features. DMS positively correlated with dissolved CH4 and CO2 but negatively correlated with nutrients (nitrite and phosphate). Particulate DMSP concentrations and DMS production rates positively correlated with dinoflagellate abundances but negatively correlated with diatom cell densities. DMS and DMSP concentrations, as well as DMS production and consumption rates, exhibited approximately 2.0-2.8 fold increases from 2005 to 2012. This finding was likely caused by shifts in the phytoplankton communities from diatoms to dinoflagellates and the increases in abundances of zooplankton and bacteria. Average <span class="hlt">sea-to-air</span> DMS fluxes were estimated to be 8.12 ± 1.24 µmol·(m-2·d-1), and DMS microbial consumption was approximately 1.68 times faster than the DMS <span class="hlt">sea-air</span> <span class="hlt">exchange</span>. These findings imply that biological consumption, relative to ventilation, is a predominant mechanism in DMS removal from the surface water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F"><span>Determination of a Critical <span class="hlt">Sea</span> Ice Thickness Threshold for the Central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.</p> <p>2017-12-01</p> <p>While <span class="hlt">sea</span> ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic <span class="hlt">sea</span> ice pack, determining the spatial variability of <span class="hlt">sea</span> ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy <span class="hlt">exchange</span> expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick <span class="hlt">sea</span> ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux <span class="hlt">exchange</span> and surface <span class="hlt">air</span> temperature, responds to <span class="hlt">sea</span> ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where <span class="hlt">sea</span> ice transitions from the thickest multi-year ice to the very thin marginal ice <span class="hlt">seas</span>. This provides an ideal location to simulate how the diminishing Arctic <span class="hlt">sea</span> ice interacts with a warming atmosphere. Scenarios include both fixed <span class="hlt">sea</span> surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy <span class="hlt">exchange</span>. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface <span class="hlt">air</span> temperature increase as <span class="hlt">sea</span> ice thickness transitions from perennial ice to seasonal ice. While models predict a <span class="hlt">sea</span> ice free Arctic at the end of the warm season in future decades, <span class="hlt">sea</span> ice will continue to transform</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614514V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614514V"><span>CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global <span class="hlt">Air-Sea</span> Fluxes From Ocean and Coupled Reanalyses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdivieso, Maria</p> <p>2014-05-01</p> <p>.I. and E.C. Kent (2009), A New <span class="hlt">Air-Sea</span> Interaction Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying <span class="hlt">air-sea</span> flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar <span class="hlt">Exchanges</span>. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed <span class="hlt">Air-sea</span> Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...356..389O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...356..389O"><span>Separator electrode assembly (<span class="hlt">SEA</span>) with 3-dimensional bioanode and removable <span class="hlt">air</span>-cathode boosts microbial fuel cell performance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliot, M.; Etcheverry, L.; Mosdale, A.; Basseguy, R.; Délia, M.-L.; Bergel, A.</p> <p>2017-07-01</p> <p>Separator electrode assemblies (<span class="hlt">SEAs</span>) were designed by associating a microbial anode with an <span class="hlt">air</span>-cathode on each side of three different kinds of separator: plastic grid, J-cloth and baking paper. The <span class="hlt">SEA</span> was designed to allow the <span class="hlt">air</span>-cathode be removed and replaced without disturbing the bioanode. Power densities up to 6.4 W m-2 were produced by the Grid-<span class="hlt">SEAs</span> (on average 5.9 ± 0.5 W m-2) while JCloth-<span class="hlt">SEAs</span> and Paper-<span class="hlt">SEAs</span> produced 4.8 ± 0.3 and 1.8 ± 0.1 W m-2, respectively. Power densities decreased with time mainly because of fast deterioration of the cathode kinetics. They always increased again when the <span class="hlt">air</span>-cathodes were replaced by new ones; the Grid-<span class="hlt">SEAs</span> were thus boosted above 4 W m-2 after 7 weeks of operation. The theoretical analysis of <span class="hlt">SEA</span> functioning suggested that the high performance of the Grid-<span class="hlt">SEAs</span> was due to the combination of several virtuous phenomena: the efficient pH balance thanks to free diffusion through the large-mesh grid, the likely mitigation of oxygen crossover thanks to the 3-dimensional structure of the bioanode and the possibility of overcoming cathode fouling by replacing it during MFC operation. Finally, the microbial community of all bioanodes showed stringent selection of Proteiniphilum acetatigenes in proportion with the performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2671L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2671L"><span>On the role of <span class="hlt">sea</span>-state in bubble-mediated <span class="hlt">air-sea</span> gas flux during a winter storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.</p> <p>2017-04-01</p> <p>Oceanic bubbles play an important role in the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical processes, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.1728S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.1728S"><span>The role of horizontal <span class="hlt">exchanges</span> on ventilation of the benthic boundary layer on the Black <span class="hlt">Sea</span> shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shapiro, Georgy; Wobus, Fred</p> <p>2010-05-01</p> <p>The state of the benthic component of the shelf ecosystem is strongly influenced by availability of dissolved oxygen. The chemical structure of the Black <span class="hlt">Sea</span> waters is largely determined by the location and the strength of the pycnocline. Due to similarity in the mechanisms of vertical <span class="hlt">exchanges</span> the oxycline and the chemocline occur at the same depth intervals as the halocline and pycnocline (Özsoy and Ünlüata, 1997). As the data for dissolved oxygen on the shelf is relatively sparse we assume that much abundant data on physical parameters (temperature and salinity) can be used as proxy in determining the location of the oxycline and hence the spatial extent of near-bottom waters depleted in oxygen. When the waters of the benthic boundary layers below the pycnocline are ‘locked' i.e. unable to mix vertically with surface then the biological pump and supply of oxygen are suppressed. However, the locked water can, in principle, move ‘horizontally', predominantly along the constant density levels and get ventilated via isopycnal <span class="hlt">exchanges</span>. The isopycnals in the Black <span class="hlt">Sea</span> have generally a dome-like structure, so that the isopycnal movements across the shelf break can ventilate bottom shelf waters with water masses from upper parts of the water column in the deep <span class="hlt">sea</span>. We use the intra- and inter-annual variations in the near-bottom temperature as indicators for variability of physical conditions in the benthic boundary layer on the shelf. The physical reason for this is that interannual variations in the near-bottom temperature are directly related with the volume of cold waters (Ivanov et al., 2000) which are formed on the shelf and then exported into the deep <span class="hlt">sea</span>, so that variations in temperature may indicate changes in the intensity of horizontal <span class="hlt">exchanges</span>. In this paper we identified areas on the Black <span class="hlt">Sea</span> margin where bottom waters can not be mixed vertically (‘locked' waters) during the winter months and locations to which the locked waters can move </p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA628532','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA628532"><span><span class="hlt">Air/Sea</span> Transfer of Gases and Aerosols</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-09-30</p> <p>of tubing from the boom at the western end of the pier. The boom housed the inlet and a Campbell CSAT sonic anemometer, which measured three...with the return flow from breaking waves onshore. 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 U10 (m/s) k 6 00 (c m /h r ) this study wanninkof...ultimately result in improved algorithms relating the state of the <span class="hlt">air/sea</span> interface to remotely sensed properties. REFERENCES Bandy, A, R ., D</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS21B1971J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS21B1971J"><span>High-resolution modeling of local <span class="hlt">air-sea</span> interaction within the Marine Continent using COAMPS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.</p> <p>2016-12-01</p> <p>The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled <span class="hlt">air-sea</span> interaction and intra seasonal oscillations. The complex distribution of islands, shallow <span class="hlt">seas</span> with fairly small heat storage and deep <span class="hlt">seas</span> with large heat capacity is challenging to model. Diurnal convection over land-<span class="hlt">sea</span> is part of a land-<span class="hlt">sea</span> breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal <span class="hlt">seas</span>. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the <span class="hlt">air-sea</span> interaction associated with the land-<span class="hlt">sea</span> breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830026675','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830026675"><span>Use of cooling <span class="hlt">air</span> heat <span class="hlt">exchangers</span> as replacements for hot section strategic materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gauntner, J. W.</p> <p>1983-01-01</p> <p>Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling <span class="hlt">air</span> heat <span class="hlt">exchanger</span> in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling <span class="hlt">air</span> heat <span class="hlt">exchanger</span> enables the feasibility of these engines.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060040203&hterms=Carr+2000&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DCarr%2B2000','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060040203&hterms=Carr+2000&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DCarr%2B2000"><span>CO2 <span class="hlt">exchange</span> coefficients from remotely-sensed wind speed measurements: SSM/I versus QuikSCAT in 2000</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carr, M.; Tang, W.; Liu, W. T.</p> <p>2002-01-01</p> <p>We compare here the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> coefficient for C02 estimated with monthly mean wind speed measured by the Special Sensing Microwave Imager (SSM/I), Ks , and by the scatterometer QuikSCAT, Kq, for the year 2000.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.120...27F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.120...27F"><span>Kinetic energy flux budget across <span class="hlt">air-sea</span> interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Yalin; Hwang, Paul</p> <p>2017-12-01</p> <p>The kinetic energy (KE) fluxes into subsurface currents (EFc) is an important boundary condition for ocean circulation models. Traditionally, numerical models assume the KE flux from wind (EFair) is identical to EFc, that is, no net KE is gained (or lost) by surface waves. This assumption, however, is invalid when the surface wave field is not fully developed, and acquires KE when it grows in space or time. In this study, numerical experiments are performed to investigate the KE flux budget across the <span class="hlt">air-sea</span> interface under both uniform and idealized tropical cyclone (TC) winds. The wave fields are simulated using the WAVEWATCH III model under different wind forcing. The difference between EFair and EFc is estimated using an <span class="hlt">air-sea</span> KE budget model. To address the uncertainty of these estimates resides in the variation of source functions, two source function packages are used for this study: the ST4 source package (Ardhuin et al, 2010), and the ST6 source package (Babanin, 2011). The modeled EFc is significantly reduced relative to EFair under growing <span class="hlt">seas</span> for both the uniform and TC experiments. The reduction can be as large as 20%, and the variation of this ratio is highly dependent on the choice of source function for the wave model. Normalized EFc are found to be consistent with analytical expressions by Hwang and Sletten (2008) and Hwang and Walsh (2016) and field observations by Terray et al. (1996) and Drennan et al. (1996), while the scatters are more widely in the TC cases due to the complexity of the associated wave field. The waves may even give up KE to subsurface currents in the left rear quadrant of fast moving storms. Our results also suggest that the normalized KE fluxes may depend on both wave age and friction velocity (u*).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAMES..10..550H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAMES..10..550H"><span>The Impact of <span class="hlt">Air-Sea</span> Interactions on the Representation of Tropical Precipitation Extremes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.</p> <p>2018-02-01</p> <p>The impacts of <span class="hlt">air-sea</span> interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model <span class="hlt">sea</span>-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, <span class="hlt">air-sea</span> feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70195393','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70195393"><span>On factors influencing <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> in emergent wetlands</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.</p> <p>2018-01-01</p> <p>Knowledge of gas <span class="hlt">exchange</span> in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas <span class="hlt">exchange</span> parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas <span class="hlt">exchange</span> relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas <span class="hlt">exchange</span> due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas <span class="hlt">exchange</span>. Differences in rain and water flow among the different years were responsible for the variability in gas <span class="hlt">exchange</span>, with flow accounting for 37 to 77% of the gas <span class="hlt">exchange</span>, and rain responsible for up to 40%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29371648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29371648"><span>Re-initiation of bottom water formation in the East <span class="hlt">Sea</span> (Japan <span class="hlt">Sea</span>) in a warming world.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yoon, Seung-Tae; Chang, Kyung-Il; Nam, SungHyun; Rho, TaeKeun; Kang, Dong-Jin; Lee, Tongsup; Park, Kyung-Ae; Lobanov, Vyacheslav; Kaplunenko, Dmitry; Tishchenko, Pavel; Kim, Kyung-Ryul</p> <p>2018-01-25</p> <p>The East <span class="hlt">Sea</span> (Japan <span class="hlt">Sea</span>), a small marginal <span class="hlt">sea</span> in the northwestern Pacific, is ventilated deeply down to the bottom and sensitive to changing surface conditions. Addressing the response of this marginal <span class="hlt">sea</span> to the hydrological cycle and atmospheric forcing would be helpful for better understanding present and future environmental changes in oceans at the global and regional scales. Here, we present an analysis of observations revealing a slowdown of the long-term deepening in water boundaries associated with changes of water formation rate. Our results indicate that bottom (central) water formation has been enhanced (reduced) with more (less) oxygen supply to the bottom (central) layer since the 2000s. This paper presents a new projection that allows a three-layered deep structure, which retains bottom water, at least until 2040, contrasting previous results. This projection considers recent increase of slope convections mainly due to the salt supply via <span class="hlt">air-sea</span> freshwater <span class="hlt">exchange</span> and <span class="hlt">sea</span> ice formation and decrease of open-ocean convections evidenced by reduced mixed layer depth in the northern East <span class="hlt">Sea</span>, resulting in more bottom water and less central water formations. Such vigorous changes in water formation and ventilation provide certain implications on future climate changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20001972-waking-sleeping-giant-introducing-new-heat-exchanger-technology-residential-air-conditioning-marketplace','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20001972-waking-sleeping-giant-introducing-new-heat-exchanger-technology-residential-air-conditioning-marketplace"><span>Waking the sleeping giant: Introducing new heat <span class="hlt">exchanger</span> technology into the residential <span class="hlt">air</span>-conditioning marketplace</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chapp, T.; Voss, M.; Stephens, C.</p> <p>1998-07-01</p> <p>The <span class="hlt">Air</span> Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central <span class="hlt">air</span> conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchangermore » was developed for <span class="hlt">air</span> conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the <span class="hlt">air</span> conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat <span class="hlt">exchanger</span> design throughout the nation. This paper will review the fundamentals of heat <span class="hlt">exchanger</span> design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of <span class="hlt">air</span> conditioning system constructed with PF{trademark} Heat <span class="hlt">Exchangers</span> (generically referred to as microchannel heat <span class="hlt">exchangers</span>) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..119.1073Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..119.1073Z"><span>Selected current-use and historic-use pesticides in <span class="hlt">air</span> and seawater of the Bohai and Yellow <span class="hlt">Seas</span>, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhong, Guangcai; Tang, Jianhui; Xie, Zhiyong; Möller, Axel; Zhao, Zhen; Sturm, Renate; Chen, Yingjun; Tian, Chongguo; Pan, Xiaohui; Qin, Wei; Zhang, Gan; Ebinghaus, Ralf</p> <p>2014-01-01</p> <p>Consumption of pesticides in China has increased rapidly in recent years; however, occurrence and fate of current-use pesticides (CUPs) in China coastal waters are poorly understood. Globally banned pesticides, so-called historic-use pesticides (HUPs), are still commonly observed in the environment. In this work, <span class="hlt">air</span> and surface seawater samples taken from the Bohai and Yellow <span class="hlt">Seas</span> in May 2012 were analyzed for CUPs including trifluralin, quintozene, chlorothalonil, dicofol, chlorpyrifos, and dacthal, as well as HUPs (hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and endosulfan). CUP profile in both <span class="hlt">air</span> and seawater samples generally reflected their consumption patterns in China. HUPs in the <span class="hlt">air</span> and seawater samples were in comparable levels as those of CUPs with high concentrations. α-Endosulfan, dicofol, and chlorothalonil showed strong net deposition likely resulting from their intensive use in recent years, while CUPs with low consumption amount (quintozene and dacthal) were close to equilibrium at most samplings sites. Another CUP with high usage amout (i.e., chlorpyrifos) underwent volatilization possibly due to its longer half-life in seawater than that in <span class="hlt">air</span>. α-HCH and γ-HCH were close to equilibrium in the Bohai <span class="hlt">Sea</span>, but mainly underwent net deposition in the Yellow <span class="hlt">Sea</span>. The net deposition of α-HCH could be attributed to polluted <span class="hlt">air</span> pulses from the East China identified by <span class="hlt">air</span> mass back trajectories. β-HCH showed net volatilization in the Bohai <span class="hlt">Sea</span>, which was driven by its relative enrichment in seawater. HCB either slightly favored net volatilization or was close to equilibrium in the Bohai and Yellow <span class="hlt">Seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A43A..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A43A..03B"><span>Seasonal Oxygen Supersaturation and <span class="hlt">Air-Sea</span> Fluxes from Profiling Floats in the Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bushinsky, S. M.; Emerson, S. R.</p> <p>2016-02-01</p> <p>The Pacific Ocean is a heterogeneous basin that includes regions of strong CO2 fluxes to and from the atmosphere. The Kuroshio Extension (KE) is a current associated with the largest CO2 flux into the Pacific Ocean, which extends across the Pacific basin between the subarctic and subtropical regions. The relative importance of the biological and physical processes controlling this sink is uncertain. The stoichiometric relationship between O2 and dissolved inorganic carbon during photosynthesis and respiration may allow in situ O2 measurements to help determine the processes driving this large CO2 flux. In this study, we used Argo profiling floats with modified oxygen sensors to estimate O2 fluxes in several areas of the Pacific. In situ <span class="hlt">air</span> calibrations of these sensors allowed us to accurately measure <span class="hlt">air-sea</span> O2 differences, which largely control the flux of O2 to and from the atmosphere. In this way, we determine <span class="hlt">air-sea</span> O2 fluxes from profiling floats, which previously did not measure O2 accurately enough to make these calculations. To characterize different areas within the KE, we separated O2 measurements from floats into 3 regions based on geographical position and temperature-salinity relationships: North KE, Central KE, and South KE. We then used these regions and floats in the Alaska Gyre and subtropical South Pacific gyre to develop seasonal climatologies of ΔO2 and <span class="hlt">air-sea</span> flux. Mean annual <span class="hlt">air-sea</span> oxygen fluxes (positive fluxes represent addition of O2 to the ocean) were calculated for the Alaska Gyre of -0.3 mol m-2 yr-1 (2012-2015), for the northern KE, central KE, and southern KE (2013-2015) of 6.8, 10.5, and 0.5 mol m-2 yr-1, respectively, and for the south subtropical Pacific (2014-2015) of 0.6 mol m-2 yr-1. The <span class="hlt">air-sea</span> flux due to bubbles was greater than 50% of the total flux for winter months and essential for determining the magnitude and, in some cases, direction of the cumulative mean annual flux. Increases in solubility due to wintertime</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=volume+AND+concept&pg=7&id=EJ667010','ERIC'); return false;" href="https://eric.ed.gov/?q=volume+AND+concept&pg=7&id=EJ667010"><span>Authentic Assessment in the Geometry Classroom: Calculating the Classroom <span class="hlt">Air-Exchange</span> Rate.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Erich, David J.</p> <p>2002-01-01</p> <p>Introduces a room <span class="hlt">air-exchange</span> activity designed to assess student understanding of the concept of volume. Lists materials for the activity and its procedures. Includes the lesson plan and a student worksheet. (KHR)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMOS44A..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMOS44A..01M"><span>Developments in Airborne Oceanography and <span class="hlt">Air-Sea</span> Interaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melville, W. K.</p> <p>2014-12-01</p> <p>, just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and <span class="hlt">air-sea</span> fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of <span class="hlt">air-sea</span> interaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.B34A..02L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.B34A..02L"><span><span class="hlt">Air</span>-Water <span class="hlt">Exchange</span> of Legacy and Emerging Organic Pollutants across the Great Lakes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lohmann, R.; Ruge, Z.; Khairy, M.; Muir, D.; Helm, P.</p> <p>2014-12-01</p> <p>Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are transported to great water bodies via long-range atmospheric transport and released from the surface water as <span class="hlt">air</span> concentrations continue to diminish. As the largest fresh water bodies in North America, the Great Lakes have both the potential to accumulate and serve as a secondary source of persistent bioaccumulative toxins. OCP and PCB concentrations were sampled at 30+ sites across Lake Superior, Ontario and Erie in the summer of 2011. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine <span class="hlt">air</span>-water gaseous <span class="hlt">exchange</span> of OCPs and PCBs. In Lake Superior, surface water and atmospheric concentrations were dominated by α-HCH (average 250 pg/L and 4.2 pg/m3, respectively), followed by HCB (average 17 pg/L and 89 pg/m3, respectively). <span class="hlt">Air</span>-water <span class="hlt">exchange</span> varied greatly between sites and individual OCPs, however α-endosulfan was consistently deposited into the surface water (average 19 pg/m2/day). PCBs in the <span class="hlt">air</span> and water were characterized by penta- and hexachlorobiphenyls with distribution along the coast correlated with proximity to developed areas. <span class="hlt">Air</span>-water <span class="hlt">exchange</span> gradients generally yielded net volatilization of PCBs out of Lake Superior. Gaseous concentrations of hexachlorobenzene, dieldrin and chlordanes were significantly higher (p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression that incorporated meteorological, landuse and population data was used to explain variability in the atmospheric concentrations. Results indicated that landuse (urban and/or cropland) greatly explained the variability in the data. Freely dissolved concentrations of OCPs (<LOD-114 pg/L) were lower than previously detected concentrations. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than water quality guidelines for the protection of human health from the consumption of fish. Spatial distributions of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21917934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21917934"><span><span class="hlt">Air</span>-gas <span class="hlt">exchange</span> reevaluated: clinically important results of a computer simulation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shunmugam, Manoharan; Shunmugam, Sudhakaran; Williamson, Tom H; Laidlaw, D Alistair</p> <p>2011-10-21</p> <p>The primary aim of this study was to evaluate the efficiency of <span class="hlt">air</span>-gas <span class="hlt">exchange</span> techniques and the factors that influence the final concentration of an intraocular gas tamponade. Parameters were varied to find the optimum method of performing an <span class="hlt">air</span>-gas <span class="hlt">exchange</span> in ideal circumstances. A computer model of the eye was designed using 3D software with fluid flow analysis capabilities. Factors such as angular distance between ports, gas infusion gauge, exhaust vent gauge and depth were varied in the model. Flow rate and axial length were also modulated to simulate faster injections and more myopic eyes, respectively. The flush volume of gas required to achieve a 97% intraocular gas fraction concentration were compared. Modulating individual factors did not reveal any clinically significant difference in the angular distance between ports, exhaust vent size, and depth or rate of gas injection. In combination, however, there was a 28% increase in <span class="hlt">air</span>-gas <span class="hlt">exchange</span> efficiency comparing the most efficient with the least efficient studied parameters in this model. The gas flush volume required to achieve a 97% gas fill also increased proportionately at a ratio of 5.5 to 6.2 times the volume of the eye. A 35-mL flush is adequate for eyes up to 25 mm in axial length; however, eyes longer than this would require a much greater flush volume, and surgeons should consider using two separate 50-mL gas syringes to ensure optimal gas concentration for eyes greater than 25 mm in axial length.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4277W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4277W"><span>Ozone pollution around a coastal region of South China <span class="hlt">Sea</span>: interaction between marine and continental <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Hao; Lyu, Xiaopu; Guo, Hai; Wang, Yu; Zou, Shichun; Ling, Zhenhao; Wang, Xinming; Jiang, Fei; Zeren, Yangzong; Pan, Wenzhuo; Huang, Xiaobo; Shen, Jin</p> <p>2018-03-01</p> <p>Marine atmosphere is usually considered to be a clean environment, but this study indicates that the near-coast waters of the South China <span class="hlt">Sea</span> (SCS) suffer from even worse <span class="hlt">air</span> quality than coastal cities. The analyses were based on concurrent field measurements of target <span class="hlt">air</span> pollutants and meteorological parameters conducted at a suburban site (Tung Chung, TC) and a nearby marine site (Wan Shan, WS) from August to November 2013. The observations showed that the levels of primary <span class="hlt">air</span> pollutants were significantly lower at WS than those at TC, while the ozone (O3) value was greater at WS. Higher O3 levels at WS were attributed to the weaker NO titration and higher O3 production rate because of stronger oxidative capacity of the atmosphere. However, O3 episodes were concurrently observed at both sites under certain meteorological conditions, such as tropical cyclones, continental anticyclones and <span class="hlt">sea</span>-land breezes (SLBs). Driven by these synoptic systems and mesoscale recirculations, the interaction between continental and marine <span class="hlt">air</span> masses profoundly changed the atmospheric composition and subsequently influenced the formation and redistribution of O3 in the coastal areas. When continental <span class="hlt">air</span> intruded into marine atmosphere, the O3 pollution was magnified over the SCS, and the elevated O3 ( > 100 ppbv) could overspread the <span class="hlt">sea</span> boundary layer ˜ 8 times the area of Hong Kong. In some cases, the exaggerated O3 pollution over the SCS was recirculated to the coastal inshore by <span class="hlt">sea</span> breeze, leading to aggravated O3 pollution in coastal cities. The findings are applicable to similar mesoscale environments around the world where the maritime atmosphere is potentially influenced by severe continental <span class="hlt">air</span> pollution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840032418&hterms=financial+ratios&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfinancial%2Bratios','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840032418&hterms=financial+ratios&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dfinancial%2Bratios"><span>Use of cooling <span class="hlt">air</span> heat <span class="hlt">exchangers</span> as replacements for hot section strategic materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gauntner, J. W.</p> <p>1983-01-01</p> <p>Because of financial and political constraints, strategic aerospace materials required for the hot section of future engines might be in short supply. As an alternative to these strategic materials, this study examines the use of a cooling <span class="hlt">air</span> heat <span class="hlt">exchanger</span> in combination with less advanced hot section materials. Cycle calculations are presented for future turbofan systems with overall pressure ratios to 65, bypass ratios near 13, and combustor exit temperatures to 3260 R. These calculations quantify the effect on TSFC of using a decreased materials technology in a turbofan system. The calculations show that the cooling <span class="hlt">air</span> heat <span class="hlt">exchanger</span> enables the feasibility of these engines. Previously announced in STAR as N83-34946</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335530&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=02/22/2012&dateendpublishedpresented=02/22/2017&sortby=pubdateyear','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335530&keyword=air&subject=air%20research&showcriteria=2&fed_org_id=111&datebeginpublishedpresented=02/22/2012&dateendpublishedpresented=02/22/2017&sortby=pubdateyear"><span>Probabilistic estimation of residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates for ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) are a key determinant in the infiltration of ambient <span class="hlt">air</span> pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to <span class="hlt">air</span> pollutants have relied on input distributions from AER measurements. An algorithm for probabilistically estimating AER was developed based on the Lawrence Berkley National Laboratory Infiltration model utilizing housing characteristics and meteorological data with adjustment for window opening behavior. The algorithm was evaluated by comparing modeled and measured AERs in four US cities (Los Angeles, CA; Detroit, MI; Elizabeth, NJ; and Houston, TX) inputting study-specific data. The impact on the modeled AER of using publically available housing data representative of the region for each city was also assessed. Finally, modeled AER based on region-specific inputs was compared with those estimated using literature-based distributions. While modeled AERs were similar in magnitude to the measured AER they were consistently lower for all cities except Houston. AERs estimated using region-specific inputs were lower than those using study-specific inputs due to differences in window opening probabilities. The algorithm produced more spatially and temporally variable AERs compared with literature-based distributions reflecting within- and between-city differences, helping reduce error in estimates of <span class="hlt">air</span> pollutant exposure. Published in the Journal of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26196214','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26196214"><span>20 Years of <span class="hlt">Air</span>-Water Gas <span class="hlt">Exchange</span> Observations for Pesticides in the Western Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jantunen, Liisa M; Wong, Fiona; Gawor, Anya; Kylin, Henrik; Helm, Paul A; Stern, Gary A; Strachan, William M J; Burniston, Deborah A; Bidleman, Terry F</p> <p>2015-12-01</p> <p>The Arctic has been contaminated by legacy organochlorine pesticides (OCPs) and currently used pesticides (CUPs) through atmospheric transport and oceanic currents. Here we report the time trends and <span class="hlt">air</span>-water <span class="hlt">exchange</span> of OCPs and CUPs from research expeditions conducted between 1993 and 2013. Compounds determined in both <span class="hlt">air</span> and water were trans- and cis-chlordanes (TC, CC), trans- and cis-nonachlors (TN, CN), heptachlor exo-epoxide (HEPX), dieldrin (DIEL), chlorobornanes (ΣCHBs and toxaphene), dacthal (DAC), endosulfans and metabolite endosulfan sulfate (ENDO-I, ENDO-II, and ENDO SUL), chlorothalonil (CHT), chlorpyrifos (CPF), and trifluralin (TFN). Pentachloronitrobenzene (PCNB and quintozene) and its soil metabolite pentachlorothianisole (PCTA) were also found in <span class="hlt">air</span>. Concentrations of most OCPs declined in surface water, whereas some CUPs increased (ENDO-I, CHT, and TFN) or showed no significant change (CPF and DAC), and most compounds declined in <span class="hlt">air</span>. Chlordane compound fractions TC/(TC + CC) and TC/(TC + CC + TN) decreased in water and <span class="hlt">air</span>, while CC/(TC + CC + TN) increased. TN/(TC + CC + TN) also increased in <span class="hlt">air</span> and slightly, but not significantly, in water. These changes suggest selective removal of more labile TC and/or a shift in chlordane sources. Water-<span class="hlt">air</span> fugacity ratios indicated net volatilization (FR > 1.0) or near equilibrium (FR not significantly different from 1.0) for most OCPs but net deposition (FR < 1.0) for ΣCHBs. Net deposition was shown for ENDO-I on all expeditions, while the net <span class="hlt">exchange</span> direction of other CUPs varied. Understanding the processes and current state of <span class="hlt">air</span>-surface <span class="hlt">exchange</span> helps to interpret environmental exposure and evaluate the effectiveness of international protocols and provides insights for the environmental fate of new and emerging chemicals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007396','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007396"><span>Preparation of the NASA <span class="hlt">Air</span> Quality Monitor for a U.S. Navy Submarine <span class="hlt">Sea</span> Trial</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Smith, Matthew J.; O'Connor, Sara Jane; Mudgett, Paul D.</p> <p>2017-01-01</p> <p>For the past 4 years, the <span class="hlt">Air</span> Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Onboard the ISS are two AQMs with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of <span class="hlt">air</span> quality aboard ISS for each crew increment. The US Navy is looking to update its submarine <span class="hlt">air</span> monitoring suite of instruments and the success of the AQM on ISS has led to a jointly planned submarine <span class="hlt">sea</span> trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which measures major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM <span class="hlt">sea</span> trial preparation and the analysis of most recent ISS data. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the <span class="hlt">sea</span> trial. Only one AQM will be deployed during the <span class="hlt">sea</span> trial, but this is sufficient for NASA purposes and to detect the compounds of interest to the US Navy for this trial. The data from the <span class="hlt">sea</span> trial will be compared to data from archival samples collected before, during, and after the trial period. This paper will start with a brief history of past collaborations between NASA and the U.S. and U.K. navies for trials of <span class="hlt">air</span> monitoring equipment. An overview of the AQM technology and protocols for the submarine trial will be presented. The majority of the presentation will focus on the AQM preparation and a summary of available data from the trial.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53F2321H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53F2321H"><span>Indoor Levels of Formaldehyde and Other Pollutants and Relationship to <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rates and Human Activities</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huangfu, Y.; O'Keeffe, P.; Kirk, M.; Walden, V. P.; Lamb, B. K.; Jobson, B. T.</p> <p>2017-12-01</p> <p>This paper reports results on an indoor <span class="hlt">air</span> quality study conducted on six homes in summer and winter, contrasting indoor and outdoor concentrations of O3, CO, CO2, NOx, PM2.5, and selected volatile organic hydrocarbons measured by PTR-MS. Data were collected as 1 minute averages. <span class="hlt">Air</span> <span class="hlt">exchange</span> rates of the homes were determined by CO2 tracer release. Smart home sensors, recording human activity level in various places in the home, and window and doors openings, were utilized to better understand the link between human activity and indoor <span class="hlt">air</span> pollution. From our study, averaged <span class="hlt">air</span> <span class="hlt">exchange</span> rates of the homes ranged from 0.2 to 1.2 hour-1 and were greatly affected by the ventilation system type and window and door openings. In general, a negative correlation between <span class="hlt">air</span> <span class="hlt">exchange</span> rate and indoor VOCs levels was observed, with large variation of pollutant levels between the homes. For most of the VOCs measured in the house, including formaldehyde and acetaldehyde, summer levels were much higher than winter levels. In some homes formaldehyde levels displayed a time of day variation that was linked to changes in indoor temperature. During a wildfire period in the summer of 2015, outdoor levels of PM2.5, formaldehyde, and benzene dramatically increased, significantly impacting indoor levels due to infiltration. Human activities, such as cooking, can significantly change the levels of most of the compounds measured in the house and the levels can be significantly elevated for short periods of time, with peak levels can be several orders higher compared with typical levels. The data suggest that an outcome of state energy codes that require new homes to be energy efficient, and as a consequence built with lower <span class="hlt">air</span> <span class="hlt">exchange</span> rates, will be unacceptable levels of <span class="hlt">air</span> toxics, notably formaldehyde.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.5091W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.5091W"><span>Seasonal variability of the Red <span class="hlt">Sea</span>, from satellite gravity, radar altimetry, and in situ observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wahr, John; Smeed, David A.; Leuliette, Eric; Swenson, Sean</p> <p>2014-08-01</p> <p>Seasonal variations of <span class="hlt">sea</span> surface height (SSH) and mass within the Red <span class="hlt">Sea</span> are caused mostly by <span class="hlt">exchange</span> of heat with the atmosphere and by flow through the strait opening into the Gulf of Aden to the south. That flow involves a net mass transfer into the Red <span class="hlt">Sea</span> during fall and out during spring, though in summer there is an influx of cool water at intermediate depths. Thus, summer water in the south is warmer near the surface due to higher <span class="hlt">air</span> temperatures, but cooler at intermediate depths. Summer water in the north experiences warming by <span class="hlt">air-sea</span> <span class="hlt">exchange</span> only. The temperature affects water density, which impacts SSH but has no effect on mass. We study this seasonal cycle by combining GRACE mass estimates, altimeter SSH measurements, and steric contributions derived from the World Ocean Atlas temperature climatology. Among our conclusions are: mass contributions are much larger than steric contributions; the mass is largest in winter, consistent with winds pushing water into the Red <span class="hlt">Sea</span> in fall and out during spring; the steric signal is largest in summer, consistent with surface warming; and the cool, intermediate-depth water flowing into the Red <span class="hlt">Sea</span> in spring has little impact on the steric signal, because contributions from the lowered temperature are offset by effects of decreased salinity. The results suggest that the combined use of altimeter and GRACE measurements can provide a useful alternative to in situ data for monitoring the steric signal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601544','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601544"><span>Assessing Maritime Aspects of the <span class="hlt">AirSea</span> Battle Concept</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-23</p> <p><span class="hlt">AirSea</span> Battle centered on the assessment that in hostilities the PRC would conduct a rapid preemptive attack to knock back U.S. and allied forces in...these factors provide the foundational need for a clear maritime strategy backed by strong naval power. ! The core of PRC maritime security strategy...Law Enforcement Command. This direct and indirect approach hearkens back to the theories of Sunzi and Mao Tse-tung. ! China’s 2010 National Defense</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=223609&keyword=water+AND+gas+AND+exchange&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=223609&keyword=water+AND+gas+AND+exchange&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span><span class="hlt">Air</span>-water Gas <span class="hlt">Exchange</span> Rates on a Large Impounded River Measured Using Floating Domes (Poster)</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the <span class="hlt">exchange</span> of dissolved gases between <span class="hlt">air</span> and water. Controls on gas <span class="hlt">exchange</span> rates (K) have be...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1850k0012Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1850k0012Q"><span>Thermal modelling and control of 130kw direct contact (salt/<span class="hlt">air</span>) heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qureshi, Omer A.; Calvet, Nicolas; Armstrong, Peter R.</p> <p>2017-06-01</p> <p>This work investigates the transient response of a certain type of direct contact heat <span class="hlt">exchanger</span> (DCHX) that consists of packing (Raschig Rings) to increase the surface area for effective heat transfer between molten salt and <span class="hlt">air</span>. Molten salt from the hot tank enters the heat <span class="hlt">exchanger</span> (HX) and exit after heating the <span class="hlt">air</span> still in the molten form. Thermal capacitance of the HX, mainly due to packing and resident salt inside the HX, results in strong transient response. Pure delay from salt residence time may also impact transient response. Both phenomena have been modelled in this paper. A Proportional-Integral controller (PI control) performance has been evaluated to maintain the minimum salt temperature above avoid crystallization temperature of the salt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20080032364&hterms=export&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dexport','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20080032364&hterms=export&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dexport"><span>Summer <span class="hlt">Sea</span> Ice Motion from the 18 GHz Channel of AMSR-E and the <span class="hlt">Exchange</span> of <span class="hlt">Sea</span> Ice between the Pacific and Atlantic Sectors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kwok, Ronald</p> <p>2008-01-01</p> <p>We demonstrate that <span class="hlt">sea</span> ice motion in summer can be derived reliably from the 18GHz channel of the AMSR-E instrument on the EOS Aqua platform. The improved spatial resolution of this channel with its lower sensitivity to atmospheric moisture seems to have alleviated various issues that have plagued summer motion retrievals from shorter wavelength observations. Two spatial filters improve retrieval quality: one reduces some of the microwave signatures associated with synoptic-scale weather systems and the other removes outliers. Compared with daily buoy drifts, uncertainties in motion are approx.3-4 km/day. Using the daily motion fields, we examine five years of summer ice area <span class="hlt">exchange</span> between the Pacific and Atlantic sectors of the Arctic Ocean. With the <span class="hlt">sea</span>-level pressure patterns during the summer of 2006 and 2007 favoring the export of <span class="hlt">sea</span> ice into the Atlantic Sector, the regional outflow is approx.21% and approx.15% of the total <span class="hlt">sea</span> ice retreat in the Pacific sector.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1910878A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1910878A"><span>In situ observations of ocean productivity using the <span class="hlt">Sea</span>Cycler mooring in the central Labrador <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Atamanchuk, Dariia; Koelling, Jannes; Devred, Emmanuel; Siddall, Greg; Send, Uwe; Wallace, Douglas</p> <p>2017-04-01</p> <p>The Central Labrador <span class="hlt">Sea</span> is a major deep-convection region in the NW Atlantic which is the most intense sink for anthropogenic carbon in the global ocean (de Vries et al, 2013). CO2 enters the ocean by <span class="hlt">air-sea</span> <span class="hlt">exchange</span> and is transported into the ocean's interior mainly though the biological pump (Longhurst et al., 1989). Despite its important role for CO2 uptake and high natural variability, the Labrador <span class="hlt">Sea</span> is undersampled due to rough conditions and an overall lack of volunteer observing ship (VOS) transits. The <span class="hlt">Sea</span>Cycler moored profiler is currently providing year-round data from the central Labrador <span class="hlt">Sea</span> and resolves daily changes of inorganic carbon and related properties from the upper 150m of the water column. <span class="hlt">Sea</span>Cycler's sensor float is equipped with 13 physical, chemical and biooptical sensors which measure temperature, salinity, dissolved gases, nutrients and optical properties of seawater. A combination of Pro-CV (Pro-Oceanus Inc, Canada) and CO2 optode (Aanderaa, Norway) sensors in profiling mode provides a detailed description of Dissolved Inorganic Carbon (DIC) dynamics in the upper 150m over the productive season. This allows, for the first time, high-resolution carbon-based estimates of ocean productivity from throughout the euphotic zone over an annual cycle which can be compared to estimates derived from simultaneous oxygen and nitrate (Deep SUNA, Satlantic LP, Canada) profiles. These in situ carbon, nitrogen and oxygen-based estimates of using in-situ data are further compared with remotely-sensed estimates from MODIS satellite data. The <span class="hlt">Sea</span>Cycler data allow estimation of the annual cycle of the <span class="hlt">air-sea</span> CO2 flux and carbon export. Concurrently recorded in-situ bio-optical data allow direct comparison of optical measurements of biomass change and reveal key patterns in the seasonal succession of phytoplankton groups responsible for carbon drawdown.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014TCry....8.1469R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014TCry....8.1469R"><span>Temporal dynamics of ikaite in experimental <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Notz, D.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Sørensen, L. L.; Sievers, J.; Papakyriakou, T.</p> <p>2014-08-01</p> <p>Ikaite (CaCO3 · 6H2O) is a metastable phase of calcium carbonate that normally forms in a cold environment and/or under high pressure. Recently, ikaite crystals have been found in <span class="hlt">sea</span> ice, and it has been suggested that their precipitation may play an important role in <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> in ice-covered <span class="hlt">seas</span>. Little is known, however, of the spatial and temporal dynamics of ikaite in <span class="hlt">sea</span> ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in <span class="hlt">sea</span> ice grown at an outdoor pool of the <span class="hlt">Sea</span>-ice Environmental Research Facility (SERF) in Manitoba, Canada. During the experiment, ikaite precipitated in <span class="hlt">sea</span> ice when temperatures were below -4 °C, creating three distinct zones of ikaite concentrations: (1) a millimeter-to-centimeter-thin surface layer containing frost flowers and brine skim with bulk ikaite concentrations of >2000 μmol kg-1, (2) an internal layer with ikaite concentrations of 200-400 μmol kg-1, and (3) a bottom layer with ikaite concentrations of <100 μmol kg-1. Snowfall events caused the <span class="hlt">sea</span> ice to warm and ikaite crystals to dissolve. Manual removal of the snow cover allowed the <span class="hlt">sea</span> ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The observed ikaite concentrations were on the same order of magnitude as modeled by FREZCHEM, which further supports the notion that ikaite concentration in <span class="hlt">sea</span> ice increases with decreasing temperature. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in <span class="hlt">sea</span> ice. This could have a major implication for CO2 <span class="hlt">exchange</span> with the atmosphere and ocean that has not been accounted for previously.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JGRC..110.3010A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JGRC..110.3010A"><span>Iron in the Ross <span class="hlt">Sea</span>: 2. Impact of discrete iron addition strategies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arrigo, Kevin R.; Tagliabue, Alessandro</p> <p>2005-03-01</p> <p>Presented are results of a regional-scale numerical investigation into the effectiveness of Fe fertilization as a means to increase the efficiency of the biological pump in Fe-limited waters of the Ross <span class="hlt">Sea</span>, Antarctica. This investigation was conducted using a modified version of the Coupled Ice And Ocean (CIAO) ecosystem model of the Ross <span class="hlt">Sea</span> sector of the Southern Ocean. Four sets of experiments were performed, investigating the impacts of differences in (1) timing of fertilization, (2) duration of fertilization, (3) amount of Fe added, and (4) size of the fertilized patch. Results show that the stimulation of <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> (FCO2) depends primarily on the timing of fertilization, regardless of the amount of Fe added. When Fe was added at the optimal time of year, FCO2 from the atmosphere into the Ross <span class="hlt">Sea</span> was increased by 3-22%, depending on fertilization strategy. Increasing patch size produced the largest response, and increasing initial Fe concentration produced the smallest. In all cases, as the intensity of Fe fertilization increased, the fertilization efficiency (increase in CO2 uptake per unit added Fe) dropped. Strategies that maximized the fertilization efficiency resulted in relatively little additional CO2 being drawn out of the atmosphere. To markedly increase oceanic uptake of atmospheric CO2 would require the addition of large amounts of Fe due to the low fertilization efficiencies associated with maximum <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span>. Our results also show that differences in the fertilization strategy should be kept in mind when comparing the results of different Fe fertilization experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3497365','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3497365"><span>Seasonal Variations of Indoor Microbial Exposures and Their Relation to Temperature, Relative Humidity, and <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Bekö, Gabriel; Timm, Michael; Gustavsen, Sine; Hansen, Erik Wind</p> <p>2012-01-01</p> <p>Indoor microbial exposure has been related to adverse pulmonary health effects. Exposure assessment is not standardized, and various factors may affect the measured exposure. The aim of this study was to investigate the seasonal variation of selected microbial exposures and their associations with temperature, relative humidity, and <span class="hlt">air</span> <span class="hlt">exchange</span> rates in Danish homes. Airborne inhalable dust was sampled in five Danish homes throughout the four seasons of 1 year (indoors, n = 127; outdoors, n = 37). Measurements included culturable fungi and bacteria, endotoxin, N-acetyl-beta-d-glucosaminidase, total inflammatory potential, particles (0.75 to 15 μm), temperature, relative humidity, and <span class="hlt">air</span> <span class="hlt">exchange</span> rates. Significant seasonal variation was found for all indoor microbial exposures, excluding endotoxin. Indoor fungi peaked in summer (median, 235 CFU/m3) and were lowest in winter (median, 26 CFU/m3). Indoor bacteria peaked in spring (median, 2,165 CFU/m3) and were lowest in summer (median, 240 CFU/m3). Concentrations of fungi were predominately higher outdoors than indoors, whereas bacteria, endotoxin, and inhalable dust concentrations were highest indoors. Bacteria and endotoxin correlated with the mass of inhalable dust and number of particles. Temperature and <span class="hlt">air</span> <span class="hlt">exchange</span> rates were positively associated with fungi and N-acetyl-beta-d-glucosaminidase and negatively with bacteria and the total inflammatory potential. Although temperature, relative humidity, and <span class="hlt">air</span> <span class="hlt">exchange</span> rates were significantly associated with several indoor microbial exposures, they could not fully explain the observed seasonal variations when tested in a mixed statistical model. In conclusion, the season significantly affects indoor microbial exposures, which are influenced by temperature, relative humidity, and <span class="hlt">air</span> <span class="hlt">exchange</span> rates. PMID:23001651</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870014174','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870014174"><span>Development of an <span class="hlt">air</span> ground data <span class="hlt">exchange</span> concept: Flight deck perspective</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Flathers, G. W., II</p> <p>1987-01-01</p> <p>The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to <span class="hlt">exchange</span> information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to <span class="hlt">air</span> traffic control. The specific goal is to establish the role that data link could play in the <span class="hlt">air</span>-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of <span class="hlt">air</span> traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other <span class="hlt">air</span> and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N"><span>Snow depth evolution on <span class="hlt">sea</span> ice from Snow Buoy measurement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.</p> <p>2016-12-01</p> <p>Snow cover is an Essential Climate Variable. On <span class="hlt">sea</span> ice, snow dominates the energy and momentum <span class="hlt">exchanges</span> across the atmosphere-ice-ocean interfaces, and actively contributes to <span class="hlt">sea</span> ice mass balance. Yet, snow depth on <span class="hlt">sea</span> ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and <span class="hlt">air</span> temperature evolution on Arctic and Antarctic <span class="hlt">sea</span> ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and <span class="hlt">air</span> temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast <span class="hlt">sea</span> ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell <span class="hlt">Sea</span>. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell <span class="hlt">Sea</span>, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic <span class="hlt">sea</span> ice in September 2015. Their <span class="hlt">air</span> temperature record revealed exceptionally high <span class="hlt">air</span> temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic <span class="hlt">sea</span> ice will allow additional inter-annual studies of snow depth and snow processes, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59576&keyword=film+AND+analysis&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=59576&keyword=film+AND+analysis&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>THE ROLE OF AQUEOUS THIN FILM EVAPORATIVE COOLING ON RATES OF ELEMENTAL MERCURY <span class="hlt">AIR</span>-WATER <span class="hlt">EXCHANGE</span> UNDER TEMPERATURE DISEQUILIBRIUM CONDITIONS</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The technical conununity has only recently addressed the role of atmospheric temperature variations on rates of <span class="hlt">air</span>-water vapor phase toxicant <span class="hlt">exchange</span>. The technical literature has documented that: 1) day time rates of elemental mercury vapor phase <span class="hlt">air</span>-water <span class="hlt">exchange</span> can exceed ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS34B..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS34B..01S"><span>Tropical Cyclone Induced <span class="hlt">Air-Sea</span> Interactions Over Oceanic Fronts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shay, L. K.</p> <p>2012-12-01</p> <p>Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the <span class="hlt">air-sea</span> fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean <span class="hlt">Sea</span>, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate <span class="hlt">air-sea</span> and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1443Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1443Y"><span>Diagnosing CO2 fluxes and seasonality in the Arabian <span class="hlt">Sea</span> as an Ocean-Dominated Margin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, W.; Dai, M.</p> <p>2017-12-01</p> <p>The Arabian <span class="hlt">Sea</span> is a large marginal <span class="hlt">sea</span> of the Indian Ocean characterized by highly predictable annual circulation cycle driven by Asian monsoon. The Arabian <span class="hlt">Sea</span> is generally sources to atmospheric CO2. In this study, we applied the physical-biogeochemical coupled approach previously adopted for diagnosis of CO2 fluxes in Ocean-dominated margin (OceMar) to assesses the CO2 fluxes and their seasonality in Arabian <span class="hlt">Sea</span> using data collected during five US JGOFS Arabian <span class="hlt">Sea</span> Process Study cruises (ttn-043, ttn-045, ttn-049, ttn-053, ttn-054) conducted from September 1994 to December 1995. The pCO2 estimated during the 5 cruises was 396±5μatm, 359±7 μatm, 373±7 μatm, 379±9 μatm and 387±12 μatm, respectively, which agreed well with the pCO2 observed during the cruises of 389±8 μatm, 361±6 μatm, 366±6 μatm, 371±8 μatm and 367±11 μatm from underway measurements. This strongly suggests that our semi-analytical diagnostic approach in the OceMar framework can evaluate the pCO2 in Arabian <span class="hlt">Sea</span>. Our coupled diagnostic approach assumes that water mass mixing, biological response and <span class="hlt">air-sea</span> <span class="hlt">exchange</span> under steady state over a similar time scale. This assumption should be justified at the region with intensified upwelling where decoupling between upwelling and biological response may occur, where only water mass mixing and <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> should be accounted for. This presentation will also examine the seasonality of the CO2 dynamics and its controls.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..259T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..259T"><span>Laboratory modeling of <span class="hlt">air-sea</span> interaction under severe wind conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin</p> <p>2010-05-01</p> <p>Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the <span class="hlt">sea</span> surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the <span class="hlt">sea</span> surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum <span class="hlt">exchange</span> coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the <span class="hlt">sea</span> surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the <span class="hlt">sea</span> surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the <span class="hlt">sea</span> surface drag reduction is explained by peculiarities of the <span class="hlt">air</span> flow over breaking waves. Another approach more appropriate for the conditions of developed <span class="hlt">sea</span> exploits the effect of <span class="hlt">sea</span> drops and sprays on the wind-wave momentum <span class="hlt">exchange</span> (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum <span class="hlt">exchange</span> under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....913817H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....913817H"><span>Kinetic bottlenecks to chemical <span class="hlt">exchange</span> rates for deep-<span class="hlt">sea</span> animals - Part 1: Oxygen</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.</p> <p>2012-10-01</p> <p>Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular <span class="hlt">exchange</span> problem analogous to familiar gas <span class="hlt">exchange</span> processes at the <span class="hlt">sea</span> surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-<span class="hlt">sea</span> to warm, coastal <span class="hlt">seas</span> can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzAOP..54...10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzAOP..54...10S"><span>Characteristics of Winter Surface <span class="hlt">Air</span> Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced <span class="hlt">Sea</span> Ice Area in the Barents <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shukurov, K. A.; Semenov, V. A.</p> <p>2018-01-01</p> <p>On the basis of observational data on daily mean surface <span class="hlt">air</span> temperature (SAT) and <span class="hlt">sea</span> ice concentration (SIC) in the Barents <span class="hlt">Sea</span> (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of <span class="hlt">air</span>-particle motions has revealed the most probable paths of both cold and warm <span class="hlt">air</span> invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm <span class="hlt">air</span> invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335106','PESTICIDES'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?direntryid=335106"><span>Investigation of ammonia <span class="hlt">air</span>-surface <span class="hlt">exchange</span> processes in a ...</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Recent assessments of atmospheric deposition in North America note the increasing importance of reduced (NHx = NH3 + NH4+) forms of nitrogen (N) relative to oxidized forms. This shift in in the composition of inorganic nitrogen deposition has both ecological and policy implications. Deposition budgets developed from inferential models applied at the landscape scale, as well as regional and global chemical transport models, indicate that NH3 dry deposition contributes a significant portion of inorganic N deposition in many areas. However, the bidirectional NH3 flux algorithms employed in these models have not been extensively evaluated for North American conditions (e.g, atmospheric chemistry, meteorology, biogeochemistry). Further understanding of the processes controlling NH3 <span class="hlt">air</span>-surface <span class="hlt">exchange</span> in natural systems is critically needed. Based on preliminary results from the Southern Appalachian Nitrogen Deposition Study (SANDS), this presentation examines processes of NH3 <span class="hlt">air</span>-surface <span class="hlt">exchange</span> in a deciduous montane forest at the Coweeta Hydrologic Laboratory in western North Carolina. A combination of measurements and modeling are used to investigate net fluxes of NH3 above the forest and sources and sinks of NH3 within the canopy and forest floor. Measurements of biogeochemical NH4+ pools are used to characterize emission potential and NH3 compensation points of canopy foliage (i.e., green vegetation), leaf litter, and soil and their relation to NH3 fluxes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1003S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1003S"><span>Cascading ocean basins: numerical simulations of the circulation and interbasin <span class="hlt">exchange</span> in the Azov-Black-Marmara-Mediterranean <span class="hlt">Seas</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stanev, Emil Vassilev; Grashorn, Sebastian; Zhang, Yinglong Joseph</p> <p>2017-08-01</p> <p>In this paper, we use the unstructured grid model SCHISM to simulate the thermohydrodynamics in a chain of baroclinic, interconnected basins. The model shows a good skill in simulating the horizontal circulation and vertical profiles of temperature, salinity, and currents. The magnitude and phases of the seasonal changes of circulation are consistent with earlier observations. Among the mesoscale and subbasin-scale circulation features that are realistically simulated are the anticyclonic coastal eddies, the Sebastopol and Batumi eddies, the Marmara <span class="hlt">Sea</span> outflow around the southern coast of the Limnos Island, and the pathway of the cold water originating from the shelf. The superiority of the simulations compared to earlier numerical studies is demonstrated with the example of model capabilities to resolve the strait dynamics, gravity currents originating from the straits, high-salinity bottom layer on the shallow shelf, as well as the multiple intrusions from the Bosporus Strait down to 700 m depth. The warm temperature intrusions from the strait produce the warm water mass in the intermediate layers of the Black <span class="hlt">Sea</span>. One novel result is that the seasonal intensification of circulation affects the interbasin <span class="hlt">exchange</span>, thus allowing us to formulate the concept of circulation-controlled interbasin <span class="hlt">exchange</span>. To the best of our knowledge, the present numerical simulations, for the first time, suggest that the <span class="hlt">sea</span> level in the interior part of the Black <span class="hlt">Sea</span> can be lower than the <span class="hlt">sea</span> level in the Marmara <span class="hlt">Sea</span> and even in some parts of the Aegean <span class="hlt">Sea</span>. The comparison with observations shows that the timings and magnitude of <span class="hlt">exchange</span> flows are also realistically simulated, along with the blocking events. The short-term variability of the strait transports is largely controlled by the anomalies of wind. The simulations demonstrate the crucial role of the narrow and shallow strait of Bosporus in separating the two pairs of basins: Aegean-Marmara <span class="hlt">Seas</span> from one side and Azov</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BGeo....8..505M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BGeo....8..505M"><span>Changes in ocean circulation and carbon storage are decoupled from <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marinov, I.; Gnanadesikan, A.</p> <p>2011-02-01</p> <p>The spatial distribution of the <span class="hlt">air-sea</span> flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven <span class="hlt">air-sea</span> fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.7985M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.7985M"><span>Changes in ocean circulation and carbon storage are decoupled from <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marinov, I.; Gnanadesikan, A.</p> <p>2010-11-01</p> <p>The spatial distribution of the <span class="hlt">air-sea</span> flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven <span class="hlt">air-sea</span> fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2954549','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2954549"><span>Modified Perfluorocarbon Tracer Method for Measuring Effective Multizone <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rates</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi</p> <p>2010-01-01</p> <p>A modified procedure was developed for the measurement of the effective <span class="hlt">air</span> <span class="hlt">exchange</span> rate, which represents the relationship between the pollutants emitted from indoor sources and the residents’ level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective <span class="hlt">air</span> <span class="hlt">exchange</span> rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS2) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min−1; and 0.20, 0.17, and 0.26 μg m−3, respectively. PMID:20948928</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20948928','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20948928"><span>Modified perfluorocarbon tracer method for measuring effective multizone <span class="hlt">air</span> <span class="hlt">exchange</span> rates.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shinohara, Naohide; Kataoka, Toshiyuki; Takamine, Koichi; Butsugan, Michio; Nishijima, Hirokazu; Gamo, Masashi</p> <p>2010-09-01</p> <p>A modified procedure was developed for the measurement of the effective <span class="hlt">air</span> <span class="hlt">exchange</span> rate, which represents the relationship between the pollutants emitted from indoor sources and the residents' level of exposure, by placing the dosers of tracer gas at locations that resemble indoor emission sources. To measure the 24-h-average effective <span class="hlt">air</span> <span class="hlt">exchange</span> rates in future surveys based on this procedure, a low-cost, easy-to-use perfluorocarbon tracer (PFT) doser with a stable dosing rate was developed by using double glass vials, a needle, a polyethylene-sintered filter, and a diffusion tube. Carbon molecular sieve cartridges and carbon disulfide (CS₂) were used for passive sampling and extraction of the tracer gas, respectively. Recovery efficiencies, sampling rates, and lower detection limits for 24-h sampling of hexafluorobenzene, octafluorotoluene, and perfluoroallylbenzene were 40% ± 3%, 72% ± 5%, and 84% ± 6%; 10.5 ± 1.1, 14.4 ± 1.4, and 12.2 ± 0.49 mL min⁻¹; and 0.20, 0.17, and 0.26 μg m⁻³, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7216O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7216O"><span><span class="hlt">Sea-to-air</span> flux of dimethyl sulfide in the South and North Pacific Ocean as measured by proton transfer reaction-mass spectrometry coupled with the gradient flux technique</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Omori, Yuko; Tanimoto, Hiroshi; Inomata, Satoshi; Ikeda, Kohei; Iwata, Toru; Kameyama, Sohiko; Uematsu, Mitsuo; Gamo, Toshitaka; Ogawa, Hiroshi; Furuya, Ken</p> <p>2017-07-01</p> <p><span class="hlt">Exchange</span> of dimethyl sulfide (DMS) between the surface ocean and the lower atmosphere was examined by using proton transfer reaction-mass spectrometry coupled with the gradient flux (PTR-MS/GF) system. We deployed the PTR-MS/GF system and observed vertical gradients of atmospheric DMS just above the <span class="hlt">sea</span> surface in the subtropical and transitional South Pacific Ocean and the subarctic North Pacific Ocean. In total, we obtained 370 in situ profiles, and of these we used 46 data sets to calculate the <span class="hlt">sea-to-air</span> flux of DMS. The DMS flux determined was in the range from 1.9 to 31 μmol m-2 d-1 and increased with wind speed and biological activity, in reasonable accordance with previous observations in the open ocean. The gas transfer velocity of DMS derived from the PTR-MS/GF measurements was similar to either that of DMS determined by the eddy covariance technique or that of insoluble gases derived from the dual tracer experiments, depending on the observation sites located in different geographic regions. When atmospheric conditions were strongly stable during the daytime in the subtropical ocean, the PTR-MS/GF observations captured a daytime versus nighttime difference in DMS mixing ratios in the surface <span class="hlt">air</span> overlying the ocean surface. The difference was mainly due to the <span class="hlt">sea-to-air</span> DMS emissions and stable atmospheric conditions, thus affecting the gradient of DMS. This indicates that the DMS gradient is strongly controlled by diurnal variations in the vertical structure of the lower atmosphere above the ocean surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090028806','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090028806"><span>Small Autonomous <span class="hlt">Air/Sea</span> System Concepts for Coast Guard Missions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Larry A.</p> <p>2005-01-01</p> <p>A number of small autonomous <span class="hlt">air/sea</span> system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28526196','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28526196"><span>Use of a numerical simulation approach to improve the estimation of <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes of polycyclic aromatic hydrocarbons in a coastal zone.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lai, I-Chien; Lee, Chon-Lin; Ko, Fung-Chi; Lin, Ju-Chieh; Huang, Hu-Ching; Shiu, Ruei-Feng</p> <p>2017-07-15</p> <p>The <span class="hlt">air</span>-water <span class="hlt">exchange</span> is important for determining the transport, fate, and chemical loading of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in aquatic systems. Investigations of PAH <span class="hlt">air</span>-water <span class="hlt">exchange</span> are mostly based on observational data obtained using complicated field sampling processes. This study proposes a new approach to improve the estimation of long-term PAH <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes by using a multivariate regression model to simulate hourly gaseous PAH concentrations. Model performance analysis and the benefits from this approach indicate its effectiveness at improving the flux estimations and at decreasing the field sampling difficulty. The proposed GIS mapping approach is useful for box model establishment and is tested for visualization of the spatiotemporal variations of <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes in a coastal zone. The <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes illustrated by contour maps suggest that the atmospheric PAHs might have greater impacts on offshore sites than on the coastal area in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12578005','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12578005"><span>Effects of <span class="hlt">air</span> current speed on gas <span class="hlt">exchange</span> in plant leaves and plant canopies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kitaya, Y; Tsuruyama, J; Shibuya, T; Yoshida, M; Kiyota, M</p> <p>2003-01-01</p> <p>To obtain basic data on adequate <span class="hlt">air</span> circulation to enhance plant growth in a closed plant culture system in a controlled ecological life support system (CELSS), an investigation was made of the effects of the <span class="hlt">air</span> current speed ranging from 0.01 to 1.0 m s-1 on photosynthesis and transpiration in sweetpotato leaves and photosynthesis in tomato seedlings canopies. The gas <span class="hlt">exchange</span> rates in leaves and canopies were determined by using a chamber method with an infrared gas analyzer. The net photosynthetic rate and the transpiration rate increased significantly as the <span class="hlt">air</span> current speeds increased from 0.01 to 0.2 m s-1. The transpiration rate increased gradually at <span class="hlt">air</span> current speeds ranging from 0.2 to 1.0 m s-1 while the net photosynthetic rate was almost constant at <span class="hlt">air</span> current speeds ranging from 0.5 to 1.0 m s-1. The increase in the net photosynthetic and transpiration rates were strongly dependent on decreased boundary-layer resistances against gas diffusion. The net photosynthetic rate of the plant canopy was doubled by an increased <span class="hlt">air</span> current speed from 0.1 to 1.0 m s-1 above the plant canopy. The results demonstrate the importance of <span class="hlt">air</span> movement around plants for enhancing the gas <span class="hlt">exchange</span> in the leaf, especially in plant canopies in the CELSS. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/203613-gaseous-exchange-polycyclic-aromatic-hydrocarbons-across-air-water-interface-lower-chesapeake-bay','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/203613-gaseous-exchange-polycyclic-aromatic-hydrocarbons-across-air-water-interface-lower-chesapeake-bay"><span>Gaseous <span class="hlt">exchange</span> of polycyclic aromatic hydrocarbons across the <span class="hlt">air</span>-water interface of lower Chesapeake Bay</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gustafson, K.E.; Dickhut, R.M.</p> <p>1995-12-31</p> <p>The gaseous <span class="hlt">exchange</span> fluxes of polycyclic aromatic hydrocarbons (PAHs) across the <span class="hlt">air</span>-water interface of lower Chesapeake Bay were determined using a modified two-film <span class="hlt">exchange</span> model. Sampling covered the period January 1994 to June 1995 for five sites on lower Chesapeake Bay ranging from rural to urban and highly industrialized. Simultaneous <span class="hlt">air</span> and water samples were collected and the atmospheric gas phase and water column dissolved phase analyzed via GC/MS for 17 PAHs. The direction and magnitude of flux for each PAH was calculated using Henry`s law constants, hydrological and meteorological parameters, Temperature was observed to be an important environmental factormore » in determining both the direction and magnitude of PAH gas <span class="hlt">exchange</span>. Nonetheless, wind speed significantly impacts mass transfer coefficients, and therefore was found to control the magnitude of flux. Spatial and temporal variation of PAH gaseous <span class="hlt">exchange</span> fluxes were examined. Fluxes were determined to be both into and out of Chesapeake Bay. The range of gas <span class="hlt">exchange</span> fluxes ({minus}560 to 600{micro}g/M{sup 2}*Mo) is of the same order to 10X greater than atmospheric wet and dry depositional fluxes to lower Chesapeake Bay. The results of this study support the hypothesis that gas <span class="hlt">exchange</span> is a major transport process affecting the net loadings of PAHs in lower Chesapeake Bay.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00435&hterms=french+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfrench%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00435&hterms=french+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfrench%2Bsystem"><span>Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (<span class="hlt">AIRS</span>) and <span class="hlt">Sea</span>Winds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p><p/> This image shows Hurricane Frances as captured by instruments onboard two different satellites: the <span class="hlt">AIRS</span> infrared instrument onboard Aqua, and the <span class="hlt">Sea</span>Winds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. <span class="hlt">AIRS</span> data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. <p/> The red vectors in the image show Frances' surface winds as measured by <span class="hlt">Sea</span>Winds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by <span class="hlt">AIRS</span>, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. <p/> The power of the <span class="hlt">Sea</span>Winds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked. <p/> While the <span class="hlt">Sea</span>Winds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=315915&Lab=NERL&keyword=dependency&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=315915&Lab=NERL&keyword=dependency&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Updating <span class="hlt">sea</span> spray aerosol emissions in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><span class="hlt">Sea</span> spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..11.6008T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..11.6008T"><span>Influences of Ocean Thermohaline Stratification on Arctic <span class="hlt">Sea</span> Ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toole, J. M.; Timmermans, M.-L.; Perovich, D. K.; Krishfield, R. A.; Proshutinsky, A.; Richter-Menge, J. A.</p> <p>2009-04-01</p> <p>The Arctic Ocean's surface mixed layer constitutes the dynamical and thermodynamical link between the <span class="hlt">sea</span> ice and the underlying waters. Wind stress, acting directly on the surface mixed layer or via wind-forced ice motion, produce surface currents that can in turn drive deep ocean flow. Mixed layer temperature is intimately related to basal <span class="hlt">sea</span> ice growth and melting. Heat fluxes into or out of the surface mixed layer can occur at both its upper and lower interfaces: the former via <span class="hlt">air-sea</span> <span class="hlt">exchange</span> at leads and conduction through the ice, the latter via turbulent mixing and entrainment at the layer base. Variations in Arctic Ocean mixed layer properties are documented based on more than 16,000 temperature and salinity profiles acquired by Ice-Tethered Profilers since summer 2004 and analyzed in conjunction with <span class="hlt">sea</span> ice observations from Ice Mass Balance Buoys and atmospheric heat flux estimates. Guidance interpreting the observations is provided by a one-dimensional ocean mixed layer model. The study focuses attention on the very strong density stratification about the mixed layer base in the Arctic that, in regions of <span class="hlt">sea</span> ice melting, is increasing with time. The intense stratification greatly impedes mixed layer deepening by vertical convection and shear mixing, and thus limits the flux of deep ocean heat to the surface that could influence <span class="hlt">sea</span> ice growth/decay. Consistent with previous work, this study demonstrates that the Arctic <span class="hlt">sea</span> ice is most sensitive to changes in ocean mixed layer heat resulting from fluxes across its upper (<span class="hlt">air-sea</span> and/or ice-water) interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713324C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713324C"><span>Spatial sensitivity of inorganic carbon to model setup: North <span class="hlt">Sea</span> and Baltic <span class="hlt">Sea</span> with ECOSMO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castano Primo, Rocio; Schrum, Corinna; Daewel, Ute</p> <p>2015-04-01</p> <p>In ocean biogeochemical models it is critical to capture the key processes adequately so they do not only reproduce the observations but that those processes are reproduced correctly. One key issue is the choice of parameters, which in most cases are estimates with large uncertainties. This can be the product of actual lack of detailed knowledge of the process, or the manner the processes are implemented, more or less complex. In addition, the model sensitivity is not necessarily homogenous across the spatial domain modelled, which adds another layer of complexity to biogeochemical modelling. In the particular case of the inorganic carbon cycle, there are several sets of carbonate constants that can be chosen. The calculated <span class="hlt">air-sea</span> CO2 flux is largely dependent on the parametrization chosen. In addition, the different parametrizations all the underlying processes that in some way impact the carbon cycle beyond the carbonate dissociation and fluxes give results that can be significantly different. Examples of these processes are phytoplankton growth rates or remineralization rates. Despite their geographical proximity, the North and Baltic <span class="hlt">Seas</span> exhibit very different dynamics. The North <span class="hlt">Sea</span> receives important inflows of Atlantic waters, while the Baltic <span class="hlt">Sea</span> is an almost enclosed system, with very little <span class="hlt">exchange</span> from the North <span class="hlt">Sea</span>. Wind, tides, and freshwater supply act very differently, but dominantly structure the ecosystem dynamics on spatial and temporal scales. The biological community is also different. Cyanobacteria, which are important due to their ability to fix atmospheric nitrogen, and they are only present in the Baltic <span class="hlt">Sea</span>. These differentiating features have a strong impact in the biogeochemical cycles and ultimately shape the variations in the carbonate chemistry. Here the ECOSMO model was employed on the North <span class="hlt">Sea</span> and Baltic <span class="hlt">Sea</span>. The model is set so both are modelled at the same time, instead of having them run separately. ECOSMO is a 3-D coupled</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.655a2035D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.655a2035D"><span>Modelling heat and mass transfer in a membrane-based <span class="hlt">air-to-air</span> enthalpy <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dugaria, S.; Moro, L.; Del, D., Col</p> <p>2015-11-01</p> <p>The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building <span class="hlt">air</span>-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming <span class="hlt">air</span> stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust <span class="hlt">air</span> stream. Membrane based enthalpy <span class="hlt">exchangers</span> are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to <span class="hlt">air</span> and other contaminants present in exhaust <span class="hlt">air</span>. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1130373','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1130373"><span>GSOD Based Daily Global Mean Surface Temperature and Mean <span class="hlt">Sea</span> Level <span class="hlt">Air</span> Pressure (1982-2011)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Xuan Shi, Dali Wang</p> <p>2014-05-05</p> <p>This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean <span class="hlt">sea</span> level <span class="hlt">air</span> pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (<span class="hlt">sea</span> level and station level). The data package also contains information related to the data processing methods</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578419','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578419"><span>Predicting the Turbulent <span class="hlt">Air-Sea</span> Surface Fluxes, Including Spray Effects, from Weak to Strong Winds</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>almost complete decoupling of the wind field from the <span class="hlt">sea</span> surface . As a result of the weak surface stress, the flow becomes almost free from the...shore flow . In turn, wave growth and the associated surface roughness (z0) are limited. Consequently, the stability increases further in a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Turbulent <span class="hlt">Air-Sea</span> Surface Fluxes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B393704A5-B912-4686-BE1B-A9F8EFF2F565%7D','PESTICIDES'); return false;" href="https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B393704A5-B912-4686-BE1B-A9F8EFF2F565%7D"><span>Updating <span class="hlt">sea</span> spray aerosol emissions in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model version 5.0.2</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of <span class="hlt">sea</span> salt aerosol emission size distribution, and the model's parameterization of the <span class="hlt">sea</span> salt emission factor as a function of <span class="hlt">sea</span> surface temperature. This dataset is associated with the following publication:Gantt , B., J. Kelly , and J. Bash. Updating <span class="hlt">sea</span> spray aerosol emissions in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model version 5.0.2. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 8: 3733-3746, (2015).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910063773&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910063773&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231087"><span>Antarctic <span class="hlt">Sea</span> ice variations and seasonal <span class="hlt">air</span> temperature relationships</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weatherly, John W.; Walsh, John E.; Zwally, H. J.</p> <p>1991-01-01</p> <p>Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and <span class="hlt">sea</span> ice. Lead-lag relationships involving regional <span class="hlt">sea</span> ice and <span class="hlt">air</span> temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcSci..11..519G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcSci..11..519G"><span>The OceanFlux Greenhouse Gases methodology for deriving a <span class="hlt">sea</span> surface climatology of CO2 fugacity in support of <span class="hlt">air-sea</span> gas flux studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.</p> <p>2015-07-01</p> <p>Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway <span class="hlt">sea</span> surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous <span class="hlt">sea</span> surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating <span class="hlt">air-sea</span> CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the <span class="hlt">air-sea</span> CO2 flux, and hence the presented fCO2 distributions can be used in <span class="hlt">air-sea</span> gas flux calculations together with climatologies of other climate variables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcSci..10..587S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcSci..10..587S"><span>An automated gas <span class="hlt">exchange</span> tank for determining gas transfer velocities in natural seawater samples</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.</p> <p>2014-07-01</p> <p>In order to advance understanding of the role of seawater surfactants in the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with Milli-Q water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> process.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcScD..11..693S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcScD..11..693S"><span>An automated gas <span class="hlt">exchange</span> tank for determining gas transfer velocities in natural seawater samples</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider-Zapp, K.; Salter, M. E.; Upstill-Goddard, R. C.</p> <p>2014-02-01</p> <p>In order to advance understanding of the role of seawater surfactants in the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of climatically active trace gases via suppression of the gas transfer velocity (kw), we constructed a fully automated, closed <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> tank and coupled analytical system. The system allows water-side turbulence in the tank to be precisely controlled with an electronically operated baffle. Two coupled gas chromatographs and an integral equilibrator, connected to the tank in a continuous gas-tight system, allow temporal changes in the partial pressures of SF6, CH4 and N2O to be measured simultaneously in the tank water and headspace at multiple turbulence settings, during a typical experimental run of 3.25 h. PC software developed by the authors controls all operations and data acquisition, enabling the optimisation of experimental conditions with high reproducibility. The use of three gases allows three independent estimates of kw for each turbulence setting; these values are subsequently normalised to a constant Schmidt number for direct comparison. The normalised kw estimates show close agreement. Repeated experiments with MilliQ water demonstrate a typical measurement accuracy of 4% for kw. Experiments with natural seawater show that the system clearly resolves the effects on kw of spatial and temporal trends in natural surfactant activity. The system is an effective tool with which to probe the relationships between kw, surfactant activity and biogeochemical indices of primary productivity, and should assist in providing valuable new insights into the <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> process.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22145748','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22145748"><span>Selective permeation of moisture and VOCs through polymer membranes used in total heat <span class="hlt">exchangers</span> for indoor <span class="hlt">air</span> ventilation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, L-Z; Zhang, X-R; Miao, Q-Z; Pei, L-X</p> <p>2012-08-01</p> <p>Fresh <span class="hlt">air</span> ventilation is central to indoor environmental control. Total heat <span class="hlt">exchangers</span> can be key equipment for energy conservation in ventilation. Membranes have been used for total heat <span class="hlt">exchangers</span> for more than a decade. Much effort has been spent to achieve water vapor permeability of various membranes; however, relatively little attention has been paid to the selectivity of moisture compared with volatile organic compounds (VOCs) through such membranes. In this investigation, the most commonly used membranes, both hydrophilic and hydrophobic ones, are tested for their permeability for moisture and five VOCs (acetic acid, formaldehyde, acetaldehyde, toluene, and ethane). The selectivity of moisture vs. VOCs in these membranes is then evaluated. With a solution-diffusion model, the solubility and diffusivity of moisture and VOCs in these membranes are calculated. The resulting data could provide some reference for future material selection. Total heat <span class="hlt">exchangers</span> are important equipment for fresh <span class="hlt">air</span> ventilation with energy conservation. However, their implications for indoor <span class="hlt">air</span> quality in terms of volatile organic compound permeation have not been known. The data in this article help us to clarify the impacts on indoor VOC levels of membrane-based heat <span class="hlt">exchangers</span>. Guidelines for material selection can be obtained for future use total heat <span class="hlt">exchangers</span> for building ventilation. © 2011 John Wiley & Sons A/S.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5573L"><span>Temporal variatiions of <span class="hlt">Sea</span> ice cover in the Baltic <span class="hlt">Sea</span> derived from operational <span class="hlt">sea</span> ice products used in NWP.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lange, Martin; Paul, Gerhard; Potthast, Roland</p> <p>2014-05-01</p> <p><span class="hlt">Sea</span> ice cover is a crucial parameter for surface fluxes of heat and moisture over water areas. The isolating effect and the much higher albedo strongly reduces the turbulent <span class="hlt">exchange</span> of heat and moisture from the surface to the atmosphere and allows for cold and dry <span class="hlt">air</span> mass flow with strong impact on the stability of the whole boundary layer and consequently cloud formation as well as precipitation in the downstream regions. Numerical weather centers as, ECMWF, MetoFrance or DWD use external products to initialize SST and <span class="hlt">sea</span> ice cover in their NWP models. To the knowledge of the author there are mainly two global <span class="hlt">sea</span> ice products well established with operational availability, one from NOAA NCEP that combines measurements with satellite data, and the other from OSI-SAF derived from SSMI/S sensors. The latter one is used in the Ostia product. DWD additionally uses a regional product for the Baltic <span class="hlt">Sea</span> provided by the national center for shipping and hydrografie which combines observations from ships (and icebreakers) for the German part of the Baltic <span class="hlt">Sea</span> and model analysis from the hydrodynamic HIROMB model of the Swedish meteorological service for the rest of the domain. The temporal evolution of the three different products are compared for a cold period in Februar 2012. Goods and bads will be presented and suggestions for a harmonization of strong day to day jumps over large areas are suggested.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002CSR....22..779D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002CSR....22..779D"><span><span class="hlt">Sea</span> level oscillations in coastal waters of the Buenos <span class="hlt">Aires</span> province, Argentina</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dragani, W. C.; Mazio, C. A.; Nuñez, M. N.</p> <p>2002-03-01</p> <p><span class="hlt">Sea</span> level oscillations, with periods ranging from a few minutes to almost 2 h, have been observed at various tide stations located on the coast of Buenos <span class="hlt">Aires</span>. Simultaneous records of <span class="hlt">sea</span> level elevation measured in Mar de Ajó, Pinamar and Mar del Plata during 1982 have been spectrally analyzed. Significant spectral energy has been detected between 0.85 and 4.69 cycles per hour (cph) and the most energetic peaks have frequencies between 1.17 and 1.49 cph. Spectra, coherence, and phase difference have been analyzed for the most energetic event of the year. During that event, the most intensive spectral peak is at 1.17 cph for Mar de Ajó and Pinamar, and at 1.49 cph for Mar del Plata. Simultaneous total energy peaks at Mar de Ajó, Pinamar and Mar del Plata, and the coherence function estimated between Mar de Ajó and Pinamar suggests that <span class="hlt">sea</span> level oscillations could be a regional phenomenon. The analyzed data suggest that <span class="hlt">sea</span> level oscillations could be forced by atmospheric gravity waves associated with frontal passages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010OcMod..31...28J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010OcMod..31...28J"><span>Tuning a physically-based model of the <span class="hlt">air-sea</span> gas transfer velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeffery, C. D.; Robinson, I. S.; Woolf, D. K.</p> <p></p> <p><span class="hlt">Air-sea</span> gas transfer velocities are estimated for one year using a 1-D upper-ocean model (GOTM) and a modified version of the NOAA-COARE transfer velocity parameterization. Tuning parameters are evaluated with the aim of bringing the physically based NOAA-COARE parameterization in line with current estimates, based on simple wind-speed dependent models derived from bomb-radiocarbon inventories and deliberate tracer release experiments. We suggest that A = 1.3 and B = 1.0, for the sub-layer scaling parameter and the bubble mediated <span class="hlt">exchange</span>, respectively, are consistent with the global average CO 2 transfer velocity k. Using these parameters and a simple 2nd order polynomial approximation, with respect to wind speed, we estimate a global annual average k for CO 2 of 16.4 ± 5.6 cm h -1 when using global mean winds of 6.89 m s -1 from the NCEP/NCAR Reanalysis 1 1954-2000. The tuned model can be used to predict the transfer velocity of any gas, with appropriate treatment of the dependence on molecular properties including the strong solubility dependence of bubble-mediated transfer. For example, an initial estimate of the global average transfer velocity of DMS (a relatively soluble gas) is only 11.9 cm h -1 whilst for less soluble methane the estimate is 18.0 cm h -1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025337"><span><span class="hlt">Air-sea</span> interaction with SSM/I and altimeter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1985-01-01</p> <p>A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy <span class="hlt">exchange</span> between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total <span class="hlt">air</span> column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26642083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26642083"><span>Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and <span class="hlt">Air</span>-Water <span class="hlt">Exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer</p> <p>2016-05-17</p> <p>Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the <span class="hlt">air</span> and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and <span class="hlt">air</span>-water <span class="hlt">exchange</span> across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. <span class="hlt">Air</span>-water <span class="hlt">exchange</span> fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in <span class="hlt">air</span>-water <span class="hlt">exchange</span> of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes dominated atmospheric concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27974151','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27974151"><span>Using a passive <span class="hlt">air</span> sampler to monitor <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of organochlorine pesticides in the pasture of the central Tibetan Plateau.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chuanfei; Wang, Xiaoping; Ren, Jiao; Gong, Ping; Yao, Tandong</p> <p>2017-02-15</p> <p><span class="hlt">Air</span>-soil <span class="hlt">exchange</span> is a key process controlling the fate of persistent organic pollutants (POPs). However, the "sink effect" of soil for POPs in Tibetan pasture has not been clear. In NamCo, in the central Tibetan Plateau (TP) where the land is covered by grass, a modified passive <span class="hlt">air</span> sampler (PAS) (thickness: 2cm) was tested. Using the PAS, the atmospheric gaseous phase organochlorine pesticides (OCPs) at 11 heights from close-to-surface (2cm) to 200cm above ground, in summer and in winter, were measured. Concentrations of OCPs in summer were higher than those in winter. Both in summer and winter, atmospheric concentrations of OCPs decreased with decreasing height from 200 to 2cm, indicating that OCPs were being deposited from <span class="hlt">air</span> to soil. <span class="hlt">Air</span> deposition of OCPs was possibly driven by wind speed. Furthermore, based on <span class="hlt">air</span> OCPs at 0-3cm near the surface, the interface <span class="hlt">exchange</span> of OCPs between <span class="hlt">air</span> and soil was studied by the fugacity method. The results showed that pastural soil in the TP was a "sink" of OCPs even in summer. The mean deposition fluxes of α-HCH, γ-HCH and o,p'-DDT were 0.72, 0.24 and 0.54pg/h/m 2 , respectively, and it was estimated that the level of these pollutants in the soil will double every 24, 66 and 206years, respectively. This study will contribute to the further understanding of global cycling of POPs in different land covers. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869090','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869090"><span>Self-defrosting recuperative <span class="hlt">air-to-air</span> heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Drake, Richard L.</p> <p>1993-01-01</p> <p>A heat <span class="hlt">exchanger</span> includes a stationary spirally or concentrically wound heat <span class="hlt">exchanger</span> core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary <span class="hlt">exchanger</span> core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/143941','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/143941"><span>Self-defrosting recuperative <span class="hlt">air-to-air</span> heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Drake, R.L.</p> <p>1993-12-28</p> <p>A heat <span class="hlt">exchanger</span> is described which includes a stationary spirally or concentrically wound heat <span class="hlt">exchanger</span> core with rotating baffles on upper and lower ends thereof. The rotating baffles include rotating inlets and outlets which are in communication with respective fixed inlets and outlets via annuli. The rotation of the baffles causes a concurrent rotation of the temperature distribution within the stationary <span class="hlt">exchanger</span> core, thereby preventing frost build-up in some applications and preventing the formation of hot spots in other applications. 3 figures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8661B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8661B"><span>Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving <span class="hlt">Air-Sea</span> Fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.</p> <p>2017-11-01</p> <p>The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of <span class="hlt">air-sea</span> oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from <span class="hlt">air</span>-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional <span class="hlt">sea</span> ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal <span class="hlt">sea</span> ice slows the <span class="hlt">air-sea</span> gas flux response to the entrainment of deep, low-oxygen waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A41A0025M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A41A0025M"><span>Eddy covariance measurement of the spatial heterogeneity of surface energy <span class="hlt">exchanges</span> over Heron Reef, Great Barrier Reef, Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacKellar, M.; McGowan, H. A.; Phinn, S. R.</p> <p>2011-12-01</p> <p>Coral reefs cover 2.8 to 6.0 x 105 km2 of the Earth's surface and are warm, shallow regions that are believed to contribute enhanced sensible and latent heat to the atmosphere, relative to the surrounding ocean. To predict the impact of climate variability on coral reefs and their weather and climate including cloud, winds, rainfall patterns and cyclone genesis, accurate parameterisation of <span class="hlt">air-sea</span> energy <span class="hlt">exchanges</span> over coral reefs is essential. This is also important for the parameterisation and validation of regional to global scale forecast models to improve prediction of tropical and sub-tropical marine and coastal weather. Eddy covariance measurements of <span class="hlt">air-sea</span> fluxes over coral reefs are rare due to the complexities of installing instrumentation over shallow, tidal water. Consequently, measurements of radiation and turbulent flux data for coral reefs have been captured remotely (satellite data) or via single measurement sites downwind of coral reefs (e.g. terrestrial or shipboard instrumentation). The resolution of such measurements and those that have been made at single locations on reefs may not capture the spatial heterogeneity of surface-atmosphere energy <span class="hlt">exchanges</span> due to the different geomorphic and biological zones on coral reefs. Accordingly, the heterogeneity of coral reefs with regard to substrate, benthic communities and hydrodynamic processes are not considered in the characterization of the surface radiation energy flux transfers across the water-atmosphere interface. In this paper we present a unique dataset of concurrent in situ eddy covariance measurements made on instrumented pontoons of the surface energy balance over different geomorphic zones of a coral reef (shallow reef flat, shallow and deep lagoons). Significant differences in radiation transfers and <span class="hlt">air-sea</span> turbulent flux <span class="hlt">exchanges</span> over the reef were highlighted, with higher Bowen ratios over the shallow reef flat. Increasing wind speed was shown to increase flux divergence between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19800009379','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19800009379"><span>Guidelines for the <span class="hlt">air-sea</span> interaction special study: An element of the NASA climate research program, JPL/SIO workshop report</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1980-01-01</p> <p>A program in the area of <span class="hlt">air</span> <span class="hlt">sea</span> interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for <span class="hlt">air</span> <span class="hlt">sea</span> interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an <span class="hlt">air</span> <span class="hlt">sea</span> interaction mission should be an early task.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890052278&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dheat%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890052278&hterms=heat+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dheat%2Bexchange"><span>A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hakkinen, Sirpa; Cavalieri, Donald J.</p> <p>1989-01-01</p> <p>This study examines oceanic surface heat fluxes in the Norwegian, Greenland, and Barents <span class="hlt">seas</span> using the gridded Navy Fleet Numerical Oceanography Central surface analysis and the First GARP Global Experiment (FGGE) IIc cloudiness data bases. Monthly and annual means of net and turbulent heat fluxes are computed for the FGGE year 1979. The FGGE IIb data base consisting of individual observations provides particularly good data coverage in this region for a comparison with the gridded Navy winds and <span class="hlt">air</span> temperatures. The standard errors of estimate between the Navy and FGGE IIb winds and <span class="hlt">air</span> temperatures are 3.6 m/s and 2.5 C, respectively. The computations for the latent and sensible heat fluxes are based on bulk formulas with the same constant heat <span class="hlt">exchange</span> coefficient of 0.0015. The results show extremely strong wintertime heat fluxes in the northern Greenland <span class="hlt">Sea</span> and especially in the Barents <span class="hlt">Sea</span> in contrast to previous studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19483010','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19483010"><span>Water <span class="hlt">exchange</span> and permeability properties of the skin in three species of amphibious <span class="hlt">sea</span> snakes (Laticauda spp.).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lillywhite, H B; Menon, J G; Menon, G K; Sheehy, C M; Tu, M C</p> <p>2009-06-01</p> <p>Evolutionary transitions between different environmental media such as <span class="hlt">air</span> and water pose special problems with respect to skin permeability because of the dramatic changes in the driving gradients and nature of water <span class="hlt">exchange</span> processes. Also, during the transitional periods prior to complete adaptation to a new medium, the skin is exposed to two very different sets of environmental conditions. Here, we report new data for transepidermal evaporative water loss (TEWL) and cutaneous resistance to evaporative water loss (R(s)) of <span class="hlt">sea</span> snakes that are transitional in the sense of being amphibious and semi-terrestrial. We investigated three species of <span class="hlt">sea</span> kraits (Elapidae: Laticaudinae) that are common to Orchid Island (Lanyu), Taiwan. Generally, R(s) of all three species is lower than that characteristic of terrestrial/xeric species of snakes measured in other taxa. Within Laticauda, R(s) is significantly greater (TEWL lower) in the more terrestrial species and lowest (TEWL highest) in the more aquatic species. Previously reported losses of water from snakes kept in seawater exhibit a reversed trend, with lower rates of loss in the more aquatic species. These data suggest selection for adaptive traits with respect to increasing exposure to the marine environment. Thus, a countergradient of traits is reflected in decreased TEWL in aerial environments and decreased net water efflux in marine environments, acting simultaneously in the three species. The pattern for TEWL correlates with ultrastructural evidence for increased lipogenesis in the stratum corneum of the more terrestrial species. The skin surfaces of all three species are hydrophobic. Species differences in this property possibly explain the pattern for water efflux when these snakes are in seawater, which remains to be investigated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19860008821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19860008821"><span>Aeorodynamic characteristics of an <span class="hlt">air-exchanger</span> system for the 40- by 80-foot wind tunnel at Ames Research Center</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rossow, V. J.; Schmidt, G. I.; Meyn, L. A.; Ortner, K. R.; Holmes, R. E.</p> <p>1986-01-01</p> <p>A 1/50-scale model of the 40- by 80-Foot Wind Tunnel at Ames Research Center was used to study various <span class="hlt">air-exchange</span> configurations. System components were tested throughout a range of parameters, and approximate analytical relationships were derived to explain the observed characteristics. It is found that the efficiency of the <span class="hlt">air</span> <span class="hlt">exchanger</span> could be increased (1) by adding a shaped wall to smoothly turn the incoming <span class="hlt">air</span> downstream, (2) by changing to a contoured door at the inlet to control the flow rate, and (3) by increasing the size of the exhaust opening. The static pressures inside the circuit then remain within the design limits at the higher tunnel speeds if the <span class="hlt">air-exchange</span> rate is about 5% or more. Since the model is much smaller than the full-scale facility, it is not possible to completely duplicate the tunnel, and it will be necessary to measure such characteristics as flow rate and tunnel pressures during implementation of the remodeled facility. The aerodynamic loads estimated for the inlet door and for nearby walls are also presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21Q..08F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21Q..08F"><span>Response of Antarctic <span class="hlt">sea</span> surface temperature and <span class="hlt">sea</span> ice to ozone depletion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.</p> <p>2017-12-01</p> <p>The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and <span class="hlt">sea</span> ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic <span class="hlt">sea</span> ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and <span class="hlt">sea</span> ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and <span class="hlt">sea</span> ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and <span class="hlt">sea</span> ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and <span class="hlt">sea</span> ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and <span class="hlt">air-sea</span> heat <span class="hlt">exchanges</span>, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010DSRII..57.1212L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010DSRII..57.1212L"><span>The flushing and <span class="hlt">exchange</span> of the South China <span class="hlt">Sea</span> derived from salt and mass conservation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yang; Bye, John A. T.; You, Yuzhu; Bao, Xianwen; Wu, Dexing</p> <p>2010-07-01</p> <p>In this paper, we use two kinds of hydrographic data, historical cruise data, Array for Real-time Geostrophic Oceanography (Argo) float data, and atmospheric data to study the water <span class="hlt">exchange</span> between the South China <span class="hlt">Sea</span> (SCS) and the Pacific Ocean through the Luzon Strait. The annual mean distributions of temperature and salinity at five different levels in the SCS and the adjacent Pacific Ocean are presented, which indicate the occurrence of active water <span class="hlt">exchange</span> through the Luzon Strait. The flushing and <span class="hlt">exchange</span> of the SCS are then determined by the application of salt and mass conservation in a multi-layered thermohaline system, using an estimate of the net rainfall obtained from reanalysis data. The results show that the annual mean flushing time is 44±8 months with an inflow rate of 11±2 Sv (1 Sv=10 6 m 3 s -1), part of which recirculates at a deeper level through the Luzon Strait, the remainder (6±2 Sv) forming the SCS throughflow. The diffusive influx of salt is also estimated and accounts for about 10% of the total influx, and hence advection dominates over diffusion in the water <span class="hlt">exchange</span> through the Luzon Strait. The seasonal cycle of <span class="hlt">exchange</span> shows a maximum in autumn and winter of about twice the annual mean rate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240753','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240753"><span>CLOUDS, AEROSOLS, RADIATION AND THE <span class="hlt">AIR-SEA</span> INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wood, Robert; Bretherton, Chris; McFarquhar, Greg</p> <p>2014-09-29</p> <p>A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and <span class="hlt">air-sea</span> interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the <span class="hlt">air-sea</span> interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region.more » Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and <span class="hlt">air-sea</span> interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the <span class="hlt">air-sea</span> interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...34E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...34E"><span>The role of Amundsen-Bellingshausen <span class="hlt">Sea</span> anticyclonic circulation in forcing marine <span class="hlt">air</span> intrusions into West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.</p> <p>2018-01-01</p> <p>Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen <span class="hlt">Sea</span> (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross <span class="hlt">Sea</span> region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in <span class="hlt">air</span> temperature anomalies and <span class="hlt">sea</span> ice concentrations between the eastern Ross <span class="hlt">Sea</span> and the Bellingshausen <span class="hlt">Sea</span>/Weddell <span class="hlt">Sea</span>, as well as between the eastern and western Ross <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A33A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A33A..06D"><span>-> <span class="hlt">Air</span> entrainment and bubble statistics in three-dimensional breaking waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deike, L.; Popinet, S.; Melville, W. K.</p> <p>2016-02-01</p> <p>Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and <span class="hlt">air-sea</span> interaction, including gas and momentum <span class="hlt">exchange</span>, and for improving <span class="hlt">air-sea</span> flux parametrizations for weather and climate models. Here we investigate <span class="hlt">air</span> entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase <span class="hlt">air</span>-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA466972','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA466972"><span>Microphysics of <span class="hlt">Air-Sea</span> <span class="hlt">Exchanges</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-06-30</p> <p>these variables: S- rMss g A co Figure 3 shows the correlation between It and the measured F at 6cm depth: e = 9.3 x 10-5 (mssgA(o0) 75 The Imaging ...camera to directly observe the water surface slope through the relative intensities of the three color components at each point of the image . The ISG...law,no peraon shall be subject any penalty for fling to comply wit a collection of information if it do" n&T display a cur, eniy valid OMB control</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1215396K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1215396K"><span>Biogeochemistry of sediments from restricted <span class="hlt">exchange</span> environments of Kandalaksha bay, White <span class="hlt">Sea</span>, Russian Arctic</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koukina, Sofia</p> <p>2010-05-01</p> <p>The Arctic has come under intense scrutiny by the scientific community in recent years. The White <span class="hlt">sea</span> of Russian Arctic is characterised by extreme diversity of enclosed estuarine systems that are often sites of unique biota. The present study focuses on the sediments of the inner part of Kandalaksha bay, adjacent to the Karelian shore of the White <span class="hlt">sea</span>. Due to the endogenous crustal uplift (4 mm per year an average), this bay contains a continuum of shallow environments, ranging from estuaries of different types to separating basins where water <span class="hlt">exchange</span> is severely restricted. The evolution of sediments here is caused by specific depositional conditions, which are strongly affected by small-scale hydrological and hydrodynamic processes unique for each particular area. The detrital, non-detrital (labile) and organically bound fractions of Fe, Mn, Cu, Zn, Pb, Cr, Li along with TOC, n-alkanes, granulometry and bacteria species distribution were determined in surface sediment samples from representative separating basins and small <span class="hlt">exchange</span> environments of the Karelian shore. The sediments studied tended to be terrigenous with major input of organic matter from both terrestrial remains and autochthonous microbial sources. According to sediment quality guidelines, all trace-metal contents were below the threshold levels. The strong positive correlation between labile Fe, Mn, Cr, Zn and total Li revealed their association with Fe-hydroxides and clay minerals, while Pb and especially Cu exhibited their affinity to organic matter. The metals in sediments studied occur mainly in a biogeochemically stabile mineral-incorporated form, which comprises 77-99% of total metal content. The contents of labile form were high for Fe, Mn and Cr (up to 7.5 %) in sediments from separating basins, which are also enriched in clay fraction <0.01 mm (up to 60%), TOC (5-20%) and hydrogen sulfide. This is due to the anaerobic conditions formed in sediments in the coarse of separating process</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26995905','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26995905"><span>[Effect of <span class="hlt">air</span> temperature and rainfall on wetland ecosystem CO2 <span class="hlt">exchange</span> in China].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chu, Xiao-jing; Han, Guang-xuan</p> <p>2015-10-01</p> <p>Wetland can be a potential efficient sink to reduce global warming due to its higher primary productivity and lower carbon decomposition rate. While there has been a series progress on the influence mechanism of ecosystem CO2 <span class="hlt">exchange</span> over China' s wetlands, a systematic metaanalysis of data still needs to be improved. We compiled data of ecosystem CO2 <span class="hlt">exchange</span> of 21 typical wetland vegetation types in China from 29 papers and carried out an integrated analysis of <span class="hlt">air</span> temperature and precipitation effects on net ecosystem CO2 <span class="hlt">exchange</span> (NEE), ecosystem respiration (Reco), gross primary productivity (GPP), the response of NEE to PAR, and the response of Reco to temperature. The results showed that there were significant responses (P<0.05) of NEE (R2 = 50%, R2=57%), GPP (R2 = 60%, R2 = 50%) Reco (R2 = 44%, R2=50%) with increasing <span class="hlt">air</span> temperature and enhanced precipitation on the annual scale. On the growing season scale, <span class="hlt">air</span> temperature accounted for 50% of the spatial variation of NEE, 36% of GPP and 19% of Reco, respectively. Both NEE (R2 = 33%) and GPP (R2 =25%) were correlated positively with precipitation (P<0.05). However, the relationship between Reco and precipitation was not significant (P>0.05). Across different Chinese wetlands, both precipitation and temperature had no significant effect on apparent quantum yield (α) or ecosystem respiration in the daytime (Reco,day, P>0.05). The maximum photosynthesis rate (Amax) was remarkably correlated with precipitation (P <0.01), but not with <span class="hlt">air</span> temperature. Besides, there was no significant correlation between basal respiration (Rref) and precipitation (P>0.05). Precipitation was negatively correlated with temperature sensitivity of Reco (Q10, P<0.05). Furthermore, temperature accounted for 35% and 46% of the variations in temperature sensitivity of Reco (Q10) and basal respiration (Rref P<0.05), respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS53C1336T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS53C1336T"><span>Carbon Dioxide Variability in the Gulf of Trieste (GOT) in the Northern Adriatic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turk, D.; McGillis, W. R.; Malacic, V.; Degrandpre, M.</p> <p>2008-12-01</p> <p>Coastal marine regions such as the Gulf of Trieste GOT in the Northern Adriatic <span class="hlt">Sea</span> serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for <span class="hlt">air-sea</span> carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic <span class="hlt">Sea</span>. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of <span class="hlt">air-sea</span> <span class="hlt">exchange</span> during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of <span class="hlt">air-sea</span> interaction, and changes in biology and carbon chemistry. However, there is a dearth of current data or information from the region. Here we present the first measurements of <span class="hlt">air</span> and water CO2 flux in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy Piran, Slovenia using the SAMI CO2 sensor during spring and late summer and fall 2007. CO2 measurements were combined with hydrological and biological observations to evaluate the processes that control carbon cycling in the region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.6470A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.6470A"><span>Warm layer and cool skin corrections for bulk water temperature measurements for <span class="hlt">air-sea</span> interaction studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.</p> <p>2017-08-01</p> <p>The <span class="hlt">sea</span> surface temperature (SST) relevant to <span class="hlt">air-sea</span> interaction studies is the temperature immediately adjacent to the <span class="hlt">air</span>, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled <span class="hlt">Air-Sea</span> Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to <span class="hlt">sea</span> spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412240S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412240S"><span>Disruption of the <span class="hlt">air-sea</span> interface and formation of two-phase transitional layer in hurricane conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, A.; Matt, S.; Fujimura, A.</p> <p>2012-04-01</p> <p>The change of the <span class="hlt">air-sea</span> interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the <span class="hlt">air-sea</span> interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the <span class="hlt">air-sea</span> interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-<span class="hlt">air</span> interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the <span class="hlt">air</span> layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the <span class="hlt">air</span>-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the <span class="hlt">air</span>-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the <span class="hlt">air-sea</span> interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the <span class="hlt">air-sea</span> interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28675863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28675863"><span>Polychlorinated biphenyls in Nepalese surface soils: Spatial distribution, <span class="hlt">air</span>-soil <span class="hlt">exchange</span>, and soil-<span class="hlt">air</span> partitioning.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yadav, Ishwar Chandra; Devi, Ningombam Linthoingambi; Li, Jun; Zhang, Gan</p> <p>2017-10-01</p> <p>Regardless of the ban on the polychlorinated biphenyls (PCBs) decade ago, significant measures of PCBs are still transmitted from essential sources in cities and are all inclusive ecological contaminants around the world. In this study, the concentrations of PCBs in soil, the <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of PCBs, and the soil-<span class="hlt">air</span> partitioning coefficient (K SA ) of PCBs were investigated in four noteworthy urban areas in Nepal. Overall, the concentrations of ∑ 30 PCBs ranged from 10 to 59.4ng/g dry weight; dw (mean 12.2ng/g ±11.2ng/g dw). The hexa-CBs (22-31%) was most dominant among several PCB-homologues, followed by tetra-CBs (20-29%), hepta-CBs (12-21%), penta-CBs (15-17%) and tri-CBs (9-19%). The sources of elevated level of PCBs discharge in Nepalese soil was identified as emission from transformer oil, lubricants, breaker oil, cutting oil and paints, and cable insulation. Slightly strong correlation of PCBs with TOC than BC demonstrated that amorphous organic matter (AOM) assumes a more critical part in holding of PCBs than BC in Nepalese soil. The fugacity fraction (ff) results indicated the soil being the source of PCB in <span class="hlt">air</span> through volatilization and net transport from soil to <span class="hlt">air</span>. The soil-<span class="hlt">air</span> partitioning coefficient study suggests the absorption by soil organic matter control soil-<span class="hlt">air</span> partitioning of PCBs. Slightly weak but positive correlation of measured Log K SA with Log K OA (R 2 = 0.483) and Log K BC-A (R 2 = 0.438) suggests that both Log K OA and Log K BC-A can predict soil-<span class="hlt">air</span> partitioning to lesser extent for PCBs. Copyright © 2017 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.18002011B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.18002011B"><span>The influence of flow modification on <span class="hlt">air</span> and PCM temperatures in an accumulative heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borcuch, Marcin; Musiał, Michał; Sztekler, Karol; Kalawa, Wojciech; Gumuła, Stanisław; Stefański, Sebastian</p> <p>2018-06-01</p> <p>The paper presents the influence of flow modification on the operation of an accumulative heat <span class="hlt">exchanger</span>. This device can be used as a regenerator in ventilation and <span class="hlt">air</span> supply systems. A heat <span class="hlt">exchanger</span> uses ceresine (a mixture of paraffins) as a phase change material (PCM). The aim of this research was to determine the effect of flow modification on temperature distribution and pressure drops in the device. The introduction contains a short description of the test stand used, including the accumulative heat <span class="hlt">exchanger</span>, the guide vanes, and the locations of measurement and control equipment. We found that additional objects limited vortex structures, increased the inside temperature, and dropped the pressure along the heat <span class="hlt">exchanger</span>. Guidelines for further research are proposed and briefly discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9773S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9773S"><span>Assessing <span class="hlt">sea</span> wave and spray effects on Marine Boundary Layer structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George</p> <p>2017-04-01</p> <p><span class="hlt">Air</span> <span class="hlt">sea</span> interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum <span class="hlt">exchanges</span> increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to <span class="hlt">sea</span> surface roughness and <span class="hlt">sea</span> spray. <span class="hlt">Sea</span> spray fluxes can affect atmospheric stability and induce microphysical processes such as <span class="hlt">sea</span> salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of <span class="hlt">sea</span> spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, <span class="hlt">sea</span> salt aerosols and droplet thermodynamic processes and handles <span class="hlt">sea</span> salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1036239','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1036239"><span>Iron Fertilization of the Southern Ocean: Regional Simulation and Analysis of C-Sequestration in the Ross <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kevin Arrigo</p> <p>2012-03-13</p> <p>A modified version of the dynamic 3-dimensional mesoscale Coupled Ice, Atmosphere, and Ocean model (CIAO) of the Ross <span class="hlt">Sea</span> ecosystem has been used to simulate the impact of environmental perturbations upon primary production and biogenic CO2 uptake. The Ross <span class="hlt">Sea</span> supports two taxonomically, and spatially distinct phytoplankton populations; the haptophyte Phaeocystis antarctica and diatoms. Nutrient utilization ratios predict that P. antarctica and diatoms will be driven to nitrate and phosphate limitation, respectively. Model and field data have confirmed that the Ross <span class="hlt">Sea</span> is iron limited with only two-thirds of the macronutrients consumed by the phytoplankton by the end of themore » growing season. In this study, the CIAO model was improved to simulate a third macronutrient (phosphate), dissolved organic carbon, <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, and the carbonate system. This enabled us to effectively model pCO2 and subsequently oceanic CO2 uptake via gas <span class="hlt">exchange</span>, allowing investigations into the affect of alleviating iron limitation on both pCO2 and nutrient drawdown.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23157102','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23157102"><span>[Use of the <span class="hlt">air</span>-Q laryngeal airway and tube <span class="hlt">exchanger</span> in a case of difficult tracheal extubation after maxillectomy].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komasawa, Nobuyasu; Ueki, Ryusuke; Iwasaki, Yohei; Tatara, Tsuneo; Tashiro, Chikara; Kaminoh, Yoshiroh</p> <p>2012-10-01</p> <p>A 79-year-old man was diagnosed with maxillary cancer and underwent total maxillectomy under general anesthesia. The oropharyngeal airway was needed for efficient mask ventilation during anesthesia induction. The maxilla was totally resected and reconstructed with skin from a femoral flap. Tracheal extubation was considered to be difficult given that mask ventilation was contraindicated due to reconstruction of the maxilla. After inserting a tube <span class="hlt">exchanger</span> (TE) into the trachea, the tracheal tube was <span class="hlt">exchanged</span> with an <span class="hlt">air</span>-Q laryngeal airway through the TE. After confirming effective ventilation with the <span class="hlt">air</span>-Q mask, the patient was awakened from anesthesia. We confirmed sufficient spontaneous breathing and no active bleeding in the pharynx. After re-inserting the TE thorough <span class="hlt">air</span>-Q, the <span class="hlt">air</span>-Q was removed, followed by removal of the TE. These findings suggest that the <span class="hlt">air</span>-Q and TE were effective in a case of difficult extubation after maxillectomy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JCoPh.271..172N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JCoPh.271..172N"><span>Reprint of: A numerical modelling of gas <span class="hlt">exchange</span> mechanisms between <span class="hlt">air</span> and turbulent water with an aquarium chemical reaction</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagaosa, Ryuichi S.</p> <p>2014-08-01</p> <p>This paper proposes a new numerical modelling to examine environmental chemodynamics of a gaseous material <span class="hlt">exchanged</span> between the <span class="hlt">air</span> and turbulent water phases across a gas-liquid interface, followed by an aquarium chemical reaction. This study uses an extended concept of a two-compartment model, and assumes two physicochemical substeps to approximate the gas <span class="hlt">exchange</span> processes. The first substep is the gas-liquid equilibrium between the <span class="hlt">air</span> and water phases, A(g)⇌A(aq), with Henry's law constant H. The second is a first-order irreversible chemical reaction in turbulent water, A(aq)+H2O→B(aq)+H+ with a chemical reaction rate κA. A direct numerical simulation (DNS) technique has been employed to obtain details of the gas <span class="hlt">exchange</span> mechanisms and the chemical reaction in the water compartment, while zero velocity and uniform concentration of A is considered in the <span class="hlt">air</span> compartment. The study uses the different Schmidt numbers between 1 and 8, and six nondimensional chemical reaction rates between 10(≈0) to 101 at a fixed Reynolds number. It focuses on the effects of the Schmidt number and the chemical reaction rate on fundamental mechanisms of the gas <span class="hlt">exchange</span> processes across the interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18640753','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18640753"><span>Dry deposition and soil-<span class="hlt">air</span> gas <span class="hlt">exchange</span> of polychlorinated biphenyls (PCBs) in an industrial area.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bozlaker, Ayse; Odabasi, Mustafa; Muezzinoglu, Aysen</p> <p>2008-12-01</p> <p>Ambient <span class="hlt">air</span> and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle+gas) Sigma(41)-PCB concentrations were higher in summer (3370+/-1617 pg m(-3), average+SD) than in winter (1164+/-618 pg m(-3)), probably due to increased volatilization with temperature. Average particulate Sigma(41)-PCBs dry deposition fluxes were 349+/-183 and 469+/-328 ng m(-2) day(-1) in summer and winter, respectively. Overall average particulate deposition velocity was 5.5+/-3.5 cm s(-1). The spatial distribution of Sigma(41)-PCB soil concentrations (n=48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated <span class="hlt">air</span>-soil <span class="hlt">exchange</span> fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas <span class="hlt">exchange</span> and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between <span class="hlt">air</span> and soil in Aliaga.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002122"><span>Natural <span class="hlt">Air-Sea</span> Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002122'); toggleEditAbsImage('author_20150002122_show'); toggleEditAbsImage('author_20150002122_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_hide"></p> <p>2013-01-01</p> <p>Results from twin control simulations of the preindustrial CO2 gas <span class="hlt">exchange</span> (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the <span class="hlt">air-sea</span> flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the <span class="hlt">air-sea</span> flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.1414C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.1414C"><span>Suppressing breakers with polar oil films: Using an epic <span class="hlt">sea</span> rescue to model wave energy budgets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cox, Charles S.; Zhang, Xin; Duda, Timothy F.</p> <p>2017-02-01</p> <p>Oil has been used to still stormy <span class="hlt">seas</span> for centuries, but the mechanisms are poorly understood. Here we examine the processes by using quantitative information from a remarkable 1883 <span class="hlt">sea</span> rescue where oil was used to reduce large breakers during a storm. Modeling of the oil film's extent and waves under the film suggests that large breakers were suppressed by a reduction of wind energy input. Modification of surface roughness by the film is hypothesized to alter the wind profile above the <span class="hlt">sea</span> and the energy flow. The results are central to understanding <span class="hlt">air-sea</span> momentum <span class="hlt">exchange</span>, including its role in such processes as cyclone growth and storm surge, although they address only one aspect of the complex problem of wind interaction with the ocean surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29255277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29255277"><span>Satellite Observations of Imprint of Oceanic Current on Wind Stress by <span class="hlt">Air-Sea</span> Coupling.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renault, Lionel; McWilliams, James C; Masson, Sebastien</p> <p>2017-12-18</p> <p>Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the <span class="hlt">air-sea</span> transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for <span class="hlt">air-sea</span> interaction and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS31B1280P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS31B1280P"><span>Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent <span class="hlt">Air</span>- Water <span class="hlt">Exchange</span> of Legacy Semivolatile Organic Contaminants in Lake Superior</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.</p> <p>2008-12-01</p> <p>Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to <span class="hlt">air</span>-water <span class="hlt">exchange</span>, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC <span class="hlt">air</span>-water <span class="hlt">exchange</span> flux is usually estimated using the two-film model. This model describes molecular diffusion through the <span class="hlt">air</span> and water films adjacent to the <span class="hlt">air</span>-water interface. <span class="hlt">Air</span>-water <span class="hlt">exchange</span> flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to <span class="hlt">exchange</span> in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of <span class="hlt">air</span>-water <span class="hlt">exchange</span> rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JEPT...89.1369G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JEPT...89.1369G"><span>Heat <span class="hlt">Exchange</span> with <span class="hlt">Air</span> and Temperature Profile of a Moving Oversize Tire</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grinchuk, P. S.; Fisenko, S. P.</p> <p>2016-11-01</p> <p>A one-dimensional mathematical model of heat transfer in a tire with account for the deformation energy dissipation and heat <span class="hlt">exchange</span> of a moving tire with <span class="hlt">air</span> has been developed. The mean temperature profiles are calculated and transition to a stationary thermal regime is considered. The influence of the rate of energy dissipation and of effective thermal conductivity of rubber on the temperature field is investigated quantitatively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..1210167G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..1210167G"><span><span class="hlt">Air</span>-ice CO2 fluxes and pCO2 dynamics in the Arctic coastal area (Amundsen Gulf, Canada)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Geilfus, Nicolas-Xavier; Tison, Jean Louis; Carnat, Gauthier; Else, Brent; Borges, Alberto V.; Thomas, Helmuth; Shadwick, Elizabeth; Delille, Bruno</p> <p>2010-05-01</p> <p><span class="hlt">Sea</span> ice covers about 7% of the Earth surface at its maximum seasonal extent. For decades <span class="hlt">sea</span> ice was assumed to be an impermeable and inert barrier for <span class="hlt">air</span> - <span class="hlt">sea</span> <span class="hlt">exchange</span> of CO2 so that global climate models do not include CO2 <span class="hlt">exchange</span> between the oceans and the atmosphere in the polar regions. However, uptake of atmospheric CO2 by <span class="hlt">sea</span> ice cover was recently reported raising the need to further investigate pCO2 dynamics in the marine cryosphere realm and related <span class="hlt">air</span>-ice CO2 fluxes. In addition, budget of CO2 fluxes are poorly constrained in high latitudes continental shelves [Borges et al., 2006]. We report measurements of <span class="hlt">air</span>-ice CO2 fluxes above the Canadian continental shelf and compare them to previous measurements carried out in Antarctica. We carried out measurements of pCO2 within brines and bulk ice, and related <span class="hlt">air</span>-ice CO2 fluxes (chamber method) in Antarctic first year pack ice ("<span class="hlt">Sea</span> Ice Mass Balance in Antarctica -SIMBA" drifting station experiment September - October 2007) and in Arctic first year land fast ice ("Circumpolar Flaw Lead" - CFL, April - June 2008). These 2 experiments were carried out in contrasted sites. SIMBA was carried out on <span class="hlt">sea</span> ice in early spring while CFL was carried out in from the middle of the winter to the late spring while <span class="hlt">sea</span> ice was melting. Both in Arctic and Antarctic, no <span class="hlt">air</span>-ice CO2 fluxes were detected when <span class="hlt">sea</span> ice interface was below -10°C. Slightly above -10°C, fluxes toward the atmosphere were observed. In contrast, at -7°C fluxes from the atmosphere to the ice were significant. The pCO2 of the brine exhibits a same trend in both hemispheres with a strong decrease of the pCO2 anti-correlated with the increase of <span class="hlt">sea</span> ice temperature. The pCO2 shifted from a large over-saturation at low temperature to a marked under-saturation at high temperature. These <span class="hlt">air</span>-ice CO2 fluxes are partly controlled by the permeability of the <span class="hlt">air</span>-ice interface, which depends of the temperature of this one. Moreover, <span class="hlt">air</span>-ice CO2 fluxes are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70102289','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70102289"><span><span class="hlt">Air</span>-water gas <span class="hlt">exchange</span> and CO2 flux in a mangrove-dominated estuary</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Ho, David T.; Ferrón, Sara; Engel, Victor C.; Larsen, Laurel G.; Barr, Jordan G.</p> <p>2014-01-01</p> <p>Mangrove forests are highly productive ecosystems, but the fate of mangrove-derived carbon remains uncertain. Part of that uncertainty stems from the fact that gas transfer velocities in mangrove-surrounded waters are not well determined, leading to uncertainty in <span class="hlt">air</span>-water CO2 fluxes. Two SF6 tracer release experiments were conducted to determine gas transfer velocities (k(600) = 8.3 ± 0.4 and 8.1 ± 0.6 cm h−1), along with simultaneous measurements of pCO2 to determine the <span class="hlt">air</span>-water CO2 fluxes from Shark River, Florida (232.11 ± 23.69 and 171.13 ± 20.28 mmol C m−2 d−1), an estuary within the largest contiguous mangrove forest in North America. The gas transfer velocity results are consistent with turbulent kinetic energy dissipation measurements, indicating a higher rate of turbulence and gas <span class="hlt">exchange</span> than predicted by commonly used wind speed/gas <span class="hlt">exchange</span> parameterizations. The results have important implications for carbon fluxes in mangrove ecosystems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123..922L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123..922L"><span>Observed Seasonal Variations of the Upper Ocean Structure and <span class="hlt">Air-Sea</span> Interactions in the Andaman <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong</p> <p>2018-02-01</p> <p>The Andaman <span class="hlt">Sea</span> (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the <span class="hlt">air-sea</span> interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the <span class="hlt">sea</span> surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://lofe.dukejournals.org/content/2/1.abstract','USGSPUBS'); return false;" href="http://lofe.dukejournals.org/content/2/1.abstract"><span><span class="hlt">Air</span>-water oxygen <span class="hlt">exchange</span> in a large whitewater river</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.</p> <p>2012-01-01</p> <p><span class="hlt">Air</span>-water gas <span class="hlt">exchange</span> governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas <span class="hlt">exchange</span> for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas <span class="hlt">exchange</span> per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 <span class="hlt">exchanged</span> with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050156610&hterms=Hydrology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHydrology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050156610&hterms=Hydrology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DHydrology"><span>Seasonal and Non-seasonal <span class="hlt">Sea</span> Level Variations by <span class="hlt">Exchange</span> of Water with Land Hydrology</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chao, Benjamin F.; Au, A. Y.</p> <p>2004-01-01</p> <p>The global ocean <span class="hlt">exchanges</span> a large amount of water, seasonally or non-seasonally, with land hydrology. Apart from the long-term melting of ice sheets and glaciers, the water is <span class="hlt">exchanged</span> directly as land runoff R, and indirectly via atmosphere in the form of precipitation minus evapo-transpiration P-E. On land, the hydrological budget balance is soil moisture S = P-E-R. The runoff R has been difficult to monitor; but now by combining the following two data sets one can obtain a global estimate, subject to the spatial and temporal resolutions afforded by the data: (1) The space gravity mission GRACE yields monthly S estimate on a spatial scale larger than approx. 1000 km over the last 2.5 years; (2) The atmospheric circulation model output, such as from NCEP, provides proxy estimates for P-E at monthly and approx. 200 km resolutions. We will discuss these estimates and the effects on the global ocean water budget and hence <span class="hlt">sea</span> level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70164484','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70164484"><span>Gas <span class="hlt">exchange</span> rates across the sediment-water and <span class="hlt">air</span>-water interfaces in south San Francisco Bay</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hartman, Blayne; Hammond, Douglas E.</p> <p>1984-01-01</p> <p>Radon 222 concentrations in the water and sedimentary columns and radon <span class="hlt">exchange</span> rates across the sediment-water and <span class="hlt">air</span>-water interfaces have been measured in a section of south San Francisco Bay. Two independent methods have been used to determine sediment-water <span class="hlt">exchange</span> rates, and the annual averages of these methods agree within the uncertainty of the determinations, about 20%. The annual average of benthic fluxes from shoal areas is nearly a factor of 2 greater than fluxes from the channel areas. Fluxes from the shoal and channel areas exceed those expected from simple molecular diffusion by factors of 4 and 2, respectively, apparently due to macrofaunal irrigation. Values of the gas transfer coefficient for radon <span class="hlt">exchange</span> across the <span class="hlt">air</span>-water interface were determined by constructing a radon mass balance for the water column and by direct measurement using floating chambers. The chamber method appears to yield results which are too high. Transfer coefficients computed using the mass balance method range from 0.4 m/day to 1.8 m/day, with a 6-year average of 1.0 m/day. Gas <span class="hlt">exchange</span> is linearly dependent upon wind speed over a wind speed range of 3.2–6.4 m/s, but shows no dependence upon current velocity. Gas transfer coefficients predicted from an empirical relationship between gas <span class="hlt">exchange</span> rates and wind speed observed in lakes and the oceans are within 30% of the coefficients determined from the radon mass balance and are considerably more accurate than coefficients predicted from theoretical gas <span class="hlt">exchange</span> models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915250F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915250F"><span>The diagnosis and forecast system of hydrometeorological characteristics for the White, Barents, Kara and Pechora <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fomin, Vladimir; Diansky, Nikolay; Gusev, Anatoly; Kabatchenko, Ilia; Panasenkova, Irina</p> <p>2017-04-01</p> <p>The diagnosis and forecast system for simulating hydrometeorological characteristics of the Russian Western Arctic <span class="hlt">seas</span> is presented. It performs atmospheric forcing computation with the regional non-hydrostatic atmosphere model Weather Research and Forecasting model (WRF) with spatial resolution 15 km, as well as computation of circulation, <span class="hlt">sea</span> level, temperature, salinity and <span class="hlt">sea</span> ice with the marine circulation model INMOM (Institute of Numerical Mathematics Ocean Model) with spatial resolution 2.7 km, and the computation of wind wave parameters using the Russian wind-wave model (RWWM) with spatial resolution 5 km. Verification of the meteorological characteristics is done for <span class="hlt">air</span> temperature, <span class="hlt">air</span> pressure, wind velocity, water temperature, currents, <span class="hlt">sea</span> level anomaly, wave characteristics such as wave height and wave period. The results of the hydrometeorological characteristic verification are presented for both retrospective and forecast computations. The retrospective simulation of the hydrometeorological characteristics for the White, Barents, Kara and Pechora <span class="hlt">Seas</span> was performed with the diagnosis and forecast system for the period 1986-2015. The important features of the Kara <span class="hlt">Sea</span> circulation are presented. Water <span class="hlt">exchange</span> between Pechora and Kara <span class="hlt">Seas</span> is described. The importance is shown of using non-hydrostatic atmospheric circulation model for the atmospheric forcing computation in coastal areas. According to the computation results, extreme values of hydrometeorological characteristics were obtained for the Russian Western Arctic <span class="hlt">seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12.5784F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12.5784F"><span>Short-term Rn-222 concentration changes in underground spaces with limited <span class="hlt">air</span> <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fijałkowska-Lichwa, Lidia; Przylibski, Tadeusz A.</p> <p>2010-05-01</p> <p>Authors conducted research on radon concentration in two underground structures located in the vicinity of Kletno (Sudety Mts., SW Poland), which are accessible for visitors. One of these structures is Niedźwiedzia (Bear) Cave, and the second one is the part of former uranium mine - Fluorite Adit. Both selected underground structures are characterized by almost constant temperature, changing within the range from +5 to +7° C and also constant relative humidity, close to 100%. Both these parameters testify that <span class="hlt">air</span> <span class="hlt">exchange</span> with the atmosphere is very limited. <span class="hlt">Air</span> <span class="hlt">exchange</span> is limited particularly in Niedźwiedzia Cave, which microclimate is protected i.e. by applying of locks at the entrance and exit of tourist route. The measurements were conducted between 16.05.2008. and 15.11.2009., by the use of a new Polish equipment - SRDN-3 devices with semiconductor detector. SRDN-3 device records every hour radon concentration as well as atmospheric parameters - relative humidity and temperature. At the same time authors conducted measurements of basic parameters in the open atmosphere close to Niedźwiedzia Cave. Obtained results of atmospheric parameters measurements may be used for both underground structures; because they are located within the distance of about 1 km. Atmospheric parameters were measured by the use of automatic weather station VantagePro2. On the base of conducted research authors corroborate, that the differences of radon concentration in both underground structures reach three orders of magnitude during a year. In Niedźwiedzia Cave these values are in the range from below 88 Bq/m3 (detection limit of the SRDN-3 device) up to 12 kBq/m3. Related values in Fluorite Adit are between < 88 Bq/m3 and 35 kBq/m3. It was observed also the different course of daily radon concentration changes in both structures. Additionally, authors registered that daily course of radon concentration changes differs due to season of the year. Such changes are observed in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E3SWC..2200002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E3SWC..2200002A"><span>Experimental investigation and CFD simulation of multi-pipe earth-to-<span class="hlt">air</span> heat <span class="hlt">exchangers</span> (EAHEs) flow performance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amanowicz, Łukasz; Wojtkowiak, Janusz</p> <p>2017-11-01</p> <p>In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-<span class="hlt">air</span> heat <span class="hlt">exchangers</span> (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe <span class="hlt">exchangers</span> was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the <span class="hlt">exchanger</span> pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and <span class="hlt">Air</span> Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25046608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25046608"><span>Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean <span class="hlt">Sea</span>, Greece.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kostopoulos, V E; Helmis, C G</p> <p>2014-10-01</p> <p>Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean <span class="hlt">Sea</span> of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean <span class="hlt">Sea</span>, characterized by limited spatial and temporal scales which could affect these <span class="hlt">exchanges</span> at the <span class="hlt">air-sea</span> interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open <span class="hlt">seas</span> and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding <span class="hlt">air-sea</span> interaction mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the <span class="hlt">sea</span> surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA587111','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA587111"><span>Military Airlift: DOD Plans to Participate in Multi-National Program to <span class="hlt">Exchange</span> <span class="hlt">Air</span> Services with European Nations</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-30</p> <p><span class="hlt">Air</span> Transport, <span class="hlt">Air-to-Air</span> Refueling and Other <span class="hlt">Exchange</span> of Services ( ATARES ) program.1 ATARES is a European program through which member nations use a... ATARES is managed by the Movement Coordination Centre Europe (MCCE), a multi-national organization established in July 2007 to coordinate and optimize...of ATARES but is seeking to join the program. DOD is a member of MCCE and pays a fee for this membership; there is no additional fee to become a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19351614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19351614"><span>Effect of duration of exposure to polluted <span class="hlt">air</span> environment on lung function in subjects exposed to crude oil spill into <span class="hlt">sea</span> water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Rasheed, Shahzad; Meo, Imran Mu; Khan, Muhammad Mujahid; Al-Saadi, Muslim M; Alkandari, Jasem Ramadan</p> <p>2009-01-01</p> <p>Oil spill in <span class="hlt">sea</span> water represents a huge environmental disaster for marine life and humans in the vicinity. The aim was to investigate the effect of duration of exposure to polluted <span class="hlt">air</span> environment on lung function in subjects exposed to crude oil spill into <span class="hlt">sea</span> water. The present study was conducted under the supervision of Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, during the period July 2003 - December 2004. This was a comparative study of spirometry in 31 apparently healthy, non smoking, male workers, exposed to crude oil spill environment during the oil cleaning operation. The exposed group was matched with similar number of male, non smoking control subjects. Pulmonary function test was performed by using an electronic spirometer. Subjects exposed to polluted <span class="hlt">air</span> for periods longer than 15 days showed a significant reduction in Forced Vital Capacity (FVC), Forced Expiratory Volume in First Second (FEV1), Forced Expiratory Flow in 25-25% (FEF25-75%) and Maximal Voluntary Ventilation (MVV). <span class="hlt">Air</span> environment polluted due to crude oil spill into <span class="hlt">sea</span> water caused impaired lung function and this impairment was associated with dose response effect of duration of exposure to <span class="hlt">air</span> polluted by crude oil spill into <span class="hlt">sea</span> water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51L..03D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51L..03D"><span>Diagnosing <span class="hlt">Air-Sea</span> Interactions on Intraseasonal Timescales</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>DeMott, C. A.</p> <p>2014-12-01</p> <p>What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical <span class="hlt">air-sea</span> interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal <span class="hlt">sea</span> surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27458653','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27458653"><span>Spatial Distribution and <span class="hlt">Air</span>-Water <span class="hlt">Exchange</span> of Organic Flame Retardants in the Lower Great Lakes.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McDonough, Carrie A; Puggioni, Gavino; Helm, Paul A; Muir, Derek; Lohmann, Rainer</p> <p>2016-09-06</p> <p>Organic flame retardants (OFRs) such as polybrominated diphenyl ethers (PBDEs) and novel halogenated flame retardants (NHFRs) are ubiquitous, persistent, and bioaccumulative contaminants that have been used in consumer goods to slow combustion. In this study, polyethylene passive samplers (PEs) were deployed throughout the lower Great Lakes (Lake Erie and Lake Ontario) to measure OFRs in <span class="hlt">air</span> and water, calculate <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes, and investigate spatial trends. Dissolved Σ12BDE was greatest in Lake Ontario near Toronto (18 pg/L), whereas gaseous Σ12BDE was greatest on the southern shoreline of Lake Erie (11 pg/m(3)). NHFRs were generally below detection limits. <span class="hlt">Air</span>-water <span class="hlt">exchange</span> was dominated by absorption of BDEs 47 and 99, ranging from -964 pg/m(2)/day to -30 pg/m(2)/day. Σ12BDE in <span class="hlt">air</span> and water was significantly correlated with surrounding population density, suggesting that phased-out PBDEs continued to be emitted from population centers along the Great Lakes shoreline in 2012. Correlation with dissolved Σ12BDE was strongest when considering population within 25 km while correlation with gaseous Σ12BDE was strongest when using population within 3 km to the south of each site. Bayesian kriging was used to predict dissolved Σ12BDE over the lakes, illustrating the utility of relatively highly spatially resolved measurements in identifying potential hot spots for future study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21815160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21815160"><span>Quality changes in <span class="hlt">sea</span> urchin (Strongylocentrotus nudus) during storage in artificial seawater saturated with oxygen, nitrogen and <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao</p> <p>2012-01-15</p> <p><span class="hlt">Sea</span> urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of <span class="hlt">sea</span> urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or <span class="hlt">air</span> at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for <span class="hlt">sea</span> urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or <span class="hlt">air</span> packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007PhDT........29K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007PhDT........29K"><span>Arctic landfast <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Konig, Christof S.</p> <p></p> <p>Landfast ice is <span class="hlt">sea</span> ice which forms and remains fixed along a coast, where it is attached either to the shore, or held between shoals or grounded icebergs. Landfast ice fundamentally modifies the momentum <span class="hlt">exchange</span> between atmosphere and ocean, as compared to pack ice. It thus affects the heat and freshwater <span class="hlt">exchange</span> between <span class="hlt">air</span> and ocean and impacts on the location of ocean upwelling and downwelling zones. Further, the landfast ice edge is essential for numerous Arctic mammals and Inupiat who depend on them for their subsistence. The current generation of <span class="hlt">sea</span> ice models is not capable of reproducing certain aspects of landfast ice formation, maintenance, and disintegration even when the spatial resolution would be sufficient to resolve such features. In my work I develop a new ice model that permits the existence of landfast <span class="hlt">sea</span> ice even in the presence of offshore winds, as is observed in mature. Based on viscous-plastic as well as elastic-viscous-plastic ice dynamics I add tensile strength to the ice rheology and re-derive the equations as well as numerical methods to solve them. Through numerical experiments on simplified domains, the effects of those changes are demonstrated. It is found that the modifications enable landfast ice modeling, as desired. The elastic-viscous-plastic rheology leads to initial velocity fluctuations within the landfast ice that weaken the ice sheet and break it up much faster than theoretically predicted. Solving the viscous-plastic rheology using an implicit numerical method avoids those waves and comes much closer to theoretical predictions. Improvements in landfast ice modeling can only verified in comparison to observed data. I have extracted landfast <span class="hlt">sea</span> ice data of several decades from several sources to create a landfast <span class="hlt">sea</span> ice climatology that can be used for that purpose. Statistical analysis of the data shows several factors that significantly influence landfast ice distribution: distance from the coastline, ocean depth, as</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29440667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29440667"><span>Poleward upgliding Siberian atmospheric rivers over <span class="hlt">sea</span> ice heat up Arctic upper <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro</p> <p>2018-02-13</p> <p>We carried out upper <span class="hlt">air</span> measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing process to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new process as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold <span class="hlt">air</span> domes overlying <span class="hlt">sea</span> ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This process requires the combination of SARs and <span class="hlt">sea</span> ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009DSRII..56..554T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009DSRII..56..554T"><span>Climatological mean and decadal change in surface ocean pCO 2, and net <span class="hlt">sea-air</span> CO 2 flux over the global oceans</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Takahashi, Taro; Sutherland, Stewart C.; Wanninkhof, Rik; Sweeney, Colm; Feely, Richard A.; Chipman, David W.; Hales, Burke; Friederich, Gernot; Chavez, Francisco; Sabine, Christopher; Watson, Andrew; Bakker, Dorothee C. E.; Schuster, Ute; Metzl, Nicolas; Yoshikawa-Inoue, Hisayuki; Ishii, Masao; Midorikawa, Takashi; Nojiri, Yukihiro; Körtzinger, Arne; Steinhoff, Tobias; Hoppema, Mario; Olafsson, Jon; Arnarson, Thorarinn S.; Tilbrook, Bronte; Johannessen, Truls; Olsen, Are; Bellerby, Richard; Wong, C. S.; Delille, Bruno; Bates, N. R.; de Baar, Hein J. W.</p> <p>2009-04-01</p> <p>A climatological mean distribution for the surface water pCO 2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO 2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global <span class="hlt">sea-air</span> CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects. Deep-<span class="hlt">Sea</span> Res. II, 49, 1601-1622]. A time-trend analysis using deseasonalized surface water pCO 2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO 2 over these oceanic areas has increased on average at a mean rate of 1.5 μatm y -1 with basin-specific rates varying between 1.2±0.5 and 2.1±0.4 μatm y -1. A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Niño periods in the equatorial Pacific and those made in coastal zones are excluded from the database. Seasonal changes in the surface water pCO 2 and the <span class="hlt">sea-air</span> pCO 2 difference over four climatic zones in the Atlantic, Pacific, Indian and Southern Oceans are presented. Over the Southern Ocean seasonal ice zone, the seasonality is complex. Although it cannot be thoroughly documented due to the limited extent of observations, seasonal changes in pCO 2 are approximated by using the data for under-ice waters during austral winter and those for the marginal ice and ice-free zones. The net <span class="hlt">air-sea</span> CO 2 flux is estimated using the <span class="hlt">sea-air</span> pCO 2 difference and the <span class="hlt">air-sea</span> gas transfer rate that is parameterized as a function of (wind speed) 2 with a scaling factor of 0.26. This is estimated by inverting</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880003414','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880003414"><span>Measured performance of the heat <span class="hlt">exchanger</span> in the NASA icing research tunnel under severe icing and dry-<span class="hlt">air</span> conditions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Olsen, W.; Vanfossen, J.; Nussle, R.</p> <p>1987-01-01</p> <p>Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat <span class="hlt">exchanger</span> in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry <span class="hlt">air</span>. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat <span class="hlt">exchanger</span> and refrigeration system is able to cool <span class="hlt">air</span> passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat <span class="hlt">exchanger</span> prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat <span class="hlt">exchanger</span> was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat <span class="hlt">exchanger</span> iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat <span class="hlt">exchanger</span> design performs well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25399878','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25399878"><span>Estimation of bias with the single-zone assumption in measurement of residential <span class="hlt">air</span> <span class="hlt">exchange</span> using the perfluorocarbon tracer gas method.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J</p> <p>2015-12-01</p> <p>Residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) are vital in understanding the temporal and spatial drivers of indoor <span class="hlt">air</span> quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed <span class="hlt">air</span> zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER(1z)). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER(2z)). In total, 287 daily pairs of AER(2z) and AER(1z) estimates were made from 35 homes across three cities. In 87% of the cases, AER(2z) was higher than AER(1z). Overall, the AER(1z) estimates underestimated AER(2z) by approximately 16% (IQR: 5-32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential <span class="hlt">air</span> <span class="hlt">exchange</span> using a single PFT gas, the assumption of a single well-mixed <span class="hlt">air</span> zone very likely results in an under prediction of the AER. The results of this study suggest that the long-standing assumption that a home represents a single well-mixed <span class="hlt">air</span> zone may result in a substantial negative bias in <span class="hlt">air</span> <span class="hlt">exchange</span> estimates. Indoor <span class="hlt">air</span> quality professionals should take this finding into consideration when developing study designs or making decisions related to the recommendation and installation of residential ventilation systems. © 2014 Her Majesty the Queen in Right of Canada. Indoor <span class="hlt">Air</span> published by John Wiley & Sons Ltd Reproduced with the permission of the Minister of Health Canada.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V"><span>The ocean mixed layer under Southern Ocean <span class="hlt">sea</span>-ice: seasonal cycle and forcing.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.</p> <p>2016-02-01</p> <p>The mixed-layer at the surface of the ocean is the gateway for all <span class="hlt">exchanges</span> between <span class="hlt">air</span> and <span class="hlt">sea</span>. A vast area of the Southern Ocean is however seasonally capped by <span class="hlt">sea</span>-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and <span class="hlt">sea</span>-ice plays a key role for water-mass formation and circulation, carbon cycle, <span class="hlt">sea</span>-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under <span class="hlt">sea</span>-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under <span class="hlt">sea</span>-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of <span class="hlt">sea</span> surface salinity and temperature are primarily driven by surface processes, dominated by <span class="hlt">sea</span>-ice freshwater flux for the salt budget, and by <span class="hlt">air-sea</span> flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional <span class="hlt">sea</span>-ice distribution or <span class="hlt">sea</span>-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53B2224L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53B2224L"><span>The Siberian High and Arctic <span class="hlt">Sea</span> Ice: Long-term Climate Change and Impacts on <span class="hlt">Air</span> Pollution during Wintertime in China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.</p> <p>2017-12-01</p> <p>China has undergone severe <span class="hlt">air</span> pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime <span class="hlt">air</span> pollution. Recent studies propose that climate change and Arctic <span class="hlt">sea</span> ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and <span class="hlt">sea</span> ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of <span class="hlt">sea</span> ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime <span class="hlt">air</span> pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport <span class="hlt">air</span> pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on <span class="hlt">air</span> pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on <span class="hlt">air</span> pollution and it is urgently needed to take measures to mitigate <span class="hlt">air</span> pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime <span class="hlt">air</span> pollution.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcSci..13..997P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcSci..13..997P"><span>The spatial and interannual dynamics of the surface water carbonate system and <span class="hlt">air-sea</span> CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pipko, Irina I.; Pugach, Svetlana P.; Semiletov, Igor P.; Anderson, Leif G.; Shakhova, Natalia E.; Gustafsson, Örjan; Repina, Irina A.; Spivak, Eduard A.; Charkin, Alexander N.; Salyuk, Anatoly N.; Shcherbakova, Kseniia P.; Panova, Elena V.; Dudarev, Oleg V.</p> <p>2017-11-01</p> <p>. The surface seawater appears in equilibrium or slightly supersaturated by CO2 relative to atmosphere because of the increasing influence of river runoff and its input of terrestrial organic matter that mineralizes, in combination with the high surface water temperature during <span class="hlt">sea</span>-ice-free conditions. This investigation shows the importance of processes that vary on small scales, both in time and space, for estimating the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of CO2. It stresses the need for high-resolution coverage of ocean observations as well as time series. Furthermore, time series must include multi-year studies in the dynamic regions of the Arctic Ocean during these times of environmental change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A54C2732S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A54C2732S"><span>Enhanced Ahead-of-Eye TC Coastal Ocean Cooling Processes and their Impact on <span class="hlt">Air-Sea</span> Heat Fluxes and Storm Intensity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.</p> <p>2016-02-01</p> <p>Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate <span class="hlt">air-sea</span> flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted <span class="hlt">air-sea</span> heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to <span class="hlt">air-sea</span> heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, <span class="hlt">air-sea</span> heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry <span class="hlt">air</span> intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9456E..1DB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9456E..1DB"><span><span class="hlt">Sea-air</span> boundary meteorological sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbosa, Jose G.</p> <p>2015-05-01</p> <p>The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the <span class="hlt">sea-air</span> interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020082936&hterms=time+series+modeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Bseries%2Bmodeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020082936&hterms=time+series+modeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dtime%2Bseries%2Bmodeling"><span>Bayesian Hierarchical <span class="hlt">Air-Sea</span> Interaction Modeling: Application to the Labrador <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Niiler, Pearn P.</p> <p>2002-01-01</p> <p>The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador <span class="hlt">Sea</span>, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and <span class="hlt">sea</span> surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador <span class="hlt">Sea</span>. 3) Work with data interpretation and data-modeling assimilation issues.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995SPIE.2586..241X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995SPIE.2586..241X"><span>Heat flux <span class="hlt">exchange</span> estimation by using ATSR SST data in TOGA area</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xue, Yong; Lawrence, Sean P.; Llewellyn-Jones, David T.</p> <p>1995-12-01</p> <p>The study of phenomena such as ENSO requires consideration of the dynamics and thermodynamics of the coupled ocean-atmosphere system. The dynamic and thermal properties of the atmosphere and ocean are directly affected by <span class="hlt">air-sea</span> transfers of fluxes of momentum, heat and moisture. In this paper, we present results of turbulent heat fluxes calculated by using two years (1992 and 1993) monthly average TOGA data and ATSR SST data in TOGA area. A comparison with published results indicates good qualitative agreement. Also, we compared the results of heat flux <span class="hlt">exchange</span> by using ATSR SST data and by using the TOGA bucket SST data. The ATSR SST data set has been shown to be useful in helping to estimate the large space scale heat flux <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA608175','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA608175"><span><span class="hlt">Sea</span>QuaKE: <span class="hlt">Sea</span>-Optimized Quantum Key <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-08-01</p> <p>which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN-0004 under ONRBAA13...aerosol model scenarios. 15. SUBJECT TERMS Quantum communications, free - space optical communications 16. SECURITY CLASSIFICATION OF: 17...<span class="hlt">Sea</span>QuaKE) project, which is led by Applied Communications Sciences under the ONR Free Space Optical Quantum Key Distribution Special Notice (13-SN</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100031267&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DH%2526M','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100031267&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DH%2526M"><span>Evolution of the Tropical Cyclone Integrated Data <span class="hlt">Exchange</span> And Analysis System (TC-IDEAS)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Turk, J.; Chao, Y.; Haddad, Z.; Hristova-Veleva, S.; Knosp, B.; Lambrigtsen, B.; Li, P.; Licata, S.; Poulsen, W.; Su, H.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20100031267'); toggleEditAbsImage('author_20100031267_show'); toggleEditAbsImage('author_20100031267_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20100031267_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20100031267_hide"></p> <p>2010-01-01</p> <p>The Tropical Cyclone Integrated Data <span class="hlt">Exchange</span> and Analysis System (TC-IDEAS) is being jointly developed by the Jet Propulsion Laboratory (JPL) and the Marshall Space Flight Center (MSFC) as part of NASA's Hurricane Science Research Program. The long-term goal is to create a comprehensive tropical cyclone database of satellite and airborne observations, in-situ measurements and model simulations containing parameters that pertain to the thermodynamic and microphysical structure of the storms; the <span class="hlt">air-sea</span> interaction processes; and the large-scale environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21669328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21669328"><span>Atmospheric concentrations and <span class="hlt">air</span>-soil gas <span class="hlt">exchange</span> of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing-Tianjin region, North China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Wentao; Simonich, Staci; Giri, Basant; Chang, Ying; Zhang, Yuguang; Jia, Yuling; Tao, Shu; Wang, Rong; Wang, Bin; Li, Wei; Cao, Jun; Lu, Xiaoxia</p> <p>2011-07-01</p> <p>Forty passive <span class="hlt">air</span> samplers were deployed to study the occurrence of gas and particulate phase PAHs in remote, rural village and urban areas of Beijing-Tianjin region, North China for four seasons (spring, summer, fall and winter) from 2007 to 2008. The influence of emissions on the spatial distribution pattern of <span class="hlt">air</span> PAH concentrations was addressed. In addition, the <span class="hlt">air</span>-soil gas <span class="hlt">exchange</span> of PAHs was studied using fugacity calculations. The median gaseous and particulate phase PAH concentrations were 222 ng/m³ and 114 ng/m³, respectively, with a median total PAH concentration of 349 ng/m³. Higher PAH concentrations were measured in winter than in other seasons. <span class="hlt">Air</span> PAH concentrations measured at the rural villages and urban sites in the northern mountain region were significantly lower than those measured at sites in the southern plain during all seasons. However, there was no significant difference in PAH concentrations between the rural villages and urban sites in the northern and southern areas. This urban-rural PAH distribution pattern was related to the location of PAH emission sources and the population distribution. The location of PAH emission sources explained 56%-77% of the spatial variation in ambient <span class="hlt">air</span> PAH concentrations. The annual median <span class="hlt">air</span>-soil gas <span class="hlt">exchange</span> flux of PAHs was 42.2 ng/m²/day from soil to <span class="hlt">air</span>. Among the 15 PAHs measured, acenaphthylene (ACY) and acenaphthene (ACE) contributed to more than half of the total <span class="hlt">exchange</span> flux. Furthermore, the <span class="hlt">air</span>-soil gas <span class="hlt">exchange</span> fluxes of PAHs at the urban sites were higher than those at the remote and rural sites. In summer, more gaseous PAHs volatilized from soil to <span class="hlt">air</span> because of higher temperatures and increased rainfall. However, in winter, more gaseous PAHs deposited from <span class="hlt">air</span> to soil due to higher PAH emissions and lower temperatures. The soil TOC concentration had no significant influence on the <span class="hlt">air</span>-soil gas <span class="hlt">exchange</span> of PAHs. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.6053F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.6053F"><span>Physicochemical signatures of natural surfactant <span class="hlt">sea</span> films from coastal Middle Adriatic stations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frka, Sanja; Pogorzelski, Stanislaw; Kozarac, Zlatica; Ćosović, Božena</p> <p>2013-04-01</p> <p>Boundary layers between different environmental compartments represent critical interfaces for biological, chemical and physical processes. The <span class="hlt">sea</span> surface microlayer (SSM) as a top layer of the <span class="hlt">sea</span> surface represents natural interface between the atmosphere and ocean. Although < 1 mm in thickness the SML plays a key role in the global biogeochemical cycling because all gaseous, liquid and particulate materials must pass through this interface when <span class="hlt">exchanging</span> between the ocean and the atmosphere. The SSM thus represents a very important driver enhancing <span class="hlt">air</span>-water <span class="hlt">exchange</span> processes. A variety of natural and anthropogenic organic compounds, particularly those which are surface active (SA) are generally enriched in the SML. It is widely acknowledged that the SSM is complex matrix of SA organics as carbohydrates, proteins, lipids and humic substances. Although lipid material is much less abundant than carbohydrates and proteins in the SML, their contribution to surface activity may be disproportionately large. The surfactant films at the <span class="hlt">air-sea</span> interface change its physicochemical properties reducing <span class="hlt">air-sea</span> <span class="hlt">exchange</span> possesses by impeding molecular diffusion across the interface and influencing the hydrodynamic characteristics of water motion at the interface. Various biological, chemical and physical processes lead to the alteration of the film chemical composition, surface physical properties, surface concentration and spatial distribution of film-forming components. Instead of analyzing its chemical composition, it should be possible to scale the SML surface pressure-area (π-A) isotherms in terms of structural parameters which appear to be a sensitive and quantitative measure of the film physicochemical composition, surface concentration and miscibility of its film-forming components. We will present a large data set obtained by electrochemical and monolayer techniques, accompanied with the novel scaling approach for physicochemical characterization of SA</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1214990','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1214990"><span><span class="hlt">Air</span>-Cooled Heat <span class="hlt">Exchanger</span> for High-Temperature Power Electronics: Preprint</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Waye, S. K.; Lustbader, J.; Musselman, M.</p> <p>2015-05-06</p> <p>This work demonstrates a direct <span class="hlt">air</span>-cooled heat <span class="hlt">exchanger</span> strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA483634','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA483634"><span>CV or Not to Be? Alternatives to U.S. <span class="hlt">Sea</span>-Based <span class="hlt">Air</span> Power</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-06-01</p> <p>decisionmakers’ ability to respond to crises nearly anywhere in the world. Despite this, a fundamental question arises: What does the future hold for...much concentrated striking power to U.S. decisionmakers’ ability to respond to crises nearly anywhere in the world. Despite this, a fundamental ...certainties, a fundamental question arises: What does the future hold for <span class="hlt">sea</span>-based <span class="hlt">air</span> power? Aircraft carriers are among the military’s costliest assets</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4490136','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4490136"><span><span class="hlt">Air</span> <span class="hlt">exchange</span> rates and migration of VOCs in basements and residences</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Rowe, Zachary; Chin, Jo-Yu</p> <p>2015-01-01</p> <p>Basements can influence indoor <span class="hlt">air</span> quality by affecting <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) and by the presence of emission sources of volatile organic compounds (VOCs) and other pollutants. We characterized VOC levels, AERs and interzonal flows between basements and occupied spaces in 74 residences in Detroit, Michigan. Flows were measured using a steady-state multi-tracer system, and 7-day VOC measurements were collected using passive samplers in both living areas and basements. A walkthrough survey/inspection was conducted in each residence. AERs in residences and basements averaged 0.51 and 1.52 h−1, respectively, and had strong and opposite seasonal trends, e.g., AERs were highest in residences during the summer, and highest in basements during the winter. <span class="hlt">Air</span> flows from basements to occupied spaces also varied seasonally. VOC concentration distributions were right-skewed, e.g., 90th percentile benzene, toluene, naphthalene and limonene concentrations were 4.0, 19.1, 20.3 and 51.0 μg m−3, respectively; maximum concentrations were 54, 888, 1117 and 134 μg m−3. Identified VOC sources in basements included solvents, household cleaners, <span class="hlt">air</span> fresheners, smoking, and gasoline-powered equipment. The number and type of potential VOC sources found in basements are significant and problematic, and may warrant advisories regarding the storage and use of potentially strong VOCs sources in basements. PMID:25601281</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009531','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009531"><span><span class="hlt">Sea</span>WiFS Postlaunch Technical Report Series. Volume 2; AMT-5 Cruise Report</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Cummings, Denise G.; Gibb, Stuart W.; Rees, Nigel W.; Woodd-Walker, Rachel; Woodward, E. Malcolm S.; Woolfenden, James; Berthon, Jean-Francois; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19990009531'); toggleEditAbsImage('author_19990009531_show'); toggleEditAbsImage('author_19990009531_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19990009531_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19990009531_hide"></p> <p>1998-01-01</p> <p>This report documents the scientific activities on board the Royal Research Ship (RRS) James Clark Ross (JCR) during the fifth Atlantic Meridional Transect (AMT-5), 14 September to 17 October 1997. There are three objectives of the AMT Program. The first is to derive an improved understanding of the links between biogeochemical processes, biogenic gas <span class="hlt">exchange</span>, <span class="hlt">air-sea</span> interactions, and the effects on, and responses of, oceanic ecosystems to climate change. The second is to investigate the functional roles of biological particles and processes that influence ocean color in ecosystem dynamics. The Program relates directly to algorithm development and the validation of remotely-sensed observations of ocean color. Because the <span class="hlt">Sea</span>-viewing Wide Field-of-view Sensor (<span class="hlt">Sea</span>WiFS) instrument achieved operational status during the cruise (on 18 September), AMT-5 was designated the <span class="hlt">Sea</span>WiFS Atlantic Characterization Experiment (<span class="hlt">Sea</span>ACE) and was the only major research cruise involved in the validation of <span class="hlt">Sea</span>WiFS data during the first 100 days of operations. The third objective involved the near-real time reporting of in situ light and pigment observations to the <span class="hlt">Sea</span>WiFS Project, so the performance of the satellite sensor could be determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-LRC-1957-B701_P-05383.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-LRC-1957-B701_P-05383.html"><span>Hot-<span class="hlt">Air</span> Jets/Ceramic Heat <span class="hlt">Exchangers</span>/ Materials for Nose Cones and Reentry Vehicles</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1957-09-07</p> <p>L57-5383 Hot-<span class="hlt">air</span> jets employing ceramic heat <span class="hlt">exchangers</span> played an important role at Langley in the study of materials for ballistic missile nose cones and re-entry vehicles. Here a model is being tested in one of theses jets at 4000 degrees Fahrenheit in 1957. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 477.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....915787H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....915787H"><span>Kinetic bottlenecks to chemical <span class="hlt">exchange</span> rates for deep-<span class="hlt">sea</span> animals II: Carbon dioxide</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.</p> <p>2012-11-01</p> <p>Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas <span class="hlt">exchange</span> of CO2 at the <span class="hlt">air-sea</span> interface, the influence of the ensemble of reactions within the CO2-HCO3--CO32- acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas <span class="hlt">exchange</span> with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013TCD.....7.6075R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013TCD.....7.6075R"><span>Dynamic ikaite production and dissolution in <span class="hlt">sea</span> ice - control by temperature, salinity and pCO2 conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rysgaard, S.; Wang, F.; Galley, R. J.; Grimm, R.; Lemes, M.; Geilfus, N.-X.; Chaulk, A.; Hare, A. A.; Crabeck, O.; Else, B. G. T.; Campbell, K.; Papakyriakou, T.; Sørensen, L. L.; Sievers, J.; Notz, D.</p> <p>2013-12-01</p> <p>Ikaite is a hydrous calcium carbonate mineral (CaCO3 · 6H2O). It is only found in a metastable state, and decomposes rapidly once removed from near-freezing water. Recently, ikaite crystals have been found in <span class="hlt">sea</span> ice and it has been suggested that their precipitation may play an important role in <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> in ice-covered <span class="hlt">seas</span>. Little is known, however, of the spatial and temporal dynamics of ikaite in <span class="hlt">sea</span> ice. Here we present evidence for highly dynamic ikaite precipitation and dissolution in <span class="hlt">sea</span> ice grown at an out-door pool of the <span class="hlt">Sea</span>-ice Environmental Research Facility (SERF). During the experiment, ikaite precipitated in <span class="hlt">sea</span> ice with temperatures below -3 °C, creating three distinct zones of ikaite concentrations: (1) a mm to cm thin surface layer containing frost flowers and brine skim with bulk concentrations of > 2000 μmol kg-1, (2) an internal layer with concentrations of 200-400 μmol kg-1 and (3) a~bottom layer with concentrations of < 100 μmol kg-1. Snowfall events caused the <span class="hlt">sea</span> ice to warm, dissolving ikaite crystals under acidic conditions. Manual removal of the snow cover allowed the <span class="hlt">sea</span> ice to cool and brine salinities to increase, resulting in rapid ikaite precipitation. The modeled (FREZCHEM) ikaite concentrations were in the same order of magnitude as observations and suggest that ikaite concentration in <span class="hlt">sea</span> ice increase with decreasing temperatures. Thus, varying snow conditions may play a key role in ikaite precipitation and dissolution in <span class="hlt">sea</span> ice. This will have implications for CO2 <span class="hlt">exchange</span> with the atmosphere and ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PalOc..30..384S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PalOc..30..384S"><span>Red <span class="hlt">Sea</span> circulation during marine isotope stage 5e</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siccha, Michael; Biton, Eli; Gildor, Hezi</p> <p>2015-04-01</p> <p>We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red <span class="hlt">Sea</span> to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in <span class="hlt">air</span> temperature of more than 2°C and global <span class="hlt">sea</span> level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red <span class="hlt">Sea</span> region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red <span class="hlt">Sea</span> that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red <span class="hlt">Sea</span> circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red <span class="hlt">Sea</span>. Such an increase significantly reduced the Red <span class="hlt">Sea</span> salinity and <span class="hlt">exchange</span> volume of the Red <span class="hlt">Sea</span> with the Gulf of Aden. The Red <span class="hlt">Sea</span> reacted to the MIS 5e insolation forcing by the expected increase in seasonal <span class="hlt">sea</span> surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..197..150O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..197..150O"><span>Epiphytic invertebrate patterns in coastal lakes along a gradient of salinity and water <span class="hlt">exchange</span> with the <span class="hlt">sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obolewski, Krystian; Bąkowska, Martyna</p> <p>2017-10-01</p> <p>The species composition and abundance of epiphytic fauna inhabiting common reed (Phragmites australis (Cav.) Trin. ex Steud.) was performed in five coastal lakes in Słowiński National Park (southern Baltic coast in northern Poland). The lakes represent a salinity gradient (from freshwater to β-oligohaline waters) and four types of coastal lakes: (1) lagoon, L (Lake Łebsko, seawater enters it permanently); (2) coastal lake with periodically brackish water, CLB (Lake Gardno); (3) freshwater costal lake, CLF (Lake Smołdzińskie); and (4) coastal dune lakes, CLD (Dołgie Wielkie and Dołgie Małe). Using statistical ordination techniques, we found that the structure of epiphytic fauna (microinvertebrates and macroinvertebrates) is determined primarily by hydrological connectivity (water <span class="hlt">exchange</span>) with the <span class="hlt">sea</span>. Canonical Correspondence Analysis, coupled with variance partitioning, showed that hydrological connectivity accounted for 24% of the variation in the invertebrate community, followed by physico-chemical (19%) and trophic (8%) factors. Our results indicate that the assemblages of Ciliata-libera and Cnidaria are characteristic for L (β-oligohaline), Rotifera, Suctoria, Chaetogaster sp., Gastropoda and Trichoptera are characteristic for CLB (limnetic/β-oligohaline), but no taxonomic groups are characteristic for CLF and CLD (both limnetic). The index of multivariate dispersion showed a decreasing trend with the increasing lake isolation from the open <span class="hlt">sea</span>, except for CLD. However, in terms of the structure of epiphytic fauna, Multi-Response Permutation Procedures showed that CLD significantly differed only from CLB. Our results suggest that the identified characteristic taxonomic groups of plant-associated macroinvertebrates have a high potential to be used as bioindicators of salinity and water <span class="hlt">exchange</span> with the <span class="hlt">sea</span>, due to their sensitivity to environmental stress.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUSM.A23B..01K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUSM.A23B..01K"><span><span class="hlt">Air-Sea</span> Interaction in the Gulf of Tehuantepec</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khelif, D.; Friehe, C. A.; Melville, W. K.</p> <p>2007-05-01</p> <p>Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The <span class="hlt">air-sea</span> fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/14667723','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/14667723"><span>Current issues and uncertainties in the measurement and modelling of <span class="hlt">air</span>-vegetation <span class="hlt">exchange</span> and within-plant processing of POPs.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barber, Jonathan L; Thomas, Gareth O; Kerstiens, Gerhard; Jones, Kevin C</p> <p>2004-01-01</p> <p><span class="hlt">Air</span>-vegetation <span class="hlt">exchange</span> of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the <span class="hlt">air</span>-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on <span class="hlt">air</span>/plant <span class="hlt">exchange</span> of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of <span class="hlt">air</span>-vegetation <span class="hlt">exchange</span> do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of <span class="hlt">air</span>-plant <span class="hlt">exchange</span> and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.2699S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.2699S"><span>Coccolithophore surface distributions in the North Atlantic and their modulation of the <span class="hlt">air-sea</span> flux of CO2 from 10 years of satellite Earth observation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shutler, J. D.; Land, P. E.; Brown, C. W.; Findlay, H. S.; Donlon, C. J.; Medland, M.; Snooke, R.; Blackford, J. C.</p> <p>2013-04-01</p> <p>Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50%) and their calcification can affect the atmosphere-to-ocean (<span class="hlt">air-sea</span>) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the <span class="hlt">Sea</span>-viewing Wide Field-of-view Sensor (<span class="hlt">Sea</span>WiFS). We calculate the annual mean <span class="hlt">sea</span> surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO) climate oscillation index (r=0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised <span class="hlt">air-sea</span> flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly <span class="hlt">air-sea</span> CO2 flux can reach 55%. The maximum reduction of the monthly <span class="hlt">air-sea</span> CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic <span class="hlt">air-to-sea</span> flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..12210174S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..12210174S"><span>Is the State of the <span class="hlt">Air-Sea</span> Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac</p> <p>2017-12-01</p> <p>Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the <span class="hlt">sea</span> surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the <span class="hlt">air-sea</span> interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the <span class="hlt">air-sea</span> coupling. The unified parameterization of waveform and two-phase drag based on the physics of the <span class="hlt">air-sea</span> interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601421','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601421"><span><span class="hlt">Air</span> <span class="hlt">Sea</span> Battle Intelligence, Surveillance, and Reconnaissance Concept of Operations: Getting Back to Fundamentals</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-05-08</p> <p>Assessment” phase. This phase will be constant throughout the <span class="hlt">AirSea</span> Battle. A subset of this phase includes battle damage assessment ( BDA ). BDA ...taskings for assessment. There may be situations where operations will cease until the proper BDA is desired. This possibility directly... BDA assessments. It is paramount to task fifth generation fighter with this mission set due to their advanced capabilities. 15 The USAF and USN</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00435.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00435.html"><span>Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder <span class="hlt">AIRS</span> and <span class="hlt">Sea</span>Winds Scatterometer</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-08-30</p> <p>This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the <span class="hlt">AIRS</span> infrared instrument onboard Aqua, and the <span class="hlt">Sea</span>Winds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. <span class="hlt">AIRS</span> data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by <span class="hlt">Sea</span>Winds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by <span class="hlt">AIRS</span>, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..1511944T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..1511944T"><span>A theoretical model of the influence of spray on the <span class="hlt">exchange</span> of momentum, with storm and hurricane winds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina</p> <p>2013-04-01</p> <p>A stochastic model of the "life cycle" of a droplet, the torn off the crest of a steep surface wave and then falling down to the water is constructed. The model includes the following constituents: i) a model of motion of a heavy particle in the forcing <span class="hlt">air</span> flow (equation of motion), ii) a model of the wind flow (wind velocity, wave-induced disturbances, turbulent fluctuations), iii) a model of spray injection, iiii) the droplet statistics (size distribution, wind-speed dependence) The interaction of water droplets in the atmospheric boundary layer with turbulent fluctuations is described in terms of the Markovian chain. The mean wind field in the marine atmospheric boundary layer is determined by the momentum <span class="hlt">exchange</span> associated with the turbulent and wave momentum transfer and by sprays. The wave and turbulent momentum <span class="hlt">exchange</span> is parameterized by the Charnok expression for the roughness parameter. Wave disturbances induced in the <span class="hlt">air</span> flow by waves at the surface, were calculated within the model of the marine atmospheric boundary suggested in [1]. The greatest uncertainty in this model is the mechanism of droplets injection. We consider two models for the injection of droplets in the <span class="hlt">air</span> flow. In the first model the droplets formed by the development of the Kelvin-Helmholtz instability, are entered in the flow with the orbital velocity of the wave (Koga's model [2]), The second mechanism, investigated in many papers, considers droplets from the breakdown of a jet which rises at high speeds from the bottom of the collapsing <span class="hlt">air</span> bubble cavity [3]. To determine the number of drops injected to the atmospheric boundary layer from the <span class="hlt">sea</span> surface, the Spray generation function proposed in [4] was in use. Within the model the momentum acquired by every droplet in the interaction with the <span class="hlt">air</span> flow was calculated. Depending on the particular field of <span class="hlt">air</span> velocity, wave parameters and the radius of the droplet, it can both get and deliver momentum give impetus to the <span class="hlt">air</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27461227','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27461227"><span><span class="hlt">Air</span> breathing and aquatic gas <span class="hlt">exchange</span> during hypoxia in armoured catfish.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L</p> <p>2017-01-01</p> <p><span class="hlt">Air</span> breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of <span class="hlt">air</span> breathing for tissue O 2 supply depends on the ability to avoid O 2 loss as oxygenated blood from the <span class="hlt">air</span>-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative <span class="hlt">air</span> breather-can avoid branchial O 2 loss while <span class="hlt">air</span> breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O 2 supply and utilization. Fish were instrumented with opercular catheters to measure the O 2 tension (PO 2 ) of expired water, and <span class="hlt">air</span> breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O 2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began <span class="hlt">air</span> breathing at a water PO 2 of 2.5 kPa, and both <span class="hlt">air</span>-breathing frequency and hypoxia tolerance (as reflected by PO 2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O 2 loss, as reflected by higher PO 2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO 2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O 2 binding affinity when sampled in normoxia (P 50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P 50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-<span class="hlt">exchange</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997GeoRL..24.2561R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997GeoRL..24.2561R"><span>Tracer signals of the intermediate layer of the Arabian <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rhein, Monika; Stramma, Lothar; Plähn, Olaf</p> <p></p> <p>In 1995, hydrographic and chlorofluorocarbon (CFCs, components F11, F12) measurements were carried out in the Gulf of Aden, in the Gulf of Oman, and in the Arabian <span class="hlt">Sea</span>. In the Gulf of Oman, the F12 concentrations in the Persian Gulf outflow (PGW) at about 300m depth were significantly higher than in ambient surface water with saturations reaching 270%. These high values could not be caused by <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>. The outflow was probably contaminated with oil, and the lipophilic character of the CFCs could then lead to the observed supersaturations. The intermediate F12 maximum decreased rapidly further east and south. At the Strait of Bab el Mandeb in the Gulf of Aden, the Red <span class="hlt">Sea</span> outflow (RSW) was saturated with F12 to about 65% at 400m depth, and decreased to 50% while descending to 800m depth. The low saturation is not surprising, because the outflow contains deep and intermediate water masses from the Red <span class="hlt">Sea</span> which were isolated from the surface for some time. The tracer contributions to the Arabian <span class="hlt">Sea</span> for Indian Central Water (ICW) and PGW are about equal, while below 500m depth the RSW contribution greatly exceeds ICW. Modeling the CFC budget of the Arabian <span class="hlt">Sea</span>, the inflow of ICW north of 12°N is estimated to be 1-6 Sv, depending mainly on the strength of the flow of Red <span class="hlt">Sea</span> Water into the Arabian <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28715890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28715890"><span>Spring Melt and the Redistribution of Organochlorine Pesticides in the <span class="hlt">Sea</span>-Ice Environment: A Comparative Study between Arctic and Antarctic Regions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bigot, Marie; Hawker, Darryl W; Cropp, Roger; Muir, Derek Cg; Jensen, Bjarne; Bossi, Rossana; Bengtson Nash, Susan M</p> <p>2017-08-15</p> <p>Complementary sampling of <span class="hlt">air</span>, snow, <span class="hlt">sea</span>-ice, and seawater for a range of organochlorine pesticides (OCPs) was undertaken through the early stages of respective spring <span class="hlt">sea</span>-ice melting at coastal sites in northeast Greenland and eastern Antarctica to investigate OCP concentrations and redistribution during this time. Mean concentrations in seawater, <span class="hlt">sea</span>-ice and snow were generally greater at the Arctic site. For example, α-HCH was found to have the largest concentrations of all analytes in Arctic seawater and <span class="hlt">sea</span>-ice meltwater samples (224-253 and 34.7-48.2 pg·L -1 respectively compared to 1.0-1.3 and <0.63 pg·L -1 respectively for Antarctic samples). Differences in atmospheric samples were generally not as pronounced however. Findings suggest that <span class="hlt">sea</span>-ice OCP burdens originate from both snow and seawater. The distribution profile between seawater and <span class="hlt">sea</span>-ice showed a compound-dependency for Arctic samples not evident with those from the Antarctic, possibly due to full submersion of <span class="hlt">sea</span>-ice at the former. Seasonal <span class="hlt">sea</span>-ice melt processes may alter the <span class="hlt">exchange</span> rates of selected OCPs between <span class="hlt">air</span> and seawater, but are not expected to reverse their direction, which fugacity modeling indicates is volatilisation in the Arctic and net deposition in the Antarctic. These predictions are consistent with the limited current observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25386953','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25386953"><span>Modeling spatial and temporal variability of residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates for the Near-Road Exposures and Effects of Urban <span class="hlt">Air</span> Pollutants Study (NEXUS).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breen, Michael S; Burke, Janet M; Batterman, Stuart A; Vette, Alan F; Godwin, Christopher; Croghan, Carry W; Schultz, Bradley D; Long, Thomas C</p> <p>2014-11-07</p> <p><span class="hlt">Air</span> pollution health studies often use outdoor concentrations as exposure surrogates. Failure to account for variability of residential infiltration of outdoor pollutants can induce exposure errors and lead to bias and incorrect confidence intervals in health effect estimates. The residential <span class="hlt">air</span> <span class="hlt">exchange</span> rate (AER), which is the rate of <span class="hlt">exchange</span> of indoor <span class="hlt">air</span> with outdoor <span class="hlt">air</span>, is an important determinant for house-to-house (spatial) and temporal variations of <span class="hlt">air</span> pollution infiltration. Our goal was to evaluate and apply mechanistic models to predict AERs for 213 homes in the Near-Road Exposures and Effects of Urban <span class="hlt">Air</span> Pollutants Study (NEXUS), a cohort study of traffic-related <span class="hlt">air</span> pollution exposures and respiratory effects in asthmatic children living near major roads in Detroit, Michigan. We used a previously developed model (LBL), which predicts AER from meteorology and questionnaire data on building characteristics related to <span class="hlt">air</span> leakage, and an extended version of this model (LBLX) that includes natural ventilation from open windows. As a critical and novel aspect of our AER modeling approach, we performed a cross validation, which included both parameter estimation (i.e., model calibration) and model evaluation, based on daily AER measurements from a subset of 24 study homes on five consecutive days during two seasons. The measured AER varied between 0.09 and 3.48 h(-1) with a median of 0.64 h(-1). For the individual model-predicted and measured AER, the median absolute difference was 29% (0.19 h‑1) for both the LBL and LBLX models. The LBL and LBLX models predicted 59% and 61% of the variance in the AER, respectively. Daily AER predictions for all 213 homes during the three year study (2010-2012) showed considerable house-to-house variations from building leakage differences, and temporal variations from outdoor temperature and wind speed fluctuations. Using this novel approach, NEXUS will be one of the first epidemiology studies to apply calibrated and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5500K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5500K"><span>Impact of a nitrogen emission control area (NECA) for ship traffic on the future <span class="hlt">air</span> quality in the Baltic <span class="hlt">Sea</span> region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karl, Matthias; Geyer, Beate; Bieser, Johannes; Matthias, Volker; Quante, Markus; Jalkanen, Jukka-Pekka; Johansson, Lasse; Fridell, Erik</p> <p>2017-04-01</p> <p>Deposition of nitrogen compounds originating from shipping activities contribute to eutrophication of the Baltic <span class="hlt">Sea</span> and coastal areas in the Baltic <span class="hlt">Sea</span> region. Emissions of nitrogen oxides (NOx) from shipping on the Baltic <span class="hlt">Sea</span> are comparable to the combined land-based emissions of NOx from Finland and Sweden and have been relatively stable over the last decade. However, expected future growth of maritime transport will result in higher fuel consumption and, if not compensated by increased transport efficiency or other measures, lead to higher total emissions of NOx from shipping. For the Baltic <span class="hlt">Sea</span> a nitrogen emission control area (NECA) will become effective in 2021 - permitting only new built ships that are compliant with stringent Tier III emission limits - with the target of reducing NOx-emissions. In order to study the effect of implementing a Baltic <span class="hlt">Sea</span> NECA-2021 on <span class="hlt">air</span> quality and nitrogen deposition two future scenarios were designed; one with implementation of a NECA for the Baltic <span class="hlt">Sea</span> starting in 2021 and another with no NECA implemented. The same increase of ship traffic was assumed for both future scenarios. Since complete fleet renewal with low NOx-emitting engines is not expected until 20-30 years after the NECA entry date, year 2040 was chosen as future scenario year. The Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model was used to simulate the current and future <span class="hlt">air</span> quality situation. The nested simulation runs with CMAQ were performed on a horizontal resolution of 4 km × 4 km for the entire Baltic <span class="hlt">Sea</span> region. The meteorological year 2012 was chosen for the simulation of the current and future <span class="hlt">air</span> quality situation since the 2m-temperature and precipitation anomalies of 2012 are closely aligned to the 2004-2014 decadal average over Baltic Proper. High-resolution meteorology obtained from COSMO-CLM was used for the regional simulations. Ship emissions were generated with the Ship Traffic Emission Assessment Model (STEAM) by the Finnish Meteorological</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013732','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013732"><span>Wave-Ice and <span class="hlt">Air</span>-Ice-Ocean Interaction During the Chukchi <span class="hlt">Sea</span> Ice Edge Advance</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and <span class="hlt">Air</span>-Ice-Ocean Interaction During the...Chukchi <span class="hlt">Sea</span> in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31D..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31D..07M"><span><span class="hlt">Sea</span> Ice Retreat and its Impact on the Intensity of Open-Ocean Convection in the Greenland and Iceland <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, K.; Våge, K.; Pickart, R. S.; Renfrew, I.</p> <p>2016-12-01</p> <p>The <span class="hlt">air-sea</span> transfer of heat and freshwater plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland <span class="hlt">Seas</span>, where these fluxes drive ocean convection that contributes to Denmark Strait Overflow Water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). This buoyancy transfer is most pronounced during the winter downstream of the ice edge, where the cold and dry Arctic <span class="hlt">air</span> first comes in contact with the relatively warm ocean surface. Here we show that the wintertime retreat of <span class="hlt">sea</span> ice in the region, combined with different rates of warming for the atmosphere and <span class="hlt">sea</span> surface of the Greenland and Iceland <span class="hlt">Seas</span>, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter <span class="hlt">air-sea</span> heat fluxes since 1979. Furthermore, it is demonstrated that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional <span class="hlt">air-sea</span> interaction in this region. Mixed-layer model simulations imply that a continued decrease in atmospheric forcing will exceed a threshold for the Greenland <span class="hlt">Sea</span> whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic <span class="hlt">Seas</span>. In the Iceland <span class="hlt">Sea</span>, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000643.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000643.html"><span><span class="hlt">Sea</span> ice in the Greenland <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of <span class="hlt">sea</span> ice off Greenland on July 16, 2015. Large chunks of melting <span class="hlt">sea</span> ice can be seen in the <span class="hlt">sea</span> ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland <span class="hlt">Sea</span>. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the <span class="hlt">sea</span>, as do newly calved icebergs. Frigid <span class="hlt">air</span> from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and <span class="hlt">air</span> allows some <span class="hlt">sea</span> ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer <span class="hlt">sea</span> ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic <span class="hlt">sea</span> ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132...31W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132...31W"><span>Effects of <span class="hlt">air-sea</span> interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Xujia; Zheng, Zhihai; Feng, Guolin</p> <p>2018-04-01</p> <p>The contribution of <span class="hlt">air-sea</span> interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the <span class="hlt">air-sea</span> interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the <span class="hlt">air-sea</span> interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910021829','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910021829"><span>Flight tests with a data link used for <span class="hlt">air</span> traffic control information <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Knox, Charles E.; Scanlon, Charles H.</p> <p>1991-01-01</p> <p>Previous studies showed that <span class="hlt">air</span> traffic control (ATC) message <span class="hlt">exchange</span> with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message <span class="hlt">exchange</span> during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24479263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24479263"><span>Managing acute coronary syndrome during medical <span class="hlt">air</span> evacuation from a remote location at <span class="hlt">sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Westmoreland, Andrew H</p> <p>2014-01-01</p> <p>Coronary emergencies at <span class="hlt">sea</span> requiring <span class="hlt">air</span> evacuation are not uncommon. On board a Nimitz-class aircraft carrier while in a remote location, an active duty sailor suffered a myocardial infarction. A medical evacuation by helicopter was necessary. Transfer proved difficult due to the ship's location, poor flying conditions, and the patient's deteriorating condition. This case stresses the importance of expeditious diagnosis, treatment, and <span class="hlt">air</span> transfer to shore-based facilities capable of providing definitive coronary care. A 33-yr-old man recently started on trazodone due to depression complained of chest pain. The patient was hemodynamically unstable and electrocardiogram showed ST segment elevation and Q waves in the anterior, inferior, and lateral leads. He was <span class="hlt">air</span>-lifted to the nearest accepting facility with cardiac catheterization capabilities, which was over 300 miles away. Poor weather conditions hindered the pilot's ability to fly the original course. The patient remained critical and medication choices were limited. Even with all of these obstacles, everyone involved performed his or her duties admirably. The patient's condition improved by the time the helicopter landed. He was then rushed by ambulance to the hospital's coronary care unit, where he was successfully treated. This case highlights the need to keep a high index of suspicion when patients complain of chest pain, regardless of age. It is of the utmost importance that individuals capable of thinking and acting quickly are assigned to medical evacuation teams, and that they continue to train regularly, as coronary events at <span class="hlt">sea</span> are not uncommon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.955a2002D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.955a2002D"><span>The study of the effects of <span class="hlt">sea</span>-spray drops on the marine atmospheric boundary layer by direct numerical simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.</p> <p>2018-01-01</p> <p>The detailed knowledge of turbulent <span class="hlt">exchange</span> processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of <span class="hlt">sea</span>-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of <span class="hlt">sea</span>-spray drops increases with wind speed and their impact on the dynamics of the <span class="hlt">air</span> in the vicinity of the <span class="hlt">sea</span> surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated <span class="hlt">exchange</span> processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface <span class="hlt">air</span>-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden <span class="hlt">air</span> flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the <span class="hlt">air</span> flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the <span class="hlt">air</span>-flow fields are solved in a Eulerian frame whereas</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26499262','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26499262"><span>A parabolic model of drag coefficient for storm surge simulation in the South China <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peng, Shiqiu; Li, Yineng</p> <p>2015-10-26</p> <p>Drag coefficient (Cd) is an essential metric in the calculation of momentum <span class="hlt">exchange</span> over the <span class="hlt">air-sea</span> interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with <span class="hlt">sea</span> surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China <span class="hlt">Sea</span> (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NatSR...515496P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NatSR...515496P"><span>A parabolic model of drag coefficient for storm surge simulation in the South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Shiqiu; Li, Yineng</p> <p>2015-10-01</p> <p>Drag coefficient (Cd) is an essential metric in the calculation of momentum <span class="hlt">exchange</span> over the <span class="hlt">air-sea</span> interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with <span class="hlt">sea</span> surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China <span class="hlt">Sea</span> (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4620453','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4620453"><span>A parabolic model of drag coefficient for storm surge simulation in the South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Peng, Shiqiu; Li, Yineng</p> <p>2015-01-01</p> <p>Drag coefficient (Cd) is an essential metric in the calculation of momentum <span class="hlt">exchange</span> over the <span class="hlt">air-sea</span> interface and thus has large impacts on the simulation or forecast of the upper ocean state associated with <span class="hlt">sea</span> surface winds such as storm surges. Generally, Cd is a function of wind speed. However, the exact relationship between Cd and wind speed is still in dispute, and the widely-used formula that is a linear function of wind speed in an ocean model could lead to large bias at high wind speed. Here we establish a parabolic model of Cd based on storm surge observations and simulation in the South China <span class="hlt">Sea</span> (SCS) through a number of tropical cyclone cases. Simulation of storm surges for independent Tropical cyclones (TCs) cases indicates that the new parabolic model of Cd outperforms traditional linear models. PMID:26499262</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4329L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4329L"><span>A revised global ozone dry deposition estimate based on a new two-layer parameterisation for <span class="hlt">air-sea</span> <span class="hlt">exchange</span> and the multi-year MACC composition reanalysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhar, Ashok K.; Woodhouse, Matthew T.; Galbally, Ian E.</p> <p>2018-03-01</p> <p>Dry deposition at the Earth's surface is an important sink of atmospheric ozone. Currently, dry deposition of ozone to the ocean surface in atmospheric chemistry models has the largest uncertainty compared to deposition to other surface types, with implications for global tropospheric ozone budget and associated radiative forcing. Most global models assume that the dominant term of surface resistance in the parameterisation of ozone dry deposition velocity at the oceanic surface is constant. There have been recent mechanistic parameterisations for <span class="hlt">air-sea</span> <span class="hlt">exchange</span> that account for the simultaneous waterside processes of ozone solubility, molecular diffusion, turbulent transfer, and first-order chemical reaction of ozone with dissolved iodide and other compounds, but there are questions about their performance and consistency. We present a new two-layer parameterisation scheme for the oceanic surface resistance by making the following realistic assumptions: (a) the thickness of the top water layer is of the order of a reaction-diffusion length scale (a few micrometres) within which ozone loss is dominated by chemical reaction and the influence of waterside turbulent transfer is negligible; (b) in the water layer below, both chemical reaction and waterside turbulent transfer act together and are accounted for; and (c) chemical reactivity is present through the depth of the oceanic mixing layer. The new parameterisation has been evaluated against dry deposition velocities from recent open-ocean measurements. It is found that the inclusion of only the aqueous iodide-ozone reaction satisfactorily describes the measurements. In order to better quantify the global dry deposition loss and its interannual variability, modelled 3-hourly ozone deposition velocities are combined with the 3-hourly MACC (Monitoring Atmospheric Composition and Climate) reanalysis ozone for the years 2003-2012. The resulting ozone dry deposition is found to be 98.4 ± 30.0 Tg O3 yr-1 for the ocean</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.908a2046X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.908a2046X"><span>Functional design of heat <span class="hlt">exchange</span> for pneumatic vehicles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Z. G.; Yang, D. Y.; Shen, W. D.; Liu, T. T.</p> <p>2017-10-01</p> <p>With the increasingly serious environmental problems, especially the impact of fog and haze, the development of <span class="hlt">air</span> powered vehicles has become an important research direction of new energy vehicles. Quadrature test was done with different materials, i.e. stainless steel and aluminum alloy, at different inlet pressures, using different expansion gases, i.e. <span class="hlt">air</span>, CO2, for heat <span class="hlt">exchanging</span> properties for pneumatic vehicles. The mathematics as well as simulation methods are used to analyze the different heat <span class="hlt">exchanging</span> effects in the multistage cylinder. The research results showed that the stainless steel has better effects in heat <span class="hlt">exchanging</span> than Aluminum Alloy; the intake pressure has little effect on CO2 than the <span class="hlt">air</span> in heat <span class="hlt">exchanging</span> effect. CO2 is better in heat <span class="hlt">exchanging</span> than <span class="hlt">air</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D"><span>Interannual variability of primary production and <span class="hlt">air-sea</span> CO2 flux in the Atlantic and Indian sectors of the Southern Ocean.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David</p> <p>2013-04-01</p> <p>As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological processes that control <span class="hlt">air-sea</span> CO2 fluxes and how these processes might respond to climate change. It is well established that primary production is one of the major drivers of <span class="hlt">air-sea</span> CO2 fluxes, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater fluxes over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical processes may balance this response to set the seasonal cycle of <span class="hlt">air-sea</span> CO2 fluxes. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and <span class="hlt">Sea</span>WiFS data. A decomposition of the physical and biological processes driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and <span class="hlt">air-sea</span> flux contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological process contribution are quantified and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1988asme.conf....2B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1988asme.conf....2B"><span>Heat transfer and pressure drop measurements in an <span class="hlt">air</span>/molten salt direct-contact heat <span class="hlt">exchanger</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bohn, Mark S.</p> <p>1988-11-01</p> <p>This paper presents a comparison of experimental data with a recently published model of heat <span class="hlt">exchange</span> in irrigated packed beds. Heat transfer and pressure drop were measured in a 150 mm (ID) column with a 610 mm bed of metal Pall rings. Molten nitrate salt and preheated <span class="hlt">air</span> were the working fluids with a salt inlet temperature of approximately 440 C and <span class="hlt">air</span> inlet temperatures of approximately 230 C. A comparison between the experimental data and the heat transfer model is made on the basis of heat transfer from the salt. For the range of <span class="hlt">air</span> and salt flow rates tested, 0.3 to 1.2 kg/sq m/s <span class="hlt">air</span> flow and 6 to 18 kg/sq m/s salt flow, the data agree with the model within 22 percent standard deviation. In addition, a model for the column pressure drop was validated, agreeing with the experimental data within 18 percent standard deviation over the range of column pressure drop from 40 to 1250 Pa/m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A32F..08C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A32F..08C"><span>Constraining the Stratosphere-Troposphere <span class="hlt">Exchange</span> of Radiocarbon using <span class="hlt">Air</span>Core 14CO2 Measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, H.</p> <p>2016-12-01</p> <p>Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the upper atmosphere due to reactions of nitrogen nuclei with thermal neutrons that are induced by cosmic rays. 14C is quickly oxidized to 14CO, which is then further oxidized to 14CO2 by OH. To this end, better understanding the radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, upper atmospheric 14C observations have been very sparse to constrain the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14CO2 measurements using <span class="hlt">Air</span>Core samples from Sodankylä, Northern Finland, along with regular <span class="hlt">Air</span>Core profiles of CO2, CH4, and CO since 2013. In this study, we calculate the stratosphere-troposphere <span class="hlt">exchange</span> of 14C using the correlation between 14CO2 and N2O, and the estimated N2O loss rate. Besides this, we assess the impact of the mean age of <span class="hlt">air</span> on 14CO2 profiles. Furthermore, we will evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016E%26ES...36a2056J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016E%26ES...36a2056J"><span>Design and simulation of heat <span class="hlt">exchangers</span> using Aspen HYSYS, and Aspen <span class="hlt">exchanger</span> design and rating for paddy drying application</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Janaun, J.; Kamin, N. H.; Wong, K. H.; Tham, H. J.; Kong, V. V.; Farajpourlar, M.</p> <p>2016-06-01</p> <p><span class="hlt">Air</span> heating unit is one of the most important parts in paddy drying to ensure the efficiency of a drying process. In addition, an optimized <span class="hlt">air</span> heating unit does not only promise a good paddy quality, but also save more for the operating cost. This study determined the suitable and best specifications heating unit to heat <span class="hlt">air</span> for paddy drying in the LAMB dryer. In this study, Aspen HYSYS v7.3 was used to obtain the minimum flow rate of hot water needed. The resulting data obtained from Aspen HYSYS v7.3 were used in Aspen <span class="hlt">Exchanger</span> Design and Rating (EDR) to generate heat <span class="hlt">exchanger</span> design and costs. The designs include shell and tubes and plate heat <span class="hlt">exchanger</span>. The heat <span class="hlt">exchanger</span> was designed in order to produce various drying temperatures of 40, 50, 60 and 70°C of <span class="hlt">air</span> with different flow rate, 300, 2500 and 5000 LPM. The optimum condition for the heat <span class="hlt">exchanger</span> were found to be plate heat <span class="hlt">exchanger</span> with 0.6 mm plate thickness, 198.75 mm plate width, 554.8 mm plate length and 11 numbers of plates operating at 5000 LPM <span class="hlt">air</span> flow rate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009EGUGA..1112639R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009EGUGA..1112639R"><span>On the Mediterranean <span class="hlt">Sea</span> inter-basin <span class="hlt">exchanges</span> and nutrient dynamics</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rupolo, V.; Ribera D'Alcalà, M.; Iudicone, D.; Artale, V.</p> <p>2009-04-01</p> <p>The Mediterranean <span class="hlt">Sea</span> is an evaporative basin in which the deficit of water is supplied by the inflow from the Gibraltar Strait of Atlantic Water. The net result of the <span class="hlt">air</span> <span class="hlt">sea</span> interactions in the entire basin is an outflow at Gibraltar of a salty water that is mainly constituted by the Levantin Intermediate Water, formed in the eastern part of the basin. Despite this simplified pattern, the circulation in the Mediterranean is rather complex. Most of the Mediterranean sub-basins are characterized by water mass formation processes and the presence of sills and straits strongly influence both the spreading and the mixing of intermediate and deep waters. In this context a Lagrangian diagnostics applied to numerical results was used to quantify mass transport in the main pathways of the upper and lower cells of the Mediterranean thermohaline circulation as they results from OGCM simulations. Lagrangian diagnostics reveals to be very useful to quantify both transports between different regions and the associated spectrum of transit times by means of pdf distribution of particles transit times between the different regions of the basin. This method is very effective to estimate the contribution of different water masses in isopycnal and diapycnal transformation processes and in reconstructing the fate of tracers. We use here these previous results on the basin circulation for better understanding the nutrient dynamics within the basin where the inputs from the different sources (atmosphere, runoff and open ocean) have similar order of magnitude. This, to the aim of building scenarios on the impact of climate driven changes in elemental fluxes to the basin on the internal nutrient dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29059626','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29059626"><span>Contamination of short-chain chlorinated paraffins to the biotic and abiotic environments in the Bohai <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Wanyanhan; Huang, Tao; Chen, Han; Lian, Lulu; Liang, Xiaoxue; Jia, Chenhui; Gao, Hong; Mao, Xiaoxuan; Zhao, Yuan; Ma, Jianmin</p> <p>2018-02-01</p> <p>Short-chain chlorinated paraffins (SCCPs) have been produced and emitted intensively around the Bohai <span class="hlt">Sea</span>, potentially causing risks to this unique ecosystem and one of primary fishery resources in China and busiest seaways in the world. Little is known about fate, cycling, and sources of SCCPs in the Bohai <span class="hlt">Sea</span> biotic and abiotic environment. In this study, we combined a marine food web model with a comprehensive atmospheric transport-multiple phase <span class="hlt">exchange</span> model to quantify SCCPs in the biotic and abiotic environment in the Bohai <span class="hlt">Sea</span>. We performed multiple modeling scenario investigations to examine SCCP levels in water, sediment, and phytoplankton. We assessed numerically dry and wet depositions, biomagnification and bioaccumulation of SCCPs in the Bohai <span class="hlt">Sea</span> marine food web. Results showed declining SCCP levels in water and sediment with increasing distance from the coastline, and so do dry and wet depositions. The net deposition overwhelmed the water-<span class="hlt">air</span> <span class="hlt">exchange</span> of SCCPs due to their current use in China, though the diffusive gas deposition fluctuated monthly subject to mean wind speed and temperature. A risk assessment manifests that SCCPs levels in the Bohai <span class="hlt">Sea</span> fish species are at present not posing risks to the residents in the Bohai <span class="hlt">Sea</span> Rim region. We identified that the SCCP emission sources in the south of the Bohai <span class="hlt">Sea</span> made a primary contribution to its loadings to the seawater and fish contamination associated with the East Asian summer monsoon. In contrast, the SCCP emissions from the north and northwest regions of the Bohai <span class="hlt">Sea</span> were major sources contributing to their loading and contamination to Bohai <span class="hlt">Sea</span> food web during the wintertime, potentially driven by the East Asian winter monsoon. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCD.....6.1015R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCD.....6.1015R"><span>Ikaite crystals in melting <span class="hlt">sea</span> ice - implications for pCO2 and pH levels in Arctic surface waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.</p> <p>2012-03-01</p> <p>A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span>. This has been complicated by the recent discoveries of ikaite (CaCO3·6H2O) in Arctic and Antarctic <span class="hlt">sea</span> ice, which indicate that multiple chemical transformations occur in <span class="hlt">sea</span> ice with a possible effect on CO2 and pH conditions in surface waters. Here we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from an actively melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the <span class="hlt">sea</span> ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures gradually disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice flow thickness by ca. 0.2 m per week and resulted in an estimated 1.6 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an <span class="hlt">air-sea</span> CO2 uptake of 11 mmol m-2 <span class="hlt">sea</span> ice d-1 or to 3.5 ton km-2 ice floe week-1.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19910095','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19910095"><span>Organochlorine pesticides in soils of Mexico and the potential for soil-<span class="hlt">air</span> <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wong, Fiona; Alegria, Henry A; Bidleman, Terry F</p> <p>2010-03-01</p> <p>The spatial distribution of organochlorine pesticides (OCs) in soils and their potential for soil-<span class="hlt">air</span> <span class="hlt">exchange</span> was examined. The most prominent OCs were the DDTs (Geometric Mean, GM=1.6 ng g(-1)), endosulfans (0.16 ng g(-1)), and toxaphenes (0.64 ng g(-1)). DDTs in soils of southern Mexico showed fresher signatures with higher FDDTe=p,p'-DDT/(p,p'-DDT+p,p'-DDE) and more racemic o,p'-DDT, while the signatures in the central and northern part of Mexico were more indicative of aged residues. Soil-<span class="hlt">air</span> fugacity fractions showed that some soils are net recipients of DDTs from the atmosphere, while other soils are net sources. Toxaphene profiles in soils and <span class="hlt">air</span> showed depletion of Parlar 39 and 42 which suggests that soil is the source to the atmosphere. Endosulfan was undergoing net deposition at most sites as it is a currently used pesticide. Other OCs showed wide variability in fugacity, suggesting a mix of net deposition and volatilization. Copyright (c) 2009 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1422909','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1422909"><span>Climate Modeling and Causal Identification for <span class="hlt">Sea</span> Ice Predictability</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark</p> <p></p> <p>This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing <span class="hlt">sea</span> ice trends have been observed in recent decades and are expected to continue in the future. As part of the <span class="hlt">Sea</span> Ice Prediction Network, a multi-agency effort to improve <span class="hlt">sea</span> ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of <span class="hlt">sea</span> ice to a collection of physical process and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, <span class="hlt">sea</span> ice, and <span class="hlt">air</span>-ocean turbulent <span class="hlt">exchange</span> parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify interaction pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone <span class="hlt">sea</span> ice simulations produced in our previous w14_seaice project.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12787576','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12787576"><span>The role of the <span class="hlt">exchanges</span> through the Strait of Gibraltar on the budget of elements in the Western Mediterranean <span class="hlt">Sea</span>: consequences of human-induced modifications.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gómez, Fernando</p> <p>2003-06-01</p> <p>The role of the Strait of Gibraltar on the <span class="hlt">exchanges</span> of substances between Mediterranean <span class="hlt">Sea</span> and the Atlantic Ocean is reviewed. The previous estimations have been recalculated by using a similar water flux and compared with the river and atmospheric inputs to the Western Mediterranean <span class="hlt">Sea</span>. The man-induced changes in the dimensions of the Strait of Gibraltar increasing (planning the sill) or reducing of the cross-section by a total or partial dam are discussed. A total dam will control the <span class="hlt">sea</span>-level rise in the Mediterranean <span class="hlt">Sea</span>, but an annual increase of major nutrient concentrations of 1-2% could be expected, lower than the rate of increase of the river and atmospheric inputs in the Western Mediterranean <span class="hlt">Sea</span>. The increase of the cross-section of the Strait by increasing the depth (planning) at the sill could compensate the increase of the external nutrient inputs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT........22V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT........22V"><span>Photochemical influences on the <span class="hlt">air</span>-water <span class="hlt">exchange</span> of mercury</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vette, Alan Frederic</p> <p></p> <p>The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas <span class="hlt">exchange</span> may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in <span class="hlt">air</span> and water. These data were used to develop a mechanistic model to estimate <span class="hlt">air</span>-water <span class="hlt">exchange</span> of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8..901C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8..901C"><span>Ship emissions and the use of current <span class="hlt">air</span> cleaning technology: contributions to <span class="hlt">air</span> pollution and acidification in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claremar, Björn; Haglund, Karin; Rutgersson, Anna</p> <p>2017-10-01</p> <p>The shipping sector is a significant contributor to emissions of <span class="hlt">air</span> pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of <span class="hlt">air</span> pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic <span class="hlt">Sea</span> and the North <span class="hlt">Sea</span>, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km × 50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the <span class="hlt">air</span> quality criteria but their consequences for the marine environment are largely unknown</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003EOSTr..84..398M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003EOSTr..84..398M"><span><span class="hlt">Sea</span> Legs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Macdonald, Kenneth C.</p> <p></p> <p>Forty-foot, storm-swept <span class="hlt">seas</span>, Spitzbergen polar bears roaming vast expanses of Arctic ice, furtive <span class="hlt">exchanges</span> of forbidden manuscripts in Cold War Moscow, the New York city fashion scene, diving in mini-subs to the <span class="hlt">sea</span> floor hot srings, life with the astronauts, romance and heartbreak, and invading the last bastions of male exclusivity: all are present in this fast-moving, non-fiction account of one woman' fascinating adventures in the world of marine geology and oceanography.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..217a2021D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..217a2021D"><span>Working parameters affecting earth-<span class="hlt">air</span> heat <span class="hlt">exchanger</span> (EAHE) system performance for passive cooling: A review</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Darius, D.; Misaran, M. S.; Rahman, Md. M.; Ismail, M. A.; Amaludin, A.</p> <p>2017-07-01</p> <p>The study on the effect of the working parameters such as pipe material, pipe length, pipe diameter, depth of burial of the pipe, <span class="hlt">air</span> flow rate and different types of soils on the thermal performance of earth-<span class="hlt">air</span> heat <span class="hlt">exchanger</span> (EAHE) systems is very crucial to ensure that thermal comfort can be achieved. In the past decade, researchers have performed studies to develop numerical models for analysis of EAHE systems. Until recently, two-dimensional models replaced the numerical models in the 1990s and in recent times, more advanced analysis using three-dimensional models, specifically the Computational Fluid Dynamics (CFD) simulation in the analysis of EAHE system. This paper reviews previous models used to analyse the EAHE system and working parameters that affects the earth-<span class="hlt">air</span> heat <span class="hlt">exchanger</span> (EAHE) thermal performance as of February 2017. Recent findings on the parameters affecting EAHE performance are also presented and discussed. As a conclusion, with the advent of CFD methods, investigational work have geared up to modelling and simulation work as it saves time and cost. Comprehension of the EAHE working parameters and its effect on system performance is largely established. However, the study on type of soil and its characteristics on the performance of EAHEs systems are surprisingly barren. Therefore, future studies should focus on the effect of soil characteristics such as moisture content, density of soil, and type of soil on the thermal performance of EAHEs system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMS...148..122G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMS...148..122G"><span>Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.</p> <p>2015-08-01</p> <p>In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic <span class="hlt">Sea</span> model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and <span class="hlt">air-sea</span> <span class="hlt">exchange</span>. We demonstrate that phytoplankton production and respiration, and the related <span class="hlt">air-sea</span> CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic <span class="hlt">Sea</span> related to increased nutrient loads under the second half of the century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21275601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21275601"><span>Vitreous web after pars plana vitrectomy and bevacizumab with fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chiang, Allen; Reddy, Shantan; Tsui, Irena; Hubschman, Jean-Pierre</p> <p>2011-01-01</p> <p>Intravitreal bevacizumab may result in intraocular inflammation of infectious and non-infectious etiology. Appropriate recognition of a sterile process can circumvent unnecessary treatment for endophthalmitis. Observational case report. A marked web-like inflammatory response within the vitreous following intraoperative intravitreal bevacizumab is described in a patient with pre-proliferative diabetic retinopathy, macular edema, and epiretinal membrane who underwent pars plana vitrectomy, membrane peel, endolaser, and fluid-<span class="hlt">air</span> <span class="hlt">exchange</span>. Wide-field fundus photography captured the full extent of this reaction. On post-operative day one, the patient presented with vitreous opacities in the form of a web of multiple white strands inferior to an <span class="hlt">air</span> bubble, with minimal anterior or vitreous cell. At one week, the inflammatory reaction had completely resolved. Existing reports of intraocular inflammation following intravitreal bevacizumab range from uveitis to infectious endophthalmitis. With wide-field fundus imaging, we report an acute, marked web-like inflammatory response following intraoperative intravitreal bevacizumab that resolved spontaneously.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930005779&hterms=australian+copyright&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daustralian%2Bcopyright','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930005779&hterms=australian+copyright&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Daustralian%2Bcopyright"><span>North-Australian tropical <span class="hlt">seas</span> circulation study</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Burrage, Derek; Coleman, R.; Bode, L.; Inoue, M.</p> <p>1991-01-01</p> <p>This investigation is intended to fully address the stated objective of the TOPEX/POSEIDON mission (National Aeronautics and Space Administration, 1986). Hence, we intend to use TOPEX/POSEIDON altimetry data to study the large-scale circulation of the Coral <span class="hlt">Sea</span> Basin and the Arafura <span class="hlt">Sea</span> and the mass <span class="hlt">exchange</span> between these and adjoining basins. We will obtain data from two such cruises in 1993 and 1994 and combine them with TOPEX/POSEIDON radar altimetry data to identify interannual and seasonal changes in: (1) the location of the major ocean currents and the South Equatorial Current bifurcation in the Coral <span class="hlt">Sea</span>; (2) the source region of the South Tropical Counter Current (STCC); and (3) the water <span class="hlt">exchange</span> between the Coral <span class="hlt">Sea</span> and the adjoining <span class="hlt">seas</span>. We will also estimate seasonal and interannual variations in the horizontal transport of mass and heat associated with near-surface geostrophic and wind-driven currents. In addition, the tidal components of the Coral <span class="hlt">Sea</span> will be studied to provide a correction for altimetry subtidal <span class="hlt">sea</span> level changes and to develop a regional numerical model for tidal forcing in the Great Barrier Reef (GBR) and Papua New Guinea Reef regions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14..742J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14..742J"><span>In situ evaluation of <span class="hlt">air-sea</span> CO2 gas transfer velocity in an inner estuary using eddy covariance - with a special focus on the importance of using reliable CO2-fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jørgensen, E. T.; Sørensen, L. L.; Jensen, B.; Sejr, M. K.</p> <p>2012-04-01</p> <p>The <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of CO2 or CO2 flux is driven by the difference in the partial pressure of CO2 in the water and the atmosphere (ΔpCO2), the solubility of CO2 (K0) and the gas transfer velocity (k) (Wanninkhof et al., 2009;Weiss, 1974) . ΔpCO2 and K0 are determined with relatively high precision and it is estimated that the biggest uncertainty when modelling the <span class="hlt">air-sea</span> flux is the parameterization of k. As an example; the estimated global <span class="hlt">air-sea</span> flux increases by 70 % when using the parameterization by Wanninkhof and McGillis (1999) instead of Wanninkhof (1992) (Rutgersson et al., 2008). In coastal areas the uncertainty is even higher and only few studies have focused on determining transfer velocity for the coastal waters and even fewer on estuaries (Borges et al., 2004;Rutgersson et al., 2008). The transfer velocity (k600) of CO2 in the inner estuary of Roskilde Fjord, Denmark was investigated using eddy covariance CO2 fluxes (ECM) and directly measured ΔpCO2 during May and June 2010. The data was strictly sorted to heighten the certainty of the results and the outcome was; DS1; using only ECM, and DS2; including the inertial dissipation method (IDM). The inner part of Roskilde Fjord showed to be a very biological active CO2 sink and preliminary results showed that the average k600 was more than 10 times higher than transfer velocities from similar studies of other coastal areas. The much higher transfer velocities were estimated to be caused by the greater fetch and shallower water in Roskilde Fjord, which indicated that turbulence in both <span class="hlt">air</span> and water influence k600. The wind speed parameterization of k600 using DS1 showed some scatter but when including IDM the r2 of DS2 reached 0.93 with an exponential parameterization, where U10 was based on the Businger-Dyer relationships using friction velocity and atmospheric stability. This indicates that some of the uncertainties coupled with CO2 fluxes calculated by the ECM are removed when including the IDM.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082134"><span>Extratropical Stratosphere-Troposphere Mass <span class="hlt">Exchange</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schoeberl, Mark R.</p> <p>2004-01-01</p> <p>Understanding the <span class="hlt">exchange</span> of gases between the stratosphere and the troposphere is important for determining how pollutants enter the stratosphere and how they leave. This study does a global analysis of that the <span class="hlt">exchange</span> of mass between the stratosphere and the troposphere. While the <span class="hlt">exchange</span> of mass is not the same as the <span class="hlt">exchange</span> of constituents, you can t get the constituent <span class="hlt">exchange</span> right if you have the mass <span class="hlt">exchange</span> wrong. Thus this kind of calculation is an important test for models which also compute trace gas transport. In this study I computed the mass <span class="hlt">exchange</span> for two assimilated data sets and a GCM. The models all agree that amount of mass descending from the stratosphere to the troposphere in the Northern Hemisphere extra tropics is approx. 10(exp 10) kg/s averaged over a year. The value for the Southern Hemisphere by about a factor of two. ( 10(exp 10) kg of <span class="hlt">air</span> is the amount of <span class="hlt">air</span> in 100 km x 100 km area with a depth of 100 m - roughly the size of the D.C. metro area to a depth of 300 feet.) Most people have the idea that most of the mass enters the stratosphere through the tropics. But this study shows that almost 5 times more mass enters the stratosphere through the extra-tropics. This mass, however, is quickly recycled out again. Thus the lower most stratosphere is a mixture of upper stratospheric <span class="hlt">air</span> and tropospheric <span class="hlt">air</span>. This is an important result for understanding the chemistry of the lower stratosphere.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptEL..14..216X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptEL..14..216X"><span>Performance analysis of <span class="hlt">air</span>-water quantum key distribution with an irregular <span class="hlt">sea</span> surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian</p> <p>2018-05-01</p> <p>In the <span class="hlt">air</span>-water quantum key distribution (QKD), the irregular <span class="hlt">sea</span> surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular <span class="hlt">sea</span> surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ESASP.703E...9K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ESASP.703E...9K"><span><span class="hlt">Sea</span> Surface Temperature Products and Research Associated with GHRSST</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kaiser-Weiss, Andrea K.; Minnett, Peter J.; Kaplan, Alexey; Wick, Gary A.; Castro, Sandra; Llewellyn-Jones, David; Merchant, Chris; LeBorgne, Pierre; Beggs, Helen; Donlon, Craig J.</p> <p>2012-03-01</p> <p>GHRSST serves its user community through the specification of operational <span class="hlt">Sea</span> Surface Temperature (SST) products (Level 2, Level 3 and Level 4) based on international consensus. Providers of SST data from individual satellites create and deliver GHRSST-compliant near-real time products to a global GHRSST data assembly centre and a long-term stewardship facility. The GHRSST-compliant data include error estimates and supporting data for interpretation. Groups organised within GHRSST perform research on issues relevant to applying SST for <span class="hlt">air-sea</span> <span class="hlt">exchange</span>, for instance the Diurnal Variability Working Group (DVWG) analyses the evolution of the skin temperature. Other GHRSST groups concentrate on improving the SST estimate (Estimation and Retrievals Working Group EARWiG) and on improving the error characterization, (Satellite SST Validation Group, ST-VAL) and on improving the methods for SST analysis (Inter-Comparison Technical Advisory Group, IC-TAG). In this presentation we cover the data products and the scientific activities associated with GHRSST which might be relevant for investigating ocean-atmosphere interactions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=255244&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=255244&keyword=temperature+AND+variability&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Identifying Housing and Meteorological Conditions Influencing Residential <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Appropriate prediction of residential <span class="hlt">air</span> <span class="hlt">exchange</span> rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated <span class="hlt">air</span> pollutants indoors. AER differences among homes may result from a number of fact...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25320032','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25320032"><span>Decompression sickness ('the bends') in <span class="hlt">sea</span> turtles.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>García-Párraga, D; Crespo-Picazo, J L; de Quirós, Y Bernaldo; Cervera, V; Martí-Bonmati, L; Díaz-Delgado, J; Arbelo, M; Moore, M J; Jepson, P D; Fernández, Antonio</p> <p>2014-10-16</p> <p>Decompression sickness (DCS), as clinically diagnosed by reversal of symptoms with recompression, has never been reported in aquatic breath-hold diving vertebrates despite the occurrence of tissue gas tensions sufficient for bubble formation and injury in terrestrial animals. Similarly to diving mammals, <span class="hlt">sea</span> turtles manage gas <span class="hlt">exchange</span> and decompression through anatomical, physiological, and behavioral adaptations. In the former group, DCS-like lesions have been observed on necropsies following behavioral disturbance such as high-powered acoustic sources (e.g. active sonar) and in bycaught animals. In <span class="hlt">sea</span> turtles, in spite of abundant literature on diving physiology and bycatch interference, this is the first report of DCS-like symptoms and lesions. We diagnosed a clinico-pathological condition consistent with DCS in 29 gas-embolized loggerhead <span class="hlt">sea</span> turtles Caretta caretta from a sample of 67. Fifty-nine were recovered alive and 8 had recently died following bycatch in trawls and gillnets of local fisheries from the east coast of Spain. Gas embolization and distribution in vital organs were evaluated through conventional radiography, computed tomography, and ultrasound. Additionally, positive response following repressurization was clinically observed in 2 live affected turtles. Gas embolism was also observed postmortem in carcasses and tissues as described in cetaceans and human divers. Compositional gas analysis of intravascular bubbles was consistent with DCS. Definitive diagnosis of DCS in <span class="hlt">sea</span> turtles opens a new era for research in <span class="hlt">sea</span> turtle diving physiology, conservation, and bycatch impact mitigation, as well as for comparative studies in other <span class="hlt">air</span>-breathing marine vertebrates and human divers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8567L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8567L"><span>Occurrence and Turnover of Biogenic Sulfur in the Bering <span class="hlt">Sea</span> During Summer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Cheng-Xuan; Wang, Bao-Dong; Yang, Gui-Peng; Wang, Zi-Cheng; Chen, Jian-Fang; Lyu, Yang</p> <p>2017-11-01</p> <p>The horizontal/geographical variations in dissolved dimethylsulfide (DMS), its precursor dimethylsulfoniopropionate (DMSPd and DMSPp), and chlorophyll a (Chl a), as well as the oceanographic parameters influencing the concentrations of dimethylated sulfur compounds, were investigated in the Bering <span class="hlt">Sea</span> from July to August 2012. Similar to Chl a, the surface DMS and DMSPp levels, as well as DMS(P) production and consumption rates, exhibited a declining gradient from the central basin to the continental shelf, with high-value areas appearing in the central basin, the slope regions, and Anadyr Strait but a low-value area occurring on the outer-middle continental shelf. Considerably high values of DMS and DMSP were measured in the saline Bering <span class="hlt">Sea</span> Basin Deep Water (>2,000 m) located at the southwest of the Bering Basin because of the release of resuspension in 2,000 m depth and the DMSP production from endogenous benthic bacteria and cyanobacteria population. Chl a was positively correlated with DMSPp and DMS in the surface waters and the upper water of the basin, whereas significant negative correlations were found between DMS and nutrients (dissolved inorganic nitrogen [DIN], phosphorus, and silicate) in the inner shelf of the Bering <span class="hlt">Sea</span>. DMS microbial consumption was approximately 6.26 times faster than the DMS <span class="hlt">sea-air</span> <span class="hlt">exchange</span>, demonstrating that the major loss of DMS in the surface water occurred through biological consumption relative to evasion into the atmosphere. Average <span class="hlt">sea-to-air</span> DMS fluxes were estimated to be 4.66 μmol/(m2·d), and consequently oceanic biogenic DMS emission had a dominant contribution to the sulfur budget over the observational area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA261425','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA261425"><span>Characteristics of Physical Training Activities of West Coast U.S. Navy <span class="hlt">Sea-Air</span>-Land Personnel (SEALS)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-11-01</p> <p>REPETITIONS, OR LOADS VARY. USE TIHE AVERAGE FOR YOUR RESPONSE TO THIESE QUESTIONS Body Weight: _ pounds I Repetition Average Exercise Maximum Sets...<span class="hlt">Sea</span>, <span class="hlt">Air</span>, Land (SEAL) personnel undergoing advanced training. Responses to this questionnaire provided information on the types, frequencies, and...their responses were used to characterize training activity according to the American College of Sports Medicine guidelines for maintenance of aerobic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMNH34B..07S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMNH34B..07S"><span>Oceanographic, <span class="hlt">Air-sea</span> Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, A.; Dean, C.</p> <p>2017-12-01</p> <p>The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and <span class="hlt">air-sea</span> interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the <span class="hlt">sea</span> surface temperature drops below the <span class="hlt">air</span> temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat <span class="hlt">air-sea</span> fluxes and reduces the net longwave irradiance from the <span class="hlt">sea</span> surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the <span class="hlt">sea</span> surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the <span class="hlt">sea</span> surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412527S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412527S"><span>Strong Dependence of U.S. Summertime <span class="hlt">Air</span> Quality on the Decadal Variability of Atlantic <span class="hlt">Sea</span> Surface Temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Lu; Mickley, Loretta J.; Leibensperger, Eric M.; Li, Mingwei</p> <p>2017-12-01</p> <p>We find that summertime <span class="hlt">air</span> quality in the eastern U.S. displays strong dependence on North Atlantic <span class="hlt">sea</span> surface temperatures, resulting from large-scale ocean-atmosphere interactions. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface <span class="hlt">air</span> quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cycle ( 35 years) of the AMO from cold to warm phase, summertime maximum daily 8 h ozone concentrations increase by 1-4 ppbv and PM2.5 concentrations increase by 0.3-1.0 μg m-3 over much of the east. These <span class="hlt">air</span> quality changes are related to warmer, drier, and more stagnant weather in the AMO warm phase, together with anomalous circulation patterns at the surface and aloft. If the AMO shifts to the cold phase in future years, it could partly offset the climate penalty on U.S. <span class="hlt">air</span> quality brought by global warming, an effect which should be considered in long-term <span class="hlt">air</span> quality planning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24C2589W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24C2589W"><span><span class="hlt">Sea</span> Surface Scanner: An advanced catamaran to study the <span class="hlt">sea</span> surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.</p> <p>2016-02-01</p> <p>The <span class="hlt">Sea</span> Surface Scanner is a remote-controlled catamaran with the capability to sample the <span class="hlt">sea</span>-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the <span class="hlt">sea</span> surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the <span class="hlt">sea</span> surface microlayer. We discuss the variability of biochemical properties of the <span class="hlt">sea</span> surface and its implication on <span class="hlt">air-sea</span> interaction.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS51B1988M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS51B1988M"><span>Effect of Sampling Depth on <span class="hlt">Air-Sea</span> CO2 Flux Estimates in River-Stratified Arctic Coastal Waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, L. A.; Papakyriakou, T. N.</p> <p>2015-12-01</p> <p>In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated <span class="hlt">air-sea</span> CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated <span class="hlt">air-sea</span> CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on <span class="hlt">air-sea</span> fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-03-23/pdf/2010-6303.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-03-23/pdf/2010-6303.pdf"><span>75 FR 13803 - <span class="hlt">Sea</span>Co Ltd.; Notice of Application</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-03-23</p> <p>...] <span class="hlt">Sea</span>Co Ltd.; Notice of Application March 17, 2010. AGENCY: Securities and <span class="hlt">Exchange</span> Commission... (``Act''). SUMMARY: Summary of Application: <span class="hlt">Sea</span>Co Ltd. (``<span class="hlt">Sea</span>Co'') seeks an order under section 3(b)(2..., reinvesting, owning, holding or trading in securities. <span class="hlt">Sea</span>Co is primarily engaged in the shipping container...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.tmp...23G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.tmp...23G"><span>The Effect of Breaking Waves on CO_2 <span class="hlt">Air-Sea</span> Fluxes in the Coastal Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor</p> <p>2018-03-01</p> <p>The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the <span class="hlt">air-sea</span> interface is investigated in a coastal region. A full year of high-quality data of direct estimates of <span class="hlt">air-sea</span> CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43D2472C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43D2472C"><span>Sensitivity of the <span class="hlt">sea</span> ice concentration over the Kara-Barents <span class="hlt">Sea</span> in autumn to the winter temperature variability over East Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, K. H.; Chang, E. C.</p> <p>2017-12-01</p> <p>In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the <span class="hlt">sea</span> ice concentration over the Kara-Barents (KB) <span class="hlt">Sea</span> in autumn, which can affect winter temperature variability over East Asia. Prescribed <span class="hlt">sea</span> ice conditions are 1) climatological autumn <span class="hlt">sea</span> ice concentration obtained from 1982 to 2016, 2) reduced autumn <span class="hlt">sea</span> ice concentration by 50% of the climatology, and 3) increased autumn <span class="hlt">sea</span> ice concentration by 50% of climatology. Differently prescribed <span class="hlt">sea</span> ice concentration changes surface albedo, which affects surface heat fluxes and near-surface <span class="hlt">air</span> temperature. The reduced (increased) <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> increases (decreases) near-surface <span class="hlt">air</span> temperature that leads the lower (higher) <span class="hlt">sea</span> level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> has remote effects on the <span class="hlt">sea</span> level pressure patterns over the East Asian region. The lower (higher) <span class="hlt">sea</span> level pressure over the KB <span class="hlt">sea</span> by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> in autumn can lead the colder (warmer) surface <span class="hlt">air</span> temperature over East Asia in winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z"><span>Effects of <span class="hlt">Sea</span>-Surface Waves and Ocean Spray on <span class="hlt">Air-Sea</span> Momentum Fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ting; Song, Jinbao</p> <p>2018-04-01</p> <p>The effects of <span class="hlt">sea</span>-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the <span class="hlt">sea</span> surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and <span class="hlt">sea</span>-surface drag coefficients were calculated for low to high wind speeds for wind-generated <span class="hlt">sea</span> at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and <span class="hlt">sea</span>-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the <span class="hlt">sea</span>-spray generation layer, accelerating near-<span class="hlt">sea</span>-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21H2245L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21H2245L"><span>Impact of Land-<span class="hlt">Sea</span> Thermal Contrast on Inland Penetration of <span class="hlt">Sea</span> Fog over The Yellow <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H. Y.; Chang, E. C.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> fog can be classified into a cold <span class="hlt">sea</span> fog that occurs when <span class="hlt">sea</span> surface temperature (SST) is colder than <span class="hlt">sea</span> <span class="hlt">air</span> temperature (SAT) and a warm <span class="hlt">sea</span> fog that occurs when the SST is warmer than the SAT. We simulated two <span class="hlt">sea</span> fog events over the Yellow <span class="hlt">Sea</span> which is surrounded by Korean Peninsula and mainland China using Weather Research and Forecasting (WRF) model. Our first aim is to understand contributions of major factors for the <span class="hlt">sea</span> fog formation. First, the two <span class="hlt">sea</span> fog events are designated as cold and warm types, and cooling rates as well as moistening rates are calculated employing bulk aerodynamic methods. Both cases show cooling and moistening by turbulent fluxes play an important role in condensation either favorably or unfavorably. However, longwave radiative cooling is as or even stronger than turbulent cooling, suggesting it is the most decisive factor in formation of <span class="hlt">sea</span> fogs regardless of their type. Our second purpose of the study is to understand inland penetration of <span class="hlt">sea</span> fog in terms of thermal contrast (TC) and it was conducted through sensitivity tests of SST and land skin temperature (LST). In the SST sensitivity tests, increase of SSTs lead to that of upward turbulent heat fluxes so that SATs rise which are responsible for evaporation of cloud waters and it is common response of the two events. In addition, change of the SST induce that of the TC and may affect the inland penetration of <span class="hlt">sea</span> fog. However, when the cloud waters over the <span class="hlt">sea</span> evaporate, it is hard to fully determine the inland penetration. As a remedy for this limitation, LST is now modified instead of SST to minimize the evaporation effect, maintaining the equivalent TC. In the case of cold <span class="hlt">sea</span> fog, land <span class="hlt">air</span> temperature (LAT) is warmer than SAT. Here, decrease of the LAT leads to weakening of the TC and favors the inland penetration. On the other hand, LAT is colder than the SAT in the warm <span class="hlt">sea</span> fog event. When the LAT decreases, the TC is intensified resulting in blocking of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001DyAtO..34..327G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001DyAtO..34..327G"><span>Microhydrodynamics of flotation processes in the <span class="hlt">sea</span> surface layer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grammatika, Marianne; Zimmerman, William B.</p> <p>2001-10-01</p> <p>The uppermost surface of the ocean forms a peculiarly important ecosystem, the <span class="hlt">sea</span> surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the <span class="hlt">air</span>, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of <span class="hlt">air-sea</span> <span class="hlt">exchanges</span>, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. <span class="hlt">Sea</span> state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews <span class="hlt">sea</span> surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1001662','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1001662"><span><span class="hlt">Air</span> Land <span class="hlt">Sea</span> Bulletin</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-01-01</p> <p>targets. Recent upgrades to the JSTARS have provided a greatly en- hanced capability to conduct maritime surveillance over blue water (oceans and <span class="hlt">seas</span>...erational plans (OPLANs) without leaving their home station. Cur- rent capabilities allow distributed training at multiple mission train- ing centers...capability allows USPACOM participants to plan from their home station while working directly with units around the world that will support a USPACOM</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeoRL..32.8606C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeoRL..32.8606C"><span>Control of <span class="hlt">air-sea</span> CO2 disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calleja, María Ll.; Duarte, Carlos M.; Navarro, Nuria; Agustí, Susana</p> <p>2005-04-01</p> <p>The <span class="hlt">air-sea</span> CO2 gradient at the subtropical NE Atlantic was strongly dependent on the metabolism of the planktonic community within the top cms, but independent of that of the communities deeper in the water column. Gross primary production (GPP) and community respiration (R) of the planktonic community within the top cms exceeded those of the communities deeper in the water column by >10-fold and >7 fold, respectively. Net autotrophic metabolism (GPP > R) at the top cms of the water column in some stations drove CO2 uptake by creating a CO2 deficit at the ocean surface, while net heterotrophic metabolism (GPP < R) at the top cms of the water column in other stations resulted in strong CO2 supersaturation, driving CO2 emissions. These results suggest a strong control of the <span class="hlt">air-sea</span> pCO2 anomaly by intense biological processes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13c4008Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13c4008Z"><span>Wind-<span class="hlt">sea</span> surface temperature-<span class="hlt">sea</span> ice relationship in the Chukchi-Beaufort <span class="hlt">Seas</span> during autumn</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong</p> <p>2018-03-01</p> <p>Dramatic climate changes, especially the largest <span class="hlt">sea</span> ice retreat during September and October, in the Chukchi-Beaufort <span class="hlt">Seas</span> could be a consequence of, and further enhance, complex <span class="hlt">air-ice-sea</span> interactions. To detect these interaction signals, statistical relationships between surface wind speed, <span class="hlt">sea</span> surface temperature (SST), and <span class="hlt">sea</span> ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of <span class="hlt">sea</span> ice, with a negative correlation over open water but a positive correlation in <span class="hlt">sea</span> ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by <span class="hlt">sea</span> ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4674977','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4674977"><span>Estimation of bias with the single-zone assumption in measurement of residential <span class="hlt">air</span> <span class="hlt">exchange</span> using the perfluorocarbon tracer gas method</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J</p> <p>2015-01-01</p> <p>Residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) are vital in understanding the temporal and spatial drivers of indoor <span class="hlt">air</span> quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed <span class="hlt">air</span> zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential <span class="hlt">air</span> <span class="hlt">exchange</span> using a single PFT gas, the assumption of a single well-mixed <span class="hlt">air</span> zone very likely results in an under prediction of the AER. PMID:25399878</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70157933','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70157933"><span>Natural radium and radon tracers to quantify water <span class="hlt">exchange</span> and movement in reservoirs</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Smith, Christopher G.; Baskaran, Mark</p> <p>2011-01-01</p> <p>Radon and radium isotopes are routinely used to quantify <span class="hlt">exchange</span> rates between different hydrologic reservoirs. Since their recognition as oceanic tracers in the 1960s, both radon and radium have been used to examine processes such as <span class="hlt">air-sea</span> <span class="hlt">exchange</span>, deep oceanic mixing, benthic inputs, and many others. Recently, the application of radon-222 and the radium-quartet (223,224,226,228Ra) as coastal tracers has seen a revelation with the growing interest in coastal groundwater dynamics. The enrichment of these isotopes in benthic fluids including groundwater makes both radium and radon ideal tracers of coastal benthic processes (e.g. submarine groundwater discharge). In this chapter we review traditional and recent advances in the application of radon and radium isotopes to understand mixing and <span class="hlt">exchange</span> between various hydrologic reservoirs, specifically: (1) atmosphere and ocean, (2) deep and shallow oceanic water masses, (3) coastal groundwater/benthic pore waters and surface ocean, and (4) aquifer-lakes. While the isotopes themselves and their distribution in the environment provide qualitative information about the <span class="hlt">exchange</span> processes, it is mixing/<span class="hlt">exchange</span> and transport models for these isotopes that provide specific quantitative information about these processes. Brief introductions of these models and mixing parameters are provided for both historical and more recent studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110000601','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110000601"><span><span class="hlt">Air</span> Circulation and Heat <span class="hlt">Exchange</span> Under Reduced Pressures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.</p> <p>2010-01-01</p> <p>Heat <span class="hlt">exchange</span> rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat <span class="hlt">exchange</span> rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas <span class="hlt">exchange</span> of plant. These results represent the extremes of gas <span class="hlt">exchange</span> conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative <span class="hlt">exchange</span> components.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol11/pdf/CFR-2013-title40-vol11-sec63-654.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title40-vol11/pdf/CFR-2013-title40-vol11-sec63-654.pdf"><span>40 CFR 63.654 - Heat <span class="hlt">exchange</span> systems.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-07-01</p> <p>...) through (g) of this section if all heat <span class="hlt">exchangers</span> within the heat <span class="hlt">exchange</span> system either: (1) Operate... exposure to <span class="hlt">air</span> for each heat <span class="hlt">exchange</span> system. (ii) Selected heat <span class="hlt">exchanger</span> exit line(s) so that each heat <span class="hlt">exchanger</span> or group of heat <span class="hlt">exchangers</span> within a heat <span class="hlt">exchange</span> system is covered by the selected monitoring...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol11/pdf/CFR-2014-title40-vol11-sec63-654.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title40-vol11/pdf/CFR-2014-title40-vol11-sec63-654.pdf"><span>40 CFR 63.654 - Heat <span class="hlt">exchange</span> systems.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-07-01</p> <p>...) through (g) of this section if all heat <span class="hlt">exchangers</span> within the heat <span class="hlt">exchange</span> system either: (1) Operate... exposure to <span class="hlt">air</span> for each heat <span class="hlt">exchange</span> system. (ii) Selected heat <span class="hlt">exchanger</span> exit line(s) so that each heat <span class="hlt">exchanger</span> or group of heat <span class="hlt">exchangers</span> within a heat <span class="hlt">exchange</span> system is covered by the selected monitoring...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53E2309Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53E2309Y"><span>Effects of Northern Hemisphere <span class="hlt">Sea</span> Surface Temperature Changes on the Global <span class="hlt">Air</span> Quality</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, K.; Liu, J.</p> <p>2017-12-01</p> <p>The roles of regional <span class="hlt">sea</span> surface temperature (SST) variability on modulating the climate system and consequently the <span class="hlt">air</span> quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated process rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key process causing <span class="hlt">air</span> pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the <span class="hlt">air</span> temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These processes tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of <span class="hlt">air</span> pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional <span class="hlt">air</span> quality, which can help local <span class="hlt">air</span> quality management.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5970T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5970T"><span><span class="hlt">Sea</span> spray production by bag breakup mode of fragmentation of the <span class="hlt">air</span>-water interface at strong and hurricane wind</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej</p> <p>2016-04-01</p> <p><span class="hlt">Sea</span> sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance <span class="hlt">exchange</span> of mass, heat and momentum between the ocean and the atmosphere. This <span class="hlt">exchange</span> is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the <span class="hlt">sea</span> spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large <span class="hlt">sea</span> spray droplets is not adequately described and there are significant uncertainties in estimations of <span class="hlt">exchange</span> processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308472&Lab=NERL&keyword=simulation+AND+processes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=308472&Lab=NERL&keyword=simulation+AND+processes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Development and Evaluation of a New <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AER). The Stochastic Human Exposure and Dose Simulation (SHEDS) model is a population exposure model that uses a pro...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.A53A0162H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.A53A0162H"><span>Characterization of Light Non-Methane Hydrocarbons, Surface Water DOC, and Aerosols over the Nordic <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hudson, E. D.; Ariya, P. A.</p> <p>2006-12-01</p> <p>Whole <span class="hlt">air</span>, size-fractionated marine aerosols, and surface ocean water DOC were sampled together during June-July 2004 on the Nordic <span class="hlt">seas</span>, in order to explore factors leading to the formation of volatile organic compounds (VOCs) at the <span class="hlt">sea</span> surface and their transfer to the atmosphere. High site-to-site variability in 19 non-methane hydrocarbon concentrations suggests highly variable, local sources for these compounds. Acetone, C5 and C6 hydrocarbons, and dimethylsulfide were identified in the seawater samples using solid-phase microextraction/GC-MS. The aerosols were analysed by SEM-EDX and contained primarily inorganic material (<span class="hlt">sea</span> salt, marine sulfates, and carbonates) and little organic matter. However, a culturable bacterium was isolated from the large (9.9 - 18 μ m) fraction at one site, and identified as Micrococcus luteus. We will discuss the implication of these results on potential <span class="hlt">exchange</span> processes at the ocean-atmosphere interface and the impact of bioaerosols in transferring marine organic carbon to atmospheric organic carbon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000002932&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dproject%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000002932&hterms=project+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dproject%2Bwaves"><span>The Origins of <span class="hlt">Air</span> Parcels Uplifted in a Two Dimensional Gravity Wave in the Tropical Upper Troposphere During the NASA Stratosphere Troposphere <span class="hlt">Exchange</span> Project (STEP)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Selkirk, Henry B.; Pfister, Leonhard; Chan, K. Roland; Kritz, Mark; Kelly, Ken</p> <p>1989-01-01</p> <p>During January and February 1987, as part of the Stratosphere-Troposphere <span class="hlt">Exchange</span> Project, the NASA ER-2 made 11 flights from Darwin, Australia to investigate dehydration mechanisms in the vicinity of the tropical tropopause. After the monsoon onset in the second week of January, steady easterly flow of 15-25 ms (exp -1) was established in the upper troposphere and lower stratosphere over northern Australia and adjacent <span class="hlt">seas</span>. Penetrating into this regime were elements of the monsoon convection such as overshooting convective turrets and extensive anvils including cyclone cloud shields. In cases of the latter, the resulting flow obstructions tended to produce mesoscale gravity waves. In several instances the ER- 2 meteorological and trace constituent measurements provide a detailed description of the structure of these gravity waves. Among these was STEP Flight 6, 22-23 January. It is of particular interest to STEP because of the close proximity of ice-laden and dehydrated <span class="hlt">air</span> on the same isentropic surfaces. Convective events inject large amounts of ice into the upper troposphere and lower stratosphere which may not be completely removed by local precipitation processes. In the present instance, a gravity wave for removed from the source region appears to induce relativity rapid upward motion in the ice-laden <span class="hlt">air</span> and subsequent dessication. Potential mechanisms for such a localized removal process are under investigation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMS...140...26M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMS...140...26M"><span>Spatio-temporal dynamics of biogeochemical processes and <span class="hlt">air-sea</span> CO2 fluxes in the Western English Channel based on two years of FerryBox deployment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.</p> <p>2014-12-01</p> <p>From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured <span class="hlt">sea</span> surface temperature (SST), <span class="hlt">sea</span> surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical processes related to <span class="hlt">air-sea</span> CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. <span class="hlt">Air-sea</span> CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of <span class="hlt">air-sea</span> CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989GeoRL..16.1297N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989GeoRL..16.1297N"><span>Mean residence time of the shelf water in the East China and the Yellow <span class="hlt">Seas</span> determined by 228Ra/226Ra measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nozaki, Yoshiyuki; Kasemsupaya, Vimonrut; Tsubota, Hiroyuki</p> <p>1989-11-01</p> <p>Increasing attention of oceanographers has recently been paied on East Asian marginal <span class="hlt">seas</span> regarding their role on the global environment, yet geochemical investigations have been few to date. We here report new data on the distribution of 228Ra and 226Ra in the surface water of the East China and the Yellow <span class="hlt">seas</span> in an effort to constrain the time necessary for the coastal and shelf waters to <span class="hlt">exchange</span> with offshore waters. Such information is needed in evaluating the <span class="hlt">exchange</span> of heat and water across the <span class="hlt">air-sea</span> interface that affects the local climate and the fate of pollutants, nutrients and weathering products supplied from the continent. Based on the Ra isotope signals, we have estimated that the shelf water component contributes ˜ 20 % of the Tsushima Current water passing through the Tsushima Strait and the mean residence time for the shelf water to mix with the Kuroshio surface water is ˜ 2.3 years. As many of materials derived from the continent such as heavy metals and the nutrients have their mean residence times less than a few months in the nearshore and shelf waters, they must largely deposit on the shelf sediments prior to the transport from the shelf to the open <span class="hlt">sea</span> by mixing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO54B3246W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO54B3246W"><span>Using Argo-O2 data to examine the impact of deep-water formation events on oxygen uptake in the Labrador <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wolf, M. K.; Hamme, R. C.; Gilbert, D.; Yashayaev, I.</p> <p>2016-02-01</p> <p>Deep-water formation allows the deep ocean to communicate with the atmosphere, facilitating <span class="hlt">exchanges</span> of heat as well as important gases such as CO2 and oxygen. The Labrador <span class="hlt">Sea</span> is the most studied location of deep convection in the North Atlantic Ocean and a strong contributor to the global thermohaline circulation. Since there are no internal sources of oxygen below the euphotic zone, deep-water formation is vital for oxygen transport to the deep ocean. Recent studies document large interannual variability in the strength and depth of convection in the Labrador <span class="hlt">Sea</span>, from mixed layers of 100m to greater than 1000m. A weakening of this deep convection starves the deep ocean of oxygen, disrupting crucial deep <span class="hlt">sea</span> biological processes, as well as reducing oceanic CO2 uptake and ocean circulation. We used data from the extensive Argo float network to examine these deep-water formation events in the Labrador <span class="hlt">Sea</span>. The oxygen optodes onboard many Argo floats suffer from biases whose amplitude must be determined; therefore we investigated and applied various optode calibration methods. Using calibrated vertical profiles of oxygen, temperature, and salinity, we observed the timing, magnitude, and location of deep convection, restratification, and spring phytoplankton blooms. In addition, we used surface oxygen values along with NCEP wind speeds to calculate the <span class="hlt">air-sea</span> oxygen flux using a range of <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> parameterizations. We then compared this oxygen flux to the rate of change of the measured oxygen inventory. Where the inventory and flux did not agree, we identified other oceanic processes such as biological activity or lateral advection of water masses occurring, or advection of the float itself into a new area. The large role that horizontal advection of water or the float has on oxygen uptake and cycling leads us to conclude that this data cannot be easily interpreted as a 1-D system. Oxygen <span class="hlt">exchanges</span> with the atmosphere at a faster rate than CO2, is</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRG..119.2276G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRG..119.2276G"><span>Organic iodine in Antarctic <span class="hlt">sea</span> ice: A comparison between winter in the Weddell <span class="hlt">Sea</span> and summer in the Amundsen <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granfors, Anna; Ahnoff, Martin; Mills, Matthew M.; Abrahamsson, Katarina</p> <p>2014-12-01</p> <p>Recent studies have recognized <span class="hlt">sea</span> ice as a source of reactive iodine to the Antarctic boundary layer. Volatile iodinated compounds (iodocarbons) are released from <span class="hlt">sea</span> ice, and they have been suggested to contribute to the formation of iodine oxide (IO), which takes part in tropospheric ozone destruction in the polar spring. We measured iodocarbons (CH3I, CH2ClI, CH2BrI, and CH2I2) in <span class="hlt">sea</span> ice, snow, brine, and <span class="hlt">air</span> during two expeditions to Antarctica, OSO 10/11 to the Amundsen <span class="hlt">Sea</span> during austral summer and ANT XXIX/6 to the Weddell <span class="hlt">Sea</span> in austral winter. These are the first reported measurements of iodocarbons from the Antarctic winter. Iodocarbons were enriched in <span class="hlt">sea</span> ice in relation to seawater in both summer and winter. During summer, the positive relationship to chlorophyll a biomass indicated a biological origin. We suggest that CH3I is formed biotically in <span class="hlt">sea</span> ice during both summer and winter. For CH2ClI, CH2BrI, and CH2I2, an additional abiotic source at the snow/ice interface in winter is suggested. Elevated <span class="hlt">air</span> concentrations of CH3I and CH2ClI during winter indicate that they are enriched in lower troposphere and may take part in the formation of IO at polar sunrise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2629R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2629R"><span><span class="hlt">Air</span>- ice-snow interaction in the Northern Hemisphere under different stability conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Repina, Irina; Chechin, Dmitry; Artamonov, Arseny</p> <p>2013-04-01</p> <p>The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of <span class="hlt">air</span> pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as <span class="hlt">sea</span> ice, marginal ice zone or stormy <span class="hlt">sea</span>). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface <span class="hlt">air</span> layer and the <span class="hlt">exchange</span> of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas <span class="hlt">exchange</span> at the atmosphere ocean interface are developed. The dependence of the <span class="hlt">exchange</span> coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.5581L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.5581L"><span>Sum-Frequency Generation Spectroscopy for Studying Organic Layers at Water-<span class="hlt">Air</span> Interfaces: Microlayer Monitoring and Surface Reactivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laß, Kristian; Kleber, Joscha; Bange, Hermann; Friedrichs, Gernot</p> <p>2015-04-01</p> <p>The <span class="hlt">sea</span> surface microlayer, according to commonly accepted terminology, comprises the topmost millimetre of the oceanic water column. It is often enriched with organic matter and is directly influenced by sunlight exposure and gas <span class="hlt">exchange</span> with the atmosphere, hence making it a place for active biochemistry and photochemistry as well as for heterogeneous reactions. In addition, surface active material either is formed or accumulates directly at the <span class="hlt">air</span>-water interface and gives rise to very thin layers, sometimes down to monomolecular thickness. This "<span class="hlt">sea</span> surface nanolayer" determines the viscoelastic properties of the seawater surface and thus may impact the turbulent <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> rates. To this effect, this small scale layer presumably plays an important role for large scale changes of atmospheric trace gas concentrations (e.g., by modulating the ocean carbon sink characteristics) with possible implications for coupled climate models. To date, detailed knowledge about the composition, structure, and reactivity of the <span class="hlt">sea</span> surface nanolayer is still scarce. Due to its small vertical dimension and the small amount of material, this surfactant layer is very difficult to separate and analyse. A way out is the application of second-order nonlinear optical methods, which make a direct surface-specific and background-free detection of this interfacial layer possible. In recent years, we have introduced the use of vibrational sum frequency generation (VSFG) spectroscopy to gain insight into natural and artificial organic monolayers at the <span class="hlt">air</span>-water interface. In this contribution, the application of VSFG spectroscopy for the analysis of the <span class="hlt">sea</span> surface nanolayer will be illustrated. Resulting spectra are interpreted in terms of layer composition and surfactant classes, in particular with respect to carbohydrate-containing molecules such as glycolipids. The partitioning of the detected surfactants into soluble and non-soluble ("wet" and "dry") surfactants will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OcDyn..66..917A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OcDyn..66..917A"><span>Surface wave effects on water temperature in the Baltic <span class="hlt">Sea</span>: simulations with the coupled NEMO-WAM model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter</p> <p>2016-08-01</p> <p>Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat <span class="hlt">exchange</span> at regional scale (the Baltic <span class="hlt">Sea</span>). Four scenarios—including Stokes-Coriolis force, <span class="hlt">sea</span>-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), <span class="hlt">sea</span>-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic <span class="hlt">Sea</span>, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to <span class="hlt">sea</span>-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual <span class="hlt">sea</span> state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for <span class="hlt">sea</span>-state dependent momentum flux results in modified heat <span class="hlt">exchange</span> at the water-<span class="hlt">air</span> boundary which consequently leads to warming of surface water compared to control simulation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29626354','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29626354"><span>Second regional plasmapheresis conference and workshop for Southeast Asia (<span class="hlt">SEA</span>) on the immunomodulatory role of plasma <span class="hlt">exchange</span> in central and peripheral nervous system disorders, Kuala Lumpur, Malaysia, 9th December 2017.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Viswanathan, Shanthi; Hung, Stefanie Kar Yan; Goyal, Vinay; Apiwattanakul, Metha; Thirugnanam, Umapathi N; Abdullah, Suhailah; Aye, Seinn Mya Mya; Ohnmar, Ohnmar; Si, Le Tri; Keosodsay, Saysavath; Estiasari, Riwanti; Khalife, Najib; Hiew, Fu Liong</p> <p>2018-04-06</p> <p>In December 2017, 79 delegates attended the 2nd regional plasmapheresis conference and workshop for Southeast Asia (<span class="hlt">SEA</span>) on the immunomodulatory role of plasma <span class="hlt">exchange</span> in central and peripheral nervous system disorders in Kuala Lumpur, Malaysia. This meeting featured 6 plenary lectures, interactive sessions dedicated for experience sharing, case presentations, and a practical session for paramedics. Clinical experts and researchers from 7 <span class="hlt">SEA</span> countries and India shared experience and challenges in treating autoimmune neurological disorders. While the spectrum of diseases and neurology practice remained largely similar, there was great disparities in accessibility of therapeutic plasma <span class="hlt">exchange</span> (TPE) within <span class="hlt">SEA</span> countries and between urban or rural settings. Costs, human resources, and healthcare policies are common challenges in providing sustainable TPE services. Novel techniques and innovative ideas in performing TPE were explored. A working consortium comprising of key opinion leaders was proposed to improve standards of TPE and enhance future research. © 2018 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010095017&hterms=ocean+salinity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Docean%2Bsalinity','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010095017&hterms=ocean+salinity&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Docean%2Bsalinity"><span>The Aquarius Mission: <span class="hlt">Sea</span> Surface Salinity from Space</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Koblinsky, Chester; Chao, Y.; deCharon, A.; Edelstein, W.; Hildebrand, P.; Lagerloef, G.; LeVine, D.; Pellerano, F.; Rahmat-Samii, Y.; Ruf, C.</p> <p>2001-01-01</p> <p>Aquarius is a new satellite mission concept to study the impact of the global water cycle on the ocean, including the response of the ocean to buoyancy forcing and the subsequent feedback of the ocean on the climate. The measurement objective of Aquarius is <span class="hlt">sea</span> surface salinity, which reflects the concentration of freshwater at the ocean surface. Salinity affects the dielectric constant of <span class="hlt">sea</span> water and, consequently, the radiometric emission of the <span class="hlt">sea</span> surface to space. Rudimentary space observations with an L-band radiometer were first made from Skylab in the mid-70s and numerous aircraft missions of increasing quality and improved technology have been conducted since then. Technology is now available to carry out a global mission, which includes both an accurate L band (1.413 Ghz) radiometer and radar system in space and a global array of in situ observations for calibration and validation, in order to address key NASA Earth Science Enterprise questions about the global cycling of water and the response of the ocean circulation to climate change. The key scientific objectives of Aquarius examine the cycling of water at the ocean's surface, the response of the ocean circulation to buoyancy forcing, and the impact of buoyancy forcing on the ocean's thermal feedback to the climate. Global surface salinity will also improve our ability to model the surface solubility chemistry needed to estimate the <span class="hlt">air-sea</span> <span class="hlt">exchange</span> of CO2. In order to meet these science objectives, the NASA Salinity <span class="hlt">Sea</span> Ice Working Group over the past three years has concluded that the mission measurement goals should be better than 0.2 practical salinity units (psu) accuracy, 100 km resolution, and weekly to revisits. The Aquarius mission proposes to meet these measurement requirements through a real aperture dual-polarized L band radiometer and radar system. This system can achieve the less than 0.1 K radiometric temperature measurement accuracy that is required. A 3 m antenna at approx. 600km</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA636043','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA636043"><span>Environmental Assessment: Proposed Construction of Army and <span class="hlt">Air</span> Force <span class="hlt">Exchange</span> Service New Day Street Shoppette</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-10-01</p> <p>would either be operated by AAFES as a franchise or would be owned by AAFES. The three existing 10,000-gallon underground storage tanks (USTs...Street Shoppette FINAL Army and <span class="hlt">Air</span> Force <span class="hlt">Exchange</span> Service 2-3 The restaurant would either be operated by AAFES as a franchise or would be owned by...levels of employment with the inclusion of a new restaurant, (to be either a franchise or AAFES-owned), car wash, increased services of the Auto Pride</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009ems..confE..58S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009ems..confE..58S"><span>Estimating the Mediterranean <span class="hlt">Sea</span> Water Budget: impact of RCM design</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Somot, S.; Elguindi, N.; Sanchez-Gomez, E.; Herrmann, M.; Déqué, M.</p> <p>2009-09-01</p> <p>The Mediterranean <span class="hlt">Sea</span> can be considered as a thermodynamic machine that <span class="hlt">exchanges</span> water and heat with the Atlantic Ocean through the Strait of Gibraltar and with the atmosphere through its surface. Considering the Mediterranean <span class="hlt">Sea</span> Water Budget (MSWB) multi-year mean, the Mediterranean basin looses water at the surface due to an excess of evaporation over freshwater input (precipitation, river runoff, Black <span class="hlt">Sea</span> input). Moreover the MSWB largely drives the Mediterranean <span class="hlt">Sea</span> water mass formation and therefore a large part of its thermohaline circulation. This could even have an impact on the characteristics of the Atlantic thermohaline circulation through the Mediterranean Outflow Waters that flow into the Atlantic at a depth of about 1000 m. From a climate point of view, the MSWB acts as a water source for the Mediterranean countries and therefore plays an important role on the water resources of the region. The regional physical characteristics of the Mediterranean basin (complex orography, strong land-<span class="hlt">sea</span> contrast, land-atmosphere coupling, <span class="hlt">air-sea</span> coupling, river inflow, Gibraltar Strait constraint and complex ocean bathymetry) strongly influence the various components of the MSWB. Moreover extreme precipitation events over land and strong evaporation events over the <span class="hlt">sea</span> due to local winds can play a non-negligible role on the mean MSWB despite their small spatial and temporal scales. Therefore, modelling the mean behaviour, the interannual variability and the trends of the MSWB is a challenging task of the Regional Climate Model community in the context of climate change. It is actually one of the highlighted issues of the HyMex project planned for the 2010-2020 period. We propose here to start investigating some key scientific issues of the regional modelling of the Mediterranean <span class="hlt">Sea</span> Water Budget using a wide range of regional climate simulations performed at Météo-France or in the framework of FP6 European projects (ENSEMBLES, CIRCE). The addressed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ClDy...36.1523J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ClDy...36.1523J"><span>Influence of coupling on atmosphere, <span class="hlt">sea</span> ice and ocean regional models in the Ross <span class="hlt">Sea</span> sector, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard</p> <p>2011-04-01</p> <p><span class="hlt">Air-sea</span> ice-ocean interactions in the Ross <span class="hlt">Sea</span> sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-<span class="hlt">sea</span> ice-atmosphere coupled model TANGO to simulate the Ross <span class="hlt">Sea</span> sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-<span class="hlt">sea</span> ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic <span class="hlt">sea</span> ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, <span class="hlt">air</span> temperatures over ocean and winter <span class="hlt">sea</span> ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold <span class="hlt">air</span> produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of <span class="hlt">sea</span> ice. It is suggested that slow heat conduction within <span class="hlt">sea</span> ice could amplify the feedbacks. These local feedbacks result in less <span class="hlt">sea</span> ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A14B..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A14B..08L"><span><span class="hlt">Sea</span> Fog Forecasting with Lagrangian Models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lewis, J. M.</p> <p>2014-12-01</p> <p>In 1913, G. I. Taylor introduced us to a Lagrangian view of <span class="hlt">sea</span> fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of <span class="hlt">sea</span> fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-<span class="hlt">air</span> observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at <span class="hlt">sea</span> (wind, <span class="hlt">sea</span> surface temperature, pressure, and <span class="hlt">air</span> temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface <span class="hlt">air</span> motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of <span class="hlt">sea</span> fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22923254','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22923254"><span>Effects of <span class="hlt">air</span> <span class="hlt">exchange</span> property of passive-type radon-thoron discriminative detectors on performance of radon and thoron measurements.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Omori, Y; Janik, M; Sorimachi, A; Ishikawa, T; Tokonami, S</p> <p>2012-11-01</p> <p>Pairs of diffusion chambers with different <span class="hlt">air</span> <span class="hlt">exchange</span> rates are used in a large-scale survey to determine radon and thoron, separately. When they are enclosed in radon-proof bags for keeping after the exposure, since radon does not escape out immediately from the low-diffusion chamber, it leads to further exposure in the bags and disturbs the estimation of radon and thoron concentrations. In this study, the effects of the different <span class="hlt">air</span> <span class="hlt">exchange</span> properties of the radon-thoron discriminative detectors with CR-39 chips on the estimations of radon and thoron concentrations were investigated. The commercially available and frequently used detectors, Raduet, are examined in this study. The result shows that radon escapes out in 10 h. When degassing is not enough after the exposure in a calibration experiment or high-background radiation area, the residual radon causes the overestimation of the radon concentration and increase in the uncertainty in the thoron concentration, i.e. a low-performance quality of radon and thoron measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....1710837S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....1710837S"><span>Oxygenated volatile organic carbon in the western Pacific convective center: ocean cycling, <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span> and atmospheric transport</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schlundt, Cathleen; Tegtmeier, Susann; Lennartz, Sinikka T.; Bracher, Astrid; Cheah, Wee; Krüger, Kirstin; Quack, Birgit; Marandino, Christa A.</p> <p>2017-09-01</p> <p>A suite of oxygenated volatile organic compounds (OVOCs - acetaldehyde, acetone, propanal, butanal and butanone) were measured concurrently in the surface water and atmosphere of the South China <span class="hlt">Sea</span> and Sulu <span class="hlt">Sea</span> in November 2011. A strong correlation was observed between all OVOC concentrations in the surface seawater along the entire cruise track, except for acetaldehyde, suggesting similar sources and sinks in the surface ocean. Additionally, several phytoplankton groups, such as haptophytes or pelagophytes, were also correlated to all OVOCs, indicating that phytoplankton may be an important source of marine OVOCs in the South China and Sulu <span class="hlt">seas</span>. Humic- and protein-like fluorescent dissolved organic matter (FDOM) components seemed to be additional precursors for butanone and acetaldehyde. The measurement-inferred OVOC fluxes generally showed an uptake of atmospheric OVOCs by the ocean for all gases, except for butanal. A few important exceptions were found along the Borneo coast, where OVOC fluxes from the ocean to the atmosphere were inferred. The atmospheric OVOC mixing ratios over the northern coast of Borneo were relatively high compared with literature values, suggesting that this coastal region is a local hotspot for atmospheric OVOCs. The calculated amount of OVOCs entrained into the ocean seemed to be an important source of OVOCs to the surface ocean. When the fluxes were out of the ocean, marine OVOCs were found to be enough to control the locally measured OVOC distribution in the atmosphere. Based on our model calculations, at least 0.4 ppb of marine-derived acetone and butanone can reach the upper troposphere, where they may have an important influence on hydrogen oxide radical formation over the western Pacific Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8593853','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8593853"><span>Characterization of <span class="hlt">air</span> contaminants formed by the interaction of lava and <span class="hlt">sea</span> water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E</p> <p>1994-05-01</p> <p>We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters <span class="hlt">sea</span> water. This interaction of lava with <span class="hlt">sea</span> water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the <span class="hlt">sea</span>. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of <span class="hlt">air</span>. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012TCry....6..901R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012TCry....6..901R"><span>Ikaite crystals in melting <span class="hlt">sea</span> ice - implications for pCO2 and pH levels in Arctic surface waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rysgaard, S.; Glud, R. N.; Lennert, K.; Cooper, M.; Halden, N.; Leakey, R. J. G.; Hawthorne, F. C.; Barber, D.</p> <p>2012-08-01</p> <p>A major issue of Arctic marine science is to understand whether the Arctic Ocean is, or will be, a source or sink for <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span>. This has been complicated by the recent discoveries of ikaite (a polymorph of CaCO3·6H2O) in Arctic and Antarctic <span class="hlt">sea</span> ice, which indicate that multiple chemical transformations occur in <span class="hlt">sea</span> ice with a possible effect on CO2 and pH conditions in surface waters. Here, we report on biogeochemical conditions, microscopic examinations and x-ray diffraction analysis of single crystals from a melting 1.7 km2 (0.5-1 m thick) drifting ice floe in the Fram Strait during summer. Our findings show that ikaite crystals are present throughout the <span class="hlt">sea</span> ice but with larger crystals appearing in the upper ice layers. Ikaite crystals placed at elevated temperatures disintegrated into smaller crystallites and dissolved. During our field campaign in late June, melt reduced the ice floe thickness by 0.2 m per week and resulted in an estimated 3.8 ppm decrease of pCO2 in the ocean surface mixed layer. This corresponds to an <span class="hlt">air-sea</span> CO2 uptake of 10.6 mmol m-2 <span class="hlt">sea</span> ice d-1 or to 3.3 ton km-2 ice floe week-1. This is markedly higher than the estimated primary production within the ice floe of 0.3-1.3 mmol m-2 <span class="hlt">sea</span> ice d-1. Finally, the presence of ikaite in <span class="hlt">sea</span> ice and the dissolution of the mineral during melting of the <span class="hlt">sea</span> ice and mixing of the melt water into the surface oceanic mixed layer accounted for half of the estimated pCO2 uptake.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JBIS...62..122W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JBIS...62..122W"><span>Heat <span class="hlt">Exchanger</span> Design in Combined Cycle Engines</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Webber, H.; Feast, S.; Bond, A.</p> <p></p> <p>Combined cycle engines employing both pre-cooled <span class="hlt">air</span>-breathing and rocket modes of operation are the most promising propulsion system for achieving single stage to orbit vehicles. The <span class="hlt">air</span>-breathing phase is purely for augmentation of the mission velocity required in the rocket phase and as such must be mass effective, re-using the components of the rocket cycle, whilst achieving adequate specific impulse. This paper explains how the unique demands placed on the <span class="hlt">air</span>-breathing cycle results in the need for sophisticated thermodynamics and the use of a series of different heat <span class="hlt">exchangers</span> to enable precooling and high pressure ratio compression of the <span class="hlt">air</span> for delivery to the rocket combustion chambers. These major heat <span class="hlt">exchanger</span> roles are; extracting heat from incoming <span class="hlt">air</span> in the precooler, topping up cycle flow temperatures to maintain constant turbine operating conditions and extracting rejected heat from the power cycle via regenerator loops for thermal capacity matching. The design solutions of these heat <span class="hlt">exchangers</span> are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140013026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140013026"><span>Connections Between the Spring Breakup of the Southern Hemisphere Polar Vortex, Stationary Waves, and <span class="hlt">Air-sea</span> Roughness</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garfinkel, Chaim I.; Oman, Luke David; Barnes, Elizabeth A.; Waugh, Darryn W.; Hurwitz, Margaret H.; Molod, Andrea M.</p> <p>2013-01-01</p> <p>A robust connection between the drag on surface-layer winds and the stratospheric circulation is demonstrated in NASA's Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM). Specifically, an updated parameterization of roughness at the <span class="hlt">air-sea</span> interface, in which surface roughness is increased for moderate wind speeds (4ms to 20ms), leads to a decrease in model biases in Southern Hemispheric ozone, polar cap temperature, stationary wave heat flux, and springtime vortex breakup. A dynamical mechanism is proposed whereby increased surface roughness leads to improved stationary waves. Increased surface roughness leads to anomalous eddy momentum flux convergence primarily in the Indian Ocean sector (where eddies are strongest climatologically) in September and October. The localization of the eddy momentum flux convergence anomaly in the Indian Ocean sector leads to a zonally asymmetric reduction in zonal wind and, by geostrophy, to a wavenumber-1 stationary wave pattern. This tropospheric stationary wave pattern leads to enhanced upwards wave activity entering the stratosphere. The net effect is an improved Southern Hemisphere vortex: the vortex breaks up earlier in spring (i.e., the spring late-breakup bias is partially ameliorated) yet is no weaker in mid-winter. More than half of the stratospheric biases appear to be related to the surface wind speed biases. As many other chemistry climate models use a similar scheme for their surface layer momentum <span class="hlt">exchange</span> and have similar biases in the stratosphere, we expect that results from GEOSCCM may be relevant for other climate models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1810126C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1810126C"><span>Towards constraining the stratosphere-troposphere <span class="hlt">exchange</span> of radiocarbon: strategies of stratospheric 14CO2 measurements using <span class="hlt">Air</span>Core</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Huilin; Paul, Dipayan; Meijer, Harro; Miller, John; Kivi, Rigel; Krol, Maarten</p> <p>2016-04-01</p> <p>Radiocarbon (14C) plays an important role in the carbon cycle studies to understand both natural and anthropogenic carbon fluxes, but also in atmospheric chemistry to constrain hydroxyl radical (OH) concentrations in the atmosphere. Apart from the enormous 14C emissions from nuclear bomb testing in the 1950s and 1960s, radiocarbon is primarily produced in the stratosphere due to the cosmogenic production. To this end, better understanding the stratospheric radiocarbon source is very useful to advance the use of radiocarbon for these applications. However, stratospheric 14C observations have been very limited so that there are large uncertainties on the magnitude and the location of the 14C production as well as the transport of radiocarbon from the stratosphere to the troposphere. Recently we have successfully made stratospheric 14C measurements using <span class="hlt">Air</span>Core samples from Sodankylä, Northern Finland. <span class="hlt">Air</span>Core is an innovative atmospheric sampling system, which passively collects atmospheric <span class="hlt">air</span> samples into a long piece of coiled stainless steel tubing during the descent of a balloon flight. Due to the relatively low cost of the consumables, there is a potential to make such <span class="hlt">Air</span>Core profiling in other parts of the world on a regular basis. In this study, we simulate the 14C in the atmosphere and assess the stratosphere-troposphere <span class="hlt">exchange</span> of radiocarbon using the TM5 model. The Sodankylä radiocarbon measurements will be used to verify the performance of the model at high latitude. Besides this, we will also evaluate the influence of different cosmogenic 14C production scenarios and the uncertainties in the OH field on the seasonal cycles of radiocarbon and on the stratosphere-troposphere <span class="hlt">exchange</span>, and based on the results design a strategy to set up a 14C measurement program using <span class="hlt">Air</span>Core.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24643387','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24643387"><span>Concentrations, atmospheric partitioning, and <span class="hlt">air</span>-water/soil surface <span class="hlt">exchange</span> of polychlorinated dibenzo-p-dioxin and dibenzofuran along the upper reaches of the Haihe River basin, North China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nie, Zhiqiang; Die, Qingqi; Yang, Yufei; Tang, Zhenwu; Wang, Qi; Huang, Qifei</p> <p>2014-01-01</p> <p>Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF) were overall measured and compared in ambient <span class="hlt">air</span>, water, soils, and sediments along the upper reaches of the Haihe River of North China, so as to evaluate their concentrations, profiles, and to understand the processes of gas-particle partitioning and <span class="hlt">air</span>-water/soil <span class="hlt">exchange</span>. The following results were obtained: (1) The average concentrations (toxic equivalents, TEQs) of 2,3,7,8-PCDD/PCDF in <span class="hlt">air</span>, water, sediment, and soil samples were 4,855 fg/m(3), 9.5 pg/L, 99.2 pg/g dry weight (dw), and 56.4 pg/g (203 fg TEQ/m(3), 0.46 pg TEQ/L, 2.2 pg TEQ/g dw, and 1.3 pg TEQ/g, respectively), respectively. (2) Although OCDF, 1,2,3,4,6,7,8-HpCDF, OCDD, and 1,2,3,4,6,7,8-HpCDD were the dominant congeners among four environmental sinks, obvious discrepancies of these congener and homologue patterns of PCDD/PCDF were observed still. (3) Significant linear correlations for PCDD/PCDF were observed between the gas-particle partition coefficient (K p) and the subcooled liquid vapor pressure (P L (0)) and octanol-<span class="hlt">air</span> partition coefficient (K oa). (4) Fugacity fraction values of <span class="hlt">air</span>-water <span class="hlt">exchange</span> indicated that most of PCDD/PCDF homologues were dominated by net volatilization from water into <span class="hlt">air</span>. The low-chlorinated PCDD/PCDF (tetra- to hexa-) presented a strong net volatilization from the soil into <span class="hlt">air</span>, while high-chlorinated PCDD/PCDF (hepta- to octa-) were mainly close to equilibrium for <span class="hlt">air</span>-soil <span class="hlt">exchange</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..471M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..471M"><span>Drivers of inorganic carbon dynamics in first-year <span class="hlt">sea</span> ice: A model study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovitch, Marie; Thomas, David N.; Geilfus, Nicolas-Xavier; Goosse, Hugues</p> <p>2015-01-01</p> <p><span class="hlt">Sea</span> ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within <span class="hlt">sea</span> ice using a one-dimensional halothermodynamic <span class="hlt">sea</span> ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption, and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3·6H2O) and ice-<span class="hlt">air</span> CO2 fluxes, are also included. The model is evaluated using observations from a 6 month field study at Point Barrow, Alaska, and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-<span class="hlt">air</span> CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 <span class="hlt">exchanges</span>, <span class="hlt">sea</span> ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore <2 mmol m-2 d-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a <span class="hlt">sea</span> ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near-surface TA/DIC ratios of ˜2, sometimes used as an indicator of calcification, would rather suggest outgassing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1711342M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1711342M"><span>Drivers of inorganic carbon dynamics in first-year <span class="hlt">sea</span> ice: A model study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moreau, Sébastien; Vancoppenolle, Martin; Delille, Bruno; Tison, Jean-Louis; Zhou, Jiayun; Kotovich, Marie; Thomas, David; Geilfus, Nicolas-Xavier; Goosse, Hugues</p> <p>2015-04-01</p> <p><span class="hlt">Sea</span> ice is an active source or a sink for carbon dioxide (CO2), although to what extent is not clear. Here, we analyze CO2 dynamics within <span class="hlt">sea</span> ice using a one-dimensional halo-thermodynamic <span class="hlt">sea</span> ice model including gas physics and carbon biogeochemistry. The ice-ocean fluxes, and vertical transport, of total dissolved inorganic carbon (DIC) and total alkalinity (TA) are represented using fluid transport equations. Carbonate chemistry, the consumption and release of CO2 by primary production and respiration, the precipitation and dissolution of ikaite (CaCO3•6H2O) and ice-<span class="hlt">air</span> CO2 fluxes, are also included. The model is evaluated using observations from a 6-month field study at Point Barrow, Alaska and an ice-tank experiment. At Barrow, results show that the DIC budget is mainly driven by physical processes, wheras brine-<span class="hlt">air</span> CO2 fluxes, ikaite formation, and net primary production, are secondary factors. In terms of ice-atmosphere CO2 <span class="hlt">exchanges</span>, <span class="hlt">sea</span> ice is a net CO2 source and sink in winter and summer, respectively. The formulation of the ice-atmosphere CO2 flux impacts the simulated near-surface CO2 partial pressure (pCO2), but not the DIC budget. Because the simulated ice-atmosphere CO2 fluxes are limited by DIC stocks, and therefore < 2 mmol m-2 day-1, we argue that the observed much larger CO2 fluxes from eddy covariance retrievals cannot be explained by a <span class="hlt">sea</span> ice direct source and must involve other processes or other sources of CO2. Finally, the simulations suggest that near surface TA/DIC ratios of ~2, sometimes used as an indicator of calcification, would rather suggest outgassing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51D2096S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51D2096S"><span>Modelling the Evolution of <span class="hlt">Sea</span> Spray Droplets on a Global Scale</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Staniec, A.; Vlahos, P.; Monahan, E. C.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> spray droplets are an important mechanism for the transport of moisture, heat, and organic material between the ocean and the atmosphere. Spume droplets are the largest of the size spectrum and as such have the potential to transport significant amounts of energy and gases despite their generally short residence time in the atmosphere. A model is developed based on the physical parameterizations from Andreas et al. (1995, 2005)and a range of spume generation functions, coupled with a biogeochemical <span class="hlt">exchange</span> model for gases developed here to examine the equilibrium temperature and gas <span class="hlt">exchange</span> of spume droplets under representative open ocean conditions. The modelling approach uses micro-physics to simulate the expected changes to the droplet as it equilibrates with the atmospheric temperature and relative humidity. The effect of temperature differentials and relative humidity variations is explored. A global approach is simulated by using average summer and winter values for SST, salinity, and <span class="hlt">air</span> temperature throughout the various ocean basins.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17328184','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17328184"><span><span class="hlt">Air</span>-water <span class="hlt">exchange</span> and dry deposition of polybrominated diphenyl ethers at a coastal site in Izmir Bay, Turkey.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cetin, Banu; Odabasi, Mustafa</p> <p>2007-02-01</p> <p>The <span class="hlt">air</span>-water <span class="hlt">exchange</span> of polybrominated diphenyl ethers (PBDEs), an emerging class of persistent organic pollutants (POPs), was investigated using paired <span class="hlt">air</span>-water samples (n = 15) collected in July and December, 2005 from Guzelyali Port in Izmir Bay, Turkey. Total dissolved-phase water concentrations of PBDEs (sigma7PBDEs) were 212 +/- 65 and 87 +/- 57 pg L(-1) (average +/- SD) in summer and winter, respectively. BDE-209 was the most abundant congener in all samples, followed by BDE-99 and -47. Average ambient gas-phase sigma7PBDE concentrations were between 189 +/- 61 (summer) and 76 +/- 65 pg m(-3) (winter). Net <span class="hlt">air</span>-water <span class="hlt">exchange</span> fluxes ranged from -0.9 +/- 1.0 (BDE-28) (volatilization) to 11.1 +/- 5.4 (BDE-209) ng m(-2) day(-1) (deposition). The BDE-28 fluxes were mainly volatilization while the other congeners were deposited. Gas- and dissolved-phase concentrations were significantly correlated (P = 0.33-0.55, p < 0.05, except for BDE-209, r = 0.05, p > 0.05) indicating thatthe atmosphere controls the surface water PBDE levels in this coastal environment. Estimated particulate dry deposition fluxes ranged between 2.7 +/- 1.9 (BDE-154) and 116 +/- 84 ng m(-2) day(-1) (BDE-209) indicating that dry deposition is also a significant input to surface waters in the study area.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMEP43D0770P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMEP43D0770P"><span>Wind driven vertical transport in a vegetated, wetland water column with <span class="hlt">air</span>-water gas <span class="hlt">exchange</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poindexter, C.; Variano, E. A.</p> <p>2010-12-01</p> <p>Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the <span class="hlt">air</span>-water interface. Specifically, we study a wind-sheared <span class="hlt">air</span>-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the <span class="hlt">air</span>-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 <span class="hlt">exchange</span> across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the <span class="hlt">air</span> above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43H3373K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43H3373K"><span>Direct observations of Biogenic Volatile Organic Compound (BVOC) <span class="hlt">Air-Sea</span> <span class="hlt">Exchange</span> in the remote North Atlantic from the High-Wind Gas-<span class="hlt">Exchange</span> Study (HiWinGS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, M.; Yang, M. X.; Blomquist, B.; Huebert, B. J.; Bertram, T. H.</p> <p>2014-12-01</p> <p>Biogenic Volatile Organic Compounds (BVOCs) are reactive trace gases that impact both chemistry and climate by regulating oxidant loadings, determining secondary organic aerosol production rates as well as altering particle hygroscopicity. While continental BVOC <span class="hlt">exchange</span> rates are well studied, global marine flux estimates are poorly constrained. In Fall 2013, a chemical-ionization time-of-flight mass spectrometer (CI-ToF-MS) utilizing benzene cations was deployed as part of the High Wind Gas <span class="hlt">Exchange</span> Study (HiWinGs) to quantify monoterpenes, isoprene and dimethylsulfide fluxes in the remote North Atlantic. Dimethylsulfide measurements are in strong agreement with those determined by the University of Hawaii's atmospheric pressure ionization mass-spectrometer. In the remote marine boundary layer, positive monoterpene fluxes (i.e. emissions) were observed while isoprene levels rarely exceeded the detection limit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28186210','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28186210"><span>US residential building <span class="hlt">air</span> <span class="hlt">exchange</span> rates: new perspectives to improve decision making at vapor intrusion sites.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Reichman, Rivka; Shirazi, Elham; Colliver, Donald G; Pennell, Kelly G</p> <p>2017-02-22</p> <p>Vapor intrusion (VI) is well-known to be difficult to characterize because indoor <span class="hlt">air</span> (IA) concentrations exhibit considerable temporal and spatial variability in homes throughout impacted communities. To overcome this and other limitations, most VI science has focused on subsurface processes; however there is a need to understand the role of aboveground processes, especially building operation, in the context of VI exposure risks. This tutorial review focuses on building <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AERs) and provides a review of literature related building AERs to inform decision making at VI sites. Commonly referenced AER values used by VI regulators and practitioners do not account for the variability in AER values that have been published in indoor <span class="hlt">air</span> quality studies. The information presented herein highlights that seasonal differences, short-term weather conditions, home age and <span class="hlt">air</span> conditioning status, which are well known to influence AERs, are also likely to influence IA concentrations at VI sites. Results of a 3D VI model in combination with relevant AER values reveal that IA concentrations can vary more than one order of magnitude due to <span class="hlt">air</span> conditioning status and one order of magnitude due to house age. Collectively, the data presented strongly support the need to consider AERs when making decisions at VI sites.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1448Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1448Z"><span>Seasonal variation of <span class="hlt">air-sea</span> CO2 fluxes in the Terra Nova Bay of the Ross <span class="hlt">Sea</span>, Antarctica, based on year-round pCO2 observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.</p> <p>2017-12-01</p> <p>The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking <span class="hlt">sea</span>-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross <span class="hlt">Sea</span>, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast <span class="hlt">sea</span>-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although <span class="hlt">sea</span>-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the <span class="hlt">sea</span>-ice concentration was minimal. With growing <span class="hlt">sea</span> ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean <span class="hlt">air-sea</span> CO2 flux in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of <span class="hlt">sea</span>-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1150902-multi-scale-modeling-approximation-assisted-optimization-bare-tube-heat-exchangers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1150902-multi-scale-modeling-approximation-assisted-optimization-bare-tube-heat-exchangers"><span>MULTI-SCALE MODELING AND APPROXIMATION ASSISTED OPTIMIZATION OF BARE TUBE HEAT <span class="hlt">EXCHANGERS</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bacellar, Daniel; Ling, Jiazhen; Aute, Vikrant</p> <p>2014-01-01</p> <p><span class="hlt">Air</span>-to-refrigerant heat <span class="hlt">exchangers</span> are very common in <span class="hlt">air</span>-conditioning, heat pump and refrigeration applications. In these heat <span class="hlt">exchangers</span>, there is a great benefit in terms of size, weight, refrigerant charge and heat transfer coefficient, by moving from conventional channel sizes (~ 9mm) to smaller channel sizes (< 5mm). This work investigates new designs for <span class="hlt">air</span>-to-refrigerant heat <span class="hlt">exchangers</span> with tube outer diameter ranging from 0.5 to 2.0mm. The goal of this research is to develop and optimize the design of these heat <span class="hlt">exchangers</span> and compare their performance with existing state of the art designs. The <span class="hlt">air</span>-side performance of various tube bundle configurationsmore » are analyzed using a Parallel Parameterized CFD (PPCFD) technique. PPCFD allows for fast-parametric CFD analyses of various geometries with topology change. Approximation techniques drastically reduce the number of CFD evaluations required during optimization. Maximum Entropy Design method is used for sampling and Kriging method is used for metamodeling. Metamodels are developed for the <span class="hlt">air</span>-side heat transfer coefficients and pressure drop as a function of tube-bundle dimensions and <span class="hlt">air</span> velocity. The metamodels are then integrated with an <span class="hlt">air</span>-to-refrigerant heat <span class="hlt">exchanger</span> design code. This integration allows a multi-scale analysis of <span class="hlt">air</span>-side performance heat <span class="hlt">exchangers</span> including <span class="hlt">air</span>-to-refrigerant heat transfer and phase change. Overall optimization is carried out using a multi-objective genetic algorithm. The optimal designs found can exhibit 50 percent size reduction, 75 percent decrease in <span class="hlt">air</span> side pressure drop and doubled <span class="hlt">air</span> heat transfer coefficients compared to a high performance compact micro channel heat <span class="hlt">exchanger</span> with same capacity and flow rates.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311934&Lab=NERL&keyword=simulation+AND+processes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=311934&Lab=NERL&keyword=simulation+AND+processes&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Development and Evaluation of a New <span class="hlt">Air</span> <span class="hlt">Exchange</span> Rate Algorithm for the Stochastic Human Exposure and Dose Simulation Model (ISES Presentation)</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Previous exposure assessment panel studies have observed considerable seasonal, between-home and between-city variability in residential pollutant infiltration. This is likely a result of differences in home ventilation, or <span class="hlt">air</span> <span class="hlt">exchange</span> rates (AER). The Stochastic Human Exposure ...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130000766','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130000766"><span>International Space Station Common Cabin <span class="hlt">Air</span> Assembly Condensing Heat <span class="hlt">Exchanger</span> Hydrophilic Coating Operation, Recovery, and Lessons Learned</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Balistreri, Steven F.; Steele, John W.; Caron, Mark E.; Laliberte, Yvon J.; Shaw, Laura A.</p> <p>2013-01-01</p> <p>The ability to control the temperature and humidity of an environment or habitat is critical for human survival. These factors are important to maintaining human health and comfort, as well as maintaining mechanical and electrical equipment in good working order to support the human and to accomplish mission objectives. The temperature and humidity of the International Space Station (ISS) United States On-orbit Segment (USOS) cabin <span class="hlt">air</span> is controlled by the Common Cabin <span class="hlt">Air</span> Assembly (CCAA). The CCAA consists of a fan, a condensing heat <span class="hlt">exchanger</span> (CHX), an <span class="hlt">air</span>/water separator, temperature and liquid sensors, and electrical controlling hardware and software. The CHX is the primary component responsible for control of temperature and humidity. The CCAA CHX contains a chemical coating that was developed to be hydrophilic and thus attract water from the humid influent <span class="hlt">air</span>. This attraction forms the basis for water removal and therefore cabin humidity control. However, there have been several instances of CHX coatings becoming hydrophobic and repelling water. When this behavior is observed in an operational CHX in the ISS segments, the unit s ability to remove moisture from the <span class="hlt">air</span> is compromised and the result is liquid water carryover into downstream ducting and systems. This water carryover can have detrimental effects on the ISS cabin atmosphere quality and on the health of downstream hardware. If the water carryover is severe and widespread, this behavior can result in an inability to maintain humidity levels in the USOS. This paper will describe the operation of the five CCAAs within the USOS, the potential causes of the hydrophobic condition, and the impacts of the resulting water carryover to downstream systems. It will describe the history of this behavior and the actual observed impacts to the ISS USOS. Information on mitigation steps to protect the health of future CHX hydrophilic coatings as well as remediation and recovery of the full heat <span class="hlt">exchanger</span> will be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MS%26E..245e2027R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MS%26E..245e2027R"><span>Cooperation of Horizontal Ground Heat <span class="hlt">Exchanger</span> with the Ventilation Unit During Summer - Case Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław</p> <p>2017-10-01</p> <p>Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground <span class="hlt">air</span> heat <span class="hlt">exchanger</span> (earth-<span class="hlt">air</span> heat <span class="hlt">exchanger</span> - EAHX). This solution, right after heat recovery from exhaust <span class="hlt">air</span> (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply <span class="hlt">air</span>. The article presents the results of "in situ" measurements of pipe ground <span class="hlt">air</span> heat <span class="hlt">exchanger</span> cooperating with the <span class="hlt">air</span> handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh <span class="hlt">air</span> is the <span class="hlt">air</span> intake wall and two <span class="hlt">air</span> intakes field cooperating with the tube with ground <span class="hlt">air</span> heat <span class="hlt">exchangers</span>. Selection of the source of fresh <span class="hlt">air</span> is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of <span class="hlt">air</span> inlets and outlets of the heat <span class="hlt">exchanger</span> channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh <span class="hlt">air</span> were performed. Two cases of operation of the system: using EAHX heat <span class="hlt">exchanger</span> and without it, were analyzed. Potentially the use of ground <span class="hlt">air</span> heat <span class="hlt">exchanger</span> in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply <span class="hlt">air</span> temperature. Considering the results can be concluded that the continuous use of these <span class="hlt">exchangers</span> is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23589251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23589251"><span>The distribution and <span class="hlt">sea-air</span> transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing</p> <p>2013-09-01</p> <p>The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent <span class="hlt">seas</span>. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and <span class="hlt">sea-air</span> transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the <span class="hlt">sea</span> area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the <span class="hlt">sea</span> surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the <span class="hlt">sea</span> surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the <span class="hlt">air</span> annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC23K..14F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC23K..14F"><span>Carbon fluxes in North American coastal and shelf <span class="hlt">seas</span>: Current status and trends</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fennel, K.; Alin, S. R.; Barbero, L.; Evans, W.; Martin Hernandez-Ayon, J. M.; Hu, X.; Lohrenz, S. E.; Muller-Karger, F. E.; Najjar, R.; Robbins, L. L.; Shadwick, E. H.; Siedlecki, S. A.; Steiner, N.; Turk, D.; Vlahos, P.; Wang, A. Z.</p> <p>2016-12-01</p> <p>Coastal and shelf <span class="hlt">seas</span> represent an interface between all major components of the global carbon cycle: land, atmosphere, marine sediments and the ocean. Fluxes and transformations of carbon in coastal systems are complex and highly variable in space and time. The First State of the Carbon Cycle Report (http://cdiac.ornl.gov/SOCCR/final.html, Chapter 15, Chavez et al. 2007) concluded that carbon budgets of North American ocean margins were not well quantified because of insufficient observations and the complexity and highly localized spatial variability of coastal carbon dynamics. Since then significant progress has been made through the expansion of carbon observing networks, the implementation of modeling capabilities, and national and international coordination and synthesis activities. We will review the current understanding of coastal carbon fluxes around the North American continent including along the Atlantic and Pacific coasts, the northern Gulf of Mexico, and the North American Arctic region and provide a compilation of regional estimates of <span class="hlt">air-sea</span> fluxes of CO2. We will discuss generalizable patterns in coastal <span class="hlt">air-sea</span> CO2 <span class="hlt">exchange</span> and other carbon fluxes as well as reasons underlying spatial heterogeneity. After providing an overview of the principal modes of carbon export from coastal systems, we will apply these mechanisms to the North American continent, and discuss observed and projected trends of key properties and fluxes. The presentation will illustrate that despite significant advances in capabilities and understanding, large uncertainties remain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol2/pdf/CFR-2010-title47-vol2-sec22-880.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title47-vol2/pdf/CFR-2010-title47-vol2-sec22-880.pdf"><span>47 CFR 22.880 - Information <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES PUBLIC MOBILE SERVICES <span class="hlt">Air</span>-Ground Radiotelephone Service Commercial Aviation <span class="hlt">Air</span>-Ground Systems § 22.880 Information <span class="hlt">exchange</span>. (a) Prior notification. Public safety/CII licensees may notify a commercial aviation <span class="hlt">air</span>-ground system...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4722B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4722B"><span>Regulation of CO2 <span class="hlt">Air</span> <span class="hlt">Sea</span> Fluxes by Sediments in the North <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley</p> <p>2016-04-01</p> <p>A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North <span class="hlt">Sea</span>. Analyses of both basin-wide observations in the North <span class="hlt">Sea</span> and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North <span class="hlt">Sea</span> indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North <span class="hlt">Sea</span> total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..126a2018A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..126a2018A"><span>Modification split type <span class="hlt">air</span> conditioning unit by installing internal heat <span class="hlt">exchanger</span> and condenser precooling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ambarita, H.</p> <p>2018-03-01</p> <p>In this paper, a modified of <span class="hlt">air</span> conditioning (AC) system is proposed. In the modified system, an internal heat <span class="hlt">exchanger</span> and condenser precooling unit are installed. The objective is to explore the effect of the additional equipment to the performance of the system. An AC with compressor power of 1 PK is modified and compared with the original one. The results show that ER of the modified system is higher than the original one in order of 3.6%. The work of the compressor of the modified system is 12.5% lower than work of the compressor without modification. Finally, the COP of the modified system is 11.71% higher than the original one. These facts reveal that the combination of IHX and condenser precooling shows positive impact on the performance of the AC. It is recommended to use the modified system to improve the energy efficiency of the <span class="hlt">Air</span> Conditioning system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4361K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4361K"><span>High-resolution measurements of elemental mercury in surface water for an improved quantitative understanding of the Baltic <span class="hlt">Sea</span> as a source of atmospheric mercury</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuss, Joachim; Krüger, Siegfried; Ruickoldt, Johann; Wlost, Klaus-Peter</p> <p>2018-03-01</p> <p>Marginal <span class="hlt">seas</span> are directly subjected to anthropogenic and natural influences from land in addition to receiving inputs from the atmosphere and open ocean. Together these lead to pronounced gradients and strong dynamic changes. However, in the case of mercury emissions from these <span class="hlt">seas</span>, estimates often fail to adequately account for the spatial and temporal variability of the elemental mercury concentration in surface water (Hg0wat). In this study, a method to measure Hg0wat at high resolution was devised and subsequently validated. The better-resolved Hg0wat dataset, consisting of about one measurement per nautical mile, yielded insight into the <span class="hlt">sea</span>'s small-scale variability and thus improved the quantification of the <span class="hlt">sea</span>'s Hg0 emission. This is important because global marine Hg0 emissions constitute a major source of atmospheric mercury. Research campaigns in the Baltic <span class="hlt">Sea</span> were carried out between 2011 and 2015 during which Hg0 both in surface water and in ambient <span class="hlt">air</span> were measured. For the former, two types of equilibrators were used. A membrane equilibrator enabled continuous equilibration and a bottle equilibrator assured that equilibrium was reached for validation. The measurements were combined with data obtained in the Baltic <span class="hlt">Sea</span> in 2006 from a bottle equilibrator only. The Hg0 <span class="hlt">sea-air</span> flux was newly calculated with the combined dataset based on current knowledge of the Hg0 Schmidt number, Henry's law constant, and a widely used gas <span class="hlt">exchange</span> transfer velocity parameterization. By using a newly developed pump-CTD with increased pumping capability in the Hg0 equilibrator measurements, Hg0wat could also be characterized in deeper water layers. A process study carried out near the Swedish island Øland in August 2015 showed that the upwelling of Hg0-depleted water contributed to Hg0 emissions of the Baltic <span class="hlt">Sea</span>. However, a delay of a few days after contact between the upwelled water and light was apparently necessary before the biotic and abiotic transformations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24462236','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24462236"><span>Polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in the equatorial Indian Ocean: temporal trend, continental outflow and <span class="hlt">air</span>-water <span class="hlt">exchange</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Yumei; Li, Jun; Xu, Yue; Xu, Weihai; Cheng, Zhineng; Liu, Junwen; Wang, Yan; Tian, Chongguo; Luo, Chunling; Zhang, Gan</p> <p>2014-03-15</p> <p>Nineteen pairs of <span class="hlt">air</span> and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the <span class="hlt">Seas</span>) and HCB were lower than previous data over the study area. <span class="hlt">Air</span> samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and <span class="hlt">air</span> mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to <span class="hlt">air</span> during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.1835R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.1835R"><span>Technical Note: A mobile <span class="hlt">sea</span>-going mesocosm system - new opportunities for ocean change research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riebesell, U.; Czerny, J.; von Bröckel, K.; Boxhammer, T.; Büdenbender, J.; Deckelnick, M.; Fischer, M.; Hoffmann, D.; Krug, S. A.; Lentz, U.; Ludwig, A.; Muche, R.; Schulz, K. G.</p> <p>2013-03-01</p> <p>One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between small-scale laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile <span class="hlt">sea</span>-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (∼50-75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, and (v) perform mass balance calculations. After multiple test runs in the Baltic <span class="hlt">Sea</span>, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78°56.2' N, 11°53.6' E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....912985R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....912985R"><span>Technical Note: A mobile <span class="hlt">sea</span>-going mesocosm system - new opportunities for ocean change research</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Riebesell, U.; Czerny, J.; von Bröckel, K.; Boxhammer, T.; Büdenbender, J.; Deckelnick, M.; Fischer, M.; Hoffmann, D.; Krug, S. A.; Lentz, U.; Ludwig, A.; Muche, R.; Schulz, K. G.</p> <p>2012-09-01</p> <p>One of the great challenges in ocean change research is to understand and forecast the effects of environmental changes on pelagic communities and the associated impacts on biogeochemical cycling. Mesocosms, experimental enclosures designed to approximate natural conditions, and in which environmental factors can be manipulated and closely monitored, provide a powerful tool to close the gap between single species laboratory experiments and observational and correlative approaches applied in field surveys. Existing pelagic mesocosm systems are stationary and/or restricted to well-protected waters. To allow mesocosm experimentation in a range of hydrographic conditions and in areas considered most sensitive to ocean change, we developed a mobile, <span class="hlt">sea</span>-going mesocosm facility, the Kiel Off-Shore Mesocosms for Future Ocean Simulations (KOSMOS). The KOSMOS platform, which can be transported and deployed by mid-sized research vessels, is designed for operation in moored and free-floating mode under low to moderate wave conditions (up to 2.5 m wave heights). It encloses a water column 2 m in diameter and 15 to 25 m deep (~50-75 m3 in volume) without disrupting the vertical structure or disturbing the enclosed plankton community. Several new developments in mesocosm design and operation were implemented to (i) minimize differences in starting conditions between mesocosms, (ii) allow for extended experimental duration, (iii) precisely determine the mesocosm volume, (iv) determine <span class="hlt">air-sea</span> gas <span class="hlt">exchange</span>, and (v) perform mass balance calculations. After multiple test runs in the Baltic <span class="hlt">Sea</span>, which resulted in continuous improvement of the design and handling, the KOSMOS platform successfully completed its first full-scale experiment in the high Arctic off Svalbard (78° 56.2' N, 11° 53.6' E) in June/July 2010. The study, which was conducted in the framework of the European Project on Ocean Acidification (EPOCA), focused on the effects of ocean acidification on a natural plankton</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014378','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014378"><span>Bay of Bengal Surface and Thermocline and the Arabian <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>oceanographic processes that <span class="hlt">exchange</span> low salinity surface and upper thermocline water of the Bay of Bengal with the salty Arabian <span class="hlt">Sea</span> and tropical Indian Ocean ...two northern embayments of the Indian Ocean . OBJECTIVES Two northern Indian Ocean embayments, the Arabian <span class="hlt">Sea</span> and the Bay of Bengal, are so close...e.g. where do the eddies come from? 2. Investigating advective pathways, and the role of isopycnal mixing, <span class="hlt">exchanging</span> upper ocean water between the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41C2277B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41C2277B"><span>Understanding the Role of <span class="hlt">Air-Sea</span> Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Benedict, J. J.; Clement, A. C.; Medeiros, B.</p> <p>2017-12-01</p> <p>Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, <span class="hlt">air-sea</span> fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related <span class="hlt">air-sea</span> interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ECSS..195....1I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ECSS..195....1I"><span>Introduction for the SI "Understanding the Baltic <span class="hlt">Sea</span>"</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikauniece, Anda; Markus Meier, H. E.; Kalniņa, Laimdota</p> <p>2017-08-01</p> <p>The Baltic <span class="hlt">Sea</span> is a semi-enclosed <span class="hlt">sea</span> with a low salinity, slow water <span class="hlt">exchange</span> and distinguished stratification. Natural properties of the Baltic thus promote development of anoxic areas at the deepest parts of the <span class="hlt">sea</span>. In addition, the coasts of the Baltic <span class="hlt">Sea</span> are heavily populated - 85 million inhabitants living in the drainage basin and 9 countries surrounding the <span class="hlt">sea</span>, most of them highly industrially developed. Anthropogenic activities consequently add considerable pressure on the already vulnerable environment of the <span class="hlt">sea</span>. Eutrophication, over-fishing and changed food-web, oil pollution, occurrence of hazardous substances, damage of seafloor by trawling and construction works are all present in the Baltic <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918226D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918226D"><span>Land-<span class="hlt">Sea</span> relationships of climate-related records: example of the Holocene in the eastern Canadian Arctic and Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Vernal, Anne; Fréchette, Bianca; Hillaire-Marcel, Claude</p> <p>2017-04-01</p> <p>Anne de Vernal, Bianca Fréchette, Claude Hillaire-Marcel Important progresses have been made to reconstruct climate and ocean changes through time. However, there is often a hiatus between the land-based climate reconstructions and paleoceanographical data. The reconstructed parameters are not the same (e.g. surface <span class="hlt">air</span> temperature vs. <span class="hlt">sea</span>-surface temperature). Moreover, the spatial (local to regional) and temporal dimensions (seasonal, annual to multi-decadal) of proxy-data are often inconsistent, thus preventing direct correlation of time series and often leading to uncertainties in multi-site, multi-proxy compilations. Here, we address the issue of land-<span class="hlt">sea</span> relationships in the eastern Canadian Arctic-Baffin Bay-Labrador <span class="hlt">Sea</span>-western Greenland based on the examination of different climate-related information from marine cores (dinocysts) collected nearshore vs. offshore, ice cores (isotopes), fjord and lake data (pollen). The combined information tends to indicate that "climate" changes are not easily neither adequately captured by temperature and temperature shifts. However, the seasonal contrast of temperatures seems to be a key parameter. Whereas it is often attenuated offshore, it is generally easy to reconstruct nearshore, where water stratification is usually stronger. The confrontation of data also shows a relationship between ice core data and <span class="hlt">sea</span>-ice cover and/or <span class="hlt">sea</span>-surface salinity, suggesting that <span class="hlt">air-sea</span> <span class="hlt">exchanges</span> in basins surrounding ice sheets play a significant role with respect to their isotopic composition. On the whole, combined onshore-offshore data consistently suggest a two-step shift towards optimal summer and winter conditions the circum Baffin Bay and northern Labrador <span class="hlt">Sea</span> at 7.5 and 6 ka BP. These delayed optimal conditions seem to result from ice-meltwater discharges maintaining low salinity conditions in marine surface waters and thus a strong seasonality.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770003526','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770003526"><span>Lightweight Long Life Heat <span class="hlt">Exchanger</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, E. K.</p> <p>1976-01-01</p> <p>A shuttle orbiter flight configuration aluminum heat <span class="hlt">exchanger</span> was designed, fabricated, and tested. The heat <span class="hlt">exchanger</span> utilized aluminum clad titanium composite parting sheets for protection against parting sheet pin hole corrosion. The heat <span class="hlt">exchanger</span>, which is fully interchangeable with the shuttle condensing heat <span class="hlt">exchanger</span>, includes slurpers (a means for removing condensed water from the downstream face of the heat <span class="hlt">exchanger</span>), and both the core <span class="hlt">air</span> passes and slurpers were hydrophilic coated to enhance wettability. The test program included performance tests which demonstrated the adequacy of the design and confirmed the predicted weight savings.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49..163M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49..163M"><span>Impact of accelerated future global mean <span class="hlt">sea</span> level rise on hypoxia in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meier, H. E. M.; Höglund, A.; Eilola, K.; Almroth-Rosell, E.</p> <p>2017-07-01</p> <p>Expanding hypoxia is today a major threat for many coastal <span class="hlt">seas</span> around the world and disentangling its drivers is a large challenge for interdisciplinary research. Using a coupled physical-biogeochemical model we estimate the impact of past and accelerated future global mean <span class="hlt">sea</span> level rise (GSLR) upon water <span class="hlt">exchange</span> and oxygen conditions in a semi-enclosed, shallow <span class="hlt">sea</span>. As a study site, the Baltic <span class="hlt">Sea</span> was chosen that suffers today from eutrophication and from dead bottom zones due to (1) excessive nutrient loads from land, (2) limited water <span class="hlt">exchange</span> with the world ocean and (3) perhaps other drivers like global warming. We show from model simulations for the period 1850-2008 that the impacts of past GSLR on the marine ecosystem were relatively small. If we assume for the end of the twenty-first century a GSLR of +0.5 m relative to today's mean <span class="hlt">sea</span> level, the impact on the marine ecosystem may still be small. Such a GSLR corresponds approximately to the projected ensemble-mean value reported by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. However, we conclude that GSLR should be considered in future high-end projections (>+1 m) for the Baltic <span class="hlt">Sea</span> and other coastal <span class="hlt">seas</span> with similar hydrographical conditions as in the Baltic because GSLR may lead to reinforced saltwater inflows causing higher salinity and increased vertical stratification compared to present-day conditions. Contrary to intuition, reinforced ventilation of the deep water does not lead to overall improved oxygen conditions but causes instead expanded dead bottom areas accompanied with increased internal phosphorus loads from the sediments and increased risk for cyanobacteria blooms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22894100','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22894100"><span>Measurement of <span class="hlt">air</span> <span class="hlt">exchange</span> rates in different indoor environments using continuous CO2 sensors.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>You, Yan; Niu, Can; Zhou, Jian; Liu, Yating; Bai, Zhipeng; Zhang, Jiefeng; He, Fei; Zhang, Nan</p> <p>2012-01-01</p> <p>A new <span class="hlt">air</span> <span class="hlt">exchange</span> rate (AER) monitoring method using continuous CO2 sensors was developed and validated through both laboratory experiments and field studies. Controlled laboratory simulation tests were conducted in a 1-m3 environmental chamber at different AERs (0.1-10.0 hr(-1)). AERs were determined using the decay method based on box model assumptions. Field tests were conducted in classrooms, dormitories, meeting rooms and apartments during 2-5 weekdays using CO2 sensors coupled with data loggers. Indoor temperature, relative humidity (RH), and CO2 concentrations were continuously monitored while outdoor parameters combined with on-site climate conditions were recorded. Statistical results indicated that good laboratory performance was achieved: duplicate precision was within 10%, and the measured AERs were 90%-120% of the real AERs. Average AERs were 1.22, 1.37, 1.10, 1.91 and 0.73 hr(-1) in dormitories, <span class="hlt">air</span>-conditioned classrooms, classrooms with an <span class="hlt">air</span> circulation cooling system, reading rooms, and meeting rooms, respectively. In an elderly particulate matter exposure study, all the homes had AER values ranging from 0.29 to 3.46 hr(-1) in fall, and 0.12 to 1.39 hr(-1) in winter with a median AER of 1.15.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16615688','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16615688"><span>Testing of heat <span class="hlt">exchangers</span> in membrane oxygenators using <span class="hlt">air</span> pressure.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hamilton, Carole; Stein, Jutta; Seidler, Rainer; Kind, Robert; Beck, Karin; Tosok, Jürgen; Upterfofel, Jörg</p> <p>2006-03-01</p> <p>All heat <span class="hlt">exchangers</span> (HE) in membrane oxygenators are tested by the manufacturer for water leaks during the production phase. However, for safety reasons, it is highly recommended that HEs be tested again before clinical use. The most common method is to attach the heater-cooler to the HE and allow the water to recirculate for at least 10 min, during which time a water leak should be evident. To improve the detection of water leaks, a test was devised using a pressure manometer with an integrated bulb used to pressurize the HE with <span class="hlt">air</span>. The cardiopulmonary bypass system is set up as per protocol. A pressure manometer adapted to a 1/2" tubing is connected to the water inlet side of the oxygenator. The water outlet side is blocked with a short piece of 1/2" deadend tubing. The HE is pressurized with 250 mmHg for at least 30 sec and observed for any drop. Over the last 2 years, only one oxygenator has been detected with a water leak in which the <span class="hlt">air</span>-method leaktest was performed. This unit was sent back to the manufacturer who confirmed the failure. Even though the incidence of water leaks is very low, it does occur and it is, therefore, important that all HEs are tested before they are used clinically. This method of using a pressure manometer offers many advantages, as the HE can be tested outside of the operating room (OR), allowing earlier testing of the oxygenator, no water contact is necessary, and it is simple, easy and quick to perform.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981JGR....86..439H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981JGR....86..439H"><span>Experimental <span class="hlt">sea</span> slicks: Their practical applications and utilization for basic studies of <span class="hlt">air-sea</span> interactions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hühnerfuss, Heinrich; Garrett, W. D.</p> <p>1981-01-01</p> <p>Practical applications of organic surface films added to the <span class="hlt">sea</span> surface date back to ancient times. Aristotle, Plutarch, and Pliny the Elder describe the seaman's practice of calming waves in a storm by pouring oil onto the <span class="hlt">sea</span> [Scott, 1977]. It was also noted that divers released oil beneath the water surface so that it could rise and spread over the <span class="hlt">sea</span> surface, thereby suppressing the irritating flicker associated with the passage of light through a rippled surface. From a scientific point of view, Benjamin Franklin was the first to perform experiments with oils on natural waters. His experiment with a `teaspoonful of oil' on Clapham pond in 1773 inspired many investigators to consider <span class="hlt">sea</span> surface phenomena or to conduct experiments with oil films. This early research has been reviewed by Giles [1969], Giles and Forrester [1970], and Scott [1977]. Franklin's studies with experimental slicks can be regarded as the beginning of surface film chemistry. His speculations on the wave damping influence of oil induced him to perform the first qualitative experiment with artificial <span class="hlt">sea</span> slicks at Portsmouth (England) in October of 1773. Although the <span class="hlt">sea</span> was calmed and very few white caps appeared in the oil-covered area, the swell continued through the oiled area to Franklin's great disappointment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=197971&Lab=NERL&keyword=gas+AND+behaviour&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=197971&Lab=NERL&keyword=gas+AND+behaviour&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Simulating the Vapour Phase <span class="hlt">Air</span>/Water <span class="hlt">Exchange</span> of p,p′-DDE, p,p′-DDT, Lindane, and 2,3,7,8-Tetrachlorodibenzodioxin</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Uncertainties in our understanding of gaseous <span class="hlt">air</span>/water <span class="hlt">exchange</span> have emerged as major sources of concern in efforts to construct global and regional mass balances of both the green house gas carbon dioxide and semi-volatile persistent, bioaccumulative and toxic chemicals. Hoff e...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=68872&keyword=water+AND+gas+AND+exchange&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=68872&keyword=water+AND+gas+AND+exchange&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>DIFFUSIVE <span class="hlt">EXCHANGE</span> OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE <span class="hlt">AIR</span>-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive <span class="hlt">air</span>-water gas <span class="hlt">exchange</span> rates. Gaseous PAHs ar...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.evostc.state.ak.us/index.cfm?FA=status.seaotter','USGSPUBS'); return false;" href="http://www.evostc.state.ak.us/index.cfm?FA=status.seaotter"><span><span class="hlt">Sea</span> Otter Enhydra lutris</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bodkin, James L.; Ballachey, Brenda E.</p> <p>1997-01-01</p> <p>The <span class="hlt">sea</span> otter, Enhydra lutris, is the largest member of the Mustelidae family and is the only one which lives entirely in marine waters. <span class="hlt">Sea</span> otters are unique among marine mammals because, unlike whales, dolphins and seals, they do not have a layer of fat or blubber to keep them warm in the cool oceans of the North Pacific. Instead, <span class="hlt">sea</span> otters depend on dense fur that traps tiny <span class="hlt">air</span> bubbles to insulate them from the cold water. To stay warm, they also must maintain a very high metabolic rate, requiring the <span class="hlt">sea</span> otter to eat about 25% of its body weight per day. <span class="hlt">Sea</span> otters eat mostly invertebrates - clams, crabs, urchins, and mussels - found in shallow coastal waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7332E..1IN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7332E..1IN"><span>Land, <span class="hlt">sea</span>, and <span class="hlt">air</span> unmanned systems research and development at SPAWAR Systems Center Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.</p> <p>2009-05-01</p> <p>The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and <span class="hlt">air</span> systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot interaction, and incorporation of remotely operated weapon systems. On the <span class="hlt">sea</span> surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the <span class="hlt">air</span>, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned <span class="hlt">air</span> vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ACPD...1227927E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ACPD...1227927E"><span><span class="hlt">Air</span>-surface <span class="hlt">exchange</span> measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, G. C.; Howard, D. A.</p> <p>2012-10-01</p> <p>This paper presents the first gaseous elemental mercury (GEM) <span class="hlt">air</span>-surface <span class="hlt">exchange</span> measurements obtained over naturally enriched and background (< 0.1 μg g-1 Hg) terrestrial landscapes in Australia. Two pilot field studies were carried out during the Australian autumn and winter periods at a copper-gold-cobalt-arsenic-mercury mineral field near Pulganbar, NSW. GEM fluxes using a dynamic flux chamber approach were measured, along with controlling environmental parameters over three naturally enriched and three background substrates. The enriched sites results showed net emission to the atmosphere and a strong correlation between flux and substrate Hg concentration, with average fluxes ranging from 14 ± 1 ng m-2 h-1 to 113 ± 6 ng m-2 h-1. Measurements at background sites showed both emission and deposition. The average Hg flux from all background sites showed an overall net emission of 0.36 ± 0.06 ng m-2 h-1. Fluxes show strong relationships with temperature, radiation, and substrate parameters. A compensation point of 2.48, representative of bare soils was determined. Comparison of the Australian data to North American data confirmed the need for Australian specific mercury <span class="hlt">air</span>-surface <span class="hlt">exchange</span> data representative of Australia's unique climatic conditions, vegetation types, land use patterns, and soils.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23336325','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23336325"><span>Indoor <span class="hlt">air</span> quality, <span class="hlt">air</span> <span class="hlt">exchange</span> rates, and radioactivity in new built temporary houses following the Great East Japan Earthquake in Minamisoma, Fukushima.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shinohara, N; Tokumura, M; Kazama, M; Yoshino, H; Ochiai, S; Mizukoshi, A</p> <p>2013-08-01</p> <p>This study measured <span class="hlt">air</span> <span class="hlt">exchange</span> rates, indoor concentrations of aldehydes and volatile organic compounds (VOCs), and radioactivity levels at 19 temporary houses in different temporary housing estate constructed in Minamisoma City following the Great East Japan Earthquake. The 19 surveyed houses represented all of the companies assigned to construct temporary houses in that Minamisoma City. Data were collected shortly after construction and before occupation, from August 2011 to January 2012. Mean <span class="hlt">air</span> <span class="hlt">exchange</span> rates in the temporary houses were 0.28/h, with no variation according to housing types and construction date. Mean indoor concentrations of formaldehyde, acetaldehyde, toluene, ethylbenzene, m/p-xylene, o-xylene, styrene, p-dichlorobenzene, tetradecane, and total VOCs (TVOCs) were 29.2, 72.7, 14.6, 6.35, 3.05, 1.81, 7.29, 14.3, 8.32, and 901 μg/m(3), respectively. The levels of acetaldehyde and TVOCs exceeded the indoor guideline (48 μg/m(3)) and interim target (400 μg/m(3)) in more than half of the 31 rooms tested. In addition to guideline chemicals, terpenes (α-pinene and d-limonene) and acetic esters (butyl acetate and ethyl acetate) were often detected in these houses. The indoor radiation levels measured by a Geiger-Müller tube (Mean: 0.22 μSv/h) were lower than those recorded outdoors (Mean: 0.42 μSv/h), although the shielding effect of the houses was less than for other types of buildings. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/8338613','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/8338613"><span>[The effect of the ventilation rate on <span class="hlt">air</span> particle and <span class="hlt">air</span> microbe concentration in operating rooms with conventional ventilation. 1. Measurement without surgical activity].</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kruppa, B; Rüden, H</p> <p>1993-05-01</p> <p>The question was if a reduction of airborne particles and bacteria in conventionally (turbulently), ventilated operating theatres in comparison to Laminar-Airflow (LAF) operating theatres does occur at high <span class="hlt">air-exchange</span>-rates. Within the framework of energy consumption measures the influence of <span class="hlt">air-exchange</span>-rates on airborne particle and bacteria concentrations was determined in two identical operating theatres with conventional ventilation (wall diffusor panel) at the <span class="hlt">air-exchange</span>-rates 7.5, 10, 15 and 20/h without surgical activity. This was established by means of the statistical procedure of analysis of variance. Especially for the comparison of the <span class="hlt">air-exchange</span>-rates 7.5 and 15/h statistical differences were found for airborne particle concentrations in supply and ambient <span class="hlt">air</span>. Concerning airborne bacteria concentrations no differences were found among the various <span class="hlt">air-exchange</span>-rates. Explanation of variance is quite high for non-viable particles (supply <span class="hlt">air</span>: 37%, ambient <span class="hlt">air</span>: 81%) but negligible for viable particles (bacteria) with values below 15%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27373849','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27373849"><span>Block of Na(+)/Ca(2+) <span class="hlt">exchanger</span> by <span class="hlt">SEA</span>0400 in human right atrial preparations from patients in sinus rhythm and in atrial fibrillation.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Christ, Torsten; Kovács, Peter P; Acsai, Karoly; Knaut, Michael; Eschenhagen, Thomas; Jost, Norbert; Varró, András; Wettwer, Erich; Ravens, Ursula</p> <p>2016-10-05</p> <p>The Na(+)/Ca(2+) <span class="hlt">exchanger</span> (NCX) plays a major role in myocardial Ca(2+) homoeostasis, but is also considered to contribute to the electrical instability and contractile dysfunction in chronic atrial fibrillation (AF). Here we have investigated the effects of the selective NCX blocker <span class="hlt">SEA</span>0400 in human right atrial cardiomyocytes from patients in sinus rhythm (SR) and AF in order to obtain electrophysiological evidence for putative antiarrhythmic activity of this new class of drugs. Action potentials were measured in right atrial trabeculae using conventional microelectrodes. Human myocytes were enzymatically isolated. Rat atrial and ventricular cardiomyocytes were used for comparison. Using perforated-patch, NCX was measured as Ni(2+)-sensitive current during ramp pulses. In ruptured-patch experiments, NCX current was activated by changing the extracellular Ca(2+) concentration from 0 to 1mM in Na(+)-free bath solution (100mM Na(+) intracellular, "Hilgemann protocol"). Although <span class="hlt">SEA</span>0400 was effective in rat cardiomyocytes, 10µM did not influence action potentials and contractility, neither in SR nor AF. <span class="hlt">SEA</span>0400 (10μM) also failed to affect human atrial NCX current measured with perforated patch. With the "Hilgemann protocol" <span class="hlt">SEA</span>0400 concentration-dependently suppressed human atrial NCX current, and its amplitude was larger in AF than in SR cardiomyocytes. Our results confirm higher NCX activity in AF than SR. <span class="hlt">SEA</span>0400 fails to block Ni(2+)-sensitive current in human atrial cells unless unphysiological conditions are used. We speculate that block of NCX with <span class="hlt">SEA</span>0400 depends on intracellular Na(+) concentration. Copyright © 2016 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.5384G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.5384G"><span>North Atlantic <span class="hlt">sea</span>-level variability during the last millennium</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gehrels, Roland; Long, Antony; Saher, Margot; Barlow, Natasha; Blaauw, Maarten; Haigh, Ivan; Woodworth, Philip</p> <p>2014-05-01</p> <p>Climate modelling studies have demonstrated that spatial and temporal <span class="hlt">sea</span>-level variability observed in North Atlantic tide-gauge records is controlled by a complex array of processes, including ice-ocean mass <span class="hlt">exchange</span>, freshwater forcing, steric changes, changes in wind fields, and variations in the speed of the Gulf Stream. Longer records of <span class="hlt">sea</span>-level change, also covering the pre-industrial period, are important as a 'natural' and long-term baseline against which to test model performance and to place recent and future <span class="hlt">sea</span>-level changes and ice-sheet change into a long-term context. Such records can only be reliably and continuously reconstructed from proxy methods. Salt marshes are capable of recording decimetre-scale <span class="hlt">sea</span>-level variations with high precision and accuracy. In this paper we present four new high-resolution proxy records of (sub-) decadal <span class="hlt">sea</span>-level variability reconstructed from salt-marsh sediments in Iceland, Nova Scotia, Maine and Connecticut that span the past 400 to 900 years. Our records, based on more than 100 new radiocarbon analyses, Pb-210 and Cs-137 measurements as well as other biological and geochemical age markers, together with hundreds of new microfossil observations from contemporary and fossil salt marshes, capture not only the rapid 20th century <span class="hlt">sea</span>-level rise, but also small-scale (decimetre, multi-decadal) <span class="hlt">sea</span>-level fluctuations during preceding centuries. We show that in Iceland three periods of rapid <span class="hlt">sea</span>-level rise are synchronous with the three largest positive shifts of the reconstructed North Atlantic Oscillation (NAO) index. Along the North American east coast we compare our data with salt-marsh records from New Jersey, North Carolina and Florida and observe a trend of increased pre-industrial <span class="hlt">sea</span>-level variability from south to north (Florida to Nova Scotia). Mass changes and freshwater forcing cannot explain this pattern. Based on comparisons with instrumental <span class="hlt">sea</span>-level data and modelling studies we hypothesise that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714877S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714877S"><span>Accounting for observational uncertainties in the evaluation of low latitude turbulent <span class="hlt">air-sea</span> fluxes simulated in a suite of IPSL model versions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina</p> <p>2015-04-01</p> <p>Turbulent momentum and heat (sensible and latent) fluxes at the <span class="hlt">air-sea</span> interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent <span class="hlt">air-sea</span> fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on <span class="hlt">sea</span> surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated <span class="hlt">air</span>-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21069949','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21069949"><span>Predicting residential <span class="hlt">air</span> <span class="hlt">exchange</span> rates from questionnaires and meteorology: model evaluation in central North Carolina.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D</p> <p>2010-12-15</p> <p>A critical aspect of <span class="hlt">air</span> pollution exposure models is the estimation of the <span class="hlt">air</span> <span class="hlt">exchange</span> rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor <span class="hlt">air</span> pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in <span class="hlt">air</span> pollution exposure models used to develop exposure metrics for health studies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1187W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1187W"><span><span class="hlt">Sea</span> Ice in the NCEP Seasonal Forecast System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of <span class="hlt">sea</span> ice is represented. <span class="hlt">Sea</span> ice prediction is challenging; <span class="hlt">sea</span> ice can form or melt, it can move with wind and/or ocean current; <span class="hlt">sea</span> ice interacts with both the <span class="hlt">air</span> above and ocean underneath, it influences by, and has impact on the <span class="hlt">air</span> and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a <span class="hlt">sea</span> ice model. In this work, we present the NCEP coupled model, the CFSv2 <span class="hlt">sea</span> ice component that includes a dynamic thermodynamic <span class="hlt">sea</span> ice model and a simple "assimilation" scheme, how <span class="hlt">sea</span> ice has been assimilated in CFSR, the characteristics of the <span class="hlt">sea</span> ice from CFSR and CFSv2, and the improvements of <span class="hlt">sea</span> ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including <span class="hlt">sea</span> ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29501890','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29501890"><span>Distribution, sources, and <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of OCPs, PCBs and PAHs in urban soils of Nepal.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pokhrel, Balram; Gong, Ping; Wang, Xiaoping; Chen, Mengke; Wang, Chuanfei; Gao, Shaopeng</p> <p>2018-06-01</p> <p>Due to the high temperature and extensive use of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), tropical cities could act as secondary sources of these pollutants and therefore received global concern. As compared with other tropical cities, studies on the <span class="hlt">air</span>-soil <span class="hlt">exchange</span> of OCPs, PCBs and PAHs in tropical Nepali cities remained limited. In the present study, 39 soil samples from Kathmandu (capital of Nepal) and 21 soil samples from Pokhara (second largest city in Nepal) were collected The soil concentrations of the sum of endosulfans (α- and β-endosulfans) ranged from 0.01 to 16.4 ng/g dw. Meanwhile, ∑dichlorodiphenyltrichloroethane (DDTs) ranged from 0.01 to 6.5 ng/g dw; ∑6PCBs from 0.01 to 9.7 ng/g dw; and ∑15PAHs from 17.1 to 6219 ng/g dw. High concentrations of OCPs were found in the soil of commercial land, while, high soil PAH concentrations were found on tourist/religious and commercial land. Combined the published <span class="hlt">air</span> concentrations, and the soil data of this study, the directions and fluxes of <span class="hlt">air</span>-soil <span class="hlt">exchange</span> were estimated using a fugacity model. It is clear that Nepal is a country contributing prominently to secondary emissions of endosulfans, hexachlorobenzene (HCB), and low molecular weight (LMW) PCBs and PAHs. The flux for all the pollutants in Kathmandu, with ∑endosulfans up to 3553; HCB up to 5263; and ∑LMW-PAHs up to 24378 ng m -2  h -1 , were higher than those in Pokhara. These high flux values indicated the high strength of Nepali soils to act as a source. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1608P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1608P"><span>The ocean mixed layer under Southern Ocean <span class="hlt">sea</span>-ice: Seasonal cycle and forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît</p> <p>2017-02-01</p> <p>The oceanic mixed layer is the gateway for the <span class="hlt">exchanges</span> between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by <span class="hlt">sea</span>-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and <span class="hlt">sea</span>-ice plays a key role for water mass transformation, the carbon cycle, <span class="hlt">sea</span>-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under <span class="hlt">sea</span>-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of <span class="hlt">sea</span> surface salinity and temperature are primarily driven by surface processes, dominated by <span class="hlt">sea</span>-ice freshwater flux for the salt budget and by <span class="hlt">air-sea</span> flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional <span class="hlt">sea</span>-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.129..229S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.129..229S"><span>New directions: Time for a new approach to modeling surface-atmosphere <span class="hlt">exchanges</span> in <span class="hlt">air</span> quality models?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Saylor, Rick D.; Hicks, Bruce B.</p> <p>2016-03-01</p> <p>Just as the <span class="hlt">exchange</span> of heat, moisture and momentum between the Earth's surface and the atmosphere are critical components of meteorological and climate models, the surface-atmosphere <span class="hlt">exchange</span> of many trace gases and aerosol particles is a vitally important process in <span class="hlt">air</span> quality (AQ) models. Current state-of-the-art AQ models treat the emission and deposition of most gases and particles as separate model parameterizations, even though evidence has accumulated over time that the emission and deposition processes of many constituents are often two sides of the same coin, with the upward (emission) or downward (deposition) flux over a landscape depending on a range of environmental, seasonal and biological variables. In this note we argue that the time has come to integrate the treatment of these processes in AQ models to provide biological, physical and chemical consistency and improved predictions of trace gases and particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989saei.confQ....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989saei.confQ....C"><span>Analytical methods to predict liquid congealing in ram <span class="hlt">air</span> heat <span class="hlt">exchangers</span> during cold operation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coleman, Kenneth; Kosson, Robert</p> <p>1989-07-01</p> <p>Ram <span class="hlt">air</span> heat <span class="hlt">exchangers</span> used to cool liquids such as lube oils or Ethylene-Glycol/water solutions can be subject to congealing in very cold ambients, resulting in a loss of cooling capability. Two-dimensional, transient analytical models have been developed to explore this phenomenon with both continuous and staggered fin cores. Staggered fin predictions are compared to flight test data from the E-2C Allison T56 engine lube oil system during winter conditions. For simpler calculations, a viscosity ratio correction was introduced and found to provide reasonable cold ambient performance predictions for the staggered fin core, using a one-dimensional approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AtmEn.122..628S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AtmEn.122..628S"><span>Measuring and modeling <span class="hlt">air</span> <span class="hlt">exchange</span> rates inside taxi cabs in Los Angeles, California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shu, Shi; Yu, Nu; Wang, Yueyan; Zhu, Yifang</p> <p>2015-12-01</p> <p><span class="hlt">Air</span> <span class="hlt">exchange</span> rates (AERs) have a direct impact on traffic-related <span class="hlt">air</span> pollutant (TRAP) levels inside vehicles. Taxi drivers are occupationally exposed to TRAP on a daily basis, yet there is limited measurement of AERs in taxi cabs. To fill this gap, AERs were quantified in 22 representative Los Angeles taxi cabs including 10 Prius, 5 Crown Victoria, 3 Camry, 3 Caravan, and 1 Uplander under realistic driving (RD) conditions. To further study the impacts of window position and ventilation settings on taxi AERs, additional tests were conducted on 14 taxis with windows closed (WC) and on the other 8 taxis with not only windows closed but also medium fan speed (WC-MFS) under outdoor <span class="hlt">air</span> mode. Under RD conditions, the AERs in all 22 cabs had a mean of 63 h-1 with a median of 38 h-1. Similar AERs were observed under WC condition when compared to those measured under RD condition. Under WC-MFS condition, AERs were significantly increased in all taxi cabs, when compared with those measured under RD condition. A General Estimating Equation (GEE) model was developed and the modeling results showed that vehicle model was a significant factor in determining the AERs in taxi cabs under RD condition. Driving speed and car age were positively associated with AERs but not statistically significant. Overall, AERs measured in taxi cabs were much higher than typical AERs people usually encounter in indoor environments such as homes, offices, and even regular passenger vehicles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JPS...243..946K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JPS...243..946K"><span>Numerical investigation of interfacial transport resistance due to water droplets in proton <span class="hlt">exchange</span> membrane fuel cell <span class="hlt">air</span> channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Koz, Mustafa; Kandlikar, Satish G.</p> <p>2013-12-01</p> <p>Oxygen transport resistance at the <span class="hlt">air</span> flow channel and gas diffusion layer (GDL) interface is needed in modelling the performance of a proton <span class="hlt">exchange</span> membrane fuel cell (PEMFC). This resistance is expressed through the non-dimensional Sherwood number (Sh). The effect of the presence of a droplet on Sh is studied numerically in an isolated <span class="hlt">air</span> flow channel using a commercially available package, COMSOL Multiphysics®. A droplet is represented as a solid obstruction placed on the GDL-channel interface and centred along the channel width. The effect of a single droplet is first studied for a range of superficial mean <span class="hlt">air</span> velocities and droplet sizes. Secondly, the effect of droplet spacing on Sh is studied through simulations of two consecutive droplets. Lastly, multiple droplets in a row are studied as a more representative case of a PEMFC <span class="hlt">air</span> flow channel. The results show that the droplets significantly increase Sh above the fully developed value in the wake region. This enhancement increases with the number of droplets, droplet size, and superficial mean <span class="hlt">air</span> velocity. Moreover, the analogy between mass and heat transfer is investigated by comparing Sh to the equivalent Nusselt number.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27181035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27181035"><span>Coral Sr/Ca-based <span class="hlt">sea</span> surface temperature and <span class="hlt">air</span> temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W</p> <p>2016-09-30</p> <p>The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient <span class="hlt">air</span> temperature. In particular, the inshore SST variation is related to <span class="hlt">air</span> temperature anomalies of the urban center of Jakarta. The latter we relate to <span class="hlt">air-sea</span> interactions modifying inshore SST associated with the land-<span class="hlt">sea</span> breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and <span class="hlt">air</span> temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>