Sample records for air-sea interaction processes

  1. Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Csanady, G. T.

    2001-03-01

    In recent years air-sea interaction has emerged as a subject in its own right, encompassing small-scale and large-scale processes in both air and sea. Air-Sea Interaction: Laws and Mechanisms is a comprehensive account of how the atmosphere and the ocean interact to control the global climate, what physical laws govern this interaction, and its prominent mechanisms. The topics covered range from evaporation in the oceans, to hurricanes, and on to poleward heat transport by the oceans. By developing the subject from basic physical (thermodynamic) principles, the book is accessible to graduate students and research scientists in meteorology, oceanography, and environmental engineering. It will also be of interest to the broader physics community involved in the treatment of transfer laws, and thermodynamics of the atmosphere and ocean.

  2. Field Observations of Coastal Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.

    2016-12-01

    In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.

  3. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  4. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  5. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  6. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  7. Gulf of Mexico Air/Sea Interaction: Measurements and Initial Data Characterization

    NASA Astrophysics Data System (ADS)

    MacDonald, C.; Huang, C. H.; Roberts, P. T.; Bariteau, L.; Fairall, C. W.; Gibson, W.; Ray, A.

    2011-12-01

    Corporate, government, and university researchers collaborated to develop an atmospheric boundary layer environmental observations program on an offshore platform in the Gulf of Mexico. The primary goals of this project were to provide data to (1) improve our understanding of boundary layer processes and air-sea interaction over the Gulf of Mexico; (2) improve regional-scale meteorological and air quality modeling; and (3) provide a framework for advanced offshore measurements to support future needs such as emergency response, exploration and lease decisions, wind energy research and development, and meteorological and air quality forecasting. In October 2010, meteorological and oceanographic sensors were deployed for an extended period (approximately 12 months) on a Chevron service platform (ST 52B, 90.5W, 29N) to collect boundary layer and sea surface data sufficient to support these objectives. This project has significant importance given the large industrial presence in the Gulf, sizeable regional population nearby, and the recognized need for precise and timely pollutant forecasts. Observations from this project include surface meteorology; sodar marine boundary layer winds; microwave radiometer profiles of temperature, relative humidity, and liquid water; ceilometer cloud base heights; water temperature and current profiles; sea surface temperature; wave height statistics; downwelling solar and infrared radiation; and air-sea turbulent momentum and heat fluxes. This project resulted in the collection of an unprecedented set of boundary layer measurements over the Gulf of Mexico that capture the range of meteorological and oceanographic interactions and processes that occur over an entire year. This presentation will provide insight into the logistical and scientific issues associated with the deployment and operations of unique measurements in offshore areas and provide results from an initial data analysis of boundary layer processes over the Gulf of

  8. Role of North Indian Ocean Air-Sea Interaction in Summer Monsoon Intraseasonal Oscillation

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Han, W.; Li, Y.

    2017-12-01

    Air-sea coupling processes over the North Indian Ocean associated with Indian summer monsoon intraseasonal oscillation (MISO) are analyzed. Observations show that MISO convection anomalies affect underlying sea surface temperature (SST) through changes in surface shortwave radiation (via cloud cover change) and surface latent heat flux (associated with surface wind speed change). In turn, SST anomalies determine the changing rate of MISO precipitation (dP/dt): warm (cold) SST anomalies cause increasing (decreasing) precipitation rate through increasing (decreasing) surface convergence. Air-sea interaction gives rise to a quadrature relationship between MISO precipitation and SST anomalies. A local air-sea coupling model (LACM) is established based on these observed physical processes, which is a damped oscillatory system with no external forcing. The period of LACM is proportional to the square root of mean state mixed layer depth , assuming other physical parameters remain unchanged. Hence, LACM predicts a relatively short (long) MISO period over the North Indian Ocean during the May-June monsoon developing (July-August mature) phase when is shallow (deep). This result is consistent with observed MISO statistics. An oscillatory external forcing of a typical 30-day period is added to LACM, representing intraseasonal oscillations originated from the equatorial Indian Ocean and propagate into the North Indian Ocean. The period of LACM is then determined by both the inherent period associated with local air-sea coupling and the period of external forcing. It is found that resonance occurs when , amplifying the MISO in situ. This result explains the larger MISO amplitude during the monsoon developing phase compared to the mature phase, which is associated with seasonal cycle of . LACM, however, fails to predict the observed small MISO amplitude during the September-October monsoon decaying phase, when is also shallow. This deficiency might be associated with the

  9. Diagnosing Air-Sea Interactions on Intraseasonal Timescales

    NASA Astrophysics Data System (ADS)

    DeMott, C. A.

    2014-12-01

    What is the role of ocean coupling in the Madden Julian Oscillation (MJO)? Consensus thinking holds that the essential physics of the MJO involve interactions between convection, atmospheric wave dynamics, and boundary layer and free troposphere moisture. However, many modeling studies demonstrate improved MJO simulation when an atmosphere-only general circulation model (AGCM) is coupled to an ocean model, so feedbacks from the ocean are probably not negligible. Assessing the importance and processes of these feedbacks is challenging for at least two reasons. First, observations of the MJO only sample the fully coupled ocean-atmosphere system; there is no "uncoupled" MJO in nature. Second, the practice of analyzing the MJO in uncoupled and coupled GCMs (CGCMs) involves using imperfect tools to study the problem. Although MJO simulation is improving in many models, shortcomings remain in both AGCMs and CGCMs, making it difficult to determine if changes brought about through coupling reflect critical air-sea interactions or are simply part of the collective idiosyncracies of a given model. For the atmosphere, ocean feedbacks from intraseasonal sea surface temperature (SST) variations are communicated through their effects on surface fluxes of heat and moisture. This presentation suggests a set of analysis tools for diagnosing the impact of an interactive ocean on surface latent and sensible heat fluxes, including their mean, variance, spectral characteristics, and phasing with respect to wind, SST, and MJO convection. The diagnostics are demonstrated with application to several CMIP5 models, and reveal a variety of responses to coupled ocean feedbacks.

  10. NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    NASA Technical Reports Server (NTRS)

    Long, Steven R.

    1992-01-01

    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans.

  11. The potential role of sea spray droplets in facilitating air-sea gas transfer

    NASA Astrophysics Data System (ADS)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  12. Air-sea interaction and remote sensing

    NASA Technical Reports Server (NTRS)

    Katsaros, Kristina B.; Ataktuerk, Serhad S.

    1992-01-01

    The first part of the proposed research was a joint effort between our group and the Applied Physics Laboratory (APL), University of Washington. Our own research goal is to investigate the relation between the air-sea exchange processes and the sea state over the open ocean and to compare these findings with our previous results obtained over a small body of water namely, Lake Washington. The goals of the APL researchers are to study (1) the infrared sea surface temperature (SST) signature of breaking waves and surface slicks, and (2) microwave and acoustic scattering from water surface. The task of our group in this joint effort is to conduct measurements of surface fluxes (of momentum, sensible heat, and water vapor) and atmospheric radiation (longwave and shortwave) to achieve our research goal as well as to provide crucial complementary data for the APL studies. The progress of the project is summarized.

  13. Guidelines for the air-sea interaction special study: An element of the NASA climate research program, JPL/SIO workshop report

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.

  14. Importance of air-sea interaction on wind waves, storm surge and hurricane simulations

    NASA Astrophysics Data System (ADS)

    Chen, Yingjian; Yu, Xiping

    2017-04-01

    It was reported from field observations that wind stress coefficient levels off and even decreases when the wind speed exceeds 30-40 m/s. We propose a wave boundary layer model (WBLM) based on the momentum and energy conservation equations. Taking into account the physical details of the air-sea interaction process as well as the energy dissipation due to the presence of sea spray, this model successfully predicts the decreasing tendency of wind stress coefficient. Then WBLM is embedded in the current-wave coupled model FVCOM-SWAVE to simulate surface waves and storm surge under the forcing of hurricane Katrina. Numerical results based on WBLM agree well with the observed data of NDBC buoys and tide gauges. Sensitivity analysis of different wind stress evaluation methods also shows that large anomalies of significant wave height and surge elevation are captured along the passage of hurricane core. The differences of the local wave height are up to 13 m, which is in accordance with the general knowledge that the ocean dynamic processes under storm conditions are very sensitive to the amount of momentum exchange at the air-sea interface. In the final part of the research, the reduced wind stress coefficient is tested in the numerical forecast of hurricane Katrina. A parabolic formula fitted to WBLM is employed in the atmosphere-ocean coupled model COAWST. Considering the joint effects of ocean cooling and reduced wind drag, the intensity metrics - the minimum sea level pressure and the maximum 10 m wind speed - are in good inconsistency with the best track result. Those methods, which predict the wind stress coefficient that increase or saturate in extreme wind condition, underestimate the hurricane intensity. As a whole, we unify the evaluation methods of wind stress in different numerical models and yield reasonable results. Although it is too early to conclude that WBLM is totally applicable or the drag coefficient does decrease for high wind speed, our current

  15. Air-sea heat exchange, an element of the water cycle

    NASA Technical Reports Server (NTRS)

    Chahine, M. T.

    1984-01-01

    The distribution and variation of water vapor, clouds and precipitation are examined. Principal driving forces for these distributions are energy exchange and evaporation at the air-sea interface, which are also important elements of air-sea interaction studies. The overall aim of air-sea interaction studies is to quantitatively determine mass, momentum and energy fluxes, with the goal of understanding the mechanisms controlling them. The results of general circulation simulations indicate that the atmosphere in mid-latitudes responds to changes in the oceanic surface conditions in the tropics. This correlation reflects the strong interaction between tropical and mid-latitude conditions caused by the transport of heat and momentum from the tropics. Studies of air-sea exchanges involve a large number of physica, chemical and dynamical processes including heat flux, radiation, sea-surface temperature, precipitation, winds and ocean currents. The fluxes of latent heat are studied and the potential use of satellite data in determining them evaluated. Alternative ways of inferring heat fluxes will be considered.

  16. Research in Observations of Oceanic Air/Sea Interaction

    NASA Technical Reports Server (NTRS)

    Long, David G.; Arnold, David V.

    1995-01-01

    The primary purpose of this research has been: (1) to develop an innovative research radar scatterometer system capable of directly measuring both the radar backscatter and the small-scale and large-scale ocean wave field simultaneously and (2) deploy this instrument to collect data to support studies of air/sea interaction. The instrument has been successfully completed and deployed. The system deployment lasted for six months during 1995. Results to date suggest that the data is remarkably useful in air/sea interaction studies. While the data analysis is continuing, two journal and fifteen conference papers have been published. Six papers are currently in review with two additional journal papers scheduled for publication. Three Master's theses on this research have been completed. A Ph.D. student is currently finalizing his dissertation which should be completed by the end of the calendar year. We have received additional 'mainstream' funding from the NASA oceans branch to continue data analysis and instrument operations. We are actively pursuing results from the data expect additional publications to follow. This final report briefly describes the instrument system we developed and results to-date from the deployment. Additional detail is contained in the attached papers selected from the bibliography.

  17. Developments in Airborne Oceanography and Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Melville, W. K.

    2014-12-01

    , just as aircraft carriers "project force". Now we can measure winds, waves, temperatures, currents, radiative transfer, images and air-sea fluxes from aircraft over the ocean.I will review some of the history of airborne oceanography and present examples of how it can extend our knowledge and understanding of air-sea interaction.

  18. Air-sea interaction at the subtropical convergence south of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouault, M.; Lutjeharms, J.R.E.; Ballegooyen, R.C. van

    1994-12-31

    The oceanic region south of Africa plays a key role in the control of Southern Africa weather and climate. This is particularly the case for the Subtropical Convergence region, the northern border of the Southern Ocean. An extensive research cruise to investigate this specific front was carried out during June and July 1993. A strong front, the Subtropical Convergence was identified, however its geographic disposition was complicated by the presence of an intense warm eddy detached from the Agulhas current. The warm surface water in the eddy created a strong contrast between it and the overlying atmosphere. Oceanographic measurements (XBTmore » and CTD) were jointly made with radiosonde observations and air-sea interaction measurements. The air-sea interaction measurement system included a Gill sonic anemometer, an Ophir infrared hygrometer, an Eppley pyranometer, an Eppley pyrgeometer and a Vaissala temperature and relative humidity probe. Turbulent fluxes of momentum, sensible heat and latent heat were calculated in real time using the inertial dissipation method and the bulk method. All these measurements allowed a thorough investigation of the net heat loss of the ocean, the deepening of the mixed layer during a severe storm as well as the structure of the atmospheric boundary layer and ocean-atmosphere exchanges.« less

  19. High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.

    2016-12-01

    The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.

  20. Air-Sea Interaction in the Somali Current Region

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Rydbeck, A.

    2017-12-01

    The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.

  1. The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes

    NASA Astrophysics Data System (ADS)

    Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.

    2018-02-01

    The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.

  2. Assessing Air-Sea Interaction in the Evolving NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Clayson, Carol Anne; Roberts, J. Brent

    2015-01-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  3. Assessing air-sea interaction in the evolving NASA GEOS model

    NASA Astrophysics Data System (ADS)

    Clayson, C. A.; Roberts, J. B.

    2014-12-01

    In order to understand how the climate responds to variations in forcing, one necessary component is to understand the full distribution of variability of exchanges of heat and moisture between the atmosphere and ocean. Surface heat and moisture fluxes are critical to the generation and decay of many coupled air-sea phenomena. These mechanisms operate across a number of scales and contain contributions from interactions between the anomalous (i.e. non-mean), often extreme-valued, flux components. Satellite-derived estimates of the surface turbulent and radiative heat fluxes provide an opportunity to assess results from modeling systems. Evaluation of only time mean and variability statistics, however only provides limited traceability to processes controlling what are often regime-dependent errors. This work will present an approach to evaluate the representation of the turbulent fluxes at the air-sea interface in the current and evolving Goddard Earth Observing System (GEOS) model. A temperature and moisture vertical profile-based clustering technique is used to identify robust weather regimes, and subsequently intercompare the turbulent fluxes and near-surface parameters within these regimes in both satellite estimates and GEOS-driven data sets. Both model reanalysis (MERRA) and seasonal-to-interannual coupled GEOS model simulations will be evaluated. Particular emphasis is placed on understanding the distribution of the fluxes including extremes, and the representation of near-surface forcing variables directly related to their estimation. Results from these analyses will help identify the existence and source of regime-dependent biases in the GEOS model ocean surface turbulent fluxes. The use of the temperature and moisture profiles for weather-state clustering will be highlighted for its potential broad application to 3-D output typical of model simulations.

  4. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies

    NASA Astrophysics Data System (ADS)

    Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.

    2017-08-01

    The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.

  5. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Wave -Ice and Air-Ice-Ocean Interaction During the...Chukchi Sea in the late summer have potentially changed the impact of fall storms by creating wave fields in the vicinity of the advancing ice edge. A...first) wave -ice interaction field experiment that adequately documents the relationship of a growing pancake ice cover with a time and space varying

  6. Sea surface temperature anomalies, planetary waves, and air-sea feedback in the middle latitudes

    NASA Technical Reports Server (NTRS)

    Frankignoul, C.

    1985-01-01

    Current analytical models for large-scale air-sea interactions in the middle latitudes are reviewed in terms of known sea-surface temperature (SST) anomalies. The scales and strength of different atmospheric forcing mechanisms are discussed, along with the damping and feedback processes controlling the evolution of the SST. Difficulties with effective SST modeling are described in terms of the techniques and results of case studies, numerical simulations of mixed-layer variability and statistical modeling. The relationship between SST and diabatic heating anomalies is considered and a linear model is developed for the response of the stationary atmosphere to the air-sea feedback. The results obtained with linear wave models are compared with the linear model results. Finally, sample data are presented from experiments with general circulation models into which specific SST anomaly data for the middle latitudes were introduced.

  7. Tropical Cyclone Induced Air-Sea Interactions Over Oceanic Fronts

    NASA Astrophysics Data System (ADS)

    Shay, L. K.

    2012-12-01

    Recent severe tropical cyclones underscore the inherent importance of warm background ocean fronts and their interactions with the atmospheric boundary layer. Central to the question of heat and moisture fluxes, the amount of heat available to the tropical cyclone is predicated by the initial mixed layer depth and strength of the stratification that essentially set the level of entrainment mixing at the base of the mixed layer. In oceanic regimes where the ocean mixed layers are thin, shear-induced mixing tends to cool the upper ocean to form cold wakes which reduces the air-sea fluxes. This is an example of negative feedback. By contrast, in regimes where the ocean mixed layers are deep (usually along the western part of the gyres), warm water advection by the nearly steady currents reduces the levels of turbulent mixing by shear instabilities. As these strong near-inertial shears are arrested, more heat and moisture transfers are available through the enthalpy fluxes (typically 1 to 1.5 kW m-2) into the hurricane boundary layer. When tropical cyclones move into favorable or neutral atmospheric conditions, tropical cyclones have a tendency to rapidly intensify as observed over the Gulf of Mexico during Isidore and Lili in 2002, Katrina, Rita and Wilma in 2005, Dean and Felix in 2007 in the Caribbean Sea, and Earl in 2010 just north of the Caribbean Islands. To predict these tropical cyclone deepening (as well as weakening) cycles, coupled models must have ocean models with realistic ocean conditions and accurate air-sea and vertical mixing parameterizations. Thus, to constrain these models, having complete 3-D ocean profiles juxtaposed with atmospheric profiler measurements prior, during and subsequent to passage is an absolute necessity framed within regional scale satellite derived fields.

  8. Sustained Observations of Air-Sea Fluxes and Air-Sea Interaction at the Stratus Ocean Reference Station

    NASA Astrophysics Data System (ADS)

    Weller, Robert

    2014-05-01

    Since October 2000, a well-instrumented surface mooring has been maintained some 1,500 km west of the coast of northern Chile, roughly in the location of the climatological maximum in marine stratus clouds. Statistically significant increases in wind stress and decreases in annual net air-sea heat flux and in latent heat flux have been observed. If the increased oceanic heat loss continues, the region will within the next decade change from one of net annual heat gain by the ocean to one of neat annual heat loss. Already, annual evaporation of about 1.5 m of sea water a year acts to make the warm, salty surface layer more dense. Of interest is examining whether or not increased oceanic heat loss has the potential to change the structure of the upper ocean and potentially remove the shallow warm, salty mixed layer that now buffers the atmosphere from the interior ocean. Insights into how that warm, shallow layer is formed and maintained come from looking at oceanic response to the atmosphere at diurnal tie scales. Restratification each spring and summer is found to depend upon the occurrence of events in which the trade winds decay, allowing diurnal warming in the near-surface ocean to occur, and when the winds return resulting in a net upward step in sea surface temperature. This process is proving hard to accurately model.

  9. Data-Informed Large-Eddy Simulation of Coastal Land-Air-Sea Interactions

    NASA Astrophysics Data System (ADS)

    Calderer, A.; Hao, X.; Fernando, H. J.; Sotiropoulos, F.; Shen, L.

    2016-12-01

    The study of atmospheric flows in coastal areas has not been fully addressed due to the complex processes emerging from the land-air-sea interactions, e.g., abrupt change in land topography, strong current shear, wave shoaling, and depth-limited wave breaking. The available computational tools that have been applied to study such littoral regions are mostly based on open-ocean assumptions, which most times do not lead to reliable solutions. The goal of the present study is to better understand some of these near-shore processes, employing the advanced computational tools, developed in our research group. Our computational framework combines a large-eddy simulation (LES) flow solver for atmospheric flows, a sharp-interface immersed boundary method that can deal with real complex topographies (Calderer et al., J. Comp. Physics 2014), and a phase-resolved, depth-dependent, wave model (Yang and Shen, J. Comp. Physics 2011). Using real measured data taken in the FRF station in Duck, North Carolina, we validate and demonstrate the predictive capabilities of the present computational framework, which are shown to be in overall good agreement with the measured data under different wind-wave scenarios. We also analyse the effects of some of the complex processes captured by our simulation tools.

  10. Understanding the Role of Air-Sea Interaction on Extreme Rainfall in Aquaplanet and Earth-like CESM2

    NASA Astrophysics Data System (ADS)

    Benedict, J. J.; Clement, A. C.; Medeiros, B.

    2017-12-01

    Extreme precipitation events are associated with anomalous, latitudinally dependent dynamical and convective weather systems. For example, plumes of excessive poleward water vapor transport and topographical effects drive extreme precipitation events in the midlatitudes, while intense tropical precipitation is associated with organized convective systems. In both cases, air-sea fluxes have the potential to contribute significantly to the moisture budget of these storms, but the roles of surface fluxes and upper-ocean processes and their impact on precipitation extremes have yet to be explored in sufficient detail. To examine such mechanisms, we implement a climate model hierarchy that encompasses a spectrum of ocean models, from prescribed-SST to fully dynamic, as well as both aquaplanet and Earth-like lower boundary types within version 2 of the Community Earth System Model (CESM2). Using the CESM2 hierarchy and comparing to observations, we identify key moisture processes and related air-sea interactions that drive extreme precipitation events across different latitudes in Earth-like models and then generalize the analyses in aquaplanet configurations to highlight the most salient features. The analyses are applied to both present-day and global warming conditions to investigate how these fundamental mechanisms might change extreme precipitation events in the future climate.

  11. Oceanic Whitecaps and Associated, Bubble-Mediated, Air-Sea Exchange Processes

    DTIC Science & Technology

    1992-10-01

    experiments performed in laboratory conditions using Air-Sea Exchange Monitoring System (A-SEMS). EXPERIMENTAL SET-UP In a first look, the Air-Sea Exchange...Model 225, equipped with a Model 519 plug-in module. Other complementary information on A-SEMS along with results from first tests and calibration...between 9.50C and 22.40C within the first 24 hours after transferring the water sample into laboratory conditions. The results show an enhancement of

  12. Ozone pollution around a coastal region of South China Sea: interaction between marine and continental air

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Lyu, Xiaopu; Guo, Hai; Wang, Yu; Zou, Shichun; Ling, Zhenhao; Wang, Xinming; Jiang, Fei; Zeren, Yangzong; Pan, Wenzhuo; Huang, Xiaobo; Shen, Jin

    2018-03-01

    Marine atmosphere is usually considered to be a clean environment, but this study indicates that the near-coast waters of the South China Sea (SCS) suffer from even worse air quality than coastal cities. The analyses were based on concurrent field measurements of target air pollutants and meteorological parameters conducted at a suburban site (Tung Chung, TC) and a nearby marine site (Wan Shan, WS) from August to November 2013. The observations showed that the levels of primary air pollutants were significantly lower at WS than those at TC, while the ozone (O3) value was greater at WS. Higher O3 levels at WS were attributed to the weaker NO titration and higher O3 production rate because of stronger oxidative capacity of the atmosphere. However, O3 episodes were concurrently observed at both sites under certain meteorological conditions, such as tropical cyclones, continental anticyclones and sea-land breezes (SLBs). Driven by these synoptic systems and mesoscale recirculations, the interaction between continental and marine air masses profoundly changed the atmospheric composition and subsequently influenced the formation and redistribution of O3 in the coastal areas. When continental air intruded into marine atmosphere, the O3 pollution was magnified over the SCS, and the elevated O3 ( > 100 ppbv) could overspread the sea boundary layer ˜ 8 times the area of Hong Kong. In some cases, the exaggerated O3 pollution over the SCS was recirculated to the coastal inshore by sea breeze, leading to aggravated O3 pollution in coastal cities. The findings are applicable to similar mesoscale environments around the world where the maritime atmosphere is potentially influenced by severe continental air pollution.

  13. Island Topographic Flow Interaction with the Sea in the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Pullen, J. D.

    2016-12-01

    New and emerging modeling systems yield an unprecedented perspective on air-sea interaction generated by atmospheric topographic flows around volcanic islands. This study highlights recent results from high-resolution (1-5km) coupled air/sea modeling of the Philippines. The processes represented by the model include orographic lifting; tip jets and lee vortices; and highly textured wind stress curl patterns. The latter produce oceanic eddies of significance to biological productivity. Also impacting biology in the region are episodic upwelling-favorable winds in local areas, such as the Verde Island Passage, that enhance the ecosystem response. Model fields are compared with in situ sea, land, and air measurements from the ONR Philippines Straits Dynamics Experiment (PhilEx) and with satellite-derived fields. The rainfall generated by the combined effects of terrain and atmospheric processes operating across interannual to synoptic timescales point to the importance of including hydrology in coupled models. This affords more realistic representation of the impact of river discharge on the coastal ocean, and the subsequent feedback of oceanic barrier layers to the propagation and characteristics of weather features.

  14. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    NASA Astrophysics Data System (ADS)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  15. Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition

    NASA Astrophysics Data System (ADS)

    Ortiz-Suslow, David G.

    The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of

  16. Seasonal atmospheric deposition and air-sea gas exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implications for source-sink processes

    NASA Astrophysics Data System (ADS)

    Jiang, Yuqing; Lin, Tian; Wu, Zilan; Li, Yuanyuan; Li, Zhongxia; Guo, Zhigang; Yao, Xiaohong

    2018-04-01

    In this work, air samples and surface seawater samples covering four seasons from March 2014 to January 2015 were collected from a background receptor site in the YRE to explore the seasonal fluxes of air-sea gas exchange and dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. Gaseous PAH release from seawater to the atmosphere averaged 3114 ± 1999 ng m-2 d-1 in a year round. The air-sea gas exchange of PAHs was the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of total dry and wet deposition. The gas PAH exchange flux was dominated by three-ring PAHs, with the highest value in summer and lowest in winter, indicating a marked seasonal variation owing to differences in Henry's law constants associated with temperature, as well as wind speed and gaseous-dissolved gradient among seasons. Based on the simplified mass balance estimation, a net 11 tons y-1 of PAHs (mainly three-ring PAHs) were volatilized from seawater to the atmosphere in a ∼20,000 km2 area in the YRE. Other than the year-round Yangtze River input and ocean ship emissions, the selective release of low-molecular-weight PAHs from bottom sediments in winter due to resuspension triggered by the East Asian winter monsoon is another potential source of PAHs. This work suggests that the source-sink processes of PAHs at the air-sea interface in the YRE play a crucial role in regional cycling of PAHs.

  17. The impact of horizontal resolution on the representation of air-sea interaction over North Atlantic open ocean convection sites

    NASA Astrophysics Data System (ADS)

    Moore, Kent; Renfrew, Ian; Bromwich, David; Wilson, Aaron; Vage, Kjetil; Bai, Lesheng

    2017-04-01

    Open ocean convection, where a loss of surface buoyancy leads to an overturning of the water column, occurs in four distinct regions of the North Atlantic and is an integral component of the Atlantic Meridional Overturning Circulation (AMOC). The overturning typically occurs during cold air outbreaks characterized by large surface turbulent heat fluxes and convective roll cloud development. Here we compare the statistics of the air-sea interaction over these convection sites as represented in three reanalyses with horizontal grid sizes ranging from 80km to 15km. We show that increasing the resolution increases the magnitude and frequency of the most extreme total turbulent heat fluxes, as well as displacing the maxima downstream away from the ice edges. We argue that these changes are a result of the higher resolution reanalysis being better able to represent mesoscale processes that occur within the atmospheric boundary layer during cold air outbreaks.

  18. Validation of the Fully-Coupled Air-Sea-Wave COAMPS System

    NASA Astrophysics Data System (ADS)

    Smith, T.; Campbell, T. J.; Chen, S.; Gabersek, S.; Tsu, J.; Allard, R. A.

    2017-12-01

    A fully-coupled, air-sea-wave numerical model, COAMPS®, has been developed by the Naval Research Laboratory to further enhance understanding of oceanic, atmospheric, and wave interactions. The fully-coupled air-sea-wave system consists of an atmospheric component with full physics parameterizations, an ocean model, NCOM (Navy Coastal Ocean Model), and two wave components, SWAN (Simulating Waves Nearshore) and WaveWatch III. Air-sea interactions between the atmosphere and ocean components are accomplished through bulk flux formulations of wind stress and sensible and latent heat fluxes. Wave interactions with the ocean include the Stokes' drift, surface radiation stresses, and enhancement of the bottom drag coefficient in shallow water due to the wave orbital velocities at the bottom. In addition, NCOM surface currents are provided to SWAN and WaveWatch III to simulate wave-current interaction. The fully-coupled COAMPS system was executed for several regions at both regional and coastal scales for the entire year of 2015, including the U.S. East Coast, Western Pacific, and Hawaii. Validation of COAMPS® includes observational data comparisons and evaluating operational performance on the High Performance Computing (HPC) system for each of these regions.

  19. Intercomparison of Air-Sea Fluxes in the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Buckley, J.; Weller, R. A.; Farrar, J. T.; Tandon, A.

    2016-02-01

    Heat and momentum exchange between the air and sea in the Bay of Bengal is an important driver of atmospheric convection during the Asian Monsoon. Warm sea surface temperatures resulting from salinity stratified shallow mixed layers trigger widespread showers and thunderstorms. In this study, we compare atmospheric reanalysis flux products to air-sea flux values calculated from shipboard observations from four cruises and an air-sea flux mooring in the Bay of Bengal as part of the Air-Sea Interactions in the Northern Indian Ocean (ASIRI) experiment. Comparisons with months of mooring data show that most long timescale reanalysis error arises from the overestimation of longwave and shortwave radiation. Ship observations and select data from the air-sea flux mooring reveals significant errors on shorter timescales (2-4 weeks) which are greatly influenced by errors in shortwave radiation and latent and sensible heat. During these shorter periods, the reanalyses fail to properly show sharp decreases in air temperature, humidity, and shortwave radiation associated with mesoscale convective systems. Simulations with the Price-Weller-Pinkel (PWP) model show upper ocean mixing and deepening mixed layers during these events that effect the long term upper ocean stratification. Mesoscale convective systems associated with cloudy skies and cold and dry air can reduce net heat into the ocean for minutes to a few days, significantly effecting air-sea heat transfer, upper ocean stratification, and ocean surface temperature and salinity.

  20. Observed Seasonal Variations of the Upper Ocean Structure and Air-Sea Interactions in the Andaman Sea

    NASA Astrophysics Data System (ADS)

    Liu, Yanliang; Li, Kuiping; Ning, Chunlin; Yang, Yang; Wang, Haiyuan; Liu, Jianjun; Skhokiattiwong, Somkiat; Yu, Weidong

    2018-02-01

    The Andaman Sea (AS) is a poorly observed basin, where even the fundamental physical characteristics have not been fully documented. Here the seasonal variations of the upper ocean structure and the air-sea interactions in the central AS were studied using a moored surface buoy. The seasonal double-peak pattern of the sea surface temperature (SST) was identified with the corresponding mixed layer variations. Compared with the buoys in the Bay of Bengal (BOB), the thermal stratification in the central AS was much stronger in the winter to spring, when a shallower isothermal layer and a thinner barrier layer were sustained. The temperature inversion was strongest from June to July because of substantial surface heat loss and subsurface prewarming. The heat budget analysis of the mixed layer showed that the net surface heat fluxes dominated the seasonal SST cycle. Vertical entrainment was significant from April to July. It had a strong cooling effect from April to May and a striking warming effect from June to July. A sensitivity experiment highlighted the importance of salinity. The AS warmer surface water in the winter was associated with weak heat loss caused by weaker longwave radiation and latent heat losses. However, the AS latent heat loss was larger than the BOB in summer due to its lower relative humidity.

  1. Atmospheric concentrations and air-sea exchanges of nonylphenol, tertiary octylphenol and nonylphenol monoethoxylate in the North Sea.

    PubMed

    Xie, Zhiyong; Lakaschus, Soenke; Ebinghaus, Ralf; Caba, Armando; Ruck, Wolfgang

    2006-07-01

    Concentrations of nonylphenol isomers (NP), tertiary octylphenol (t-OP) and nonylphenol monoethoxylate isomers (NP1EO) have been simultaneously determined in the sea water and atmosphere of the North Sea. A decreasing concentration profile appeared following the distance increasing from the coast to the central part of the North Sea. Air-sea exchanges of t-OP and NP were estimated using the two-film resistance model based upon relative air-water concentrations and experimentally derived Henry's law constant. The average of air-sea exchange fluxes was -12+/-6 ng m(-2)day(-1) for t-OP and -39+/-19 ng m(-2)day(-1) for NP, which indicates a net deposition is occurring. These results suggest that the air-sea vapour exchange is an important process that intervenes in the mass balance of alkylphenols in the North Sea.

  2. Seasonal atmospheric deposition and air-sea gaseous exchange of polycyclic aromatic hydrocarbons over the Yangtze River Estuary, East China Sea: Implication for the source-sink processes

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Guo, Z.

    2017-12-01

    As the home of the largest port in the world, the Yangtze River Estuary (YRE) in the East China Sea (ECS) is adjacent to the largest economic zone in China with more than 10% of Chinese population and provides one-fifth of national GDP. The YRE is under the path of contaminated East Asian continental outflow. These make the YRE unique for the pollutant biogeochemical cycling in the world. In this work, 94 pairs of air samples and 20 surface seawater samples covering four seasons were collected from a remote receptor site in the YRE from March 2014 to January 2015, in order to explore the seasonal fluxes of air-sea gaseous exchange and atmospheric dry and wet deposition of 15 polycyclic aromatic hydrocarbons (PAHs) and their source-sink processes at the air-sea interface. The average dry and wet deposition fluxes of 15 PAHs were estimated as 879 ± 1393 ng m-2 d-1 and 755 ± 545 ng m-2 d-1, respectively. The gaseous PAHs were released from seawater to atmosphere during the whole year with an average of 3039 ± 2030 ng m-2 d-1. The gaseous exchange of PAHs was referred as the dominant process at the air-sea interface in the YRE as the magnitude of volatilization flux of PAHs exceeded that of the total dry and wet deposition. The gaseous PAH exchange flux was dominated by 3-ring PAHs, with the highest value in summer while lowest in winter, depicting a strong seasonal variation due to temperature, wind speed and air-sea concentration gradient difference among seasons. Based on the simplified mass balance estimation, net 9.6 tons/y of PAHs was volatilized from seawater to atmosphere with an area of approximately 20000 km2 in the YRE. Apart from Yangtze River input and ocean ship emissions in the entire year, the selective release of low molecular weight PAHs from sediments in winter due to re-suspension triggered by the East Asian winter monsoon could be another possible source for dissolved PAHs. This work suggests that the source-sink processes of PAHs at air-sea

  3. Observational analysis of air-sea fluxes and sea water temperature offshore South China Sea

    NASA Astrophysics Data System (ADS)

    Bi, X.; Huang, J.; Gao, Z.; Liu, Y.

    2017-12-01

    This paper investigates the air-sea fluxes (momentum flux, sensible heat flux and latent heat flux) from eddy covariance method based on data collected at an offshore observation tower in the South China Sea from January 2009 to December 2016 and sea water temperature (SWT) on six different levels based on data collected from November 2011 to June 2013. The depth of water at the tower over the sea averages about 15 m. This study presents the in-situ measurements of continuous air-sea fluxes and SWT at different depths. Seasonal and diurnal variations in air-sea fluxes and SWT on different depths are examined. Results show that air-sea fluxes and all SWT changed seasonally; sea-land breeze circulation appears all the year round. Unlike winters where SWT on different depths are fairly consistent, the difference between sea surface temperature (SST) and sea temperature at 10 m water depth fluctuates dramatically and the maximum value reaches 7 °C during summer.

  4. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    NASA Astrophysics Data System (ADS)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  5. Enhanced Ahead-of-Eye TC Coastal Ocean Cooling Processes and their Impact on Air-Sea Heat Fluxes and Storm Intensity

    NASA Astrophysics Data System (ADS)

    Seroka, G. N.; Miles, T. N.; Glenn, S. M.; Xu, Y.; Forney, R.; Roarty, H.; Schofield, O.; Kohut, J. T.

    2016-02-01

    Any landfalling tropical cyclone (TC) must first traverse the coastal ocean. TC research, however, has focused over the deep ocean, where TCs typically spend the vast majority of their lifetime. This paper will show that the ocean's response to TCs can be different between deep and shallow water, and that the additional shallow water processes must be included in coupled models for accurate air-sea flux treatment and TC intensity prediction. The authors will present newly observed coastal ocean processes that occurred in response to Hurricane Irene (2011), due to the presence of a coastline, an ocean bottom, and highly stratified conditions. These newly observed processes led to enhanced ahead-of-eye SST cooling that significantly impacted air-sea heat fluxes and Irene's operationally over-predicted storm intensity. Using semi-idealized modeling, we find that in shallow water in Irene, only 6% of cooling due to air-sea heat fluxes, 17% of cooling due to 1D vertical mixing, and 50% of cooling due to all processes (1D mixing, air-sea heat fluxes, upwelling, and advection) occurred ahead-of-eye—consistent with previous studies. Observations from an underwater glider and buoys, however, indicated 75-100% of total SST cooling over the continental shelf was ahead-of-eye. Thus, the new coastal ocean cooling processes found in this study must occur almost completely ahead-of-eye. We show that Irene's intense cooling was not captured by basic satellite SST products and coupled ocean-atmosphere hurricane models, and that including the cooling in WRF modeling mitigated the high bias in model predictions. Finally, we provide evidence that this SST cooling—not track, wind shear, or dry air intrusion—was the key missing contribution to Irene's decay just prior to NJ landfall. Ongoing work is exploring the use of coupled WRF-ROMS modeling in the coastal zone.

  6. Spatio-temporal visualization of air-sea CO2 flux and carbon budget using volume rendering

    NASA Astrophysics Data System (ADS)

    Du, Zhenhong; Fang, Lei; Bai, Yan; Zhang, Feng; Liu, Renyi

    2015-04-01

    This paper presents a novel visualization method to show the spatio-temporal dynamics of carbon sinks and sources, and carbon fluxes in the ocean carbon cycle. The air-sea carbon budget and its process of accumulation are demonstrated in the spatial dimension, while the distribution pattern and variation of CO2 flux are expressed by color changes. In this way, we unite spatial and temporal characteristics of satellite data through visualization. A GPU-based direct volume rendering technique using half-angle slicing is adopted to dynamically visualize the released or absorbed CO2 gas with shadow effects. A data model is designed to generate four-dimensional (4D) data from satellite-derived air-sea CO2 flux products, and an out-of-core scheduling strategy is also proposed for on-the-fly rendering of time series of satellite data. The presented 4D visualization method is implemented on graphics cards with vertex, geometry and fragment shaders. It provides a visually realistic simulation and user interaction for real-time rendering. This approach has been integrated into the Information System of Ocean Satellite Monitoring for Air-sea CO2 Flux (IssCO2) for the research and assessment of air-sea CO2 flux in the China Seas.

  7. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  8. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Wright, D. G.; Kretzschmar, H.-J.; Hagen, E.; Herrmann, S.; Span, R.

    2010-02-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as "sea air" here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  9. Thermodynamic properties of sea air

    NASA Astrophysics Data System (ADS)

    Feistel, R.; Kretzschmar, H.-J.; Span, R.; Hagen, E.; Wright, D. G.; Herrmann, S.

    2009-10-01

    Very accurate thermodynamic potential functions are available for fluid water, ice, seawater and humid air covering wide ranges of temperature and pressure conditions. They permit the consistent computation of all equilibrium properties as, for example, required for coupled atmosphere-ocean models or the analysis of observational or experimental data. With the exception of humid air, these potential functions are already formulated as international standards released by the International Association for the Properties of Water and Steam (IAPWS), and have been adopted in 2009 for oceanography by IOC/UNESCO. In this paper, we derive a collection of formulas for important quantities expressed in terms of the thermodynamic potentials, valid for typical phase transitions and composite systems of humid air and water/ice/seawater. Particular attention is given to equilibria between seawater and humid air, referred to as ''sea air'' here. In a related initiative, these formulas will soon be implemented in a source-code library for easy practical use. The library is primarily aimed at oceanographic applications but will be relevant to air-sea interaction and meteorology as well. The formulas provided are valid for any consistent set of suitable thermodynamic potential functions. Here we adopt potential functions from previous publications in which they are constructed from theoretical laws and empirical data; they are briefly summarized in the appendix. The formulas make use of the full accuracy of these thermodynamic potentials, without additional approximations or empirical coefficients. They are expressed in the temperature scale ITS-90 and the 2008 Reference-Composition Salinity Scale.

  10. Interannual-to-decadal air-sea interactions in the tropical Atlantic region

    NASA Astrophysics Data System (ADS)

    Ruiz-Barradas, Alfredo

    2001-09-01

    The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North

  11. Biofilm-like properties of the sea surface and predicted effects on air-sea CO2 exchange

    NASA Astrophysics Data System (ADS)

    Wurl, Oliver; Stolle, Christian; Van Thuoc, Chu; The Thu, Pham; Mari, Xavier

    2016-05-01

    Because the sea surface controls various interactions between the ocean and the atmosphere, it has a profound function for marine biogeochemistry and climate regulation. The sea surface is the gateway for the exchange of climate-relevant gases, heat and particles. Thus, in order to determine how the ocean and the atmosphere interact and respond to environmental changes on a global scale, the characterization and understanding of the sea surface are essential. The uppermost part of the water column is defined as the sea-surface microlayer and experiences strong spatial and temporal dynamics, mainly due to meteorological forcing. Wave-damped areas at the sea surface are caused by the accumulation of surface-active organic material and are defined as slicks. Natural slicks are observed frequently but their biogeochemical properties are poorly understood. In the present study, we found up to 40 times more transparent exopolymer particles (TEP), the foundation of any biofilm, in slicks compared to the underlying bulk water at multiple stations in the North Pacific, South China Sea, and Baltic Sea. We found a significant lower enrichment of TEP (up to 6) in non-slick sea surfaces compared to its underlying bulk water. Moreover, slicks were characterized by a large microbial biomass, another shared feature with conventional biofilms on solid surfaces. Compared to non-slick samples (avg. pairwise similarity of 70%), the community composition of bacteria in slicks was increasingly (avg. pairwise similarity of 45%) different from bulk water communities, indicating that the TEP-matrix creates specific environments for its inhabitants. We, therefore, conclude that slicks can feature biofilm-like properties with the excessive accumulation of particles and microbes. We also assessed the potential distribution and frequency of slick-formation in coastal and oceanic regions, and their effect on air-sea CO2 exchange based on literature data. We estimate that slicks can reduce CO2

  12. Cloud and boundary layer interactions over the Arctic sea ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-09-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near-surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back-trajectory analyses suggest that these warm air masses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these air masses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing

  13. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region.more » Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.« less

  14. Biopolymers form a gelatinous microlayer at the air-sea interface when Arctic sea ice melts

    PubMed Central

    Galgani, Luisa; Piontek, Judith; Engel, Anja

    2016-01-01

    The interface layer between ocean and atmosphere is only a couple of micrometers thick but plays a critical role in climate relevant processes, including the air-sea exchange of gas and heat and the emission of primary organic aerosols (POA). Recent findings suggest that low-level cloud formation above the Arctic Ocean may be linked to organic polymers produced by marine microorganisms. Sea ice harbors high amounts of polymeric substances that are produced by cells growing within the sea-ice brine. Here, we report from a research cruise to the central Arctic Ocean in 2012. Our study shows that microbial polymers accumulate at the air-sea interface when the sea ice melts. Proteinaceous compounds represented the major fraction of polymers supporting the formation of a gelatinous interface microlayer and providing a hitherto unrecognized potential source of marine POA. Our study indicates a novel link between sea ice-ocean and atmosphere that may be sensitive to climate change. PMID:27435531

  15. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-05-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl.

  16. Coastal Land Air Sea Interaction: "the" beach towers

    NASA Astrophysics Data System (ADS)

    MacMahan, J. H.; Koscinski, J. S.; Ortiz-Suslow, D. G.; Haus, B. K.; Thornton, E. B.

    2016-12-01

    As part of the Coastal Land Air Sea Interaction (CLASI) experiment, an alongshore array of 6-m high towers instrumented with ultrasonic 3D anemometers and temperature-relative humidity sensors were deployed at five sandy beaches near the high-tide line in Monterey Bay, CA, in May-June 2016. A cross-shore array of towers was also deployed from within the active surfzone to the toe of the dune at one beach. In addition, waves and ocean temperature were obtained along the 10m isobath for each beach. The dissipative surfzone was O(80m) wide. The wave energy varies among the beaches owing to sheltering and refraction by the Monterey Canyon and headlands. The tides are semi-diurnal mixed, meso-tidal with a maximum tidal range of 2m. This results in a variable beach width from the tower to the tidal line. Footprint analysis for estimating the source region for the turbulent momentum fluxes, suggests that the observations represent three scenarios described as primarily ocean, mixed beach and ocean, and primarily beach. The direct-estimate of the atmospheric stability by the sonic anemometer suggest that all of the beaches are mostly unstable except for a few occurrences in the evening during low wind conditions. The onshore neutral drag coefficient (Cd) estimated at 10m heights is 3-5 times larger than open ocean estimates. Minimal variability was found in Cd based on the footprint analysis. Beach-specific spatial variability in Cd was found related to atmospheric stability and wave energy.

  17. The Role of Air-sea Coupling in the Response of Climate Extremes to Aerosols

    NASA Astrophysics Data System (ADS)

    Mahajan, S.

    2017-12-01

    Air-sea interactions dominate the climate of surrounding regions and thus also modulate the climate response to local and remote aerosol forcings. To clearly isolate the role of air-sea coupling in the climate response to aerosols, we conduct experiments with a full complexity atmosphere model that is coupled to a series of ocean models progressively increasing in complexity. The ocean models range from a data ocean model with prescribed SSTs, to a slab ocean model that only allows thermodynamic interactions, to a full dynamic ocean model. In a preliminary study, we have conducted single forcing experiments with black carbon aerosols in an atmosphere GCM coupled to a data ocean model and a slab ocean model. We find that while black carbon aerosols can intensify mean and extreme summer monsoonal precipitation over the Indian sub-continent, air-sea coupling can dramatically modulate this response. Black carbon aerosols in the vicinity of the Arabian Sea result in an increase of sea surface temperatures there in the slab ocean model, which intensify the low-level Somali Jet. The associated increase in moisture transport into Western India enhances the mean as well as extreme precipitation. In prescribed SST experiments, where SSTs are not allowed to respond BC aerosols, the response is muted. We will present results from a hierarchy of GCM simulations that investigate the role of air-sea coupling in the climate response to aerosols in more detail.

  18. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  19. Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL Data Taken using DYNAMO

    DTIC Science & Technology

    2013-10-07

    Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken using DYNAMO 5a. CONTRACT NUMBER N0001411C0464 5b. GRANT...efficiency of energy, mass and momentum exchange at the bottom and top of the ABL. 15. SUBJECT TERMS DYNAMO , ABL 16. SECURITY CLASSIFICATION OF: 17...Investigation of the Air-Wave-Sea Interaction Modes Using an Airborne Doppler Wind Lidar: Analyses of the HRDL data taken during DYNAMO George

  20. Microhydrodynamics of flotation processes in the sea surface layer

    NASA Astrophysics Data System (ADS)

    Grammatika, Marianne; Zimmerman, William B.

    2001-10-01

    The uppermost surface of the ocean forms a peculiarly important ecosystem, the sea surface microlayer (SML). Comprising the top 1-1000 μm of the ocean surface, the SML concentrates many chemical substances, particularly those that are surface active. Important economically as a nursery for fish eggs and larvae, the SML unfortunately is also especially vulnerable to pollution. Contaminants that settle out from the air, have low solubility, or attach to floatable matter tend to accumulate in the SML. Bubbles contribute prominently to the dynamics of air-sea exchanges, playing an important role in geochemical cycling of material in the upper ocean and SML. In addition to the movement of bubbles, the development of a bubble cloud interrelates with the single particle dynamics of all other bubbles and particles. In the early sixties, several in situ oceanographic techniques revealed an "unbelievably immense" number of coastal bubbles of radius 15-300 μm. The spatial and temporal variation of bubble numbers were studied; acoustical oceanographers now use bubbles as tracers to determine ocean processes near the ocean surface. Sea state and rain noises have both been definitively ascribed to the radiation from huge numbers of infant micro bubbles [The Acoustic Bubble. Academic Press, San Diego]. Our research programme aims at constructing a hydrodynamic model for particle transport processes occurring at the microscale, in multi-phase flotation suspensions. Current research addresses bubble and floc microhydrodynamics as building blocks for a microscale transport model. This paper reviews sea surface transport processes in the microlayer and the lower atmosphere, and identifies those amenable to microhydrodynamic modelling and simulation. It presents preliminary simulation results including the multi-body hydrodynamic mobility functions for the modelling of "dynamic bubble filters" and floc suspensions. Hydrodynamic interactions versus spatial anisotropy and size of

  1. The Air-Sea Interface and Surface Stress under Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexander; Lukas, Roger; Donelan, Mark; Ginis, Isaac

    2013-04-01

    Air-sea interaction dramatically changes from moderate to very high wind speed conditions (Donelan et al. 2004). Unresolved physics of the air-sea interface are one of the weakest components in tropical cyclone prediction models. Rapid disruption of the air-water interface under very high wind speed conditions was reported in laboratory experiments (Koga 1981) and numerical simulations (Soloviev et al. 2012), which resembled the Kelvin-Helmholtz instability at an interface with very large density difference. Kelly (1965) demonstrated that the KH instability at the air-sea interface can develop through parametric amplification of waves. Farrell and Ioannou (2008) showed that gustiness results in the parametric KH instability of the air-sea interface, while the gusts are due to interacting waves and turbulence. The stochastic forcing enters multiplicatively in this theory and produces an exponential wave growth, augmenting the growth from the Miles (1959) theory as the turbulence level increases. Here we complement this concept by adding the effect of the two-phase environment near the mean interface, which introduces additional viscosity in the system (turning it into a rheological system). The two-phase environment includes air-bubbles and re-entering spray (spume), which eliminates a portion of the wind-wave wavenumber spectrum that is responsible for a substantial part of the air sea drag coefficient. The previously developed KH-type interfacial parameterization (Soloviev and Lukas 2010) is unified with two versions of the wave growth model. The unified parameterization in both cases exhibits the increase of the drag coefficient with wind speed until approximately 30 m/s. Above this wind speed threshold, the drag coefficient either nearly levels off or even slightly drops (for the wave growth model that accounts for the shear) and then starts again increasing above approximately 65 m/s wind speed. Remarkably, the unified parameterization reveals a local minimum

  2. Importance of ocean mesoscale variability for air-sea interactions in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Putrasahan, D. A.; Kamenkovich, I.; Le Hénaff, M.; Kirtman, B. P.

    2017-06-01

    Mesoscale variability of currents in the Gulf of Mexico (GoM) can affect oceanic heat advection and air-sea heat exchanges, which can influence climate extremes over North America. This study is aimed at understanding the influence of the oceanic mesoscale variability on the lower atmosphere and air-sea heat exchanges. The study contrasts global climate model (GCM) with 0.1° ocean resolution (high resolution; HR) with its low-resolution counterpart (1° ocean resolution with the same 0.5° atmosphere resolution; LR). The LR simulation is relevant to current generation of GCMs that are still unable to resolve the oceanic mesoscale. Similar to observations, HR exhibits positive correlation between sea surface temperature (SST) and surface turbulent heat flux anomalies, while LR has negative correlation. For HR, we decompose lateral advective heat fluxes in the upper ocean into mean (slowly varying) and mesoscale-eddy (fast fluctuations) components. We find that the eddy flux divergence/convergence dominates the lateral advection and correlates well with the SST anomalies and air-sea latent heat exchanges. This result suggests that oceanic mesoscale advection supports warm SST anomalies that in turn feed surface heat flux. We identify anticyclonic warm-core circulation patterns (associated Loop Current and rings) which have an average diameter of 350 km. These warm anomalies are sustained by eddy heat flux convergence at submonthly time scales and have an identifiable imprint on surface turbulent heat flux, atmospheric circulation, and convective precipitation in the northwest portion of an averaged anticyclone.

  3. Sea ice-induced cold air advection as a mechanism controlling tundra primary productivity

    NASA Astrophysics Data System (ADS)

    Macias-Fauria, M.; Karlsen, S. R.

    2015-12-01

    The recent sharp decline in Arctic sea ice extent, concentration, and volume leaves urgent questions regarding its effects on ecological processes. Changes in tundra productivity have been associated with sea ice dynamics on the basis that most tundra ecosystems lay close to the sea. Although some studies have addressed the potential effect of sea ice decline on the primary productivity of terrestrial arctic ecosystems (Bhatt et al., 2010), a clear picture of the mechanisms and patterns linking both processes remains elusive. We hypothesised that sea ice might influence tundra productivity through 1) cold air advection during the growing season (direct/weather effect) or 2) changes in regional climate induced by changes in sea ice (indirect/climate effect). We present a test on the direct/weather effect hypothesis: that is, tundra productivity is coupled with sea ice when sea ice remains close enough from land vegetation during the growing season for cold air advection to limit temperatures locally. We employed weekly MODIS-derived Normalised Difference Vegetation Index (as a proxy for primary productivity) and sea ice data at a spatial resolution of 232m for the period 2000-2014 (included), covering the Svalbard Archipelago. Our results suggest that sea ice-induced cold air advection is a likely mechanism to explain patterns of NDVI trends and heterogeneous spatial dynamics in the Svalbard archipelago. The mechanism offers the potential to explain sea ice/tundra productivity dynamics in other Arctic areas.

  4. Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Davolio, Silvio

    2017-11-01

    Strong and persistent low-level winds blowing over the Adriatic basin are often associated with intense precipitation events over Italy. Typically, in case of moist southeasterly wind (Sirocco), rainfall affects northeastern Italy and the Alpine chain, while with cold northeasterly currents (Bora) precipitations are localized along the eastern slopes of the Apennines and central Italy coastal areas. These events are favoured by intense air-sea interactions and it is reasonable to hypothesize that the Adriatic sea surface temperature (SST) can affect the amount and location of precipitation. High-resolution simulations of different Bora and Sirocco events leading to severe precipitation are performed using a convection-permitting model (MOLOCH). Sensitivity experiments varying the SST initialization field are performed with the aim of evaluating the impact of SST uncertainty on precipitation forecasts, which is a relevant topic for operational weather predictions, especially at local scales. Moreover, diagnostic tools to compute water vapour fluxes across the Italian coast and atmospheric water budget over the Adriatic Sea have been developed and applied in order to characterize the air mass that feeds the precipitating systems. Finally, the investigation of the processes through which the SST influences location and intensity of heavy precipitation allows to gain a better understanding on mechanisms conducive to severe weather in the Mediterranean area and in the Adriatic basin in particular. Results show that the effect of the Adriatic SST (uncertainty) on precipitation is complex and can vary considerably among different events. For both Bora and Sirocco events, SST does not influence markedly the atmospheric water budget or the degree of moistening of air that flows over the Adriatic Sea. SST mainly affects the stability of the atmospheric boundary layer, thus influencing the flow dynamics and the orographic flow regime, and in turn, the precipitation pattern.

  5. Characterization of air contaminants formed by the interaction of lava and sea water.

    PubMed Central

    Kullman, G J; Jones, W G; Cornwell, R J; Parker, J E

    1994-01-01

    We made environmental measurements to characterize contaminants generated when basaltic lava from Hawaii's Kilauea volcano enters sea water. This interaction of lava with sea water produces large clouds of mist (LAZE). Island winds occasionally directed the LAZE toward the adjacent village of Kalapana and the Hawaii Volcanos National Park, creating health concerns. Environmental samples were taken to measure airborne concentrations of respirable dust, crystalline silica and other mineral compounds, fibers, trace metals, inorganic acids, and organic and inorganic gases. The LAZE contained quantifiable concentrations of hydrochloric acid (HCl) and hydrofluoric acid (HF); HCl was predominant. HCl and HF concentrations were highest in dense plumes of LAZE near the sea. The HCl concentration at this sampling location averaged 7.1 ppm; this exceeds the current occupational exposure ceiling of 5 ppm. HF was detected in nearly half the samples, but all concentrations were <1 ppm Sulfur dioxide was detected in one of four short-term indicator tube samples at approximately 1.5 ppm. Airborne particulates were composed largely of chloride salts (predominantly sodium chloride). Crystalline silica concentrations were below detectable limits, less than approximately 0.03 mg/m3 of air. Settled dust samples showed a predominance of glass flakes and glass fibers. Airborne fibers were detected at quantifiable levels in 1 of 11 samples. These fibers were composed largely of hydrated calcium sulfate. These findings suggest that individuals should avoid concentrated plumes of LAZE near its origin to prevent over exposure to inorganic acids, specifically HCl. Images Figure 1. Figure 2. Figure 3. Figure 4. A Figure 4. B Figure 4. C Figure 4. D PMID:8593853

  6. Air-sea exchange fluxes of synthetic polycyclic musks in the North Sea and the Arctic.

    PubMed

    Xie, Zhiyong; Ebinghaus, Ralf; Temme, Christian; Heemken, Olaf; Ruck, Wolfgang

    2007-08-15

    Synthetic polycyclic musk fragrances Galaxolide (HHCB) and Tonalide (AHTN) were measured simultaneously in air and seawater in the Arctic and the North Sea and in the rural air of northern Germany. Median concentrations of gas-phase HHCB and AHTN were 4 and 18 pg m(-3) in the Arctic, 28 and 18 pg m(-3) in the North Sea, and 71 and 21 pg m(-3) in northern Germany, respectively. Various ratios of HHCB/AHTN implied that HHCB is quickly removed by atmospheric degradation, while AHTN is relatively persistent in the atmosphere. Dissolved concentrations ranged from 12 to 2030 pg L(-1) for HHCB and from below the method detection limit (3 pg L(-1)) to 965 pg L(-1) for AHTN with median values of 59 and 23 pg L(-1), respectively. The medians of volatilization fluxes for HHCB and AHTN were 27.2 and 14.2 ng m(-2) day(-1) and the depositional fluxes were 5.9 and 3.3 ng m(-2) day(-1), respectively, indicating water-to-air volatilization is a significant process to eliminate HHCB and AHTN from the North Sea. In the Arctic, deposition fluxes dominated the air-sea gas exchange of HHCB and AHTN, suggesting atmospheric input controls the levels of HHCB and AHTN in the polar region.

  7. Chemical Atmosphere-Snow-Sea Ice Interactions: defining future research in the field, lab and modeling

    NASA Astrophysics Data System (ADS)

    Frey, Markus

    2015-04-01

    The air-snow-sea ice system plays an important role in the global cycling of nitrogen, halogens, trace metals or carbon, including greenhouse gases (e.g. CO2 air-sea flux), and therefore influences also climate. Its impact on atmospheric composition is illustrated for example by dramatic ozone and mercury depletion events which occur within or close to the sea ice zone (SIZ) mostly during polar spring and are catalysed by halogens released from SIZ ice, snow or aerosol. Recent field campaigns in the high Arctic (e.g. BROMEX, OASIS) and Antarctic (Weddell sea cruises) highlight the importance of snow on sea ice as a chemical reservoir and reactor, even during polar night. However, many processes, participating chemical species and their interactions are still poorly understood and/or lack any representation in current models. Furthermore, recent lab studies provide a lot of detail on the chemical environment and processes but need to be integrated much better to improve our understanding of a rapidly changing natural environment. During a 3-day workshop held in Cambridge/UK in October 2013 more than 60 scientists from 15 countries who work on the physics, chemistry or biology of the atmosphere-snow-sea ice system discussed research status and challenges, which need to be addressed in the near future. In this presentation I will give a summary of the main research questions identified during this workshop as well as ways forward to answer them through a community-based interdisciplinary approach.

  8. Advances in quantifying air-sea gas exchange and environmental forcing.

    PubMed

    Wanninkhof, Rik; Asher, William E; Ho, David T; Sweeney, Colm; McGillis, Wade R

    2009-01-01

    The past decade has seen a substantial amount of research on air-sea gas exchange and its environmental controls. These studies have significantly advanced the understanding of processes that control gas transfer, led to higher quality field measurements, and improved estimates of the flux of climate-relevant gases between the ocean and atmosphere. This review discusses the fundamental principles of air-sea gas transfer and recent developments in gas transfer theory, parameterizations, and measurement techniques in the context of the exchange of carbon dioxide. However, much of this discussion is applicable to any sparingly soluble, non-reactive gas. We show how the use of global variables of environmental forcing that have recently become available and gas exchange relationships that incorporate the main forcing factors will lead to improved estimates of global and regional air-sea gas fluxes based on better fundamental physical, chemical, and biological foundations.

  9. Variability of the gaseous elemental mercury sea-air flux of the Baltic Sea.

    PubMed

    Kuss, Joachim; Schneider, Bernd

    2007-12-01

    The importance of the sea as a sink for atmospheric mercury has been established quantitatively through models based on wet and dry deposition data, but little is known about the release of mercury from sea areas. The concentration of elemental mercury (Hg0) in sea surface water and in the marine atmosphere of the Baltic Sea was measured at high spatial resolution in February, April, July, and November 2006. Wind-speed records and the gas-exchange transfer velocity were then used to calculate Hg0 sea-air fluxes on the basis of Hg0 sea-air concentration differences. Our results show that the spatial resolution of the surface water Hg0 data can be significantly improved by continuous measurements of Hg0 in air equilibrated with water instead of quantitative extraction of Hg0 from seawater samples. A spatial and highly seasonal variability of the Hg0 sea-air flux was thus determined. In winter, the flux was low and changed in direction. In summer, a strong emission flux of up to 150 ng m(-2) day(-1) in the central Baltic Sea was recorded. The total emission of Hg0 from the studied area (235000 km2) was 4300 +/- 1600 kg in 2006 and exceeded deposition estimates.

  10. Air-Sea Interaction in the Gulf of Tehuantepec

    NASA Astrophysics Data System (ADS)

    Khelif, D.; Friehe, C. A.; Melville, W. K.

    2007-05-01

    Measurements of meteorological fields and turbulence were made during gap wind events in the Gulf of Tehuantepec using the NSF C-130 aircraft. The flight patterns started at the shore and progressed to approximately 300km offshore with low-level (30m) tracks, stacks and soundings. Parameterizations of the wind stress, sensible and latent heat fluxes were obtained from approximately 700 5 km low-level tracks. Structure of the marine boundary layer as it evolved off-shore was obtained with stack patterns, aircraft soundings and deployment of dropsondes. The air-sea fluxes approximately follow previous parameterizations with some evidence of the drag coefficient leveling out at about 20 meters/sec with the latent heat flux slightly increasing. The boundary layer starts at shore as a gap wind low-level jet, thins as the jet expands out over the gulf, exhibits a hydraulic jump, and then increases due to turbulent mixing.

  11. Air-sea fluxes of momentum and mass in the presence of wind waves

    NASA Astrophysics Data System (ADS)

    Zülicke, Christoph

    2010-05-01

    An air-sea interaction model (ASIM) is developed including the effect of wind waves on momentum and mass transfer. This includes the derivation of profiles of dissipation rate, flow speed and concentration from a certain height to a certain depth. Simplified assumptions on the turbulent closure, skin - bulk matching and the spectral wave model allow for an analytic treatment. Particular emphasis was put on the inclusion of primary (gravity) waves and secondary (capillary-gravity) waves. The model was tuned to match wall-flow theory and data on wave height and slope. Growing waves reduce the air-side turbulent stress and lead to an increasing drag coefficient. In the sea, breaking waves inject turbulent kinetic energy and accelerate the transfer. Cross-reference with data on wave-related momentum and energy flux, dissipation rate and transfer velocity was sufficient. The evaluation of ASIM allowed for the analytical calculation of bulk formulae for the wind-dependent gas transfer velocity including information on the air-side momentum transfer (drag coefficient) and the sea-side gas transfer (Dalton number). The following regimes have been identified: the smooth waveless regime with a transfer velocity proportional to (wind) × (diffusion)2-3, the primary wave regime with a wind speed dependence proportional to (wind)1-4 × (diffusion)1-2-(waveage)1-4 and the secondary wave regime including a more-than-linear wind speed dependence like (wind)15-8 × (diffusion)1-2 × (waveage)5-8. These findings complete the current understanding of air-sea interaction for medium winds between 2 and 20 m s^-1.

  12. Carbon speciation at the air-sea interface during rain

    NASA Astrophysics Data System (ADS)

    McGillis, Wade; Hsueh, Diana; Takeshita, Yui; Donham, Emily; Markowitz, Michele; Turk, Daniela; Martz, Todd; Price, Nicole; Langdon, Chris; Najjar, Raymond; Herrmann, Maria; Sutton, Adrienne; Loose, Brice; Paine, Julia; Zappa, Christopher

    2015-04-01

    This investigation demonstrates the surface ocean dilution during rain events on the ocean and quantifies the lowering of surface pCO2 affecting the air-sea exchange of carbon dioxide. Surface salinity was measured during rain events in Puerto Rico, the Florida Keys, East Coast USA, Panama, and the Palmyra Atoll. End-member analysis is used to determine the subsequent surface ocean carbonate speciation. Surface ocean carbonate chemistry was measured during rain events to verify any approximations made. The physical processes during rain (cold, fresh water intrusion and buoyancy, surface waves and shear, microscale mixing) are described. The role of rain on surface mixing, biogeochemistry, and air-sea gas exchange will be discussed.

  13. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  14. Development and application of gravity-capillary wave fourier analysis for the study of air-sea interaction physics

    NASA Astrophysics Data System (ADS)

    MacKenzie Laxague, Nathan Jean

    short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.

  15. Oceanographic, Air-sea Interaction, and Environmental Aspects of Artificial Upwelling Produced by Wave-Inertia Pumps for Potential Hurricane Intensity Mitigation

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Dean, C.

    2017-12-01

    The artificial upwelling system consisting of the wave-inertia pumps driven by surface waves can produce flow of cold deep water to the surface. One of the recently proposed potential applications of the artificial upwelling system is the hurricane intensity mitigation. Even relatively small reduction of intensity may provide significant benefits. The ocean heat content (OHC) is the "fuel" for hurricanes. The OHC can be reduced by mixing of the surface layer with the cold water produced by wave-inertia pumps. Implementation of this system for hurricane mitigation has several oceanographic and air-sea interaction aspects. The cold water brought to the surface from a deeper layer has higher density than the surface water and, therefore, tends to sink back down. The mixing of the cold water produced by artificial upwelling depends on environmental conditions such as stratification, regional ocean circulation, and vertical shear. Another aspect is that as the sea surface temperature drops below the air temperature, the stable stratification develops in the atmospheric boundary layer. The stable atmospheric stratification suppresses sensible and latent heat air-sea fluxes and reduces the net longwave irradiance from the sea surface. As a result, the artificial upwelling may start increasing the OHC (though still reducing the sea surface temperature). In this work, the fate of the cold water in the stratified environment with vertical shear has been studied using computational fluid dynamics (CFD) tools. A 3D large eddy simulation model is initialized with observational temperature, salinity, and current velocity data from a sample location in the Straits of Florida. A periodic boundary condition is set along the direction of the current, which allows us to simulate infinite fetch. The model results indicate that the cold water brought to the sea surface by a wave-inertia pump forms a convective jet. This jet plunges into the upper ocean mixed layer and penetrates the

  16. Coastal and Submesoscale Process Studies for ASIRI

    DTIC Science & Technology

    2017-01-30

    of upper ocean processes and air- sea interaction in the Bay of Bengal. This, in the long run , would contribute toward improving the intra-seasonal...and air- sea interaction in the Bay of Bengal. This, in the long run, would contribute toward improving the intra-seasonal Monsoonal forecast in...different times of year, and to understand its relationship with air- sea fluxes of heat and moisture in the Bay of Bengal. 2. To determine what

  17. Cloud and boundary layer interactions over the Arctic sea-ice in late summer

    NASA Astrophysics Data System (ADS)

    Shupe, M. D.; Persson, P. O. G.; Brooks, I. M.; Tjernström, M.; Sedlar, J.; Mauritsen, T.; Sjogren, S.; Leck, C.

    2013-05-01

    Observations from the Arctic Summer Cloud Ocean Study (ASCOS), in the central Arctic sea-ice pack in late summer 2008, provide a detailed view of cloud-atmosphere-surface interactions and vertical mixing processes over the sea-ice environment. Measurements from a suite of ground-based remote sensors, near surface meteorological and aerosol instruments, and profiles from radiosondes and a helicopter are combined to characterize a week-long period dominated by low-level, mixed-phase, stratocumulus clouds. Detailed case studies and statistical analyses are used to develop a conceptual model for the cloud and atmosphere structure and their interactions in this environment. Clouds were persistent during the period of study, having qualities that suggest they were sustained through a combination of advective influences and in-cloud processes, with little contribution from the surface. Radiative cooling near cloud top produced buoyancy-driven, turbulent eddies that contributed to cloud formation and created a cloud-driven mixed layer. The depth of this mixed layer was related to the amount of turbulence and condensed cloud water. Coupling of this cloud-driven mixed layer to the surface boundary layer was primarily determined by proximity. For 75% of the period of study, the primary stratocumulus cloud-driven mixed layer was decoupled from the surface and typically at a warmer potential temperature. Since the near-surface temperature was constrained by the ocean-ice mixture, warm temperatures aloft suggest that these air masses had not significantly interacted with the sea-ice surface. Instead, back trajectory analyses suggest that these warm airmasses advected into the central Arctic Basin from lower latitudes. Moisture and aerosol particles likely accompanied these airmasses, providing necessary support for cloud formation. On the occasions when cloud-surface coupling did occur, back trajectories indicated that these air masses advected at low levels, while mixing

  18. Skin Temperature Processes in the Presence of Sea Ice

    NASA Astrophysics Data System (ADS)

    Brumer, S. E.; Zappa, C. J.; Brown, S.; McGillis, W. R.; Loose, B.

    2013-12-01

    Monitoring the sea-ice margins of polar oceans and understanding the physical processes at play at the ice-ocean-air interface is essential in the perspective of a changing climate in which we face an accelerated decline of ice caps and sea ice. Remote sensing and in particular InfraRed (IR) imaging offer a unique opportunity not only to observe physical processes at sea-ice margins, but also to measure air-sea exchanges near ice. It permits monitoring ice and ocean temperature variability, and can be used for derivation of surface flow field allowing investigating turbulence and shearing at the ice-ocean interface as well as ocean-atmosphere gas transfer. Here we present experiments conducted with the aim of gaining an insight on how the presence of sea ice affects the momentum exchange between the atmosphere and ocean and investigate turbulence production in the interplay of ice-water shear, convection, waves and wind. A set of over 200 high resolution IR imagery records was taken at the US Army Cold Regions Research and Engineering Laboratory (CRREL, Hanover NH) under varying ice coverage, fan and pump settings. In situ instruments provided air and water temperature, salinity, subsurface currents and wave height. Air side profiling provided environmental parameters such as wind speed, humidity and heat fluxes. The study aims to investigate what can be gained from small-scale high-resolution IR imaging of the ice-ocean-air interface; in particular how sea ice modulates local physics and gas transfer. The relationship between water and ice temperatures with current and wind will be addressed looking at the ocean and ice temperature variance. Various skin temperature and gas transfer parameterizations will be evaluated at ice margins under varying environmental conditions. Furthermore the accuracy of various techniques used to determine surface flow will be assessed from which turbulence statistics will be determined. This will give an insight on how ice presence

  19. Bayesian Hierarchical Air-Sea Interaction Modeling: Application to the Labrador Sea

    NASA Technical Reports Server (NTRS)

    Niiler, Pearn P.

    2002-01-01

    The objectives are to: 1) Organize data from 26 MINIMET drifters in the Labrador Sea, including sensor calibration and error checking of ARGOS transmissions. 2) Produce wind direction, barometer, and sea surface temperature time series. In addition, provide data from historical file of 150 SHARP drifters in the Labrador Sea. 3) Work with data interpretation and data-modeling assimilation issues.

  20. Sea surface temperature measurements with AIRS

    NASA Technical Reports Server (NTRS)

    Aumann, H.

    2003-01-01

    The comparison of global sea surface skin temperature derived from cloud-free AIRS super window channel at 2616 cm-1 (sst2616) with the Real-Time Global Sea Surface Temperature for September 2002 shows surprisingly small standard deviation of 0.44K.

  1. Air-Sea Momentum and Enthalpy Exchange in Coupled Atmosphere-Wave-Ocean Modeling of Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Curcic, M.; Chen, S. S.

    2016-02-01

    The atmosphere and ocean are coupled through momentum, enthalpy, and mass fluxes. Accurate representation of these fluxes in a wide range of weather and climate conditions is one of major challenges in prediction models. Their current parameterizations are based on sparse observations in low-to-moderate winds and are not suited for high wind conditions such as tropical cyclones (TCs) and winter storms. In this study, we use the Unified Wave INterface - Coupled Model (UWIN-CM), a high resolution, fully-coupled atmosphere-wave-ocean model, to better understand the role of ocean surface waves in mediating air-sea momentum and enthalpy exchange in TCs. In particular, we focus on the explicit treatment of wave growth and dissipation for calculating atmospheric and oceanic stress, and its role in upper ocean mixing and surface cooling in the wake of the storm. Wind-wave misalignment and local wave disequilibrium result in difference between atmospheric and oceanic stress being largest on the left side of the storm. We find that explicit wave calculation in the coupled model reduces momentum transfer into the ocean by more than 10% on average, resulting in reduced cooling in TC's wake and subsequent weakening of the storm. We also investigate the impacts of sea surface temperature and upper ocean parameterization on air-sea enthalpy fluxes in the fully coupled model. High-resolution UWIN-CM simulations of TCs with various intensities and structure are conducted in this study to better understand the complex TC-ocean interaction and improve the representation of air-sea coupling processes in coupled prediction models.

  2. Evaluation of the swell effect on the air-sea gas transfer in the coastal zone

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.

    2016-04-01

    Air-sea gas transfer processes are one of the most important factors regarding global climate and long-term global climate changes. Despite its importance, there is still a huge uncertainty on how to better parametrize these processes in order to include them on the global climate models. This uncertainty exposes the need to increase our knowledge on gas transfer controlling mechanisms. In the coastal regions, breaking waves become a key factor to take into account when estimating gas fluxes, however, there is still a lack of information and the influence of the ocean surface waves on the air-sea interaction and gas flux behavior must be validated. In this study, as part of the "Sea Surface Roughness as Air-Sea Interaction Control" project, we evaluate the effect of the ocean surface waves on the gas exchange in the coastal zone. Direct estimates of the flux of CO2 (FCO2) and water vapor (FH2O) through eddy covariance, were carried out from May 2014 to April 2015 in a coastal station located at the Northwest of Todos Santos Bay, Baja California, México. For the same period, ocean surface waves are recorded using an Acoustic Doppler Current Profiler (Workhorse Sentinel, Teledyne RD Instruments) with a sampling rate of 2 Hz and located at 10 m depth about 350 m away from the tower. We found the study area to be a weak sink of CO2 under moderate wind and wave conditions with a mean flux of -1.32 μmol/m2s. The correlation between the wind speed and FCO2 was found to be weak, suggesting that other physical processes besides wind may be important factors for the gas exchange modulation at coastal waters. The results of the quantile regression analysis computed between FCO2 and (1) wind speed, (2) significant wave height, (3) wave steepness and (4) water temperature, show that the significant wave height is the most correlated parameter with FCO2; Nevertheless, the behavior of their relation varies along the probability distribution of FCO2, with the linear regression

  3. Surfactant control of air-sea gas exchange across contrasting biogeochemical regimes

    NASA Astrophysics Data System (ADS)

    Pereira, Ryan; Schneider-Zapp, Klaus; Upstill-Goddard, Robert

    2014-05-01

    Air-sea gas exchange is important to the global partitioning of CO2.Exchange fluxes are products of an air-sea gas concentration difference, ΔC, and a gas transfer velocity, kw. The latter is controlled by the rate of turbulent diffusion at the air-sea interface but it cannot be directly measured and has a high uncertainty that is now considered one of the greatest challenges to quantifying net global air-sea CO2 exchange ...(Takahashi et al., 2009). One important control on kw is exerted by sea surface surfactants that arise both naturally from biological processes and through anthropogenic activity. They influence gas exchange in two fundamental ways: as a monolayer physical barrier and through modifying sea surface hydrodynamics and hence turbulent energy transfer. These effects have been demonstrated in the laboratory with artificial surfactants ...(Bock et al., 1999; Goldman et al., 1988) and through purposeful surfactant releases in coastal waters .(.).........().(Brockmann et al., 1982) and in the open ocean (Salter et al., 2011). Suppression of kwin these field experiments was ~5-55%. While changes in both total surfactant concentration and the composition of the natural surfactant pool might be expected to impact kw, the required in-situ studies are lacking. New data collected from the coastal North Sea in 2012-2013 shows significant spatio-temporal variability in the surfactant activity of organic matter within the sea surface microlayer that ranges from 0.07-0.94 mg/L T-X-100 (AC voltammetry). The surfactant activities show a strong winter/summer seasonal bias and general decrease in concentration with increasing distance from the coastline possibly associated with changing terrestrial vs. phytoplankton sources. Gas exchange experiments of this seawater using a novel laboratory tank and gas tracers (CH4 and SF6) demonstrate a 12-45% reduction in kw compared to surfactant-free water. Seasonally there is higher gas exchange suppression in the summer

  4. The EOSDIS Version 0 Distributed Active Archive Center for physical oceanography and air-sea interaction

    NASA Technical Reports Server (NTRS)

    Hilland, Jeffrey E.; Collins, Donald J.; Nichols, David A.

    1991-01-01

    The Distributed Active Archive Center (DAAC) at the Jet Propulsion Laboratory will support scientists specializing in physical oceanography and air-sea interaction. As part of the NASA Earth Observing System Data and Information System Version 0 the DAAC will build on existing capabilities to provide services for data product generation, archiving, distribution and management of information about data. To meet scientist's immediate needs for data, existing data sets from missions such as Seasat, Geosat, the NOAA series of satellites and the Global Positioning Satellite system will be distributed to investigators upon request. In 1992, ocean topography, wave and surface roughness data from the Topex/Poseidon radar altimeter mission will be archived and distributed. New data products will be derived from Topex/Poseidon and other sensor systems based on recommendations of the science community. In 1995, ocean wind field measurements from the NASA Scatterometer will be supported by the DAAC.

  5. Air-sea heat flux control on the Yellow Sea Cold Water Mass intensity and implications for its prediction

    NASA Astrophysics Data System (ADS)

    Zhu, Junying; Shi, Jie; Guo, Xinyu; Gao, Huiwang; Yao, Xiaohong

    2018-01-01

    The Yellow Sea Cold Water Mass (YSCWM), which occurs during summer in the central Yellow Sea, plays an important role in the hydrodynamic field, nutrient cycle and biological species. Based on water temperature observations during the summer from 1978 to 1998 in the western Yellow Sea, five specific YSCWM years were identified, including two strong years (1984 and 1985), two weak years (1989 and 1995) and one normal year (1992). Using a three-dimensional hydrodynamic model, the YSCWM formation processes in these five years were simulated and compared with observations. In general, the YSCWM began forming in spring, matured in summer and gradually disappeared in autumn of every year. The 8 °C isotherm was used to indicate the YSCWM boundary. The modelled YSCWM areas in the two strong years were approximately two times larger than those in the two weak years. Based on the simulations in the weak year of 1995, ten numerical experiments were performed to quantify the key factors influencing the YSCWM intensity by changing the initial water condition in the previous autumn, air-sea heat flux, wind, evaporation, precipitation and sea level pressure to those in the strong year of 1984, respectively. The results showed that the air-sea heat flux was the dominant factor influencing the YSCWM intensity, which contributed about 80% of the differences of the YSCWM average water temperature at a depth of 50 m. In addition, the air-sea heat flux in the previous winter had a determining effect, contributing more than 50% of the differences between the strong and weak YSCWM years. Finally, a simple formula for predicting the YSCWM intensity was established by using the key influencing factors, i.e., the sea surface temperature before the cooling season and the air-sea heat flux during the cooling season from the previous December to the current February. With this formula, instead of a complicated numerical model, we were able to roughly predict the YSCWM intensity for the

  6. Atmospheric organochlorine pollutants and air-sea exchange of hexachlorocyclohexane in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Hinckley, D.A.; Bidleman, T.F.; Rice, C.P.

    1991-01-01

    Organochlorine pesticides have been found in Arctic fish, marine mammals, birds, and plankton for some time. The lack of local sources and remoteness of the region imply long-range transport and deposition of contaminants into the Arctic from sources to the south. While on the third Soviet-American Joint Ecological Expedition to the Bering and Chukchi Seas (August 1988), high-volume air samples were taken and analyzed for organochlorine pesticides. Hexachlorocyclohexane (HCH), hexachlorobenzene, polychlorinated camphenes, and chlordane (listed in order of abundance, highest to lowest) were quantified. The air-sea gas exchange of HCH was estimated at 18 stations during the cruise. Average alpha-HCH concentrations in concurrent atmosphere and surface water samples were 250 pg m-3 and 2.4 ng L-1, respectively, and average gamma-HCH concentrations were 68 pg m-3 in the atmosphere and 0.6 ng L-1 in surface water. Calculations based on experimentally derived Henry's law constants showed that the surface water was undersaturated with respect to the atmosphere at most stations (alpha-HCH, average 79% saturation; gamma-HCH, average 28% saturation). The flux for alpha-HCH ranged from -47 ng m-2 day-1 (sea to air) to 122 ng m-2 d-1 (air to sea) and averaged 25 ng m-2 d-1 air to sea. All fluxes of gamma-HCH were from air to sea, ranged from 17 to 54 ng m-2 d-1, and averaged 31 ng m-2 d-1.

  7. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  8. Persistent organochlorine pesticides and polychlorinated biphenyls in air of the North Sea region and air-sea exchange.

    PubMed

    Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard

    2016-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.

  9. Impact of Ocean Surface Waves on Air-Sea Momentum Flux

    NASA Astrophysics Data System (ADS)

    Tamura, H.; Drennan, W. M.; Collins, C. O., III; Graber, H. C.

    2016-02-01

    In this study, we investigated the structure of turbulent air flow over ocean waves. Observations of wind and waves were retrieved by air-sea interaction spar (ASIS) buoys during the shoaling waves experiment (SHOWEX) in Duck, NC in 1999. It is shown that the turbulent velocity spectra and co-spectra for pure wind sea conditions follow the universal forms estimated by Miyake et al [1970]. In the presence of strong swells, the wave boundary layer was extended and the universal spectral scaling of u'w' broke down [Drennan et al, 1999]. On the other hand, the use of the peak wave frequency (fp) to reproduce the "universal spectra" succeeded at explaining the spectral structure of turbulent flow field. The u'w' co-spectra become negative near the fp, which suggests the upward momentum transport (i.e., negative wind stress) induced by ocean waves. Finally, we propose three turbulent flow structures for different wind-wave regimes.

  10. Effects of sea-ice and biogeochemical processes and storms on under-ice water fCO2 during the winter-spring transition in the high Arctic Ocean: Implications for sea-air CO2 fluxes

    NASA Astrophysics Data System (ADS)

    Fransson, Agneta; Chierici, Melissa; Skjelvan, Ingunn; Olsen, Are; Assmy, Philipp; Peterson, Algot K.; Spreen, Gunnar; Ward, Brian

    2017-07-01

    We performed measurements of carbon dioxide fugacity (fCO2) in the surface water under Arctic sea ice from January to June 2015 during the Norwegian young sea ICE (N-ICE2015) expedition. Over this period, the ship drifted with four different ice floes and covered the deep Nansen Basin, the slopes north of Svalbard, and the Yermak Plateau. This unique winter-to-spring data set includes the first winter-time under-ice water fCO2 observations in this region. The observed under-ice fCO2 ranged between 315 µatm in winter and 153 µatm in spring, hence was undersaturated relative to the atmospheric fCO2. Although the sea ice partly prevented direct CO2 exchange between ocean and atmosphere, frequently occurring leads and breakup of the ice sheet promoted sea-air CO2 fluxes. The CO2 sink varied between 0.3 and 86 mmol C m-2 d-1, depending strongly on the open-water fractions (OW) and storm events. The maximum sea-air CO2 fluxes occurred during storm events in February and June. In winter, the main drivers of the change in under-ice water fCO2 were dissolution of CaCO3 (ikaite) and vertical mixing. In June, in addition to these processes, primary production and sea-air CO2 fluxes were important. The cumulative loss due to CaCO3 dissolution of 0.7 mol C m-2 in the upper 10 m played a major role in sustaining the undersaturation of fCO2 during the entire study. The relative effects of the total fCO2 change due to CaCO3 dissolution was 38%, primary production 26%, vertical mixing 16%, sea-air CO2 fluxes 16%, and temperature and salinity insignificant.

  11. Effects of air-sea coupling over the North Sea and the Baltic Sea on simulated summer precipitation over Central Europe

    NASA Astrophysics Data System (ADS)

    Ho-Hagemann, Ha Thi Minh; Gröger, Matthias; Rockel, Burkhardt; Zahn, Matthias; Geyer, Beate; Meier, H. E. Markus

    2017-12-01

    . However, the COSTRICE simulations are generally more accurate than the atmosphere-only CCLM simulations if extreme precipitation is considered, particularly under Northerly Circulation conditions, in which the airflow from the North Atlantic Ocean passes the North Sea in the coupling domain. The air-sea feedback (e.g., wind, evaporation and sea surface temperature) and land-sea interactions are better reproduced with the COSTRICE model system than the atmosphere-only CCLM and lead to an improved simulation of large-scale moisture convergence from the sea to land and, consequently, increased heavy precipitation over Central Europe.

  12. Potential regulation on the climatic effect of Tibetan Plateau heating by tropical air-sea coupling in regional models

    NASA Astrophysics Data System (ADS)

    Wang, Ziqian; Duan, Anmin; Yang, Song

    2018-05-01

    Based on the conventional weather research and forecasting (WRF) model and the air-sea coupled mode WRF-OMLM, we investigate the potential regulation on the climatic effect of Tibetan Plateau (TP) heating by the air-sea coupling over the tropical Indian Ocean and western Pacific. Results indicate that the TP heating significantly enhances the southwesterly monsoon circulation over the northern Indian Ocean and the South Asia subcontinent. The intensified southwesterly wind cools the sea surface mainly through the wind-evaporation-SST (sea surface temperature) feedback. Cold SST anomaly then weakens monsoon convective activity, especially that over the Bay of Bengal, and less water vapor is thus transported into the TP along its southern slope from the tropical oceans. As a result, summer precipitation decreases over the TP, which further weakens the TP local heat source. Finally, the changed TP heating continues to influence the summer monsoon precipitation and atmospheric circulation. To a certain extent, the air-sea coupling over the adjacent oceans may weaken the effect of TP heating on the mean climate in summer. It is also implied that considerations of air-sea interaction are necessary in future simulation studies of the TP heating effect.

  13. Oxygen in the Southern Ocean From Argo Floats: Determination of Processes Driving Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Bushinsky, Seth M.; Gray, Alison R.; Johnson, Kenneth S.; Sarmiento, Jorge L.

    2017-11-01

    The Southern Ocean is of outsized significance to the global oxygen and carbon cycles with relatively poor measurement coverage due to harsh winters and seasonal ice cover. In this study, we use recent advances in the parameterization of air-sea oxygen fluxes to analyze 9 years of oxygen data from a recalibrated Argo oxygen data set and from air-calibrated oxygen floats deployed as part of the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project. From this combined data set of 150 floats, we find a total Southern Ocean oxygen sink of -183 ± 80 Tmol yr-1 (positive to the atmosphere), greater than prior estimates. The uptake occurs primarily in the Polar-Frontal Antarctic Zone (PAZ, -94 ± 30 Tmol O2 yr-1) and Seasonal Ice Zone (SIZ, -111 ± 9.3 Tmol O2 yr-1). This flux is driven by wintertime ventilation, with a large portion of the flux in the SIZ passing through regions with fractional sea ice. The Subtropical Zone (STZ) is seasonally driven by thermal fluxes and exhibits a net outgassing of 47 ± 29 Tmol O2 yr-1 that is likely driven by biological production. The Subantarctic Zone (SAZ) uptake is -25 ± 12 Tmol O2 yr-1. Total oxygen fluxes were separated into a thermal and nonthermal component. The nonthermal flux is correlated with net primary production and mixed layer depth in the STZ, SAZ, and PAZ, but not in the SIZ where seasonal sea ice slows the air-sea gas flux response to the entrainment of deep, low-oxygen waters.

  14. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  15. The Air Land Sea Bulletin. Issue No. 2006-2, May 2006

    DTIC Science & Technology

    2006-05-01

    THE AIR LAND SEA BULLETIN Issue No. 2006-2 Air Land Sea Application (ALSA) Center May 2006 IN HOUSE Director’s Comments— Final Thoughts...4 US Air Force Predator UAVs Have Moved Into a More Overt Strike Role [Jane’s Defence Weekly Reprint] ........................6...SUBTITLE The Air Land Sea Bulletin. Issue No. 2006-2, May 2006 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  16. Simulation of the Indian Summer Monsoon Using Comprehensive Atmosphere-land Interactions, in the Absence of Two-way Air-sea Interactions

    NASA Technical Reports Server (NTRS)

    Lim, Young-Kwon; Shin, D. W.; Cocke, Steven; Kang, Sung-Dae; Kim, Hae-Dong

    2011-01-01

    Community Land Model version 2 (CLM2) as a comprehensive land surface model and a simple land surface model (SLM) were coupled to an atmospheric climate model to investigate the role of land surface processes in the development and the persistence of the South Asian summer monsoon. Two-way air-sea interactions were not considered in order to identify the reproducibility of the monsoon evolution by the comprehensive land model, which includes more realistic vertical soil moisture structures, vegetation and 2-way atmosphere-land interactions at hourly intervals. In the monsoon development phase (May and June). comprehensive land-surface treatment improves the representation of atmospheric circulations and the resulting convergence/divergence through the improvements in differential heating patterns and surface energy fluxes. Coupling with CLM2 also improves the timing and spatial distribution of rainfall maxima, reducing the seasonal rainfall overestimation by approx.60 % (1.8 mm/d for SLM, 0.7 mm/dI for CLM2). As for the interannual variation of the simulated rainfall, correlation coefficients of the Indian seasonal rainfall with observation increased from 0.21 (SLM) to 0.45 (CLM2). However, in the mature monsoon phase (July to September), coupling with the CLM2 does not exhibit a clear improvement. In contrast to the development phase, latent heat flux is underestimated and sensible heat flux and surface temperature over India are markedly overestimated. In addition, the moisture fluxes do not correlate well with lower-level atmospheric convergence, yielding correlation coefficients and root mean square errors worse than those produced by coupling with the SLM. A more realistic representation of the surface temperature and energy fluxes is needed to achieve an improved simulation for the mature monsoon period.

  17. Sea Fog Forecasting with Lagrangian Models

    NASA Astrophysics Data System (ADS)

    Lewis, J. M.

    2014-12-01

    In 1913, G. I. Taylor introduced us to a Lagrangian view of sea fog formation. He conducted his study off the coast of Newfoundland in the aftermath of the Titanic disaster. We briefly review Taylor's classic work and then apply these same principles to a case of sea fog formation and dissipation off the coast of California. The resources used in this study consist of: 1) land-based surface and upper-air observations, 2) NDBC (National Data Buoy Center) observations from moored buoys equipped to measure dew point temperature as well as the standard surface observations at sea (wind, sea surface temperature, pressure, and air temperature), 3) satellite observations of cloud, and 4) a one-dimensional (vertically directed) boundary layer model that tracks with the surface air motion and makes use of sophisticated turbulence-radiation parameterizations. Results of the investigation indicate that delicate interplay and interaction between the radiation and turbulence processes makes accurate forecasts of sea fog onset unlikely in the near future. This pessimistic attitude stems from inadequacy of the existing network of observations and uncertainties in modeling dynamical processes within the boundary layer.

  18. Impacts of winter storms on air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqing; Perrie, Will; Vagle, Svein

    2006-07-01

    The objective of this study is to investigate air-sea gas exchange during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on sea state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the flux rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.

  19. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  20. Air-Sea Heat Flux Transfer for MJO Initiation Processes during DYNAMO/CINDY2011 in Extended-Range Forecasts

    NASA Astrophysics Data System (ADS)

    Hong, X.; Reynolds, C. A.; Doyle, J. D.

    2016-12-01

    In this study, two-sets of monthly forecasts for the period during the Dynamics of Madden-Julian Oscillation (MJO)/Cooperative Indian Ocean Experiment of Intraseasonal Variability (DAYNAMO/CINDY) in November 2011 are examined. Each set includes three forecasts with the first set from Navy Global Environmental Model (NAVGEM) and the second set from Navy's non-hydrostatic Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS®1). Three NAVGEM monthly forecasts have used sea surface temperature (SST) from persistent at the initial time, from Navy Coupled Ocean Data Assimilation (NCODA) analysis, and from coupled NAVGEM-Hybrid Coordinate Ocean Model (HYCOM) forecasts. Examination found that NAVGEM can predict the MJO at 20-days lead time using SST from analysis and from coupled NAVGEM-HYCOM but cannot predict the MJO using the persistent SST, in which a clear circumnavigating signal is absent. Three NAVGEM monthly forecasts are then applied as lateral boundary conditions for three COAMPS monthly forecasts. The results show that all COAMPS runs, including using lateral boundary conditions from the NAVGEM that is without the MJO signal, can predict the MJO. Vertically integrated moisture anomaly and 850-hPa wind anomaly in all COAMPS runs have indicated strong anomalous equatorial easterlies associated with Rossby wave prior to the MJO initiation. Strong surface heat fluxes and turbulence kinetic energy have promoted the convective instability and triggered anomalous ascending motion, which deepens moist boundary layer and develops deep convection into the upper troposphere to form the MJO phase. The results have suggested that air-sea interaction process is important for the initiation and development of the MJO. 1COAMPS® is a registered trademark of the Naval Research Laboratory

  1. Intraseasonal Cold Air Outbreak over East Asia and the preceding atmospheric condition over the Barents-Kara Sea

    NASA Astrophysics Data System (ADS)

    Hori, M. E.; Inoue, J.

    2011-12-01

    Frequent occurrence of cold air outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold air outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold air outflow. Reduced sea ice and increase in turbulence heat flux is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara sea and the following cold air buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara sea which creates a cold air advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold air buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold air outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara sea correlated well with the seasonal dominance of cold air over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold air outbreak over East Asia from an atmosphere - sea ice - land surafce interaction point of view for paritular cold winter years.

  2. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    NASA Astrophysics Data System (ADS)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/2329','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/2329"><span>Alternative Fuels Data Center: <span class="hlt">Sea</span>-Tac and Alaska <span class="hlt">Air</span> Group Achieve</span></a></p> <p><a target="_blank" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>pilot project, Alaska <span class="hlt">Air</span> <em>Group</em> encountered a few hurdles during the switch to eGSE. <em>One</em> was Sky-High Results with Electric Ground Support Equipment</A> <span class="hlt">Sea</span>-Tac and Alaska <span class="hlt">Air</span> <em>Group</em> Achieve Data Center: <span class="hlt">Sea</span>-Tac and Alaska <span class="hlt">Air</span> <em>Group</em> Achieve Sky-High Results with Electric Ground Support</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990079777&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTidal%2Bwaves','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990079777&hterms=Tidal+waves&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DTidal%2Bwaves"><span>Nonlinear Internal Wave <span class="hlt">Interaction</span> in the China <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, Antony K.; Hsu, Ming-K.</p> <p>1998-01-01</p> <p>This project researched the nonlinear wave <span class="hlt">interactions</span> in the East China <span class="hlt">Sea</span>, and the South China <span class="hlt">Sea</span>, using Synthetic Aperture Radar (SAR) images. The complicated nature of the internal wave field, including the generation mechanisms, was studied, and is discussed. Discussion of wave-wave <span class="hlt">interactions</span> in the East China <span class="hlt">Sea</span>, the area of the China <span class="hlt">Sea</span> northeast of Taiwan, and the Yellow <span class="hlt">Sea</span> is included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA02456.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA02456.html"><span><span class="hlt">Sea</span>Winds Wind-Ice <span class="hlt">Interaction</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2000-05-07</p> <p>The figure demonstrates of the capability of the <span class="hlt">Sea</span>Winds instrument on NASA QuikScat satellite in monitoring both <span class="hlt">sea</span> ice and ocean surface wind, thus helping to further our knowledge in wind-ice <span class="hlt">interaction</span> and its effect on climate change.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...93L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...93L"><span>Influence of <span class="hlt">air-sea</span> coupling on Indian Ocean tropical cyclones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lengaigne, Matthieu; Neetu, S.; Samson, Guillaume; Vialard, Jérôme; Krishnamohan, K. S.; Masson, Sébastien; Jullien, Swen; Suresh, I.; Menkes, Christophe E.</p> <p>2018-02-01</p> <p>This paper assesses the impact of <span class="hlt">air-sea</span> coupling on Indian Ocean tropical cyclones (TCs) by comparing a 20-year long simulation of a ¼° regional coupled ocean-atmosphere model with a twin experiment, where the atmospheric component is forced by <span class="hlt">sea</span> surface temperature from the coupled simulation. The coupled simulation reproduces the observed spatio-temporal TCs distribution and TC-induced surface cooling reasonably well, but overestimates the number of TCs. <span class="hlt">Air-sea</span> coupling does not affect the cyclogenesis spatial distribution but reduces the number of TCs by 20% and yields a better-resolved bimodal seasonal distribution in the northern hemisphere. Coupling also affects intensity distribution, inducing a four-fold decrease in the proportion of intense TCs (Cat-2 and stronger). <span class="hlt">Air-sea</span> coupling damps TCs growth through a reduction of inner-core upward enthalpy fluxes due to the TC-induced cooling. This reduction is particularly large for the most intense TCs of the northern Indian Ocean (up to 250 W m-2), due to higher ambient surface temperatures and larger TC-induced cooling there. The negative feedback of <span class="hlt">air-sea</span> coupling on strongest TCs is mainly associated with slow-moving storms, which spend more time over the cold wake they induce. Sensitivity experiments using a different convective parameterization yield qualitatively similar results, with a larger ( 65%) reduction in the number of TCs. Because of their relatively coarse resolution (¼°), both set of experiments however fail to reproduce the most intense observed TCs. Further studies with finer resolution models in the Bay of Bengal will be needed to assess the expectedly large impact of <span class="hlt">air-sea</span> coupling on those intense and deadly TCs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010EGUGA..12..259T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010EGUGA..12..259T"><span>Laboratory modeling of <span class="hlt">air-sea</span> <span class="hlt">interaction</span> under severe wind conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin</p> <p>2010-05-01</p> <p>Wind-wave <span class="hlt">interaction</span> at extreme wind speed is of special interest now in connection with the problem of explanation of the <span class="hlt">sea</span> surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the <span class="hlt">sea</span> surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the <span class="hlt">sea</span> surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the <span class="hlt">sea</span> surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the <span class="hlt">sea</span> surface drag reduction is explained by peculiarities of the <span class="hlt">air</span> flow over breaking waves. Another approach more appropriate for the conditions of developed <span class="hlt">sea</span> exploits the effect of <span class="hlt">sea</span> drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.8109L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.8109L"><span>Climate change impacts on <span class="hlt">sea-air</span> fluxes of CO2 in three Arctic <span class="hlt">seas</span>: a sensitivity study using Earth observation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Land, P. E.; Shutler, J. D.; Cowling, R. D.; Woolf, D. K.; Walker, P.; Findlay, H. S.; Upstill-Goddard, R. C.; Donlon, C. J.</p> <p>2013-12-01</p> <p>We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated <span class="hlt">sea-air</span> fluxes of CO2 in three Arctic <span class="hlt">seas</span> (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and <span class="hlt">sea</span> ice duration arising from future climate scenarios. During the study period the Greenland and Barents <span class="hlt">seas</span> were net sinks for atmospheric CO2, with integrated <span class="hlt">sea-air</span> fluxes of -36 ± 14 and -11 ± 5 Tg C yr-1, respectively, and the Kara <span class="hlt">Sea</span> was a weak net CO2 source with an integrated <span class="hlt">sea-air</span> flux of +2.2 ± 1.4 Tg C yr-1. The combined integrated CO2 <span class="hlt">sea-air</span> flux from all three was -45 ± 18 Tg C yr-1. In a sensitivity analysis we varied temperature, salinity and <span class="hlt">sea</span> ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated <span class="hlt">sea-air</span> flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced <span class="hlt">sea</span> ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced <span class="hlt">sea</span> ice duration. Collectively these effects gave an integrated <span class="hlt">sea-air</span> flux change of +4.0 Tg C in the Greenland <span class="hlt">Sea</span>, +6.0 Tg C in the Barents <span class="hlt">Sea</span> and +1.7 Tg C in the Kara <span class="hlt">Sea</span>, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara <span class="hlt">Sea</span> source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents <span class="hlt">Sea</span> is the most</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.C21E..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.C21E..08S"><span>Rate and state dependent <span class="hlt">processes</span> in <span class="hlt">sea</span> ice deformation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sammonds, P. R.; Scourfield, S.; Lishman, B.</p> <p>2014-12-01</p> <p>Realistic models of <span class="hlt">sea</span> ice <span class="hlt">processes</span> and properties are needed to assess <span class="hlt">sea</span> ice thickness, extent and concentration and, when run within GCMs, provide prediction of climate change. The deformation of <span class="hlt">sea</span> ice is a key control on the Arctic Ocean dynamics. But the deformation of <span class="hlt">sea</span> ice is dependent not only on the rate of the <span class="hlt">processes</span> involved but also the state of the <span class="hlt">sea</span> ice and particular in terms of its evolution with time and temperature. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe <span class="hlt">interaction</span> to block sliding in ice ridges. The shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Frictional resistance to sliding can vary by more than two orders of magnitude depending on the state of the interface. But this in turn is dependent upon both imposed conditions and <span class="hlt">sea</span> ice properties such as size distribution of interfacial broken ice, angularity, porosity, salinity, etc. We review experimental results in <span class="hlt">sea</span> ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating <span class="hlt">sea</span> ice floe motion and <span class="hlt">interaction</span> and compare these with laboratory experiments on ice friction done in direct shear from which a rate and state constitutive relation for shear deformation is derived. Finally we apply this to field measurement of <span class="hlt">sea</span> ice friction made during experiments in the Barents <span class="hlt">Sea</span> to assess the other environmental factors, the state terms, that need to be modelled in order to up-scale to Arctic Ocean-scale dynamics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS23B1402L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS23B1402L"><span>Regional <span class="hlt">Sea</span> Level Changes and Projections over North Pacific Driven by <span class="hlt">Air-sea</span> <span class="hlt">interaction</span> and Inter-basin Teleconnections</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, X.; Zhu, J.; Xie, S. P.</p> <p>2017-12-01</p> <p>After the launch of the TOPEX/Poseidon satellite since 1992, a series of regional <span class="hlt">sea</span> level changes have been observed. The northwestern Pacific is among the most rapid <span class="hlt">sea</span>-level-rise regions all over the world. The rising peak occurs around 40°N, with the value reaching 15cm in the past two decades. Moreover, when investigating the projection of global <span class="hlt">sea</span> level changes using CMIP5 rcp simulations, we found that the northwestern Pacific remains one of the most rapid <span class="hlt">sea</span>-level-rise regions in the 21st century. To investigate the physical dynamics of present and future <span class="hlt">sea</span> level changes over the Pacific, we performed a series of numerical simulations with a hierarchy of climate models, including earth system model, ocean model, and atmospheric models, with different complexity. Simulation results indicate that this regional <span class="hlt">sea</span> level change during the past two decades is mainly caused by the shift of the Kuroshio, which is largely driven by the surface wind anomaly associated with an intensified and northward shifted north Pacific sub-tropical high. Further analysis and simulations show that these changes of sub-tropical high can be primarily attributed to the regional SST forcing from the Pacific Decadal Oscillation, and the remote SST forcings from the tropical Atlantic and the Indian Ocean. In the rcp scenario, on the other hand, two <span class="hlt">processes</span> are crucial. Firstly, the meridional temperature SST gradient drives a northward wind anomaly across the equator, raising the <span class="hlt">sea</span> level all over the North Pacific. Secondly, the atmospheric circulation changes around the sub-tropical Pacific further increase the <span class="hlt">sea</span> level of the North Western Pacific. The coastal region around the Northwest Pacific is the most densely populated region around the world, therefore more attention must be paid to the <span class="hlt">sea</span> level changes over this region, as suggested by our study.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A51E0162M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A51E0162M"><span><span class="hlt">Sea</span> spray contributions to the <span class="hlt">air-sea</span> fluxes at moderate and hurricane wind speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mueller, J. A.; Veron, F.</p> <p>2009-12-01</p> <p>At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of <span class="hlt">sea</span> spray drops, which can account for a significant fraction of the total <span class="hlt">air-sea</span> surface area and thus make important contributions to the aggregate <span class="hlt">air-sea</span> momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the <span class="hlt">sea</span> spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative <span class="hlt">air-sea</span> fluxes at high wind speeds as well as the development and sustainment of hurricanes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9500M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9500M"><span>Spume Drops: Their Potential Role in <span class="hlt">Air-Sea</span> Gas Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Monahan, Edward C.; Staniec, Allison; Vlahos, Penny</p> <p>2017-12-01</p> <p>After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the <span class="hlt">sea</span> surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, <span class="hlt">sea</span> surface mechanism in <span class="hlt">air-sea</span> gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate <span class="hlt">sea</span> surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to <span class="hlt">air-sea</span> gas exchange.<abstract type="synopsis"><title type="main">Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in <span class="hlt">air</span> <span class="hlt">sea</span> exchange models. Based on these the contribution of spume drops to overall <span class="hlt">air</span> <span class="hlt">sea</span> gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996AnGeo..14..986E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996AnGeo..14..986E"><span>Study of the <span class="hlt">air-sea</span> <span class="hlt">interactions</span> at the mesoscale: the SEMAPHORE experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Eymard, L.; Planton, S.; Durand, P.; Le Visage, C.; Le Traon, P. Y.; Prieur, L.; Weill, A.; Hauser, D.; Rolland, J.; Pelon, J.; Baudin, F.; Bénech, B.; Brenguier, J. L.; Caniaux, G.; de Mey, P.; Dombrowski, E.; Druilhet, A.; Dupuis, H.; Ferret, B.; Flamant, C.; Flamant, P.; Hernandez, F.; Jourdan, D.; Katsaros, K.; Lambert, D.; Lefèvre, J. M.; Le Borgne, P.; Le Squere, B.; Marsoin, A.; Roquet, H.; Tournadre, J.; Trouillet, V.; Tychensky, A.; Zakardjian, B.</p> <p>1996-09-01</p> <p>The SEMAPHORE (Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale) experiment has been conducted from June to November 1993 in the Northeast Atlantic between the Azores and Madeira. It was centered on the study of the mesoscale ocean circulation and <span class="hlt">air-sea</span> <span class="hlt">interactions</span>. The experimental investigation was achieved at the mesoscale using moorings, floats, and ship hydrological survey, and at a smaller scale by one dedicated ship, two instrumented aircraft, and surface drifting buoys, for one and a half month in October-November (IOP: intense observing period). Observations from meteorological operational satellites as well as spaceborne microwave sensors were used in complement. The main studies undertaken concern the mesoscale ocean, the upper ocean, the atmospheric boundary layer, and the <span class="hlt">sea</span> surface, and first results are presented for the various topics. From data analysis and model simulations, the main characteristics of the ocean circulation were deduced, showing the close relationship between the Azores front meander and the occurrence of Mediterranean water lenses (meddies), and the shift between the Azores current frontal signature at the surface and within the thermocline. Using drifting buoys and ship data in the upper ocean, the gap between the scales of the atmospheric forcing and the oceanic variability was made evident. A 2 °C decrease and a 40-m deepening of the mixed layer were measured within the IOP, associated with a heating loss of about 100 W m-2. This evolution was shown to be strongly connected to the occurrence of storms at the beginning and the end of October. Above the surface, turbulent measurements from ship and aircraft were analyzed across the surface thermal front, showing a 30% difference in heat fluxes between both sides during a 4-day period, and the respective contributions of the wind and the surface temperature were evaluated. The classical momentum flux bulk</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940017155','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940017155"><span>Presenting the Rain-<span class="hlt">Sea</span> <span class="hlt">Interaction</span> Facility</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bliven, Larry F.; Elfouhaily, Tonas M.</p> <p>1993-01-01</p> <p>The new Rain-<span class="hlt">Sea</span> <span class="hlt">Interaction</span> Facility (RSIF) was established at GSFC/WFF and the first finds are presented. The unique feature of this laboratory is the ability to systematically study microwave scattering from a water surface roughened by artificial rain, for which the droplets are at terminal velocity. The fundamental instruments and systems (e.g., the rain simulator, scatterometers, and surface elevation probes) were installed and evaluated during these first experiments - so the majority of the data were obtained with the rain simulator at 1 m above the water tank. From these initial experiments, three new models were proposed: the square-root function for NCS vs. R, the log Gaussian model for ring-wave elevation frequency spectrum, and the Erland probability density distribution for back scattered power. Rain rate is the main input for these models, although the coefficients may be dependent upon other factors (drop-size distribution, fall velocity, radar configuration, etc.). The facility is functional and we foresee collaborative studies with investigators who are engaged in measuring and modeling rain-<span class="hlt">sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUSMOS24A..03P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUSMOS24A..03P"><span>An overview of the South Atlantic Ocean climate variability and <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pezzi, L. P.; Parise, C. K.; Souza, R.; Gherardi, D. F.; Camargo, R.; Soares, H. C.; Silveira, I.</p> <p>2013-05-01</p> <p>The Ocean Modeling Group at the National Institute of Space Research (INPE) in Brazil has been developing several studies to understand the role of the Atlantic ocean on the South America climate. Studies include simulating the dynamics of the Tropical South-Atlantic Ocean and Southern Ocean. This is part of an ongoing international cooperation, in which Brazil participates with in situ observations, numerical modeling and statistical analyses. We have focused on the understanding of the impacts of extreme weather events over the Tropical South Atlantic Ocean and their prediction on different time-scales. One such study is aimed at analyzing the climate signal generated by imposing an extreme condition on the Antarctic <span class="hlt">sea</span> ice and considering different complexities of the <span class="hlt">sea</span> ice model. The influence of the Brazil-Malvinas Confluence (BMC) region on the marine atmospheric boundary layer (MABL) is also investigated through in situ data analysis of different cruises and numerical experiments with a regional numerical model. There is also an ongoing investigation that revealed basin-scale interannual climate variation with impacts on the Brazilian Large Marine Ecosystems (LMEs), which are strongly correlated with climate indices such as ENSO, AAO and PDO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1130373','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1130373"><span>GSOD Based Daily Global Mean Surface Temperature and Mean <span class="hlt">Sea</span> Level <span class="hlt">Air</span> Pressure (1982-2011)</span></a></p> <p><a target="_blank" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Xuan Shi, Dali Wang</p> <p>2014-05-05</p> <p>This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean <span class="hlt">sea</span> level <span class="hlt">air</span> pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (<span class="hlt">sea</span> level and station level). The data package also contains information related to the data <span class="hlt">processing</span> methods</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020044134','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020044134"><span>Sensitivity of Global <span class="hlt">Sea-Air</span> CO2 Flux to Gas Transfer Algorithms, Climatological Wind Speeds, and Variability of <span class="hlt">Sea</span> Surface Temperature and Salinity</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>McClain, Charles R.; Signorini, Sergio</p> <p>2002-01-01</p> <p>Sensitivity analyses of <span class="hlt">sea-air</span> CO2 flux to gas transfer algorithms, climatological wind speeds, <span class="hlt">sea</span> surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global <span class="hlt">sea-air</span> flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global <span class="hlt">sea-air</span> flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global <span class="hlt">sea-air</span> flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing <span class="hlt">sea-air</span> flux algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A43A..03B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A43A..03B"><span>Seasonal Oxygen Supersaturation and <span class="hlt">Air-Sea</span> Fluxes from Profiling Floats in the Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bushinsky, S. M.; Emerson, S. R.</p> <p>2016-02-01</p> <p>The Pacific Ocean is a heterogeneous basin that includes regions of strong CO2 fluxes to and from the atmosphere. The Kuroshio Extension (KE) is a current associated with the largest CO2 flux into the Pacific Ocean, which extends across the Pacific basin between the subarctic and subtropical regions. The relative importance of the biological and physical <span class="hlt">processes</span> controlling this sink is uncertain. The stoichiometric relationship between O2 and dissolved inorganic carbon during photosynthesis and respiration may allow in situ O2 measurements to help determine the <span class="hlt">processes</span> driving this large CO2 flux. In this study, we used Argo profiling floats with modified oxygen sensors to estimate O2 fluxes in several areas of the Pacific. In situ <span class="hlt">air</span> calibrations of these sensors allowed us to accurately measure <span class="hlt">air-sea</span> O2 differences, which largely control the flux of O2 to and from the atmosphere. In this way, we determine <span class="hlt">air-sea</span> O2 fluxes from profiling floats, which previously did not measure O2 accurately enough to make these calculations. To characterize different areas within the KE, we separated O2 measurements from floats into 3 regions based on geographical position and temperature-salinity relationships: North KE, Central KE, and South KE. We then used these regions and floats in the Alaska Gyre and subtropical South Pacific gyre to develop seasonal climatologies of ΔO2 and <span class="hlt">air-sea</span> flux. Mean annual <span class="hlt">air-sea</span> oxygen fluxes (positive fluxes represent addition of O2 to the ocean) were calculated for the Alaska Gyre of -0.3 mol m-2 yr-1 (2012-2015), for the northern KE, central KE, and southern KE (2013-2015) of 6.8, 10.5, and 0.5 mol m-2 yr-1, respectively, and for the south subtropical Pacific (2014-2015) of 0.6 mol m-2 yr-1. The <span class="hlt">air-sea</span> flux due to bubbles was greater than 50% of the total flux for winter months and essential for determining the magnitude and, in some cases, direction of the cumulative mean annual flux. Increases in solubility due to wintertime</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001PhDT.......266B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001PhDT.......266B"><span>On the physical <span class="hlt">air-sea</span> fluxes for climate modeling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bonekamp, J. G.</p> <p>2001-02-01</p> <p>At the <span class="hlt">sea</span> surface, the atmosphere and the ocean exchange momentum, heat and freshwater. Mechanisms for the exchange are wind stress, turbulent mixing, radiation, evaporation and precipitation. These surface fluxes are characterized by a large spatial and temporal variability and play an important role in not only the mean atmospheric and oceanic circulation, but also in the generation and sustainment of coupled climate fluctuations such as the El Niño/La Niña phenomenon. Therefore, a good knowledge of <span class="hlt">air-sea</span> fluxes is required for the understanding and prediction of climate changes. As part of long-term comprehensive atmospheric reanalyses with `Numerical Weather Prediction/Data assimilation' systems, data sets of global <span class="hlt">air-sea</span> fluxes are generated. A good example is the 15-year atmospheric reanalysis of the European Centre for Medium--Range Weather Forecasts (ECMWF). <span class="hlt">Air-sea</span> flux data sets from these reanalyses are very beneficial for climate research, because they combine a good spatial and temporal coverage with a homogeneous and consistent method of calculation. However, atmospheric reanalyses are still imperfect sources of flux information due to shortcomings in model variables, model parameterizations, assimilation methods, sampling of observations, and quality of observations. Therefore, assessments of the errors and the usefulness of <span class="hlt">air-sea</span> flux data sets from atmospheric (re-)analyses are relevant contributions to the quantitative study of climate variability. Currently, much research is aimed at assessing the quality and usefulness of the reanalysed <span class="hlt">air-sea</span> fluxes. Work in this thesis intends to contribute to this assessment. In particular, it attempts to answer three relevant questions. The first question is: What is the best parameterization of the momentum flux? A comparison is made of the wind stress parameterization of the ERA15 reanalysis, the currently generated ERA40 reanalysis and the wind stress measurements over the open ocean. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPO44C3170S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPO44C3170S"><span>The Impact of Salinity on the Seasonal and Interannual Variability of the Upper Ocean Structure and <span class="hlt">Air/Sea</span> <span class="hlt">Interaction</span> in the South Eastern Tropical Indian Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soares, S. M.; Richards, K. J.; Annamalai, H.; Natarov, A.</p> <p>2016-02-01</p> <p>The Seychelles-Chagos thermocline ridge (SCRT) in the south-eastern tropical Indian Ocean is believed to play an important role on <span class="hlt">air/sea</span> <span class="hlt">interactions</span> at monsoonal and intraseasonal timescales. Large gains in predictability of monsoon and intraseasonal variability may result from studying the mechanisms of ocean feedback to the atmosphere in the SCRT region. ARGO data from 2005-2014 show a marked salinity and temperature annual cycle, where mixed layer waters are freshest and warmest around February-March and saltiest and coldest around July-August in the eastern side of the SCRT. An analysis of the mixed-layer salt budget using a mix of observational gridded products and a coupled model shows that: i) surface freshwater fluxes do not play a significant role on the SCRT salinity annual cycle, ii) the freshening during austral Spring is primarily driven by zonal advection of the large pool of less saline waters off the coast of southeast Asia and bay of Bengal, while meridional advection accounts for a large fraction of the salting during Fall. The largest interannual anomalies in the ARGO salinity record occur in the aftermath of the negative Indian Ocean Dipole events of 2005 and 2010, when February mixed layer freshening was much reduced. The appearance of the fresher waters were evident in the DYNAMO/CINDY data collected in the area during Spring 2011 following the passage of a downwelling Rossby wave. Lagrangian parcel tracking indicates a variety of sources for these fresher waters, but generally agrees with the ARGO results above. The fresh surface layer had a significant impact on the measured turbulence and mixing and may have impacted the development of Madden-Julien Oscillation events observed during DYNAMO/CINDY. Given these findings, we examine in detail the suite of DYNAMO observations, combining them with numerical modeling experiments to determine the role of eddy fluxes and vertical <span class="hlt">processes</span> on the formation of these freshwater layers, as well as</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JMS...140...26M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JMS...140...26M"><span>Spatio-temporal dynamics of biogeochemical <span class="hlt">processes</span> and <span class="hlt">air-sea</span> CO2 fluxes in the Western English Channel based on two years of FerryBox deployment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marrec, P.; Cariou, T.; Latimier, M.; Macé, E.; Morin, P.; Vernet, M.; Bozec, Y.</p> <p>2014-12-01</p> <p>From January 2011 to January 2013, a FerryBox system was installed on a Voluntary Observing Ship (VOS), which crossed the Western English Channel (WEC) between Roscoff (France) and Plymouth (UK) up to 3 times a day. The FerryBox continuously measured <span class="hlt">sea</span> surface temperature (SST), <span class="hlt">sea</span> surface salinity (SSS), dissolved oxygen (DO), fluorescence and partial pressure of CO2 (from April 2012) along the ferry track. Sensors were calibrated based on 714 bimonthly surface samplings with precisions of 0.016 for SSS, 3.3 μM for DO, 0.40 μg L- 1 for Chlorophyll-a (Chl-a) (based on fluorescence measurements) and 5.2 μatm for pCO2. Over the 2 years of deployment (900 crossings), we reported 9% of data lost due to technical issues and quality checked data was obtained to allow investigation of the dynamics of biogeochemical <span class="hlt">processes</span> related to <span class="hlt">air-sea</span> CO2 fluxes in the WEC. Based on this unprecedented high-frequency dataset, the physical structure of the WEC was assessed using SST anomalies and the presence of a thermal front was observed around the latitude 49.5°N, which divided the WEC in two main provinces: the seasonally stratified northern WEC (nWEC) and the all-year well-mixed southern WEC (sWEC). These hydrographical properties strongly influenced the spatial and inter-annual distributions of phytoplankton blooms, which were mainly limited by nutrients and light availability in the nWEC and the sWEC, respectively. <span class="hlt">Air-sea</span> CO2 fluxes were also highly related to hydrographical properties of the WEC between late April and early September 2012, with the sWEC a weak source of CO2 to the atmosphere of 0.9 mmol m- 2 d- 1, whereas the nWEC acted as a sink for atmospheric CO2 of 6.9 mmol m- 2 d- 1. The study of short time-scale dynamics of <span class="hlt">air-sea</span> CO2 fluxes revealed that an intense and short (less than 10 days) summer bloom in the nWEC contributed to 29% of the CO2 sink during the productive period, highlighting the necessity for high frequency observations in coastal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990094165&hterms=clear+pool&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclear%2Bpool"><span>Tropical Intraseasonal <span class="hlt">Air-Sea</span> Exchanges during the 1997 Pacific Warming</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sui, C.-H.; Lau, K.-M.; Chou, S.-H.; Wang, Zihou</p> <p>1999-01-01</p> <p>The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and <span class="hlt">sea</span> level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical <span class="hlt">interaction</span> is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced <span class="hlt">air-sea</span> <span class="hlt">interaction</span> associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with <span class="hlt">air-sea</span> fluxes and upper ocean responses during the period of September 1996 to June 1997. The</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29255277','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29255277"><span>Satellite Observations of Imprint of Oceanic Current on Wind Stress by <span class="hlt">Air-Sea</span> Coupling.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Renault, Lionel; McWilliams, James C; Masson, Sebastien</p> <p>2017-12-18</p> <p>Mesoscale eddies are present everywhere in the ocean and partly determine the mean state of the circulation and ecosystem. The current feedback on the surface wind stress modulates the <span class="hlt">air-sea</span> transfer of momentum by providing a sink of mesoscale eddy energy as an atmospheric source. Using nine years of satellite measurements of surface stress and geostrophic currents over the global ocean, we confirm that the current-induced surface stress curl is linearly related to the current vorticity. The resulting coupling coefficient between current and surface stress (s τ [N s m -3 ]) is heterogeneous and can be roughly expressed as a linear function of the mean surface wind. s τ expresses the sink of eddy energy induced by the current feedback. This has important implications for <span class="hlt">air-sea</span> <span class="hlt">interaction</span> and implies that oceanic mean and mesoscale circulations and their effects on surface-layer ventilation and carbon uptake are better represented in oceanic models that include this feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27..874S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27..874S"><span>Observational Studies of Parameters Influencing <span class="hlt">Air-sea</span> Gas Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schimpf, U.; Frew, N. M.; Bock, E. J.; Hara, T.; Garbe, C. S.; Jaehne, B.</p> <p></p> <p>A physically-based modeling of the <span class="hlt">air-sea</span> gas transfer that can be used to predict the gas transfer rates with sufficient accuracy as a function of micrometeorological parameters is still lacking. State of the art are still simple gas transfer rate/wind speed relationships. Previous measurements from Coastal Ocean Experiment in the Atlantic revealed positive correlations between mean square slope, near surface turbulent dis- sipation, and wind stress. It also demonstrated a strong negative correlation between mean square slope and the fluorescence of surface-enriched colored dissolved organic matter. Using heat as a proxy tracer for gases the exchange <span class="hlt">process</span> at the <span class="hlt">air</span>/water interface and the micro turbulence at the water surface can be investigated. The anal- ysis of infrared image sequences allow the determination of the net heat flux at the ocean surface, the temperature gradient across the <span class="hlt">air/sea</span> interface and thus the heat transfer velocity and gas transfer velocity respectively. Laboratory studies were carried out in the new Heidelberg wind-wave facility AELOTRON. Direct measurements of the Schmidt number exponent were done in conjunction with classical mass balance methods to estimate the transfer velocity. The laboratory results allowed to validate the basic assumptions of the so called controlled flux technique by applying differ- ent tracers for the gas exchange in a large Schmidt number regime. Thus a modeling of the Schmidt number exponent is able to fill the gap between laboratory and field measurements field. Both, the results from the laboratory and the field measurements should be able to give a further understanding of the mechanisms controlling the trans- port <span class="hlt">processes</span> across the aqueous boundary layer and to relate the forcing functions to parameters measured by remote sensing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850017731&hterms=climate+exchange&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dclimate%2Bexchange"><span><span class="hlt">Sea</span> Ice, Climate and Fram Strait</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hunkins, K.</p> <p>1984-01-01</p> <p>When <span class="hlt">sea</span> ice is formed the albedo of the ocean surface increases from its open water value of about 0.1 to a value as high as 0.8. This albedo change effects the radiation balance and thus has the potential to alter climate. <span class="hlt">Sea</span> ice also partially seals off the ocean from the atmosphere, reducing the exchange of gases such as carbon dioxide. This is another possible mechanism by which climate might be affected. The Marginal Ice Zone Experiment (MIZEX 83 to 84) is an international, multidisciplinary study of <span class="hlt">processes</span> controlling the edge of the ice pack in that area including the <span class="hlt">interactions</span> between <span class="hlt">sea</span>, <span class="hlt">air</span> and ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1412240S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1412240S"><span>Disruption of the <span class="hlt">air-sea</span> interface and formation of two-phase transitional layer in hurricane conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, A.; Matt, S.; Fujimura, A.</p> <p>2012-04-01</p> <p>The change of the <span class="hlt">air-sea</span> <span class="hlt">interaction</span> regime in hurricane conditions is linked to the mechanism of direct disruption of the <span class="hlt">air-sea</span> interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the <span class="hlt">air-sea</span> interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-<span class="hlt">air</span> interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the <span class="hlt">air</span> layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the <span class="hlt">air</span>-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the <span class="hlt">air</span>-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the <span class="hlt">air-sea</span> interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the <span class="hlt">air-sea</span> interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29440667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29440667"><span>Poleward upgliding Siberian atmospheric rivers over <span class="hlt">sea</span> ice heat up Arctic upper <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Komatsu, Kensuke K; Alexeev, Vladimir A; Repina, Irina A; Tachibana, Yoshihiro</p> <p>2018-02-13</p> <p>We carried out upper <span class="hlt">air</span> measurements with radiosondes during the summer over the Arctic Ocean from an icebreaker moving poleward from an ice-free region, through the ice edge, and into a region of thick ice. Rapid warming of the Arctic is a significant environmental issue that occurs not only at the surface but also throughout the troposphere. In addition to the widely accepted mechanisms responsible for the increase of tropospheric warming during the summer over the Arctic, we showed a new potential contributing <span class="hlt">process</span> to the increase, based on our direct observations and supporting numerical simulations and statistical analyses using a long-term reanalysis dataset. We refer to this new <span class="hlt">process</span> as "Siberian Atmospheric Rivers (SARs)". Poleward upglides of SARs over cold <span class="hlt">air</span> domes overlying <span class="hlt">sea</span> ice provide the upper atmosphere with extra heat via condensation of water vapour. This heating drives increased buoyancy and further strengthens the ascent and heating of the mid-troposphere. This <span class="hlt">process</span> requires the combination of SARs and <span class="hlt">sea</span> ice as a land-ocean-atmosphere system, the implication being that large-scale heat and moisture transport from the lower latitudes can remotely amplify the warming of the Arctic troposphere in the summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JGR....9910087W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JGR....9910087W"><span>The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk</p> <p>1994-05-01</p> <p>The Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS) (at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the <span class="hlt">processes</span> in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950031118&hterms=brown+kenneth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbrown%2Bkenneth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950031118&hterms=brown+kenneth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dbrown%2Bkenneth"><span>The relationship between the microwave radar cross section and both wind speed and stress: Model function studies using Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weissman, David E.; Davidson, Kenneth L.; Brown, Robert A.; Friehe, Carl A.; Li, Fuk</p> <p>1994-01-01</p> <p>The Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment (FASINEX) provided a unique data set with coincident airborne scatterometer measurements of the ocean surface radar cross section (RCS)(at Ku band) and near-surface wind and wind stress. These data have been analyzed to study new model functions which relate wind speed and surface friction velocity (square root of the kinematic wind stress) to the radar cross section and to better understand the <span class="hlt">processes</span> in the boundary layer that have a strong influence on the radar backscatter. Studies of data from FASINEX indicate that the RCS has a different relation to the friction velocity than to the wind speed. The difference between the RCS models using these two variables depends on the polarization and the incidence angle. The radar data have been acquired from the Jet Propulsion Laboratory airborne scatterometer. These data span 10 different flight days. Stress measurements were inferred from shipboard instruments and from aircraft flying at low altitudes, closely following the scatterometer. Wide ranges of radar incidence angles and environmental conditions needed to fully develop algorithms are available from this experiment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT........22R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT........22R"><span>The Development of Instrumentation and Methods for Measurement of <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> and Coastal <span class="hlt">Processes</span> from Manned and Unmanned Aircraft</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reineman, Benjamin D.</p> <p></p> <p>I present the development of instrumentation and methods for the measurement of coastal <span class="hlt">processes</span>, ocean surface phenomena, and <span class="hlt">air-sea</span> <span class="hlt">interaction</span> in two parts. In the first, I discuss the development of a portable scanning lidar (light detection and ranging) system for manned aircraft and demonstrate its functionality for oceanographic and coastal measurements. Measurements of the Southern California coastline and nearshore surface wave fields from seventeen research flights between August 2007 and December 2008 are analyzed and discussed. The October 2007 landslide on Mt. Soledad in La Jolla, California was documented by two of the flights. The topography, lagoon, reef, and surrounding wave field of Lady Elliot Island in Australia's Great Barrier Reef were measured with the airborne scanning lidar system on eight research flights in April 2008. Applications of the system, including coastal topographic surveys, wave measurements, ship wake studies, and coral reef research, are presented and discussed. In the second part, I detail the development of instrumentation packages for small (18 -- 28 kg) unmanned aerial vehicles (UAVs) to measure momentum fluxes and latent, sensible, and radiative heat fluxes in the atmospheric boundary layer (ABL), and the surface topography. Fast-response turbulence, hygrometer, and temperature probes permit turbulent momentum and heat flux measurements, and short- and long-wave radiometers allow the determination of net radiation, surface temperature, and albedo. Careful design and testing of an accurate turbulence probe, as demonstrated in this thesis, are essential for the ability to measure momentum and scalar fluxes. The low altitude required for accurate flux measurements (typically assumed to be 30 m) is below the typical safety limit of manned research aircraft; however, it is now within the capability of small UAV platforms. Flight tests of two instrumented BAE Manta UAVs over land were conducted in January 2011 at Mc</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70024918','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70024918"><span><span class="hlt">Interaction</span> of <span class="hlt">sea</span> water and lava during submarine eruptions at mid-ocean ridges</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Perfit, M.R.; Cann, J.R.; Fornari, D.J.; Engels, J.; Smith, D.K.; Ridley, W.I.; Edwards, M.H.</p> <p>2003-01-01</p> <p>Lava erupts into cold <span class="hlt">sea</span> water on the ocean floor at mid-ocean ridges (at depths of 2,500 m and greater), and the resulting flows make up the upper part of the global oceanic crust. <span class="hlt">Interactions</span> between heated <span class="hlt">sea</span> water and molten basaltic lava could exert significant control on the dynamics of lava flows and on their chemistry. But it has been thought that heating <span class="hlt">sea</span> water at pressures of several hundred bars cannot produce significant amounts of vapour and that a thick crust of chilled glass on the exterior of lava flows minimizes the <span class="hlt">interaction</span> of lava with <span class="hlt">sea</span> water. Here we present evidence to the contrary, and show that bubbles of vaporized <span class="hlt">sea</span> water often rise through the base of lava flows and collect beneath the chilled upper crust. These bubbles of steam at magmatic temperatures may <span class="hlt">interact</span> both chemically and physically with flowing lava, which could influence our understanding of deep-<span class="hlt">sea</span> volcanic <span class="hlt">processes</span> and oceanic crustal construction more generally. We infer that vapour formation plays an important role in creating the collapse features that characterize much of the upper oceanic crust and may accordingly contribute to the measured low seismic velocities in this layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JGRC..120..716Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JGRC..120..716Z"><span>Typhoon <span class="hlt">air-sea</span> drag coefficient in coastal regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua</p> <p>2015-02-01</p> <p>The <span class="hlt">air-sea</span> drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China <span class="hlt">Sea</span>. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing <span class="hlt">air-sea</span> momentum exchanges over shallow water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981JGR....86..439H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981JGR....86..439H"><span>Experimental <span class="hlt">sea</span> slicks: Their practical applications and utilization for basic studies of <span class="hlt">air-sea</span> <span class="hlt">interactions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hühnerfuss, Heinrich; Garrett, W. D.</p> <p>1981-01-01</p> <p>Practical applications of organic surface films added to the <span class="hlt">sea</span> surface date back to ancient times. Aristotle, Plutarch, and Pliny the Elder describe the seaman's practice of calming waves in a storm by pouring oil onto the <span class="hlt">sea</span> [Scott, 1977]. It was also noted that divers released oil beneath the water surface so that it could rise and spread over the <span class="hlt">sea</span> surface, thereby suppressing the irritating flicker associated with the passage of light through a rippled surface. From a scientific point of view, Benjamin Franklin was the first to perform experiments with oils on natural waters. His experiment with a `teaspoonful of oil' on Clapham pond in 1773 inspired many investigators to consider <span class="hlt">sea</span> surface phenomena or to conduct experiments with oil films. This early research has been reviewed by Giles [1969], Giles and Forrester [1970], and Scott [1977]. Franklin's studies with experimental slicks can be regarded as the beginning of surface film chemistry. His speculations on the wave damping influence of oil induced him to perform the first qualitative experiment with artificial <span class="hlt">sea</span> slicks at Portsmouth (England) in October of 1773. Although the <span class="hlt">sea</span> was calmed and very few white caps appeared in the oil-covered area, the swell continued through the oiled area to Franklin's great disappointment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23636599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23636599"><span>Neutral poly- and perfluoroalkyl substances in <span class="hlt">air</span> and seawater of the North <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xie, Zhiyong; Zhao, Zhen; Möller, Axel; Wolschke, Hendrik; Ahrens, Lutz; Sturm, Renate; Ebinghaus, Ralf</p> <p>2013-11-01</p> <p>Concentrations of neutral poly- and perfluoroalkyl substances (PFASs), such as fluorotelomer alcohols (FTOHs), perfluoroalkane sulfonamides (FASAs), perfluoroalkane sufonamidoethanols (FASEs), and fluorotelomer acrylates (FTACs), have been simultaneously determined in surface seawater and the atmosphere of the North <span class="hlt">Sea</span>. Seawater and <span class="hlt">air</span> samples were taken aboard the German research vessel Heincke on the cruise 303 from 15 to 24 May 2009. The concentrations of FTOHs, FASAs, FASEs, and FTACs in the dissolved phase were 2.6-74, <0.1-19, <0.1-63, and <1.0-9.0 pg L(-1), respectively. The highest concentrations were determined in the estuary of the Weser and Elbe rivers and a decreasing concentration profile appeared with increasing distance from the coast toward the central part of the North <span class="hlt">Sea</span>. Gaseous FTOHs, FASAs, FASEs, and FTACs were in the range of 36-126, 3.1-26, 3.7-19, and 0.8-5.6 pg m(-3), which were consistent with the concentrations determined in 2007 in the North <span class="hlt">Sea</span>, and approximately five times lower than those reported for an urban area of Northern Germany. These results suggested continuous continental emissions of neutral PFASs followed by transport toward the marine environment. <span class="hlt">Air</span>-seawater gas exchanges of neutral PFASs were estimated using fugacity ratios and the two-film resistance model based upon paired <span class="hlt">air</span>-seawater concentrations and estimated Henry's law constant values. Volatilization dominated for all neutral PFASs in the North <span class="hlt">Sea</span>. The <span class="hlt">air</span>-seawater gas exchange fluxes were in the range of 2.5×10(3)-3.6×10(5) pg m(-2) for FTOHs, 1.8×10(2)-1.0×10(5) pg m(-2) for FASAs, 1.1×10(2)-3.0×10(5) pg m(-2) for FASEs and 6.3×10(2)-2.0×10(4) pg m(-2) for FTACs, respectively. These results suggest that the <span class="hlt">air</span>-seawater gas exchange is an important <span class="hlt">process</span> that intervenes in the transport and fate for neutral PFASs in the marine environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110022999','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110022999"><span>Improvement of the GEOS-5 AGCM upon Updating the <span class="hlt">Air-Sea</span> Roughness Parameterization</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Garfinkel, C. I.; Molod, A.; Oman, L. D.; Song, I.-S.</p> <p>2011-01-01</p> <p>The impact of an <span class="hlt">air-sea</span> roughness parameterization over the ocean that more closely matches recent observations of <span class="hlt">air-sea</span> exchange is examined in the NASA Goddard Earth Observing System, version 5 (GEOS-5) atmospheric general circulation model. Surface wind biases in the GEOS-5 AGCM are decreased by up to 1.2m/s. The new parameterization also has implications aloft as improvements extend into the stratosphere. Many other GCMs (both for operational weather forecasting and climate) use a similar class of parameterization for their <span class="hlt">air-sea</span> roughness scheme. We therefore expect that results from GEOS-5 are relevant to other models as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110014594','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110014594"><span>Ocean Winds and Turbulent <span class="hlt">Air-Sea</span> Fluxes Inferred From Remote Sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.</p> <p>2010-01-01</p> <p><span class="hlt">Air-sea</span> turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange <span class="hlt">processes</span> are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the <span class="hlt">air/sea</span> interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent <span class="hlt">processes</span> are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean <span class="hlt">processes</span>, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term <span class="hlt">processes</span>, transport can be very important but again is usually small compared to surface fluxes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1035130','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1035130"><span><span class="hlt">Air-Sea</span> <span class="hlt">Interactions</span> in the Marginal Ice Zone</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-31</p> <p>Arctic Ocean has increased with the significant retreat of the seasonal <span class="hlt">sea</span>-ice extent. Here, we use wind, wave, turbulence, and ice measurements to...which has experienced a significant retreat of the seasonal ice extent (Comiso and Nishio, 2008; Comiso et al., 2008). Thomson and Rogers (2014) showed</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9455M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9455M"><span>Submesoscale <span class="hlt">Sea</span> Ice-Ocean <span class="hlt">Interactions</span> in Marginal Ice Zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manucharyan, Georgy E.; Thompson, Andrew F.</p> <p>2017-12-01</p> <p>Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of <span class="hlt">sea</span> ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent <span class="hlt">sea</span> ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in <span class="hlt">sea</span> ice forecasts. Here, we explore mechanical <span class="hlt">sea</span> ice <span class="hlt">interactions</span> with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the <span class="hlt">sea</span> ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of <span class="hlt">sea</span> ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order 10 m d-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-<span class="hlt">sea</span> ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and <span class="hlt">sea</span> ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and <span class="hlt">sea</span> ice thickness reduction in the Arctic Ocean, submesoscale <span class="hlt">sea</span> ice-ocean <span class="hlt">processes</span> are expected to become increasingly prominent.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.4297L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.4297L"><span>Using eddy covariance to measure the dependence of <span class="hlt">air-sea</span> CO2 exchange rate on friction velocity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Landwehr, Sebastian; Miller, Scott D.; Smith, Murray J.; Bell, Thomas G.; Saltzman, Eric S.; Ward, Brian</p> <p>2018-03-01</p> <p>Parameterisation of the <span class="hlt">air-sea</span> gas transfer velocity of CO2 and other trace gases under open-ocean conditions has been a focus of <span class="hlt">air-sea</span> <span class="hlt">interaction</span> research and is required for accurately determining ocean carbon uptake. Ships are the most widely used platform for <span class="hlt">air-sea</span> flux measurements but the quality of the data can be compromised by airflow distortion and sensor cross-sensitivity effects. Recent improvements in the understanding of these effects have led to enhanced corrections to the shipboard eddy covariance (EC) measurements.Here, we present a revised analysis of eddy covariance measurements of <span class="hlt">air-sea</span> CO2 and momentum fluxes from the Southern Ocean Surface Ocean Aerosol Production (SOAP) study. We show that it is possible to significantly reduce the scatter in the EC data and achieve consistency between measurements taken on station and with the ship underway. The gas transfer velocities from the EC measurements correlate better with the EC friction velocity (u*) than with mean wind speeds derived from shipboard measurements corrected with an airflow distortion model. For the observed range of wind speeds (u10 N = 3-23 m s-1), the transfer velocities can be parameterised with a linear fit to u*. The SOAP data are compared to previous gas transfer parameterisations using u10 N computed from the EC friction velocity with the drag coefficient from the Coupled Ocean-Atmosphere Response Experiment (COARE) model version 3.5. The SOAP results are consistent with previous gas transfer studies, but at high wind speeds they do not support the sharp increase in gas transfer associated with bubble-mediated transfer predicted by physically based models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70045534','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70045534"><span>Calving seismicity from iceberg-<span class="hlt">sea</span> surface <span class="hlt">interactions</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bartholomaus, T.C.; Larsen, C.F.; O'Neel, S.; West, M.E.</p> <p>2012-01-01</p> <p>Iceberg calving is known to release substantial seismic energy, but little is known about the specific mechanisms that produce calving icequakes. At Yahtse Glacier, a tidewater glacier on the Gulf of Alaska, we draw upon a local network of seismometers and focus on 80 hours of concurrent, direct observation of the terminus to show that calving is the dominant source of seismicity. To elucidate seismogenic mechanisms, we synchronized video and seismograms to reveal that the majority of seismic energy is produced during iceberg <span class="hlt">interactions</span> with the <span class="hlt">sea</span> surface. Icequake peak amplitudes coincide with the emergence of high velocity jets of water and ice from the fjord after the complete submergence of falling icebergs below <span class="hlt">sea</span> level. These icequakes have dominant frequencies between 1 and 3 Hz. Detachment of an iceberg from the terminus produces comparatively weak seismic waves at frequencies between 5 and 20 Hz. Our observations allow us to suggest that the most powerful sources of calving icequakes at Yahtse Glacier include iceberg-<span class="hlt">sea</span> surface impact, deceleration under the influence of drag and buoyancy, and cavitation. Numerical simulations of seismogenesis during iceberg-<span class="hlt">sea</span> surface <span class="hlt">interactions</span> support our observational evidence. Our new understanding of iceberg-<span class="hlt">sea</span> surface <span class="hlt">interactions</span> allows us to reattribute the sources of calving seismicity identified in earlier studies and offer guidance for the future use of seismology in monitoring iceberg calving.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ACP....18.6001G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ACP....18.6001G"><span>The effects of <span class="hlt">sea</span> spray and atmosphere-wave coupling on <span class="hlt">air-sea</span> exchange during a tropical cyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garg, Nikhil; Kwee Ng, Eddie Yin; Narasimalu, Srikanth</p> <p>2018-04-01</p> <p>The study investigates the role of the <span class="hlt">air-sea</span> interface using numerical simulations of Hurricane Arthur (2014) in the Atlantic. More specifically, the present study aims to discern the role ocean surface waves and <span class="hlt">sea</span> spray play in modulating the intensity and structure of a tropical cyclone (TC). To investigate the effects of ocean surface waves and <span class="hlt">sea</span> spray, numerical simulations were carried out using a coupled atmosphere-wave model, whereby a <span class="hlt">sea</span> spray microphysical model was incorporated within the coupled model. Furthermore, this study also explores how <span class="hlt">sea</span> spray generation can be modelled using wave energy dissipation due to whitecaps; whitecaps are considered as the primary mode of spray droplets generation at hurricane intensity wind speeds. Three different numerical simulations including the <span class="hlt">sea</span>- state-dependent momentum flux, the <span class="hlt">sea</span>-spray-mediated heat flux, and a combination of the former two <span class="hlt">processes</span> with the <span class="hlt">sea</span>-spray-mediated momentum flux were conducted. The foregoing numerical simulations were evaluated against the National Data Buoy Center (NDBC) buoy and satellite altimeter measurements as well as a control simulation using an uncoupled atmosphere model. The results indicate that the model simulations were able to capture the storm track and intensity: the surface wave coupling results in a stronger TC. Moreover, it is also noted that when only spray-mediated heat fluxes are applied in conjunction with the <span class="hlt">sea</span>-state-dependent momentum flux, they result in a slightly weaker TC, albeit stronger compared to the control simulation. However, when a spray-mediated momentum flux is applied together with spray heat fluxes, it results in a comparably stronger TC. The results presented here allude to the role surface friction plays in the intensification of a TC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8634D"><span>Interannual variability of primary production and <span class="hlt">air-sea</span> CO2 flux in the Atlantic and Indian sectors of the Southern Ocean.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dufour, Carolina; Merlivat, Liliane; Le Sommer, Julien; Boutin, Jacqueline; Antoine, David</p> <p>2013-04-01</p> <p>As one of the major oceanic sinks of anthropogenic CO2, the Southern Ocean plays a critical role in the climate system. However, due to the scarcity of observations, little is known about physical and biological <span class="hlt">processes</span> that control <span class="hlt">air-sea</span> CO2 fluxes and how these <span class="hlt">processes</span> might respond to climate change. It is well established that primary production is one of the major drivers of <span class="hlt">air-sea</span> CO2 fluxes, consuming surface Dissolved Inorganic Carbon (DIC) during Summer. Southern Ocean primary production is though constrained by several limiting factors such as iron and light availability, which are both sensitive to mixed layer depth. Mixed layer depth is known to be affected by current changes in wind stress or freshwater fluxes over the Southern Ocean. But we still don't know how primary production may respond to anomalous mixed layer depth neither how physical <span class="hlt">processes</span> may balance this response to set the seasonal cycle of <span class="hlt">air-sea</span> CO2 fluxes. In this study, we investigate the impact of anomalous mixed layer depth on surface DIC in the Atlantic and Indian sectors of the Subantarctic zone of the Southern Ocean (60W-60E, 38S-55S) with a combination of in situ data, satellite data and model experiment. We use both a regional eddy permitting ocean biogeochemical model simulation based on NEMO-PISCES and data-based reconstruction of biogeochemical fields based on CARIOCA buoys and <span class="hlt">Sea</span>WiFS data. A decomposition of the physical and biological <span class="hlt">processes</span> driving the seasonal variability of surface DIC is performed with both the model data and observations. A good agreement is found between the model and the data for the amplitude of biological and <span class="hlt">air-sea</span> flux contributions. The model data are further used to investigate the impact of winter and summer anomalies in mixed layer depth on surface DIC over the period 1990-2004. The relative changes of each physical and biological <span class="hlt">process</span> contribution are quantified and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcScD..11.1895G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcScD..11.1895G"><span>Deriving a <span class="hlt">sea</span> surface climatology of CO2 fugacity in support of <span class="hlt">air-sea</span> gas flux studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.</p> <p>2014-07-01</p> <p>Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean Carbon Dioxide (CO2) Atlas (SOCAT) has made millions of global underway <span class="hlt">sea</span> surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. fCO2 is highly sensitive to temperature and the measurements are only valid for the instantaneous <span class="hlt">sea</span> surface temperature (SST) that is measured concurrent with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating <span class="hlt">air-sea</span> CO2 fluxes it is therefore desirable to calculate fCO2 valid for climate quality SST. This paper presents a method for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using climate quality SST data from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the <span class="hlt">air-sea</span> CO2 flux, and hence the presented fCO2 distributions can be used in <span class="hlt">air-sea</span> gas flux calculations together with climatologies of other climate variables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMS...155...35I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMS...155...35I"><span>Carbonate chemistry dynamics and biological <span class="hlt">processes</span> along a river-<span class="hlt">sea</span> gradient (Gulf of Trieste, northern Adriatic <span class="hlt">Sea</span>)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ingrosso, Gianmarco; Giani, Michele; Cibic, Tamara; Karuza, Ana; Kralj, Martina; Del Negro, Paola</p> <p>2016-03-01</p> <p>In this paper we investigated, for two years and with a bi-monthly frequency, how physical, chemical, and biological <span class="hlt">processes</span> affect the marine carbonate system in a coastal area characterized by high alkalinity riverine discharge (Gulf of Trieste, northern Adriatic <span class="hlt">Sea</span>, Mediterranean <span class="hlt">Sea</span>). By combining synoptic measurements of the carbonate system with in situ determinations of the primary production (14C incorporation technique) and secondary prokaryotic carbon production (3H-leucine incorporation) along a river-<span class="hlt">sea</span> gradient, we showed that the conservative mixing between river endmember and off-shore waters was the main driver of the dissolved inorganic carbon (DIC) distribution and seasonal variation. However, during spring and summer seasons also the influence of biological uptake and release of DIC was significant. In the surface water of June 2012, the spreading and persistence of nutrient-rich freshwater stimulated the primary production (3.21 μg C L- 1 h- 1) and net biological DIC decrease (- 100 μmol kg- 1), reducing the dissolved CO2 concentration and increasing the pHT. Below the pycnocline of August 2012, instead, an elevated bacterial carbon production rate (0.92 μg C L- 1 h- 1) was related with net DIC increase (92 μmol kg- 1), low dissolved oxygen concentration, and strong pHT reduction, suggesting the predominance of bacterial heterotrophic respiration over primary production. The flux of carbon dioxide estimated at the <span class="hlt">air-sea</span> interface exerted a low influence on the seasonal variation of the carbonate system. A complex temporal and spatial dynamic of the <span class="hlt">air-sea</span> CO2 exchange was also detected, due to the combined effects of seawater temperature, river discharge, and water circulation. On annual scale the system was a sink of atmospheric CO2. However, in summer and during elevated riverine discharges, the area close to the river's mouth acted as a source of carbon dioxide. Also the wind speed was crucial in controlling the <span class="hlt">air-sea</span> CO2</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1990JGR....95.3387W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1990JGR....95.3387W"><span>Dependence of the microwave radar cross section on ocean surface variables: Comparison of measurements and theory using data from the Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weissman, David E.</p> <p>1990-03-01</p> <p>The purpose of this investigation was to study the ability of theoretical radar cross section (RCS) models to predict the absolute magnitude of the ocean radar cross section under a wide variety of <span class="hlt">sea</span> and atmospheric conditions. The dependence of the RCS on wind stress (as opposed to wind speed) was also studied. An extensive amount of experimental data was acquired during the Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment (FASINEX). This consisted of RCS data from the NASA-Jet Propulsion Laboratory Ku band scatterometer mounted on a C130 aircraft (10 separate flights), as well as a wide variety of atmospheric measurements (including stress) and <span class="hlt">sea</span> conditions. Measurements across an ocean front demonstrated that the vertical polarization (V-pol) and horizontal polarization (H-pol) radar cross section were more strongly dependent on wind stress than on wind magnitude. Current theoretical models for the RCS, based on stress, were tested with this data. In situations where the Bragg scattering theory does not agree with the measured radar cross section (magnitude and angle dependence), revisions are hypothesized and evaluated. For example, the V-pol theory worked well in most cases studied, while the H-pol theory was usually too low by about a factor of 2 at incidence angles of 50° and 60°.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C31D..06T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C31D..06T"><span>Submesoscale <span class="hlt">sea</span> ice-ocean <span class="hlt">interactions</span> in marginal ice zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thompson, A. F.; Manucharyan, G.</p> <p>2017-12-01</p> <p>Signatures of ocean eddies, fronts and filaments are commonly observed within the marginal ice zones (MIZ) from satellite images of <span class="hlt">sea</span> ice concentration, in situ observations via ice-tethered profilers or under-ice gliders. Localized and intermittent <span class="hlt">sea</span> ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in <span class="hlt">sea</span> ice forecasts. Here, we explore mechanical <span class="hlt">sea</span> ice <span class="hlt">interactions</span> with underlying submesoscale ocean turbulence via a suite of numerical simulations. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with sizes O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the <span class="hlt">sea</span> ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of <span class="hlt">sea</span> ice mass and heat across the MIZ can reach O(200 m2 s-1). Submesoscale ocean variability also induces large vertical velocities (order of 10 m day-1) that can bring relatively warm subsurface waters into the mixed layer. The ocean-<span class="hlt">sea</span> ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m-2. We speculate that these submesoscale-driven intermittent fluxes of heat and <span class="hlt">sea</span> ice can potentially contribute to the seasonal evolution of MIZs. With continuing global warming and <span class="hlt">sea</span> ice thickness reduction in the Arctic Ocean, as well as the large expanse of thin <span class="hlt">sea</span> ice in the Southern Ocean, submesoscale <span class="hlt">sea</span> ice-ocean <span class="hlt">processes</span> are expected to play a significant role in the climate system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790015713','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790015713"><span>Atmospheric and oceanographic research review, 1978. [global weather, ocean/<span class="hlt">air</span> <span class="hlt">interactions</span>, and climate</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1978-01-01</p> <p>Research activities related to global weather, ocean/<span class="hlt">air</span> <span class="hlt">interactions</span>, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the <span class="hlt">processes</span> that determine the general circulation of the oceans, focusing on those <span class="hlt">processes</span> that affect <span class="hlt">sea</span> surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24C2589W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24C2589W"><span><span class="hlt">Sea</span> Surface Scanner: An advanced catamaran to study the <span class="hlt">sea</span> surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wurl, O.; Mustaffa, N. I. H.; Ribas Ribas, M.</p> <p>2016-02-01</p> <p>The <span class="hlt">Sea</span> Surface Scanner is a remote-controlled catamaran with the capability to sample the <span class="hlt">sea</span>-surface microlayer in high resolution. The catamaran is equipped with a suite of sensors to scan the <span class="hlt">sea</span> surface on chemical, biological and physical parameters. Parameters include UV absorption, fluorescence spectra, chlorophyll-a, photosynthetic efficiency, chromophoric dissolved organic matter (CDOM), dissolved oxygen, pH, temperature, and salinity. A further feature is a capability to collect remotely discrete water samples for detailed lab analysis. We present the first high-resolution (< 30 sec) data on the <span class="hlt">sea</span> surface microlayer. We discuss the variability of biochemical properties of the <span class="hlt">sea</span> surface and its implication on <span class="hlt">air-sea</span> <span class="hlt">interaction</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28334669','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28334669"><span>Distribution and <span class="hlt">sea-to-air</span> flux of isoprene in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> during summer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jian-Long; Zhang, Hong-Hai; Yang, Gui-Peng</p> <p>2017-07-01</p> <p>Spatial distribution and <span class="hlt">sea-to-air</span> flux of isoprene in the East China <span class="hlt">Sea</span> and the South Yellow <span class="hlt">Sea</span> in July 2013 were investigated. This study is the first to report the concentrations of isoprene in the China marginal <span class="hlt">seas</span>. Isoprene concentrations in the surface seawater during summer ranged from 32.46 to 173.5 pM, with an average of 83.62 ± 29.22 pM. Distribution of isoprene in the study area was influenced by the diluted water from the Yangtze River, which stimulated higher in-situ phytoplankton production of isoprene rather than direct freshwater input. Variations in isoprene concentrations were found to be diurnal, with high values observed during daytime. A significant correlation was observed between isoprene and chlorophyll a in the study area. Relatively higher isoprene concentrations were recorded at stations where the phytoplankton biomass was dominated by Chaetoceros, Skeletonema, Pennate-nitzschia, and Thalassiosira. Positive correlation was observed between isoprene and methyl iodide. In addition, <span class="hlt">sea-to-air</span> fluxes of isoprene approximately ranged from 22.17 nmol m -2  d -1 -537.2 nmol m -2  d -1 , with an average of 161.5 ± 133.3 nmol m -2  d -1 . These results indicate that the coastal and shelf areas may be important sources of atmospheric isoprene. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17706251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17706251"><span><span class="hlt">Air--sea</span> gaseous exchange of PCB at the Venice lagoon (Italy).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Manodori, L; Gambaro, A; Moret, I; Capodaglio, G; Cescon, P</p> <p>2007-10-01</p> <p>Water bodies are important storage media for persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and this function is increased in coastal regions because their inputs are higher than those to the open <span class="hlt">sea</span>. The <span class="hlt">air</span>-water interface is extensively involved with the global cycling of PCBs because it is the place where they accumulate due to depositional <span class="hlt">processes</span> and where they may be emitted by gaseous exchange. In this work the parallel collection of <span class="hlt">air</span>, microlayer and sub-superficial water samples was performed in July 2005 at a site in the Venice lagoon to evaluate the summer gaseous flux of PCBs. The total concentration of PCBs (sum of 118 congeners) in <span class="hlt">air</span> varies from 87 to 273 pg m(-3), whereas in the operationally defined dissolved phase of microlayer and sub-superficial water samples it varies from 159 to 391 pg L(-1). No significant enrichment of dissolved PCB into the microlayer has been observed, although a preferential accumulation of most hydrophobic congeners occurs. Due to this behaviour, we believe that the modified two-layer model was the most suitable approach for the evaluation of the flux at the <span class="hlt">air-sea</span> interface, because it takes into account the influence of the microlayer. From its application it appears that PCB volatilize from the lagoon waters with a net flux varying from 58 to 195 ng m(-2)d(-1) (uncertainty: +/-50-64%) due to the strong influence of wind speed. This flux is greater than those reported in the literature for the atmospheric deposition and rivers input and reveals that PCB are actively emitted from the Venice lagoon in summer months.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00429.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00429.html"><span>Hurricane Isabel, <span class="hlt">AIRS</span> Infrared and <span class="hlt">Sea</span>Winds Scatterometer Data Combined</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-09-20</p> <p>These two images show Hurricane Isabel as viewed by <span class="hlt">AIRS</span> and <span class="hlt">Sea</span>Winds scatterometers on NASA ADEOS-2 and QuikScat satellites in September, 2003. <span class="hlt">AIRS</span> data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction. http://photojournal.jpl.nasa.gov/catalog/PIA00429</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014OcMod..84...51L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014OcMod..84...51L"><span><span class="hlt">Processes</span> driving <span class="hlt">sea</span> ice variability in the Bering <span class="hlt">Sea</span> in an eddying ocean/<span class="hlt">sea</span> ice model: Mean seasonal cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.</p> <p>2014-12-01</p> <p>The seasonal cycle of <span class="hlt">sea</span> ice variability in the Bering <span class="hlt">Sea</span>, together with the thermodynamic and dynamic <span class="hlt">processes</span> that control it, are examined in a fine resolution (1/10°) global coupled ocean/<span class="hlt">sea</span>-ice model configured in the Community Earth System Model (CESM) framework. The ocean/<span class="hlt">sea</span>-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos <span class="hlt">Sea</span> Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of <span class="hlt">sea</span> ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The <span class="hlt">sea</span> ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The <span class="hlt">sea</span> ice force balance analysis shows that <span class="hlt">sea</span> ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated <span class="hlt">sea</span> ice was mainly formed in the northern Bering <span class="hlt">Sea</span>, with the maximum ice growth rate occurring along the coast due to cold <span class="hlt">air</span> from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model <span class="hlt">sea</span> ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering <span class="hlt">Sea</span>, model <span class="hlt">sea</span> ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A44C..06L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A44C..06L"><span>The Impacts of Aerosols on Hurricane Katrina under the Effect of <span class="hlt">Air-Sea</span> Coupling</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Y.; Hsieh, J. S.; Wang, Y.; Zhang, R.</p> <p>2017-12-01</p> <p>Aerosols can affect the development of tropical cyclones, which often involve intense <span class="hlt">interactions</span> with the ocean. Therefore, the impacts of aerosols on the tropical cyclones are reckoned closely associated with the effect of ocean feedback, a priori, which has often been omitted by most of the previous modeling studies about the aerosol effects on tropical cyclones. We investigate the synergetic effects of aerosols and ocean feedback on the development of hurricane Katrina using a convection-resolving coupled regional model (WRF-ROMS). In comparison with observations, our coupled simulation under pristine aerosol condition well captures the pressure drop near the center of Katrina with maximum mean <span class="hlt">sea</span> level pressure in good agreement with the observation albeit the simulated maximal wind speed is relatively weaker than the observation. Preliminary results suggest that the ocean feedback tends to work with (against) aerosols to suppress (enhance) the hurricane's center pressure drop/maximum wind intensity at the developing (decaying) stage, suggesting a positive (negative) feedback to the aerosols' suppression effect on hurricanes. Moreover, the size of the simulated hurricane considerably expands due to the elevated polluted aerosols while the expansion is weakened, along with the increased precipitation, by the effect of <span class="hlt">air-sea</span> <span class="hlt">interactions</span> during the developing stage, which demonstrates intricate nonlinear <span class="hlt">interactions</span> between aerosols, the hurricane and the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43C0283L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43C0283L"><span><span class="hlt">Air-sea</span> Exchange of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs) and Polybrominated Diphenyl Ethers (PBDEs) in the Mediterranean <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lammel, G. P.; Heil, A.; Kukucka, P.; Meixner, F. X.; Mulder, M. D.; Prybilova, P.; Prokes, R.; Rusina, T. S.; Song, G. Z.; Vrana, B.</p> <p>2015-12-01</p> <p>The marine atmospheric environment is a receptor for persistent organic pollutants (POPs) which are advected from sources on land, primary, such as biomass burning by-products (PAHs, dioxins), and secondary, such as volatilization from contaminated soils (PCBs, pesticides). Primary sources do not exist in the marine environment, except for PAHs (ship engines) but following previous atmospheric deposition, the <span class="hlt">sea</span> surface may turn to a secondary source by reversal of diffusive <span class="hlt">air-sea</span> mass exchange. No monitoring is in place. We studied the vertical fluxes of a wide range of primary and secondary emitted POPs based on measurements in <span class="hlt">air</span> and surface seawater at a remote coastal site in the eastern Mediterranean (2012). To this end, silicon rubbers were used as passive water samplers, vertical concentration gradients were determined in <span class="hlt">air</span> and fluxes were quantified based on Eddy covariance. Diffusive <span class="hlt">air-sea</span> exchange fluxes of hexachlorocyclohexanes (HCHs) and semivolatile PAHs were found close to phase equilibrium, except one PAH, retene, a wood burning tracer, was found seasonally net-volatilisational. Some PCBs, p,p'-DDE, penta- and hexachlorobenzene (PeCB, HCB) were mostly net-depositional, while PBDEs were net-volatilizational. Fluxes determined at a a remote coastal site ranged -33 - +2.4 µg m-2 d-1 for PAHs and -4.0 - +0.3 µg m-2 d-1for halogenated compounds (< 0 means net-deposition, > 0 means net-volatilization). It is concluded that nowadays in open <span class="hlt">seas</span> more pollutants are undergoing reversal of the direction of <span class="hlt">air-sea</span> exchange. Recgional fire activity records in combination with box model simulations suggest that deposition of retene during summer is followed by a reversal of <span class="hlt">air-sea</span> exchange. The seawater surface as secondary source of pollution should be assessed based on flux measurements across seasons and over longer time periods.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA622312','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA622312"><span>Operationalizing <span class="hlt">Air-Sea</span> Battle in the Pacific</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-02-01</p> <p>Joumall 25 \\/ FEATURE Ballard, Harysch, Cole, & Hall Operationalizing Ait’-<span class="hlt">Sea</span> Battle in the Pacific tribes and nomadic marauders such as the...communications in general, the former focuses on the digital data links between different platforms. The original CSBA operational con- cept touches on this...very capable fourth-generation fighters; and it has fielded layers of upgraded and double- digit surface-to-<span class="hlt">air</span> missile systems and antiaircraft</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26975003','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26975003"><span><span class="hlt">Air-sea</span> exchange of gaseous mercury in the East China <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chunjie; Ci, Zhijia; Wang, Zhangwei; Zhang, Xiaoshan</p> <p>2016-05-01</p> <p>Two oceanographic cruises were carried out in the East China <span class="hlt">Sea</span> (ECS) during the summer and fall of 2013. The main objectives of this study are to identify the spatial-temporal distributions of gaseous elemental mercury (GEM) in <span class="hlt">air</span> and dissolved gaseous mercury (DGM) in surface seawater, and then to estimate the Hg(0) flux. The GEM concentration was lower in summer (1.61 ± 0.32 ng m(-3)) than in fall (2.20 ± 0.58 ng m(-3)). The back-trajectory analysis revealed that the <span class="hlt">air</span> masses with high GEM levels during fall largely originated from the land, while the <span class="hlt">air</span> masses with low GEM levels during summer primarily originated from ocean. The spatial distribution patterns of total Hg (THg), fluorescence, and turbidity were consistent with the pattern of DGM with high levels in the nearshore area and low levels in the open <span class="hlt">sea</span>. Additionally, the levels of percentage of DGM to THg (%DGM) were higher in the open <span class="hlt">sea</span> than in the nearshore area, which was consistent with the previous studies. The THg concentration in fall was higher (1.47 ± 0.51 ng l(-1)) than those of other open oceans. The DGM concentration (60.1 ± 17.6 pg l(-1)) and Hg(0) flux (4.6 ± 3.6 ng m(-2) h(-1)) in summer were higher than those in fall (DGM: 49.6 ± 12.5 pg l(-1) and Hg(0) flux: 3.6 ± 2.8 ng m(-2) h(-1)). The emission flux of Hg(0) from the ECS was estimated to be 27.6 tons yr(-1), accounting for ∼0.98% of the global Hg oceanic evasion though the ECS only accounts for ∼0.21% of global ocean area, indicating that the ECS plays an important role in the oceanic Hg cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........79B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........79B"><span><span class="hlt">Interactions</span> of arctic clouds, radiation, and <span class="hlt">sea</span> ice in present-day and future climates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burt, Melissa Ann</p> <p></p> <p>The Arctic climate system involves complex <span class="hlt">interactions</span> among the atmosphere, land surface, and the <span class="hlt">sea</span>-ice-covered Arctic Ocean. Observed changes in the Arctic have emerged and projected climate trends are of significant concern. Surface warming over the last few decades is nearly double that of the entire Earth. Reduced <span class="hlt">sea</span>-ice extent and volume, changes to ecosystems, and melting permafrost are some examples of noticeable changes in the region. This work is aimed at improving our understanding of how Arctic clouds <span class="hlt">interact</span> with, and influence, the surface budget, how clouds influence the distribution of <span class="hlt">sea</span> ice, and the role of downwelling longwave radiation (DLR) in climate change. In the first half of this study, we explore the roles of <span class="hlt">sea</span>-ice thickness and downwelling longwave radiation in Arctic amplification. As the Arctic <span class="hlt">sea</span> ice thins and ultimately disappears in a warming climate, its insulating power decreases. This causes the surface <span class="hlt">air</span> temperature to approach the temperature of the relatively warm ocean water below the ice. The resulting increases in <span class="hlt">air</span> temperature, water vapor and cloudiness lead to an increase in the surface downwelling longwave radiation, which enables a further thinning of the ice. This positive ice-insulation feedback operates mainly in the autumn and winter. A climate-change simulation with the Community Earth System Model shows that, averaged over the year, the increase in Arctic DLR is three times stronger than the increase in Arctic absorbed solar radiation at the surface. The warming of the surface <span class="hlt">air</span> over the Arctic Ocean during fall and winter creates a strong thermal contrast with the colder surrounding continents. <span class="hlt">Sea</span>-level pressure falls over the Arctic Ocean and the high-latitude circulation reorganizes into a shallow "winter monsoon." The resulting increase in surface wind speed promotes stronger surface evaporation and higher humidity over portions of the Arctic Ocean, thus reinforcing the ice-insulation feedback</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.9962W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.9962W"><span><span class="hlt">Interactions</span> of Estuarine Shoreline Infrastructure With Multiscale <span class="hlt">Sea</span> Level Variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Ruo-Qian; Herdman, Liv M.; Erikson, Li; Barnard, Patrick; Hummel, Michelle; Stacey, Mark T.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> level rise increases the risk of storms and other short-term water-rise events, because it sets a higher water level such that coastal surges become more likely to overtop protections and cause floods. To protect coastal communities, it is necessary to understand the <span class="hlt">interaction</span> among multiday and tidal <span class="hlt">sea</span> level variabilities, coastal infrastructure, and <span class="hlt">sea</span> level rise. We performed a series of numerical simulations for San Francisco Bay to examine two shoreline scenarios and a series of short-term and long-term <span class="hlt">sea</span> level variations. The two shoreline configurations include the existing topography and a coherent full-bay containment that follows the existing land boundary with an impermeable wall. The <span class="hlt">sea</span> level variability consists of a half-meter perturbation, with duration ranging from 2 days to permanent (i.e., <span class="hlt">sea</span> level rise). The extent of coastal flooding was found to increase with the duration of the high-water-level event. The nonlinear <span class="hlt">interaction</span> between these intermediate scale events and astronomical tidal forcing only contributes ˜1% of the tidal heights; at the same time, the tides are found to be a dominant factor in establishing the evolution and diffusion of multiday high water events. Establishing containment at existing shorelines can change the tidal height spectrum up to 5%, and the impact of this shoreline structure appears stronger in the low-frequency range. To interpret the spatial and temporal variability at a wide range of frequencies, Optimal Dynamic Mode Decomposition is introduced to analyze the coastal <span class="hlt">processes</span> and an inverse method is applied to determine the coefficients of a 1-D diffusion wave model that quantify the impact of bottom roughness, tidal basin geometry, and shoreline configuration on the high water events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........89S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........89S"><span>Investigation of the Mesoscale <span class="hlt">Interaction</span> between the <span class="hlt">Sea</span> Breeze Circulation and the Sandhills Convection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sims, Aaron P.</p> <p></p> <p> precipitation amounts over the region due to the advection of warm, moist <span class="hlt">air</span>. Light offshore flow produces the highest totals of average precipitation due to opposing background winds that helps in the development of a robust <span class="hlt">sea</span>-breeze circulation. Onshore flow produces the least amount of precipitation. The <span class="hlt">sea</span> breeze circulation is weak in such cases, if it exists. Vertical characteristics and the variations of different defining parameters during the <span class="hlt">interactions</span> were evaluated using numerical simulations. To improve the representation of convection in the numerical model, modifications were made to the convective parameterization scheme and the <span class="hlt">interactions</span> were simulated using this improved version. These modifications include the addition of subgrid scale clouds in the radiation scheme, adjustments to the convective timescale, modifications to the entrainment rates, and linking of the subcloud velocity scale to the turbulent kinetic energy from the boundary layer parameterization. Modifications improved the numerical simulations of the mesoscale convection and precipitation predictions. Numerical simulations of the wind regime classifications reveal that the strength of the <span class="hlt">interaction</span>, intensity of convection, and the location and depth of the convection and <span class="hlt">interaction</span> are influenced by the background winds and moisture availability. Southwesterly flow regimes have the highest levels of atmospheric instability and produce widespread regional precipitation. Light offshore winds produce the strongest <span class="hlt">interactions</span> between the <span class="hlt">sea</span>-breeze front and the Sandhills front. Onshore flow produces the least amount of convective precipitation. In summary, mesoscale driven <span class="hlt">interaction</span> events occur regularly during summer months in the coastal Carolinas. The principal driving mechanisms are surface-based differential heating over the Sandhills region caused by changes in soil heat capacity and the coastal <span class="hlt">sea</span> breeze circulation. The location and intensity of these <span class="hlt">interactions</span> are</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1811365W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1811365W"><span>Impacts of South East Biomass Burning on local <span class="hlt">air</span> quality in South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi</p> <p>2016-04-01</p> <p>Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local <span class="hlt">air</span> pollution, but also regional <span class="hlt">air</span> pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (<span class="hlt">SEA</span>) as well as its contribution to the local <span class="hlt">air</span> pollution in East and South China <span class="hlt">Sea</span>, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from <span class="hlt">SEA</span> with a sinking motion that worsened the surface <span class="hlt">air</span> quality (tropospheric downwash from the free troposphere). The major sources of <span class="hlt">SEA</span> biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of <span class="hlt">SEA</span> biomass burning on local <span class="hlt">air</span> quality. The correlation between long-range transport events from the particles dispersion results and locally observed <span class="hlt">air</span> quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412527S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412527S"><span>Strong Dependence of U.S. Summertime <span class="hlt">Air</span> Quality on the Decadal Variability of Atlantic <span class="hlt">Sea</span> Surface Temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Lu; Mickley, Loretta J.; Leibensperger, Eric M.; Li, Mingwei</p> <p>2017-12-01</p> <p>We find that summertime <span class="hlt">air</span> quality in the eastern U.S. displays strong dependence on North Atlantic <span class="hlt">sea</span> surface temperatures, resulting from large-scale ocean-atmosphere <span class="hlt">interactions</span>. Using observations, reanalysis data sets, and climate model simulations, we further identify a multidecadal variability in surface <span class="hlt">air</span> quality driven by the Atlantic Multidecadal Oscillation (AMO). In one-half cycle ( 35 years) of the AMO from cold to warm phase, summertime maximum daily 8 h ozone concentrations increase by 1-4 ppbv and PM2.5 concentrations increase by 0.3-1.0 μg m-3 over much of the east. These <span class="hlt">air</span> quality changes are related to warmer, drier, and more stagnant weather in the AMO warm phase, together with anomalous circulation patterns at the surface and aloft. If the AMO shifts to the cold phase in future years, it could partly offset the climate penalty on U.S. <span class="hlt">air</span> quality brought by global warming, an effect which should be considered in long-term <span class="hlt">air</span> quality planning.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19840008345&hterms=feeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfeeling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19840008345&hterms=feeling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dfeeling"><span>Radar image interpretation techniques applied to <span class="hlt">sea</span> ice geophysical problems</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.</p> <p>1983-01-01</p> <p>The geophysical science problems in the <span class="hlt">sea</span> ice area which at present concern understanding the ice budget, where ice is formed, how thick it grows and where it melts, and the <span class="hlt">processes</span> which control the <span class="hlt">interaction</span> of <span class="hlt">air-sea</span> and ice at the ice margins is discussed. The science problems relate to basic questions of <span class="hlt">sea</span> ice: how much is there, thickness, drift rate, production rate, determination of the morphology of the ice margin, storms feeling for the ice, storms and influence at the margin to alter the pack, and ocean response to a storm at the margin. Some of these questions are descriptive and some require complex modeling of <span class="hlt">interactions</span> between the ice, the ocean, the atmosphere and the radiation fields. All involve measurements of the character of the ice pack, and SAR plays a significant role in the measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA533863','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA533863"><span>In-Situ Wave Observations in the High Resolution <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> DRI</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-09-30</p> <p>Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial <span class="hlt">sea</span> surface is assumed Gaussian and homogeneous, with spectral...of simulated <span class="hlt">sea</span> surface elevation. Right panels: corresponding observed frequency-directional wave spectra (source: CDIP ). Upper panels: Typical</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C31D..07M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C31D..07M"><span><span class="hlt">Sea</span> Ice Retreat and its Impact on the Intensity of Open-Ocean Convection in the Greenland and Iceland <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, K.; Våge, K.; Pickart, R. S.; Renfrew, I.</p> <p>2016-12-01</p> <p>The <span class="hlt">air-sea</span> transfer of heat and freshwater plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland <span class="hlt">Seas</span>, where these fluxes drive ocean convection that contributes to Denmark Strait Overflow Water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). This buoyancy transfer is most pronounced during the winter downstream of the ice edge, where the cold and dry Arctic <span class="hlt">air</span> first comes in contact with the relatively warm ocean surface. Here we show that the wintertime retreat of <span class="hlt">sea</span> ice in the region, combined with different rates of warming for the atmosphere and <span class="hlt">sea</span> surface of the Greenland and Iceland <span class="hlt">Seas</span>, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter <span class="hlt">air-sea</span> heat fluxes since 1979. Furthermore, it is demonstrated that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional <span class="hlt">air-sea</span> <span class="hlt">interaction</span> in this region. Mixed-layer model simulations imply that a continued decrease in atmospheric forcing will exceed a threshold for the Greenland <span class="hlt">Sea</span> whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic <span class="hlt">Seas</span>. In the Iceland <span class="hlt">Sea</span>, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6896S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6896S"><span>Natural and human land-<span class="hlt">sea</span> <span class="hlt">interactions</span>: Burgas Case Study, Bulgaria</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stancheva, Margarita; Stanchev, Hristo; Palazov, Atanas; Krastev, Anton</p> <p>2017-04-01</p> <p>: those are in close proximity of the large city and the existence of various coastal and maritime activities that inevitably have an impact on the environment. The results are related to identified land-<span class="hlt">sea</span> <span class="hlt">interactions</span> in the Burgas case study area with a focus on biodiversity; identified impact of land infrastructure on the wetlands and maritime space; promoted participation of key stakeholders in the <span class="hlt">process</span>; mapping the main land and <span class="hlt">sea</span> uses and of natural values; identified, mapped and analysed users-users conflicts and users-environment conflicts; proposed planning solutions and recommendations. The present study was supported by MARSPLAN-BS Project (Cross-Border Maritime Spatial Plan for the Black <span class="hlt">Sea</span> - Romania, Bulgaria), funded by the European Commission, Grant Agreement no EASME/EMFF/2014/1.2.1.5/2/SI2.707672 MSP LOT1 Black <span class="hlt">Sea</span>/ MARSPLAN-BS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012BGD.....910331C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012BGD.....910331C"><span>CO2 exchange in a temperate marginal <span class="hlt">sea</span> of the Mediterranean <span class="hlt">Sea</span>: <span class="hlt">processes</span> and carbon budget</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cossarini, G.; Querin, S.; Solidoro, C.</p> <p>2012-08-01</p> <p>Marginal <span class="hlt">seas</span> play a potentially important role in the global carbon cycle; however, due to differences in the scales of variability and dynamics, marginal <span class="hlt">seas</span> are seldom fully accounted for in global models or estimates. Specific high-resolution studies may elucidate the role of marginal <span class="hlt">seas</span> and assist in the compilation of a complete global budget. In this study, we investigated the <span class="hlt">air-sea</span> exchange and the carbon cycle dynamics in a marginal sub-basin of the Mediterranean <span class="hlt">Sea</span> (the Adriatic <span class="hlt">Sea</span>) by adopting a coupled transport-biogeochemical model of intermediate complexity including carbonate dynamics. The Adriatic <span class="hlt">Sea</span> is a highly productive area owed to riverine fertilisation and is a site of intense dense water formation both on the northern continental shelf and in the southern sub-basin. Therefore, the study area may be an important site of CO2 sequestration in the Mediterranean <span class="hlt">Sea</span>. The results of the model simulation show that the Adriatic <span class="hlt">Sea</span>, as a whole, is a CO2 sink with a mean annual flux of 36 mg m-2 day-1. The northern part absorbs more carbon (68 mg m-2 day-1) due to an efficient continental shelf pump <span class="hlt">process</span>, whereas the southern part behaves similar to an open ocean. Nonetheless, the Southern Adriatic <span class="hlt">Sea</span> accumulates dense, southward-flowing, carbon-rich water produced on the northern shelf. During a warm year and despite an increase in aquatic primary productivity, the sequestration of atmospheric CO2 is reduced by approximately 15% due to alterations of the solubility pump and reduced dense water formation. The seasonal cycle of temperature and biological productivity modulates the efficiency of the carbon pump at the surface, whereas the intensity of winter cooling in the northern sub-basin leads to the export of C-rich dense water to the deep layer of the southern sub-basin and, subsequently, to the interior of the Mediterranean <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA573362','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA573362"><span>In-Situ Wave Observations in the High Resolution <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> DRI</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2007-09-30</p> <p>directional spectra extracted from the Coastal Data Information Program ( CDIP ) Harvest buoy located in 204 m depth off Point Conception. The initial <span class="hlt">sea</span>...frequency-directional wave spectra (source: CDIP ). Upper panels: Typical summer-time South swell in the presence of a light North-West wind <span class="hlt">sea</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ACP....15.8457O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ACP....15.8457O"><span>X-ray computed microtomography of <span class="hlt">sea</span> ice - comment on "A review of <span class="hlt">air</span>-ice chemical and physical <span class="hlt">interactions</span> (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (2014)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Obbard, R. W.</p> <p>2015-07-01</p> <p>This comment addresses a statement made in "A review of <span class="hlt">air</span>-ice chemical and physical <span class="hlt">interactions</span> (AICI): liquids, quasi-liquids, and solids in snow" by Bartels-Rausch et al. (Atmos. Chem. Phys., 14, 1587-1633, <a href="http://dx.doi.org/10.5194/acp-14-1587-2014"target="_blank"> doi:10.5194/acp-14-1587-2014</a>, 2014). Here we rebut the assertion that X-ray computed microtomography of <span class="hlt">sea</span> ice fails to reveal liquid brine inclusions by discussing the phases present at the analysis temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhD...48W5201L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhD...48W5201L"><span>Physicochemical <span class="hlt">processes</span> in the indirect <span class="hlt">interaction</span> between surface <span class="hlt">air</span> plasma and deionized water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Z. C.; Liu, D. X.; Chen, C.; Li, D.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.</p> <p>2015-12-01</p> <p>One of the most central scientific questions for plasma applications in healthcare and environmental remediation is the chemical identity and the dose profile of plasma-induced reactive oxygen and nitrogen species (ROS/RNS) that can act on an object inside a liquid. A logical focus is on aqueous physicochemical <span class="hlt">processes</span> near a sample with a direct link to their upstream gaseous <span class="hlt">processes</span> in the plasma region and a separation gap from the liquid bulk. Here, a system-level modeling framework is developed for indirect <span class="hlt">interactions</span> of surface <span class="hlt">air</span> plasma and a deionized water bulk and its predictions are found to be in good agreement with the measurement of gas-phase ozone and aqueous long-living ROS/RNS concentrations. The plasma region is described with a global model, whereas the <span class="hlt">air</span> gap and the liquid region are simulated with a 1D fluid model. All three regions are treated as one integrated entity and computed simultaneously. With experimental validation, the system-level modeling shows that the dominant aqueous ROS/RNS are long-living species (e.g. H2O2 aq, O3 aq, nitrite/nitrate, H+ aq). While most short-living gaseous species could hardly survive their passage to the liquid, aqueous short-living ROS/RNS are generated in situ through reactions among long-living plasma species and with water molecules. This plasma-mediated remote production of aqueous ROS/RNS is important for the abundance of aqueous HO2 aq, HO3 aq, OHaq and \\text{O}2- aq as well as NO2 aq and NO3 aq. Aqueous plasma chemistry offers a novel and significant pathway to activate a given biological outcome, as exemplified here for bacterial deactivation in plasma-activated water. Additional factors that may synergistically broaden the usefulness of aqueous plasma chemistry include an electric field by aqueous ions and liquid acidification. The system-modeling framework will be useful in assisting designs and analyses of future investigations of plasma-liquid and plasma-cell <span class="hlt">interactions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.7664L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.7664L"><span>Atmospheric deposition and <span class="hlt">air-sea</span> gas exchange fluxes of DDT and HCH in the Yangtze River Estuary, East China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Zhongxia; Lin, Tian; Li, Yuanyuan; Jiang, Yuqing; Guo, Zhigang</p> <p>2017-07-01</p> <p>The Yangtze River Estuary (YRE) is strongly influenced by the Yangtze River and lies on the pathway of the East Asian Monsoon. This study examined atmospheric deposition and <span class="hlt">air-sea</span> gas exchange fluxes of dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH) to determine whether the YRE is a sink or source of selected pesticides at the <span class="hlt">air</span>-water interface under the influences of river input and atmospheric transport. The <span class="hlt">air-sea</span> gas exchange of DDT was characterized by net volatilization with a marked difference in its fluxes between summer (140 ng/m2/d) and the other three seasons (12 ng/m2/d), possibly due to the high surface seawater temperatures and larger riverine input in summer. However, there was no obvious seasonal variation in the atmospheric HCH deposition, and the <span class="hlt">air-sea</span> gas exchange reached equilibrium because of low HCH levels in the <span class="hlt">air</span> and seawater after the long-term banning of HCH and the degradation. The gas exchange flux of HCH was comparable to the dry and wet deposition fluxes at the <span class="hlt">air</span>-water interface. This suggests that the influences from the Yangtze River input and East Asian continental outflow on the fate of HCH in the YRE were limited. The gas exchange flux of DDT was about fivefold higher than the total dry and wet deposition fluxes. DDT residues in agricultural soil transported by enhanced riverine runoff were responsible for sustaining such a high net volatilization in summer. Moreover, our results indicated that there were fresh sources of DDT from the local environment to sustain net volatilization throughout the year.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160013232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160013232"><span>US Navy Submarine <span class="hlt">Sea</span> Trial of the NASA <span class="hlt">Air</span> Quality Monitor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.</p> <p>2017-01-01</p> <p>For the past four years, the <span class="hlt">Air</span> Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses <span class="hlt">air</span> as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of <span class="hlt">air</span> quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine <span class="hlt">air</span> monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine <span class="hlt">sea</span> trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM <span class="hlt">sea</span> trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the <span class="hlt">sea</span> trial. Only one AQM will be deployed during the <span class="hlt">sea</span> trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the <span class="hlt">sea</span> trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFMIN13A1083M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFMIN13A1083M"><span>The <span class="hlt">Sea</span>DAS <span class="hlt">Processing</span> and Analysis System: <span class="hlt">Sea</span>WiFS, MODIS, and Beyond</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>MacDonald, M. D.; Ruebens, M.; Wang, L.; Franz, B. A.</p> <p>2005-12-01</p> <p>The <span class="hlt">Sea</span>WiFS Data Analysis System (<span class="hlt">Sea</span>DAS) is a comprehensive software package for the <span class="hlt">processing</span>, display, and analysis of ocean data from a variety of satellite sensors. Continuous development and user support by programmers and scientists for more than a decade has helped to make <span class="hlt">Sea</span>DAS the most widely used software package in the world for ocean color applications, with a growing base of users from the land and <span class="hlt">sea</span> surface temperature community. Full <span class="hlt">processing</span> support for past (CZCS, OCTS, MOS) and present (<span class="hlt">Sea</span>WiFS, MODIS) sensors, and anticipated support for future missions such as NPP/VIIRS, enables end users to reproduce the standard ocean archive product suite distributed by NASA's Ocean Biology <span class="hlt">Processing</span> Group (OBPG), as well as a variety of evaluation and intermediate ocean, land, and atmospheric products. Availability of the <span class="hlt">processing</span> algorithm source codes and a software build environment also provide users with the tools to implement custom algorithms. Recent <span class="hlt">Sea</span>DAS enhancements include synchronization of MODIS <span class="hlt">processing</span> with the latest code and calibration updates from the MODIS Calibration Support Team (MCST), support for all levels of MODIS <span class="hlt">processing</span> including Direct Broadcast, a port to the Macintosh OS X operating system, release of the display/analysis-only <span class="hlt">Sea</span>DAS-Lite, and an extremely active web-based user support forum.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970009603','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970009603"><span>Polarimetric Signatures of <span class="hlt">Sea</span> Ice. Part 1; Theoretical Model</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nghiem, S. V.; Kwok, R.; Yueh, S. H.; Drinkwater, M. R.</p> <p>1995-01-01</p> <p>Physical, structural, and electromagnetic properties and interrelating <span class="hlt">processes</span> in <span class="hlt">sea</span> ice are used to develop a composite model for polarimetric backscattering signatures of <span class="hlt">sea</span> ice. Physical properties of <span class="hlt">sea</span> ice constituents such as ice, brine, <span class="hlt">air</span>, and salt are presented in terms of their effects on electromagnetic wave <span class="hlt">interactions</span>. <span class="hlt">Sea</span> ice structure and geometry of scatterers are related to wave propagation, attenuation, and scattering. Temperature and salinity, which are determining factors for the thermodynamic phase distribution in <span class="hlt">sea</span> ice, are consistently used to derive both effective permittivities and polarimetric scattering coefficients. Polarimetric signatures of <span class="hlt">sea</span> ice depend on crystal sizes and brine volumes, which are affected by ice growth rates. Desalination by brine expulsion, drainage, or other mechanisms modifies wave penetration and scattering. <span class="hlt">Sea</span> ice signatures are further complicated by surface conditions such as rough interfaces, hummocks, snow cover, brine skim, or slush layer. Based on the same set of geophysical parameters characterizing <span class="hlt">sea</span> ice, a composite model is developed to calculate effective permittivities and backscattering covariance matrices at microwave frequencies for interpretation of <span class="hlt">sea</span> ice polarimetric signatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28132774','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28132774"><span>Distribution and <span class="hlt">sea-to-air</span> fluxes of volatile halocarbons in the Bohai <span class="hlt">Sea</span> and North Yellow <span class="hlt">Sea</span> during spring.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>He, Zhen; Liu, Qiu-Lin; Zhang, Ying-Jie; Yang, Gui-Peng</p> <p>2017-04-15</p> <p>Concentrations of volatile halocarbons (VHCs), such as CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 , in the Bohai <span class="hlt">Sea</span> (BS) and North Yellow <span class="hlt">Sea</span> (NYS) were measured during the spring of 2014. The VHC concentrations varied widely and decreased with distance from the coast in the investigated area, with low values observed in the open <span class="hlt">sea</span>. Depth profiles of the VHCs were characterized by the highest concentration generally found in the upper water column. The distributions of the VHCs in the BS and NYS were clearly influenced by the combined effects of biological production, anthropogenic activities, and riverine input. The <span class="hlt">sea-to-air</span> fluxes of CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 in the study area were estimated to be 47.17, 56.63, 162.56, and 104.37nmolm -2 d -1 , respectively, indicating that the investigated area may be a source of atmospheric CHBr 2 Cl, CHBr 3 , C 2 HCl 3 , and C 2 Cl 4 in spring. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53E2309Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53E2309Y"><span>Effects of Northern Hemisphere <span class="hlt">Sea</span> Surface Temperature Changes on the Global <span class="hlt">Air</span> Quality</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yi, K.; Liu, J.</p> <p>2017-12-01</p> <p>The roles of regional <span class="hlt">sea</span> surface temperature (SST) variability on modulating the climate system and consequently the <span class="hlt">air</span> quality are investigated using the Community Earth System Model (CESM). Idealized, spatially uniform SST anomalies of +/- 1 °C are superimposed onto the North Pacific, North Atlantic, and North Indian Oceans individually. Ignoring the response of natural emissions, our simulations suggest large seasonal and regional variability of surface O3 and PM2.5 concentrations in response to SST anomalies, especially during boreal summers. Increasing the SST by 1 °C in one of the oceans generally decreases the surface O3 concentrations from 1 to 5 ppbv while increases the anthropogenic PM2.5 concentrations from 0.5 to 3 µg m-3. We implement the integrated <span class="hlt">process</span> rate (IPR) analysis in CESM and find that meteorological transport in response to SST changes is the key <span class="hlt">process</span> causing <span class="hlt">air</span> pollutant perturbations in most cases. During boreal summers, the increase in tropical SST over different ocean basins enhances deep convection, which significantly increases the <span class="hlt">air</span> temperature over the upper troposphere and trigger large-scale subsidence over nearby and remote regions. These <span class="hlt">processes</span> tend to increase tropospheric stability and suppress rainfall at lower mid-latitudes. Consequently, it reduces the vertical transport of O3 to the surface while facilitating the accumulation of PM2.5 concentrations over most regions. In addition, this regional SST warming may also considerably suppress intercontinental transport of <span class="hlt">air</span> pollution as confirmed with idealized CO-like tracers. Our findings indicate a robust linkage between basin-scale SST variability and regional <span class="hlt">air</span> quality, which can help local <span class="hlt">air</span> quality management.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3145753','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3145753"><span>Wasp-Waist <span class="hlt">Interactions</span> in the North <span class="hlt">Sea</span> Ecosystem</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Fauchald, Per; Skov, Henrik; Skern-Mauritzen, Mette; Johns, David; Tveraa, Torkild</p> <p>2011-01-01</p> <p>Background In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up <span class="hlt">interaction</span> and the abundance of prey through a top-down <span class="hlt">interaction</span>. Previous studies suggest that the North <span class="hlt">Sea</span> is mainly governed by bottom-up <span class="hlt">interactions</span> driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes. Methodology/Principal Findings We investigated the numeric <span class="hlt">interactions</span> among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North <span class="hlt">Sea</span> using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up <span class="hlt">interaction</span>. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down <span class="hlt">interactions</span>. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill. Conclusion/Significance Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up <span class="hlt">interaction</span> and that herring and sprat were important in regulating zooplankton through top-down <span class="hlt">interactions</span>. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” <span class="hlt">interactions</span> might be more important in the North <span class="hlt">Sea</span> than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades. PMID:21829494</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..MARG36008W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..MARG36008W"><span>Emergent Fermi <span class="hlt">Sea</span> in A System of <span class="hlt">Interacting</span> Bosons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Yinghai; Jain, Jainendra</p> <p>2015-03-01</p> <p>An understanding of the possible ways in which <span class="hlt">interactions</span> can produce fundamentally new emergent many-body states is a central problem of condensed matter physics. We ask if a Fermi <span class="hlt">sea</span> can arise in a system of bosons subject to contact <span class="hlt">interaction</span>. Based on exact diagonalization studies and variational wave functions, we predict that such a state is likely to occur when a system of two-component bosons in two dimensions, <span class="hlt">interacting</span> via a species independent contact <span class="hlt">interaction</span>, is exposed to a synthetic magnetic field of strength that corresponds to a filling factor of unity. The bosons each bind a single vortex as a result of the repulsive <span class="hlt">interaction</span>, and these fermionic bound states, namely composite fermions, form a spin-singlet Fermi <span class="hlt">sea</span>. Financial support from the DOE under Grant No. DE-SC0005042.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22103582','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22103582"><span>Distribution and <span class="hlt">air-sea</span> exchange of current-use pesticides (CUPs) from East Asia to the high Arctic Ocean.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf</p> <p>2012-01-03</p> <p>Surface seawater and marine boundary layer <span class="hlt">air</span> samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China <span class="hlt">Sea</span> to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic <span class="hlt">air</span> samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the <span class="hlt">Sea</span> of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi <span class="hlt">Seas</span>. The dissolved CUPs in ocean water ranged widely from <MDL to 111 pg/L. Latitudinal trends of α-endosulfan, chlorpyrifos, and dicofol in seawater were roughly consistent with their latitudinal trends in <span class="hlt">air</span>. Trifluralin in seawater was relatively high in the <span class="hlt">Sea</span> of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi <span class="hlt">Sea</span>. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi <span class="hlt">Sea</span> and in East Asia. The <span class="hlt">air-sea</span> gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi <span class="hlt">Sea</span>, while trifluralin showed stronger deposition in Chukchi <span class="hlt">Sea</span> (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). <span class="hlt">Air-sea</span> gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.3887K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.3887K"><span><span class="hlt">Air-Sea</span> exchange of biogenic volatile organic compounds and the impact on aerosol particle size distributions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kim, Michelle J.; Novak, Gordon A.; Zoerb, Matthew C.; Yang, Mingxi; Blomquist, Byron W.; Huebert, Barry J.; Cappa, Christopher D.; Bertram, Timothy H.</p> <p>2017-04-01</p> <p>We report simultaneous, underway eddy covariance measurements of the vertical flux of isoprene, total monoterpenes, and dimethyl sulfide (DMS) over the Northern Atlantic Ocean during fall. Mean isoprene and monoterpene <span class="hlt">sea-to-air</span> vertical fluxes were significantly lower than mean DMS fluxes. While rare, intense monoterpene <span class="hlt">sea-to-air</span> fluxes were observed, coincident with elevated monoterpene mixing ratios. A statistically significant correlation between isoprene vertical flux and short wave radiation was not observed, suggesting that photochemical <span class="hlt">processes</span> in the surface microlayer did not enhance isoprene emissions in this study region. Calculations of secondary organic aerosol production rates (PSOA) for mean isoprene and monoterpene emission rates sampled here indicate that PSOA is on average <0.1 μg m-3 d-1. Despite modest PSOA, low particle number concentrations permit a sizable role for condensational growth of monoterpene oxidation products in altering particle size distributions and the concentration of cloud condensation nuclei during episodic monoterpene emission events from the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..44.1414C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..44.1414C"><span>Suppressing breakers with polar oil films: Using an epic <span class="hlt">sea</span> rescue to model wave energy budgets</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cox, Charles S.; Zhang, Xin; Duda, Timothy F.</p> <p>2017-02-01</p> <p>Oil has been used to still stormy <span class="hlt">seas</span> for centuries, but the mechanisms are poorly understood. Here we examine the <span class="hlt">processes</span> by using quantitative information from a remarkable 1883 <span class="hlt">sea</span> rescue where oil was used to reduce large breakers during a storm. Modeling of the oil film's extent and waves under the film suggests that large breakers were suppressed by a reduction of wind energy input. Modification of surface roughness by the film is hypothesized to alter the wind profile above the <span class="hlt">sea</span> and the energy flow. The results are central to understanding <span class="hlt">air-sea</span> momentum exchange, including its role in such <span class="hlt">processes</span> as cyclone growth and storm surge, although they address only one aspect of the complex problem of wind <span class="hlt">interaction</span> with the ocean surface.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918364H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918364H"><span><span class="hlt">Sea</span> Ice Mass Balance Buoys (IMBs): First Results from a Data <span class="hlt">Processing</span> Intercomparison Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoppmann, Mario; Tiemann, Louisa; Itkin, Polona</p> <p>2017-04-01</p> <p>IMBs are autonomous instruments able to continuously monitor the growth and melt of <span class="hlt">sea</span> ice and its snow cover at a single point on an ice floe. Complementing field expeditions, remote sensing observations and modelling studies, these in-situ data are crucial to assess the mass balance and seasonal evolution of <span class="hlt">sea</span> ice and snow in the polar oceans. Established subtypes of IMBs combine coarse-resolution temperature profiles through <span class="hlt">air</span>, snow, ice and ocean with ultrasonic pingers to detect snow accumulation and ice thermodynamic growth. Recent technological advancements enable the use of high-resolution temperature chains, which are also able to identify the surrounding medium through a „heating cycle". The temperature change during this heating cycle provides additional information on the internal properties and <span class="hlt">processes</span> of the ice. However, a unified data <span class="hlt">processing</span> technique to reliably and accurately determine <span class="hlt">sea</span> ice thickness and snow depth from this kind of data is still missing, and an unambiguous interpretation remains a challenge. Following the need to improve techniques for remotely measuring <span class="hlt">sea</span> ice mass balance, an international IMB working group has recently been established. The main goals are 1) to coordinate IMB deployments, 2) to enhance current IMB data <span class="hlt">processing</span> and -interpretation techniques, and 3) to provide standardized IMB data products to a broader community. Here we present first results from two different data <span class="hlt">processing</span> algorithms, applied to selected IMB datasets from the Arctic and Antarctic. Their performance with regard to <span class="hlt">sea</span> ice thickness and snow depth retrieval is evaluated, and an uncertainty is determined. Although several challenges and caveats in IMB data <span class="hlt">processing</span> and -interpretation are found, such datasets bear great potential and yield plenty of useful information about <span class="hlt">sea</span> ice properties and <span class="hlt">processes</span>. It is planned to include many more algorithms from contributors within the working group, and we explicitly invite</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMOS53C1336T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMOS53C1336T"><span>Carbon Dioxide Variability in the Gulf of Trieste (GOT) in the Northern Adriatic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turk, D.; McGillis, W. R.; Malacic, V.; Degrandpre, M.</p> <p>2008-12-01</p> <p>Coastal marine regions such as the Gulf of Trieste GOT in the Northern Adriatic <span class="hlt">Sea</span> serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for <span class="hlt">air-sea</span> carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic <span class="hlt">Sea</span>. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of <span class="hlt">air-sea</span> exchange during Bora high wind events. The unique combination of these environmental <span class="hlt">processes</span> and relatively small size of the area makes the region an excellent study site for investigations of <span class="hlt">air-sea</span> <span class="hlt">interaction</span>, and changes in biology and carbon chemistry. However, there is a dearth of current data or information from the region. Here we present the first measurements of <span class="hlt">air</span> and water CO2 flux in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy Piran, Slovenia using the SAMI CO2 sensor during spring and late summer and fall 2007. CO2 measurements were combined with hydrological and biological observations to evaluate the <span class="hlt">processes</span> that control carbon cycling in the region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014APS..MARG40002H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014APS..MARG40002H"><span>Ice sheet-ocean <span class="hlt">interactions</span> and <span class="hlt">sea</span> level change</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heimbach, Patrick</p> <p>2014-03-01</p> <p>Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global <span class="hlt">sea</span> level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean <span class="hlt">interactions</span>. <span class="hlt">Processes</span> involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer <span class="hlt">processes</span> to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PrOce.109..104C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PrOce.109..104C"><span><span class="hlt">Sea</span> surface microlayers: A unified physicochemical and biological perspective of the <span class="hlt">air</span>-ocean interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cunliffe, Michael; Engel, Anja; Frka, Sanja; Gašparović, Blaženka; Guitart, Carlos; Murrell, J. Colin; Salter, Matthew; Stolle, Christian; Upstill-Goddard, Robert; Wurl, Oliver</p> <p>2013-02-01</p> <p>The <span class="hlt">sea</span> surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system <span class="hlt">processes</span>, including the synthesis, transformation and cycling of organic material, and the <span class="hlt">air-sea</span> exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in <span class="hlt">air-sea</span> gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PolSc..10..323Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PolSc..10..323Y"><span>Mapping of the <span class="hlt">air-sea</span> CO2 flux in the Arctic Ocean and its adjacent <span class="hlt">seas</span>: Basin-wide distribution and seasonal to interannual variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasunaka, Sayaka; Murata, Akihiko; Watanabe, Eiji; Chierici, Melissa; Fransson, Agneta; van Heuven, Steven; Hoppema, Mario; Ishii, Masao; Johannessen, Truls; Kosugi, Naohiro; Lauvset, Siv K.; Mathis, Jeremy T.; Nishino, Shigeto; Omar, Abdirahman M.; Olsen, Are; Sasano, Daisuke; Takahashi, Taro; Wanninkhof, Rik</p> <p>2016-09-01</p> <p>We produced 204 monthly maps of the <span class="hlt">air-sea</span> CO2 flux in the Arctic north of 60°N, including the Arctic Ocean and its adjacent <span class="hlt">seas</span>, from January 1997 to December 2013 by using a self-organizing map technique. The partial pressure of CO2 (pCO2) in surface water data were obtained by shipboard underway measurements or calculated from alkalinity and total inorganic carbon of surface water samples. Subsequently, we investigated the basin-wide distribution and seasonal to interannual variability of the CO2 fluxes. The 17-year annual mean CO2 flux shows that all areas of the Arctic Ocean and its adjacent <span class="hlt">seas</span> were net CO2 sinks. The estimated annual CO2 uptake by the Arctic Ocean was 180 TgC yr-1. The CO2 influx was strongest in winter in the Greenland/Norwegian <span class="hlt">Seas</span> (>15 mmol m-2 day-1) and the Barents <span class="hlt">Sea</span> (>12 mmol m-2 day-1) because of strong winds, and strongest in summer in the Chukchi <span class="hlt">Sea</span> (∼10 mmol m-2 day-1) because of the <span class="hlt">sea</span>-ice retreat. In recent years, the CO2 uptake has increased in the Greenland/Norwegian <span class="hlt">Sea</span> and decreased in the southern Barents <span class="hlt">Sea</span>, owing to increased and decreased <span class="hlt">air-sea</span> pCO2 differences, respectively.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...356..389O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...356..389O"><span>Separator electrode assembly (<span class="hlt">SEA</span>) with 3-dimensional bioanode and removable <span class="hlt">air</span>-cathode boosts microbial fuel cell performance</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oliot, M.; Etcheverry, L.; Mosdale, A.; Basseguy, R.; Délia, M.-L.; Bergel, A.</p> <p>2017-07-01</p> <p>Separator electrode assemblies (<span class="hlt">SEAs</span>) were designed by associating a microbial anode with an <span class="hlt">air</span>-cathode on each side of three different kinds of separator: plastic grid, J-cloth and baking paper. The <span class="hlt">SEA</span> was designed to allow the <span class="hlt">air</span>-cathode be removed and replaced without disturbing the bioanode. Power densities up to 6.4 W m-2 were produced by the Grid-<span class="hlt">SEAs</span> (on average 5.9 ± 0.5 W m-2) while JCloth-<span class="hlt">SEAs</span> and Paper-<span class="hlt">SEAs</span> produced 4.8 ± 0.3 and 1.8 ± 0.1 W m-2, respectively. Power densities decreased with time mainly because of fast deterioration of the cathode kinetics. They always increased again when the <span class="hlt">air</span>-cathodes were replaced by new ones; the Grid-<span class="hlt">SEAs</span> were thus boosted above 4 W m-2 after 7 weeks of operation. The theoretical analysis of <span class="hlt">SEA</span> functioning suggested that the high performance of the Grid-<span class="hlt">SEAs</span> was due to the combination of several virtuous phenomena: the efficient pH balance thanks to free diffusion through the large-mesh grid, the likely mitigation of oxygen crossover thanks to the 3-dimensional structure of the bioanode and the possibility of overcoming cathode fouling by replacing it during MFC operation. Finally, the microbial community of all bioanodes showed stringent selection of Proteiniphilum acetatigenes in proportion with the performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA628532','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA628532"><span><span class="hlt">Air/Sea</span> Transfer of Gases and Aerosols</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2003-09-30</p> <p>of tubing from the boom at the western end of the pier. The boom housed the inlet and a Campbell CSAT sonic anemometer, which measured three...with the return flow from breaking waves onshore. 0 5 10 15 20 25 30 35 40 45 50 0 1 2 3 4 5 6 7 U10 (m/s) k 6 00 (c m /h r ) this study wanninkof...ultimately result in improved algorithms relating the state of the <span class="hlt">air/sea</span> interface to remotely sensed properties. REFERENCES Bandy, A, R ., D</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17379807','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17379807"><span>Bottom-up determination of <span class="hlt">air-sea</span> momentum exchange under a major tropical cyclone.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jarosz, Ewa; Mitchell, Douglas A; Wang, David W; Teague, William J</p> <p>2007-03-23</p> <p>As a result of increasing frequency and intensity of tropical cyclones, an accurate forecasting of cyclone evolution and ocean response is becoming even more important to reduce threats to lives and property in coastal regions. To improve predictions, accurate evaluation of the <span class="hlt">air-sea</span> momentum exchange is required. Using current observations recorded during a major tropical cyclone, we have estimated this momentum transfer from the ocean side of the <span class="hlt">air-sea</span> interface, and we discuss it in terms of the drag coefficient. For winds between 20 and 48 meters per second, this coefficient initially increases and peaks at winds of about 32 meters per second before decreasing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989JGR....9418195J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989JGR....9418195J"><span><span class="hlt">Sea</span> ice and oceanic <span class="hlt">processes</span> on the Ross <span class="hlt">Sea</span> continental shelf</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jacobs, S. S.; Comiso, J. C.</p> <p>1989-12-01</p> <p>We have investigated the spatial and temporal variability of Antarctic <span class="hlt">sea</span> ice concentrations on the Ross <span class="hlt">Sea</span> continental shelf, in relation to oceanic and atmospheric forcing. <span class="hlt">Sea</span> ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86% during winter with little month-to-month or interannual variability. The large spring Ross <span class="hlt">Sea</span> polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn. Newly identified Pennell and Ross Passage polynyas near the continental shelf break appear to be maintained in part by divergence above a submarine bank and by upwelling of warmer water near the slope front. Warmer subsurface water enters the shelf region year-round and will retard ice growth and enhance heat flux to the atmosphere when entrained in the strong winter vertical circulation. Temperatures at 125-m depth on a mooring near the Ross Ice Shelf during July 1984 averaged 0.15°C above freezing, sufficient to support a vertical heat flux above 100 W/m2. Monthly average subsurface ocean temperatures along the Ross Ice Shelf lag the <span class="hlt">air</span> temperature cycle and begin to rise several weeks before spring ice breakout. The coarse SMMR resolution and dynamic ice shelf coastlines can compromise the use of microwave <span class="hlt">sea</span> ice data near continental boundaries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AdAtS..35..469Z"><span>Effects of <span class="hlt">Sea</span>-Surface Waves and Ocean Spray on <span class="hlt">Air-Sea</span> Momentum Fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Ting; Song, Jinbao</p> <p>2018-04-01</p> <p>The effects of <span class="hlt">sea</span>-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the <span class="hlt">sea</span> surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using <span class="hlt">interactions</span> between ocean-spray droplets and wind-velocity shear. Wind profiles and <span class="hlt">sea</span>-surface drag coefficients were calculated for low to high wind speeds for wind-generated <span class="hlt">sea</span> at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and <span class="hlt">sea</span>-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the <span class="hlt">sea</span>-spray generation layer, accelerating near-<span class="hlt">sea</span>-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6643109-processing-seamarc-swath-sonar-imagery','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6643109-processing-seamarc-swath-sonar-imagery"><span><span class="hlt">Processing</span> of <span class="hlt">Sea</span>MARC swath sonar imagery</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pratson, L.; Malinverno, A.; Edwards, M.</p> <p>1990-05-01</p> <p>Side-scan swath sonar systems have become an increasingly important means of mapping the <span class="hlt">sea</span> floor. Two such systems are the deep-towed, high-resolution <span class="hlt">Sea</span>MARC I sonar, which has a variable swath width of up to 5 km, and the shallow-towed, lower-resolution <span class="hlt">Sea</span>MARC II sonar, which has a swath width of 10 km. The <span class="hlt">sea</span>-floor imagery of acoustic backscatter output by the <span class="hlt">Sea</span>MARC sonars is analogous to aerial photographs and airborne side-looking radar images of continental topography. Geologic interpretation of the <span class="hlt">sea</span>-floor imagery is greatly facilitated by image <span class="hlt">processing</span>. Image <span class="hlt">processing</span> of the digital backscatter data involves removal of noise by medianmore » filtering, spatial filtering to remove sonar scans of anomalous intensity, across-track corrections to remove beam patterns caused by nonuniform response of the sonar transducers to changes in incident angle, and contrast enhancement by histogram equalization to maximize the available dynamic range. Correct geologic interpretation requires submarine structural fabrics to be displayed in their proper locations and orientations. Geographic projection of <span class="hlt">sea</span>-floor imagery is achieved by merging the enhanced imagery with the sonar vehicle navigation and correcting for vehicle attitude. Co-registration of bathymetry with sonar imagery introduces <span class="hlt">sea</span>-floor relief and permits the imagery to be displayed in three-dimensional perspectives, furthering the ability of the marine geologist to infer the <span class="hlt">processes</span> shaping formerly hidden subsea terrains.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.2629R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.2629R"><span><span class="hlt">Air</span>- ice-snow <span class="hlt">interaction</span> in the Northern Hemisphere under different stability conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Repina, Irina; Chechin, Dmitry; Artamonov, Arseny</p> <p>2013-04-01</p> <p>The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface <span class="hlt">interaction</span> and the diffusion of impurities in the operational models of <span class="hlt">air</span> pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as <span class="hlt">sea</span> ice, marginal ice zone or stormy <span class="hlt">sea</span>). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface <span class="hlt">air</span> layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow <span class="hlt">interaction</span> under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C13A0809M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C13A0809M"><span>Modeling of multi-phase <span class="hlt">interactions</span> of reactive nitrogen between snow and <span class="hlt">air</span> in Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.</p> <p>2016-12-01</p> <p>In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional <span class="hlt">processes</span> that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume <span class="hlt">air</span>-liquid <span class="hlt">interactions</span> and aqueous phase chemistry taking place at the interface between the snow grain and <span class="hlt">air</span>. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (<30 kg m-2 yr-1); and Halley, a coastal site with at times at or above freezing temperatures during summer, high accumulation rate and high background level of <span class="hlt">sea</span> salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two <span class="hlt">processes</span>, thermodynamic equilibrium of HNO3 between interstitial <span class="hlt">air</span> and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcMod.120...27F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcMod.120...27F"><span>Kinetic energy flux budget across <span class="hlt">air-sea</span> interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fan, Yalin; Hwang, Paul</p> <p>2017-12-01</p> <p>The kinetic energy (KE) fluxes into subsurface currents (EFc) is an important boundary condition for ocean circulation models. Traditionally, numerical models assume the KE flux from wind (EFair) is identical to EFc, that is, no net KE is gained (or lost) by surface waves. This assumption, however, is invalid when the surface wave field is not fully developed, and acquires KE when it grows in space or time. In this study, numerical experiments are performed to investigate the KE flux budget across the <span class="hlt">air-sea</span> interface under both uniform and idealized tropical cyclone (TC) winds. The wave fields are simulated using the WAVEWATCH III model under different wind forcing. The difference between EFair and EFc is estimated using an <span class="hlt">air-sea</span> KE budget model. To address the uncertainty of these estimates resides in the variation of source functions, two source function packages are used for this study: the ST4 source package (Ardhuin et al, 2010), and the ST6 source package (Babanin, 2011). The modeled EFc is significantly reduced relative to EFair under growing <span class="hlt">seas</span> for both the uniform and TC experiments. The reduction can be as large as 20%, and the variation of this ratio is highly dependent on the choice of source function for the wave model. Normalized EFc are found to be consistent with analytical expressions by Hwang and Sletten (2008) and Hwang and Walsh (2016) and field observations by Terray et al. (1996) and Drennan et al. (1996), while the scatters are more widely in the TC cases due to the complexity of the associated wave field. The waves may even give up KE to subsurface currents in the left rear quadrant of fast moving storms. Our results also suggest that the normalized KE fluxes may depend on both wave age and friction velocity (u*).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ECSS..176....1M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ECSS..176....1M"><span>Temporal variability of <span class="hlt">air-sea</span> CO2 exchange in a low-emission estuary</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte</p> <p>2016-07-01</p> <p>There is the need for further study of whether global estimates of <span class="hlt">air-sea</span> CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The <span class="hlt">air-sea</span> CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized <span class="hlt">air-sea</span> CO2 exchanges and changed the net <span class="hlt">air-sea</span> CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26931659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26931659"><span><span class="hlt">Air-sea</span> exchange of gaseous mercury in the tropical coast (Luhuitou fringing reef) of the South China <span class="hlt">Sea</span>, the Hainan Island, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ci, Zhijia; Zhang, Xiaoshan; Wang, Zhangwei</p> <p>2016-06-01</p> <p>The <span class="hlt">air-sea</span> exchange of gaseous mercury (mainly Hg(0)) in the tropical ocean is an important part of the global Hg biogeochemical cycle, but the related investigations are limited. In this study, we simultaneously measured Hg(0) concentrations in surface waters and overlaying <span class="hlt">air</span> in the tropical coast (Luhuitou fringing reef) of the South China <span class="hlt">Sea</span> (SCS), Hainan Island, China, for 13 days on January-February 2015. The purpose of this study was to explore the temporal variation of Hg(0) concentrations in <span class="hlt">air</span> and surface waters, estimate the <span class="hlt">air-sea</span> Hg(0) flux, and reveal their influencing factors in the tropical coastal environment. The mean concentrations (±SD) of Hg(0) in <span class="hlt">air</span> and total Hg (THg) in waters were 2.34 ± 0.26 ng m(-3) and 1.40 ± 0.48 ng L(-1), respectively. Both Hg(0) concentrations in waters (53.7 ± 18.8 pg L(-1)) and Hg(0)/THg ratios (3.8 %) in this study were significantly higher than those of the open water of the SCS in winter. Hg(0) in waters usually exhibited a clear diurnal variation with increased concentrations in daytime and decreased concentrations in nighttime, especially in cloudless days with low wind speed. Linear regression analysis suggested that Hg(0) concentrations in waters were positively and significantly correlated to the photosynthetically active radiation (PAR) (R (2) = 0.42, p < 0.001). Surface waters were always supersaturated with Hg(0) compared to <span class="hlt">air</span> (the degree of saturation, 2.46 to 13.87), indicating that the surface water was one of the atmospheric Hg(0) sources. The <span class="hlt">air-sea</span> Hg(0) fluxes were estimated to be 1.73 ± 1.25 ng m(-2) h(-1) with a large range between 0.01 and 6.06 ng m(-2) h(-1). The high variation of Hg(0) fluxes was mainly attributed to the greatly temporal variation of wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A14C..07P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A14C..07P"><span><span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> <span class="hlt">Processes</span> in Low and High-Resolution Coupled Climate Model Simulations for the Southeast Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Porto da Silveira, I.; Zuidema, P.; Kirtman, B. P.</p> <p>2017-12-01</p> <p>The rugged topography of the Andes Cordillera along with strong coastal upwelling, strong <span class="hlt">sea</span> surface temperatures (SST) gradients and extensive but geometrically-thin stratocumulus decks turns the Southeast Pacific (SEP) into a challenge for numerical modeling. In this study, hindcast simulations using the Community Climate System Model (CCSM4) at two resolutions were analyzed to examine the importance of resolution alone, with the parameterizations otherwise left unchanged. The hindcasts were initialized on January 1 with the real-time oceanic and atmospheric reanalysis (CFSR) from 1982 to 2003, forming a 10-member ensemble. The two resolutions are (0.1o oceanic and 0.5o atmospheric) and (1.125o oceanic and 0.9o atmospheric). The SST error growth in the first six days of integration (fast errors) and those resulted from model drift (saturated errors) are assessed and compared towards evaluating the model <span class="hlt">processes</span> responsible for the SST error growth. For the high-resolution simulation, SST fast errors are positive (+0.3oC) near the continental borders and negative offshore (-0.1oC). Both are associated with a decrease in cloud cover, a weakening of the prevailing southwesterly winds and a reduction of latent heat flux. The saturated errors possess a similar spatial pattern, but are larger and are more spatially concentrated. This suggests that the <span class="hlt">processes</span> driving the errors already become established within the first week, in contrast to the low-resolution simulations. These, instead, manifest too-warm SSTs related to too-weak upwelling, driven by too-strong winds and Ekman pumping. Nevertheless, the ocean surface tends to be cooler in the low-resolution simulation than the high-resolution due to a higher cloud cover. Throughout the integration, saturated SST errors become positive and could reach values up to +4oC. These are accompanied by upwelling dumping and a decrease in cloud cover. High and low resolution models presented notable differences in how SST</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28833818','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28833818"><span>Considering land-<span class="hlt">sea</span> <span class="hlt">interactions</span> and trade-offs for food and biodiversity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cottrell, Richard S; Fleming, Aysha; Fulton, Elizabeth A; Nash, Kirsty L; Watson, Reg A; Blanchard, Julia L</p> <p>2018-02-01</p> <p>With the human population expected to near 10 billion by 2050, and diets shifting towards greater per-capita consumption of animal protein, meeting future food demands will place ever-growing burdens on natural resources and those dependent on them. Solutions proposed to increase the sustainability of agriculture, aquaculture, and capture fisheries have typically approached development from single sector perspectives. Recent work highlights the importance of recognising links among food sectors, and the challenge cross-sector dependencies create for sustainable food production. Yet without understanding the full suite of <span class="hlt">interactions</span> between food systems on land and <span class="hlt">sea</span>, development in one sector may result in unanticipated trade-offs in another. We review the <span class="hlt">interactions</span> between terrestrial and aquatic food systems. We show that most of the studied land-<span class="hlt">sea</span> <span class="hlt">interactions</span> fall into at least one of four categories: ecosystem connectivity, feed interdependencies, livelihood <span class="hlt">interactions</span>, and climate feedback. Critically, these <span class="hlt">interactions</span> modify nutrient flows, and the partitioning of natural resource use between land and <span class="hlt">sea</span>, amid a backdrop of climate variability and change that reaches across all sectors. Addressing counter-productive trade-offs resulting from land-<span class="hlt">sea</span> links will require simultaneous improvements in food production and consumption efficiency, while creating more sustainable feed products for fish and livestock. Food security research and policy also needs to better integrate aquatic and terrestrial production to anticipate how cross-sector <span class="hlt">interactions</span> could transmit change across ecosystem and governance boundaries into the future. © 2017 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRD..119.1073Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRD..119.1073Z"><span>Selected current-use and historic-use pesticides in <span class="hlt">air</span> and seawater of the Bohai and Yellow <span class="hlt">Seas</span>, China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhong, Guangcai; Tang, Jianhui; Xie, Zhiyong; Möller, Axel; Zhao, Zhen; Sturm, Renate; Chen, Yingjun; Tian, Chongguo; Pan, Xiaohui; Qin, Wei; Zhang, Gan; Ebinghaus, Ralf</p> <p>2014-01-01</p> <p>Consumption of pesticides in China has increased rapidly in recent years; however, occurrence and fate of current-use pesticides (CUPs) in China coastal waters are poorly understood. Globally banned pesticides, so-called historic-use pesticides (HUPs), are still commonly observed in the environment. In this work, <span class="hlt">air</span> and surface seawater samples taken from the Bohai and Yellow <span class="hlt">Seas</span> in May 2012 were analyzed for CUPs including trifluralin, quintozene, chlorothalonil, dicofol, chlorpyrifos, and dacthal, as well as HUPs (hexachlorobenzene (HCB), hexachlorocyclohexanes (HCHs), and endosulfan). CUP profile in both <span class="hlt">air</span> and seawater samples generally reflected their consumption patterns in China. HUPs in the <span class="hlt">air</span> and seawater samples were in comparable levels as those of CUPs with high concentrations. α-Endosulfan, dicofol, and chlorothalonil showed strong net deposition likely resulting from their intensive use in recent years, while CUPs with low consumption amount (quintozene and dacthal) were close to equilibrium at most samplings sites. Another CUP with high usage amout (i.e., chlorpyrifos) underwent volatilization possibly due to its longer half-life in seawater than that in <span class="hlt">air</span>. α-HCH and γ-HCH were close to equilibrium in the Bohai <span class="hlt">Sea</span>, but mainly underwent net deposition in the Yellow <span class="hlt">Sea</span>. The net deposition of α-HCH could be attributed to polluted <span class="hlt">air</span> pulses from the East China identified by <span class="hlt">air</span> mass back trajectories. β-HCH showed net volatilization in the Bohai <span class="hlt">Sea</span>, which was driven by its relative enrichment in seawater. HCB either slightly favored net volatilization or was close to equilibrium in the Bohai and Yellow <span class="hlt">Seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy..tmp..917D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy..tmp..917D"><span>Diversity of moderate El Niño events evolution: role of <span class="hlt">air-sea</span> <span class="hlt">interactions</span> in the eastern tropical Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dewitte, Boris; Takahashi, Ken</p> <p>2017-12-01</p> <p>In this paper we investigate the evolution of moderate El Niño events during their developing phase with the objective to understand why some of them did not evolve as extreme events despite favourable conditions for the non-linear amplification of the Bjerknes feedback (i.e. warm SST in Austral winter in the eastern equatorial Pacific). Among the moderate events, two classes are considered consisting in the Eastern Pacific (EP) El Niño events and Central Pacific (CP) events. We first show that the observed SST variability across moderate El Niño events (i.e. inter-event variability) is largest in the far eastern Pacific (east of 130°W) in the Austral winter prior to their peak, which is associated to either significant warm anomaly (moderate EP El Niño) or an anomaly between weak warm and cold (moderate CP El Niño) as reveals by the EOF analysis of the SST anomaly evolution during the development phase of El Niño across the El Niño years. Singular value decomposition (SVD) analysis of SST and wind stress anomalies across the El Niño years further indicates that the inter-event SST variability is associated with an <span class="hlt">air-sea</span> mode explaining 31% of the covariance between SST and wind stress. The associated SST pattern consists in SST anomalies developing along the coast of Ecuador in Austral fall and expanding westward as far as 130°W in Austral winter. The associated wind stress pattern features westerlies (easterlies) west of 130°W along the equator peaking around June-August for EP (CP) El Niño events. This <span class="hlt">air-sea</span> mode is interpreted as resulting from a developing seasonal Bjerknes feedback for EP El Niño events since it is shown to be associated to a Kelvin wave response at its peak phase. However equatorial easterlies east of 130°W emerge in September that counters the growing SST anomalies associated to the <span class="hlt">air-sea</span> mode. These have been particularly active during both the 1972 and the 2015 El Niño events. It is shown that the easterlies are</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy...50...83B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy...50...83B"><span>Greenland coastal <span class="hlt">air</span> temperatures linked to Baffin Bay and Greenland <span class="hlt">Sea</span> ice conditions during autumn through regional blocking patterns</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.</p> <p>2018-01-01</p> <p>Variations in <span class="hlt">sea</span> ice freeze onset and regional <span class="hlt">sea</span> surface temperatures (SSTs) in Baffin Bay and Greenland <span class="hlt">Sea</span> are linked to autumn surface <span class="hlt">air</span> temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland <span class="hlt">Sea</span>. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern <span class="hlt">sea</span> ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm <span class="hlt">air</span> from lower latitudes and local warm <span class="hlt">air</span> advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered <span class="hlt">seas</span> bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAMES...9.1641P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAMES...9.1641P"><span>Modeling the <span class="hlt">air-sea</span> feedback system of Madeira Island</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pullen, Julie; Caldeira, Rui; Doyle, James D.; May, Paul; Tomé, Ricardo</p> <p>2017-07-01</p> <p>A realistic nested data-assimilating two-way coupled ocean/atmosphere modeling study (highest resolution 2 km) of Madeira Island was conducted for June 2011, when conditions were favorable for atmospheric vortex shedding. The simulation's island lee region exhibited relatively cloud-free conditions, promoting warmer ocean temperatures (˜2°C higher than adjacent waters). The model reasonably reproduced measured fields at 14 meteorological stations, and matched the dimensions and magnitude of the warm <span class="hlt">sea</span> surface temperature (SST) wake imaged by satellite. The warm SSTs in the wake are shown to imprint onto the atmospheric boundary layer (ABL) over several diurnal cycles by modulating the ABL depth up to ˜200-500 m. The erosion and dissipation of the warm ocean wake overnight was aided by atmospheric drainage flow and offshore advection of cold <span class="hlt">air</span> (ΔT = 2°C) that produced strong upward heat fluxes (˜50 W/m2 sensible and ˜250 W/m2 latent) on an episodic basis. Nevertheless, the warm wake was never entirely eroded at night due to the cumulative effect of the diurnal cycle. The spatial pattern of the diurnal warming varied day-to-day in location and extent. Significant mutual <span class="hlt">interaction</span> of the oceanic and atmospheric boundary layers was diagnosed via fluxes and temperature cross sections and reinforced by sensitivity runs. The simulation produces for the first time the <span class="hlt">interactive</span> nature of the ocean and atmosphere boundary layers in the warm wake region of an island with complex terrain.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005GeoRL..32.8606C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005GeoRL..32.8606C"><span>Control of <span class="hlt">air-sea</span> CO2 disequilibria in the subtropical NE Atlantic by planktonic metabolism under the ocean skin</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Calleja, María Ll.; Duarte, Carlos M.; Navarro, Nuria; Agustí, Susana</p> <p>2005-04-01</p> <p>The <span class="hlt">air-sea</span> CO2 gradient at the subtropical NE Atlantic was strongly dependent on the metabolism of the planktonic community within the top cms, but independent of that of the communities deeper in the water column. Gross primary production (GPP) and community respiration (R) of the planktonic community within the top cms exceeded those of the communities deeper in the water column by >10-fold and >7 fold, respectively. Net autotrophic metabolism (GPP > R) at the top cms of the water column in some stations drove CO2 uptake by creating a CO2 deficit at the ocean surface, while net heterotrophic metabolism (GPP < R) at the top cms of the water column in other stations resulted in strong CO2 supersaturation, driving CO2 emissions. These results suggest a strong control of the <span class="hlt">air-sea</span> pCO2 anomaly by intense biological <span class="hlt">processes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMOS11D1692W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMOS11D1692W"><span>Hurricane-related <span class="hlt">air-sea</span> <span class="hlt">interactions</span>, circulation modifications, and coastal impacts on the eastern Louisiana coastline</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.</p> <p>2012-12-01</p> <p>Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate <span class="hlt">air-sea</span> <span class="hlt">interactions</span> pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1713324C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1713324C"><span>Spatial sensitivity of inorganic carbon to model setup: North <span class="hlt">Sea</span> and Baltic <span class="hlt">Sea</span> with ECOSMO</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Castano Primo, Rocio; Schrum, Corinna; Daewel, Ute</p> <p>2015-04-01</p> <p>In ocean biogeochemical models it is critical to capture the key <span class="hlt">processes</span> adequately so they do not only reproduce the observations but that those <span class="hlt">processes</span> are reproduced correctly. One key issue is the choice of parameters, which in most cases are estimates with large uncertainties. This can be the product of actual lack of detailed knowledge of the <span class="hlt">process</span>, or the manner the <span class="hlt">processes</span> are implemented, more or less complex. In addition, the model sensitivity is not necessarily homogenous across the spatial domain modelled, which adds another layer of complexity to biogeochemical modelling. In the particular case of the inorganic carbon cycle, there are several sets of carbonate constants that can be chosen. The calculated <span class="hlt">air-sea</span> CO2 flux is largely dependent on the parametrization chosen. In addition, the different parametrizations all the underlying <span class="hlt">processes</span> that in some way impact the carbon cycle beyond the carbonate dissociation and fluxes give results that can be significantly different. Examples of these <span class="hlt">processes</span> are phytoplankton growth rates or remineralization rates. Despite their geographical proximity, the North and Baltic <span class="hlt">Seas</span> exhibit very different dynamics. The North <span class="hlt">Sea</span> receives important inflows of Atlantic waters, while the Baltic <span class="hlt">Sea</span> is an almost enclosed system, with very little exchange from the North <span class="hlt">Sea</span>. Wind, tides, and freshwater supply act very differently, but dominantly structure the ecosystem dynamics on spatial and temporal scales. The biological community is also different. Cyanobacteria, which are important due to their ability to fix atmospheric nitrogen, and they are only present in the Baltic <span class="hlt">Sea</span>. These differentiating features have a strong impact in the biogeochemical cycles and ultimately shape the variations in the carbonate chemistry. Here the ECOSMO model was employed on the North <span class="hlt">Sea</span> and Baltic <span class="hlt">Sea</span>. The model is set so both are modelled at the same time, instead of having them run separately. ECOSMO is a 3-D coupled</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007396','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007396"><span>Preparation of the NASA <span class="hlt">Air</span> Quality Monitor for a U.S. Navy Submarine <span class="hlt">Sea</span> Trial</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Smith, Matthew J.; O'Connor, Sara Jane; Mudgett, Paul D.</p> <p>2017-01-01</p> <p>For the past 4 years, the <span class="hlt">Air</span> Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Onboard the ISS are two AQMs with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of <span class="hlt">air</span> quality aboard ISS for each crew increment. The US Navy is looking to update its submarine <span class="hlt">air</span> monitoring suite of instruments and the success of the AQM on ISS has led to a jointly planned submarine <span class="hlt">sea</span> trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which measures major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM <span class="hlt">sea</span> trial preparation and the analysis of most recent ISS data. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the <span class="hlt">sea</span> trial. Only one AQM will be deployed during the <span class="hlt">sea</span> trial, but this is sufficient for NASA purposes and to detect the compounds of interest to the US Navy for this trial. The data from the <span class="hlt">sea</span> trial will be compared to data from archival samples collected before, during, and after the trial period. This paper will start with a brief history of past collaborations between NASA and the U.S. and U.K. navies for trials of <span class="hlt">air</span> monitoring equipment. An overview of the AQM technology and protocols for the submarine trial will be presented. The majority of the presentation will focus on the AQM preparation and a summary of available data from the trial.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170006141&hterms=How+get+human+cloud&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DHow%2Bget%2Bhuman%2Bcloud%253F','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170006141&hterms=How+get+human+cloud&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DHow%2Bget%2Bhuman%2Bcloud%253F"><span>Satellite-Surface Perspectives of <span class="hlt">Air</span> Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-<span class="hlt">SEAS</span> BASELInE</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tsay, Si-Chee; Maring, Hal B.; Lin, Neng-Huei; Buntoung, Sumaman; Chantara, Somporn; Chuang, Hsiao-Chi; Gabriel, Philip M.; Goodloe, Colby S.; Holben, Brent N.; Hsiao, Ta-Chih; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170006141'); toggleEditAbsImage('author_20170006141_show'); toggleEditAbsImage('author_20170006141_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170006141_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170006141_hide"></p> <p>2016-01-01</p> <p>The objectives of 7-SEASBASELInE (Seven SouthEast Asian Studies Biomass-burning Aerosols and Stratocumulus Environment: Lifecycles and <span class="hlt">Interactions</span> Experiment) campaigns in spring 2013-2015 were to synergize measurements from uniquely distributed ground-based networks (e.g., AERONET (AErosol RObotic NETwork)), MPLNET ( NASA Micro-Pulse Lidar Network)) and sophisticated platforms (e.g.,SMARTLabs (Surface-based Mobile Atmospheric Research and Testbed Laboratories), regional contributing instruments), along with satellite observations retrievals and regional atmospheric transport chemical models to establish a critically needed database, and to advance our understanding of biomass-burning aerosols and trace gases in Southeast Asia (<span class="hlt">SEA</span>). We present a satellite-surface perspective of 7-SEASBASELInE and highlight scientific findings concerning: (1) regional meteorology of moisture fields conducive to the production and maintenance of low-level stratiform clouds over land; (2) atmospheric composition in a biomass-burning environment, particularly tracers-markers to serve as important indicators for assessing the state and evolution of atmospheric constituents; (3) applications of remote sensing to <span class="hlt">air</span> quality and impact on radiative energetics, examining the effect of diurnal variability of boundary-layer height on aerosol loading; (4) aerosol hygroscopicity and ground-based cloud radar measurements in aerosol-cloud <span class="hlt">processes</span> by advanced cloud ensemble models; and (5) implications of <span class="hlt">air</span> quality, in terms of toxicity of nanoparticles and trace gases, to human health. This volume is the third 7-<span class="hlt">SEAS</span> special issue (after Atmospheric Research, vol. 122, 2013; and Atmospheric Environment, vol. 78, 2013) and includes 27 papers published, with emphasis on <span class="hlt">air</span> quality and aerosol-cloud effects on the environment. BASELInE observations of stratiform clouds over <span class="hlt">SEA</span> are unique, such clouds are embedded in a heavy aerosol-laden environment and feature characteristically greater</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990009531','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990009531"><span><span class="hlt">Sea</span>WiFS Postlaunch Technical Report Series. Volume 2; AMT-5 Cruise Report</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hooker, Stanford B. (Editor); Firestone, Elaine R. (Editor); Aiken, James; Cummings, Denise G.; Gibb, Stuart W.; Rees, Nigel W.; Woodd-Walker, Rachel; Woodward, E. Malcolm S.; Woolfenden, James; Berthon, Jean-Francois; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_19990009531'); toggleEditAbsImage('author_19990009531_show'); toggleEditAbsImage('author_19990009531_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_19990009531_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_19990009531_hide"></p> <p>1998-01-01</p> <p>This report documents the scientific activities on board the Royal Research Ship (RRS) James Clark Ross (JCR) during the fifth Atlantic Meridional Transect (AMT-5), 14 September to 17 October 1997. There are three objectives of the AMT Program. The first is to derive an improved understanding of the links between biogeochemical <span class="hlt">processes</span>, biogenic gas exchange, <span class="hlt">air-sea</span> <span class="hlt">interactions</span>, and the effects on, and responses of, oceanic ecosystems to climate change. The second is to investigate the functional roles of biological particles and <span class="hlt">processes</span> that influence ocean color in ecosystem dynamics. The Program relates directly to algorithm development and the validation of remotely-sensed observations of ocean color. Because the <span class="hlt">Sea</span>-viewing Wide Field-of-view Sensor (<span class="hlt">Sea</span>WiFS) instrument achieved operational status during the cruise (on 18 September), AMT-5 was designated the <span class="hlt">Sea</span>WiFS Atlantic Characterization Experiment (<span class="hlt">Sea</span>ACE) and was the only major research cruise involved in the validation of <span class="hlt">Sea</span>WiFS data during the first 100 days of operations. The third objective involved the near-real time reporting of in situ light and pigment observations to the <span class="hlt">Sea</span>WiFS Project, so the performance of the satellite sensor could be determined.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC11B..05V"><span>The ocean mixed layer under Southern Ocean <span class="hlt">sea</span>-ice: seasonal cycle and forcing.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.</p> <p>2016-02-01</p> <p>The mixed-layer at the surface of the ocean is the gateway for all exchanges between <span class="hlt">air</span> and <span class="hlt">sea</span>. A vast area of the Southern Ocean is however seasonally capped by <span class="hlt">sea</span>-ice, which alters this gateway and the characteristic the ocean mixed-layer. The <span class="hlt">interaction</span> between the ocean mixed-layer and <span class="hlt">sea</span>-ice plays a key role for water-mass formation and circulation, carbon cycle, <span class="hlt">sea</span>-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the <span class="hlt">processes</span> responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under <span class="hlt">sea</span>-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under <span class="hlt">sea</span>-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of <span class="hlt">sea</span> surface salinity and temperature are primarily driven by surface <span class="hlt">processes</span>, dominated by <span class="hlt">sea</span>-ice freshwater flux for the salt budget, and by <span class="hlt">air-sea</span> flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional <span class="hlt">sea</span>-ice distribution or <span class="hlt">sea</span>-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19126534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19126534"><span>Marine mammals' influence on ecosystem <span class="hlt">processes</span> affecting fisheries in the Barents <span class="hlt">Sea</span> is trivial.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Corkeron, Peter J</p> <p>2009-04-23</p> <p>Some interpretations of ecosystem-based fishery management include culling marine mammals as an integral component. The current Norwegian policy on marine mammal management is one example. Scientific support for this policy includes the Scenario Barents <span class="hlt">Sea</span> (SBS) models. These modelled <span class="hlt">interactions</span> between cod, Gadus morhua, herring, Clupea harengus, capelin, Mallotus villosus and northern minke whales, Balaenoptera acutorostrata. Adding harp seals Phoca groenlandica into this top-down modelling approach resulted in unrealistic model outputs. Another set of models of the Barents <span class="hlt">Sea</span> fish-fisheries system focused on <span class="hlt">interactions</span> within and between the three fish populations, fisheries and climate. These model key <span class="hlt">processes</span> of the system successfully. Continuing calls to support the SBS models despite their failure suggest a belief that marine mammal predation must be a problem for fisheries. The best available scientific evidence provides no justification for marine mammal culls as a primary component of an ecosystem-based approach to managing the fisheries of the Barents <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030031384&hterms=Storm+Japan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DStorm%2BJapan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030031384&hterms=Storm+Japan&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DStorm%2BJapan"><span>Convective Systems Over the Japan <span class="hlt">Sea</span>: Cloud-Resolving Model Simulations</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki</p> <p>2002-01-01</p> <p>Wintertime observations of MCSs (Mesoscale Convective Systems) over the <span class="hlt">Sea</span> of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical <span class="hlt">processes</span> involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-<span class="hlt">air</span> soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and <span class="hlt">air</span> pattern changes associated with winter storms over the <span class="hlt">Sea</span> of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit <span class="hlt">interactions</span> between clouds, radiation, and surface <span class="hlt">processes</span>. It will be used to understand and quantify precipitation <span class="hlt">processes</span> associated with wintertime convective systems over the <span class="hlt">Sea</span> of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation <span class="hlt">processes</span> in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China <span class="hlt">Sea</span>, west Pacific warm pool region, eastern Atlantic region and central USA).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020018160','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020018160"><span>Relationships Between the Bulk-Skin <span class="hlt">Sea</span> Surface Temperature Difference, Wind, and Net <span class="hlt">Air-Sea</span> Heat Flux</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)</p> <p>2002-01-01</p> <p>The primary purpose of this project was to evaluate and improve models for the bulk-skin temperature difference to the point where they could accurately and reliably apply under a wide variety of environmental conditions. To accomplish this goal, work was conducted in three primary areas. These included production of an archive of available data sets containing measurements of the skin and bulk temperatures and associated environmental conditions, evaluation of existing skin layer models using the compiled data archive, and additional theoretical work on the development of an improved model using the data collected under diverse environmental conditions. In this work we set the basis for a new physical model of renewal type, and propose a parameterization for the temperature difference across the cool skin of the ocean in which the effects of thermal buoyancy, wind stress, and microscale breaking are all integrated by means of the appropriate renewal time scales. Ideally, we seek to obtain a model that will accurately apply under a wide variety of environmental conditions. A summary of the work in each of these areas is included in this report. A large amount of work was accomplished under the support of this grant. The grant supported the graduate studies of Sandra Castro and the preparation of her thesis which will be completed later this year. This work led to poster presentations at the 1999 American Geophysical Union Fall Meeting and 2000 IGARSS meeting. Additional work will be presented in a talk at this year's American Meteorological Society <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Meeting this May. The grant also supported Sandra Castro during a two week experiment aboard the R/P Flip (led by Dr. Andrew Jessup of the Applied Physics Laboratory) to help obtain additional shared data sets and to provide Sandra with a fundamental understanding of the physical <span class="hlt">processes</span> needed in the models. In a related area, the funding also partially supported Dr. William Emery and Daniel</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22454514-strong-interactions-air-showers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22454514-strong-interactions-air-showers"><span>Strong <span class="hlt">interactions</span> in <span class="hlt">air</span> showers</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dietrich, Dennis D.; Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Straße, Frankfurt am Main</p> <p>2015-03-02</p> <p>We study the role new gauge <span class="hlt">interactions</span> in extensions of the standard model play in <span class="hlt">air</span> showers initiated by ultrahigh-energy cosmic rays. Hadron-hadron events remain dominated by quantum chromodynamics, while projectiles and/or targets from beyond the standard model permit us to see qualitative differences arising due to the new <span class="hlt">interactions</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ClDy...36.1523J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ClDy...36.1523J"><span>Influence of coupling on atmosphere, <span class="hlt">sea</span> ice and ocean regional models in the Ross <span class="hlt">Sea</span> sector, Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard</p> <p>2011-04-01</p> <p><span class="hlt">Air-sea</span> ice-ocean <span class="hlt">interactions</span> in the Ross <span class="hlt">Sea</span> sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-<span class="hlt">sea</span> ice-atmosphere coupled model TANGO to simulate the Ross <span class="hlt">Sea</span> sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-<span class="hlt">sea</span> ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic <span class="hlt">sea</span> ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, <span class="hlt">air</span> temperatures over ocean and winter <span class="hlt">sea</span> ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold <span class="hlt">air</span> produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of <span class="hlt">sea</span> ice. It is suggested that slow heat conduction within <span class="hlt">sea</span> ice could amplify the feedbacks. These local feedbacks result in less <span class="hlt">sea</span> ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7332E..1IN','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7332E..1IN"><span>Land, <span class="hlt">sea</span>, and <span class="hlt">air</span> unmanned systems research and development at SPAWAR Systems Center Pacific</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nguyen, Hoa G.; Laird, Robin; Kogut, Greg; Andrews, John; Fletcher, Barbara; Webber, Todd; Arrieta, Rich; Everett, H. R.</p> <p>2009-05-01</p> <p>The Space and Naval Warfare (SPAWAR) Systems Center Pacific (SSC Pacific) has a long and extensive history in unmanned systems research and development, starting with undersea applications in the 1960s and expanding into ground and <span class="hlt">air</span> systems in the 1980s. In the ground domain, we are addressing force-protection scenarios using large unmanned ground vehicles (UGVs) and fixed sensors, and simultaneously pursuing tactical and explosive ordnance disposal (EOD) operations with small man-portable robots. Technology thrusts include improving robotic intelligence and functionality, autonomous navigation and world modeling in urban environments, extended operational range of small teleoperated UGVs, enhanced human-robot <span class="hlt">interaction</span>, and incorporation of remotely operated weapon systems. On the <span class="hlt">sea</span> surface, we are pushing the envelope on dynamic obstacle avoidance while conforming to established nautical rules-of-the-road. In the <span class="hlt">air</span>, we are addressing cooperative behaviors between UGVs and small vertical-takeoff- and-landing unmanned <span class="hlt">air</span> vehicles (UAVs). Underwater applications involve very shallow water mine countermeasures, ship hull inspection, oceanographic data collection, and deep ocean access. Specific technology thrusts include fiber-optic communications, adaptive mission controllers, advanced navigation techniques, and concepts of operations (CONOPs) development. This paper provides a review of recent accomplishments and current status of a number of projects in these areas.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601544','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601544"><span>Assessing Maritime Aspects of the <span class="hlt">AirSea</span> Battle Concept</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-03-23</p> <p><span class="hlt">AirSea</span> Battle centered on the assessment that in hostilities the PRC would conduct a rapid preemptive attack to knock back U.S. and allied forces in...these factors provide the foundational need for a clear maritime strategy backed by strong naval power. ! The core of PRC maritime security strategy...Law Enforcement Command. This direct and indirect approach hearkens back to the theories of Sunzi and Mao Tse-tung. ! China’s 2010 National Defense</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010PalOc..25.3201J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010PalOc..25.3201J"><span>Response of <span class="hlt">air-sea</span> carbon fluxes and climate to orbital forcing changes in the Community Climate System Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jochum, M.; Peacock, S.; Moore, K.; Lindsay, K.</p> <p>2010-07-01</p> <p>A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic <span class="hlt">sea</span> ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10%-20%. These climate shifts lead to regional differences in <span class="hlt">air-sea</span> carbon fluxes of the same order. However, the differences in global net <span class="hlt">air-sea</span> carbon fluxes are small, which is due to several effects, two of which stand out: first, colder <span class="hlt">sea</span> surface temperature leads to a more effective solubility pump but also to increased <span class="hlt">sea</span> ice concentration which blocks <span class="hlt">air-sea</span> exchange, and second, the weakening of Southern Ocean winds that is predicted by some idealized studies occurs only in part of the basin, and is compensated by stronger winds in other parts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A24C2606P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A24C2606P"><span>Surfactant control of <span class="hlt">air-sea</span> gas exchange from North <span class="hlt">Sea</span> coastal waters and the Atlantic Meridional Transect</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, R.</p> <p>2016-02-01</p> <p> suppression and SA is much weaker (r2 = <0.01, n = 22). While organic matter composition and sources may have variable control on <span class="hlt">air-sea</span> gas exchange between the provinces, the poor relationship observed between SA and k660 suggests that other environmental factors maybe more influential on <span class="hlt">air-sea</span> gas exchange in the open ocean compared to North <span class="hlt">Sea</span> coastal waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P31A2081H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P31A2081H"><span>Monitoring Subsurface Ice-Ocean <span class="hlt">Processes</span> Using Underwater Acoustics in the Ross <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haxel, J. H.; Dziak, R. P.; Matsumoto, H.; Lee, W. S.; Yun, S.</p> <p>2016-12-01</p> <p>The Ross <span class="hlt">Sea</span> is a dynamic area of ice-ocean <span class="hlt">interaction</span>, where a large component of the Southern Ocean's <span class="hlt">sea</span> ice formation occurs within regional polynyas in addition to the destructive <span class="hlt">processes</span> happening at the seaward boundary of the Ross Ice Shelf. Recent studies show the <span class="hlt">sea</span>-ice season has been lengthening and the <span class="hlt">sea</span> ice extent has been growing with more persistent and larger regional polynyas. These trends have important implications for the Ross <span class="hlt">Sea</span> ecosystem with polynyas supporting high rates of primary productivity in the area. Monitoring trends in <span class="hlt">sea</span> ice and ice shelf dynamics in the Southern Ocean has relied heavily on satellite imagery and remote sensing methods despite a significant portion of these physical <span class="hlt">processes</span> occurring beneath the ocean surface. In January 2014, an ocean bottom hydrophone (OBH) was moored on the seafloor in the polynya area of Terra Nova Bay in the northwest region of the Ross <span class="hlt">Sea</span>, north of the Drygalski Ice Tongue. The OBH recorded a year long record of the underwater low frequency acoustic spectrum up to 500 Hz from January 29 until it was recovered the following December 17, 2014. The acoustic records reveal a complex annual history of ice generated signals with over 50,000 detected events. These ice generated events related to collisions and cracking provide important insight for the timing and intensity of the ice-ocean dynamics happening below the <span class="hlt">sea</span> surface as the polynya grows and expands and the nearby Drygalski ice tongue flows into Terra Nova Bay. Additionally, high concentrations of baleen whale vocalizations in frequencies ranging from 200-400 Hz from September - December suggest a strong seasonal presence of whales in this ecologically important polynya region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1187W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1187W"><span><span class="hlt">Sea</span> Ice in the NCEP Seasonal Forecast System</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, X.; Saha, S.; Grumbine, R. W.; Bailey, D. A.; Carton, J.; Penny, S. G.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> ice is known to play a significant role in the global climate system. For a weather or climate forecast system (CFS), it is important that the realistic distribution of <span class="hlt">sea</span> ice is represented. <span class="hlt">Sea</span> ice prediction is challenging; <span class="hlt">sea</span> ice can form or melt, it can move with wind and/or ocean current; <span class="hlt">sea</span> ice <span class="hlt">interacts</span> with both the <span class="hlt">air</span> above and ocean underneath, it influences by, and has impact on the <span class="hlt">air</span> and ocean conditions. NCEP has developed coupled CFS (version 2, CFSv2) and also carried out CFS reanalysis (CFSR), which includes a coupled model with the NCEP global forecast system, a land model, an ocean model (GFDL MOM4), and a <span class="hlt">sea</span> ice model. In this work, we present the NCEP coupled model, the CFSv2 <span class="hlt">sea</span> ice component that includes a dynamic thermodynamic <span class="hlt">sea</span> ice model and a simple "assimilation" scheme, how <span class="hlt">sea</span> ice has been assimilated in CFSR, the characteristics of the <span class="hlt">sea</span> ice from CFSR and CFSv2, and the improvements of <span class="hlt">sea</span> ice needed for future seasonal prediction system, part of the Unified Global Coupled System (UGCS), which is being developed and under testing, including <span class="hlt">sea</span> ice data assimilation with the Local Ensemble Transform Kalman Filter (LETKF). Preliminary results from the UGCS testing will also be presented.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025337','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025337"><span><span class="hlt">Air-sea</span> <span class="hlt">interaction</span> with SSM/I and altimeter</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1985-01-01</p> <p>A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total <span class="hlt">air</span> column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A21A..04P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A21A..04P"><span>Motion-Correlated Flow Distortion and Wave-Induced Biases in <span class="hlt">Air-Sea</span> Flux Measurements From Ships</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.</p> <p>2016-02-01</p> <p>Direct measurements of the turbulent <span class="hlt">air-sea</span> fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the <span class="hlt">air</span> flow over the platform, or to wind-wave <span class="hlt">interactions</span> impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the <span class="hlt">air-sea</span> fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/47372','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/47372"><span><span class="hlt">Interaction</span> between a wildfire and the <span class="hlt">sea</span>-breeze front</span></a></p> <p><a target="_blank" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Deborah E. Hanley; Philip Cunningham; Scott Goodrick</p> <p>2013-01-01</p> <p>Florida experiences <span class="hlt">sea</span> breezes, lake breezes, and bay breezes almost every day during the year, and there are frequently complex <span class="hlt">interactions</span> between many of these breezes. Given the often-rapid changes in temperature, humidity, and wind speed that accompany these breezes, most wildfires and prescribed fires in Florida are affected in some way by their <span class="hlt">interaction</span>...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017TCry...11..789S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017TCry...11..789S"><span><span class="hlt">Interactions</span> between Antarctic <span class="hlt">sea</span> ice and large-scale atmospheric modes in CMIP5 models</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schroeter, Serena; Hobbs, Will; Bindoff, Nathaniel L.</p> <p>2017-03-01</p> <p>The response of Antarctic <span class="hlt">sea</span> ice to large-scale patterns of atmospheric variability varies according to <span class="hlt">sea</span> ice sector and season. In this study, interannual atmosphere-<span class="hlt">sea</span> ice <span class="hlt">interactions</span> were explored using observations and reanalysis data, and compared with simulated <span class="hlt">interactions</span> by models in the Coupled Model Intercomparison Project Phase 5 (CMIP5). Simulated relationships between atmospheric variability and <span class="hlt">sea</span> ice variability generally reproduced the observed relationships, though more closely during the season of <span class="hlt">sea</span> ice advance than the season of <span class="hlt">sea</span> ice retreat. Atmospheric influence on <span class="hlt">sea</span> ice is known to be strongest during advance, and it appears that models are able to capture the dominance of the atmosphere during advance. Simulations of ocean-atmosphere-<span class="hlt">sea</span> ice <span class="hlt">interactions</span> during retreat, however, require further investigation. A large proportion of model ensemble members overestimated the relative importance of the Southern Annular Mode (SAM) compared with other modes of high southern latitude climate, while the influence of tropical forcing was underestimated. This result emerged particularly strongly during the season of <span class="hlt">sea</span> ice retreat. The zonal patterns of the SAM in many models and its exaggerated influence on <span class="hlt">sea</span> ice overwhelm the comparatively underestimated meridional influence, suggesting that simulated <span class="hlt">sea</span> ice variability would become more zonally symmetric as a result. Across the seasons of <span class="hlt">sea</span> ice advance and retreat, three of the five sectors did not reveal a strong relationship with a pattern of large-scale atmospheric variability in one or both seasons, indicating that <span class="hlt">sea</span> ice in these sectors may be influenced more strongly by atmospheric variability unexplained by the major atmospheric modes, or by heat exchange in the ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27181035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27181035"><span>Coral Sr/Ca-based <span class="hlt">sea</span> surface temperature and <span class="hlt">air</span> temperature variability from the inshore and offshore corals in the Seribu Islands, Indonesia.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cahyarini, Sri Yudawati; Zinke, Jens; Troelstra, Simon; Suharsono; Aldrian, Edvin; Hoeksema, B W</p> <p>2016-09-30</p> <p>The ability of massive Porites corals to faithfully record temperature is assessed. Porites corals from Kepulauan Seribu were sampled from one inshore and one offshore site and analyzed for their Sr/Ca variation. The results show that Sr/Ca of the offshore coral tracked SST, while Sr/Ca variation of the inshore coral tracked ambient <span class="hlt">air</span> temperature. In particular, the inshore SST variation is related to <span class="hlt">air</span> temperature anomalies of the urban center of Jakarta. The latter we relate to <span class="hlt">air-sea</span> <span class="hlt">interactions</span> modifying inshore SST associated with the land-<span class="hlt">sea</span> breeze mechanism and/or monsoonal circulation. The correlation pattern of monthly coral Sr/Ca with the Niño3.4 index and SEIO-SST reveals that corals in the Seribu islands region respond differently to remote forcing. An opposite response is observed for inshore and offshore corals in response to El Niño onset, yet similar to El Niño mature phase (December to February). SEIO SSTs co-vary strongly with SST and <span class="hlt">air</span> temperature variability across the Seribu island reef complex. The results of this study clearly indicate that locations of coral proxy record in Indonesia need to be chosen carefully in order to identify the seasonal climate response to local and remote climate and anthropogenic forcing. Copyright © 2016 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IzAOP..54...10S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IzAOP..54...10S"><span>Characteristics of Winter Surface <span class="hlt">Air</span> Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced <span class="hlt">Sea</span> Ice Area in the Barents <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shukurov, K. A.; Semenov, V. A.</p> <p>2018-01-01</p> <p>On the basis of observational data on daily mean surface <span class="hlt">air</span> temperature (SAT) and <span class="hlt">sea</span> ice concentration (SIC) in the Barents <span class="hlt">Sea</span> (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of <span class="hlt">air</span>-particle motions has revealed the most probable paths of both cold and warm <span class="hlt">air</span> invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm <span class="hlt">air</span> invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011BGeo....8..505M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011BGeo....8..505M"><span>Changes in ocean circulation and carbon storage are decoupled from <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marinov, I.; Gnanadesikan, A.</p> <p>2011-02-01</p> <p>The spatial distribution of the <span class="hlt">air-sea</span> flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven <span class="hlt">air-sea</span> fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation result in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BGD.....7.7985M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BGD.....7.7985M"><span>Changes in ocean circulation and carbon storage are decoupled from <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marinov, I.; Gnanadesikan, A.</p> <p>2010-11-01</p> <p>The spatial distribution of the <span class="hlt">air-sea</span> flux of carbon dioxide is a poor indicator of the underlying ocean circulation and of ocean carbon storage. The weak dependence on circulation arises because mixing-driven changes in solubility-driven and biologically-driven <span class="hlt">air-sea</span> fluxes largely cancel out. This cancellation occurs because mixing driven increases in the poleward residual mean circulation results in more transport of both remineralized nutrients and heat from low to high latitudes. By contrast, increasing vertical mixing decreases the storage associated with both the biological and solubility pumps, as it decreases remineralized carbon storage in the deep ocean and warms the ocean as a whole.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3704648','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3704648"><span>Non-Linear <span class="hlt">Interactions</span> Determine the Impact of <span class="hlt">Sea</span>-Level Rise on Estuarine Benthic Biodiversity and Ecosystem <span class="hlt">Processes</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C. L.</p> <p>2013-01-01</p> <p><span class="hlt">Sea</span>-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated <span class="hlt">sea</span>-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by <span class="hlt">interactions</span> among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. <span class="hlt">Sea</span>-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of <span class="hlt">sea</span>-level rise will also be affected by local ecological context, especially for less sloping beaches. PMID:23861863</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23861863','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23861863"><span>Non-linear <span class="hlt">interactions</span> determine the impact of <span class="hlt">sea</span>-level rise on estuarine benthic biodiversity and ecosystem <span class="hlt">processes</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamanaka, Tsuyuko; Raffaelli, David; White, Piran C L</p> <p>2013-01-01</p> <p><span class="hlt">Sea</span>-level rise induced by climate change may have significant impacts on the ecosystem functions and ecosystem services provided by intertidal sediment ecosystems. Accelerated <span class="hlt">sea</span>-level rise is expected to lead to steeper beach slopes, coarser particle sizes and increased wave exposure, with consequent impacts on intertidal ecosystems. We examined the relationships between abundance, biomass, and community metabolism of benthic fauna with beach slope, particle size and exposure, using samples across a range of conditions from three different locations in the UK, to determine the significance of sediment particle size beach slope and wave exposure in affecting benthic fauna and ecosystem function in different ecological contexts. Our results show that abundance, biomass and oxygen consumption of intertidal macrofauna and meiofauna are affected significantly by <span class="hlt">interactions</span> among sediment particle size, beach slope and wave exposure. For macrofauna on less sloping beaches, the effect of these physical constraints is mediated by the local context, although for meiofauna and for macrofauna on intermediate and steeper beaches, the effects of physical constraints dominate. Steeper beach slopes, coarser particle sizes and increased wave exposure generally result in decreases in abundance, biomass and oxygen consumption, but these relationships are complex and non-linear. <span class="hlt">Sea</span>-level rise is likely to lead to changes in ecosystem structure with generally negative impacts on ecosystem functions and ecosystem services. However, the impacts of <span class="hlt">sea</span>-level rise will also be affected by local ecological context, especially for less sloping beaches.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJWC.14518002P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJWC.14518002P"><span>Open issues in hadronic <span class="hlt">interactions</span> for <span class="hlt">air</span> showers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pierog, Tanguy</p> <p>2017-06-01</p> <p>In detailed <span class="hlt">air</span> shower simulations, the uncertainty in the prediction of shower observables for different primary particles and energies is currently dominated by differences between hadronic <span class="hlt">interaction</span> models. With the results of the first run of the LHC, the difference between post-LHC model predictions has been reduced to the same level as experimental uncertainties of cosmic ray experiments. At the same time new types of <span class="hlt">air</span> shower observables, like the muon production depth, have been measured, adding new constraints on hadronic models. Currently no model is able to consistently reproduce all mass composition measurements possible within the Pierre Auger Observatory for instance. Comparing the different models, and with LHC and cosmic ray data, we will show that the remaining open issues in hadronic <span class="hlt">interactions</span> in <span class="hlt">air</span> shower development are now in the pion-<span class="hlt">air</span> <span class="hlt">interactions</span> and in nuclear effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5038955','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5038955"><span>A Sensitivity Analysis of the Impact of Rain on Regional and Global <span class="hlt">Sea-Air</span> Fluxes of CO2</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.</p> <p>2016-01-01</p> <p>The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the <span class="hlt">sea</span> surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the <span class="hlt">sea</span> skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net <span class="hlt">sea-air</span> fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net <span class="hlt">sea-air</span> fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of <span class="hlt">sea-air</span> gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net <span class="hlt">sea-air</span> fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EOSTr..95..269L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EOSTr..95..269L"><span>Mixing to Monsoons: <span class="hlt">Air-Sea</span> <span class="hlt">Interactions</span> in the Bay of Bengal</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lucas, A. J.; Shroyer, E. L.; Wijesekera, H. W.; Fernando, H. J. S.; D'Asaro, E.; Ravichandran, M.; Jinadasa, S. U. P.; MacKinnon, J. A.; Nash, J. D.; Sharma, R.; Centurioni, L.; Farrar, J. T.; Weller, R.; Pinkel, R.; Mahadevan, A.; Sengupta, D.; Tandon, A.</p> <p>2014-07-01</p> <p>More than 1 billion people depend on rainfall from the South Asian monsoon for their livelihoods. Summertime monsoonal precipitation is highly variable on intraseasonal time scales, with alternating "active" and "break" periods. These intraseasonal oscillations in large-scale atmospheric convection and winds are closely tied to 1°C-2°C variations of <span class="hlt">sea</span> surface temperature in the Bay of Bengal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090028806','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090028806"><span>Small Autonomous <span class="hlt">Air/Sea</span> System Concepts for Coast Guard Missions</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Young, Larry A.</p> <p>2005-01-01</p> <p>A number of small autonomous <span class="hlt">air/sea</span> system concepts are outlined in this paper that support and enhance U.S. Coast Guard missions. These concepts draw significantly upon technology investments made by NASA in the area of uninhabited aerial vehicles and robotic/intelligent systems. Such concepts should be considered notional elements of a greater as-yet-not-defined robotic system-of-systems designed to enable unparalleled maritime safety and security.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1217C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1217C"><span>Regional turbulence patterns driven by meso- and submesoscale <span class="hlt">processes</span> in the Caribbean <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>C. Pérez, Juan G.; R. Calil, Paulo H.</p> <p>2017-09-01</p> <p>The surface ocean circulation in the Caribbean <span class="hlt">Sea</span> is characterized by the <span class="hlt">interaction</span> between anticyclonic eddies and the Caribbean Upwelling System (CUS). These <span class="hlt">interactions</span> lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The <span class="hlt">interaction</span> of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean <span class="hlt">Sea</span>, in order to evaluate the impact of submesoscale <span class="hlt">processes</span> on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1614514V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1614514V"><span>CLIVAR-GSOP/GODAE Ocean Synthesis Inter-Comparison of Global <span class="hlt">Air-Sea</span> Fluxes From Ocean and Coupled Reanalyses</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Valdivieso, Maria</p> <p>2014-05-01</p> <p>.I. and E.C. Kent (2009), A New <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Gridded Dataset from ICOADS with Uncertainty Estimates. Bull. Amer. Meteor. Soc 90(5), 645-656. doi: 10.1175/2008BAMS2639.1. Dee, D. P. et al. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/qj.828. Kanamitsu M., Ebitsuzaki W., Woolen J., Yang S.K., Hnilo J.J., Fiorino M., Potter G. (2002), NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteor. Soc., 83:1631-1643. Large, W. and Yeager, S. (2009), The global climatology of an interannually varying <span class="hlt">air-sea</span> flux data set. Clim. Dynamics, Volume 33, pp 341-364 Valdivieso, M. and co-authors (2014): Heat fluxes from ocean and coupled reanalyses, Clivar Exchanges. Issue 64. Yu, L., X. Jin, and R. A. Weller (2008), Multidecade Global Flux Datasets from the Objectively Analyzed <span class="hlt">Air-sea</span> Fluxes (OAFlux) Project: Latent and Sensible Heat Fluxes, Ocean Evaporation, and Related Surface Meteorological Variables. Technical Report OAFlux Project (OA2008-01), Woods Hole Oceanographic Institution. Zhang, Y., WB Rossow, AA Lacis, V Oinas, MI Mishchenk (2004), Calculation of radiative fluxes from the surface to top of atmsophere based on ISCCP and other global data sets. Journal of Geophysical Research: Atmospheres (1984-2012) 109 (D19).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AGUFMOS32B0482E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AGUFMOS32B0482E"><span>The Coupled Boundary Layers and <span class="hlt">Air-Sea</span> Transfer (CBLAST) Experiments at the Martha's Vineyard Coastal Observatory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edson, J. B.</p> <p>2001-12-01</p> <p>The Woods Hole Oceanographic Institution (WHOI) completed the initial phase of the Martha's Vineyard Coastal Observatory (MVCO) in July of 2001. The MVCO is being using to monitor coastal atmospheric and oceanic <span class="hlt">processes</span>. Specifically, the observatory is expected to: - Provide continuous long-term observations for climate studies. - Provide a reliable system and rugged sensors that allow opportunistic sampling of extreme events. - Provide a local climatology for intensive, short duration field campaigns. - Further facilitate regional studies of coastal <span class="hlt">processes</span> by providing infrastructure that supports easy access to power and data. This talk provides an example of the last two objectives using the low wind component of the Office of Naval Research's (ONR) Coupled Boundary Layers and <span class="hlt">Air-Sea</span> Transfer (CBLAST) program. CBLAST-LOW has been designed to investigate <span class="hlt">air-sea</span> <span class="hlt">interaction</span> and coupled atmospheric and oceanic boundary layer dynamics at low wind speeds where the dynamic <span class="hlt">processes</span> are driven and/or strongly modulated by thermal forcing. This effort is being carried out by scientists at WHOI, NPS, NOAA, NRL, Rutgers, UW/APL, JH/APL, OSU, NCAR, and other institutions, and includes observational and modeling components. The MVCO is providing observations and infrastructure in support of several intensive operating periods in the summers of 2001, 2002, and possibly 2003. During these periods, the observational network around the observatory was and will be greatly expanded using traditional oceanographic moorings and bottom mounted instrumentation, innovative 2- and 3-D moored and drifting arrays, survey ships, AUVs, satellite remote sensing, and heavily instrumented aircraft. In addition, the MVCO cabled components will be extended out to the 20-m isobath where we plan to deploy a 35-m tower. The tower will be instrumented from 15-m above the ocean surface to the ocean bottom with instruments capable of directly measuring the momentum, heat, and radiative</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA00435&hterms=french+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfrench%2Bsystem','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA00435&hterms=french+system&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dfrench%2Bsystem"><span>Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (<span class="hlt">AIRS</span>) and <span class="hlt">Sea</span>Winds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2004-01-01</p> <p><p/> This image shows Hurricane Frances as captured by instruments onboard two different satellites: the <span class="hlt">AIRS</span> infrared instrument onboard Aqua, and the <span class="hlt">Sea</span>Winds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. <span class="hlt">AIRS</span> data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. <p/> The red vectors in the image show Frances' surface winds as measured by <span class="hlt">Sea</span>Winds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by <span class="hlt">AIRS</span>, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. <p/> The power of the <span class="hlt">Sea</span>Winds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked. <p/> While the <span class="hlt">Sea</span>Winds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=315915&Lab=NERL&keyword=dependency&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=315915&Lab=NERL&keyword=dependency&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Updating <span class="hlt">sea</span> spray aerosol emissions in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p><span class="hlt">Sea</span> spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model is updated to enhance fine mode SSA emissions,...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMPA13A1762S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMPA13A1762S"><span>Building Stories about <span class="hlt">Sea</span> Level Rise through <span class="hlt">Interactive</span> Visualizations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stephens, S. H.; DeLorme, D. E.; Hagen, S. C.</p> <p>2013-12-01</p> <p>Digital media provide storytellers with dynamic new tools for communicating about scientific issues via <span class="hlt">interactive</span> narrative visualizations. While traditional storytelling uses plot, characterization, and point of view to engage audiences with underlying themes and messages, <span class="hlt">interactive</span> visualizations can be described as 'narrative builders' that promote insight through the <span class="hlt">process</span> of discovery (Dove, G. & Jones, S. 2012, Proc. IHCI 2012). Narrative visualizations are used in online journalism to tell complex stories that allow readers to select aspects of datasets to explore and construct alternative interpretations of information (Segel, E. & Heer, J. 2010, IEEE Trans. Vis. Comp. Graph.16, 1139), thus enabling them to participate in the story-building <span class="hlt">process</span>. Nevertheless, narrative visualizations also incorporate author-selected narrative elements that help guide and constrain the overall themes and messaging of the visualization (Hullman, J. & Diakopoulos, N. 2011, IEEE Trans. Vis. Comp. Graph. 17, 2231). One specific type of <span class="hlt">interactive</span> narrative visualization that is used for science communication is the <span class="hlt">sea</span> level rise (SLR) viewer. SLR viewers generally consist of a base map, upon which projections of <span class="hlt">sea</span> level rise scenarios can be layered, and various controls for changing the viewpoint and scenario parameters. They are used to communicate the results of scientific modeling and help readers visualize the potential impacts of SLR on the coastal zone. Readers can use SLR viewers to construct personal narratives of the effects of SLR under different scenarios in locations that are important to them, thus extending the potential reach and impact of scientific research. With careful selection of narrative elements that guide reader interpretation, the communicative aspects of these visualizations may be made more effective. This presentation reports the results of a content analysis of a subset of existing SLR viewers selected in order to comprehensively</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23083059','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23083059"><span>Setting realistic recovery targets for two <span class="hlt">interacting</span> endangered species, <span class="hlt">sea</span> otter and northern abalone.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chadès, Iadine; Curtis, Janelle M R; Martin, Tara G</p> <p>2012-12-01</p> <p>Failure to account for <span class="hlt">interactions</span> between endangered species may lead to unexpected population dynamics, inefficient management strategies, waste of scarce resources, and, at worst, increased extinction risk. The importance of species <span class="hlt">interactions</span> is undisputed, yet recovery targets generally do not account for such <span class="hlt">interactions</span>. This shortcoming is a consequence of species-centered legislation, but also of uncertainty surrounding the dynamics of species <span class="hlt">interactions</span> and the complexity of modeling such <span class="hlt">interactions</span>. The northern <span class="hlt">sea</span> otter (Enhydra lutris kenyoni) and one of its preferred prey, northern abalone (Haliotis kamtschatkana), are endangered species for which recovery strategies have been developed without consideration of their strong predator-prey <span class="hlt">interactions</span>. Using simulation-based optimization procedures from artificial intelligence, namely reinforcement learning and stochastic dynamic programming, we combined <span class="hlt">sea</span> otter and northern abalone population models with functional-response models and examined how different management actions affect population dynamics and the likelihood of achieving recovery targets for each species through time. Recovery targets for these <span class="hlt">interacting</span> species were difficult to achieve simultaneously in the absence of management. Although <span class="hlt">sea</span> otters were predicted to recover, achieving abalone recovery targets failed even when threats to abalone such as predation and poaching were reduced. A management strategy entailing a 50% reduction in the poaching of northern abalone was a minimum requirement to reach short-term recovery goals for northern abalone when <span class="hlt">sea</span> otters were present. Removing <span class="hlt">sea</span> otters had a marginally positive effect on the abalone population but only when we assumed a functional response with strong predation pressure. Our optimization method could be applied more generally to any <span class="hlt">interacting</span> threatened or invasive species for which there are multiple conservation objectives. © 2012 Society for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA578419','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA578419"><span>Predicting the Turbulent <span class="hlt">Air-Sea</span> Surface Fluxes, Including Spray Effects, from Weak to Strong Winds</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-30</p> <p>almost complete decoupling of the wind field from the <span class="hlt">sea</span> surface . As a result of the weak surface stress, the flow becomes almost free from the...shore flow . In turn, wave growth and the associated surface roughness (z0) are limited. Consequently, the stability increases further in a...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Predicting the Turbulent <span class="hlt">Air-Sea</span> Surface Fluxes</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B393704A5-B912-4686-BE1B-A9F8EFF2F565%7D','PESTICIDES'); return false;" href="https://edg.epa.gov/metadata/catalog/search/resource/details.page?uuid=%7B393704A5-B912-4686-BE1B-A9F8EFF2F565%7D"><span>Updating <span class="hlt">sea</span> spray aerosol emissions in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model version 5.0.2</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>The uploaded data consists of the BRACE Na aerosol observations paired with CMAQ model output, the updated model's parameterization of <span class="hlt">sea</span> salt aerosol emission size distribution, and the model's parameterization of the <span class="hlt">sea</span> salt emission factor as a function of <span class="hlt">sea</span> surface temperature. This dataset is associated with the following publication:Gantt , B., J. Kelly , and J. Bash. Updating <span class="hlt">sea</span> spray aerosol emissions in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model version 5.0.2. Geoscientific Model Development. Copernicus Publications, Katlenburg-Lindau, GERMANY, 8: 3733-3746, (2015).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.976a2011C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.976a2011C"><span>A Case Study of <span class="hlt">Air</span> Cleaner by the Intelligent <span class="hlt">Interaction</span> and Emotion</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cao, Huai; Sun, Yuwen</p> <p>2018-02-01</p> <p>The pure and fresh <span class="hlt">air</span> can not only contribute to our physical and mental health, but also can be beneficial to ease the pressure and relax the mood. The vertical intelligent <span class="hlt">air</span> cleaner can remove the harmful gases from the <span class="hlt">air</span> and absorb the suspended particles in the <span class="hlt">air</span>, especially all kinds of the bacteria and viruses. The <span class="hlt">air</span> cleaner is good for improving the <span class="hlt">air</span> quality of the indoor and maintaining the health of the people. The designing of the vertical <span class="hlt">air</span> cleaner is as follows: The designing of the vertical intelligent make full use of the developed <span class="hlt">air</span> purification technology. The smart home is inserted into the work. Simultaneously, in the aspect of the design of intelligent products, the intelligent <span class="hlt">interactive</span> <span class="hlt">processes</span> are scientifically planned. Moreover, the emotional design and the user experience are fully considered, which can enhance the comprehensive design ability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910063773&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231087','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910063773&hterms=1087&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231087"><span>Antarctic <span class="hlt">Sea</span> ice variations and seasonal <span class="hlt">air</span> temperature relationships</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weatherly, John W.; Walsh, John E.; Zwally, H. J.</p> <p>1991-01-01</p> <p>Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and <span class="hlt">sea</span> ice. Lead-lag relationships involving regional <span class="hlt">sea</span> ice and <span class="hlt">air</span> temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OcSci..11..519G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OcSci..11..519G"><span>The OceanFlux Greenhouse Gases methodology for deriving a <span class="hlt">sea</span> surface climatology of CO2 fugacity in support of <span class="hlt">air-sea</span> gas flux studies</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goddijn-Murphy, L. M.; Woolf, D. K.; Land, P. E.; Shutler, J. D.; Donlon, C.</p> <p>2015-07-01</p> <p>Climatologies, or long-term averages, of essential climate variables are useful for evaluating models and providing a baseline for studying anomalies. The Surface Ocean CO2 Atlas (SOCAT) has made millions of global underway <span class="hlt">sea</span> surface measurements of CO2 publicly available, all in a uniform format and presented as fugacity, fCO2. As fCO2 is highly sensitive to temperature, the measurements are only valid for the instantaneous <span class="hlt">sea</span> surface temperature (SST) that is measured concurrently with the in-water CO2 measurement. To create a climatology of fCO2 data suitable for calculating <span class="hlt">air-sea</span> CO2 fluxes, it is therefore desirable to calculate fCO2 valid for a more consistent and averaged SST. This paper presents the OceanFlux Greenhouse Gases methodology for creating such a climatology. We recomputed SOCAT's fCO2 values for their respective measurement month and year using monthly composite SST data on a 1° × 1° grid from satellite Earth observation and then extrapolated the resulting fCO2 values to reference year 2010. The data were then spatially interpolated onto a 1° × 1° grid of the global oceans to produce 12 monthly fCO2 distributions for 2010, including the prediction errors of fCO2 produced by the spatial interpolation technique. The partial pressure of CO2 (pCO2) is also provided for those who prefer to use pCO2. The CO2 concentration difference between ocean and atmosphere is the thermodynamic driving force of the <span class="hlt">air-sea</span> CO2 flux, and hence the presented fCO2 distributions can be used in <span class="hlt">air-sea</span> gas flux calculations together with climatologies of other climate variables.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720015988','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720015988"><span><span class="hlt">Air-sea</span> <span class="hlt">interaction</span> in the tropical Pacific Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allison, L. J.; Steranka, J.; Holub, R. J.; Hansen, J.; Godshall, F. A.; Prabhakara, C.</p> <p>1972-01-01</p> <p>Charts of 3-month <span class="hlt">sea</span> surface temperature (SST) anomalies in the eastern tropical Pacific Ocean were produced for the period 1949 to 1970. The anomalies along the United States and South American west coasts and in the eastern tropical Pacific appeared to be oscillating in phase during this period. Similarly, the satellite-derived cloudiness for each of four quadrants of the Pacific Ocean (130 deg E to 100 deg W, 30 deg N to 25 deg S) appeared to be oscillating in phase. In addition, a global tropical cloudiness oscillation from 30 deg N to 30 deg S was noted from 1965 to 1970, by using monthly satellite television nephanalyses. The SST anomalies were found to have a good degree of correlation both positive and negative with the following monthly geophysical parameters: (1) satellite-derived cloudiness, (2) strength of the North and South Pacific semipermanent anticyclones, (3) tropical Pacific island rainfall, and (4) Darwin surface pressure. Several strong direct local and crossequatorial relationships were noted. In particular, the high degree of correlation between the tropical island rainfall and the SST anomalies (r = +0.93) permitted the derivation of SST's for the tropical Pacific back to 1905. The close occurrence of cold tropical SST and North Pacific 700-mb positive height anomalies with central United States drought conditions was noted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24054465','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24054465"><span>Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming <span class="hlt">process</span> in the Yellow <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jian Heng; Huo, Yuan Zi; Zhang, Zheng Long; Yu, Ke Feng; He, Qing; Zhang, Lin Hui; Yang, Li Li; Xu, Ren; He, Pei Min</p> <p>2013-12-01</p> <p>Since 2007, the world's largest macroalgal blooms have occurred along the coastal area of the Yellow <span class="hlt">Sea</span> for 6 consecutive years. In 2012, shipboard surveying and satellite remote sensing were used to monitor the whole blooming <span class="hlt">process</span>. The blooms originated in Rudong <span class="hlt">sea</span> area of the South Yellow <span class="hlt">Sea</span> where bloom patches were of dark green and filamentous thalli were the dominant morphology. The scale of the blooms reached its peak size in Rizhao <span class="hlt">sea</span> area of the North Yellow <span class="hlt">Sea</span>, and decreased promptly and became insignificant in Qingdao coast where the blooms turned yellow, mostly with <span class="hlt">air</span> sac blades. Meanwhile, vegetative cells of the green tide algae changed into cytocysts gradually from which germ cells were released as the blooms drifted northward. Additionally, chlorophyll contents and fluorescence activity of free-floating thalli in the North Yellow <span class="hlt">Sea</span> were both significantly lower than that in the South Yellow <span class="hlt">Sea</span>. Those studies presented here contributed to increasing our understanding about how the green tide declined gradually in the North Yellow <span class="hlt">Sea</span>. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUSM.U24A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUSM.U24A..01B"><span>OASIS: Ocean-Atmosphere-<span class="hlt">Sea</span>-Ice-Snowpack <span class="hlt">Interactions</span> in Polar Regions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bottenheim, J. W.; Abbatt, J.; Beine, H.; Berg, T.; Bigg, K.; Domine, F.; Leck, C.; Lindberg, S.; Matrai, P.; MacDonald, R.; McConnell, J.; Platt, U.; Raspopov, O.; Shepson, P.; Shumilov, O.; Stutz, J.; Wolff, E.</p> <p>2004-05-01</p> <p>While Polar regions encompass a large part of the globe, little attention has been paid to the <span class="hlt">interactions</span> between the atmosphere and its extensive snow-covered surfaces. Recent discoveries in the Arctic and Antarctic show that the top ten centimeters of snow is not simply a white blanket but in fact is a surprisingly reactive medium for chemical reactions in the troposphere. It has been concluded that interlinked physical, chemical, and biological mechanisms, fueled by the sun and occurring in the snow, are responsible for depletion of tropospheric ozone and gaseous mercury. At the same time production of highly reactive compounds (e.g. formaldehyde, nitrogen dioxide) has been observed at the snow surface. <span class="hlt">Air</span>-snow <span class="hlt">interactions</span> also have an impact on the chemical composition of the snow and hence the nature and amounts of material released in terrestrial/marine ecosystems during the melting of seasonal snow-packs. Many details of these possibly naturally occurring <span class="hlt">processes</span> are yet to be discovered. For decades humans have added waste products including acidic particles (sulphates) and toxic contaminants such as gaseous mercury and POPs (persistent organic pollutants) to the otherwise pristine snow surface. Virtually nothing is known about transformations of these contaminants in the snowpack, making it impossible to assess the risk to the polar environment, including humans. This is especially disconcerting when considering that climate change will undoubtedly alter the nature of these transformations involving snow, ice, atmosphere, ocean, and, ultimately, biota. To address these topics an interdisciplinary group of scientists from North America, Europe and Japan is developing a set of coordinated research activities under the banner of the IGBP programs IGAC and SOLAS. The program of Ocean-Atmosphere-<span class="hlt">Sea</span> Ice-Snowpack (OASIS) <span class="hlt">interactions</span> has been established with a mission statement aimed at determining the impact of OASIS chemical exchange on tropospheric</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002CSR....22..779D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002CSR....22..779D"><span><span class="hlt">Sea</span> level oscillations in coastal waters of the Buenos <span class="hlt">Aires</span> province, Argentina</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dragani, W. C.; Mazio, C. A.; Nuñez, M. N.</p> <p>2002-03-01</p> <p><span class="hlt">Sea</span> level oscillations, with periods ranging from a few minutes to almost 2 h, have been observed at various tide stations located on the coast of Buenos <span class="hlt">Aires</span>. Simultaneous records of <span class="hlt">sea</span> level elevation measured in Mar de Ajó, Pinamar and Mar del Plata during 1982 have been spectrally analyzed. Significant spectral energy has been detected between 0.85 and 4.69 cycles per hour (cph) and the most energetic peaks have frequencies between 1.17 and 1.49 cph. Spectra, coherence, and phase difference have been analyzed for the most energetic event of the year. During that event, the most intensive spectral peak is at 1.17 cph for Mar de Ajó and Pinamar, and at 1.49 cph for Mar del Plata. Simultaneous total energy peaks at Mar de Ajó, Pinamar and Mar del Plata, and the coherence function estimated between Mar de Ajó and Pinamar suggests that <span class="hlt">sea</span> level oscillations could be a regional phenomenon. The analyzed data suggest that <span class="hlt">sea</span> level oscillations could be forced by atmospheric gravity waves associated with frontal passages.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870053374&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsonar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870053374&hterms=sonar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dsonar"><span>Remote sensing as a research tool. [<span class="hlt">sea</span> ice surveillance from aircraft and spacecraft</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Carsey, F. D.; Zwally, H. J.</p> <p>1986-01-01</p> <p>The application of aircraft and spacecraft remote sensing techniques to <span class="hlt">sea</span> ice surveillance is evaluated. The effects of ice in the <span class="hlt">air-sea</span>-ice system are examined. The measurement principles and characteristics of remote sensing methods for aircraft and spacecraft surveillance of <span class="hlt">sea</span> ice are described. Consideration is given to ambient visible light, IR, passive microwave, active microwave, and laser altimeter and sonar systems. The applications of these systems to <span class="hlt">sea</span> ice surveillance are discussed and examples are provided. Particular attention is placed on the use of microwave data and the relation between ice thickness and <span class="hlt">sea</span> ice <span class="hlt">interactions</span>. It is noted that spacecraft and aircraft sensing techniques can successfully measure snow cover; ice thickness; ice type; ice concentration; ice velocity field; ocean temperature; surface wind vector field; and <span class="hlt">air</span>, snow, and ice surface temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.5167S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.5167S"><span>Climatology of Global Swell-Atmosphere <span class="hlt">Interaction</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro</p> <p>2016-04-01</p> <p>At the ocean surface wind <span class="hlt">sea</span> and swell waves coexist. Wind <span class="hlt">sea</span> waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span> and exchanges, particularly the exchange of momentum. This modulation is most of the times <span class="hlt">sea</span>-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the <span class="hlt">air-sea</span> <span class="hlt">interaction</span> theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the <span class="hlt">sea</span> state but also the prevalence (domination) of wind <span class="hlt">sea</span> or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell <span class="hlt">interaction</span> with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This <span class="hlt">interaction</span> can be seen as highest in areas where swells are steepest</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980021232','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980021232"><span><span class="hlt">Sea</span> Ice on the Southern Ocean</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobs, Stanley S.</p> <p>1998-01-01</p> <p>Year-round satellite records of <span class="hlt">sea</span> ice distribution now extend over more than two decades, providing a valuable tool to investigate related characteristics and circulations in the Southern Ocean. We have studied a variety of features indicative of oceanic and atmospheric <span class="hlt">interactions</span> with Antarctic <span class="hlt">sea</span> ice. In the Amundsen & Bellingshausen <span class="hlt">Seas</span>, <span class="hlt">sea</span> ice extent was found to have decreased by approximately 20% from 1973 through the early 1990's. This change coincided with and probably contributed to recently warmer surface conditions on the west side of the Antarctic Peninsula, where <span class="hlt">air</span> temperatures have increased by approximately 0.5 C/decade since the mid-1940's. The <span class="hlt">sea</span> ice decline included multiyear cycles of several years in length superimposed on high interannual variability. The retreat was strongest in summer, and would have lowered the regional mean ice thickness, with attendant impacts upon vertical heat flux and the formation of snow ice and brine. The cause of the regional warming and loss of <span class="hlt">sea</span> ice is believed to be linked to large-scale circulation changes in the atmosphere and ocean. At the eastern end of the Weddell Gyre, the Cosmonaut Polyna revealed greater activity since 1986, a recurrence pattern during recent winters and two possible modes of formation. Persistence in polynya location was noted off Cape Ann, where the coastal current can <span class="hlt">interact</span> more strongly with the Antarctic Circumpolar Current. As a result of vorticity conservation, locally enhanced upwelling brings warmer deep water into the mixed layer, causing divergence and melting. In the Ross <span class="hlt">Sea</span>, ice extent fluctuates over periods of several years, with summer minima and winter maxima roughly in phase. This leads to large interannual cycles of <span class="hlt">sea</span> ice range, which correlate positively with meridinal winds, regional <span class="hlt">air</span> temperatures and subsequent shelf water salinities. Deep shelf waters display considerable interannual variability, but have freshened by approximately 0.03/decade</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.G53A..07H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.G53A..07H"><span>Probabilistic Estimates of Global Mean <span class="hlt">Sea</span> Level and its Underlying <span class="hlt">Processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hay, C.; Morrow, E.; Kopp, R. E.; Mitrovica, J. X.</p> <p>2015-12-01</p> <p>Local <span class="hlt">sea</span> level can vary significantly from the global mean value due to a suite of <span class="hlt">processes</span> that includes ongoing <span class="hlt">sea</span>-level changes due to the last ice age, land water storage, ocean circulation changes, and non-uniform <span class="hlt">sea</span>-level changes that arise when modern-day land ice rapidly melts. Understanding these sources of spatial and temporal variability is critical to estimating past and present <span class="hlt">sea</span>-level change and projecting future <span class="hlt">sea</span>-level rise. Using two probabilistic techniques, a multi-model Kalman smoother and Gaussian <span class="hlt">process</span> regression, we have reanalyzed 20th century tide gauge observations to produce a new estimate of global mean <span class="hlt">sea</span> level (GMSL). Our methods allow us to extract global information from the sparse tide gauge field by taking advantage of the physics-based and model-derived geometry of the contributing <span class="hlt">processes</span>. Both methods provide constraints on the <span class="hlt">sea</span>-level contribution of glacial isostatic adjustment (GIA). The Kalman smoother tests multiple discrete models of glacial isostatic adjustment (GIA), probabilistically computing the most likely GIA model given the observations, while the Gaussian <span class="hlt">process</span> regression characterizes the prior covariance structure of a suite of GIA models and then uses this structure to estimate the posterior distribution of local rates of GIA-induced <span class="hlt">sea</span>-level change. We present the two methodologies, the model-derived geometries of the underlying <span class="hlt">processes</span>, and our new probabilistic estimates of GMSL and GIA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53D2277H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53D2277H"><span>Mesoscale <span class="hlt">Air-Sea</span> <span class="hlt">Interactions</span> along the Gulf Stream: An Eddy-Resolving and Convection-Permitting Coupled Regional Climate Model Study</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hsieh, J. S.; Chang, P.; Saravanan, R.</p> <p>2017-12-01</p> <p>Frontal and mesoscale <span class="hlt">air-sea</span> <span class="hlt">interactions</span> along the Gulf Stream (GS) during boreal winter are investigated using an eddy-resolving and convection-permitting coupled regional climate model with atmospheric grid resolutions varying from meso-β (27-km) to -r (9-km and 3-km nest) scales in WRF and a 9-km ocean model (ROMS) that explicitly resolves the ocean mesoscale eddies across the North Atlantic basin. The mesoscale wavenumber energy spectra for the simulated surface wind stress and SST demonstrate good agreement with the observed spectra calculated from the observational QuikSCAT and AMSR-E datasets, suggesting that the model well captures the energy cascade of the mesoscale eddies in both the atmosphere and the ocean. Intercomparison among different resolution simulations indicates that after three months of integration the simulated GS path tends to overshoot beyond the separation point in the 27-km WRF coupled experiments than the observed climatological path of the GS, whereas the 3-km nested and 9-km WRF coupled simulations realistically simulate GS separation. The GS overshoot in 27-km WRF coupled simulations is accompanied with a significant SST warming bias to the north of the GS extension. Such biases are associated with the deficiency of wind stress-SST coupling strengths simulated by the coupled model with a coarser resolution in WRF. It is found that the model at 27-km grid spacing can approximately simulate 72% (62%) of the observed mean coupling strength between surface wind stress curl (divergence) and crosswind (downwind) SST gradient while by increasing the WRF resolutions to 9 km or 3 km the coupled model can much better capture the observed coupling strengths.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A33A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A33A..07L"><span><span class="hlt">Sea</span>-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lenain, L.; Melville, W. K.</p> <p>2016-02-01</p> <p>While <span class="hlt">sea</span> spray aerosols represent a large portion of the aerosols present in the marine environment, and despite evidence of the importance of surface wave and wave-breaking related <span class="hlt">processes</span> in the coupling of the ocean with the atmosphere, <span class="hlt">sea</span> spray source generation functions are traditionally parameterized by the wind speed at 10m. It is clear that unless the wind and wave field are fully developed, the source function will be a function of both wind and wave parameters. In this study, we report on an <span class="hlt">air-sea</span> <span class="hlt">interaction</span> experiment, the ONR phase-resolved High-Resolution <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> experiments (HIRES), conducted off the coast of Northern California in June 2010. Detailed measurements of aerosol number concentration in the Marine Atmospheric Boundary Layer (MABL), at altitudes ranging from as low as 30m and up to 800m AMSL over a broad range of environmental conditions (significant wave height, Hs, of 2 to 4.5m and wind speed at 10m height, U10, of 10 to 18 m/s) collected from an instrumented research aircraft, are presented. Aerosol number densities and volume are computed over a range of particle diameters from 0.1 to 200 µm, while the surface conditions, i.e. significant wave height, moments of the breaker length distribution Λ(c), and wave breaking dissipation, were measured by a suite of electro-optical sensors that included the NASA Airborne Topographic Mapper (ATM). The <span class="hlt">sea</span>-state dependence of the aerosol concentration in the MABL is evident, ultimately stressing the need to incorporate wave and wave kinematics in the spray source generation functions that are traditionally primarily parameterized by surface winds. A scaling of the measured aerosol volume distribution by wave and atmospheric state variables is proposed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACPD...1313285B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACPD...1313285B"><span><span class="hlt">Air/sea</span> DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.</p> <p>2013-05-01</p> <p>Shipboard measurements of eddy covariance DMS <span class="hlt">air/sea</span> fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of <span class="hlt">air/sea</span> gas flux at higher wind speeds appears to be related to <span class="hlt">sea</span> state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the <span class="hlt">air/sea</span> exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPA....8d5009W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPA....8d5009W"><span>Measurement of <span class="hlt">interaction</span> between water droplets and curved super-hydrophobic substrates in the <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zhiyi; Zhao, Meirong; Jiang, Jile; Zhang, Lele; Zhuang, Shuya; Zhao, Yuchen; Huang, Yinguo; Zheng, Yelong</p> <p>2018-04-01</p> <p>The <span class="hlt">interaction</span> force is very important in the study of the contact <span class="hlt">process</span> of droplets and super-hydrophobic substrates. Accurate <span class="hlt">interaction</span> force measurement in the <span class="hlt">air</span> has far-reaching impact on industrial production and biomimetic field. However, limited by the evaporation of small droplets, <span class="hlt">interaction</span> force can only be measured in the liquid by AFM and other devices. A millimetric cantilever was used to make it possible to measure the <span class="hlt">interaction</span> between droplets and super-hydrophobic substrates in the <span class="hlt">air</span>. The optical lever was calibrated with the electrostatic force. The super- hydrophobic substrates were fabricated using nano particles and copper grids. We finally acquired the <span class="hlt">interaction</span> force and wetting time between the droplet and super- hydrophobic substrates with different grid fractions and similar contact angle. The results showed that the <span class="hlt">interaction</span> force decreased with the increase of the grid fraction. These would open a new way of understanding the mechanism of hydrophobic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp...34E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp...34E"><span>The role of Amundsen-Bellingshausen <span class="hlt">Sea</span> anticyclonic circulation in forcing marine <span class="hlt">air</span> intrusions into West Antarctica</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.</p> <p>2018-01-01</p> <p>Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen <span class="hlt">Sea</span> (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross <span class="hlt">Sea</span> region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in <span class="hlt">air</span> temperature anomalies and <span class="hlt">sea</span> ice concentrations between the eastern Ross <span class="hlt">Sea</span> and the Bellingshausen <span class="hlt">Sea</span>/Weddell <span class="hlt">Sea</span>, as well as between the eastern and western Ross <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/air-quality-management-process/air-quality-management-process-cycle','PESTICIDES'); return false;" href="https://www.epa.gov/air-quality-management-process/air-quality-management-process-cycle"><span><span class="hlt">Air</span> Quality Management <span class="hlt">Process</span> Cycle</span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p><span class="hlt">Air</span> quality management are activities a regulatory authority undertakes to protect human health and the environment from the harmful effects of <span class="hlt">air</span> pollution. The <span class="hlt">process</span> of managing <span class="hlt">air</span> quality can be illustrated as a cycle of inter-related elements.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790011305','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790011305"><span><span class="hlt">Process</span> <span class="hlt">air</span> quality data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Butler, C. M.; Hogge, J. E.</p> <p>1978-01-01</p> <p><span class="hlt">Air</span> quality sampling was conducted. Data for <span class="hlt">air</span> quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for <span class="hlt">processing</span> <span class="hlt">air</span> quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on <span class="hlt">processing</span> <span class="hlt">air</span> quality data.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AGUFMOS21B0197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AGUFMOS21B0197M"><span>Biologically-Oriented <span class="hlt">Processes</span> in the Coastal <span class="hlt">Sea</span> Ice Zone of the White <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Melnikov, I. A.</p> <p>2002-12-01</p> <p>The annual advance and retreat of <span class="hlt">sea</span> ice is a major physical determinant of spatial and temporal changes in the structure and function of marine coastal biological communities. <span class="hlt">Sea</span> ice biological data obtained in the tidal zone of Kandalaksha Gulf (White <span class="hlt">Sea</span>) during 1996-2001 period will be presented. Previous observations in this area were mainly conducted during the ice-free summer season. However, there is little information on the ice-covered winter season (6-7 months duration), and, especially, on the <span class="hlt">sea</span>-ice biology in the coastal zone within tidal regimes. During the January-May period time-series observations were conducted on transects along shorelines with coastal and fast ice. Trends in the annual extent of <span class="hlt">sea</span> ice showed significant impacts on ice-associated biological communities. Three types of <span class="hlt">sea</span> ice impact on kelps, balanoides, littorinas and amphipods are distinguished: (i) positive, when <span class="hlt">sea</span> ice protects these populations from grinding (ii) negative, when ice grinds both fauna and flora, and (iii) a combined effect, when fast ice protects, but anchored ice grinds plant and animals. To understand the full spectrum of ecological problems caused by pollution on the coastal zone, as well as the problems of <span class="hlt">sea</span> ice melting caused by global warming, an integrated, long-term study of the physical, chemical, and biological <span class="hlt">processes</span> is needed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.5793S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.5793S"><span>Biology and <span class="hlt">air-sea</span> gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.</p> <p>2013-09-01</p> <p>Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate <span class="hlt">processes</span> that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. <span class="hlt">Air-sea</span> gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since <span class="hlt">air-sea</span> gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during <span class="hlt">air-sea</span> gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and <span class="hlt">air-sea</span> gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.3696L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.3696L"><span>How well does wind speed predict <span class="hlt">air-sea</span> gas transfer in the <span class="hlt">sea</span> ice zone? A synthesis of radon deficit profiles in the upper water column of the Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Loose, B.; Kelly, R. P.; Bigdeli, A.; Williams, W.; Krishfield, R.; Rutgers van der Loeff, M.; Moran, S. B.</p> <p>2017-05-01</p> <p>We present 34 profiles of radon-deficit from the ice-ocean boundary layer of the Beaufort <span class="hlt">Sea</span>. Including these 34, there are presently 58 published radon-deficit estimates of <span class="hlt">air-sea</span> gas transfer velocity (k) in the Arctic Ocean; 52 of these estimates were derived from water covered by 10% <span class="hlt">sea</span> ice or more. The average value of k collected since 2011 is 4.0 ± 1.2 m d-1. This exceeds the quadratic wind speed prediction of weighted kws = 2.85 m d-1 with mean-weighted wind speed of 6.4 m s-1. We show how ice cover changes the mixed-layer radon budget, and yields an "effective gas transfer velocity." We use these 58 estimates to statistically evaluate the suitability of a wind speed parameterization for k, when the ocean surface is ice covered. Whereas the six profiles taken from the open ocean indicate a statistically good fit to wind speed parameterizations, the same parameterizations could not reproduce k from the <span class="hlt">sea</span> ice zone. We conclude that techniques for estimating k in the open ocean cannot be similarly applied to determine k in the presence of <span class="hlt">sea</span> ice. The magnitude of k through gaps in the ice may reach high values as ice cover increases, possibly as a result of focused turbulence dissipation at openings in the free surface. These 58 profiles are presently the most complete set of estimates of k across seasons and variable ice cover; as dissolved tracer budgets they reflect <span class="hlt">air-sea</span> gas exchange with no impact from <span class="hlt">air</span>-ice gas exchange.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...49.2035J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...49.2035J"><span>Boreal summer sub-seasonal variability of the South Asian monsoon in the Met Office Glo<span class="hlt">Sea</span>5 initialized coupled model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jayakumar, A.; Turner, A. G.; Johnson, S. J.; Rajagopal, E. N.; Mohandas, Saji; Mitra, A. K.</p> <p>2017-09-01</p> <p>Boreal summer sub-seasonal variability in the Asian monsoon, otherwise known as the monsoon intra-seasonal oscillation (MISO), is one of the dominant modes of intraseasonal variability in the tropics, with large impacts on total monsoon rainfall and India's agricultural production. However, our understanding of the mechanisms involved in MISO is incomplete and its simulation in various numerical models is often flawed. In this study, we focus on the objective evaluation of the fidelity of MISO simulation in the Met Office Global Seasonal forecast system version 5 (Glo<span class="hlt">Sea</span>5), an initialized coupled model. We analyze a series of nine-member hindcasts from Glo<span class="hlt">Sea</span>5 over 1996-2009 during the peak monsoon period (July-August) over the South-Asian monsoon domain focusing on aspects of the time-mean background state and <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span> pertinent to MISO. Dominant modes during this period are evident in power spectrum analysis, but propagation and evolution characteristics of the MISO are not realistic. We find that simulated <span class="hlt">air-sea</span> <span class="hlt">interactions</span> in the central Indian Ocean are not supportive of MISO initiation in that region, likely a result of the low surface wind variance there. As a consequence, the expected near-quadrature phase relationship between SST and convection is not represented properly over the central equatorial Indian Ocean, and northward propagation from the equator is poorly simulated. This may reinforce the equatorial rainfall mean state bias in Glo<span class="hlt">Sea</span>5.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1997SPIE.2963..674F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1997SPIE.2963..674F"><span><span class="hlt">Sea</span>Shark and Starfish opertional data <span class="hlt">processing</span> schemes for AVHRR and <span class="hlt">Sea</span>WiFs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flowerdew, R. J.; Corlyon, Anaa M.; Greer, W. A. D.; Newby, Steve J.; Winder, C. P.</p> <p>1997-02-01</p> <p><span class="hlt">Sea</span>Shark is an operational software package for <span class="hlt">processing</span>, archiving and cataloguing AVHRR and <span class="hlt">Sea</span>WiFS data using an operator friendly GUI. Upon receipt of a customer order, it produces standard AVHRR data products, including <span class="hlt">Sea</span> Surface Temperature (SST) and it has recently been modified to include <span class="hlt">Sea</span>WiFS level 2 data <span class="hlt">processing</span>. This uses an atmospheric correction scheme developed by the Plymouth Marine Laboratory, UK (PML) that builds upon the standard Gordon and Wang approach to be applicable over both case 1 and case 2 waters. Higher level products are then generated using PML algorithms, including chlorophyll a, a CZCS-type pigment, Kd, and suspended particulate matter. Outputs are in CEOS-compatible format. The software also produces fast delivery products (FDPs) of chlorophyll a and SST. These FDPs are combined in the StarFish software package to provide maps indicating potential location of phytoplankton and the preferred thermal environment of certain pelagic fish species. Fishing vessels may obtain these maps over Inmarsat, allowing them to achieve a greater efficiency hence lower cost.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..DFDL20011S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..DFDL20011S"><span>Boundary layers at a dynamic interface: <span class="hlt">air-sea</span> exchange of heat and mass</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szeri, Andrew</p> <p>2017-11-01</p> <p>Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in <span class="hlt">air-sea</span> transfer of natural and man-made gases involved in climate change. The goal in this research area is to determine the gas flux from <span class="hlt">air</span> to <span class="hlt">sea</span> or vice versa. For sparingly soluble non-reactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity and gas concentration differences are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither of these quantities can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from remote measurements, which allows one to determine the gas transfer velocity, or gas flux per unit area if overall concentration differences are known. The approach is illustrated with conceptual examples.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995TellB..47..447I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995TellB..47..447I"><span><span class="hlt">Air-sea</span> exchange of CO2 in the central and western equatorial Pacific in 1990</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ishii, Masao; Yoshikawa Inoue, Hisayuki</p> <p>1995-09-01</p> <p>Measurements of CO2 in marine boundary <span class="hlt">air</span> and in surface seawater of the central and western Pacific west of 150°W were made during the period from September to December 1990. The meridional section along 150°W showed pCO2(<span class="hlt">sea</span>) maximum over 410 µatm between the equator and 3°S due to strong equatorial upwelling. In the equatorial Pacific between 150°W and 179°E, pCO2(<span class="hlt">sea</span>) decreased gradually toward the west as a result of biological CO2 uptake and surface <span class="hlt">sea</span> temperature increase. Between 179°E and 170°E, the pCO2(<span class="hlt">sea</span>) decreased steeply from 400 µatm to 350 µatm along with a decrease of salinity. West of 170°E, where the salinity is low owing to the heavy rainfall, pCO2(<span class="hlt">sea</span>) was nearly equal to pCO2(<span class="hlt">air</span>). The distribution of the atmospheric CO2 concentration showed a considerable variability (±3ppm) in the area north of the Intertropical Convergence Zone due to the regional net source-sink strength of the terrestrial biosphere. The net CO2 flux from the <span class="hlt">sea</span> to the atmosphere in the equatorial region of the central and western Pacific (15°S-10°N, 140°E-150°W) was evaluated from the ΔpCO2 distribution and the several gas transfer coefficients reported so far. It ranged from 0.13 GtC year<img src="/entityImage/script/2212.gif" alt="-" border="0" style="font-weight: bold"></img>1-0.29 GtC year<img src="/entityImage/script/2212.gif" alt="-" border="0" style="font-weight: bold"></img>1. This CO2 outflux is thought to almost disappear during the period of an El Niño event.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ACP....1311073B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ACP....1311073B"><span><span class="hlt">Air-sea</span> dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.</p> <p>2013-11-01</p> <p>Shipboard measurements of eddy covariance dimethylsulfide (DMS) <span class="hlt">air-sea</span> fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of <span class="hlt">air-sea</span> gas flux at higher wind speeds appears to be related to <span class="hlt">sea</span> state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the <span class="hlt">air-sea</span> exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BGeo...15.1643Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BGeo...15.1643Y"><span>Arctic Ocean CO2 uptake: an improved multiyear estimate of the <span class="hlt">air-sea</span> CO2 flux incorporating chlorophyll a concentrations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yasunaka, Sayaka; Siswanto, Eko; Olsen, Are; Hoppema, Mario; Watanabe, Eiji; Fransson, Agneta; Chierici, Melissa; Murata, Akihiko; Lauvset, Siv K.; Wanninkhof, Rik; Takahashi, Taro; Kosugi, Naohiro; Omar, Abdirahman M.; van Heuven, Steven; Mathis, Jeremy T.</p> <p>2018-03-01</p> <p>We estimated monthly <span class="hlt">air-sea</span> CO2 fluxes in the Arctic Ocean and its adjacent <span class="hlt">seas</span> north of 60° N from 1997 to 2014. This was done by mapping partial pressure of CO2 in the surface water (pCO2w) using a self-organizing map (SOM) technique incorporating chlorophyll a concentration (Chl a), <span class="hlt">sea</span> surface temperature, <span class="hlt">sea</span> surface salinity, <span class="hlt">sea</span> ice concentration, atmospheric CO2 mixing ratio, and geographical position. We applied new algorithms for extracting Chl a from satellite remote sensing reflectance with close examination of uncertainty of the obtained Chl a values. The overall relationship between pCO2w and Chl a was negative, whereas the relationship varied among seasons and regions. The addition of Chl a as a parameter in the SOM <span class="hlt">process</span> enabled us to improve the estimate of pCO2w, particularly via better representation of its decline in spring, which resulted from biologically mediated pCO2w reduction. As a result of the inclusion of Chl a, the uncertainty in the CO2 flux estimate was reduced, with a net annual Arctic Ocean CO2 uptake of 180 ± 130 Tg C yr-1. Seasonal to interannual variation in the CO2 influx was also calculated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1764832','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1764832"><span>Trophic <span class="hlt">interactions</span> within the Ross <span class="hlt">Sea</span> continental shelf ecosystem</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Smith, Walker O; Ainley, David G; Cattaneo-Vietti, Riccardo</p> <p>2006-01-01</p> <p>The continental shelf of the Ross <span class="hlt">Sea</span> is one of the Antarctic's most intensively studied regions. We review the available data on the region's physical characteristics (currents and ice concentrations) and their spatial variations, as well as components of the neritic food web, including lower and middle levels (phytoplankton, zooplankton, krill, fishes), the upper trophic levels (seals, penguins, pelagic birds, whales) and benthic fauna. A hypothetical food web is presented. Biotic <span class="hlt">interactions</span>, such as the role of Euphausia crystallorophias and Pleuragramma antarcticum as grazers of lower levels and food for higher trophic levels, are suggested as being critical. The neritic food web contrasts dramatically with others in the Antarctic that appear to be structured around the keystone species Euphausia superba. Similarly, we suggest that benthic–pelagic coupling is stronger in the Ross <span class="hlt">Sea</span> than in most other Antarctic regions. We also highlight many of the unknowns within the food web, and discuss the impacts of a changing Ross <span class="hlt">Sea</span> habitat on the ecosystem. PMID:17405209</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16273149','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16273149"><span>Protein-lipid <span class="hlt">interactions</span> at the <span class="hlt">air</span>/water interface.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lad, Mitaben D; Birembaut, Fabrice; Frazier, Richard A; Green, Rebecca J</p> <p>2005-10-07</p> <p>Surface pressure measurements and external reflection FTIR spectroscopy have been used to probe protein-lipid <span class="hlt">interactions</span> at the <span class="hlt">air</span>/water interface. Spread monomolecular layers of stearic acid and phosphocholine were prepared and held at different compressed phase states prior to the introduction of protein to the buffered subphase. Contrasting interfacial behaviour of the proteins, albumin and lysozyme, was observed and revealed the role of both electrostatic and hydrophobic <span class="hlt">interactions</span> in protein adsorption. The rate of adsorption of lysozyme to the <span class="hlt">air</span>/water interface increased dramatically in the presence of stearic acid, due to strong electrostatic <span class="hlt">interactions</span> between the negatively charged stearic acid head group and lysozyme, whose net charge at pH 7 is positive. Introduction of albumin to the subphase resulted in solubilisation of the stearic acid via the formation of an albumin-stearic acid complex and subsequent adsorption of albumin. This observation held for both human and bovine serum albumin. Protein adsorption to a PC layer held at low surface pressure revealed adsorption rates similar to adsorption to the bare <span class="hlt">air</span>/water interface and suggested very little <span class="hlt">interaction</span> between the protein and the lipid. For PC layers in their compressed phase state some adsorption of protein occurred after long adsorption times. Structural changes of both lysozyme and albumin were observed during adsorption, but these were dramatically reduced in the presence of a lipid layer compared to that of adsorption to the pure <span class="hlt">air</span>/water interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70039994','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70039994"><span>Coupled atmosphere-ocean-wave simulations of a storm event over the Gulf of Lion and Balearic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Renault, Lionel; Chiggiato, Jacopo; Warner, John C.; Gomez, Marta; Vizoso, Guillermo; Tintore, Joaquin</p> <p>2012-01-01</p> <p>The coastal areas of the North-Western Mediterranean <span class="hlt">Sea</span> are one of the most challenging places for ocean forecasting. This region is exposed to severe storms events that are of short duration. During these events, significant <span class="hlt">air-sea</span> <span class="hlt">interactions</span>, strong winds and large <span class="hlt">sea</span>-state can have catastrophic consequences in the coastal areas. To investigate these <span class="hlt">air-sea</span> <span class="hlt">interactions</span> and the oceanic response to such events, we implemented the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System simulating a severe storm in the Mediterranean <span class="hlt">Sea</span> that occurred in May 2010. During this event, wind speed reached up to 25 m.s-1 inducing significant <span class="hlt">sea</span> surface cooling (up to 2°C) over the Gulf of Lion (GoL) and along the storm track, and generating surface waves with a significant height of 6 m. It is shown that the event, associated with a cyclogenesis between the Balearic Islands and the GoL, is relatively well reproduced by the coupled system. A surface heat budget analysis showed that ocean vertical mixing was a major contributor to the cooling tendency along the storm track and in the GoL where turbulent heat fluxes also played an important role. Sensitivity experiments on the ocean-atmosphere coupling suggested that the coupled system is sensitive to the momentum flux parameterization as well as <span class="hlt">air-sea</span> and <span class="hlt">air</span>-wave coupling. Comparisons with available atmospheric and oceanic observations showed that the use of the fully coupled system provides the most skillful simulation, illustrating the benefit of using a fully coupled ocean-atmosphere-wave model for the assessment of these storm events.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840019194','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840019194"><span>Frontiers of Remote Sensing of the Oceans and Troposphere from <span class="hlt">Air</span> and Space Platforms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1984-01-01</p> <p>Several areas of remote sensing are addressed including: future satellite systems; <span class="hlt">air-sea</span> <span class="hlt">interaction</span>/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; <span class="hlt">sea</span> ice; and impact of remote sensing on synoptic analysis/forecasting.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412324M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412324M"><span>Enrichment of Extracellular Carbonic Anhydrase in the <span class="hlt">Sea</span> Surface Microlayer and Its Effect on <span class="hlt">Air-Sea</span> CO2 Exchange</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mustaffa, N. I. H.; Striebel, M.; Wurl, O.</p> <p>2017-12-01</p> <p>This paper describes the quantification of extracellular carbonic anhydrase (eCA) concentrations in the <span class="hlt">sea</span> surface microlayer (SML), the boundary layer between the ocean and the atmosphere of the Indo-West Pacific. We demonstrated that the SML is enriched with eCA by 1.5 ± 0.7 compared to the mixed underlying water. Enrichment remains up to a wind speed of 7 m s-1 (i.e., under typical oceanic conditions). As eCA catalyzes the interconversion of HCO3- and CO2, it has been hypothesized that its enrichment in the SML enhances the <span class="hlt">air-sea</span> CO2 exchange. We detected concentrations in the range of 0.12 to 0.76 n<fi>M</fi>, which can enhance the exchange by up to 15% based on the model approach described in the literature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980Tell...32..470H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980Tell...32..470H"><span>Gas exchange across the <span class="hlt">air-sea</span> interface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasse, L.; Liss, P. S.</p> <p>1980-10-01</p> <p>The physics of gas exchange at the <span class="hlt">air-sea</span> interface are reviewed. In order to describe the transfer of gases in the liquid near the boundary, a molecular plus eddy diffusivity concept is used, which has been found useful for smooth flow over solid surfaces. From consideration of the boundary conditions, a similar dependence of eddy diffusivity on distance from the interface can be derived for the flow beneath a gas/liquid interface, at least in the absence of waves. The influence of waves is then discussed. It is evident from scale considerations that the effect of gravity waves is small. It is known from wind tunnel work that capillary waves enhance gas transfer considerably. The existing hypotheses are apparently not sufficient to explain the observations. Examination of field data is even more frustrating since the data do not show the expected increase of gas exchange with wind speed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B41D0328R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B41D0328R"><span>Methane fluxes and their controlling <span class="hlt">processes</span> in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rehder, G. J.; Fossing, H.; Lapham, L.; Endler, R.; Spiess, V.; Bruchert, V.; Nguyen, T.; Gülzow, W.; Schneider von Deimling, J.; Conley, D. J.; Jorgensen, B.</p> <p>2010-12-01</p> <p>The Baltic <span class="hlt">Sea</span> is an ideal natural laboratory to study the methane cycle in the framework of diagenetic <span class="hlt">processes</span>. With its brackish character and a gradient from nearly marine to almost limnic conditions, a strong permanent haline stratification leading to large vertical redox gradients in the water column, and a sedimentation history which resulted in the deposition of organic-rich young post-glacial sediments over older glacial and post-glacial strata with very low organic content, the Baltic allows to study the role of a variety of key parameters for early diagenetic <span class="hlt">processes</span> including the methane cycle. Within the BONUS + Project “Baltic Gas”, a 3.5 week scientific expedition of RV Maria S. Merian in August 2010 was dedicated to study the methane cycle in the various basins of the Baltic <span class="hlt">Sea</span>, with strong emphasis on the metabolic reactions of early diagenesis and the occurrence of shallow gas deposits. Various subbottom profiling systems were used to map the thickness and structure of organic-rich deposits and build the base for a detailed coring program for biogeochemical analysis, including methane, sulfur compounds, iron, and other compounds. Methane gradients in connection with the information of the areal extend of organic-rich deposits are used to estimate the diffusive flux from the sediments into the water column and the rate of methane oxidation, with changing importance of sulfate as oxidant along the salinity gradient. On selected key stations, rate measurements of methanogenic and methanotrophic reactions were executed. The methane distribution in the water column was comprehensively assessed, revealing amongst other findings a drastic increase in bottom water methane concentration between the post bloom summer situation and the situation in the winter of 2009, in connection to the occurrence of a benthic nepheloid layer. <span class="hlt">Air-sea</span> flux measurements were executed along the ship’s track comprising all major basins of the Baltic. The talk gives</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174403','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174403"><span><span class="hlt">Processes</span> contributing to resilience of coastal wetlands to <span class="hlt">sea</span>-level rise</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.</p> <p>2016-01-01</p> <p>The objectives of this study were to identify <span class="hlt">processes</span> that contribute to resilience of coastal wetlands subject to rising <span class="hlt">sea</span> levels and to determine whether the relative contribution of these <span class="hlt">processes</span> varies across different wetland community types. We assessed the resilience of wetlands to <span class="hlt">sea</span>-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring <span class="hlt">processes</span> controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to <span class="hlt">sea</span>-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface <span class="hlt">processes</span> in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface <span class="hlt">processes</span>, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising <span class="hlt">sea</span> level. When root zone contributions were removed statistically from comparisons between relative <span class="hlt">sea</span>-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface <span class="hlt">processes</span> will likely misjudge vulnerability to <span class="hlt">sea</span>-level rise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5830859-sea-water-basalt-interactions-genesis-coastal-thermal-waters-maharashtra-india','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5830859-sea-water-basalt-interactions-genesis-coastal-thermal-waters-maharashtra-india"><span><span class="hlt">Sea</span> water - basalt <span class="hlt">interactions</span> and genesis of the coastal thermal waters of Maharashtra, India</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Muthuraman, K.</p> <p>1986-01-01</p> <p>The thermal waters close to the western coastal belt of India (in Maharashtra State) generally discharge Na-Ca-Cl and Ca-Na-Cl types of waters through the basic lava flows of late Cretaceous-early Tertiary age. Experimental work to study the reactions between the dilute <span class="hlt">sea</span> water and basalt conducted in static autoclaves at selected elevated temperatures, indicates the possibility of producing chloride waters with relatively high calcium, similar to these thermal waters. In view of the increase in Ca in the resultant solutions during <span class="hlt">sea</span> water-basalt reactions at elevated temperatures, the base temperatures computed by Na-K-Ca geothermometry would be far lower than themore » actual temperatures of the system. At lower temperatures (around 100/sup 0/C) absorption by K by basalt is possible and, hence, alkali geothermometry also may not be reliable for such systems. Anhydrite saturation temperature seems to be a reliable geothermometer for such coastal thermal water systems involving a <span class="hlt">sea</span> water component. The results of the computer <span class="hlt">processing</span> of the chemistry of some of these thermal waters using ''WATEQ'' are discussed. Two of these waters are oversaturated with diopside, tremolite, calcite and aragonite, indicating a rather low temperature of origin. In two other cases, <span class="hlt">interaction</span> with ultramafic rocks is indicated, as these waters are oversaturated with diopside, tremolite, talc, chrysotile, sepiolite and its precipitate. There is no clear evidence to show that the thermal waters of the west coast of India emerge directly from either marine evaporites or oil field waters. It is proposed that the majority of these thermal waters should have originated through <span class="hlt">interaction</span> of an admixture of <span class="hlt">sea</span> water and meteoric water with the local basalt flows at some elevated temperatures.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C51A0663S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C51A0663S"><span>Short-term <span class="hlt">sea</span> ice forecasts with the RASM-ESRL coupled model: A testbed for improving simulations of ocean-ice-atmosphere <span class="hlt">interactions</span> in the marginal ice zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Solomon, A.; Cox, C. J.; Hughes, M.; Intrieri, J. M.; Persson, O. P. G.</p> <p>2015-12-01</p> <p>The dramatic decrease of Arctic <span class="hlt">sea</span>-ice has led to a new Arctic <span class="hlt">sea</span>-ice paradigm and to increased commercial activity in the Arctic Ocean. NOAA's mission to provide accurate and timely <span class="hlt">sea</span>-ice forecasts, as explicitly outlined in the National Ocean Policy and the U.S. National Strategy for the Arctic Region, needs significant improvement across a range of time scales to improve safety for human activity. Unfortunately, the <span class="hlt">sea</span>-ice evolution in the new Arctic involves the <span class="hlt">interaction</span> of numerous physical <span class="hlt">processes</span> in the atmosphere, ice, and ocean, some of which are not yet understood. These include atmospheric forcing of <span class="hlt">sea</span>-ice movement through stress and stress deformation; atmospheric forcing of <span class="hlt">sea</span>-ice melt and formation through energy fluxes; and ocean forcing of the atmosphere through new regions of seasonal heat release. Many of these <span class="hlt">interactions</span> involve emerging complex <span class="hlt">processes</span> that first need to be understood and then incorporated into forecast models in order to realize the goal of useful <span class="hlt">sea</span>-ice forecasting. The underlying hypothesis for this study is that errors in simulations of "fast" atmospheric <span class="hlt">processes</span> significantly impact the forecast of seasonal <span class="hlt">sea</span>-ice retreat in summer and its advance in autumn in the marginal ice zone (MIZ). We therefore focus on short-term (0-20 day) ice-floe movement, the freeze-up and melt-back <span class="hlt">processes</span> in the MIZ, and the role of storms in modulating stress and heat fluxes. This study uses a coupled ocean-atmosphere-seaice forecast model as a testbed to investigate; whether ocean-<span class="hlt">sea</span> ice-atmosphere coupling improves forecasts on subseasonal time scales, where systematic biases develop due to inadequate parameterizations (focusing on mixed-phase clouds and surface fluxes), how increased atmospheric resolution of synoptic features improves the forecasts, and how initialization of <span class="hlt">sea</span> ice area and thickness and snow depth impacts the skill of the forecasts. Simulations are validated with measurements at pan-Arctic land</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29195200','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29195200"><span>Spatial distribution and seasonal variation of four current-use pesticides (CUPs) in <span class="hlt">air</span> and surface water of the Bohai <span class="hlt">Sea</span>, China.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liu, Lin; Tang, Jianhui; Zhong, Guangcai; Zhen, Xiaomei; Pan, Xiaohui; Tian, Chongguo</p> <p>2018-04-15</p> <p>Current-use pesticides (CUPs) are widely used in agriculture, and some are listed as persistent organic pollutants (POPs) due to their bioaccumulative and toxic properties. China is one of the largest producers and users of pesticides in the world. However, very limited data are available about the environmental fates of CUPs. Four CUPs (trifluralin, chlorothalonil, chlorpyrifos, and dicofol) in surface seawater and low atmospheric samples taken during research cruises on the Bohai <span class="hlt">Sea</span> in August and December 2016 and February 2017 were analyzed, we added the spring data sampled in May 2012 to the discussion of seasonal variation. In our study, chlorpyrifos was the most abundant CUPs in the gas phase with a mean abundance of 59.06±126.94pgm -3 , and dicofol had the highest concentration dissolved in seawater (mean: 115.94±123.16pgL -1 ). The concentrations of all target compounds were higher during May and August due to intensive use and relatively high temperatures in the spring and summer. Backward trajectories indicated that <span class="hlt">air</span> masses passing through the eastern coast of the Bohai <span class="hlt">Sea</span> contained high concentrations of pollutants, while the <span class="hlt">air</span> masses from the Bohai and Yellow <span class="hlt">Seas</span> were less polluted. The high concentration of pollutants in seawater was not only influenced by high yields from the source region of production or usage, but also by input from polluted rivers. Volatilization from surface water was found to be an important source of trifluralin and chlorpyrifos in the <span class="hlt">air</span>. <span class="hlt">Air-sea</span> gas exchange of chlorothalonil underwent strong net deposition (mean FRs: 51.67), which was driven by higher concentrations in <span class="hlt">air</span> and indicates that the Bohai <span class="hlt">Sea</span> acted as a sink for chlorothalonil. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26PSL.489...72H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26PSL.489...72H"><span>Slab <span class="hlt">interactions</span> in 3-D subduction settings: The Philippine <span class="hlt">Sea</span> Plate region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holt, Adam F.; Royden, Leigh H.; Becker, Thorsten W.; Faccenna, Claudio</p> <p>2018-05-01</p> <p>The importance of slab-slab <span class="hlt">interactions</span> is manifested in the kinematics and geometry of the Philippine <span class="hlt">Sea</span> Plate and western Pacific subduction zones, and such <span class="hlt">interactions</span> offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific <span class="hlt">Sea</span> Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine <span class="hlt">Sea</span> Plate occurs in tandem with westward subduction of the Philippine <span class="hlt">Sea</span> Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific-Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine <span class="hlt">Sea</span> Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine <span class="hlt">Sea</span> Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu-Bonin-Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine <span class="hlt">Sea</span> Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu-Bonin-Mariana slabs. When weak back-arc regions are included, slab-slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab-slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA091850','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA091850"><span>Experimental <span class="hlt">Sea</span> Slicks in the Marsen (Maritime Remote Sensing) Exercise.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1980-10-30</p> <p>Experimental slicks with various surface properties were generated in the North <span class="hlt">Sea</span> as part of the MARSEN (Maritime Remote Sensing ) exercise. The one...with remote sensing instrumentation. Because of the numerous effects of surface films on <span class="hlt">air-sea</span> interfacial <span class="hlt">processes</span>, these experiments were designed...information was obtained on the influence of <span class="hlt">sea</span> surface films on the interpretation of signals received by remote sensing systems. Criteria for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6297D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6297D"><span><span class="hlt">Interactions</span> between Arctic <span class="hlt">sea</span> ice drift, concentration and thickness modeled by NEMO-LIM3 at different resolutions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Docquier, David; Massonnet, François; Raulier, Jonathan; Lecomte, Olivier; Fichefet, Thierry</p> <p>2016-04-01</p> <p><span class="hlt">Sea</span> ice concentration and thickness have substantially decreased in the Arctic since the beginning of the satellite era. As a result, mechanical strength has decreased allowing more fracturing and leading to increased <span class="hlt">sea</span> ice drift. However, recent studies have highlighted that the interplay between <span class="hlt">sea</span> ice thermodynamics and dynamics is poorly represented in contemporary global climate model (GCM) simulations. Thus, the considerable inter-model spread in terms of future <span class="hlt">sea</span> ice extent projections could be reduced by better understanding the <span class="hlt">interactions</span> between drift, concentration and thickness. This study focuses on the results coming from the global coupled ocean-<span class="hlt">sea</span> ice model NEMO-LIM3 between 1979 and 2012. Three different simulations are forced by the Drakkar Forcing Set (DFS) 5.2 and run on the global tripolar ORCA grid at spatial resolutions of 0.25, 1° and 2°. The relation between modeled <span class="hlt">sea</span> ice drift, concentration and thickness is further analyzed, compared to observations and discussed in the framework of the above-mentioned poor representation. It is proposed as a <span class="hlt">process</span>-based metric for evaluating model performance. This study forms part of the EU Horizon 2020 PRIMAVERA project aiming at developing a new generation of advanced and well-evaluated high-resolution GCMs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhLB..781..227S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhLB..781..227S"><span>Spin symmetry in the Dirac <span class="hlt">sea</span> derived from the bare nucleon-nucleon <span class="hlt">interaction</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shen, Shihang; Liang, Haozhao; Meng, Jie; Ring, Peter; Zhang, Shuangquan</p> <p>2018-06-01</p> <p>The spin symmetry in the Dirac <span class="hlt">sea</span> has been investigated with relativistic Brueckner-Hartree-Fock theory using the bare nucleon-nucleon <span class="hlt">interaction</span>. Taking the nucleus 16O as an example and comparing the theoretical results with the data, the definition of the single-particle potential in the Dirac <span class="hlt">sea</span> is studied in detail. It is found that if the single-particle states in the Dirac <span class="hlt">sea</span> are treated as occupied states, the ground state properties are in better agreement with experimental data. Moreover, in this case, the spin symmetry in the Dirac <span class="hlt">sea</span> is better conserved and it is more consistent with the findings using phenomenological relativistic density functionals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70023626','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70023626"><span>Stress induced by hooking, net towing, elevated <span class="hlt">sea</span> water temperature and <span class="hlt">air</span> in sablefish: Lack of concordance between mortality and physiological measures of stress</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Davis, M.W.; Olla, B.L.; Schreck, C.B.</p> <p>2001-01-01</p> <p>In a series of laboratory studies designed to simulate bycatch <span class="hlt">processes</span>, sablefish Anoplopoma fimbria were either hooked for up to 24 h or towed in a net for 4 h and then subjected to an abrupt transfer to elevated <span class="hlt">sea</span> water temperature and <span class="hlt">air</span>. Mortality did not result from hooking or net towing followed by exposure to <span class="hlt">air</span>, but increased for both capture methods as fish were exposed to elevated temperatures, reflecting the magnifying effect of elevated temperature on mortality. Hooking and exposure to <span class="hlt">air</span> resulted in increased plasma cortisol and lactate concentrations, while the combination of hooking and exposure to elevated temperature and <span class="hlt">air</span> resulted in increased lactate and potassium concentrations. In fish that were towed in a net and exposed to <span class="hlt">air</span>, cortisol, lactate, potassium and sodium concentrations increased, but when subjected to elevated temperature and <span class="hlt">air</span>, no further increases occurred above the concentrations induced by net towing and <span class="hlt">air</span>, suggesting a possible maximum of the physiological stress response. The results suggest that caution should be exercised when using physiological measures to quantify stress induced by capture and exposure to elevated temperature and <span class="hlt">air</span>, that ultimately result in mortality, since the connections between physiological stress and mortality in bycatch <span class="hlt">processes</span> remain to be fully understood.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25460953','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25460953"><span>Physical and chemical <span class="hlt">processes</span> of <span class="hlt">air</span> masses in the Aegean <span class="hlt">Sea</span> during Etesians: Aegean-GAME airborne campaign.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tombrou, M; Bossioli, E; Kalogiros, J; Allan, J D; Bacak, A; Biskos, G; Coe, H; Dandou, A; Kouvarakis, G; Mihalopoulos, N; Percival, C J; Protonotariou, A P; Szabó-Takács, B</p> <p>2015-02-15</p> <p>High-resolution measurements of gas and aerosols' chemical composition along with meteorological and turbulence parameters were performed over the Aegean <span class="hlt">Sea</span> (AS) during an Etesian outbreak in the framework of the Aegean-GAME airborne campaign. This study focuses on two distinct Etesian patterns, with similarities inside the Marine Atmospheric Boundary Layer (MABL) and differences at higher levels. Under long-range transport and subsidence the pollution load is enhanced (by 17% for CO, 11% for O3, 28% for sulfate, 62% for organic mass, 47% for elemental carbon), compared to the pattern with a weaker synoptic system. <span class="hlt">Sea</span> surface temperature (SST) was a critical parameter for the MABL structure, turbulent fluxes and pollutants' distribution at lower levels. The MABL height was below 500 m asl over the eastern AS (favoring higher accumulation), and deeper over the western AS. The most abundant components of total PM1 were sulfate (40-50%) and organics (30-45%). Higher average concentrations measured over the eastern AS (131 ± 76 ppbv for CO, 62.5 ± 4.1 ppbv for O3, 5.0 ± 1.1 μg m(-3) for sulfate, 4.7 ± 0.9 μg m(-3) for organic mass and 0.5 ± 0.2 μg m(-3) for elemental carbon). Under the weaker synoptic system, cleaner but more acidic <span class="hlt">air</span> masses prevailed over the eastern part, while distinct aerosol layers of different signature were observed over the western part. The Aitken and accumulation modes contributed equally during the long-range transport, while the Aitken modes dominated during local or medium range transport. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710077E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710077E"><span>Characterization of extreme <span class="hlt">sea</span> level at the European coast</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Elizalde, Alberto; Jorda, Gabriel; Mathis, Moritz; Mikolajewicz, Uwe</p> <p>2015-04-01</p> <p>Extreme high <span class="hlt">sea</span> levels arise as a combination of storm surges and particular high tides events. Future climate simulations not only project changes in the atmospheric circulation, which induces changes in the wind conditions, but also an increase in the global mean <span class="hlt">sea</span> level by thermal expansion and ice melting. Such changes increase the risk of coastal flooding, which represents a possible hazard for human activities. Therefore, it is important to investigate the pattern of <span class="hlt">sea</span> level variability and long-term trends at coastal areas. In order to analyze further extreme <span class="hlt">sea</span> level events at the European coast in the future climate projections, a new setup for the global ocean model MPIOM coupled with the regional atmosphere model REMO is prepared. The MPIOM irregular grid has enhanced resolution in the European region to resolve the North and the Mediterranean <span class="hlt">Seas</span> (up to 11 x 11 km at the North <span class="hlt">Sea</span>). The ocean model includes as well the full luni-solar ephemeridic tidal potential for tides simulation. To simulate the <span class="hlt">air-sea</span> <span class="hlt">interaction</span>, the regional atmospheric model REMO is <span class="hlt">interactively</span> coupled to the ocean model over Europe. Such region corresponds to the EuroCORDEX domain with a 50 x 50 km resolution. Besides the standard fluxes of heat, mass (freshwater), momentum and turbulent energy input, the ocean model is also forced with <span class="hlt">sea</span> level pressure, in order to be able to capture the full variation of <span class="hlt">sea</span> level. The hydrological budget within the study domain is closed using a hydrological discharge model. With this model, simulations for present climate and future climate scenarios are carried out to study transient changes on the <span class="hlt">sea</span> level and extreme events. As a first step, two simulations (coupled and uncoupled ocean) driven by reanalysis data (ERA40) have been conducted. They are used as reference runs to evaluate the climate projection simulations. For selected locations at the coast side, time series of <span class="hlt">sea</span> level are separated on its different</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8.1093P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8.1093P"><span>The potential of using remote sensing data to estimate <span class="hlt">air-sea</span> CO2 exchange in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Parard, Gaëlle; Rutgersson, Anna; Parampil, Sindu Raj; Alexandre Charantonis, Anastase</p> <p>2017-12-01</p> <p>In this article, we present the first climatological map of <span class="hlt">air-sea</span> CO2 flux over the Baltic <span class="hlt">Sea</span> based on remote sensing data: estimates of pCO2 derived from satellite imaging using self-organizing map classifications along with class-specific linear regressions (SOMLO methodology) and remotely sensed wind estimates. The estimates have a spatial resolution of 4 km both in latitude and longitude and a monthly temporal resolution from 1998 to 2011. The CO2 fluxes are estimated using two types of wind products, i.e. reanalysis winds and satellite wind products, the higher-resolution wind product generally leading to higher-amplitude flux estimations. Furthermore, the CO2 fluxes were also estimated using two methods: the method of Wanninkhof et al. (2013) and the method of Rutgersson and Smedman (2009). The seasonal variation in fluxes reflects the seasonal variation in pCO2 unvaryingly over the whole Baltic <span class="hlt">Sea</span>, with high winter CO2 emissions and high pCO2 uptakes. All basins act as a source for the atmosphere, with a higher degree of emission in the southern regions (mean source of 1.6 mmol m-2 d-1 for the South Basin and 0.9 for the Central Basin) than in the northern regions (mean source of 0.1 mmol m-2 d-1) and the coastal areas act as a larger sink (annual uptake of -4.2 mmol m-2 d-1) than does the open <span class="hlt">sea</span> (-4 mmol m-2 d-1). In its entirety, the Baltic <span class="hlt">Sea</span> acts as a small source of 1.2 mmol m-2 d-1 on average and this annual uptake has increased from 1998 to 2012.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840016010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840016010"><span>NASA Oceanic <span class="hlt">Processes</span> Program, fiscal year 1983</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nelson, R. M. (Editor); Pieri, D. C. (Editor)</p> <p>1984-01-01</p> <p>Accomplishments, activities, and plans are highlighted for studies of ocean circulation, <span class="hlt">air</span> <span class="hlt">sea</span> <span class="hlt">interaction</span>, ocean productivity, and <span class="hlt">sea</span> ice. Flight projects discussed include TOPEX, the ocean color imager, the advanced RF tracking system, the NASA scatterometer, and the pilot ocean data system. Over 200 papers generated by the program are listed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19351614','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19351614"><span>Effect of duration of exposure to polluted <span class="hlt">air</span> environment on lung function in subjects exposed to crude oil spill into <span class="hlt">sea</span> water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Rasheed, Shahzad; Meo, Imran Mu; Khan, Muhammad Mujahid; Al-Saadi, Muslim M; Alkandari, Jasem Ramadan</p> <p>2009-01-01</p> <p>Oil spill in <span class="hlt">sea</span> water represents a huge environmental disaster for marine life and humans in the vicinity. The aim was to investigate the effect of duration of exposure to polluted <span class="hlt">air</span> environment on lung function in subjects exposed to crude oil spill into <span class="hlt">sea</span> water. The present study was conducted under the supervision of Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, during the period July 2003 - December 2004. This was a comparative study of spirometry in 31 apparently healthy, non smoking, male workers, exposed to crude oil spill environment during the oil cleaning operation. The exposed group was matched with similar number of male, non smoking control subjects. Pulmonary function test was performed by using an electronic spirometer. Subjects exposed to polluted <span class="hlt">air</span> for periods longer than 15 days showed a significant reduction in Forced Vital Capacity (FVC), Forced Expiratory Volume in First Second (FEV1), Forced Expiratory Flow in 25-25% (FEF25-75%) and Maximal Voluntary Ventilation (MVV). <span class="hlt">Air</span> environment polluted due to crude oil spill into <span class="hlt">sea</span> water caused impaired lung function and this impairment was associated with dose response effect of duration of exposure to <span class="hlt">air</span> polluted by crude oil spill into <span class="hlt">sea</span> water.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5500848','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5500848"><span>Revising the hygroscopicity of inorganic <span class="hlt">sea</span> salt particles</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zieger, P.; Väisänen, O.; Corbin, J. C.; Partridge, D. G.; Bastelberger, S.; Mousavi-Fard, M.; Rosati, B.; Gysel, M.; Krieger, U. K.; Leck, C.; Nenes, A.; Riipinen, I.; Virtanen, A.; Salter, M. E.</p> <p>2017-01-01</p> <p><span class="hlt">Sea</span> spray is one of the largest natural aerosol sources and plays an important role in the Earth’s radiative budget. These particles are inherently hygroscopic, that is, they take-up moisture from the <span class="hlt">air</span>, which affects the extent to which they <span class="hlt">interact</span> with solar radiation. We demonstrate that the hygroscopic growth of inorganic <span class="hlt">sea</span> salt is 8–15% lower than pure sodium chloride, most likely due to the presence of hydrates. We observe an increase in hygroscopic growth with decreasing particle size (for particle diameters <150 nm) that is independent of the particle generation method. We vary the hygroscopic growth of the inorganic <span class="hlt">sea</span> salt within a general circulation model and show that a reduced hygroscopicity leads to a reduction in aerosol-radiation <span class="hlt">interactions</span>, manifested by a latitudinal-dependent reduction of the aerosol optical depth by up to 15%, while cloud-related parameters are unaffected. We propose that a value of κs=1.1 (at RH=90%) is used to represent the hygroscopicity of inorganic <span class="hlt">sea</span> salt particles in numerical models. PMID:28671188</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2987B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2987B"><span>Water budget and the role of land-<span class="hlt">sea</span> <span class="hlt">interactions</span> of a coastal wetland at the German Baltic Coast</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bronstert, Axel; Thomas, Graeff; Konrad, Miegel; Selle, Benny; Thomas, Salzmann; Christian, Franck</p> <p>2017-04-01</p> <p>Coastal low moors are characteristic elements of the landscapes along Germany's Baltic <span class="hlt">Sea</span> coastline. Under natural conditions, their hydrological peculiarities include exchange <span class="hlt">processes</span> between the fens and the Baltic <span class="hlt">Sea</span>. Due to human interventions such as the construction of dunes and dykes, drainage systems and lately also renaturation measures, their hydrological regime has been changed various times during the past centuries. The nature reserve "Hütelmoor und Heiligensee" northeast of the city Rostock has been selected as a natural observatory, instrumented with a number of measurement devices, and is therefore well-suited for investigating the effects of past and future changes. This contribution presents the observational programme and aims at identifying the relevant hydrological <span class="hlt">processes</span> that affect the water balance of such wetlands. The investigations are based on a monitoring network measuring groundwater levels and electric conductivity within the moor's body since 2009, as well as on measurements of the surface water fluxes across the catchment boundaries and of meteorological parameters. The measurements enable the identification of the governing hydrological <span class="hlt">processes</span> and patterns. On the basis of a system water budgeting approach we derived balancing of the different water flows across the system's borders (precipitation, evapotranspiration, inflows from the neighbouring parts of the catchment area, subterranean exchange <span class="hlt">processes</span> with the Baltic <span class="hlt">Sea</span> and the area's superficial discharge). Furthermore, the episodic input of salty water in case of heavy storm tides may provide a natural tracer. This tracer allows to better identify both vertical <span class="hlt">processes</span> in the lowland (precipitation, evaporation and rising groundwater levels) as well as lateral transport <span class="hlt">processes</span> (such as, e.g., water fluxes between groundwater bodies and the area`s trench system or land-<span class="hlt">sea</span> <span class="hlt">interactions</span>).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.7783Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.7783Z"><span>Impact of <span class="hlt">sea</span> spray on the Yellow and East China <span class="hlt">Seas</span> thermal structure during the passage of Typhoon Rammasun (2002)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei</p> <p>2017-10-01</p> <p>Strong winds lead to large amounts of <span class="hlt">sea</span> spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the <span class="hlt">air-sea</span> heat fluxes due to their evaporation and the momentum due to the change of <span class="hlt">sea</span> surface, and in turn change the upper ocean thermal structure. In this study, impact of <span class="hlt">sea</span> spray on upper ocean temperatures in the Yellow and East China <span class="hlt">Seas</span> (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a <span class="hlt">sea</span> spray parameterization scheme, in which the <span class="hlt">sea</span> spray-induced heat fluxes are based on an improved Fairall's <span class="hlt">sea</span> spray heat fluxes algorithm, and the <span class="hlt">sea</span> spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the <span class="hlt">sea</span> spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow <span class="hlt">sea</span>, the <span class="hlt">sea</span> spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total <span class="hlt">air-sea</span> momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the <span class="hlt">sea</span> spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" <span class="hlt">processes</span>. When the effect of <span class="hlt">sea</span> spray is considered, the maximum of the <span class="hlt">sea</span> surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ThApC..84..171L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ThApC..84..171L"><span><span class="hlt">Sea</span>-town <span class="hlt">interactions</span> over Marseille: 3D urban boundary layer and thermodynamic fields near the surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lemonsu, A.; Pigeon, G.; Masson, V.; Moppert, C.</p> <p>2006-02-01</p> <p>3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean <span class="hlt">Sea</span> and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer <span class="hlt">sea</span>-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of <span class="hlt">air</span> temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex <span class="hlt">interactions</span> that occur between the urban effects and the effects of <span class="hlt">sea</span> breezes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21815160','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21815160"><span>Quality changes in <span class="hlt">sea</span> urchin (Strongylocentrotus nudus) during storage in artificial seawater saturated with oxygen, nitrogen and <span class="hlt">air</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Chao; Xue, Changhu; Xue, Yong; Li, Zhaojie; Lv, Yingchun; Zhang, Hao</p> <p>2012-01-15</p> <p><span class="hlt">Sea</span> urchin gonads are highly valued seafood that degenerates rapidly during the storage period. To study the influence of dissolved oxygen concentration on quality changes of <span class="hlt">sea</span> urchin (Strongylocentrotus nudus) gonads, they were stored in artificial seawater saturated with oxygen, nitrogen or <span class="hlt">air</span> at 5 ± 1 °C for 12 days. The sensory acceptability limit was 11-12, 6-7 and 7-8 days for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging, respectively. Total volatile basic nitrogen (TVB-N) values reached 22.60 ± 1.32, 32.37 ± 1.37 and 24.91 ± 1.54 mg 100 g(-1) for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging at the points of near to, exceeding and reaching the limit of sensory acceptability, indicating that TVB-N values of about 25 mg 100 g(-1) should be regarded as the limit of acceptability for <span class="hlt">sea</span> urchin gonads. Relative ATP content values were 56.55%, 17.36% and 18.75% for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging, respectively, on day 2. K-values were 19.37%, 25.05% and 29.02% for gonads with oxygen, nitrogen or <span class="hlt">air</span> packaging, respectively, on day 2. Both pH and aerobic plate count values showed no significant difference (P > 0.05) for gonads with the three treatments. Gonads with oxygen packaging had lower sensory demerit point (P < 0.05) and TVB-N values (P < 0.05), and higher relative ATP content (P < 0.01) and K-values (P < 0.05), than that with nitrogen or <span class="hlt">air</span> packaging, with an extended shelf life of 4-5 days during storage in artificial seawater at 5 ± 1 °C. Copyright © 2011 Society of Chemical Industry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917514S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917514S"><span>Geomorphic <span class="hlt">interaction</span> among climate, <span class="hlt">sea</span> levels and karst groundwater: the Taranto area (South of Italy)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Spilotro, Giuseppe; Fidelibus, Maria Dolores; Argentiero, Ilenia; Pellicani, Roberta; Parisi, Alessandro; Di Modugno, Antonella</p> <p>2017-04-01</p> <p>The area of Taranto (Apulia region, Italy) has an extraordinary environmental and landscape value, which derives from its specific geological, geomorphological and hydrogeological conditions: they represent the effect of a complex mechanism of <span class="hlt">interaction</span> in the geological time among the <span class="hlt">sea</span>, its level variations and stands driven by climate changes, karst groundwater and the geo lithological frame. The knowledge of this <span class="hlt">interaction</span> spans over two very different time duration: the first is subsequent to the sedimentary pleistocenic deposition and diagenesis and lasts until the late Holocene; the second spans over a more limited time durations, from the LIA until today, and its knowledge is mainly based on hystorical topographic records and reports. The general geological and stratigraphical setting is represented by marine deposits, which fill the Bradanic Trough, shaped in the upper part as marine terraces bordering the W and SW side of the Murgian carbonate platform (Apulia, South of Italy) as well. This latter constitutes an important karst hydro-structure, fed by precipitation, bordered on the opposite side of the Bradanic Trough by the Adriatic <span class="hlt">Sea</span>. Fresh groundwater hosted in the huge coastal aquifer freely flows towards the Adriatic coast, while on the opposite W-NW side, the continuous confinement by the impermeable filling of the trough, forces the underground drainage of the aquifer towards the Ionian <span class="hlt">Sea</span> just in the Taranto area. The overall flow rate of the groundwater through submarine and subaerial coastal springs, according to the current <span class="hlt">sea</span> level, is significant and currently estimated in about 18 m3/sec. Climate changes have forced over geological time, but also in shorter periods, <span class="hlt">sea</span> level changes and stands, consequently correlated to groundwater levels. This allowed genesis of selected karst levels, of regional extension, both at the surface or underground, which arise as typical forms, namely polje and karst plane inland, terraces on the <span class="hlt">sea</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.8034B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.8034B"><span>Wind Speed and <span class="hlt">Sea</span> State Dependencies of <span class="hlt">Air-Sea</span> Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.</p> <p>2017-10-01</p> <p>A variety of physical mechanisms are jointly responsible for facilitating <span class="hlt">air-sea</span> gas transfer through turbulent <span class="hlt">processes</span> at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and <span class="hlt">sea</span> state in a complex manner, with k660 CO2 increasing as the wind <span class="hlt">sea</span> approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a <span class="hlt">sea</span> state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A53H..07N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A53H..07N"><span>Toward coordinated space-based <span class="hlt">air</span> quality, carbon cycle, and ecosystem measurements to quantify <span class="hlt">air</span> quality-ecosystem <span class="hlt">interactions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neu, J. L.; Schimel, D.; Lerdau, M.; Drewry, D.; Fu, D.; Payne, V.; Bowman, K. W.; Worden, J. R.</p> <p>2016-12-01</p> <p>Tropospheric ozone concentrations are increasing in many regions of the world, and this ozone can severely damage vegetation. Ozone enters plants through their stomata and oxidizes tissues, inhibiting physiology and decreasing ecosystem productivity. Ozone has been experimentally shown to reduce crop production, with important implications for global food security as concentrations rise. Ozone damage to forests also alters productivity and carbon storage and may drive changes in species distributions and biodiversity. <span class="hlt">Process</span>-based quantitative estimates of these ozone impacts on terrestrial ecosystems at continental to global scales as well as of feedbacks to <span class="hlt">air</span> quality via production of volatile organic compounds (VOCs) are thus crucial to sustainable development planning. We demonstrate that leveraging planned and proposed missions to measure ozone, formaldehyde, and isoprene along with solar-induced fluorescence (SiF), evapotranspiration, and plant nitrogen content can meet the requirements of an integrated observing system for <span class="hlt">air</span> quality-ecosystem <span class="hlt">interactions</span> while also meeting the needs of the individual <span class="hlt">Air</span> Quality, Carbon Cycle, and Ecosystems communities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009GeoRL..3621605V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009GeoRL..3621605V"><span>A generalized model for the <span class="hlt">air-sea</span> transfer of dimethyl sulfide at high wind speeds</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vlahos, Penny; Monahan, Edward C.</p> <p>2009-11-01</p> <p>The <span class="hlt">air-sea</span> exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the <span class="hlt">air-sea</span> flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (<10 m/s) but that these DMS transfer rates may diverge from other gases as wind speeds increase. Herein we provide a mechanism that predicts the attenuation of DMS transfer rates at high wind speeds. The model is based on the amphiphilic nature of DMS that leads to transfer delay at the water-bubble interface and becomes significant at wind speeds above >10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12626273','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12626273"><span>Dust in the Earth system: the biogeochemical linking of land, <span class="hlt">air</span> and <span class="hlt">sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ridgwell, Andy J</p> <p>2002-12-15</p> <p>Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of <span class="hlt">interacting</span> physical, chemical, biological and human <span class="hlt">processes</span> that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, <span class="hlt">air</span> and <span class="hlt">sea</span>. This paper reviews the biogeochemical role of mineral dust in the Earth system and its <span class="hlt">interaction</span> with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1422909','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1422909"><span>Climate Modeling and Causal Identification for <span class="hlt">Sea</span> Ice Predictability</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hunke, Elizabeth Clare; Urrego Blanco, Jorge Rolando; Urban, Nathan Mark</p> <p></p> <p>This project aims to better understand causes of ongoing changes in the Arctic climate system, particularly as decreasing <span class="hlt">sea</span> ice trends have been observed in recent decades and are expected to continue in the future. As part of the <span class="hlt">Sea</span> Ice Prediction Network, a multi-agency effort to improve <span class="hlt">sea</span> ice prediction products on seasonal-to-interannual time scales, our team is studying sensitivity of <span class="hlt">sea</span> ice to a collection of physical <span class="hlt">process</span> and feedback mechanism in the coupled climate system. During 2017 we completed a set of climate model simulations using the fully coupled ACME-HiLAT model. The simulations consisted of experiments inmore » which cloud, <span class="hlt">sea</span> ice, and <span class="hlt">air</span>-ocean turbulent exchange parameters previously identified as important for driving output uncertainty in climate models were perturbed to account for parameter uncertainty in simulated climate variables. We conducted a sensitivity study to these parameters, which built upon a previous study we made for standalone simulations (Urrego-Blanco et al., 2016, 2017). Using the results from the ensemble of coupled simulations, we are examining robust relationships between climate variables that emerge across the experiments. We are also using causal discovery techniques to identify <span class="hlt">interaction</span> pathways among climate variables which can help identify physical mechanisms and provide guidance in predictability studies. This work further builds on and leverages the large ensemble of standalone <span class="hlt">sea</span> ice simulations produced in our previous w14_seaice project.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43G2558W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43G2558W"><span><span class="hlt">Air-sea</span> exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, Z.; Guo, Z.</p> <p>2017-12-01</p> <p>We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China <span class="hlt">Sea</span> (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, <span class="hlt">air-sea</span> gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three- to five-ring PAHs) were influenced by upwind land pollution. In addition, <span class="hlt">air-sea</span> exchange fluxes of gaseous PAHs were estimated to be -54.2 to 107.4 ng m-2 d-1, and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logKp) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure, with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic <span class="hlt">air</span> masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling Kp for oceanic <span class="hlt">air</span> masses than those for continental <span class="hlt">air</span> masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of <span class="hlt">air-sea</span> exchange. Meanwhile, significant linear regressions between logKp and logKoa (logKsa) for PAHs were observed for continental <span class="hlt">air</span> masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100009685','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100009685"><span><span class="hlt">Processing</span> <span class="hlt">AIRS</span> Scientific Data Through Level 3</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Granger, Stephanie; Oliphant, Robert; Manning, Evan</p> <p>2010-01-01</p> <p>The Atmospheric Infra-Red Sounder (<span class="hlt">AIRS</span>) Science <span class="hlt">Processing</span> System (SPS) is a collection of computer programs, known as product generation executives (PGEs). The <span class="hlt">AIRS</span> SPS PGEs are used for <span class="hlt">processing</span> measurements received from the <span class="hlt">AIRS</span> suite of infrared and microwave instruments orbiting the Earth onboard NASA's Aqua spacecraft. Early stages of the <span class="hlt">AIRS</span> SPS development were described in a prior NASA Tech Briefs article: Initial <span class="hlt">Processing</span> of Infrared Spectral Data (NPO-35243), Vol. 28, No. 11 (November 2004), page 39. In summary: Starting from Level 0 (representing raw <span class="hlt">AIRS</span> data), the <span class="hlt">AIRS</span> SPS PGEs and the data products they produce are identified by alphanumeric labels (1A, 1B, 2, and 3) representing successive stages or levels of <span class="hlt">processing</span>. The previous NASA Tech Briefs article described <span class="hlt">processing</span> through Level 2, the output of which comprises geo-located atmospheric data products such as temperature and humidity profiles among others. The <span class="hlt">AIRS</span> Level 3 PGE samples selected information from the Level 2 standard products to produce a single global gridded product. One Level 3 product is generated for each day s collection of Level 2 data. In addition, daily Level 3 products are aggregated into two multiday products: an eight-day (half the orbital repeat cycle) product and monthly (calendar month) product.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MSMSE..26e5005M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MSMSE..26e5005M"><span>Modeling of nanosecond pulsed laser <span class="hlt">processing</span> of polymers in <span class="hlt">air</span> and water</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon</p> <p>2018-07-01</p> <p>Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in <span class="hlt">air</span>. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the <span class="hlt">process</span> considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in <span class="hlt">air</span> and water considering all the relevant physical phenomena such as laser–polymer <span class="hlt">interaction</span>, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer <span class="hlt">interaction</span> at such wavelengths is purely photo-thermal in nature and the laser–plasma <span class="hlt">interaction</span> is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in <span class="hlt">air</span>. Plasma expansion velocities are much lower in water than in <span class="hlt">air</span>. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE54B1584J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE54B1584J"><span>The <span class="hlt">interaction</span> between <span class="hlt">sea</span> ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of <span class="hlt">sea</span>-ice cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, M. F.; Nilsson, J.; Nisancioglu, K. H.</p> <p>2016-02-01</p> <p>In this study, we develop a simple conceptual model to examine how <span class="hlt">interactions</span> between <span class="hlt">sea</span> ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a <span class="hlt">sea</span>-ice covered and salinity stratified ocean, and consists of a <span class="hlt">sea</span>-ice component and a two-layer ocean; a cold, fresh surface layer above a warmer, more saline layer. The <span class="hlt">sea</span>-ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent <span class="hlt">sea</span>-ice export. Whether <span class="hlt">sea</span> ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the vertical mixing. In a system where the vertical diffusivity is constant, the <span class="hlt">sea</span> ice acts as a positive feedback on a freshwater perturbation. If the vertical diffusivity is derived from a constant mixing energy constraint, the <span class="hlt">sea</span> ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in <span class="hlt">sea</span> ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of <span class="hlt">sea</span> ice. Generally, the unstable state is reached before the vertical density difference disappears, and small changes in temperature and freshwater inputs can provoke abrupt changes in <span class="hlt">sea</span> ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A21A0019S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A21A0019S"><span><span class="hlt">Process</span> evaluation of <span class="hlt">sea</span> salt aerosol concentrations at remote marine locations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Struthers, H.; Ekman, A. M.; Nilsson, E. D.</p> <p>2011-12-01</p> <p><span class="hlt">Sea</span> salt, an important natural aerosol, is generated by bubbles bursting at the surface of the ocean. <span class="hlt">Sea</span> salt aerosol contributes significantly to the global aerosol burden and radiative budget and are a significant source of cloud condensation nuclei in remote marine areas (Monahan et al., 1986). Consequently, changes in marine aerosol abundance is expected to impact on climate forcing. Estimates of the atmospheric burden of <span class="hlt">sea</span> salt aerosol mass derived from chemical transport and global climate models vary greatly both in the global total and the spatial distribution (Texor et al. 2006). This large uncertainty in the <span class="hlt">sea</span> salt aerosol distribution in turn contributes to the large uncertainty in the current estimates of anthropogenic aerosol climate forcing (IPCC, 2007). To correctly attribute anthropogenic climate change and to veraciously project future climate, natural aerosols including <span class="hlt">sea</span> salt must be understood and accurately modelled. In addition, the physical <span class="hlt">processes</span> that determine the <span class="hlt">sea</span> salt aerosol concentration are susceptible to modification due to climate change (Carslaw et al., 2010) which means there is the potential for feedbacks within the climate/aerosol system. Given the large uncertainties in <span class="hlt">sea</span> salt aerosol modelling, there is an urgent need to evaluate the <span class="hlt">process</span> description of <span class="hlt">sea</span> salt aerosols in global models. An extremely valuable source of data for model evaluation is the long term measurements of PM10 <span class="hlt">sea</span> salt aerosol mass available from a number of remote marine observation sites around the globe (including the GAW network). <span class="hlt">Sea</span> salt aerosol concentrations at remote marine locations depend strongly on the surface exchange (emission and deposition) as well as entrainment or detrainment to the free troposphere. This suggests that the key parameters to consider in any analysis include the <span class="hlt">sea</span> surface water temperature, wind speed, precipitation rate and the atmospheric stability. In this study, the <span class="hlt">sea</span> salt aerosol observations</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A53B2224L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A53B2224L"><span>The Siberian High and Arctic <span class="hlt">Sea</span> Ice: Long-term Climate Change and Impacts on <span class="hlt">Air</span> Pollution during Wintertime in China</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.</p> <p>2017-12-01</p> <p>China has undergone severe <span class="hlt">air</span> pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime <span class="hlt">air</span> pollution. Recent studies propose that climate change and Arctic <span class="hlt">sea</span> ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and <span class="hlt">sea</span> ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of <span class="hlt">sea</span> ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime <span class="hlt">air</span> pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport <span class="hlt">air</span> pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on <span class="hlt">air</span> pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on <span class="hlt">air</span> pollution and it is urgently needed to take measures to mitigate <span class="hlt">air</span> pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime <span class="hlt">air</span> pollution.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....10.8415S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....10.8415S"><span>Biology and <span class="hlt">air-sea</span> gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.</p> <p>2013-05-01</p> <p>Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the <span class="hlt">processes</span> that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This <span class="hlt">process</span> leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. <span class="hlt">Air-sea</span> gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, <span class="hlt">air-sea</span> gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and <span class="hlt">air-sea</span> gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9456E..1DB','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9456E..1DB"><span><span class="hlt">Sea-air</span> boundary meteorological sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbosa, Jose G.</p> <p>2015-05-01</p> <p>The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the <span class="hlt">sea-air</span> interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2825C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2825C"><span>Modeling <span class="hlt">Sea</span>-Level Change using Errors-in-Variables Integrated Gaussian <span class="hlt">Processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin</p> <p>2014-05-01</p> <p>We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of <span class="hlt">sea</span>-level change. The data that form the input to our model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. To accurately estimate rates of <span class="hlt">sea</span>-level change and reliably compare tide-gauge compilations with proxy reconstructions it is necessary to account for the uncertainties that characterize each dataset. Many previous studies used simple linear regression models (most commonly polynomial regression) resulting in overly precise rate estimates. The model we propose uses an integrated Gaussian <span class="hlt">process</span> approach, where a Gaussian <span class="hlt">process</span> prior is placed on the rate of <span class="hlt">sea</span>-level change and the data itself is modeled as the integral of this rate <span class="hlt">process</span>. The non-parametric Gaussian <span class="hlt">process</span> model is known to be well suited to modeling time series data. The advantage of using an integrated Gaussian <span class="hlt">process</span> is that it allows for the direct estimation of the derivative of a one dimensional curve. The derivative at a particular time point will be representative of the rate of <span class="hlt">sea</span> level change at that time point. The tide gauge and proxy data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Most notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. As a result of this, the integrated Gaussian <span class="hlt">process</span> model is set in an errors-in-variables (EIV) framework so as to take account of this temporal uncertainty. The data must be corrected for land-level change known as glacio-isostatic adjustment (GIA) as it is important to isolate the climate-related <span class="hlt">sea</span>-level signal. The correction for GIA introduces covariance between individual age and <span class="hlt">sea</span> level observations into the model. The proposed integrated Gaussian <span class="hlt">process</span> model allows for the estimation of instantaneous rates of <span class="hlt">sea</span>-level change and accounts for all</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017BGeo...14.5765F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017BGeo...14.5765F"><span>Quantification of dimethyl sulfide (DMS) production in the <span class="hlt">sea</span> anemone Aiptasia sp. to simulate the <span class="hlt">sea-to-air</span> flux from coral reefs</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Franchini, Filippo; Steinke, Michael</p> <p>2017-12-01</p> <p>The production of dimethyl sulfide (DMS) is poorly quantified in tropical reef environments but forms an essential <span class="hlt">process</span> that couples marine and terrestrial sulfur cycles and affects climate. Here we quantified net aqueous DMS production and the concentration of its cellular precursor dimethylsulfoniopropionate (DMSP) in the <span class="hlt">sea</span> anemone Aiptasia sp., a model organism to study coral-related <span class="hlt">processes</span>. Bleached anemones did not show net DMS production whereas symbiotic anemones produced DMS concentrations (mean ± standard error) of 160.7 ± 44.22 nmol g-1 dry weight (DW) after 48 h incubation. Symbiotic and bleached individuals showed DMSP concentrations of 32.7 ± 6.00 and 0.6 ± 0.19 µmol g-1 DW, respectively. We applied these findings to a Monte Carlo simulation to demonstrate that net aqueous DMS production accounts for only 20 % of gross aqueous DMS production. Monte Carlo-based estimations of <span class="hlt">sea-to-air</span> fluxes of gaseous DMS showed that reefs may release 0.1 to 26.3 µmol DMS m-2 coral surface area (CSA) d-1 into the atmosphere with 40 % probability for rates between 0.5 and 1.5 µmol m-2 CSA d-1. These predictions were in agreement with directly quantified fluxes in previous studies. Conversion to a flux normalised to <span class="hlt">sea</span> surface area (SSA) (range 0.1 to 17.4, with the highest probability for 0.3 to 1.0 µmol DMS m-2 SSA d-1) suggests that coral reefs emit gaseous DMS at lower rates than the average global oceanic DMS flux of 4.6 µmol m-2 SSA d-1 (19.6 Tg sulfur per year). The large difference between simulated gross and quantified net aqueous DMS production in corals suggests that the current and future potential for its production in tropical reefs is critically governed by DMS consumption <span class="hlt">processes</span>. Hence, more research is required to assess the sensitivity of DMS-consumption pathways to ongoing environmental change in order to address the impact of predicted degradation of coral reefs on DMS production in tropical coastal ecosystems and its impact on</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...47.3301J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...47.3301J"><span>The <span class="hlt">interaction</span> between <span class="hlt">sea</span> ice and salinity-dominated ocean circulation: implications for halocline stability and rapid changes of <span class="hlt">sea</span> ice cover</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jensen, Mari F.; Nilsson, Johan; Nisancioglu, Kerim H.</p> <p>2016-11-01</p> <p>Changes in the <span class="hlt">sea</span> ice cover of the Nordic <span class="hlt">Seas</span> have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. In this study, we develop a simple conceptual model to examine how <span class="hlt">interactions</span> between <span class="hlt">sea</span> ice and oceanic heat and freshwater transports affect the stability of an upper-ocean halocline in a semi-enclosed basin. The model represents a <span class="hlt">sea</span> ice covered and salinity stratified Nordic <span class="hlt">Seas</span>, and consists of a <span class="hlt">sea</span> ice component and a two-layer ocean. The <span class="hlt">sea</span> ice thickness depends on the atmospheric energy fluxes as well as the ocean heat flux. We introduce a thickness-dependent <span class="hlt">sea</span> ice export. Whether <span class="hlt">sea</span> ice stabilizes or destabilizes against a freshwater perturbation is shown to depend on the representation of the diapycnal flow. In a system where the diapycnal flow increases with density differences, the <span class="hlt">sea</span> ice acts as a positive feedback on a freshwater perturbation. If the diapycnal flow decreases with density differences, the <span class="hlt">sea</span> ice acts as a negative feedback. However, both representations lead to a circulation that breaks down when the freshwater input at the surface is small. As a consequence, we get rapid changes in <span class="hlt">sea</span> ice. In addition to low freshwater forcing, increasing deep-ocean temperatures promote instability and the disappearance of <span class="hlt">sea</span> ice. Generally, the unstable state is reached before the vertical density difference disappears, and the temperature of the deep ocean do not need to increase as much as previously thought to provoke abrupt changes in <span class="hlt">sea</span> ice.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C31A..03A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C31A..03A"><span><span class="hlt">Interactions</span> Between Ice Thickness, Bottom Ice Algae, and Transmitted Spectral Irradiance in the Chukchi <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arntsen, A. E.; Perovich, D. K.; Polashenski, C.; Stwertka, C.</p> <p>2015-12-01</p> <p>The amount of light that penetrates the Arctic <span class="hlt">sea</span> ice cover impacts <span class="hlt">sea</span>-ice mass balance as well as ecological <span class="hlt">processes</span> in the upper ocean. The seasonally evolving macro and micro spatial variability of transmitted spectral irradiance observed in the Chukchi <span class="hlt">Sea</span> from May 18 to June 17, 2014 can be primarily attributed to variations in snow depth, ice thickness, and bottom ice algae concentrations. This study characterizes the <span class="hlt">interactions</span> among these dominant variables using observed optical properties at each sampling site. We employ a normalized difference index to compute estimates of Chlorophyll a concentrations and analyze the increased attenuation of incident irradiance due to absorption by biomass. On a kilometer spatial scale, the presence of bottom ice algae reduced the maximum transmitted irradiance by about 1.5 orders of magnitude when comparing floes of similar snow and ice thicknesses. On a meter spatial scale, the combined effects of disparities in the depth and distribution of the overlying snow cover along with algae concentrations caused maximum transmittances to vary between 0.0577 and 0.282 at a single site. Temporal variability was also observed as the average integrated transmitted photosynthetically active radiation increased by one order of magnitude to 3.4% for the last eight measurement days compared to the first nine. Results provide insight on how interrelated physical and ecological parameters of <span class="hlt">sea</span> ice in varying time and space may impact new trends in Arctic <span class="hlt">sea</span> ice extent and the progression of melt.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12l0201V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12l0201V"><span>Land cover, land use changes and <span class="hlt">air</span> pollution in Asia: a synthesis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vadrevu, Krishna; Ohara, Toshimasa; Justice, Chris</p> <p>2017-12-01</p> <p>A better understanding of land cover/land use changes (LCLUC) and their <span class="hlt">interactions</span> with the atmospheric environment is essential for the sustainable management of natural resources, environmental protection, <span class="hlt">air</span> quality, agricultural planning and food security. The 15 papers published in this focus issue showcase a variety of studies relating to drivers and impacts of LCLUC and <span class="hlt">air</span> pollution in different South/Southeast Asian (S/<span class="hlt">SEA</span>) countries. This synthesis article, in addition to giving context to the articles in this focus issue, also reviews the broad linkages between population, LCLUC and <span class="hlt">air</span> pollution. Additionally, we identify knowledge gaps and research priorities that are essential in addressing <span class="hlt">air</span> pollution issues in the region. We conclude that for effective pollution mitigation in S/<span class="hlt">SEA</span> countries, quantifying drivers, sources and impacts of pollution need a thorough data analysis through ground-based instrumentation, models and integrated research approaches. We also stress the need for the development of sustainable technologies and strengthening the scientific and resource management communities through capacity building and training activities to address <span class="hlt">air</span> pollution issues in S/<span class="hlt">SEA</span> countries.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004GMS...149.....C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004GMS...149.....C"><span>Continent-Ocean <span class="hlt">Interactions</span> Within East Asian Marginal <span class="hlt">Seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clift, Peter; Kuhnt, Wolfgang; Wang, Pinxian; Hayes, Dennis</p> <p></p> <p>The study of the complex <span class="hlt">interactions</span> between continents and oceans has become a leading area for 21st century earth cience. In this volume, continent—ocean <span class="hlt">interactions</span> in tectonics, arc-continent collision, sedimentology, and climatic volution within the East Asian Marginal <span class="hlt">Seas</span> take precedence. Links between oceanic and continental climate, the sedimentology of coastal and shelf areas, and the links between deformation of continental and oceanic lithosphere are also discussed. As an introduction to the science presented throughout the volume, Wang discusses many of the possible <span class="hlt">interactions</span> between the tectonic evolution of Asia and both regional and global climate. He speculates that uplift of central Asia in the Pliocene may have triggered the formation of many of the major rivers that drain north through Siberia into the Arctic Ocean. He also argues that it is the delivery of this fresh water that allows the formation of <span class="hlt">sea</span> ice in that area and triggered the start of Northern Hemispheric glaciation. This may be one of the most dramatic ways in which Asia has shaped the Earth's climate and represents an alternative to the other competing models that have previously emphasized the role of oceanic gateway closure in Central America. Moreover, his proposal for major uplift of at least part of Tibet and Mongolia as late as the Pliocene, based on the history of drainage evolution in Siberia, supports recent data from the southern Tarim Basin and from the Qilian Shan and Qaidam and Jiuxi Basins in northeast Tibet that indicate surface uplift at that time. Constraining the timing and patterns of Tibetan surface uplift is crucial to testing competing models for strain accommodation in Asia following India—Asia collision.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28645049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28645049"><span>Gaseous elemental mercury in the marine boundary layer and <span class="hlt">air-sea</span> flux in the Southern Ocean in austral summer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Jiancheng; Xie, Zhouqing; Wang, Feiyue; Kang, Hui</p> <p>2017-12-15</p> <p>Gaseous elemental mercury (GEM) in the marine boundary layer (MBL), and dissolved gaseous mercury (DGM) in surface seawater of the Southern Ocean were measured in the austral summer from December 13, 2014 to February 1, 2015. GEM concentrations in the MBL ranged from 0.4 to 1.9ngm -3 (mean±standard deviation: 0.9±0.2ngm -3 ), whereas DGM concentrations in surface seawater ranged from 7.0 to 75.9pgL -1 (mean±standard deviation: 23.7±13.2pgL -1 ). The occasionally observed low GEM in the MBL suggested either the occurrence of atmospheric mercury depletion in summer, or the transport of GEM-depleted <span class="hlt">air</span> from the Antarctic Plateau. Elevated GEM concentrations in the MBL and DGM concentrations in surface seawater were consistently observed in the ice-covered region of the Ross <span class="hlt">Sea</span> implying the influence of the <span class="hlt">sea</span> ice environment. Diminishing <span class="hlt">sea</span> ice could cause more mercury evasion from the ocean to the <span class="hlt">air</span>. Using the thin film gas exchange model, the <span class="hlt">air-sea</span> fluxes of gaseous mercury in non-ice-covered area during the study period were estimated to range from 0.0 to 6.5ngm -2 h -1 with a mean value of 1.5±1.8ngm -2 h -1 , revealing GEM (re-)emission from the East Southern Ocean in summer. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22423677','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22423677"><span>Cognitive <span class="hlt">process</span> modelling of controllers in en route <span class="hlt">air</span> traffic control.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark</p> <p>2012-01-01</p> <p>In recent years, various efforts have been made in <span class="hlt">air</span> traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing <span class="hlt">air</span> traffic demands. ATC is a complex <span class="hlt">process</span> that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive <span class="hlt">process</span> perspective, it is essential that system developers have an understanding of the more complex working <span class="hlt">processes</span> that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive <span class="hlt">processes</span> that span multiple actors mediated by technology. In this research, we attempt to analyse and model <span class="hlt">interactions</span> that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of <span class="hlt">air</span> traffic controllers' tasks for en route ATC and modelling controllers' cognitive <span class="hlt">processes</span>. This research focuses on an experimental study to gain a better understanding of controllers' cognitive <span class="hlt">processes</span> in <span class="hlt">air</span> traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive <span class="hlt">process</span>. This analysis revealed that strategic routines are applicable to decision making.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA483634','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA483634"><span>CV or Not to Be? Alternatives to U.S. <span class="hlt">Sea</span>-Based <span class="hlt">Air</span> Power</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-06-01</p> <p>decisionmakers’ ability to respond to crises nearly anywhere in the world. Despite this, a fundamental question arises: What does the future hold for...much concentrated striking power to U.S. decisionmakers’ ability to respond to crises nearly anywhere in the world. Despite this, a fundamental ...certainties, a fundamental question arises: What does the future hold for <span class="hlt">sea</span>-based <span class="hlt">air</span> power? Aircraft carriers are among the military’s costliest assets</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC12A..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC12A..07L"><span>Impacts of Species <span class="hlt">Interactions</span> on Atmospheric <span class="hlt">Processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lerdau, M.; Wang, B.; Cook, B.; Neu, J. L.; Schimel, D.</p> <p>2016-12-01</p> <p>The current fascination with <span class="hlt">interactions</span> between <span class="hlt">air</span> quality and ecosystems began over 60 years ago with the discovery by Arie Haagen-Smit and colleagues that organic carbon emissions from plants play a role in ozone formation. In the seven decades since, thanks to biochemical and physiological studies of these emissions, their biosynthetic pathways and short-term flux-regulation mechanisms are now well understood. This `metabolic' approach has been invaluable for developing models of VOC emissions and atmospheric oxidant dynamics that function on local spatial scales over time intervals of minutes to days, but it has been of limited value for predicting emissions across larger spatial and temporal scales. This limited success arises in large part from the species-specific nature of volatile organic carbon production by plants. Each plant species produces certain volatile compounds but not others, so predicting emissions through time requires consideration of plant species composition. As the plant species composition of an ecosystem changes through time, so too do its VOC emissions. When VOC impacts on the atmosphere influence species composition by altering inter-specific <span class="hlt">interactions</span>, there exists the possibility for feedbacks among emissions, atmospheric chemistry, higher order ecological <span class="hlt">processes</span> such as competition & pollination, and species composition. For example, previous work has demonstrated that VOC emissions may affect ozone, which, in turn, alters competition among trees species, and current efforts suggest that plant reproductive success may be mediated by ozone impacts on floral signals. These changes in ecological <span class="hlt">processes</span> alter the species composition and future VOC emissions from ecosystems. We present empirical and simulated data demonstrating that biological diversity may be affected by VOC impacts on the atmosphere and that these diversity changes may, in turn, alter the emissions of VOC's and other photochemically active compounds to the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4218717','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4218717"><span>Temporal Dynamics of Top Predators <span class="hlt">Interactions</span> in the Barents <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Durant, Joël M.; Skern-Mauritzen, Mette; Krasnov, Yuri V.; Nikolaeva, Natalia G.; Lindstrøm, Ulf; Dolgov, Andrey</p> <p>2014-01-01</p> <p>The Barents <span class="hlt">Sea</span> system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and <span class="hlt">sea</span> mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents <span class="hlt">Sea</span> top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific <span class="hlt">interactions</span>. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific <span class="hlt">interactions</span> and their dynamics that potentially affect the stocks targeted by fisheries. PMID:25365430</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMED53F..04T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMED53F..04T"><span><span class="hlt">Interactive</span> <span class="hlt">Sea</span> Level Rise App & Online Viewer Offers Deep Dive Into Climate</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turrin, M.; Porter, D. F.; Ryan, W. B. F.; Pfirman, S. L.</p> <p>2015-12-01</p> <p>Climate has captured the attention of the public but its complexity can cause interested individuals to turn to opinion pieces, news articles or blogs for information. These platforms often oversimplify or present heavily interpreted or personalized perspectives. Data <span class="hlt">interactives</span> are an extremely effective way to explore complex geoscience topics like climate, opening windows of understanding for the user that have previously been closed. Layering data onto maps through programs like GeoMapApp and the Earth Observer App has allowed users to dig directly into science data, but with only limited scaffolding. The <span class="hlt">interactive</span> 'Polar Explorer: <span class="hlt">Sea</span> Level Explorer App' provides a richly layered introduction to a range of topics connected to <span class="hlt">sea</span> level rise. Each map is supported with a pop up and a short audio file of supplementary material, and an information page that includes the data source and links for further reading. This type of learning platform works well for both the formal and informal learning environment. Through science data displayed as map visualizations the user is invited into topics through an introductory question, such as "Why does <span class="hlt">sea</span> level change?" After clicking on that question the user moves to a second layer of questions exploring the role of the ocean, the atmosphere, the contribution from the world's glaciers, world's ice sheets and other less obvious considerations such as the role of post-glacial rebound, or the mining of groundwater. Each question ends in a data map, or series of maps, that offer opportunities to <span class="hlt">interact</span> with the topic. Under the role of the ocean 'Internal Ocean Temperature' offers the user a chance to touch to see temperature values spatially over the world's ocean, or to click through a data series starting at the ocean surface and diving to 5000 meters of depth showing how temperature changes with depth. Other sections, like the role of deglaciation of North America, allow the user to click and see change through</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2562D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2562D"><span>Assessing the role of local <span class="hlt">air-sea</span> <span class="hlt">interaction</span> over the South Asia region in simulating the Indian Summer Monsoon (ISM) using the new earth system model RegCM-ES</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Sante, Fabio; Coppola, Erika; Farneti, Riccardo; Giorgi, Filippo</p> <p>2017-04-01</p> <p>The South Asia climate is dominated by the monsoon precipitation that divides the climate in two different seasons, the wet and dry seasons, and it influences the lives of billions of peoples. The Indian Summer Monsoon (ISM) has different temporal and spatial scales of variability and it is mainly driven by strong <span class="hlt">air</span> <span class="hlt">sea</span> <span class="hlt">interactions</span>. The monsoon interannual variability (IAV) and the intraseasonal variability (ISV) of daily rainfall are the two most important scale of analysis of this phenomenon. In this work, the Regional Earth System Model (RegCM-ES) (Sitz et al, 2016) is used to simulate the South Asia climate. Several model settings are experimented to assess the sensitivity of the monsoon system like for example two different cumulous convection schemes (Tidtke, 1989 and Emanuel, 1991), two different lateral boundary conditions in the regional ocean model (NOAA/Geophysical 5 Fluid Dynamics Laboratory MOM run, Danabasoglu et al 2014; and ORAP reanalysis, Zuo et Al 2015) and two different hydrological models (Cetemps Hydrological Model, Coppola et al, 2007; Max-Planck's HD model, Hagemann and Dümenil, 1998) for a total of 5 coupled and uncoupled simulations all covering the period from 1979 to 2008. One of the main results of the analysis of the mini RegCM-ES ensemble shows that a better representation of the IAV and of the ENSO-monsoon relationship is present in the coupled simulations. Moreover a source of monsoon predictability has been found in the one-year-lag correlation between JJAS India precipitation and ENSO, this is only evident in the coupled system where the one-year-lagged correlation coefficient between the Niño-3.4 and the ISM rainfall is much higher respect to the uncoupled one and similar to values observed between the observations and the Niño-3.4. For the subseasonal time scale, RegCM-ES shows better performance compared to the standalone version of RegCM4 (Giorgi et al 2012), in reproducing "active" and "break" spells that characterize</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002EGSGA..27.5673F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002EGSGA..27.5673F"><span><span class="hlt">Air-sea</span> Forcing and Thermohaline Changes In The Ross <span class="hlt">Sea</span>.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fusco, G.; Budillon, G.</p> <p></p> <p>Heat exchanges between <span class="hlt">sea</span> and atmosphere from 1986 to 2000 in the Ross <span class="hlt">Sea</span> (Antarctica) were computed from climatological data obtained from the European Centre for Medium Range Weather Forecasts. They have been related with the thermo- haline changes observed during 5 hydrological surveys performed between the austral summer 1994-1995 and 2000-2001 in the western sector of the Ross <span class="hlt">Sea</span>. The esti- mated heat fluxes show extremely strong spatial and temporal variability over all the Ross <span class="hlt">Sea</span>. As can be expected the largest heat losses occur between May and August, while during the period November-February the heat budget becomes positive. In the first six years of the investigated period the heat loss is very strong with its maximum about 166 Wm-2; while during the period 1992-2000 the yearly heat losses are the lowest. Thermohaline changes in the surface layer (upper pycnocline) of the western Ross <span class="hlt">Sea</span> follow the expected seasonal pattern of warming and freshening from the be- ginning to the end of the austral summer. The heating changes are substantially lower than the estimated heat supplied by the atmosphere during the summer, which under- lines the importance in this season of the advective component carried by the currents in the total heat budget of this area. The year to year differences are about one or two orders of magnitude smaller than the seasonal changes in the surface layer. In the in- termediate and deep layers, the summer heat and salt variability is of the same order as or one order higher than from one summer to the next. Moreover a freshening of the near bottom layer has been observed, it is consistent with the High Salinity Shelf Water salinity decrease recently detected in the Ross <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRC..123.1586G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRC..123.1586G"><span>Atmosphere-Ice-Ocean-Ecosystem <span class="hlt">Processes</span> in a Thinner Arctic <span class="hlt">Sea</span> Ice Regime: The Norwegian Young <span class="hlt">Sea</span> ICE (N-ICE2015) Expedition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granskog, Mats A.; Fer, Ilker; Rinke, Annette; Steen, Harald</p> <p>2018-03-01</p> <p>Arctic <span class="hlt">sea</span> ice has been in rapid decline the last decade and the Norwegian young <span class="hlt">sea</span> ICE (N-ICE2015) expedition sought to investigate key <span class="hlt">processes</span> in a thin Arctic <span class="hlt">sea</span> ice regime, with emphasis on atmosphere-snow-ice-ocean dynamics and <span class="hlt">sea</span> ice associated ecosystem. The main findings from a half-year long campaign are collected into this special section spanning the Journal of Geophysical Research: Atmospheres, Journal of Geophysical Research: Oceans, and Journal of Geophysical Research: Biogeosciences and provide a basis for a better understanding of <span class="hlt">processes</span> in a thin <span class="hlt">sea</span> ice regime in the high Arctic. All data from the campaign are made freely available to the research community.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcSci..13..997P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcSci..13..997P"><span>The spatial and interannual dynamics of the surface water carbonate system and <span class="hlt">air-sea</span> CO2 fluxes in the outer shelf and slope of the Eurasian Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pipko, Irina I.; Pugach, Svetlana P.; Semiletov, Igor P.; Anderson, Leif G.; Shakhova, Natalia E.; Gustafsson, Örjan; Repina, Irina A.; Spivak, Eduard A.; Charkin, Alexander N.; Salyuk, Anatoly N.; Shcherbakova, Kseniia P.; Panova, Elena V.; Dudarev, Oleg V.</p> <p>2017-11-01</p> <p>The Arctic is undergoing dramatic changes which cover the entire range of natural <span class="hlt">processes</span>, from extreme increases in the temperatures of <span class="hlt">air</span>, soil, and water, to changes in the cryosphere, the biodiversity of Arctic waters, and land vegetation. Small changes in the largest marine carbon pool, the dissolved inorganic carbon pool, can have a profound impact on the carbon dioxide (CO2) flux between the ocean and the atmosphere, and the feedback of this flux to climate. Knowledge of relevant <span class="hlt">processes</span> in the Arctic <span class="hlt">seas</span> improves the evaluation and projection of carbon cycle dynamics under current conditions of rapid climate change. Investigation of the CO2 system in the outer shelf and continental slope waters of the Eurasian Arctic <span class="hlt">seas</span> (the Barents, Kara, Laptev, and East Siberian <span class="hlt">seas</span>) during 2006, 2007, and 2009 revealed a general trend in the surface water partial pressure of CO2 (pCO2) distribution, which manifested as an increase in pCO2 values eastward. The existence of this trend was defined by different oceanographic and biogeochemical regimes in the western and eastern parts of the study area; the trend is likely increasing due to a combination of factors determined by contemporary change in the Arctic climate, each change in turn evoking a series of synergistic effects. A high-resolution in situ investigation of the carbonate system parameters of the four Arctic <span class="hlt">seas</span> was carried out in the warm season of 2007; this year was characterized by the next-to-lowest historic <span class="hlt">sea</span>-ice extent in the Arctic Ocean, on satellite record, to that date. The study showed the different responses of the seawater carbonate system to the environment changes in the western vs. the eastern Eurasian Arctic <span class="hlt">seas</span>. The large, open, highly productive water area in the northern Barents <span class="hlt">Sea</span> enhances atmospheric CO2 uptake. In contrast, the uptake of CO2 was strongly weakened in the outer shelf and slope waters of the East Siberian Arctic <span class="hlt">seas</span> under the 2007 environmental conditions</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A21D0085W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A21D0085W"><span>Assessment of aerosol optics, microphysics, and transport <span class="hlt">process</span> of biomass-burning haze over northern SE Asia: 7-<span class="hlt">SEAS</span> AERONET observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, S.; Giles, D. M.; Eck, T. F.; Lin, N.; Tsay, S.; Holben, B. N.</p> <p>2013-12-01</p> <p>Initiated in 2007, the Seven South East Asian Studies (7-<span class="hlt">SEAS</span>) is aimed to facilitate an interdisciplinary research on the aerosol environment in SE Asia (<span class="hlt">SEA</span>) as a whole, promote international collaboration, and further enhance scientific understanding of the impact of biomass burning on clouds, atmospheric radiation, hydrological cycle, and region climates. One of the key measurements proposed in the 7-<span class="hlt">SEAS</span> is the NASA/AERONET (AErosol RObotic NETwork) observation, which provides helpful information on columnar aerosol optical properties and allows us consistently to examine biomass-burning aerosols across northern <span class="hlt">SEA</span> from ground-based remote-sensing point of view. In this presentation, we will focus on the two 7-<span class="hlt">SEAS</span> field deployments, i.e. the 2012 Son La Experiment and the 2013 BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and <span class="hlt">Interactions</span> Experiment). We analyze the daytime variation of aerosol by using consistent measurements from 15 of AERONET sites over Indochina, the South China <span class="hlt">Sea</span>, and Taiwan. Spatiotemporal characteristics of aerosol optical properties (e.g., aerosol optical depth (AOD), fine/coarse mode AOD, single-scattering albedo, asymmetry factor) will be discussed. Strong diurnal variation of aerosol optical properties was observed to be attributed to planetary boundary layer (PBL) dynamics. A comparison between aerosol loading (i.e. AOD) and surface PM2.5 concentration will be presented. Our results demonstrate that smoke aerosols emitted from agriculture burning that under certain meteorological conditions can degrade regional <span class="hlt">air</span> quality 3000 km from the source region, with additional implications for aerosol radiative forcing and regional climate change over northern SE Asia.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGeo...10.2699S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGeo...10.2699S"><span>Coccolithophore surface distributions in the North Atlantic and their modulation of the <span class="hlt">air-sea</span> flux of CO2 from 10 years of satellite Earth observation data</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shutler, J. D.; Land, P. E.; Brown, C. W.; Findlay, H. S.; Donlon, C. J.; Medland, M.; Snooke, R.; Blackford, J. C.</p> <p>2013-04-01</p> <p>Coccolithophores are the primary oceanic phytoplankton responsible for the production of calcium carbonate (CaCO3). These climatically important plankton play a key role in the oceanic carbon cycle as a major contributor of carbon to the open ocean carbonate pump (~50%) and their calcification can affect the atmosphere-to-ocean (<span class="hlt">air-sea</span>) uptake of carbon dioxide (CO2) through increasing the seawater partial pressure of CO2 (pCO2). Here we document variations in the areal extent of surface blooms of the globally important coccolithophore, Emiliania huxleyi, in the North Atlantic over a 10-year period (1998-2007), using Earth observation data from the <span class="hlt">Sea</span>-viewing Wide Field-of-view Sensor (<span class="hlt">Sea</span>WiFS). We calculate the annual mean <span class="hlt">sea</span> surface areal coverage of E. huxleyi in the North Atlantic to be 474 000 ± 104 000 km2, which results in a net CaCO3 carbon (CaCO3-C) production of 0.14-1.71 Tg CaCO3-C per year. However, this surface coverage (and, thus, net production) can fluctuate inter-annually by -54/+8% about the mean value and is strongly correlated with the El Niño/Southern Oscillation (ENSO) climate oscillation index (r=0.75, p<0.02). Our analysis evaluates the spatial extent over which the E. huxleyi blooms in the North Atlantic can increase the pCO2 and, thus, decrease the localised <span class="hlt">air-sea</span> flux of atmospheric CO2. In regions where the blooms are prevalent, the average reduction in the monthly <span class="hlt">air-sea</span> CO2 flux can reach 55%. The maximum reduction of the monthly <span class="hlt">air-sea</span> CO2 flux in the time series is 155%. This work suggests that the high variability, frequency and distribution of these calcifying plankton and their impact on pCO2 should be considered if we are to fully understand the variability of the North Atlantic <span class="hlt">air-to-sea</span> flux of CO2. We estimate that these blooms can reduce the annual N. Atlantic net sink atmospheric CO2 by between 3-28%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930091303','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930091303"><span><span class="hlt">Interaction</span> Between <span class="hlt">Air</span> Propellers and Airplane Structures</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Durand, W F</p> <p>1927-01-01</p> <p>The purpose of this investigation was the determination of the character and amount of <span class="hlt">interaction</span> between <span class="hlt">air</span> propellers as usually mounted on airplanes and the adjacent parts of the airplane structure - or, more specifically, those parts of the airplane structure within the wash of the propeller, and capable of producing any significant effect on propeller performance. In report no. 177 such <span class="hlt">interaction</span> between <span class="hlt">air</span> propellers and certain simple geometrical forms was made the subject of investigation and report. The present investigation aims to carry this general study one stage further by substituting actual airplane structures for the simple geometrical forms. From the point of view of the present investigation, the airplane structures, viewed as an obstruction in the wake of the propeller, must also be viewed as a necessary part of the airplane and not as an appendage which might be installed or removed at will. (author)</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18061242','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18061242"><span>Modeling the impact of <span class="hlt">sea</span>-spray on particle concentrations in a coastal city.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pryor, S C; Barthelmie, R J; Schoof, J T; Binkowski, F S; Delle Monache, L; Stull, R</p> <p>2008-02-25</p> <p>With the worlds population becoming increasingly focused on coastal locations there is a need to better understand the <span class="hlt">interactions</span> between anthropogenic emissions and marine atmospheres. Herein an atmospheric chemistry-transport model is used to assess the impacts of <span class="hlt">sea</span>-spray chemistry on the particle composition in and downwind of a coastal city--Vancouver, British Columbia. It is shown that the model can reasonably represent the average features of the gas phase and particle climate relative to in situ measurements. It is further demonstrated that reactions in/on <span class="hlt">sea</span>-spray affect the entire particle ensemble and particularly the size distribution of particle nitrate, but that the importance of these heterogeneous reactions is critically dependent on both the initial vertical profile of <span class="hlt">sea</span> spray and the <span class="hlt">sea</span>-spray source functions. The results emphasize the need for improved understanding of <span class="hlt">sea</span> spray production and dispersion and further that model analyses of <span class="hlt">air</span> quality in coastal cities conducted without inclusion of <span class="hlt">sea</span>-spray <span class="hlt">interactions</span> may yield mis-leading results in terms of emission sensitivities of particle composition and concentrations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007CorRe..26..959A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007CorRe..26..959A"><span>Three millennia of human and <span class="hlt">sea</span> turtle <span class="hlt">interactions</span> in Remote Oceania</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Allen, M. S.</p> <p>2007-12-01</p> <p><span class="hlt">Sea</span> turtles are one of the largest vertebrates in the shallow water ecosystems of Remote Oceania, occurring in both <span class="hlt">sea</span> grass pastures and on coral reefs. Their functional roles, however, over ecological and evolutionary times scales are not well known, in part because their numbers have been so drastically reduced. Ethnographic and archaeological data is analysed to assess long-term patterns of human <span class="hlt">sea</span> turtle <span class="hlt">interactions</span> (mainly green and hawksbill) prior to western contact and the magnitude of turtle losses in this region. From the ethnographic data two large-scale patterns emerge, societies where turtle capture and consumption was controlled by chiefs and priests versus those where control over turtle was more flexible and consumption more egalitarian. Broadly the distinction is between societies on high (volcanic and raised coral) islands versus atolls, but the critical variables are the ratio of land to shallow marine environments, combined with the availability of refugia. Archaeological evidence further highlights differences in the rate and magnitude of turtle losses across these two island types, with high islands suffering both large and rapid declines while those on atolls are less marked. These long-term historical patterns help explain the ethnographic endpoints, with areas that experienced greater losses apparently developing more restrictive social controls over time. Finally, if current turtle migration patterns held in the past, with annual movements between western foraging grounds and eastern nesting beaches, then intensive harvesting from 2,800 Before Present in West Polynesia probably affected turtle abundance and coral reef ecology in East Polynesia well before the actual arrival of human settlers, the latter a <span class="hlt">process</span> that most likely began 1,400 years later.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..12210174S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..12210174S"><span>Is the State of the <span class="hlt">Air-Sea</span> Interface a Factor in Rapid Intensification and Rapid Decline of Tropical Cyclones?</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, Alexander V.; Lukas, Roger; Donelan, Mark A.; Haus, Brian K.; Ginis, Isaac</p> <p>2017-12-01</p> <p>Tropical storm intensity prediction remains a challenge in tropical meteorology. Some tropical storms undergo dramatic rapid intensification and rapid decline. Hurricane researchers have considered particular ambient environmental conditions including the ocean thermal and salinity structure and internal vortex dynamics (e.g., eyewall replacement cycle, hot towers) as factors creating favorable conditions for rapid intensification. At this point, however, it is not exactly known to what extent the state of the <span class="hlt">sea</span> surface controls tropical cyclone dynamics. Theoretical considerations, laboratory experiments, and numerical simulations suggest that the <span class="hlt">air-sea</span> interface under tropical cyclones is subject to the Kelvin-Helmholtz type instability. Ejection of large quantities of spray particles due to this instability can produce a two-phase environment, which can attenuate gravity-capillary waves and alter the <span class="hlt">air-sea</span> coupling. The unified parameterization of waveform and two-phase drag based on the physics of the <span class="hlt">air-sea</span> interface shows the increase of the aerodynamic drag coefficient Cd with wind speed up to hurricane force (U10≈35 m s-1). Remarkably, there is a local Cd minimum—"an aerodynamic drag well"—at around U10≈60 m s-1. The negative slope of the Cd dependence on wind-speed between approximately 35 and 60 m s-1 favors rapid storm intensification. In contrast, the positive slope of Cd wind-speed dependence above 60 m s-1 is favorable for a rapid storm decline of the most powerful storms. In fact, the storms that intensify to Category 5 usually rapidly weaken afterward.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA601421','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA601421"><span><span class="hlt">Air</span> <span class="hlt">Sea</span> Battle Intelligence, Surveillance, and Reconnaissance Concept of Operations: Getting Back to Fundamentals</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-05-08</p> <p>Assessment” phase. This phase will be constant throughout the <span class="hlt">AirSea</span> Battle. A subset of this phase includes battle damage assessment ( BDA ). BDA ...taskings for assessment. There may be situations where operations will cease until the proper BDA is desired. This possibility directly... BDA assessments. It is paramount to task fifth generation fighter with this mission set due to their advanced capabilities. 15 The USAF and USN</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28675854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28675854"><span><span class="hlt">Air-sea</span> exchange and gas-particle partitioning of polycyclic aromatic hydrocarbons over the northwestern Pacific Ocean: Role of East Asian continental outflow.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Zilan; Lin, Tian; Li, Zhongxia; Jiang, Yuqing; Li, Yuanyuan; Yao, Xiaohong; Gao, Huiwang; Guo, Zhigang</p> <p>2017-11-01</p> <p>We measured 15 parent polycyclic aromatic hydrocarbons (PAHs) in atmosphere and water during a research cruise from the East China <span class="hlt">Sea</span> (ECS) to the northwestern Pacific Ocean (NWP) in the spring of 2015 to investigate the occurrence, <span class="hlt">air-sea</span> gas exchange, and gas-particle partitioning of PAHs with a particular focus on the influence of East Asian continental outflow. The gaseous PAH composition and identification of sources were consistent with PAHs from the upwind area, indicating that the gaseous PAHs (three-to five-ring PAHs) were influenced by upwind land pollution. In addition, <span class="hlt">air-sea</span> exchange fluxes of gaseous PAHs were estimated to be -54.2-107.4 ng m -2 d -1 , and was indicative of variations of land-based PAH inputs. The logarithmic gas-particle partition coefficient (logK p ) of PAHs regressed linearly against the logarithmic subcooled liquid vapor pressure (logP L 0 ), with a slope of -0.25. This was significantly larger than the theoretical value (-1), implying disequilibrium between the gaseous and particulate PAHs over the NWP. The non-equilibrium of PAH gas-particle partitioning was shielded from the volatilization of three-ring gaseous PAHs from seawater and lower soot concentrations in particular when the oceanic <span class="hlt">air</span> masses prevailed. Modeling PAH absorption into organic matter and adsorption onto soot carbon revealed that the status of PAH gas-particle partitioning deviated more from the modeling K p for oceanic <span class="hlt">air</span> masses than those for continental <span class="hlt">air</span> masses, which coincided with higher volatilization of three-ring PAHs and confirmed the influence of <span class="hlt">air-sea</span> exchange. Meanwhile, significant linear regressions between logK p and logK oa (logK sa ) for PAHs were observed for continental <span class="hlt">air</span> masses, suggesting the dominant effect of East Asian continental outflow on atmospheric PAHs over the NWP during the sampling campaign. Copyright © 2017 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23932146','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23932146"><span>The <span class="hlt">sea-air</span> exchange of mercury (Hg) in the marine boundary layer of the Augusta basin (southern Italy): concentrations and evasion flux.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bagnato, E; Sproveri, M; Barra, M; Bitetto, M; Bonsignore, M; Calabrese, S; Di Stefano, V; Oliveri, E; Parello, F; Mazzola, S</p> <p>2013-11-01</p> <p>The first attempt to systematically investigate the atmospheric mercury (Hg) in the MBL of the Augusta basin (SE Sicily, Italy) has been undertaken. In the past the basin was the receptor for Hg from an intense industrial activity which contaminated the bottom sediments of the Bay, making this area a potential source of pollution for the surrounding Mediterranean. Three oceanographic cruises have been thus performed in the basin during the winter and summer 2011/2012, where we estimated averaged Hgatm concentrations of about 1.5±0.4 (range 0.9-3.1) and 2.1±0.98 (range 1.1-3.1) ng m(-3) for the two seasons, respectively. These data are somewhat higher than the background Hg atm value measured over the land (range 1.1±0.3 ng m(-3)) at downtown Augusta, while are similar to those detected in other polluted regions elsewhere. Hg evasion fluxes estimated at the <span class="hlt">sea/air</span> interface over the Bay range from 3.6±0.3 (unpolluted site) to 72±0.1 (polluted site of the basin) ng m(-2) h(-1). By extending these measurements to the entire area of the Augusta basin (~23.5 km(2)), we calculated a total <span class="hlt">sea-air</span> Hg evasion flux of about 9.7±0.1 g d(-1) (~0.004 tyr(-1)), accounting for ~0.0002% of the global Hg oceanic evasion (2000 tyr(-1)). The new proposed data set offers a unique and original study on the potential outflow of Hg from the <span class="hlt">sea-air</span> interface at the basin, and it represents an important step for a better comprehension of the <span class="hlt">processes</span> occurring in the marine biogeochemical cycle of this element. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00435.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00435.html"><span>Hurricane Frances as Observed by NASA Spaceborne Atmospheric Infrared Sounder <span class="hlt">AIRS</span> and <span class="hlt">Sea</span>Winds Scatterometer</span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2004-08-30</p> <p>This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the <span class="hlt">AIRS</span> infrared instrument onboard Aqua, and the <span class="hlt">Sea</span>Winds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. <span class="hlt">AIRS</span> data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by <span class="hlt">Sea</span>Winds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by <span class="hlt">AIRS</span>, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29084822','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29084822"><span>Dynamic changes in the interchromosomal <span class="hlt">interaction</span> of early histone gene loci during development of <span class="hlt">sea</span> urchin.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Matsushita, Masaya; Ochiai, Hiroshi; Suzuki, Ken-Ichi T; Hayashi, Sayaka; Yamamoto, Takashi; Awazu, Akinori; Sakamoto, Naoaki</p> <p>2017-12-15</p> <p>The nuclear positioning and chromatin dynamics of eukaryotic genes are closely related to the regulation of gene expression, but they have not been well examined during early development, which is accompanied by rapid cell cycle progression and dynamic changes in nuclear organization, such as nuclear size and chromatin constitution. In this study, we focused on the early development of the <span class="hlt">sea</span> urchin Hemicentrotus pulcherrimus and performed three-dimensional fluorescence in situ hybridization of gene loci encoding early histones (one of the types of histone in <span class="hlt">sea</span> urchin). There are two non-allelic early histone gene loci per <span class="hlt">sea</span> urchin genome. We found that during the morula stage, when the early histone gene expression levels are at their maximum, interchromosomal <span class="hlt">interactions</span> were often formed between the early histone gene loci on separate chromosomes and that the gene loci were directed to locate to more interior positions. Furthermore, these <span class="hlt">interactions</span> were associated with the active transcription of the early histone genes. Thus, such dynamic interchromosomal <span class="hlt">interactions</span> may contribute to the efficient synthesis of early histone mRNA during the morula stage of <span class="hlt">sea</span> urchin development. © 2017. Published by The Company of Biologists Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24613263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24613263"><span>Fishery gear <span class="hlt">interactions</span> from stranded bottlenose dolphins, Florida manatees and <span class="hlt">sea</span> turtles in Florida, U.S.A.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Adimey, Nicole M; Hudak, Christine A; Powell, Jessica R; Bassos-Hull, Kim; Foley, Allen; Farmer, Nicholas A; White, Linda; Minch, Karrie</p> <p>2014-04-15</p> <p>Documenting the extent of fishery gear <span class="hlt">interactions</span> is critical to wildlife conservation efforts, especially for reducing entanglements and ingestion. This study summarizes fishery gear <span class="hlt">interactions</span> involving common bottlenose dolphins (Tursiops truncatus truncatus), Florida manatees (Trichechus manatus latirostris) and <span class="hlt">sea</span> turtles: loggerhead (Caretta caretta), green turtle (Chelonia mydas), leatherback (Dermochelys coriacea), hawksbill (Eretmochelys imbricata), Kemp's ridley (Lepidochelys kempii), and olive ridley (Lepidochelys olivacea) stranding in Florida waters during 1997-2009. Fishery gear <span class="hlt">interactions</span> for all species combined were 75.3% hook and line, 18.2% trap pot gear, 4.8% fishing nets, and 1.7% in multiple gears. Total reported fishery gear cases increased over time for dolphins (p<0.05), manatees (p<0.01), loggerheads (p<0.05) and green <span class="hlt">sea</span> turtles (p<0.05). The proportion of net <span class="hlt">interaction</span> strandings relative to total strandings for loggerhead <span class="hlt">sea</span> turtles increased (p<0.05). Additionally, life stage and sex patterns were examined, fishery gear <span class="hlt">interaction</span> hotspots were identified and generalized linear regression modeling was conducted. Published by Elsevier Ltd.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617621','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617621"><span>Wave-Ice and <span class="hlt">Air</span>-Ice-Ocean <span class="hlt">Interaction</span> During the Chukchi <span class="hlt">Sea</span> Ice Edge Advance</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>During cruise CU-B UAF UW Airborne expendable Ice Buoy (AXIB) Ahead, at and inside ice edge Surface meteorology T, SLP ~1 year CU-B UW...Balance (IMB) buoys Inside ice edge w/ >50cm thickness Ice mass balance T in snow-ice-ocean, T, SLP at surface ~1 year WHOI CRREL (<span class="hlt">Sea</span>State DRI</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2671L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2671L"><span>On the role of <span class="hlt">sea</span>-state in bubble-mediated <span class="hlt">air-sea</span> gas flux during a winter storm</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Jun-Hong; Emerson, Steven R.; D'Asaro, Eric A.; McNeil, Craig L.; Harcourt, Ramsey R.; Sullivan, Peter P.; Yang, Bo; Cronin, Meghan F.</p> <p>2017-04-01</p> <p>Oceanic bubbles play an important role in the <span class="hlt">air-sea</span> exchange of weakly soluble gases at moderate to high wind speeds. A Lagrangian bubble model embedded in a large eddy simulation model is developed to study bubbles and their influence on dissolved gases in the upper ocean. The transient evolution of mixed-layer dissolved oxygen and nitrogen gases at Ocean Station Papa (50°N, 145°W) during a winter storm is reproduced with the model. Among different physical <span class="hlt">processes</span>, gas bubbles are the most important in elevating dissolved gas concentrations during the storm, while atmospheric pressure governs the variability of gas saturation anomaly (the relative departure of dissolved gas concentration from the saturation concentration). For the same wind speed, bubble-mediated gas fluxes are larger during rising wind with smaller wave age than during falling wind with larger wave age. Wave conditions are the primary cause for the bubble gas flux difference: when wind strengthens, waves are less-developed with respect to wind, resulting in more frequent large breaking waves. Bubble generation in large breaking waves is favorable for a large bubble-mediated gas flux. The wave-age dependence is not included in any existing bubble-mediated gas flux parameterizations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA612581','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA612581"><span>Monitoring <span class="hlt">Sea</span> Surface <span class="hlt">Processes</span> Using the High Frequency Ambient Sound Field</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-09-30</p> <p>Pacific (ITCZ 10ºN, 95ºW), 3) Bering <span class="hlt">Sea</span> coastal shelf, 4) Ionian <span class="hlt">Sea</span>, 5) Carr Inlet, Puget Sound , Washington, and 6) Haro Strait, Washington/BC...Southern Resident Killer Whale ( Puget Sound ). In coastal and inland waterways, anthropogenic noise is often present. These signals are usually...Monitoring <span class="hlt">Sea</span> Surface <span class="hlt">Processes</span> Using the High Frequency Ambient Sound Field Jeffrey A. Nystuen Applied Physics Laboratory University of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100010994','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100010994"><span><span class="hlt">Processing</span> <span class="hlt">AIRS</span> Scientific Data Through Level 2</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oliphant, Robert; Lee, Sung-Yung; Chahine, Moustafa; Susskind, Joel; arnet, Christopher; McMillin, Larry; Goldberg, Mitchell; Blaisdell, John; Rosenkranz, Philip; Strow, Larrabee</p> <p>2007-01-01</p> <p>The Atmospheric Infrared Spectrometer (<span class="hlt">AIRS</span>) Science <span class="hlt">Processing</span> System (SPS) is a collection of computer programs, denoted product generation executives (PGEs), for <span class="hlt">processing</span> the readings of the <span class="hlt">AIRS</span> suite of infrared and microwave instruments orbiting the Earth aboard NASA s Aqua spacecraft. <span class="hlt">AIRS</span> SPS at an earlier stage of development was described in "Initial <span class="hlt">Processing</span> of Infrared Spectral Data' (NPO-35243), NASA Tech Briefs, Vol. 28, No. 11 (November 2004), page 39. To recapitulate: Starting from level 0 (representing raw <span class="hlt">AIRS</span> data), the PGEs and their data products are denoted by alphanumeric labels (1A, 1B, and 2) that signify the successive stages of <span class="hlt">processing</span>. The cited prior article described <span class="hlt">processing</span> through level 1B (the level-2 PGEs were not yet operational). The level-2 PGEs, which are now operational, receive packages of level-1B geolocated radiance data products and produce such geolocated geophysical atmospheric data products such as temperature and humidity profiles. The <span class="hlt">process</span> of computing these geophysical data products is denoted "retrieval" and is quite complex. The main steps of the <span class="hlt">process</span> are denoted microwave-only retrieval, cloud detection and cloud clearing, regression, full retrieval, and rapid transmittance algorithm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AtmRe.137..216U','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AtmRe.137..216U"><span>Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of <span class="hlt">sea</span>-salt-containing particles by in-cloud <span class="hlt">processing</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ueda, S.; Hirose, Y.; Miura, K.; Okochi, H.</p> <p>2014-02-01</p> <p>Sizes and compositions of atmospheric aerosol particles can be altered by in-cloud <span class="hlt">processing</span> by absorption/adsorption of gaseous and particulate materials and drying of aerosol particles that were formerly activated as cloud condensation nuclei. To elucidate differences of aerosol particles before and after in-cloud <span class="hlt">processing</span>, aerosols were observed along a slope of Mt. Fuji, Japan (3776 m a.s.l.) during the summer in 2011 and 2012 using a portable laser particle counter (LPC) and an aerosol sampler. Aerosol samples for analyses of elemental compositions were obtained using a cascade impactor at top-of-cloud, in-cloud, and below-cloud altitudes. To investigate composition changes via in-cloud <span class="hlt">processing</span>, individual particles (0.5-2 μm diameter) of samples from five cases (days) collected at different altitudes under similar backward <span class="hlt">air</span> mass trajectory conditions were analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. For most cases (four cases), most particles at all altitudes mainly comprised <span class="hlt">sea</span> salts: mainly Na with some S and/or Cl. Of those, in two cases, <span class="hlt">sea</span>-salt-containing particles with Cl were found in below-cloud samples, although <span class="hlt">sea</span>-salt-containing particles in top-of-cloud samples did not contain Cl. This result suggests that Cl in the <span class="hlt">sea</span> salt was displaced by other cloud components. In the other two cases, <span class="hlt">sea</span>-salt-containing particles on samples at all altitudes were without Cl. However, molar ratios of S to Na (S/Na) of the <span class="hlt">sea</span>-salt-containing particles of top-of-cloud samples were higher than those of below-cloud samples, suggesting that sulfuric acid or sulfate was added to <span class="hlt">sea</span>-salt-containing particles after complete displacement of Cl by absorption of SO2 or coagulation with sulfate. The additional volume of sulfuric acid in clouds for the two cases was estimated using the observed S/Na values of <span class="hlt">sea</span>-salt-containing particles. The estimation revealed that size changes by in</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25103722','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25103722"><span>First day of an oil spill on the open <span class="hlt">sea</span>: early mass transfers of hydrocarbons to <span class="hlt">air</span> and water.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel</p> <p>2014-08-19</p> <p>During the first hours after release of petroleum at <span class="hlt">sea</span>, crude oil hydrocarbons partition rapidly into <span class="hlt">air</span> and water. However, limited information is available about very early evaporation and dissolution <span class="hlt">processes</span>. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North <span class="hlt">Sea</span>. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the <span class="hlt">sea</span> surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRC..119.2327A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRC..119.2327A"><span>Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic <span class="hlt">sea</span> ice <span class="hlt">processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon</p> <p>2014-04-01</p> <p>Decline of the Arctic summer minimum <span class="hlt">sea</span> ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort <span class="hlt">Seas</span>, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the <span class="hlt">sea</span> ice. This <span class="hlt">process</span> shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects <span class="hlt">sea</span> ice dynamic and thermodynamic <span class="hlt">processes</span>. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort <span class="hlt">Sea</span> region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this <span class="hlt">process</span> in future Arctic <span class="hlt">sea</span> ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining <span class="hlt">sea</span> ice cover. We conclude that this <span class="hlt">process</span> is an important positive feedback to Arctic <span class="hlt">sea</span> ice loss, and timing of initiation is critical in how it affects <span class="hlt">sea</span> ice thermodynamic and dynamic <span class="hlt">processes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5500K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5500K"><span>Impact of a nitrogen emission control area (NECA) for ship traffic on the future <span class="hlt">air</span> quality in the Baltic <span class="hlt">Sea</span> region</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karl, Matthias; Geyer, Beate; Bieser, Johannes; Matthias, Volker; Quante, Markus; Jalkanen, Jukka-Pekka; Johansson, Lasse; Fridell, Erik</p> <p>2017-04-01</p> <p>Deposition of nitrogen compounds originating from shipping activities contribute to eutrophication of the Baltic <span class="hlt">Sea</span> and coastal areas in the Baltic <span class="hlt">Sea</span> region. Emissions of nitrogen oxides (NOx) from shipping on the Baltic <span class="hlt">Sea</span> are comparable to the combined land-based emissions of NOx from Finland and Sweden and have been relatively stable over the last decade. However, expected future growth of maritime transport will result in higher fuel consumption and, if not compensated by increased transport efficiency or other measures, lead to higher total emissions of NOx from shipping. For the Baltic <span class="hlt">Sea</span> a nitrogen emission control area (NECA) will become effective in 2021 - permitting only new built ships that are compliant with stringent Tier III emission limits - with the target of reducing NOx-emissions. In order to study the effect of implementing a Baltic <span class="hlt">Sea</span> NECA-2021 on <span class="hlt">air</span> quality and nitrogen deposition two future scenarios were designed; one with implementation of a NECA for the Baltic <span class="hlt">Sea</span> starting in 2021 and another with no NECA implemented. The same increase of ship traffic was assumed for both future scenarios. Since complete fleet renewal with low NOx-emitting engines is not expected until 20-30 years after the NECA entry date, year 2040 was chosen as future scenario year. The Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) model was used to simulate the current and future <span class="hlt">air</span> quality situation. The nested simulation runs with CMAQ were performed on a horizontal resolution of 4 km × 4 km for the entire Baltic <span class="hlt">Sea</span> region. The meteorological year 2012 was chosen for the simulation of the current and future <span class="hlt">air</span> quality situation since the 2m-temperature and precipitation anomalies of 2012 are closely aligned to the 2004-2014 decadal average over Baltic Proper. High-resolution meteorology obtained from COSMO-CLM was used for the regional simulations. Ship emissions were generated with the Ship Traffic Emission Assessment Model (STEAM) by the Finnish Meteorological</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9264247','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9264247"><span>Looking into the <span class="hlt">sea</span> urchin embryo you can see local cell <span class="hlt">interactions</span> regulate morphogenesis.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilt, F H</p> <p>1997-08-01</p> <p>The transparent <span class="hlt">sea</span> urchin embryo provides a laboratory for study of morphogenesis. The calcareous endoskeleton is formed by a syncytium of mesenchyme cells in the blastocoel. The locations of mesenchyme in the blastocoel, the size of the skeleton, and even the branching pattern of the skeletal rods, are governed by <span class="hlt">interactions</span> with the blastula wall. Now Guss and Ettensohn show that the rate of deposition of CaCO3 in the skeleton is locally controlled in the mesenchymal syncytium, as is the pattern of expression of three genes involved in skeleton formation. They propose that short range signals emanating from the blastula wall regulate many aspects of the biomineralization <span class="hlt">process</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000643.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000643.html"><span><span class="hlt">Sea</span> ice in the Greenland <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>As the northern hemisphere experiences the heat of summer, ice moves and melts in the Arctic waters and the far northern lands surrounding it. The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard NASA’s Aqua satellite captured this true-color image of <span class="hlt">sea</span> ice off Greenland on July 16, 2015. Large chunks of melting <span class="hlt">sea</span> ice can be seen in the <span class="hlt">sea</span> ice off the coast, and to the south spirals of ice have been shaped by the winds and currents that move across the Greenland <span class="hlt">Sea</span>. Along the Greenland coast, cold, fresh melt water from the glaciers flows out to the <span class="hlt">sea</span>, as do newly calved icebergs. Frigid <span class="hlt">air</span> from interior Greenland pushes the ice away from the shoreline, and the mixing of cold water and <span class="hlt">air</span> allows some <span class="hlt">sea</span> ice to be sustained even at the height of summer. According to observations from satellites, 2015 is on track to be another low year for arctic summer <span class="hlt">sea</span> ice cover. The past ten years have included nine of the lowest ice extents on record. The annual minimum typically occurs in late August or early September. The amount of Arctic <span class="hlt">sea</span> ice cover has been dropping as global temperatures rise. The Arctic is two to three times more sensitive to temperature changes as the Earth as a whole. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA124630','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA124630"><span>An <span class="hlt">Interactive</span> Microcomputer Wargame for an <span class="hlt">Air</span> Battle.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-10-01</p> <p>Monterey, California THESIS An <span class="hlt">Interactive</span> Microcomputer Wargame for an <span class="hlt">Air</span> Battle by James Owen Wilson October 1982 Thesis Advisor: A. F. Andrus...CONTIRCT 00 GRAN0T 186degg(.J James Owen Wilson 11101FRINA 111ANZATGN 0009 O GO498 1. PROGRAM 9L9060" . PRJr.AS S. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ f9 PR@UN...Wargame for an <span class="hlt">Air</span> Battle by James Owen Wilson Lieutenant, United States Navy oo B.A., University of Texas, 1974 Accession ForSubmitted in partial</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28657128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28657128"><span><span class="hlt">Sea</span>-ice loss boosts visual search: fish foraging and changing pelagic <span class="hlt">interactions</span> in polar oceans.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Langbehn, Tom J; Varpe, Øystein</p> <p>2017-12-01</p> <p>Light is a central driver of biological <span class="hlt">processes</span> and systems. Receding <span class="hlt">sea</span> ice changes the lightscape of high-latitude oceans and more light will penetrate into the <span class="hlt">sea</span>. This affects bottom-up control through primary productivity and top-down control through vision-based foraging. We model effects of <span class="hlt">sea</span>-ice shading on visual search to develop a mechanistic understanding of how climate-driven <span class="hlt">sea</span>-ice retreat affects predator-prey <span class="hlt">interactions</span>. We adapt a prey encounter model for ice-covered waters, where prey-detection performance of planktivorous fish depends on the light cycle. We use hindcast <span class="hlt">sea</span>-ice concentrations (past 35 years) and compare with a future no-ice scenario to project visual range along two south-north transects with different <span class="hlt">sea</span>-ice distributions and seasonality, one through the Bering <span class="hlt">Sea</span> and one through the Barents <span class="hlt">Sea</span>. The transect approach captures the transition from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past <span class="hlt">sea</span>-ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high latitudes, we predict a 16-fold increase in clearance rate. Top-down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice-edge, and in particular expect species with large migratory capacity to make foraging forays into high-latitude oceans. However, the extreme seasonality in photoperiod of high-latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator-prey consequences would be much related. As part of the discussion</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7924N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7924N"><span>Snow depth on Arctic and Antarctic <span class="hlt">sea</span> ice derived from autonomous (Snow Buoy) measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra</p> <p>2016-04-01</p> <p>The snow cover on <span class="hlt">sea</span> ice received more and more attention in recent <span class="hlt">sea</span> ice studies and model simulations, because its physical properties dominate many <span class="hlt">sea</span> ice and upper ocean <span class="hlt">processes</span>. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of <span class="hlt">sea</span> ice, as well as for the <span class="hlt">interaction</span> with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for <span class="hlt">sea</span> ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic <span class="hlt">sea</span> ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic <span class="hlt">sea</span> ice, no such climatology is available. With a few exceptions, snow depth on <span class="hlt">sea</span> ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on <span class="hlt">sea</span> ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic <span class="hlt">sea</span> ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on <span class="hlt">sea</span> ice and will allow new insights into its seasonality. In addition, the instruments report <span class="hlt">air</span> temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell <span class="hlt">Sea</span> for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic <span class="hlt">sea</span> ice throughout the winter season 2015/16 suggest the great importance of local</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5907506','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5907506"><span>Extending the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) Modeling System to Hemispheric Scales: Overview of <span class="hlt">Process</span> Considerations and Initial Applications</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mathur, Rohit; Xing, Jia; Gilliam, Robert; Sarwar, Golam; Hogrefe, Christian; Pleim, Jonathan; Pouliot, George; Roselle, Shawn; Spero, Tanya L.; Wong, David C.; Young, Jeffrey</p> <p>2018-01-01</p> <p>The Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) modeling system is extended to simulate ozone, particulate matter, and related precursor distributions throughout the Northern Hemisphere. Modelled <span class="hlt">processes</span> were examined and enhanced to suitably represent the extended space and time scales for such applications. Hemispheric scale simulations with CMAQ and the Weather Research and Forecasting (WRF) model are performed for multiple years. Model capabilities for a range of applications including episodic long-range pollutant transport, long-term trends in <span class="hlt">air</span> pollution across the Northern Hemisphere, and <span class="hlt">air</span> pollution-climate <span class="hlt">interactions</span> are evaluated through detailed comparison with available surface, aloft, and remotely sensed observations. The expansion of CMAQ to simulate the hemispheric scales provides a framework to examine <span class="hlt">interactions</span> between atmospheric <span class="hlt">processes</span> occurring at various spatial and temporal scales with physical, chemical, and dynamical consistency. PMID:29681922</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24479263','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24479263"><span>Managing acute coronary syndrome during medical <span class="hlt">air</span> evacuation from a remote location at <span class="hlt">sea</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Westmoreland, Andrew H</p> <p>2014-01-01</p> <p>Coronary emergencies at <span class="hlt">sea</span> requiring <span class="hlt">air</span> evacuation are not uncommon. On board a Nimitz-class aircraft carrier while in a remote location, an active duty sailor suffered a myocardial infarction. A medical evacuation by helicopter was necessary. Transfer proved difficult due to the ship's location, poor flying conditions, and the patient's deteriorating condition. This case stresses the importance of expeditious diagnosis, treatment, and <span class="hlt">air</span> transfer to shore-based facilities capable of providing definitive coronary care. A 33-yr-old man recently started on trazodone due to depression complained of chest pain. The patient was hemodynamically unstable and electrocardiogram showed ST segment elevation and Q waves in the anterior, inferior, and lateral leads. He was <span class="hlt">air</span>-lifted to the nearest accepting facility with cardiac catheterization capabilities, which was over 300 miles away. Poor weather conditions hindered the pilot's ability to fly the original course. The patient remained critical and medication choices were limited. Even with all of these obstacles, everyone involved performed his or her duties admirably. The patient's condition improved by the time the helicopter landed. He was then rushed by ambulance to the hospital's coronary care unit, where he was successfully treated. This case highlights the need to keep a high index of suspicion when patients complain of chest pain, regardless of age. It is of the utmost importance that individuals capable of thinking and acting quickly are assigned to medical evacuation teams, and that they continue to train regularly, as coronary events at <span class="hlt">sea</span> are not uncommon.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMPP11D..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMPP11D..05B"><span>Ocean-Ice Sheet <span class="hlt">Interactions</span> in the Norwegian <span class="hlt">Sea</span> and Teleconnections to Low Latitude Hydrology and Atmospheric Circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brendryen, J.; Hannisdal, B.; Haaga, K. A.; Haflidason, H.; Castro, D. D.; Grasmo, K. J.; Sejrup, H. P.; Edwards, R. L.; Cheng, H.; Kelly, M. J.; Lu, Y.</p> <p>2016-12-01</p> <p>Abrupt millennial scale climatic events known as Dansgaard-Oeschger events are a defining feature of the Quaternary climate system dynamics in the North Atlantic and beyond. We present a high-resolution multi-proxy record of ocean-ice sheet <span class="hlt">interactions</span> in the Norwegian <span class="hlt">Sea</span> spanning the interval between 50 and 150 ka BP. A comparison with low latitude records indicates a very close connection between the high northern latitude ocean-ice sheet <span class="hlt">interactions</span> and large scale changes in low latitude atmospheric circulation and hydrology even on sub-millennial scales. The records are placed on a common precise radiometric chronology based on correlations to U/Th dated speleothem records from China and the Alps. This enables a comparison of the records to orbital and other climatically important parameters such as U/Th dated <span class="hlt">sea</span>-level data from corals and speleothems. We explore the drive-response relationships in these coupled systems with the information transfer (IT) and the convergent cross mapping (CCM) analytical techniques. These methods employ conceptually different approaches to detect the relative strength and directionality of potentially chaotic and nonlinearly coupled systems. IT is a non-parametric measure of information transfer between data records based on transfer entropy, while CCM relies on delay reconstructions using Takens' theorem. This approach enables us to address how the climate system <span class="hlt">processes</span> <span class="hlt">interact</span> and how this <span class="hlt">interaction</span> is affected by external forcing from for example greenhouse gases and orbital variability.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26347538','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26347538"><span><span class="hlt">Processes</span> controlling surface, bottom and lateral melt of Arctic <span class="hlt">sea</span> ice in a state of the art <span class="hlt">sea</span> ice model.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tsamados, Michel; Feltham, Daniel; Petty, Alek; Schroeder, David; Flocco, Daniela</p> <p>2015-10-13</p> <p>We present a modelling study of <span class="hlt">processes</span> controlling the summer melt of the Arctic <span class="hlt">sea</span> ice cover. We perform a sensitivity study and focus our interest on the thermodynamics at the ice-atmosphere and ice-ocean interfaces. We use the Los Alamos community <span class="hlt">sea</span> ice model CICE, and additionally implement and test three new parametrization schemes: (i) a prognostic mixed layer; (ii) a three equation boundary condition for the salt and heat flux at the ice-ocean interface; and (iii) a new lateral melt parametrization. Recent additions to the CICE model are also tested, including explicit melt ponds, a form drag parametrization and a halodynamic brine drainage scheme. The various <span class="hlt">sea</span> ice parametrizations tested in this sensitivity study introduce a wide spread in the simulated <span class="hlt">sea</span> ice characteristics. For each simulation, the total melt is decomposed into its surface, bottom and lateral melt components to assess the <span class="hlt">processes</span> driving melt and how this varies regionally and temporally. Because this study quantifies the relative importance of several <span class="hlt">processes</span> in driving the summer melt of <span class="hlt">sea</span> ice, this work can serve as a guide for future research priorities. © 2015 The Author(s).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2820902','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2820902"><span>Proteomic Analysis of <span class="hlt">Interactions</span> between a Deep-<span class="hlt">Sea</span> Thermophilic Bacteriophage and Its Host at High Temperature ▿ †</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Wei, Dahai; Zhang, Xiaobo</p> <p>2010-01-01</p> <p>The virus-host <span class="hlt">interaction</span> is essential to understanding the role that viruses play in ecological and geochemical <span class="hlt">processes</span> in deep-<span class="hlt">sea</span> vent ecosystems. Virus-induced changes in cellular gene expression and host physiology have been studied extensively. However, the molecular mechanism of <span class="hlt">interaction</span> between a bacteriophage and its host at high temperature remains poorly understood. In the present study, the virus-induced gene expression profile of Geobacillus sp. E263, a thermophile isolated from a deep-<span class="hlt">sea</span> hydrothermal ecosystem, was characterized. Based on proteomic analysis and random arbitrarily primed PCR (RAP-PCR) of Geobacillus sp. E263 cultured under non-bacteriophage GVE2 infection and GVE2 infection conditions, there were two types of protein/gene profiles in response to GVE2 infection. Twenty differentially expressed genes and proteins were revealed that could be grouped into 3 different categories based on cellular function, suggesting a coordinated response to infection. These differentially expressed genes and proteins were further confirmed by Northern blot analysis. To characterize the host proteins in response to virus infection, aspartate aminotransferase (AST) was inactivated to construct the AST mutant of Geobacillus sp. E263. The results showed that the AST protein was essential in virus infection. Thus, transcriptional and proteomic analyses and functional analysis revealed previously unknown host responses to deep-<span class="hlt">sea</span> thermophilic virus infection. PMID:20015994</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C22A..02N"><span>Snow depth evolution on <span class="hlt">sea</span> ice from Snow Buoy measurement</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nicolaus, M.; Arndt, S.; Hendricks, S.; Hoppmann, M.; Katlein, C.; König-Langlo, G.; Nicolaus, A.; Rossmann, H. L.; Schiller, M.; Schwegmann, S.; Langevin, D.</p> <p>2016-12-01</p> <p>Snow cover is an Essential Climate Variable. On <span class="hlt">sea</span> ice, snow dominates the energy and momentum exchanges across the atmosphere-ice-ocean interfaces, and actively contributes to <span class="hlt">sea</span> ice mass balance. Yet, snow depth on <span class="hlt">sea</span> ice is one of the least known and most difficult to observe parameters of the Arctic and Antarctic; mainly due to its exceptionally high spatial and temporal variability. In this study; we present a unique time series dataset of snow depth and <span class="hlt">air</span> temperature evolution on Arctic and Antarctic <span class="hlt">sea</span> ice recorded by autonomous instruments. Snow Buoys record snow depth with four independent ultrasonic sensors, increasing the reliability of the measurements and allowing for additional analyses. Auxiliary measurements include surface and <span class="hlt">air</span> temperature, barometric pressure and GPS position. 39 deployments of such Snow Buoys were achieved over the last three years either on drifting pack ice, on landfast <span class="hlt">sea</span> ice or on an ice shelf. Here we highlight results from two pairs of Snow Buoys installed on drifting pack ice in the Weddell <span class="hlt">Sea</span>. The data reveals large regional differences in the annual cycle of snow depth. Almost no reduction in snow depth (snow melt) was observed in the inner and southern part of the Weddell <span class="hlt">Sea</span>, allowing a net snow accumulation of 0.2 to 0.9 m per year. In contrast, summer snow melt close to the ice edge resulted in a decrease of about 0.5 m during the summer 2015/16. Another array of eight Snow Buoys was installed on central Arctic <span class="hlt">sea</span> ice in September 2015. Their <span class="hlt">air</span> temperature record revealed exceptionally high <span class="hlt">air</span> temperatures in the subsequent winter, even exceeding the melting point but with almost no impact on snow depth at that time. Future applications of Snow Buoys on Arctic and Antarctic <span class="hlt">sea</span> ice will allow additional inter-annual studies of snow depth and snow <span class="hlt">processes</span>, e.g. to support the development of snow depth data products from airborne and satellite data or though assimilation in numerical models.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.8779S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.8779S"><span>The Effect of the South Asia Monsoon on the Wind <span class="hlt">Sea</span> and Swell Patterns in the Arabian <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semedo, Alvaro</p> <p>2015-04-01</p> <p>Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-<span class="hlt">sea</span> and swell. Wind-<span class="hlt">sea</span> waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the <span class="hlt">air-sea</span> <span class="hlt">interaction</span> community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the <span class="hlt">air-sea</span> coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the <span class="hlt">air-sea</span> interface, and this modulation is different and dependent on the prevalence of one type of waves: wind <span class="hlt">sea</span> or swell. For fully developed <span class="hlt">seas</span> the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal <span class="hlt">seas</span>, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian <span class="hlt">Sea</span>, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian <span class="hlt">sea</span> is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617575','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617575"><span>Improving Visual Survey Capabilities for Marine Mammal Studies</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-09-30</p> <p>presence of <span class="hlt">air</span>- breathing mammals, and they can be conducted from ships, aircraft, or land . For ship- and land -based surveys, powerful, pedestal-mounted...part of the ONR-and NRL-funded <span class="hlt">Air</span>- <span class="hlt">Sea</span> <span class="hlt">Interactions</span> in the Northern Indian Ocean Regional Initiative (ASIRI) program, a physical oceanographic...research effort to study upper ocean <span class="hlt">processes</span> and <span class="hlt">air</span>- <span class="hlt">sea</span> <span class="hlt">interactions</span> that regulate the Asian monsoons. We will use the DURIP-funded big-eye</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007AGUFM.A53F..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007AGUFM.A53F..08S"><span>An Integrated Approach to Economic and Environmental Aspects of <span class="hlt">Air</span> Pollution and Climate <span class="hlt">Interactions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sarofim, M. C.</p> <p>2007-12-01</p> <p>Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation <span class="hlt">processes</span> and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also <span class="hlt">interact</span> with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both <span class="hlt">air</span> pollution and greenhouse gas policies and how they <span class="hlt">interact</span> economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these <span class="hlt">interactions</span> between climate policy and <span class="hlt">air</span> pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of <span class="hlt">air</span> pollution on climate, the ancillary and complementary <span class="hlt">interactions</span> between <span class="hlt">air</span> pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P52A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P52A..01S"><span>Marine Spatial Planning Applied to the High <span class="hlt">Seas</span> - <span class="hlt">Process</span> and Results of an Exercise Focused on the Sargasso <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siuda, A. N.; Smythe, T. C.</p> <p>2016-12-01</p> <p>The Sargasso <span class="hlt">Sea</span>, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso <span class="hlt">Sea</span> Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 <span class="hlt">SEA</span> Semester: Marine Biodiversity and Conservation program of <span class="hlt">Sea</span> Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high <span class="hlt">seas</span> marine spatial planning <span class="hlt">process</span> resulting in A Marine Management Proposal for the Sargasso <span class="hlt">Sea</span>. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy <span class="hlt">process</span> and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso <span class="hlt">Sea</span> region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high <span class="hlt">seas</span> traffic. To make progress toward these strategies, significant attention to the importance of high <span class="hlt">seas</span> regions for global-scale conservation will be necessary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.P52A..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.P52A..01S"><span>Marine Spatial Planning Applied to the High <span class="hlt">Seas</span> - <span class="hlt">Process</span> and Results of an Exercise Focused on the Sargasso <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siuda, A. N.; Smythe, T. C.</p> <p>2016-02-01</p> <p>The Sargasso <span class="hlt">Sea</span>, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso <span class="hlt">Sea</span> Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 <span class="hlt">SEA</span> Semester: Marine Biodiversity and Conservation program of <span class="hlt">Sea</span> Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high <span class="hlt">seas</span> marine spatial planning <span class="hlt">process</span> resulting in A Marine Management Proposal for the Sargasso <span class="hlt">Sea</span>. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy <span class="hlt">process</span> and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso <span class="hlt">Sea</span> region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high <span class="hlt">seas</span> traffic. To make progress toward these strategies, significant attention to the importance of high <span class="hlt">seas</span> regions for global-scale conservation will be necessary.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900011256','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900011256"><span>User's guide: Programs for <span class="hlt">processing</span> altimeter data over inland <span class="hlt">seas</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Au, A. Y.; Brown, R. D.; Welker, J. E.</p> <p>1989-01-01</p> <p>The programs described were developed to <span class="hlt">process</span> GEODYN-formatted satellite altimeter data, and to apply the <span class="hlt">processed</span> results to predict geoid undulations and gravity anomalies of inland <span class="hlt">sea</span> areas. These programs are written in standard FORTRAN 77 and are designed to run on the NSESCC IBM 3081(MVS) computer. Because of the experimental nature of these programs they are tailored to the geographical area analyzed. The attached program listings are customized for <span class="hlt">processing</span> the altimeter data over the Black <span class="hlt">Sea</span>. Users interested in the Caspian <span class="hlt">Sea</span> data are expected to modify each program, although the required modifications are generally minor. Program control parameters are defined in the programs via PARAMETER statements and/or DATA statements. Other auxiliary parameters, such as labels, are hard-wired into the programs. Large data files are read in or written out through different input or output units. The program listings of these programs are accompanied by sample IBM job control language (JCL) images. Familiarity with IBM JCL and the TEMPLATE graphic package is assumed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9773S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9773S"><span>Assessing <span class="hlt">sea</span> wave and spray effects on Marine Boundary Layer structure</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George</p> <p>2017-04-01</p> <p><span class="hlt">Air</span> <span class="hlt">sea</span> interface is characterized by several mechanical and thermodynamical <span class="hlt">processes</span>. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to <span class="hlt">sea</span> surface roughness and <span class="hlt">sea</span> spray. <span class="hlt">Sea</span> spray fluxes can affect atmospheric stability and induce microphysical <span class="hlt">processes</span> such as <span class="hlt">sea</span> salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of <span class="hlt">sea</span> spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, <span class="hlt">sea</span> salt aerosols and droplet thermodynamic <span class="hlt">processes</span> and handles <span class="hlt">sea</span> salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920052404&hterms=brown+kenneth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbrown%2Bkenneth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920052404&hterms=brown+kenneth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dbrown%2Bkenneth"><span>Relating the microwave radar cross section to the <span class="hlt">sea</span> surface stress - Physics and algorithms</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weissman, David E.; Plant, William J.; Brown, Robert A.; Davidson, Kenneth L.; Shaw, William J.</p> <p>1991-01-01</p> <p>The FASINEX (Frontal <span class="hlt">Air-Sea</span> <span class="hlt">Interaction</span> Experiment) provided a unique data set with coincident airborne measurements of the ocean surface radar cross section (at Ku-band) and surface windstress. It is being analyzed to create new algorithms and to better understand the <span class="hlt">air-sea</span> variables that can have a strong influence on the RCS (radar cross section). Several studies of portions of data from the FASINEX indicate that the RCS is more dependent on the surface stress than on the wind speed. Radar data have been acquired by the JPL and NRL groups. The data span 12 different flight days. Stress measurements can be inferred from ship-board instruments and from aircraft closely following the scatterometers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.C43E0586E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.C43E0586E"><span>Carbon Dioxide Transfer Through <span class="hlt">Sea</span> Ice: Modelling Flux in Brine Channels</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Edwards, L.; Mitchelson-Jacob, G.; Hardman-Mountford, N.</p> <p>2010-12-01</p> <p>For many years <span class="hlt">sea</span> ice was thought to act as a barrier to the flux of CO2 between the ocean and atmosphere. However, laboratory-based and in-situ observations suggest that while <span class="hlt">sea</span> ice may in some circumstances reduce or prevent transfer (e.g. in regions of thick, superimposed multi-year ice), it may also be highly permeable (e.g. thin, first year ice) with some studies observing significant fluxes of CO2. <span class="hlt">Sea</span> ice covered regions have been observed to act both as a sink and a source of atmospheric CO2 with the permeability of <span class="hlt">sea</span> ice and direction of flux related to <span class="hlt">sea</span> ice temperature and the presence of brine channels in the ice, as well as seasonal <span class="hlt">processes</span> such as whether the ice is freezing or thawing. Brine channels concentrate dissolved inorganic carbon (DIC) as well as salinity and as these dense waters descend through both the <span class="hlt">sea</span> ice and the surface ocean waters, they create a sink for CO2. Calcium carbonate (ikaite) precipitation in the <span class="hlt">sea</span> ice is thought to enhance this <span class="hlt">process</span>. Micro-organisms present within the <span class="hlt">sea</span> ice will also contribute to the CO2 flux dynamics. Recent evidence of decreasing <span class="hlt">sea</span> ice extent and the associated change from a multi-year ice to first-year ice dominated system suggest the potential for increased CO2 flux through regions of thinner, more porous <span class="hlt">sea</span> ice. A full understanding of the <span class="hlt">processes</span> and feedbacks controlling the flux in these regions is needed to determine their possible contribution to global CO2 levels in a future warming climate scenario. Despite the significance of these regions, the <span class="hlt">air-sea</span> CO2 flux in <span class="hlt">sea</span> ice covered regions is not currently included in global climate models. Incorporating this carbon flux system into Earth System models requires the development of a well-parameterised <span class="hlt">sea</span> ice-<span class="hlt">air</span> flux model. In our work we use the Los Alamos <span class="hlt">sea</span> ice model, CICE, with a modification to incorporate the movement of CO2 through brine channels including the addition of DIC <span class="hlt">processes</span> and ice algae production to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESD.....8..901C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESD.....8..901C"><span>Ship emissions and the use of current <span class="hlt">air</span> cleaning technology: contributions to <span class="hlt">air</span> pollution and acidification in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Claremar, Björn; Haglund, Karin; Rutgersson, Anna</p> <p>2017-10-01</p> <p>The shipping sector is a significant contributor to emissions of <span class="hlt">air</span> pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of <span class="hlt">air</span> pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic <span class="hlt">Sea</span> and the North <span class="hlt">Sea</span>, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km × 50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the <span class="hlt">air</span> quality criteria but their consequences for the marine environment are largely unknown</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26065326','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26065326"><span><span class="hlt">Interaction</span> between <span class="hlt">Air</span> Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo</p> <p>2015-07-07</p> <p>Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in <span class="hlt">air</span>. Here we analyze the inverse situation: Rather than focusing on water repellency in <span class="hlt">air</span>, we measure the attractive <span class="hlt">interaction</span> of <span class="hlt">air</span> bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped <span class="hlt">air</span>, different <span class="hlt">interactions</span> were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped <span class="hlt">air</span>. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33B1192G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33B1192G"><span>Direct observations of atmosphere - <span class="hlt">sea</span> ice - ocean <span class="hlt">interactions</span> during Arctic winter and spring storms</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, R. M.; Itkin, P.; Granskog, M. A.; Assmy, P.; Cohen, L.; Duarte, P.; Doble, M. J.; Fransson, A.; Fer, I.; Fernandez Mendez, M.; Frey, M. M.; Gerland, S.; Haapala, J. J.; Hudson, S. R.; Liston, G. E.; Merkouriadi, I.; Meyer, A.; Muilwijk, M.; Peterson, A.; Provost, C.; Randelhoff, A.; Rösel, A.; Spreen, G.; Steen, H.; Smedsrud, L. H.; Sundfjord, A.</p> <p>2017-12-01</p> <p>To study the thinner and younger <span class="hlt">sea</span> ice that now dominates the Arctic the Norwegian Young <span class="hlt">Sea</span> ICE expedition (N-ICE2015) was launched in the ice-covered region north of Svalbard, from January to June 2015. During this time, eight local and remote storms affected the region and rare direct observations of the atmosphere, snow, ice and ocean were conducted. Six of these winter storms passed directly over the expedition and resulted in <span class="hlt">air</span> temperatures rising from below -30oC to near 0oC, followed by abrupt cooling. Substantial snowfall prior to the campaign had already formed a snow pack of approximately 50 cm, to which the February storms contributed an additional 6 cm. The deep snow layer effectively isolated the ice cover and prevented bottom ice growth resulting in low brine fluxes. Peak wind speeds during winter storms exceeded 20 m/s, causing strong snow re-distribution, release of <span class="hlt">sea</span> salt aerosol and <span class="hlt">sea</span> ice deformation. The heavy snow load caused widespread negative freeboard; during <span class="hlt">sea</span> ice deformation events, level ice floes were flooded by <span class="hlt">sea</span> water, and at least 6-10 cm snow-ice layer was formed. Elevated deformation rates during the most powerful winter storms damaged the ice cover permanently such that the response to wind forcing increased by 60 %. As a result of a remote storm in April deformation <span class="hlt">processes</span> opened about 4 % of the total area into leads with open water, while a similar amount of ice was deformed into pressure ridges. The strong winds also enhanced ocean mixing and increased ocean heat fluxes three-fold in the pycnocline from 4 to 12 W/m2. Ocean heat fluxes were extremely large (over 300 W/m2) during storms in regions where the warm Atlantic inflow is located close to surface over shallow topography. This resulted in very large (5-25 cm/day) bottom ice melt and in cases flooding due to heavy snow load. Storm events increased the carbon dioxide exchange between the atmosphere and ocean but also affected the pCO2 in surface waters</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21396663','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21396663"><span>Large-scale oil-in-ice experiment in the Barents <span class="hlt">Sea</span>: monitoring of oil in water and MetOcean <span class="hlt">interactions</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Faksness, Liv-Guri; Brandvik, Per Johan; Daae, Ragnhild L; Leirvik, Frode; Børseth, Jan Fredrik</p> <p>2011-05-01</p> <p>A large-scale field experiment took place in the marginal ice zone in the Barents <span class="hlt">Sea</span> in May 2009. Fresh oil (7000 L) was released uncontained between the ice floes to study oil weathering and spreading in ice and surface water. A detailed monitoring of oil-in-water and ice <span class="hlt">interactions</span> was performed throughout the six-day experiment. In addition, meteorological and oceanographic data were recorded for monitoring of the wind speed and direction, <span class="hlt">air</span> temperature, currents and ice floe movements. The monitoring showed low concentrations of dissolved hydrocarbons and the predicted acute toxicity indicated that the acute toxicity was low. The ice field drifted nearly 80 km during the experimental period, and although the oil drifted with the ice, it remained contained between the ice floes. Copyright © 2011 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.9538W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.9538W"><span>Small scale variability of snow properties on Antarctic <span class="hlt">sea</span> ice</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wever, Nander; Leonard, Katherine; Paul, Stephan; Jacobi, Hans-Werner; Proksch, Martin; Lehning, Michael</p> <p>2016-04-01</p> <p>Snow on <span class="hlt">sea</span> ice plays an important role in <span class="hlt">air-ice-sea</span> <span class="hlt">interactions</span>, as snow accumulation may for example increase the albedo. Snow is also able to smooth the ice surface, thereby reducing the surface roughness, while at the same time it may generate new roughness elements by <span class="hlt">interactions</span> with the wind. Snow density is a key property in many <span class="hlt">processes</span>, for example by influencing the thermal conductivity of the snow layer, radiative transfer inside the snow as well as the effects of aerodynamic forcing on the snowpack. By comparing snow density and grain size from snow pits and snow micro penetrometer (SMP) measurements, highly resolved density and grain size profiles were acquired during two subsequent cruises of the RV Polarstern in the Weddell <span class="hlt">Sea</span>, Antarctica, between June and October 2013. During the first cruise, SMP measurements were done along two approximately 40 m transects with a horizontal resolution of approximately 30 cm. During the second cruise, one transect was made with approximately 7.5 m resolution over a distance of 500 m. Average snow densities are about 300 kg/m3, but the analysis also reveals a high spatial variability in snow density on <span class="hlt">sea</span> ice in both horizontal and vertical direction, ranging from roughly 180 to 360 kg/m3. This variability is expressed by coherent snow structures over several meters. On the first cruise, the measurements were accompanied by terrestrial laser scanning (TLS) on an area of 50x50 m2. The comparison with the TLS data indicates that the spatial variability is exhibiting similar spatial patterns as deviations in surface topology. This suggests a strong influence from surface <span class="hlt">processes</span>, for example wind, on the temporal development of density or grain size profiles. The fundamental relationship between variations in snow properties, surface roughness and changes therein as investigated in this study is interpreted with respect to large-scale ice movement and the mass balance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........41W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........41W"><span>The Response of the Ocean Thermal Skin Layer to <span class="hlt">Air-Sea</span> Surface Heat Fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wong, Elizabeth Wing-See</p> <p></p> <p>There is much evidence that the ocean is heating as a result of an increase in concentrations of greenhouse gases (GHGs) in the atmosphere from human activities. GHGs absorb infrared radiation and re-emit infrared radiation back to the ocean's surface which is subsequently absorbed. However, the incoming infrared radiation is absorbed within the top micrometers of the ocean's surface which is where the thermal skin layer exists. Thus the incident infrared radiation does not directly heat the upper few meters of the ocean. We are therefore motivated to investigate the physical mechanism between the absorption of infrared radiation and its effect on heat transfer at the <span class="hlt">air-sea</span> boundary. The hypothesis is that since heat lost through the <span class="hlt">air-sea</span> interface is controlled by the thermal skin layer, which is directly influenced by the absorption and emission of infrared radiation, the heat flow through the thermal skin layer adjusts to maintain the surface heat loss, assuming the surface heat loss does not vary, and thus modulates the upper ocean heat content. This hypothesis is investigated through utilizing clouds to represent an increase in incoming longwave radiation and analyzing retrieved thermal skin layer vertical temperature profiles from a shipboard infrared spectrometer from two research cruises. The data are limited to night-time, no precipitation and low winds of less than 2 m/s to remove effects of solar radiation, wind-driven shear and possibilities of thermal skin layer disruption. The results show independence of the turbulent fluxes and emitted radiation on the incident radiative fluxes which rules out the immediate release of heat from the absorption of the cloud infrared irradiance back into the atmosphere through <span class="hlt">processes</span> such as evaporation and increase infrared emission. Furthermore, independence was confirmed between the incoming and outgoing radiative flux which implies the heat sink for upward flowing heat at the <span class="hlt">air-sea</span> interface is more</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C33C1202F"><span>Determination of a Critical <span class="hlt">Sea</span> Ice Thickness Threshold for the Central Arctic Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ford, V.; Frauenfeld, O. W.; Nowotarski, C. J.</p> <p>2017-12-01</p> <p>While <span class="hlt">sea</span> ice extent is readily measurable from satellite observations and can be used to assess the overall survivability of the Arctic <span class="hlt">sea</span> ice pack, determining the spatial variability of <span class="hlt">sea</span> ice thickness remains a challenge. Turbulent and conductive heat fluxes are extremely sensitive to ice thickness but are dominated by the sensible heat flux, with energy exchange expected to increase with thinner ice cover. Fluxes over open water are strongest and have the greatest influence on the atmosphere, while fluxes over thick <span class="hlt">sea</span> ice are minimal as heat conduction from the ocean through thick ice cannot reach the atmosphere. We know that turbulent energy fluxes are strongest over open ocean, but is there a "critical thickness of ice" where fluxes are considered non-negligible? Through polar-optimized Weather Research and Forecasting model simulations, this study assesses how the wintertime Arctic surface boundary layer, via sensible heat flux exchange and surface <span class="hlt">air</span> temperature, responds to <span class="hlt">sea</span> ice thinning. The region immediately north of Franz Josef Land is characterized by a thickness gradient where <span class="hlt">sea</span> ice transitions from the thickest multi-year ice to the very thin marginal ice <span class="hlt">seas</span>. This provides an ideal location to simulate how the diminishing Arctic <span class="hlt">sea</span> ice <span class="hlt">interacts</span> with a warming atmosphere. Scenarios include both fixed <span class="hlt">sea</span> surface temperature domains for idealized thickness variability, and fixed ice fields to detect changes in the ocean-ice-atmosphere energy exchange. Results indicate that a critical thickness threshold exists below 1 meter. The threshold is between 0.4-1 meters thinner than the critical thickness for melt season survival - the difference between first year and multi-year ice. Turbulent heat fluxes and surface <span class="hlt">air</span> temperature increase as <span class="hlt">sea</span> ice thickness transitions from perennial ice to seasonal ice. While models predict a <span class="hlt">sea</span> ice free Arctic at the end of the warm season in future decades, <span class="hlt">sea</span> ice will continue to transform</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GMD....11.1257N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GMD....11.1257N"><span>Intercomparison of Antarctic ice-shelf, ocean, and <span class="hlt">sea</span>-ice <span class="hlt">interactions</span> simulated by MetROMS-iceshelf and FESOM 1.4</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.</p> <p>2018-04-01</p> <p>An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves <span class="hlt">interact</span> directly with the ocean and indirectly with <span class="hlt">sea</span> ice. Here, we present the first model intercomparison and evaluation of present-day ocean/<span class="hlt">sea</span>-ice/ice-shelf <span class="hlt">interactions</span>, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element <span class="hlt">Sea</span>-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as <span class="hlt">sea</span>-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf <span class="hlt">processes</span>. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen <span class="hlt">seas</span>. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptEL..14..216X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptEL..14..216X"><span>Performance analysis of <span class="hlt">air</span>-water quantum key distribution with an irregular <span class="hlt">sea</span> surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian</p> <p>2018-05-01</p> <p>In the <span class="hlt">air</span>-water quantum key distribution (QKD), the irregular <span class="hlt">sea</span> surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular <span class="hlt">sea</span> surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25600321','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25600321"><span>A time series analysis of multiple ambient pollutants to investigate the underlying <span class="hlt">air</span> pollution dynamics and <span class="hlt">interactions</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Hwa-Lung; Lin, Yuan-Chien; Kuo, Yi-Ming</p> <p>2015-09-01</p> <p>Understanding the temporal dynamics and <span class="hlt">interactions</span> of particulate matter (PM) concentration and composition is important for <span class="hlt">air</span> quality control. This paper applied a dynamic factor analysis method (DFA) to reveal the underlying mechanisms of nonstationary variations in twelve ambient concentrations of aerosols and gaseous pollutants, and the associations with meteorological factors. This approach can consider the uncertainties and temporal dependences of time series data. The common trends of the yearlong and three selected diurnal variations were obtained to characterize the dominant <span class="hlt">processes</span> occurring in general and specific scenarios in Taipei during 2009 (i.e., during Asian dust storm (ADS) events, rainfall, and under normal conditions). The results revealed the two distinct yearlong NOx transformation <span class="hlt">processes</span>, and demonstrated that traffic emissions and photochemical reactions both critically influence diurnal variation, depending upon meteorological conditions. During an ADS event, transboundary transport and distinct weather conditions both influenced the temporal pattern of identified common trends. This study shows the DFA method can effectively extract meaningful latent <span class="hlt">processes</span> of time series data and provide insights of the dominant associations and <span class="hlt">interactions</span> in the complex <span class="hlt">air</span> pollution <span class="hlt">processes</span>. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18..231D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18..231D"><span>Numerical study of summertime dynamical and physical changes in the southern South China <span class="hlt">Sea</span> due to the monsoons and its impacts on primary productivity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Daryabor, Farshid; Abu Samah, Azizan; Hai Ooi, See</p> <p>2016-04-01</p> <p>The ecosystem off the east coast of Peninsular Malaysia is controlled by multiple physical <span class="hlt">processes</span> during the monsoons (winter and summer) , including the <span class="hlt">air-sea</span> <span class="hlt">interaction</span> (such as net heat and surface freshwater fluxes), the small-scale eddies off the southern South China <span class="hlt">Sea</span> (SSCS), and the monsoon wind induced coastal upwelling. Using high-resolution Regional Ocean Modeling System (ROMS), in-situ observations and remote sensing data, this paper attempts to study the hydrodynamics of the shelf and coastal <span class="hlt">processes</span> as well as thermohaline circulation in response to changes in the hydrological seasonal cycle especially in the summer monsoon. In addition, we investigate its impacts on the spatial patterns of chlorophyll biomass which acts as a proxy for primary productivity in the SSCS. This study looks into not only the detailed small-scale-circulation such as localized eddies but also the link between the southern South China <span class="hlt">Sea</span> and the Indian Ocean through the Straits of Malacca and the Java <span class="hlt">Sea</span>. The flow through the Strait of Malacca and the Java <span class="hlt">Sea</span> is not only important for navigational purpose but also has an influence on the seasonal spatial and temporal variations of primary productivity in the region. Keywords: southern South China <span class="hlt">Sea</span>; summer monsoon; coastal upwelling; primary productivity</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.9795V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.9795V"><span>Simulation of the Aerosol-Atmosphere <span class="hlt">Interaction</span> in the Dead <span class="hlt">Sea</span> Area with COSMO-ART</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vogel, Bernhard; Bangert, Max; Kottmeier, Christoph; Rieger, Daniel; Schad, Tobias; Vogel, Heike</p> <p>2014-05-01</p> <p>The Dead <span class="hlt">Sea</span> is a unique environment located in the Dead <span class="hlt">Sea</span> Rift Valley. The fault system of the Dead <span class="hlt">Sea</span> Rift Valley marks the political borders between Israel, Jordan, and Palestine. The Dead <span class="hlt">Sea</span> region and the ambient Eastern Mediterranean coastal zone provide a natural laboratory for studying atmospheric <span class="hlt">processes</span> ranging from the smallest scale of cloud <span class="hlt">processes</span> to regional weather and climate. The virtual institute DESERVE is designed as a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ with well-established partners in Israel, Jordan and Palestine. One main focus of one of the work packages is the role of aerosols in modifying clouds and precipitation and in developing the Dead <span class="hlt">Sea</span> haze layer as one of the most intriguing questions. The haze influences visibility, solar radiation, and evaporation and may even affect economy and health. We applied the online coupled model system COSMO-ART, which is able to treat the feedback <span class="hlt">processes</span> between aerosol, radiation, and cloud formation, for a case study above the Dead <span class="hlt">Sea</span> and adjacent regions. Natural aerosol like mineral dust and <span class="hlt">sea</span> salt as well as anthropogenic primary and secondary aerosol is taken into account. Some of the observed features like the vertical double structure of the haze layer are already covered by the simulation. We found that absorbing aerosol like mineral dust causes a temperature increase in parts of the model domain. In other areas a decrease in temperature due to cirrus clouds modified by elevated dust layers is simulated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Geote..50..407G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Geote..50..407G"><span>Collision <span class="hlt">processes</span> at the northern margin of the Black <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gobarenko, V. S.; Murovskaya, A. V.; Yegorova, T. P.; Sheremet, E. E.</p> <p>2016-07-01</p> <p>Extended along the Crimea-Caucasus coast of the Black <span class="hlt">Sea</span>, the Crimean Seismic Zone (CSZ) is an evidence of active tectonic <span class="hlt">processes</span> at the junction of the Scythian Plate and Black <span class="hlt">Sea</span> Microplate. A relocation procedure applied to weak earthquakes (mb ≤ 3) recorded by ten local stations during 1970-2013 helped to determine more accurately the parameters of hypocenters in the CSZ. The Kerch-Taman, Sudak, Yuzhnoberezhnaya (South Coast), and Sevastopol subzones have also been recognized. Generalization of the focal mechanisms of 31 strong earthquakes during 1927-2013 has demonstrated the predominance of reverse and reverse-normal-faulting deformation regimes. This ongoing tectonic <span class="hlt">process</span> occurs under the settings of compression and transpression. The earthquake foci with strike-slip component mechanisms concentrate in the west of the CSZ. Comparison of deformation modes in the western and eastern Crimean Mountains according to tectonophysical data has demonstrated that the western part is dominated by strike-slip and normal- faulting, while in the eastern part, reverse-fault and strike-slip deformation regimes prevail. Comparison of the seismicity and gravity field and modes of deformation suggests underthusting of the East Black <span class="hlt">Sea</span> Microplate with thin suboceanic crust under the Scythian Plate. In the Yuzhnoberezhnaya Subzone, this <span class="hlt">process</span> is complicated by the East Black <span class="hlt">Sea</span> Microplate frontal part wedging into the marginal part of the Scythian Plate crust. The indentation mechanism explains the strong gravity anomaly in the Crimean Mountains and their uplift.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150002122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150002122"><span>Natural <span class="hlt">Air-Sea</span> Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150002122'); toggleEditAbsImage('author_20150002122_show'); toggleEditAbsImage('author_20150002122_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150002122_hide"></p> <p>2013-01-01</p> <p>Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the <span class="hlt">air-sea</span> flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the <span class="hlt">air-sea</span> flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive <span class="hlt">processes</span>, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical <span class="hlt">processes</span> such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHE24A1423M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHE24A1423M"><span>Aircraft Surveys of the Beaufort <span class="hlt">Sea</span> Seasonal Ice Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morison, J.</p> <p>2016-02-01</p> <p>The Seasonal Ice Zone Reconnaissance Surveys (SIZRS) is a program of repeated ocean, ice, and atmospheric measurements across the Beaufort-Chukchi <span class="hlt">sea</span> seasonal <span class="hlt">sea</span> ice zone (SIZ) utilizing US Coast Guard Arctic Domain Awareness (ADA) flights of opportunity. The SIZ is the region between maximum winter <span class="hlt">sea</span> ice extent and minimum summer <span class="hlt">sea</span> ice extent. As such, it contains the full range of positions of the marginal ice zone (MIZ) where <span class="hlt">sea</span> ice <span class="hlt">interacts</span> with open water. The increasing size and changing <span class="hlt">air</span>-ice-ocean properties of the SIZ are central to recent reductions in Arctic <span class="hlt">sea</span> ice extent. The changes in the interplay among the atmosphere, ice, and ocean require a systematic SIZ observational effort of coordinated atmosphere, ice, and ocean observations covering up to interannual time-scales, Therefore, every year beginning in late Spring and continuing to early Fall, SIZRS makes monthly flights across the Beaufort <span class="hlt">Sea</span> SIZ aboard Coast Guard C-130H aircraft from USCG <span class="hlt">Air</span> Station Kodiak dropping Aircraft eXpendable CTDs (AXCTD) and Aircraft eXpendable Current Profilers (AXCP) for profiles of ocean temperature, salinity and shear, dropsondes for atmospheric temperature, humidity, and velocity profiles, and buoys for atmosphere and upper ocean time series. Enroute measurements include IR imaging, radiometer and lidar measurements of the <span class="hlt">sea</span> surface and cloud tops. SIZRS also cooperates with the International Arctic Buoy Program for buoy deployments and with the NOAA Earth System Research Laboratory atmospheric chemistry sampling program on board the aircraft. Since 2012, SIZRS has found that even as SIZ extent, ice character, and atmospheric forcing varies year-to-year, the pattern of ocean freshening and radiative warming south of the ice edge is consistent. The experimental approach, observations and extensions to other projects will be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23941745','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23941745"><span><span class="hlt">Interactive</span> short-term effects of equivalent temperature and <span class="hlt">air</span> pollution on human mortality in Berlin and Lisbon.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Burkart, Katrin; Canário, Paulo; Breitner, Susanne; Schneider, Alexandra; Scherber, Katharina; Andrade, Henrique; Alcoforado, Maria João; Endlicher, Wilfried</p> <p>2013-12-01</p> <p>There is substantial evidence that both temperature and <span class="hlt">air</span> pollution are predictors of mortality. Thus far, few studies have focused on the potential <span class="hlt">interactive</span> effects between the thermal environment and different measures of <span class="hlt">air</span> pollution. Such <span class="hlt">interactions</span>, however, are biologically plausible, as (extreme) temperature or increased <span class="hlt">air</span> pollution might make individuals more susceptible to the effects of each respective predictor. This study investigated the <span class="hlt">interactive</span> effects between equivalent temperature and <span class="hlt">air</span> pollution (ozone and particulate matter) in Berlin (Germany) and Lisbon (Portugal) using different types of Poisson regression models. The findings suggest that <span class="hlt">interactive</span> effects exist between <span class="hlt">air</span> pollutants and equivalent temperature. Bivariate response surface models and generalised additive models (GAMs) including <span class="hlt">interaction</span> terms showed an increased risk of mortality during periods of elevated equivalent temperatures and <span class="hlt">air</span> pollution. Cold effects were mostly unaffected by <span class="hlt">air</span> pollution. The study underscores the importance of <span class="hlt">air</span> pollution control in mitigating heat effects. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013238','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013238"><span><span class="hlt">AIRS</span> Maps from Space <span class="hlt">Processing</span> Software</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, Charles K.; Licata, Stephen J.</p> <p>2012-01-01</p> <p>This software package <span class="hlt">processes</span> Atmospheric Infrared Sounder (<span class="hlt">AIRS</span>) Level 2 swath standard product geophysical parameters, and generates global, colorized, annotated maps. It automatically generates daily and multi-day averaged colorized and annotated maps of various <span class="hlt">AIRS</span> Level 2 swath geophysical parameters. It also generates <span class="hlt">AIRS</span> input data sets for Eyes on Earth, Puffer-sphere, and Magic Planet. This program is tailored to <span class="hlt">AIRS</span> Level 2 data products. It re-projects data into 1/4-degree grids that can be combined and averaged for any number of days. The software scales and colorizes global grids utilizing <span class="hlt">AIRS</span>-specific color tables, and annotates images with title and color bar. This software can be tailored for use with other swath data products for the purposes of visualization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA261425','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA261425"><span>Characteristics of Physical Training Activities of West Coast U.S. Navy <span class="hlt">Sea-Air</span>-Land Personnel (SEALS)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-11-01</p> <p>REPETITIONS, OR LOADS VARY. USE TIHE AVERAGE FOR YOUR RESPONSE TO THIESE QUESTIONS Body Weight: _ pounds I Repetition Average Exercise Maximum Sets...<span class="hlt">Sea</span>, <span class="hlt">Air</span>, Land (SEAL) personnel undergoing advanced training. Responses to this questionnaire provided information on the types, frequencies, and...their responses were used to characterize training activity according to the American College of Sports Medicine guidelines for maintenance of aerobic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070023751&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070023751&hterms=air+asia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dair%2Basia"><span>High Lapse Rates in <span class="hlt">AIRS</span> Retrieved Temperatures in Cold <span class="hlt">Air</span> Outbreaks</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fetzer, Eric J.; Kahn, Brian; Olsen, Edward T.; Fishbein, Evan</p> <p>2004-01-01</p> <p>The Atmospheric Infrared Sounder (<span class="hlt">AIRS</span>) experiment, on NASA's Aqua spacecraft, uses a combination of infrared and microwave observations to retrieve cloud and surface properties, plus temperature and water vapor profiles comparable to radiosondes throughout the troposphere, for cloud cover up to 70%. The high spectral resolution of <span class="hlt">AIRS</span> provides sensitivity to important information about the near-surface atmosphere and underlying surface. A preliminary analysis of <span class="hlt">AIRS</span> temperature retrievals taken during January 2003 reveals extensive areas of superadiabatic lapse rates in the lowest kilometer of the atmosphere. These areas are found predominantly east of North America over the Gulf Stream, and, off East Asia over the Kuroshio Current. Accompanying the high lapse rates are low <span class="hlt">air</span> temperatures, large <span class="hlt">sea-air</span> temperature differences, and low relative humidities. Imagery from a Visible / Near Infrared instrument on the <span class="hlt">AIRS</span> experiment shows accompanying clouds. These lines of evidence all point to shallow convection in the bottom layer of a cold <span class="hlt">air</span> mass overlying warm water, with overturning driven by heat flow from ocean to atmosphere. An examination of operational radiosondes at six coastal stations in Japan shows <span class="hlt">AIRS</span> to be oversensitive to lower tropospheric lapse rates due to systematically warm near-surface <span class="hlt">air</span> temperatures. The bias in near-surface <span class="hlt">air</span> temperature is seen to be independent of <span class="hlt">sea</span> surface temperature, however. <span class="hlt">AIRS</span> is therefore sensitive to <span class="hlt">air-sea</span> temperature difference, but with a warm atmospheric bias. A regression fit to radiosondes is used to correct <span class="hlt">AIRS</span> near-surface retrieved temperatures, and thereby obtain an estimate of the true atmosphere-ocean thermal contrast in five subtropical regions across the north Pacific. Moving eastward, we show a systematic shift in this <span class="hlt">air-sea</span> temperature differences toward more isothermal conditions. These results, while preliminary, have implications for our understanding of heat flow from ocean to</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020015705','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020015705"><span>Modeling Biogeochemical-Physical <span class="hlt">Interactions</span> and Carbon Flux in the Sargasso <span class="hlt">Sea</span> (Bermuda Atlantic Time-series Study site)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Signorini, Sergio R.; McClain, Charles R.; Christian, James R.</p> <p>2001-01-01</p> <p>An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical <span class="hlt">interactions</span> and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The <span class="hlt">sea-air</span> flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso <span class="hlt">Sea</span> by the warmest SST and lowest surface salinity of the period (1992-1998).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMOS51B1988M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMOS51B1988M"><span>Effect of Sampling Depth on <span class="hlt">Air-Sea</span> CO2 Flux Estimates in River-Stratified Arctic Coastal Waters</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miller, L. A.; Papakyriakou, T. N.</p> <p>2015-12-01</p> <p>In summer-time Arctic coastal waters that are strongly influenced by river run-off, extreme stratification severely limits wind mixing, making it difficult to effectively sample the surface 'mixed layer', which can be as shallow as 1 m, from a ship. During two expeditions in southwestern Hudson Bay, off the Nelson, Hayes, and Churchill River estuaries, we confirmed that sampling depth has a strong impact on estimates of 'surface' pCO2 and calculated <span class="hlt">air-sea</span> CO2 fluxes. We determined pCO2 in samples collected from 5 m, using a typical underway system on the ship's seawater supply; from the 'surface' rosette bottle, which was generally between 1 and 3 m; and using a niskin bottle deployed at 1 m and just below the surface from a small boat away from the ship. Our samples confirmed that the error in pCO2 derived from typical ship-board versus small-boat sampling at a single station could be nearly 90 μatm, leading to errors in the calculated <span class="hlt">air-sea</span> CO2 flux of more than 0.1 mmol/(m2s). Attempting to extrapolate such fluxes over the 6,000,000 km2 area of the Arctic shelves would generate an error approaching a gigamol CO2/s. Averaging the station data over a cruise still resulted in an error of nearly 50% in the total flux estimate. Our results have implications not only for the design and execution of expedition-based sampling, but also for placement of in-situ sensors. Particularly in polar waters, sensors are usually deployed on moorings, well below the surface, to avoid damage and destruction from drifting ice. However, to obtain accurate information on <span class="hlt">air-sea</span> fluxes in these areas, it is necessary to deploy sensors on ice-capable buoys that can position the sensors in true 'surface' waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70040729','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70040729"><span>The impact of lower <span class="hlt">sea</span>-ice extent on Arctic greenhouse-gas exchange</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Parmentier, Frans-Jan W.; Christensen, Torben R.; Sørensen, Lise Lotte; Rysgaard, Søren; McGuire, A. David; Miller, Paul A.; Walker, Donald A.</p> <p>2013-01-01</p> <p>In September 2012, Arctic <span class="hlt">sea</span>-ice extent plummeted to a new record low: two times lower than the 1979–2000 average. Often, record lows in <span class="hlt">sea</span>-ice cover are hailed as an example of climate change impacts in the Arctic. Less apparent, however, are the implications of reduced <span class="hlt">sea</span>-ice cover in the Arctic Ocean for marine–atmosphere CO2 exchange. <span class="hlt">Sea</span>-ice decline has been connected to increasing <span class="hlt">air</span> temperatures at high latitudes. Temperature is a key controlling factor in the terrestrial exchange of CO2 and methane, and therefore the greenhouse-gas balance of the Arctic. Despite the large potential for feedbacks, many studies do not connect the diminishing <span class="hlt">sea</span>-ice extent with changes in the <span class="hlt">interaction</span> of the marine and terrestrial Arctic with the atmosphere. In this Review, we assess how current understanding of the Arctic Ocean and high-latitude ecosystems can be used to predict the impact of a lower <span class="hlt">sea</span>-ice cover on Arctic greenhouse-gas exchange.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018BoLMe.tmp...23G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018BoLMe.tmp...23G"><span>The Effect of Breaking Waves on CO_2 <span class="hlt">Air-Sea</span> Fluxes in the Coastal Zone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gutiérrez-Loza, Lucía; Ocampo-Torres, Francisco J.; García-Nava, Héctor</p> <p>2018-03-01</p> <p>The influence of wave-associated parameters controlling turbulent CO_2 fluxes through the <span class="hlt">air-sea</span> interface is investigated in a coastal region. A full year of high-quality data of direct estimates of <span class="hlt">air-sea</span> CO_2 fluxes based on eddy-covariance measurements is presented. The study area located in Todos Santos Bay, Baja California, Mexico, is a net sink of CO_2 with a mean flux of -1.3 μmol m^{-2}s^{-1} (-41.6 mol m^{-2}yr^{-1} ). The results of a quantile-regression analysis computed between the CO_2 flux and, (1) wind speed, (2) significant wave height, (3) wave steepness, and (4) water temperature, suggest that the significant wave height is the most correlated parameter with the magnitude of the flux but the behaviour of the relation varies along the probability distribution function, with the slopes of the regression lines presenting both positive and negative values. These results imply that the presence of surface waves in coastal areas is the key factor that promotes the increase of the flux from and into the ocean. Further analysis suggests that the local characteristics of the aqueous and atmospheric layers might determine the direction of the flux.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A42D..02F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A42D..02F"><span>Connecting marine productivity to <span class="hlt">sea</span>-spray via microscale biological <span class="hlt">processes</span>: phytoplancton demise and viral infection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Facchini, C.; O'Dowd, C. D. D.; Danovaro, R.</p> <p>2015-12-01</p> <p>The <span class="hlt">processes</span> that link phytoplankton biomass and productivity to the organic matter enrichment in <span class="hlt">sea</span> spray aerosol are far from being elucidated and modelling predictions remain highly uncertain at the moment. While some studies have asserted that the enrichment of OM in <span class="hlt">sea</span> spray aerosol is independent on marine productivity, others, have shown significant correlation with phytoplankton biomass and productivity (Chl-a retrieved by satellites). We present here new results illustrating a clear link between OM mass-fraction enrichment in <span class="hlt">sea</span> spray (OMss) and both phytoplankton-biomass and Net Primary Productivity (NPP). We suggest that the OM enrichment of <span class="hlt">sea</span> spray through the demise of the bloom, driven by nanoscale biological <span class="hlt">processes</span> (such as viral infections), which determine the release of celldebris, exudates and other colloidal material. This OM, through <span class="hlt">processes</span>, leads to enrichment in <span class="hlt">sea</span>-spray, thus demonstrating an important coupling between biologically-drive plankton bloom termination, marine productivity and <span class="hlt">sea</span>-spraymodification with potentially significant climate impacts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43D2472C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43D2472C"><span>Sensitivity of the <span class="hlt">sea</span> ice concentration over the Kara-Barents <span class="hlt">Sea</span> in autumn to the winter temperature variability over East Asia</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, K. H.; Chang, E. C.</p> <p>2017-12-01</p> <p>In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the <span class="hlt">sea</span> ice concentration over the Kara-Barents (KB) <span class="hlt">Sea</span> in autumn, which can affect winter temperature variability over East Asia. Prescribed <span class="hlt">sea</span> ice conditions are 1) climatological autumn <span class="hlt">sea</span> ice concentration obtained from 1982 to 2016, 2) reduced autumn <span class="hlt">sea</span> ice concentration by 50% of the climatology, and 3) increased autumn <span class="hlt">sea</span> ice concentration by 50% of climatology. Differently prescribed <span class="hlt">sea</span> ice concentration changes surface albedo, which affects surface heat fluxes and near-surface <span class="hlt">air</span> temperature. The reduced (increased) <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> increases (decreases) near-surface <span class="hlt">air</span> temperature that leads the lower (higher) <span class="hlt">sea</span> level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> has remote effects on the <span class="hlt">sea</span> level pressure patterns over the East Asian region. The lower (higher) <span class="hlt">sea</span> level pressure over the KB <span class="hlt">sea</span> by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) <span class="hlt">sea</span> ice concentration over the KB <span class="hlt">sea</span> in autumn can lead the colder (warmer) surface <span class="hlt">air</span> temperature over East Asia in winter.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1013702','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1013702"><span>Wave <span class="hlt">Processes</span> in Arctic <span class="hlt">Seas</span>, Observed from TerraSAR-X</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-30</p> <p>in order to improve wave models as well as ice models applicable to a changing Arctic wave/ and ice climate . This includes observation and...fields retrieved from the TS-X image swaths. 4. “Wave Climate and Wave Mixing in the Marginal Ice Zones of Arctic <span class="hlt">Seas</span>, Observations and Modelling”, by...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. “Wave <span class="hlt">Processes</span> in Arctic <span class="hlt">Seas</span>, Observed from TerraSAR-X</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A21H2245L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A21H2245L"><span>Impact of Land-<span class="hlt">Sea</span> Thermal Contrast on Inland Penetration of <span class="hlt">Sea</span> Fog over The Yellow <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, H. Y.; Chang, E. C.</p> <p>2017-12-01</p> <p><span class="hlt">Sea</span> fog can be classified into a cold <span class="hlt">sea</span> fog that occurs when <span class="hlt">sea</span> surface temperature (SST) is colder than <span class="hlt">sea</span> <span class="hlt">air</span> temperature (SAT) and a warm <span class="hlt">sea</span> fog that occurs when the SST is warmer than the SAT. We simulated two <span class="hlt">sea</span> fog events over the Yellow <span class="hlt">Sea</span> which is surrounded by Korean Peninsula and mainland China using Weather Research and Forecasting (WRF) model. Our first aim is to understand contributions of major factors for the <span class="hlt">sea</span> fog formation. First, the two <span class="hlt">sea</span> fog events are designated as cold and warm types, and cooling rates as well as moistening rates are calculated employing bulk aerodynamic methods. Both cases show cooling and moistening by turbulent fluxes play an important role in condensation either favorably or unfavorably. However, longwave radiative cooling is as or even stronger than turbulent cooling, suggesting it is the most decisive factor in formation of <span class="hlt">sea</span> fogs regardless of their type. Our second purpose of the study is to understand inland penetration of <span class="hlt">sea</span> fog in terms of thermal contrast (TC) and it was conducted through sensitivity tests of SST and land skin temperature (LST). In the SST sensitivity tests, increase of SSTs lead to that of upward turbulent heat fluxes so that SATs rise which are responsible for evaporation of cloud waters and it is common response of the two events. In addition, change of the SST induce that of the TC and may affect the inland penetration of <span class="hlt">sea</span> fog. However, when the cloud waters over the <span class="hlt">sea</span> evaporate, it is hard to fully determine the inland penetration. As a remedy for this limitation, LST is now modified instead of SST to minimize the evaporation effect, maintaining the equivalent TC. In the case of cold <span class="hlt">sea</span> fog, land <span class="hlt">air</span> temperature (LAT) is warmer than SAT. Here, decrease of the LAT leads to weakening of the TC and favors the inland penetration. On the other hand, LAT is colder than the SAT in the warm <span class="hlt">sea</span> fog event. When the LAT decreases, the TC is intensified resulting in blocking of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1001662','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1001662"><span><span class="hlt">Air</span> Land <span class="hlt">Sea</span> Bulletin</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-01-01</p> <p>targets. Recent upgrades to the JSTARS have provided a greatly en- hanced capability to conduct maritime surveillance over blue water (oceans and <span class="hlt">seas</span>...erational plans (OPLANs) without leaving their home station. Cur- rent capabilities allow distributed training at multiple mission train- ing centers...capability allows USPACOM participants to plan from their home station while working directly with units around the world that will support a USPACOM</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A33A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A33A..06D"><span>-> <span class="hlt">Air</span> entrainment and bubble statistics in three-dimensional breaking waves</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deike, L.; Popinet, S.; Melville, W. K.</p> <p>2016-02-01</p> <p>Wave breaking in the ocean is of fundamental importance for quantifying wave dissipation and <span class="hlt">air-sea</span> <span class="hlt">interaction</span>, including gas and momentum exchange, and for improving <span class="hlt">air-sea</span> flux parametrizations for weather and climate models. Here we investigate <span class="hlt">air</span> entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase <span class="hlt">air</span>-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution is found to follow a power law of the radius, r-10/3 and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stage. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001039','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001039"><span>Geoid undulations and gravity anomalies over the Aral <span class="hlt">Sea</span>, the Black <span class="hlt">Sea</span> and the Caspian <span class="hlt">Sea</span> from a combined GEOS-3/SEASAT/GEOSAT altimeter data set</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.</p> <p>1991-01-01</p> <p>Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral <span class="hlt">Sea</span>, the Black <span class="hlt">Sea</span>, and the Caspian <span class="hlt">Sea</span> are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free <span class="hlt">air</span> gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black <span class="hlt">Sea</span>, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black <span class="hlt">Sea</span>, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian <span class="hlt">Sea</span>, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland <span class="hlt">seas</span>, speculative tectonic structures are identified and geophysical <span class="hlt">processes</span> are inferred.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013BGD....1015641F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013BGD....1015641F"><span>Synoptic evaluation of carbon cycling in Beaufort <span class="hlt">Sea</span> during summer: contrasting river inputs, ecosystem metabolism and <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.</p> <p>2013-10-01</p> <p>The accelerated decline in Arctic <span class="hlt">sea</span> ice combined with an ongoing trend toward a more dynamic atmosphere is modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates <span class="hlt">air-sea</span> CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in southeastern Beaufort <span class="hlt">Sea</span> (Arctic Ocean), we synthesize information on <span class="hlt">sea</span> ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as <span class="hlt">air-sea</span> CO2 exchange, with the aim of identifying indices of ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against <span class="hlt">air-sea</span> CO2 fluxes. The mean atmospheric forcing was a mild upwelling-favorable wind (~5 km h-1) blowing from the N-E and a decaying ice cover (<80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2 with a mean uptake rate of -2.0 ± 3.3 mmol C m-2d-1. We attribute this discrepancy to: (1) elevated PP rates (>600 mg C m-2d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (>10mmol C m-2d-1). Although generally <100 mg C m-2d-1, daily PP rates cumulated to a total PP of ~437.6 × 103 t C, which was roughly twice higher than the organic carbon delivery by river inputs (~241.2 × 103 t C). Subsurface PP represented 37.4% of total PP for the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI33A..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI33A..05B"><span>Describing River Plume <span class="hlt">Interactions</span> in the Northern Adriatic <span class="hlt">Sea</span> Using High Resolution Satellite Turbidity And <span class="hlt">Sea</span> Surface Temperature Observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brando, V. E.; Braga, F.; Zaggia, L.; Carniel, S.</p> <p>2016-02-01</p> <p><span class="hlt">Sea</span> surface temperature (SST) and turbidity (T) derived from Landsat-8 (L8) imagery were used to characterize river plumes in the Northern Adriatic <span class="hlt">Sea</span> (NAS). <span class="hlt">Sea</span> surface salinity (SSS) from an operational coupled ocean-wave model supported the interpretation of the plumes <span class="hlt">interaction</span> with the receiving waters and among them. In this study we used L8 OLI and TIRS imagery of 19 November 2014 capturing a significant freshwater inflow into the NAS for mapping both T and SST at 30 meters resolution. Sharp fronts in T and SST delimited each single river plume. The isotherms and turbidity isolines coupling varied among the plumes due to differences in particle loads and surface temperatures in the discharged waters. Overall, there was a good agreement of the SSS, T, and SST fields at the mesoscale delineation of the major river plumes. Landsat-8 30m resolution enabled the identification of smaller plume structures and the description at small scale and sub-mesoscale of the plume dynamical regions for all plume structures, as well as their <span class="hlt">interactions</span> in the NAS. Although this study presents data captured with a sensor having a revisiting time of 16 days, we expect that with the recent launch of ESA's Sentinel 2A and the forthcoming launch of Sentinel 2B the temporal resolution will increase reaching almost the 1-3 days revisit time normally associated with Ocean Colour Radiometry (OCR). Combined with their radiometric resolution similar to OCR missions, these developments will thus offer an opportunity to also describe the temporal evolution of plume structures at the sub-mesoscale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.9654S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.9654S"><span>Micromechanics of <span class="hlt">sea</span> ice gouge in shear zones</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sammonds, Peter; Scourfield, Sally; Lishman, Ben</p> <p>2015-04-01</p> <p>The deformation of <span class="hlt">sea</span> ice is a key control on the Arctic Ocean dynamics. Shear displacement on all scales is an important deformation <span class="hlt">process</span> in the <span class="hlt">sea</span> cover. Shear deformation is a dominant mechanism from the scale of basin-scale shear lineaments, through floe-floe <span class="hlt">interaction</span> and block sliding in ice ridges through to the micro-scale mechanics. Shear deformation will not only depend on the speed of movement of ice surfaces but also the degree that the surfaces have bonded during thermal consolidation and compaction. Recent observations made during fieldwork in the Barents <span class="hlt">Sea</span> show that shear produces a gouge similar to a fault gouge in a shear zone in the crust. A range of sizes of gouge are exhibited. The consolidation of these fragments has a profound influence on the shear strength and the rate of the <span class="hlt">processes</span> involved. We review experimental results in <span class="hlt">sea</span> ice mechanics from mid-scale experiments, conducted in the Hamburg model ship ice tank, simulating <span class="hlt">sea</span> ice floe motion and <span class="hlt">interaction</span> and compare these with laboratory experiments on ice friction done in direct shear, and upscale to field measurement of <span class="hlt">sea</span> ice friction and gouge deformation made during experiments off Svalbard. We find that consolidation, fragmentation and bridging play important roles in the overall dynamics and fit the model of Sammis and Ben-Zion, developed for understanding the micro-mechanics of rock fault gouge, to the <span class="hlt">sea</span> ice problem.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018EPJWC.18002114V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018EPJWC.18002114V"><span>Description of saturation curves and boiling <span class="hlt">process</span> of dry <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vestfálová, Magda; Petříková, Markéta; Šimko, Martin</p> <p>2018-06-01</p> <p><span class="hlt">Air</span> is a mixture of gases forming the gas wrap of Earth. It is formed by dry <span class="hlt">air</span>, moisture and other pollutants. Dry <span class="hlt">air</span> is a substance whose thermodynamic properties in gaseous state, as well as the thermodynamic properties of its main constituents in gaseous state, are generally known and described in detail in the literature. The liquid <span class="hlt">air</span> is a bluish liquid and is industrially used to produce oxygen, nitrogen, argon and helium by distillation. The transition between the gaseous and liquid state (the condensation <span class="hlt">process</span>, resp. boiling <span class="hlt">process</span>), is usually displayed in the basic thermodynamic diagrams using the saturation curves. The saturation curves of all pure substances are of a similar shape. However, since the dry <span class="hlt">air</span> is a mixture, the shapes of its saturation curves are modified relative to the shapes corresponding to the pure substances. This paper deals with the description of the dry <span class="hlt">air</span> saturation curves as a mixture, i.e. with a description of the <span class="hlt">process</span> of phase change of dry <span class="hlt">air</span> (boiling <span class="hlt">process</span>). The dry <span class="hlt">air</span> saturation curves are constructed in the basic thermodynamic charts based on the values obtained from the literature. On the basis of diagrams, data appearing in various publications are interpreted and put into context with boiling <span class="hlt">process</span> of dry <span class="hlt">air</span>.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.2781S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.2781S"><span>Boundary layers at a dynamic interface: <span class="hlt">Air-sea</span> exchange of heat and mass</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Szeri, Andrew J.</p> <p>2017-04-01</p> <p>Exchange of mass or heat across a turbulent liquid-gas interface is a problem of critical interest, especially in <span class="hlt">air-sea</span> transfer of natural and anthropogenic gases involved in the study of climate. The goal in this research area is to determine the gas flux from <span class="hlt">air</span> to <span class="hlt">sea</span> or vice versa. For sparingly soluble nonreactive gases, this is controlled by liquid phase turbulent velocity fluctuations that act on the thin species concentration boundary layer on the liquid side of the interface. If the fluctuations in surface-normal velocity w' and gas concentration c' are known, then it is possible to determine the turbulent contribution to the gas flux. However, there is no suitable fundamental direct approach in the general case where neither w' nor c' can be easily measured. A new approach is presented to deduce key aspects about the near-surface turbulent motions from measurements that can be taken by an infrared (IR) camera. An equation is derived with inputs being the surface temperature and heat flux, and a solution method developed for the surface-normal strain experienced over time by boundary layers at the interface. Because the thermal and concentration boundary layers experience the same near-surface fluid motions, the solution for the surface-normal strain determines the gas flux or gas transfer velocity. Examples illustrate the approach in the cases of complete surface renewal, partial surface renewal, and insolation. The prospects for use of the approach in flows characterized by sheared interfaces or rapid boundary layer straining are explored.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890062534&hterms=moisture+condensation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmoisture%2Bcondensation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890062534&hterms=moisture+condensation&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dmoisture%2Bcondensation"><span>Boundary layer warming by condensation - <span class="hlt">Air-sea</span> <span class="hlt">interaction</span> during an extreme cold <span class="hlt">air</span> outbreak from the eastern coast of the United States</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grossman, Robert L.</p> <p>1988-01-01</p> <p>Studies on an intense cold <span class="hlt">air</span> outbreak that took place after a cold <span class="hlt">air</span> cyclogenesis on January 27, 1986 are reviewed. Particular attention is given to data obtained during a multiaircraft research mission carried out on January 28, 1986 as part of the Genesis of Atlantic Lows Experiment. It was found that condensation heating of the subcloud layer <span class="hlt">air</span> was comparable to heating by turbulent flux divergence.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC34A1164H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC34A1164H"><span><span class="hlt">Interaction</span> between Fresh and <span class="hlt">Sea</span> Water in Tidal Influenced Navigation Channel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hwang, J. H. H.; Nam-Hoon, K.</p> <p>2016-02-01</p> <p>Nam-Hoon, Kim 1, Jin-Hwan, Hwang 2, Hyeyun-Ku 31,2,3 Department of Civil and Environmental Engineering, Seoul National University, Republic of Korea; 1nhkim0426@snu.ac.kr; 2jinhwang@snu.ac.kr; 3hyeyun.ku@gmail.com; We have conducted field observations after freshwater discharges of <span class="hlt">sea</span> dike during ebb tide in Geum River Estuary, Korea to understand the <span class="hlt">interaction</span> between fresh and <span class="hlt">sea</span> water. To measure spatial variability of the stratified flow, an Acoustic Doppler Current Profiler (ADCP) and a portable free-fall tow-yo instrument, Yoing Ocean Data Acquisition Profiler (YODA profiler) which can continuously measures three-dimensional velocity profiles and vertical profiles of the fine-scale features, respectively, within water column were used in a vessel moving at a speed of 1-2 m/s. The flow observations show the strong stratification and dispersion occurred near field region because of the ebb tide advection (Fig. 1). As moving toward the far field region, the stratification and dispersion was getting thin and weak but still remaining. The presence of mixing <span class="hlt">process</span> between fresh and <span class="hlt">sea</span> water was represented by the gradient Richardson Number. The mixing occurred throughout the near field region and potentially mixed in the far field region. This study have been conducted to serve as a basic research of understanding the Region Of Freshwater Influence (ROFI) in the tidal influenced navigation channel. We are going to perform a few more observations in the future. Key words: Richardson number, stratification, mixing, ROFI, ADCP, CTDFigure 1. High-resolution observation data of salinity (psu) from YODA Profiler Acknowledgement: This research was supported by grants from the Korean Ministry of Oceans and Fisheries entitled as "Developing total management system for the Keum river estuary and coast" and "Integrated management of marine environment and ecosystems around Saemangeum". We also thank to the administrative supports of Integrated Research Institute of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRC..122.1608P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRC..122.1608P"><span>The ocean mixed layer under Southern Ocean <span class="hlt">sea</span>-ice: Seasonal cycle and forcing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît</p> <p>2017-02-01</p> <p>The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by <span class="hlt">sea</span>-ice, which alters the characteristics of the ocean mixed layer. The <span class="hlt">interaction</span> between the ocean mixed layer and <span class="hlt">sea</span>-ice plays a key role for water mass transformation, the carbon cycle, <span class="hlt">sea</span>-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under <span class="hlt">sea</span>-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of <span class="hlt">sea</span> surface salinity and temperature are primarily driven by surface <span class="hlt">processes</span>, dominated by <span class="hlt">sea</span>-ice freshwater flux for the salt budget and by <span class="hlt">air-sea</span> flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional <span class="hlt">sea</span>-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JPhy4.139..211E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JPhy4.139..211E"><span>Occurrence and <span class="hlt">air/sea</span>-exchange of novel organic pollutants in the marine environment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ebinghaus, R.; Xie, Z.</p> <p>2006-12-01</p> <p>A number of studies have demonstrated that several classes of chemicals act as biologically relevant signalling substances. Among these chemicals, many, including PCBs, DDT and dioxins, are semi-volatile, persistent, and are capable of long-range atmospheric transport via atmospheric circulation. Some of these compounds, e.g. phthalates and alkylphenols (APs) are still manufactured and consumed worldwide even though there is clear evidence that they are toxic to aquatic organisms and can act as endocrine disruptors. Concentrations of NP, t-OP and NP1EO, DMP, DEP, DBP, BBP, and DEHP have been simultaneously determined in the surface <span class="hlt">sea</span> water and atmosphere of the North <span class="hlt">Sea</span>. Atmospheric concentrations of NP and t-OP ranged from 7 to 110 pg m - 3, which were one to three orders of magnitude below coastal atmospheric concentrations already reported. NP1EO was detected in both vapor and particle phases, which ranged from 4 to 50 pg m - 3. The concentrations of the phthalates in the atmosphere ranged from below the method detection limit to 3.4 ng m - 3. The concentrations of t-OP, NP, and NP1EO in dissolved phase were 13-300, 90-1400, and 17-1660 pg L - 1. DBP, BBP, and DEHP were determined in the water phase with concentrations ranging from below the method detection limit to 6.6 ng L - 1. This study indicates that atmospheric deposition of APs and phthalates into the North <span class="hlt">Sea</span> is an important input pathway. The net fluxes indicate that the <span class="hlt">air</span> <span class="hlt">sea</span> exchange is significant and, consequently the open ocean and polar areas will be an extensive sink for APs and phthalates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1046558','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1046558"><span>Quantifying Electromagnetic Wave Propagation Environment Using Measurements From A Small Buoy</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-06-01</p> <p>ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A SMALL BUOY by Andrew E. Sweeney June 2017 Thesis Advisor: Qing Wang...TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE QUANTIFYING ELECTROMAGNETIC WAVE PROPAGATION ENVIRONMENT USING MEASUREMENTS FROM A...the Coupled <span class="hlt">Air</span> <span class="hlt">Sea</span> <span class="hlt">Processes</span> and Electromagnetic (EM) ducting Research (CASPER), to understand <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span> and their representation</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1613789X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1613789X"><span>A Unified Data Assimilation Strategy for Regional Coupled Atmosphere-Ocean Prediction Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xie, Lian; Liu, Bin; Zhang, Fuqing; Weng, Yonghui</p> <p>2014-05-01</p> <p>Improving tropical cyclone (TC) forecasts is a top priority in weather forecasting. Assimilating various observational data to produce better initial conditions for numerical models using advanced data assimilation techniques has been shown to benefit TC intensity forecasts, whereas assimilating large-scale environmental circulation into regional models by spectral nudging or Scale-Selective Data Assimilation (SSDA) has been demonstrated to improve TC track forecasts. Meanwhile, taking into account various <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span> by high-resolution coupled <span class="hlt">air-sea</span> modelling systems has also been shown to improve TC intensity forecasts. Despite the advances in data assimilation and <span class="hlt">air-sea</span> coupled models, large errors in TC intensity and track forecasting remain. For example, Hurricane Nate (2011) has brought considerable challenge for the TC operational forecasting community, with very large intensity forecast errors (27, 25, and 40 kts for 48, 72, and 96 h, respectively) for the official forecasts. Considering the slow-moving nature of Hurricane Nate, it is reasonable to hypothesize that <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span> played a critical role in the intensity change of the storm, and accurate representation of the upper ocean dynamics and thermodynamics is necessary to quantitatively describe the <span class="hlt">air-sea</span> <span class="hlt">interaction</span> <span class="hlt">processes</span>. Currently, data assimilation techniques are generally only applied to hurricane forecasting in stand-alone atmospheric or oceanic model. In fact, most of the regional hurricane forecasting models only included data assimilation techniques for improving the initial condition of the atmospheric model. In such a situation, the benefit of adjustments in one model (atmospheric or oceanic) by assimilating observational data can be compromised by errors from the other model. Thus, unified data assimilation techniques for coupled <span class="hlt">air-sea</span> modelling systems, which not only simultaneously assimilate atmospheric and oceanic observations into the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6619612-midlatitude-atmosphere-ocean-interaction-during-el-nino-part-ii-northern-hemisphere-atmosphere','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6619612-midlatitude-atmosphere-ocean-interaction-during-el-nino-part-ii-northern-hemisphere-atmosphere"><span>Midlatitude atmosphere-ocean <span class="hlt">interaction</span> during El Nino. Part II. The northern hemisphere atmosphere</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alexander, M.A.</p> <p></p> <p>The influence of midlatitude <span class="hlt">air-sea</span> <span class="hlt">interaction</span> on the atmospheric anomalies associated with El Nino is investigated by coupling the Community Climate Model to a mixed-layer ocean model in the North Pacific. Prescribed El Nino conditions, warm <span class="hlt">sea</span> surface temperatures (SST) in the tropical Pacific, cause a southward displacement and strengthening of the Aleutian Low. This results in enhanced (reduced) advection of cold Asian <span class="hlt">air</span> over the west-central (northwest) Pacific and northward advection of warm <span class="hlt">air</span> over the eastern Pacific. Allowing <span class="hlt">air-sea</span> feedback in the North Pacific slightly modified the El Nino-induced near-surface wind, <span class="hlt">air</span> temperature, and precipitation anomalies. The anomalousmore » cyclonic circulation over the North Pacific is more concentric and shifted slightly to the east in the coupled simulations. <span class="hlt">Air-sea</span> feedback also damped the <span class="hlt">air</span> temperature anomalies over most of the North Pacific and reduced the precipitation rate above the cold SST anomaly that develops in the central Pacific. The simulated North Pacific SST anomalies and the resulting Northern Hemisphere atmospheric anomalies are roughly one-third as large as those related to the prescribed El Nino conditions in a composite of five cases. The composite geopotential height anomalies associated with changes in the North Pacific SSTs have an equivalent barotropic structure and range from -65 m to 50 m at the 200-mb level. Including <span class="hlt">air-sea</span> feedback in the North Pacific tended to damp the atmospheric anomalies caused by the prescribed El Nino conditions in the tropical Pacific. As a result, the zonally elongated geopotential height anomalies over the West Pacific are reduced and shifted to the east. However, the atmospheric changes associated with the North Pacific SST anomalies vary widely among the five cases.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1812551K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1812551K"><span>The origin of islands in the Kandalaksha Gulf of the White <span class="hlt">Sea</span>: joint work of internal and external geodynamic <span class="hlt">processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kosevich, Natalia; Romanovskaya, Maria</p> <p>2016-04-01</p> <p>The modern White <span class="hlt">Sea</span> basin is a part of the encounter zone between the East European Platform and of the Fennoscandian Shield. The Kandalaksha Gulf in its northwest lies on the Mesoarchean-Paleoproterozoic structure known as the White <span class="hlt">Sea</span> Shift Belt. In the Oligocene, it entered its neotectonic stage. Geologically, there are two structural storeys beneath the seafloor of the Kandalaksha Gulf: 1) crystalline bedrock of the Archean White <span class="hlt">Sea</span> complex; 2) a cover of sediment consisting of three layers: Riphean sandstones, terrigenous Vendian deposits; a cloak of Pleistocene and Holocene deposits and sediments - glacial drifts, transitional glaciomarine sediments and purely marine sediments. The modern White <span class="hlt">Sea</span> is a young basin formed just 10 to 12 ka. The geological and geomorphic history of the White <span class="hlt">Sea</span> region was very complicated, with various and often conflicting tectonic movements. Besides the postglacial isostatic rise of Scandinavia amounted to some 100 meters in the White <span class="hlt">Sea</span> area. The White <span class="hlt">Sea</span> has numerous islands that are very different in the geological-geomorphological and genetic senses because their origin is the result of <span class="hlt">interactions</span> between various endogenous and exogenous <span class="hlt">processes</span>. Large and detailed scale geological and morphological researches of the islands at the southern and northern coast of the Kandalaksha Gulf have been carried out. Landforms of the islands were produced by the joint effects of such <span class="hlt">processes</span> as (1) glacial-tectonic effects and marine wave action, (2) tidal and surge effects; (3) glacial-tectonic, marine, and gravity effects, and (4) glacial-tectonic, marine, lake, and biogenic effects (Kosevich, 2015). The relief structure of the islands has the following regularities: 1) structures of the northern coast islands are more often landforms that are composed of loose deposits with small sites of structural denudation residual outcrops; 2) the structures of the southern coast islands are typically combinations of loose</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AREPS..44...57H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AREPS..44...57H"><span>The Lakes and <span class="hlt">Seas</span> of Titan</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hayes, Alexander G.</p> <p>2016-06-01</p> <p>Analogous to Earth's water cycle, Titan's methane-based hydrologic cycle supports standing bodies of liquid and drives <span class="hlt">processes</span> that result in common morphologic features including dunes, channels, lakes, and <span class="hlt">seas</span>. Like lakes on Earth and early Mars, Titan's lakes and <span class="hlt">seas</span> preserve a record of its climate and surface evolution. Unlike on Earth, the volume of liquid exposed on Titan's surface is only a small fraction of the atmospheric reservoir. The volume and bulk composition of the <span class="hlt">seas</span> can constrain the age and nature of atmospheric methane, as well as its <span class="hlt">interaction</span> with surface reservoirs. Similarly, the morphology of lacustrine basins chronicles the history of the polar landscape over multiple temporal and spatial scales. The distribution of trace species, such as noble gases and higher-order hydrocarbons and nitriles, can address Titan's origin and the potential for both prebiotic and biotic <span class="hlt">processes</span>. Accordingly, Titan's lakes and <span class="hlt">seas</span> represent a compelling target for exploration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1981MsT..........4F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1981MsT..........4F"><span>The use of buoyancy to lift heavy objects from the <span class="hlt">sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiske, R. P.</p> <p>1981-06-01</p> <p>To recover oil from economically marginal offshore fields the re-use of production platforms has been considered. Re-use involves severing the jacket from the seabed, rotating the jacket to the horizontal and lifting it through the <span class="hlt">air/sea</span> interface in a configuration suitable for towing. Five systems are considered for use in the recovery <span class="hlt">process</span>. Two systems currently used for installation are found suitable for modification to recover jackets. They are the pontoon barge system and the self-floating tower. Major problems to be overcome in modifying for retraction are mating of the pontoon barge with the tower, developing a pile system which can be refurbished, and ensuring transverse stability on retraction through the <span class="hlt">air/sea</span> interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.int-res.com/abstracts/meps/v103/','USGSPUBS'); return false;" href="http://www.int-res.com/abstracts/meps/v103/"><span>Environmental variability facilitates coexistence within an alcid community at <span class="hlt">sea</span></span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Haney, J. Christopher; Schauer, Amy E.S.</p> <p>1994-01-01</p> <p>We examined coexistence at <span class="hlt">sea</span> among 7 taxa of diving, wing-propelled seabirds (Alcidae) in the genera Aethia, Uria, Cepphus, and Fratercula. Species abundances were measured simultaneously with a suite of environmental factors in the northern Bering <span class="hlt">Sea</span>, Alaska, USA; data from 260 adjacent and non-adjacent sites occupied by alcids foraging offshore near breeding colonies were then subjected to principal component analysis (PCA). We used PCA to group redundant environmental descriptors, to identify orthogonal axes for constructing a multi-dimensional niche, and to differentiate species associations within niche dimensions from species associations among niche dimensions. Decomposition of the correlation matrix for 22 environmental and 7 taxonomic variables with PCA gave 14 components (10 environmental and 4 species <span class="hlt">interactions</span>) that retained 90% of the original available variance. Alcid abundances (all species) were most strongly correlated with axes representing tidal stage, a time-area <span class="hlt">interaction</span> (due to sampling layout), water masses, and a temporal or intra-seasonal trend partially associated with weather changes. Axes representing tidal stage, 2 gradients in macro-habitat (Anadyr and Bering Shelf Water masses), the micro-habitat of the <span class="hlt">sea</span> surface, and an <span class="hlt">air-sea</span> <span class="hlt">interaction</span> were most important for detecting differences among species within niche dimensions. Contrary to assumptions of competition, none of 4 compound variables describing primarily species-<span class="hlt">interactions</span> gave strong evidence for negative associations between alcid taxa sharing similar body sizes and feeding requirements. This exploratory analysis supports the view that alcids may segregate along environmental gradients at <span class="hlt">sea</span>. But in this community, segregation was unrelated to foraging distance from colonies, in part because foraging 'substrate' was highly variable in structure, location, and area1 extent. We contend that coexistence within this seabird group is facilitated via expanded niche</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014JGRG..119.2276G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014JGRG..119.2276G"><span>Organic iodine in Antarctic <span class="hlt">sea</span> ice: A comparison between winter in the Weddell <span class="hlt">Sea</span> and summer in the Amundsen <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Granfors, Anna; Ahnoff, Martin; Mills, Matthew M.; Abrahamsson, Katarina</p> <p>2014-12-01</p> <p>Recent studies have recognized <span class="hlt">sea</span> ice as a source of reactive iodine to the Antarctic boundary layer. Volatile iodinated compounds (iodocarbons) are released from <span class="hlt">sea</span> ice, and they have been suggested to contribute to the formation of iodine oxide (IO), which takes part in tropospheric ozone destruction in the polar spring. We measured iodocarbons (CH3I, CH2ClI, CH2BrI, and CH2I2) in <span class="hlt">sea</span> ice, snow, brine, and <span class="hlt">air</span> during two expeditions to Antarctica, OSO 10/11 to the Amundsen <span class="hlt">Sea</span> during austral summer and ANT XXIX/6 to the Weddell <span class="hlt">Sea</span> in austral winter. These are the first reported measurements of iodocarbons from the Antarctic winter. Iodocarbons were enriched in <span class="hlt">sea</span> ice in relation to seawater in both summer and winter. During summer, the positive relationship to chlorophyll a biomass indicated a biological origin. We suggest that CH3I is formed biotically in <span class="hlt">sea</span> ice during both summer and winter. For CH2ClI, CH2BrI, and CH2I2, an additional abiotic source at the snow/ice interface in winter is suggested. Elevated <span class="hlt">air</span> concentrations of CH3I and CH2ClI during winter indicate that they are enriched in lower troposphere and may take part in the formation of IO at polar sunrise.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21A1356K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21A1356K"><span>Methanethiol Concentrations and <span class="hlt">Sea-Air</span> Fluxes in the Subarctic NE Pacific Ocean</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiene, R. P.; Williams, T. E.; Esson, K.; Tortell, P. D.; Dacey, J. W. H.</p> <p>2017-12-01</p> <p>Exchange of volatile organic sulfur from the ocean to the atmosphere impacts the global sulfur cycle and the climate system and is thought to occur mainly via the gas dimethylsulfide (DMS). DMS is produced during degradation of the abundant phytoplankton osmolyte dimethylsulfoniopropionate (DMSP) but bacteria can also convert dissolved DMSP into the sulfur gas methanethiol (MeSH). MeSH has been difficult to measure in seawater because of its high chemical and biological reactivity and, thus, information on MeSH concentrations, distribution and <span class="hlt">sea-air</span> fluxes is limited. We measured MeSH in the northeast subarctic Pacific Ocean in July 2016, along transects with strong phytoplankton abundance gradients. Water samples obtained with Niskin bottles were analyzed for MeSH by purge-and-trap gas chromatography. Depth profiles showed that MeSH concentrations were high near the surface and declined with depth. Surface waters (5 m depth) had an average MeSH concentration of 0.75 nM with concentrations reaching up to 3nM. MeSH concentrations were correlated (r = 0.47) with microbial turnover of dissolved DMSP which ranged up to 236 nM per day. MeSH was also correlated with total DMSP (r = 0.93) and dissolved DMS (r = 0.63), supporting the conclusion that DMSP was a major precursor of MeSH. Surface water MeSH:DMS concentration ratios averaged 0.19 and ranged up to 0.50 indicating that MeSH was a significant fraction of the volatile sulfur pool in surface waters. <span class="hlt">Sea-air</span> fluxes of MeSH averaged 15% of the combined DMS+MeSH flux, therefore MeSH contributed an important fraction of the sulfur emitted to the atmosphere from the subarctic NE Pacific Ocean.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51C2074S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51C2074S"><span>Land-<span class="hlt">Sea</span>-Atmosphere <span class="hlt">Interaction</span> and Their Association with Drought Conditions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, R. P.; Nath, A.</p> <p>2017-12-01</p> <p>Detailed analysis of satellite data for the period 2002-2016 provides an understanding of the land-<span class="hlt">sea</span> <span class="hlt">interaction</span> and its association with the vegetation conditions over the Indian continent. The Indian Ocean dipole (IOD) phenomenon is also considered to understand the atmospheric dynamics and meteorological parameters. GPS water vapor and meteorological parameters (relative humidity and water vapor) from the Indian Institute of Science (IISC) Bangalore have been considered for meteorological data for the period 2008-2016. Atmospheric parameters (water vapor, precipitation rate, land temperature, total ozone column) have been considered using through NASA Giovanni portal and GPS water vapor through SoumiNet data to study relation between <span class="hlt">Sea</span> Surface temperature (SST) from Indian Ocean, Bay of Bengal and Arabian <span class="hlt">Sea</span>. Our detailed analysis shows that SST has strong impact on the NDVI at different locations, the maximum impact of SST is observed at lower latitudes. The NDVI over the central and northern India (Indo-Gangetic plains (IGP) is not affected. The SST and NDVI shows high correlation in the central and northern parts, whereas the correlation is poor in the southern parts i.e. close to the ocean. The detailed analysis of NDVI data provides progression of the drought conditions especially in the southern parts of India and also shows impact of the El Nino during 2015-2016.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950044396&hterms=Shifting+identities&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DShifting%2Bidentities','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950044396&hterms=Shifting+identities&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DShifting%2Bidentities"><span><span class="hlt">Interactions</span> between gravity waves and cold <span class="hlt">air</span> outflows in a stably stratified uniform flow</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.</p> <p>1993-01-01</p> <p><span class="hlt">Interactions</span> between gravity waves and cold <span class="hlt">air</span> outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow <span class="hlt">interaction</span>, even though the Froude number is greater than a critical value. This is the result of the wave-outflow <span class="hlt">interaction</span> shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow <span class="hlt">interaction</span> between a traveling gravity wave and cold <span class="hlt">air</span> outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold <span class="hlt">air</span>, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold <span class="hlt">air</span> outflows lose their own identity and merge into a single, stationary, cold <span class="hlt">air</span> outflow region. Gravity waves tend to suppress this new stationary cold <span class="hlt">air</span> outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow <span class="hlt">interaction</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA598983','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA598983"><span>Thinking About CAS without Thinking about CAS Doctrine: Selected <span class="hlt">Interactions</span> of Institutional <span class="hlt">Processes</span> within the Close <span class="hlt">Air</span> Support Mission</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-12-13</p> <p>situation; (2) the valuation actors assign to states of the world and to actions; (3) the way actors acquire, <span class="hlt">process</span>, retain, and use knowledge...situation based on previous experiences or training, or even personal views about the conflict. The valuation actors assign to states of the world and...include one hour on a dedicated <span class="hlt">air</span>-to-ground training range, such as the Superior Valley range complex near Naval <span class="hlt">Air</span> Weapons Station China Lake, 42</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900033480&hterms=Ross+1986&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DRoss%2B1986','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900033480&hterms=Ross+1986&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DRoss%2B1986"><span><span class="hlt">Sea</span> ice and oceanic <span class="hlt">processes</span> on the Ross <span class="hlt">Sea</span> continental shelf</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jacobs, S. S.; Comiso, J. C.</p> <p>1989-01-01</p> <p>The spatial and temporal variability of Antarctic <span class="hlt">sea</span> ice concentrations on the Ross <span class="hlt">Sea</span> continental shelf have been investigated in relation to oceanic and atmospheric forcing. <span class="hlt">Sea</span> ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross <span class="hlt">Sea</span> polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25046608','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25046608"><span>Flux measurements in the surface Marine Atmospheric Boundary Layer over the Aegean <span class="hlt">Sea</span>, Greece.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kostopoulos, V E; Helmis, C G</p> <p>2014-10-01</p> <p>Micro-meteorological measurements within the surface Marine Atmospheric Boundary Layer took place at the shoreline of two islands at northern and south-eastern Aegean <span class="hlt">Sea</span> of Greece. The primary goal of these experimental campaigns was to study the momentum, heat and humidity fluxes over this part of the north-eastern Mediterranean <span class="hlt">Sea</span>, characterized by limited spatial and temporal scales which could affect these exchanges at the <span class="hlt">air-sea</span> interface. The great majority of the obtained records from both sites gave higher values up to factor of two, compared with the estimations from the most widely used parametric formulas that came mostly from measurements over open <span class="hlt">seas</span> and oceans. Friction velocity values from both campaigns varied within the same range and presented strong correlation with the wind speed at 10 m height while the calculated drag coefficient values at the same height for both sites were found to be constant in relation with the wind speed. Using eddy correlation analysis, the heat flux values were calculated (virtual heat fluxes varied from -60 to 40 W/m(2)) and it was found that they are affected by the limited spatial and temporal scales of the responding <span class="hlt">air-sea</span> <span class="hlt">interaction</span> mechanism. Similarly, the humidity fluxes appeared to be strongly influenced by the observed intense spatial heterogeneity of the <span class="hlt">sea</span> surface temperature. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014BGeo...11.2827F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014BGeo...11.2827F"><span>Synoptic evaluation of carbon cycling in the Beaufort <span class="hlt">Sea</span> during summer: contrasting river inputs, ecosystem metabolism and <span class="hlt">air-sea</span> CO2 fluxes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Forest, A.; Coupel, P.; Else, B.; Nahavandian, S.; Lansard, B.; Raimbault, P.; Papakyriakou, T.; Gratton, Y.; Fortier, L.; Tremblay, J.-É.; Babin, M.</p> <p>2014-05-01</p> <p>The accelerated decline in Arctic <span class="hlt">sea</span> ice and an ongoing trend toward more energetic atmospheric and oceanic forcings are modifying carbon cycling in the Arctic Ocean. A critical issue is to understand how net community production (NCP; the balance between gross primary production and community respiration) responds to changes and modulates <span class="hlt">air-sea</span> CO2 fluxes. Using data collected as part of the ArcticNet-Malina 2009 expedition in the southeastern Beaufort <span class="hlt">Sea</span> (Arctic Ocean), we synthesize information on <span class="hlt">sea</span> ice, wind, river, water column properties, metabolism of the planktonic food web, organic carbon fluxes and pools, as well as <span class="hlt">air-sea</span> CO2 exchange, with the aim of documenting the ecosystem response to environmental changes. Data were analyzed to develop a non-steady-state carbon budget and an assessment of NCP against <span class="hlt">air-sea</span> CO2 fluxes. During the field campaign, the mean wind field was a mild upwelling-favorable wind (~ 5 km h-1) from the NE. A decaying ice cover (< 80% concentration) was observed beyond the shelf, the latter being fully exposed to the atmosphere. We detected some areas where the surface mixed layer was net autotrophic owing to high rates of primary production (PP), but the ecosystem was overall net heterotrophic. The region acted nonetheless as a sink for atmospheric CO2, with an uptake rate of -2.0 ± 3.3 mmol C m-2 d-1 (mean ± standard deviation associated with spatial variability). We attribute this discrepancy to (1) elevated PP rates (> 600 mg C m-2 d-1) over the shelf prior to our survey, (2) freshwater dilution by river runoff and ice melt, and (3) the presence of cold surface waters offshore. Only the Mackenzie River delta and localized shelf areas directly affected by upwelling were identified as substantial sources of CO2 to the atmosphere (> 10 mmol C m-2 d-1). Daily PP rates were generally < 100 mg C m-2 d-1 and cumulated to a total PP of ~ 437.6 × 103 t C for the region over a 35-day period. This amount was about twice the</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.7918K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.7918K"><span>Groundwater-saline lakes <span class="hlt">interaction</span> - The contribution of saline groundwater circulation to solute budget of saline lakes: a lesson from the Dead <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kiro, Yael; Weinstein, Yishai; Starinsky, Abraham; Yechieli, Yoseph</p> <p>2013-04-01</p> <p>Saline lakes act as base level for both surface water and groundwater. Thus, a change in lake levels is expected to result in changes in the hydrogeological system in its vicinity, exhibited in groundwater levels, location of the fresh-saline water interface, sub-lacustrine groundwater discharge (SGD) and saline water circulation. All these <span class="hlt">processes</span> were observed in the declining Dead <span class="hlt">Sea</span> system, whose water level dropped by ~35 meters in the last 50 years. This work focuses mainly on the effect of circulation of Dead <span class="hlt">Sea</span> water in the aquifer, which continues even in this very rapid base level drop. In general, seawater circulation in coastal aquifers is now recognized as a major <span class="hlt">process</span> affecting trace element mass balances in coastal areas. Estimates of submarine groundwater discharge (SGD) vary over several orders of magnitude (1-1000000 m3/yr per meter shoreline). These estimates are sensitive to fresh-saline SGD ratios and to the temporal and spatial scales of the circulation. The Dead <span class="hlt">Sea</span> system is an excellent natural field lab for studying seawater-groundwater <span class="hlt">interaction</span> and large-scale circulation due to the absence of tides and to the minor role played by waves. During Dead <span class="hlt">Sea</span> water circulation in the aquifer several geochemical reactions occur, ranging from short-term adsorption-desorption reactions and up to long-term precipitation and dissolution reactions. These <span class="hlt">processes</span> affect the trace element distribution in the saline groundwater. Barite and celestine, which are supersaturated in the lake water, precipitate during circulation in the aquifer, reducing barium (from 5 to 1.5 mg/L), strontium (from 350 to 300 mg/L) and the long-lived 226Ra (from 145 to 60 dpm/L) in the saline groundwater. Redox-controlled reactions cause a decrease in uranium from 2.4 to 0.1 μg/L, and an increase in iron from 1 to 13 mg/L. 228Ra (t1/2=5.75 yr) activity in the Dead <span class="hlt">Sea</span> is ~1 dpm/L and increase gradually as the saline water flows further inland until reaching</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AGUFM.B13A0211L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AGUFM.B13A0211L"><span>A new InterRidge Working Group : Biogeochemical <span class="hlt">Interactions</span> at Deep-<span class="hlt">sea</span> Vents</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Le Bris, N.; Boetius, A.; Tivey, M. K.; Luther, G. W.; German, C. R.; Wenzhoefer, F.; Charlou, J.; Seyfried, W. E.; Fortin, D.; Ferris, G.; Takai, K.; Baross, J. A.</p> <p>2004-12-01</p> <p>A new Working Group on `Biogeochemical <span class="hlt">Interactions</span> at deep-<span class="hlt">sea</span> vents' has been created at the initiative of the InterRidge programme. This interdisciplinary group comprises experts in chemistry, geochemistry, biogeochemistry, and microbial ecology addressing questions of biogeochemical <span class="hlt">interactions</span> in different MOR and BAB environments. The past decade has raised major issues concerning the <span class="hlt">interactions</span> between biotic and abiotic compartments of deep-<span class="hlt">sea</span> hydrothermal environments and the role they play in the microbial turnover of C, S, N, Fe, fluxes from the geosphere to hydrosphere, the formation of biominerals, the functioning of vent ecosystems and life in extreme environments, the deep-biosphere, and the origin of life. Recent multidisciplinary studies have provided some new insights to these issues. Results of some of these studies will be presented here. They point out the variability and complexity of geobiological systems at vents in space and time and highlight the need for <span class="hlt">interactions</span> across the fields of chemistry, geochemistry, biogeochemistry, and microbial ecology of hydrothermal environments. Limitation for advances in these fields include the availability of seafloor observation/experimentation time, and of underwater instrumentation allowing quantitative, in situ measurements of chemical and biological fluxes, as well as physical and chemical sensing and sampling along small scale gradients and repeated observation of study sites. The aim of this new Working Group is to strengthen the scientific exchange among chemists, geochemists, biogeochemists and microbial ecologists to favor collaboration in field studies including intercomparison of methods and planning of integrated experiments. The Biogeochemical <span class="hlt">Interactions</span> working group will also foster development of underwater instrumentation for in situ biogeochemical measurements and microscale sampling, and promote exchange and collaboration with students and scientists of neighboring</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.147..200O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.147..200O"><span>Determination of temperature dependent Henry's law constants of polychlorinated naphthalenes: Application to <span class="hlt">air-sea</span> exchange in Izmir Bay, Turkey</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Odabasi, Mustafa; Adali, Mutlu</p> <p>2016-12-01</p> <p>The Henry's law constant (H) is a crucial variable to investigate the <span class="hlt">air</span>-water exchange of persistent organic pollutants. H values for 32 polychlorinated naphthalene (PCN) congeners were measured using an inert gas-stripping technique at five temperatures ranging between 5 and 35 °C. H values in deionized water (at 25 °C) varied between 0.28 ± 0.08 Pa m3 mol-1 (PCN-73) and 18.01 ± 0.69 Pa m3 mol-1 (PCN-42). The agreement between the measured and estimated H values from the octanol-water and octanol-<span class="hlt">air</span> partition coefficients was good (measured/estimated ratio = 1.00 ± 0.41, average ± SD). The calculated phase change enthalpies (ΔHH) were within the interval previously determined for other several semivolatile organic compounds (42.0-106.4 kJ mol-1). Measured H values, paired atmospheric and aqueous concentrations and meteorological variables were also used to reveal the level and direction of <span class="hlt">air-sea</span> exchange fluxes of PCNs at the coast of Izmir Bay, Turkey. The net PCN <span class="hlt">air-sea</span> exchange flux varied from -0.55 (volatilization, PCN-24/14) to 2.05 (deposition, PCN-23) ng m-2 day-1. PCN-19, PCN-24/14, PCN-42, and PCN-33/34/37 were mainly volatilized from seawater while the remaining congeners were mainly deposited. The overall number of the cases showing deposition was higher (67.9%) compared to volatilization (21.4%) and near equilibrium (10.7%).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A32E..01M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A32E..01M"><span>Propagation of Intra-Seasonal Tropical Oscillations (PISTON)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moum, J. N.</p> <p>2017-12-01</p> <p>During monsoon season over the South China <span class="hlt">Sea</span> and Philippines, weather varies on the subseasonal time scale. Disturbances of the "boreal summer intraseasonal oscillation" (BSISO) move north and east across the region over periods of weeks. These disturbances are strongly conditioned by the complex geography of the region. The diurnal cycle in convection over islands and adjacent coastal <span class="hlt">seas</span> is strong. <span class="hlt">Air-sea</span> <span class="hlt">interaction</span> is modulated by ocean stratification and local circulation patterns that are themselves complex and diurnally varying. The multiple pathways and space-time scales in the regional ocean-atmosphere-land system make prediction on subseasonal to seasonal time scales challenging. The PISTON field campaign targets the west coast of Luzon in August/September 2018. It includes ship-based, moored and land-based measurements, a significant modeling effort and coordinates with the Philippine SALICA program (<span class="hlt">Sea</span> <span class="hlt">Air</span> Land <span class="hlt">Interactions</span> in the Context of Archipelagos) and the aircraft-based, NASA-funded CAMP2EX campaign (Cloud and Aerosol Monsoonal <span class="hlt">Processes</span>-Philippines Experiment). The diurnal cycle and its <span class="hlt">interaction</span> with the BSISO are primary targets for PISTON. Key questions are: how heat is stored and released in the upper ocean on intraseasonal time scales; how that heat storage <span class="hlt">interacts</span> with atmospheric convection; and what role it plays in BSISO maintenance and propagation. Key <span class="hlt">processes</span> include land-<span class="hlt">sea</span> breezes, orographic influence on convection, river discharge to coastal oceans, gravity waves, diurnal warm layers, internal tides, and a buoyancy-driven northward coastal current. As intraseasonal disturbances approach the region, the presence of islands, with their low surface heat capacity, mountains, inhomogeneous distribution of urban/vegetation/soil, and strong diurnal cycle disrupts the <span class="hlt">air-sea</span> heat exchange that sustains the BSISO over the ocean, confounding prediction models in which these <span class="hlt">processes</span> are inadequately represented. Along with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.T31A1786K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.T31A1786K"><span>Faulting, Seismicity and Stress <span class="hlt">Interaction</span> in the Salton <span class="hlt">Sea</span> Region of Southern California</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.</p> <p>2009-12-01</p> <p>The Salton <span class="hlt">Sea</span> region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal <span class="hlt">interaction</span> of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton <span class="hlt">Sea</span> transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton <span class="hlt">Sea</span> reveal that the majority of faults under the southern Salton <span class="hlt">Sea</span> trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton <span class="hlt">Sea</span>. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between <span class="hlt">processes</span> at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton <span class="hlt">Sea</span> can modulate the stress field in the BSZ and along the SAF. These tests include</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002GMS...127..141S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002GMS...127..141S"><span>A model of <span class="hlt">air-sea</span> gas exchange incorporating the physics of the turbulent boundary layer and the properties of the <span class="hlt">sea</span> surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soloviev, Alexander; Schluessel, Peter</p> <p></p> <p>The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the <span class="hlt">air-sea</span> gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the <span class="hlt">air-sea</span> gas exchange can be extended to the global scale, using remote sensing techniques.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C34A..08G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C34A..08G"><span>Seasonal thickness changes of Arctic <span class="hlt">sea</span> ice north of Svalbard and implications for satellite remote sensing, ecosystem, and environmental management</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gerland, S.; Rösel, A.; King, J.; Spreen, G.; Divine, D.; Eltoft, T.; Gallet, J. C.; Hudson, S. R.; Itkin, P.; Krumpen, T.; Liston, G. E.; Merkouriadi, I.; Negrel, J.; Nicolaus, M.; Polashenski, C.; Assmy, P.; Barber, D. G.; Duarte, P.; Doulgeris, A. P.; Haas, C.; Hughes, N.; Johansson, M.; Meier, W.; Perovich, D. K.; Provost, C.; Richter-Menge, J.; Skourup, H.; Wagner, P.; Wilkinson, J.; Granskog, M. A.; Steen, H.</p> <p>2016-12-01</p> <p><span class="hlt">Sea</span>-ice thickness is a crucial parameter to consider when assessing the status of Arctic <span class="hlt">sea</span> ice, whether for environmental management, monitoring projects, or regional or pan-arctic assessments. Modern satellite remote sensing techniques allow us to monitor ice extent and to estimate <span class="hlt">sea</span>-ice thickness changes; but accurate quantifications of <span class="hlt">sea</span>-ice thickness distribution rely on in situ and airborne surveys. From January to June 2015, an international expedition (N-ICE2015) took place in the Arctic Ocean north of Svalbard, with the Norwegian research vessel RV Lance frozen into drifting <span class="hlt">sea</span> ice. In total, four drifts, with four different floes were made during that time. <span class="hlt">Sea</span>-ice and snow thickness measurements were conducted on all main ice types present in the region, first year ice, multiyear ice, and young ice. Measurement methods included ground and helicopter based electromagnetic surveys, drillings, hot-wire installations, snow-sonde transects, snow stakes, and ice mass balance and snow buoys. Ice thickness distributions revealed modal thicknesses in spring between 1.6 and 1.7 m, which is lower than reported for the region from comparable studies in 2009 (2.4 m) and 2011 (1.8 m). Knowledge about the ice thickness distribution in a region is crucial to the understanding of climate <span class="hlt">processes</span>, and also relevant to other disciplines. <span class="hlt">Sea</span>-ice thickness data collected during N-ICE2015 can also give us insights into how ice and snow thicknesses affect ecosystem <span class="hlt">processes</span>. In this presentation, we will explore the influence of snow cover and ocean properties on ice thickness, and the role of <span class="hlt">sea</span>-ice thickness in <span class="hlt">air</span>-ice-ocean <span class="hlt">interactions</span>. We will also demonstrate how information about ice thickness aids classification of different <span class="hlt">sea</span> ice types from SAR satellite remote sensing, which has real-world applications for shipping and ice forecasting, and how <span class="hlt">sea</span> ice thickness data contributes to climate assessments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27901618','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27901618"><span>Genome-Wide <span class="hlt">Interaction</span> Analysis of <span class="hlt">Air</span> Pollution Exposure and Childhood Asthma with Functional Follow-up.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gref, Anna; Merid, Simon K; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bossé, Yohan; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S; Korek, Michal; Kozyrskyj, Anita L; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M T; van den Berge, Maarten; Vonk, Judith M; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran; Melén, Erik</p> <p>2017-05-15</p> <p>The evidence supporting an association between traffic-related <span class="hlt">air</span> pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. To identify gene-environment <span class="hlt">interaction</span> effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and <span class="hlt">air</span> pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. We used land use regression models to estimate individual <span class="hlt">air</span> pollution exposure (represented by outdoor NO 2 levels) at the birth address and performed a genome-wide <span class="hlt">interaction</span> study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for <span class="hlt">interaction</span> in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among <span class="hlt">air</span> pollution exposure, methylation, and transcriptomic patterns. In the European cohorts, 186 SNPs had an <span class="hlt">interaction</span> P < 1 × 10 -4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an <span class="hlt">interaction</span> P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the <span class="hlt">interaction</span> effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10 -4 ). One other SNP with P < 0.05 for <span class="hlt">interaction</span> in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10 -17 ). <span class="hlt">Air</span> pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Our results indicated that gene-environment <span class="hlt">interactions</span> are important for asthma development and provided supportive evidence for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/1130204-interaction-between-marine-boundary-layer-cellular-cloudiness-surface-heat-fluxes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1130204-interaction-between-marine-boundary-layer-cellular-cloudiness-surface-heat-fluxes"><span>On the <span class="hlt">Interaction</span> between Marine Boundary Layer Cellular Cloudiness and Surface Heat Fluxes</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kazil, J.; Feingold, G.; Wang, Hailong</p> <p>2014-01-02</p> <p>The <span class="hlt">interaction</span> between marine boundary layer cellular cloudiness and surface uxes of sensible and latent heat is investigated. The investigation focuses on the non-precipitating closed-cell state and the precipitating open-cell state at low geostrophic wind speed. The Advanced Research WRF model is used to conduct cloud-system-resolving simulations with <span class="hlt">interactive</span> surface fluxes of sensible heat, latent heat, and of <span class="hlt">sea</span> salt aerosol, and with a detailed representation of the <span class="hlt">interaction</span> between aerosol particles and clouds. The mechanisms responsible for the temporal evolution and spatial distribution of the surface heat fluxes in the closed- and open-cell state are investigated and explained. Itmore » is found that the horizontal spatial structure of the closed-cell state determines, by entrainment of dry free tropospheric <span class="hlt">air</span>, the spatial distribution of surface <span class="hlt">air</span> temperature and water vapor, and, to a lesser degree, of the surface sensible and latent heat flux. The synchronized dynamics of the the open-cell state drives oscillations in surface <span class="hlt">air</span> temperature, water vapor, and in the surface fluxes of sensible and latent heat, and of <span class="hlt">sea</span> salt aerosol. Open-cell cloud formation, cloud optical depth and liquid water path, and cloud and rain water path are identified as good predictors of the spatial distribution of surface <span class="hlt">air</span> temperature and sensible heat flux, but not of surface water vapor and latent heat flux. It is shown that by enhancing the surface sensible heat flux, the open-cell state creates conditions by which it is maintained. While the open-cell state under consideration is not depleted in aerosol, and is insensitive to variations in <span class="hlt">sea</span>-salt fluxes, it also enhances the <span class="hlt">sea</span>-salt flux relative to the closed-cell state. In aerosol-depleted conditions, this enhancement may replenish the aerosol needed for cloud formation, and hence contribute to the perpetuation of the open-cell state as well. Spatial homogenization of the surface fluxes is found</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.C51A0654S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.C51A0654S"><span>Insights into ice-ocean <span class="hlt">interactions</span> and fjord circulation from fjord <span class="hlt">sea</span> surface temperatures at the Petermann Glacier, Greenland</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snow, T.; Shepherd, B.; Abdalati, W.; Scambos, T. A.</p> <p>2016-12-01</p> <p>Dynamic <span class="hlt">processes</span> at marine-terminating outlet glaciers are responsible for over one-third of Greenland Ice Sheet (GIS) mass loss. Enhanced intrusion of warm ocean waters at the termini of these glaciers has contributed to elevated rates of ice thinning and terminus retreat over the last two decades. In situ oceanographic measurements and modeling studies show that basal melting of glaciers and subglacial discharge can cause buoyant plumes of water to rise to the fjord surface and influence fjord circulation characteristics. The temperature of these surface waters holds clues about ice-ocean <span class="hlt">interactions</span> and small-scale circulation features along the glacier terminus that could contribute to outlet glacier mass loss, but the magnitude and duration of temperature variability remains uncertain. Satellite remote sensing has proven very effectiver for acquiring <span class="hlt">sea</span> surface temperatuer (SST) data from these remote regions on a long-term, consistent basis and shows promise for identifying temperature anomalies at the ice front. However, these data sets have not been widely utilized to date. Here, we use satellite-derived <span class="hlt">sea</span> surface temperatures to identify fjord surface outflow characteristics from 2000 to present at the Petermann Glacier, which drains 4% of the GIS and is experiencing 80% of its mass loss from basal melt. We find a general SST warming trend that coincides with early <span class="hlt">sea</span> ice breakup and precedes two major calving events and ice speedup that began in 2010. Persistent SST anomalies along the terminus provide evidence of warm outflow that is consistent with buoyant plume model predictions. However, the anomalies are not evident early in the time series, suggesting that ocean inflow and ice-ocean <span class="hlt">interactions</span> have experienced a regime shift since 2000. Our results provide valuable insight into fjord circulation patterns and the forcing mechanisms that contribute to terminus retreat. Comparing our results to ongoing modeling experiments, time series from</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22612682-fluctuation-instability-dirac-sea-quark-models-strong-interactions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22612682-fluctuation-instability-dirac-sea-quark-models-strong-interactions"><span>Fluctuation instability of the Dirac <span class="hlt">Sea</span> in quark models of strong <span class="hlt">interactions</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zinovjev, G. M., E-mail: Gennady.Zinovjev@cern.ch; Molodtsov, S. V.</p> <p></p> <p>A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac <span class="hlt">sea</span> (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac <span class="hlt">sea</span>, a neutral ensemble, a color superconductor, andmore » a Bardeen–Cooper–Schrieffer (BCS) state, was performed. In the presence of color quark <span class="hlt">interaction</span>, a BCS state is unambiguously chosen as the ground state of the quark ensemble.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PAN....79..278Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PAN....79..278Z"><span>Fluctuation instability of the Dirac <span class="hlt">Sea</span> in quark models of strong <span class="hlt">interactions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zinovjev, G. M.; Molodtsov, S. V.</p> <p>2016-03-01</p> <p>A number of exactly integrable (quark) models of quantum field theory that feature an infinite correlation length are considered. An instability of the standard vacuum quark ensemble, a Dirac <span class="hlt">sea</span> (in spacetimes of dimension higher than three), is highlighted. It is due to a strong ground-state degeneracy, which, in turn, stems from a special character of the energy distribution. In the case where the momentumcutoff parameter tends to infinity, this distribution becomes infinitely narrow and leads to large (unlimited) fluctuations. A comparison of the results for various vacuum ensembles, including a Dirac <span class="hlt">sea</span>, a neutral ensemble, a color superconductor, and a Bardeen-Cooper-Schrieffer (BCS) state, was performed. In the presence of color quark <span class="hlt">interaction</span>, a BCS state is unambiguously chosen as the ground state of the quark ensemble.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007APS..DPPTI2003H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007APS..DPPTI2003H"><span>Plasma Shield for In-<span class="hlt">Air</span> and Under-Water Beam <span class="hlt">Processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hershcovitch, Ady</p> <p>2007-11-01</p> <p>As the name suggests, the Plasma Shield is designed to chemically and thermally shield a target object by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of <span class="hlt">interaction</span> from atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and the target object. The arc, which is composed of a pure noble gas (chemically inert), engulfs the <span class="hlt">interaction</span> region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. In current art, many industrial <span class="hlt">processes</span> like ion material modification by ion implantation, dry etching, and micro-fabrication, as well as, electron beam <span class="hlt">processing</span>, like electron beam machining and electron beam melting is performed exclusively in vacuum, since electron guns, ion guns, their extractors and accelerators must be kept at a reasonably high vacuum, and since chemical <span class="hlt">interactions</span> with atmospheric gases adversely affect numerous <span class="hlt">processes</span>. Various <span class="hlt">processes</span> involving electron ion and laser beams can, with the Plasma Shield be performed in practically any environment. For example, electron beam and laser welding can be performed under water, as well as, in situ repair of ship and nuclear reactor components. The plasma shield results in both thermal (since the plasma is hotter than the environment) and chemical shielding. The latter feature brings about in-vacuum <span class="hlt">process</span> purity out of vacuum, and the thermal shielding aspect results in higher production rates. Recently plasma shielded electron beam welding experiments were performed resulting in the expected high quality in-<span class="hlt">air</span> electron beam welding. Principle of operation and experimental results are to be discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcDyn..67.1553S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcDyn..67.1553S"><span>On the <span class="hlt">interaction</span> between ocean surface waves and seamounts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sosa, Jeison; Cavaleri, Luigi; Portilla-Yandún, Jesús</p> <p>2017-12-01</p> <p>Of the many topographic features, more specifically seamounts, that are ubiquitous in the ocean floor, we focus our attention on those with relatively shallow summits that can <span class="hlt">interact</span> with wind-generated surface waves. Among these, especially relatively long waves crossing the oceans (swells) and stormy <span class="hlt">seas</span> are able to affect the water column up to a considerable depth and therefore <span class="hlt">interact</span> with these deep-<span class="hlt">sea</span> features. We quantify this <span class="hlt">interaction</span> through numerical experiments using a numerical wave model (SWAN), in which a simply shaped seamount is exposed to waves of different length. The results show a strong <span class="hlt">interaction</span> that leads to significant changes in the wave field, creating wake zones and regions of large wave amplification. This is then exemplified in a practical case where we analyze the <span class="hlt">interaction</span> of more realistic <span class="hlt">sea</span> conditions with a very shallow rock in the Yellow <span class="hlt">Sea</span>. Potentially important for navigation and erosion <span class="hlt">processes</span>, mutatis mutandis, these results are also indicative of possible <span class="hlt">interactions</span> with emerged islands and sand banks in shelf <span class="hlt">seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016IJSEd..38.1923C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016IJSEd..38.1923C"><span>Understanding metallic bonding: Structure, <span class="hlt">process</span> and <span class="hlt">interaction</span> by Rasch analysis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Maurice M. W.; Oon, Pey-Tee</p> <p>2016-08-01</p> <p>This paper reports the results of a survey of 3006 Year 10-12 students on their understandings of metallic bonding. The instrument was developed based on Chi's ontological categories of scientific concepts and students' understanding of metallic bonding as reported in the literature. The instrument has two parts. Part one probed into students' understanding of metallic bonding as (a) a submicro structure of metals, (b) a <span class="hlt">process</span> in which individual metal atoms lose their outermost shell electrons to form a '<span class="hlt">sea</span> of electrons' and octet metal cations or (c) an all-directional electrostatic force between delocalized electrons and metal cations, that is, an <span class="hlt">interaction</span>. Part two assessed students' explanation of malleability of metals, for example (a) as a submicro structural rearrangement of metal atoms/cations or (b) based on all-directional electrostatic force. The instrument was validated by the Rasch Model. Psychometric assessment showed that the instrument possessed reasonably good properties of measurement. Results revealed that it was reliable and valid for measuring students' understanding of metallic bonding. Analysis revealed that the structure, <span class="hlt">process</span> and <span class="hlt">interaction</span> understandings were unidimensional and in an increasing order of difficulty. Implications for the teaching of metallic bonding, particular through the use of diagrams, critiques and model-based learning, are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A43G0392S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A43G0392S"><span>Oil Palm expansion over Southeast Asia: land use change and <span class="hlt">air</span> quality</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Silva, S. J.; Heald, C. L.; Geddes, J.; Marlier, M. E.; Austin, K.; Kasibhatla, P. S.</p> <p>2015-12-01</p> <p>Over recent decades oil palm plantations have rapidly expanded across Southeast Asia (<span class="hlt">SEA</span>). Much of this expansion has come at the expense of natural forests and grasslands. Aircraft measurements from a 2008 campaign, OP3, found that oil palm plantations emit as much as 7 times more isoprene than nearby natural forests. Furthermore, <span class="hlt">SEA</span> is a rapidly developing region, with increasing urban population, and growing <span class="hlt">air</span> quality concerns. Thus, <span class="hlt">SEA</span> represents an ideal case study to examine the impacts of land use change on <span class="hlt">air</span> quality in the region, and whether those changes can be detected from satellite observations of atmospheric composition. We investigate the impacts of historical and future oil palm expansion in <span class="hlt">SEA</span> using satellite data, high-resolution land maps, and the chemical transport model GEOS-Chem. We examine the impact of palm plantations on surface-atmosphere <span class="hlt">processes</span> (dry deposition, biogenic emissions). We show the sensitivity of <span class="hlt">air</span> quality to current and future oil palm expansion scenarios, and discuss the limitations of current satellite measurements in capturing these changes. Our results indicate that while the impact of oil palm expansion on <span class="hlt">air</span> quality can be significant, the retrieval error and sensitivity of the satellite measurements limit our ability to observe these impacts from space.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JGRD..123...22I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JGRD..123...22I"><span>Meteorological and Land Surface Properties Impacting <span class="hlt">Sea</span> Breeze Extent and Aerosol Distribution in a Dry Environment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Igel, Adele L.; van den Heever, Susan C.; Johnson, Jill S.</p> <p>2018-01-01</p> <p>The properties of <span class="hlt">sea</span> breeze circulations are influenced by a variety of meteorological and geophysical factors that <span class="hlt">interact</span> with one another. These circulations can redistribute aerosol particles and pollution and therefore can play an important role in local <span class="hlt">air</span> quality, as well as impact remote sensing. In this study, we select 11 factors that have the potential to impact either the <span class="hlt">sea</span> breeze circulation properties and/or the spatial distribution of aerosols. Simulations are run to identify which of the 11 factors have the largest influence on the <span class="hlt">sea</span> breeze properties and aerosol concentrations and to subsequently understand the mean response of these variables to the selected factors. All simulations are designed to be representative of conditions in coastal sub tropical environments and are thus relatively dry, as such they do not support deep convection associated with the <span class="hlt">sea</span> breeze front. For this dry <span class="hlt">sea</span> breeze regime, we find that the background wind speed was the most influential factor for the <span class="hlt">sea</span> breeze propagation, with the soil saturation fraction also being important. For the spatial aerosol distribution, the most important factors were the soil moisture, <span class="hlt">sea-air</span> temperature difference, and the initial boundary layer height. The importance of these factors seems to be strongly tied to the development of the surface-based mixed layer both ahead of and behind the <span class="hlt">sea</span> breeze front. This study highlights potential avenues for further research regarding <span class="hlt">sea</span> breeze dynamics and the impact of <span class="hlt">sea</span> breeze circulations on pollution dispersion and remote sensing algorithms.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFM.A33B0143S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFM.A33B0143S"><span>Influence of <span class="hlt">sea</span>-ice coverage, <span class="hlt">sea</span>-surface temperatures and latent heat release on baroclinic instability of an Arctic cyclone</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Semenov, A.; Zhang, X.</p> <p>2012-12-01</p> <p>Arctic <span class="hlt">sea</span> ice has shrunk drastically and Arctic storm activity has intensified over last decades. To improve understanding <span class="hlt">air-ice-sea</span> <span class="hlt">interactions</span> in the context of storm activity, we conducted a modeling study of a selected intense storm that invaded and was persistent for prolonged time in the central Arctic Ocean during March 16-22, 2011. A series of control and sensitivity simulations were carried out by employing the Weather Research and Forecasting (WRF) model, which was configured using two nested domains at a resolution of 10 km for the inner domain and 30 km for the outer domain. The control simulations well captured the cyclone genesis, regeneration, track and intensity. Diagnostic analysis and a comparison between the and sensitivity experiments suggest that the strong intensity, regeneration, and long-lasting duration of the cyclone were driven by unusually sustained baroclinic instability, which was resulted due to (1) anomalously reduced <span class="hlt">sea</span>-ice coverage and strong advection of heat, moisture and vorticity from the North Atlantic; and (2) a release of latent heat due to condensation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS33A1448Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS33A1448Z"><span>Seasonal variation of <span class="hlt">air-sea</span> CO2 fluxes in the Terra Nova Bay of the Ross <span class="hlt">Sea</span>, Antarctica, based on year-round pCO2 observations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zappa, C. J.; Rhee, T. S.; Kwon, Y. S.; Choi, T.; Yang, E. J.; Kim, J.</p> <p>2017-12-01</p> <p>The polar oceans are rapidly changing in response to climate variability. In particular, augmented inflow of glacial melt water and shrinking <span class="hlt">sea</span>-ice extent impacts the polar coastal oceans, which may in turn shift the biogeochemistry into an unprecedented paradigm not experienced previously. Nonetheless, most research in the polar oceans is limited to the summer season. Here, we present the first direct observations of ocean and atmospheric pCO2 measured near the coast of Terra Nova Bay in the Ross <span class="hlt">Sea</span>, Antarctica, ongoing since February, 2015 at Jang Bogo Station. The coastal area is covered by landfast <span class="hlt">sea</span>-ice from spring to fall while continually exposed to the atmosphere during summer season only. The pCO2 in seawater swung from 120 matm in February to 425 matm in early October. Although <span class="hlt">sea</span>-ice still covers the coastal area, pCO2 already started decreasing after reaching the peak in October. In November, the pCO2 suddenly dropped as much as 100 matm in a week. This decrease of pCO2 continued until late February when the <span class="hlt">sea</span>-ice concentration was minimal. With growing <span class="hlt">sea</span> ice, the pCO2 increased logarithmically reaching the atmospheric concentration in June/July, depending on the year, and continued to increase until October. Daily mean <span class="hlt">air-sea</span> CO2 flux in the coastal area widely varied from -70 mmol m-2 d-1 to 20 mmol m-2 d-1. Based on these observations of pCO2 in Terra Nova Bay, the annual uptake of CO2 is 8 g C m-2, estimated using the fraction of <span class="hlt">sea</span>-ice concentration estimated from AMSR2 microwave emission imagery. Extrapolating to all polynyas surrounding Antarctica, we expect the annual uptake of 8 Tg C in the atmosphere. This is comparable to the amount of CO2 degassed into the atmosphere south of the Antarctic Polar Front (62°S).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.C41C1241P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.C41C1241P"><span>IGLOO: an Intermediate Complexity Framework to Simulate Greenland Ice-Ocean <span class="hlt">Interactions</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Perrette, M.; Calov, R.; Beckmann, J.; Alexander, D.; Beyer, S.; Ganopolski, A.</p> <p>2017-12-01</p> <p>The Greenland ice-sheet is a major contributor to current and future <span class="hlt">sea</span> level rise associated to climate warming. It is widely believed that over a century time scale, surface melting is the main driver of Greenland ice volume change, in contrast to melting by the ocean. It is due to relatively warmer <span class="hlt">air</span> and less ice area exposed to melting by ocean water compared to Antarctica, its southern, larger twin. Yet most modeling studies do not have adequate grid resolution to represent fine-scale outlet glaciers and fjords at the margin of the ice sheet, where ice-ocean <span class="hlt">interaction</span> occurs, and must use rather crude parameterizations to represent this <span class="hlt">process</span>. Additionally, the ice-sheet area grounded below <span class="hlt">sea</span> level has been reassessed upwards in the most recent estimates of bedrock elevation under the Greenland ice sheet, revealing a larger potential for marine-mediated melting than previously thought. In this work, we develop an original approach to estimate potential Greenland ice sheet contribution to <span class="hlt">sea</span> level rise from ocean melting, in an intermediate complexity framework, IGLOO. We use a medium-resolution (5km) ice-sheet model coupled <span class="hlt">interactively</span> to a number of 1-D flowline models for the individual outlet glaciers. We propose a semi-objective methodology to derive 1-D glacier geometries from 2-D Greenland datasets, as well as preliminary results of coupled ice-sheet-glaciers simulations with IGLOO.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.7744T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.7744T"><span>Coupling of WRF meteorological model to WAM spectral wave model through <span class="hlt">sea</span> surface roughness at the Balearic <span class="hlt">Sea</span>: impact on wind and wave forecasts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tolosana-Delgado, R.; Soret, A.; Jorba, O.; Baldasano, J. M.; Sánchez-Arcilla, A.</p> <p>2012-04-01</p> <p>Meteorological models, like WRF, usually describe the earth surface characteristics by tables that are function of land-use. The roughness length (z0) is an example of such approach. However, over <span class="hlt">sea</span> z0 is modeled by the Charnock (1955) relation, linking the surface friction velocity u*2 with the roughness length z0 of turbulent <span class="hlt">air</span> flow, z0 = α-u2* g The Charnock coefficient α may be considered a measure of roughness. For the <span class="hlt">sea</span> surface, WRF considers a constant roughness α = 0.0185. However, there is evidence that <span class="hlt">sea</span> surface roughness should depend on wave energy (Donelan, 1982). Spectral wave models like WAM, model the evolution and propagation of wave energy as a function of wind, and include a richer <span class="hlt">sea</span> surface roughness description. Coupling WRF and WAM is thus a common way to improve the <span class="hlt">sea</span> surface roughness description of WRF. WAM is a third generation wave model, solving the equation of advection of wave energy subject to input/output terms of: wind growth, energy dissipation and resonant non-linear wave-wave <span class="hlt">interactions</span>. Third generation models work on the spectral domain. WAM considers the Charnock coefficient α a complex yet known function of the total wind input term, which depends on the wind velocity and on the Charnock coefficient again. This is solved iteratively (Janssen et al., 1990). Coupling of meteorological and wave models through a common Charnock coefficient is operationally done in medium-range met forecasting systems (e.g., at ECMWF) though the impact of coupling for smaller domains is not yet clearly assessed (Warner et al, 2010). It is unclear to which extent the additional effort of coupling improves the local wind and wave fields, in comparison to the effects of other factors, like e.g. a better bathymetry and relief resolution, or a better circulation information which might have its influence on local-scale meteorological <span class="hlt">processes</span> (local wind jets, local convection, daily marine wind regimes, etc.). This work, within the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.2809W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.2809W"><span>How does mesoscale impact deep convection? Answers from ensemble Northwestern Mediterranean <span class="hlt">Sea</span> simulations.</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Waldman, Robin; Herrmann, Marine; Somot, Samuel; Arsouze, Thomas; Benshila, Rachid; Bosse, Anthony; Chanut, Jérôme; Giordani, Hervé; Pennel, Romain; Sevault, Florence; Testor, Pierre</p> <p>2017-04-01</p> <p>Ocean deep convection is a major <span class="hlt">process</span> of <span class="hlt">interaction</span> between surface and deep ocean. The Gulf of Lions is a well-documented deep convection area in the Mediterranean <span class="hlt">Sea</span>, and mesoscale dynamics is a known factor impacting this phenomenon. However, previous modelling studies don't allow to address the robustness of its impact with respect to the physical configuration and ocean intrinsic variability. In this study, the impact of mesoscale on ocean deep convection in the Gulf of Lions is investigated using a multi-resolution ensemble simulation of the northwestern Mediterranean <span class="hlt">sea</span>. The eddy-permitting Mediterranean model NEMOMED12 (6km resolution) is compared to its eddy-resolving counterpart with the 2-way grid refinement AGRIF in the northwestern Mediterranean (2km resolution). We focus on the well-documented 2012-2013 period and on the multidecadal timescale (1979-2013). The impact of mesoscale on deep convection is addressed in terms of its mean and variability, its impact on deep water transformations and on associated dynamical structures. Results are interpreted by diagnosing regional mean and eddy circulation and using buoyancy budgets. We find a mean inhibition of deep convection by mesoscale with large interannual variability. It is associated with a large impact on mean and transient circulation and a large <span class="hlt">air-sea</span> flux feedback.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRD..122.5298J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRD..122.5298J"><span><span class="hlt">Interaction</span> between turbulent flow and <span class="hlt">sea</span> breeze front over urban-like coast in large-eddy simulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, Ping; Wen, Zhiping; Sha, Weiming; Chen, Guixing</p> <p>2017-05-01</p> <p>Turbulent flow and its <span class="hlt">interaction</span> with a <span class="hlt">sea</span> breeze front (SBF) over an urban-like coast with a regular block array were investigated using a building-resolving computational fluid dynamics model. It was found that during daytime with an offshore ambient flow, streaky turbulent structures tended to grow within the convective boundary layer (CBL) over a warm urban surface ahead of the SBF. The structures were organized as streamwise streaks at an interval of a few hundred meters, which initiated at the rooftop level with strong wind shear and strengthens in the CBL with moderate buoyancy. The streaks then <span class="hlt">interacted</span> with the onshore-propagating SBF as it made landfall. The SBF, which was initially characterized as a shallow and quasi-linear feature over the <span class="hlt">sea</span>, developed three-dimensional structures with intensified updrafts at an elevated frontal head after landfall. Frontal updrafts were locally enhanced at intersections where the streaks merged with the SBF, which greatly increased turbulent fluxes at the front. The frontal line was irregular because of merging, tilting, and transformation effects of vorticity associated with streaky structures. Inland penetration of the SBF was slowed by the frictional effect of urban-like surfaces and turbulent flow on land. The overall SBF intensity weakened after the <span class="hlt">interaction</span> with turbulent flow. These findings aid understanding of local weather over coastal cities during typical <span class="hlt">sea</span> breeze conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OcSci..13.1045D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OcSci..13.1045D"><span>Arctic Ocean outflow and glacier-ocean <span class="hlt">interactions</span> modify water over the Wandel <span class="hlt">Sea</span> shelf (northeastern Greenland)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dmitrenko, Igor A.; Kirillov, Sergey A.; Rudels, Bert; Babb, David G.; Toudal Pedersen, Leif; Rysgaard, Søren; Kristoffersen, Yngve; Barber, David G.</p> <p>2017-12-01</p> <p>The first-ever conductivity-temperature-depth (CTD) observations on the Wandel <span class="hlt">Sea</span> shelf in northeastern Greenland were collected in April-May 2015. They were complemented by CTDs taken along the continental slope during the Norwegian FRAM 2014-2015 drift. The CTD profiles are used to reveal the origin of water masses and <span class="hlt">interactions</span> with ambient water from the continental slope and the tidewater glacier outlet. The subsurface water is associated with the Pacific water outflow from the Arctic Ocean. The underlying halocline separates the Pacific water from a deeper layer of polar water that has <span class="hlt">interacted</span> with the warm Atlantic water outflow through the Fram Strait, recorded below 140 m. Over the outer shelf, the halocline shows numerous cold density-compensated intrusions indicating lateral <span class="hlt">interaction</span> with an ambient polar water mass across the continental slope. At the front of the tidewater glacier outlet, colder and turbid water intrusions were observed at the base of the halocline. On the temperature-salinity plots these stations indicate a mixing line that is different from the ambient water and seems to be conditioned by the ocean-glacier <span class="hlt">interaction</span>. Our observations of Pacific water are set within the context of upstream observations in the Beaufort <span class="hlt">Sea</span> and downstream observations from the Northeast Water Polynya, and clearly show the modification of Pacific water during its advection across the Arctic Ocean. Moreover, ambient water over the Wandel <span class="hlt">Sea</span> slope shows different thermohaline structures indicating the different origin and pathways of the on-shore and off-shore branches of the Arctic Ocean outflow through the western Fram Strait.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23589251','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23589251"><span>The distribution and <span class="hlt">sea-air</span> transfer of volatile mercury in waste post-desulfurization seawater discharged from a coal-fired power plant.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Lumin; Lin, Shanshan; Feng, Lifeng; Huang, Shuyuan; Yuan, Dongxing</p> <p>2013-09-01</p> <p>The waste seawater discharged in coastal areas from coal-fired power plants equipped with a seawater desulfurization system might carry pollutants such as mercury from the flue gas into the adjacent <span class="hlt">seas</span>. However, only very limited impact studies have been carried out. Taking a typical plant in Xiamen as an example, the present study targeted the distribution and <span class="hlt">sea-air</span> transfer flux of volatile mercury in seawater, in order to trace the fate of the discharged mercury other than into the sediments. Samples from 28 sampling sites were collected in the <span class="hlt">sea</span> area around two discharge outlets of the plant, daily and seasonally. Total mercury, dissolved gaseous mercury and dissolved total mercury in the seawater, as well as gaseous elemental mercury above the <span class="hlt">sea</span> surface, were investigated. Mean concentrations of dissolved gaseous mercury and gaseous elemental mercury in the area were 183 and 4.48 ng m(-3) in summer and 116 and 3.92 ng m(-3) in winter, which were significantly higher than those at a reference site. Based on the flux calculation, the transfer of volatile mercury was from the <span class="hlt">sea</span> surface into the atmosphere, and more than 4.4 kg mercury, accounting for at least 2.2 % of the total discharge amount of the coal-fired power plant in the sampling area (1 km(2)), was emitted to the <span class="hlt">air</span> annually. This study strongly suggested that besides being deposited into the sediment and diluted with seawater, emission into the atmosphere was an important fate for the mercury from the waste seawater from coal-fired power plants.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SedG..370...42H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SedG..370...42H"><span>A Poor Relationship Between <span class="hlt">Sea</span> Level and Deep-Water Sand Delivery</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, Ashley D.; Baumgardner, Sarah E.; Sun, Tao; Granjeon, Didier</p> <p>2018-08-01</p> <p>The most commonly cited control on delivery of sand to deep water is the rate of relative <span class="hlt">sea</span>-level fall. The rapid rate of accommodation loss on the shelf causes sedimentation to shift basinward. Field and experimental numerical modeling studies have shown that deep-water sand delivery can occur during any stage of relative <span class="hlt">sea</span> level position and across a large range of values of rate of relative <span class="hlt">sea</span>-level change. However, these studies did not investigate the impact of sediment transport efficiency on the relationship between rate of relative <span class="hlt">sea</span>-level change and deep-water sand delivery rate. We explore this relationship using a deterministic nonlinear diffusion-based numerical stratigraphic forward model. We vary across three orders of magnitude the diffusion coefficient value for marine settings, which controls sediment transport efficiency. We find that the rate of relative <span class="hlt">sea</span>-level change can explain no more than 1% of the variability in deep-water sand delivery rates, regardless of sediment transport efficiency. Model results show a better correlation with relative <span class="hlt">sea</span> level, with up to 55% of the variability in deep water sand delivery rates explained. The results presented here are consistent with studies of natural settings which suggest stochastic <span class="hlt">processes</span> such as avulsion and slope failure, and <span class="hlt">interactions</span> among such <span class="hlt">processes</span>, may explain the remaining variance. Relative <span class="hlt">sea</span> level is a better predictor of deep-water sand delivery than rate of relative <span class="hlt">sea</span>-level change because it is the <span class="hlt">sea</span>-level fall itself which promotes sand delivery, not the rate of the fall. We conclude that the poor relationship between <span class="hlt">sea</span> level and sand delivery is not an artifact of the modeling parameters but is instead due to the inadequacy of relative <span class="hlt">sea</span> level and the rate of relative <span class="hlt">sea</span>-level change to fully describe the dimensional space in which depositional systems reside. Subsequently, <span class="hlt">sea</span> level itself is unable to account for the <span class="hlt">interaction</span> of multiple <span class="hlt">processes</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4722B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4722B"><span>Regulation of CO2 <span class="hlt">Air</span> <span class="hlt">Sea</span> Fluxes by Sediments in the North <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes; Clargo, Nicola; Salt, Lesley</p> <p>2016-04-01</p> <p>A multi-tracer approach is applied to assess the impact of boundary fluxes (e.g. benthic input from sediments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North <span class="hlt">Sea</span>. Analyses of both basin-wide observations in the North <span class="hlt">Sea</span> and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the δ13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North <span class="hlt">Sea</span> indicates the presence of an external carbon source, which is traced to the European continental coastline using naturally-occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North <span class="hlt">Sea</span> total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of metabolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e. unbuffered) release of metabolic DIC. Finally, long-term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North <span class="hlt">Sea</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003ESRv...63....1S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003ESRv...63....1S"><span>Effects of early <span class="hlt">sea</span>-floor <span class="hlt">processes</span> on the taphonomy of temperate shelf skeletal carbonate deposits</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Smith, Abigail M.; Nelson, Campbell S.</p> <p>2003-10-01</p> <p>Cool-water shelf carbonates differ from tropical carbonates in their sources, modes, and rates of deposition, geochemistry, and diagenesis. Inorganic precipitation, marine cementation, and sediment accumulation rates are absent or slow in cool waters, so that temperate carbonates remain longer at or near the <span class="hlt">sea</span> bed. Early <span class="hlt">sea</span>-floor <span class="hlt">processes</span>, occurring between biogenic calcification and ultimate deposition, thus take on an important role, and there is the potential for considerable taphonomic loss of skeletal information into the fossilised record of cool-water carbonate deposits. The physical breakdown <span class="hlt">processes</span> of dissociation, breakage, and abrasion are mediated mainly by hydraulic regime, and are always destructive. Impact damage reduces the size of grains, removes structure and therefore information, and ultimately may transform skeletal material into anonymous particles. Abrasion is highly selective amongst and within taxa, their skeletal form and structure strongly influencing resistance to mechanical breakdown. Dissolution and precipitation are the end-members of a two-way chemical equilibrium operating in <span class="hlt">sea</span> water. In cool waters, inorganic precipitation is rare. There is conflicting opinion about the importance of diagenetic dissolution of carbonate skeletons on the temperate <span class="hlt">sea</span> floor, but test maceration and early loss of aragonite in particular are reported. Dissolution may relate to undersaturated acidic pore waters generated locally by a combination of microbial metabolisation of organic matter, strong bioturbation, and oxidation of solid phase sulphides immediately beneath the <span class="hlt">sea</span> floor in otherwise very slowly accumulating skeletal deposits. Laboratory experiments demonstrate that surface-to-volume ratio and skeletal mineralogy are both important in determining skeletal resistance to dissolution. Biological <span class="hlt">processes</span> on the <span class="hlt">sea</span> floor include encrustation and bioerosion. Encrustation, a constructive <span class="hlt">process</span>, may be periodic or seasonal, and can be</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMOS51B1667W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMOS51B1667W"><span>Development and evaluation of an empirical diurnal <span class="hlt">sea</span> surface temperature model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weihs, R. R.; Bourassa, M. A.</p> <p>2013-12-01</p> <p>An innovative method is developed to determine the diurnal heating amplitude of <span class="hlt">sea</span> surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn <span class="hlt">sea</span> surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep <span class="hlt">process</span> in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and <span class="hlt">air-sea</span> <span class="hlt">interactive</span> <span class="hlt">processes</span>, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (<span class="hlt">air</span> temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180002855','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180002855"><span><span class="hlt">Interactions</span> Between Asian <span class="hlt">Air</span> Pollution and Monsoon System: South Asia (ROSES-2014 ACMAP)</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pan, Xiaohua; Chin, Mian; Tao, Zhining; Kim, Dongchul; Bian, Huisheng; Kucsera, Tom</p> <p>2018-01-01</p> <p>Asia's rapid economic growth over the past several decades has brought a remarkable increase in <span class="hlt">air</span> pollution levels in that region. High concentrations of aerosols (also known as particulate matter or PM) from pollution sources pose major health hazards to half of the world population in Asia including South Asia. How do pollution and dust aerosols regulate the monsoon circulation and rainfall via scattering and absorbing solar radiation, changing the atmospheric heating rates, and modifying the cloud properties? We conducted a series of regional model experiments with NASA-Unified Weather Research and Forecast (NUWRF) regional model with coupled aerosol-chemistry-radiation-microphysics <span class="hlt">processes</span> over South Asia for winter, pre-monsoon, and monsoon seasons to address this question. This study investigates the worsening <span class="hlt">air</span> quality problem in South Asia by focusing on the <span class="hlt">interactions</span> between pollution and South Asian monsoon, not merely focusing on the increase of pollutant emissions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SJRUE...5...72P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SJRUE...5...72P"><span>Description of Latvian Metal Production and <span class="hlt">Processing</span> Enterprises' <span class="hlt">Air</span> Emissions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija</p> <p>2010-01-01</p> <p>The metal production and <span class="hlt">processing</span> sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and <span class="hlt">processing</span> sector has an impact on <span class="hlt">air</span> quality due to polluting substances which are released in the <span class="hlt">air</span> from metal treatment <span class="hlt">processes</span>. Therefore it is necessary to determine the total volume of emissions produced by the metal production and <span class="hlt">processing</span> sector in Latvia. This article deals with the <span class="hlt">air</span> polluting emissions of the Latvian metal production and <span class="hlt">processing</span> industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27878551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27878551"><span><span class="hlt">Interactions</span> of GST Polymorphisms in <span class="hlt">Air</span> Pollution Exposure and Respiratory Diseases and Allergies.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bowatte, Gayan; Lodge, Caroline J; Perret, Jennifer L; Matheson, Melanie C; Dharmage, Shyamali C</p> <p>2016-11-01</p> <p>The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of <span class="hlt">air</span> pollution on asthma, allergic diseases, and lung function. Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of <span class="hlt">air</span> pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant <span class="hlt">interaction</span> with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and <span class="hlt">air</span> pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other <span class="hlt">interactions</span> involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an <span class="hlt">interaction</span> between GST genes and <span class="hlt">air</span> pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSEC23A..08L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSEC23A..08L"><span>Can reef islands keep up with <span class="hlt">sea</span> level? Exploring the interplay between <span class="hlt">sea</span>-level rise, sediment supply, and overwash <span class="hlt">processes</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lorenzo-Trueba, J.</p> <p>2016-02-01</p> <p>Coral reef islands are accumulations of carbonate sediment deposited subaerially atop coral reef platforms. We hypothesize that the long-term evolution of reef islands is primarily controlled by the interplay between <span class="hlt">sea</span>-level rise, sediment supply, and sediment overwash. Reef islands are supplied with sediment from offshore, in the form of reworked coral skeletons that originate at the reef edge and are carried onto the reef platform by waves, as well as in situ production on the reef flat itself. However, the primary mechanism that allows reef islands to keep pace with <span class="hlt">sea</span> level is storm overwash, which enables the vertical transport of sediment from the periphery to the top of the island. Given the current lack of understanding on how production and overwash <span class="hlt">processes</span> <span class="hlt">interact</span>, we have constructed a morphodynamic model to elucidate and quantify how reef islands may respond to <span class="hlt">sea</span>-level rise and changes in sediment production. Model results demonstrate that even if reef islands can remain subaerial over the coming century, this will require significant deposition of sediment atop the island and, in many cases, the island is expected to roll considerably over itself; both of these morphologic changes will negatively affect homes and infrastructure atop these islands. The model also suggests that as reef islands approach the lagoon edge of the reef platform, shoreline erosion and island drowning can be enhanced as sediment overwashes into the lagoon. Interestingly, this situation can only be avoided if either a high offshore sediment supply bulwarks the island in place or the system undergoes similar rates of overwash sedimentation from both the ocean and the lagoon sides. The model also allows us to explore the potential for increased overwash with increased storminess, increases in sediment supply due to bleaching or disturbance, or reduction of sediment supply as a result of reduced calcification rates due to ocean acidification.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9423E..1ZC','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9423E..1ZC"><span>Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and <span class="hlt">air</span>-polymer <span class="hlt">interactions</span> on configurations</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.</p> <p>2015-03-01</p> <p>Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with <span class="hlt">air</span>-polymer <span class="hlt">interactions</span>. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and <span class="hlt">air</span>) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of <span class="hlt">air</span>), <span class="hlt">air</span>-polymer surface <span class="hlt">interaction</span> and polymer-side wall/substrate <span class="hlt">interactions</span> on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad <span class="hlt">process</span> windows and ease of manufacturing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001ICRC....1..233H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001ICRC....1..233H"><span>Hadronic <span class="hlt">Interaction</span> Models and the <span class="hlt">Air</span> Shower Simulation Program CORSIKA</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heck, D.; KASCADE Collaboration</p> <p></p> <p>The Monte Carlo program CORSIKA simulates the 4-dimensional evolution of extensive <span class="hlt">air</span> showers in the atmosphere initiated by photons, hadrons or nuclei. It contains links to the hadronic <span class="hlt">interaction</span> models DPMJET, HDPM, NEXUS, QGSJET, SIBYLL, and VENUS. These codes are employed to treat the hadronic <span class="hlt">interactions</span> at energies above 80 GeV. Since their first implementation in 1996 the models DPMJET and SIBYLL have been revised to versions II.5 and 2.1, respectively. Also the treatment of diffractive <span class="hlt">interactions</span> by QGSJET has been slightly modified. The models DPMJET, QGSJET and SIBYLL are able to simulate collisions even at the highest energies reaching up to 1020 eV, which are at the focus of present research. The recently added NEXUS 2 program uses a unified approach combining Gribov-Regge theory and perturbative QCD. This model is based on the universality hypothesis of the behavior of highenergy <span class="hlt">interactions</span> and presently works up to 1017 eV. A comparison of simulations performed with different models gives an indication on the systematic uncertainties of simulated <span class="hlt">air</span> shower properties, which arise from the extrapolations to energies, kinematic ranges, or projectile-target combinations not covered by man-made colliders. Results obtained with the most actual programs are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.7413P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.7413P"><span><span class="hlt">Processes</span> Understanding of Decadal Climate Variability</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prömmel, Kerstin; Cubasch, Ulrich</p> <p>2016-04-01</p> <p>The realistic representation of decadal climate variability in the models is essential for the quality of decadal climate predictions. Therefore, the understanding of those <span class="hlt">processes</span> leading to decadal climate variability needs to be improved. Several of these <span class="hlt">processes</span> are already included in climate models but their importance has not yet completely been clarified. The simulation of other <span class="hlt">processes</span> requires sometimes a higher resolution of the model or an extension by additional subsystems. This is addressed within one module of the German research program "MiKlip II - Decadal Climate Predictions" (http://www.fona-miklip.de/en/) with a focus on the following <span class="hlt">processes</span>. Stratospheric <span class="hlt">processes</span> and their impact on the troposphere are analysed regarding the climate response to aerosol perturbations caused by volcanic eruptions and the stratospheric decadal variability due to solar forcing, climate change and ozone recovery. To account for the <span class="hlt">interaction</span> between changing ozone concentrations and climate a computationally efficient ozone chemistry module is developed and implemented in the MiKlip prediction system. The ocean variability and <span class="hlt">air-sea</span> <span class="hlt">interaction</span> are analysed with a special focus on the reduction of the North Atlantic cold bias. In addition, the predictability of the oceanic carbon uptake with a special emphasis on the underlying mechanism is investigated. This addresses a combination of physical, biological and chemical <span class="hlt">processes</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5443897','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5443897"><span>Genome-Wide <span class="hlt">Interaction</span> Analysis of <span class="hlt">Air</span> Pollution Exposure and Childhood Asthma with Functional Follow-up</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gref, Anna; Merid, Simon K.; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S.; Korek, Michal; Kozyrskyj, Anita L.; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M. T.; van den Berge, Maarten; Vonk, Judith M.; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M.; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W. James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H.; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran</p> <p>2017-01-01</p> <p>Rationale: The evidence supporting an association between traffic-related <span class="hlt">air</span> pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. Objectives: To identify gene–environment <span class="hlt">interaction</span> effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and <span class="hlt">air</span> pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. Methods: We used land use regression models to estimate individual <span class="hlt">air</span> pollution exposure (represented by outdoor NO2 levels) at the birth address and performed a genome-wide <span class="hlt">interaction</span> study for doctors’ diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for <span class="hlt">interaction</span> in two separate North American cohorts, CHS (Children’s Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among <span class="hlt">air</span> pollution exposure, methylation, and transcriptomic patterns. Measurements and Main Results: In the European cohorts, 186 SNPs had an <span class="hlt">interaction</span> P < 1 × 10−4 and a look-up evaluation of these disclosed 8 SNPs in 4 loci, with an <span class="hlt">interaction</span> P < 0.05 in the large CHS study, but not in CAPPS/SAGE. Three SNPs within adenylate cyclase 2 (ADCY2) showed the same direction of the <span class="hlt">interaction</span> effect and were found to influence ADCY2 gene expression in peripheral blood (P = 4.50 × 10−4). One other SNP with P < 0.05 for <span class="hlt">interaction</span> in CHS, rs686237, strongly influenced UDP-Gal:betaGlcNAc β-1,4-galactosyltransferase, polypeptide 5 (B4GALT5) expression in lung tissue (P = 1.18 × 10−17). <span class="hlt">Air</span> pollution exposure was associated with differential discs, large homolog 2 (DLG2) methylation and expression. Conclusions: Our results indicated that gene</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011LMaPh..97..165F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011LMaPh..97..165F"><span>A Formulation of Quantum Field Theory Realizing a <span class="hlt">Sea</span> of <span class="hlt">Interacting</span> Dirac Particles</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Finster, Felix</p> <p>2011-08-01</p> <p>In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac <span class="hlt">sea</span>. Formulating the <span class="hlt">interaction</span> by an action principle for the fermionic projector, we obtain a consistent description of <span class="hlt">interacting</span> quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26648875','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26648875"><span><span class="hlt">Interactions</span> Between Dyspnea and the Brain <span class="hlt">Processing</span> of Nociceptive Stimuli: Experimental <span class="hlt">Air</span> Hunger Attenuates Laser-Evoked Brain Potentials in Humans.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dangers, Laurence; Laviolette, Louis; Similowski, Thomas; Morélot-Panzini, Capucine</p> <p>2015-01-01</p> <p>Dyspnea and pain share several characteristics and certain neural networks and <span class="hlt">interact</span> with each other. Dyspnea-pain counter-irritation consists of attenuation of preexisting pain by intercurrent dyspnea and has been shown to have neurophysiological correlates in the form of inhibition of the nociceptive spinal reflex RIII and laser-evoked potentials (LEPs). Experimentally induced exertional dyspnea inhibits RIII and LEPs, while "<span class="hlt">air</span> hunger" dyspnea does not inhibit RIII despite its documented analgesic effects. We hypothesized that <span class="hlt">air</span> hunger may act centrally and inhibit LEPs. LEPs were obtained in 12 healthy volunteers (age: 21-29) during spontaneous breathing (FB), ventilator-controlled breathing (VC) tailored to FB, after inducing <span class="hlt">air</span> hunger by increasing the inspired fraction of carbon dioxide -FiCO2- (VCCO2), and during ventilator-controlled breathing recovery (VCR). VCCO2 induced intense dyspnea (visual analog scale = 63% ± 6% of full scale, p < 0.001 vs. VC), predominantly of the <span class="hlt">air</span> hunger type. VC alone reduced the amplitude of the N2-P2 component of LEPs (Δ = 24.0% ± 21.1%, p < 0.05, effect-size = 0.74) predominantly through a reduction in P2, and the amplitude of this inhibition was further reduced by inducting <span class="hlt">air</span> hunger (Δ = 22.6% ± 17.9%, p < 0.05, effect-size = 0.53), predominantly through a reduction in N2. Somatosensory-evoked potentials (SEPs) were not affected by VC or VCCO2, suggesting that the observed effects are specific to pain transmission. We conclude that <span class="hlt">air</span> hunger interferes with the cortical mechanisms responsible for the cortical response to painful laser skin stimulation, which provides a neurophysiological substrate to the central nature of its otherwise documented analgesic effects.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020033022','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020033022"><span>Estimating the Ocean Flow Field from Combined <span class="hlt">Sea</span> Surface Temperature and <span class="hlt">Sea</span> Surface Height Data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stammer, Detlef; Lindstrom, Eric (Technical Monitor)</p> <p>2002-01-01</p> <p>This project was part of a previous grant at MIT that was moved over to the Scripps Institution of Oceanography (SIO) together with the principal investigator. The final report provided here is concerned only with the work performed at SIO since January 2000. The primary focus of this project was the study of the three-dimensional, absolute and time-evolving general circulation of the global ocean from a combined analysis of remotely sensed fields of <span class="hlt">sea</span> surface temperature (SST) and <span class="hlt">sea</span> surface height (SSH). The synthesis of those two fields was performed with other relevant physical data, and appropriate dynamical ocean models with emphasis on constraining ocean general circulation models by a combination of both SST and SSH data. The central goal of the project was to improve our understanding and modeling of the relationship between the SST and its variability to internal ocean dynamics, and the overlying atmosphere, and to explore the relative roles of <span class="hlt">air-sea</span> fluxes and internal ocean dynamics in establishing anomalies in SST on annual and longer time scales. An understanding of those problems will feed into the general discussion on how SST anomalies vary with time and the extend to which they <span class="hlt">interact</span> with the atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22131078-review-critical-factors-sea-implementation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22131078-review-critical-factors-sea-implementation"><span>Review of critical factors for <span class="hlt">SEA</span> implementation</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang Jie, E-mail: jasmine@plan.aau.dk; Christensen, Per; Kornov, Lone</p> <p></p> <p>The implementation <span class="hlt">process</span> involved in translating Strategic Environmental Assessment (<span class="hlt">SEA</span>) intention into action is vital to an effective <span class="hlt">SEA</span>. Many factors influence implementation and thus the effectiveness of an <span class="hlt">SEA</span>. Empirical studies have identified and documented some factors influencing the implementation of an <span class="hlt">SEA</span>. This research is fragmented, however, and it is still not clear what are the most critical factors of effective <span class="hlt">SEA</span> performance, and how these relate to different stages of the implementation <span class="hlt">process</span> or other contextual circumstances. The paper takes its point of departure in implementation theory. Firstly, we introduce implementation theory, and then use it inmore » practice to establish a more comprehensive model related to the stages in the implementation <span class="hlt">process</span>. Secondly, we identify the critical factors in order to see how they are related to the different stages of <span class="hlt">SEA</span> or are more general in character. Finally we map the different critical factors and how they influence the overall results of an <span class="hlt">SEA</span>. Based on a literature review, we present a comprehensive picture of the critical factors and where they are found in the <span class="hlt">process</span>. We conclude that most of the critical factors identified are of a more general character influencing the <span class="hlt">SEA</span> <span class="hlt">process</span> as such, while only one out of four of these factors relates to the specific stages of the <span class="hlt">SEA</span>. Based on this mapping we can sketch a picture of the totality of critical factors. In this study 266 notions of critical factors were identified. Seen at the level of notions of critical factors, only 24% of these relate to specific stages while for 76% the critical factors are of a more general nature. These critical factors <span class="hlt">interact</span> in complex ways and appear in different combinations in different stages of the implementation <span class="hlt">process</span> so tracing the cause and effect is difficult. The pervasiveness of contextual and general factors also clearly suggests that there is no single way to put <span class="hlt">SEA</span> into practice</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.evostc.state.ak.us/index.cfm?FA=status.seaotter','USGSPUBS'); return false;" href="http://www.evostc.state.ak.us/index.cfm?FA=status.seaotter"><span><span class="hlt">Sea</span> Otter Enhydra lutris</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bodkin, James L.; Ballachey, Brenda E.</p> <p>1997-01-01</p> <p>The <span class="hlt">sea</span> otter, Enhydra lutris, is the largest member of the Mustelidae family and is the only one which lives entirely in marine waters. <span class="hlt">Sea</span> otters are unique among marine mammals because, unlike whales, dolphins and seals, they do not have a layer of fat or blubber to keep them warm in the cool oceans of the North Pacific. Instead, <span class="hlt">sea</span> otters depend on dense fur that traps tiny <span class="hlt">air</span> bubbles to insulate them from the cold water. To stay warm, they also must maintain a very high metabolic rate, requiring the <span class="hlt">sea</span> otter to eat about 25% of its body weight per day. <span class="hlt">Sea</span> otters eat mostly invertebrates - clams, crabs, urchins, and mussels - found in shallow coastal waters.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000DSRII..47.3039L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000DSRII..47.3039L"><span>Numerical modeling of benthic <span class="hlt">processes</span> in the deep Arabian <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luff, Roger; Wallmann, Klaus; Grandel, Sibylle; Schlüter, Michael</p> <p></p> <p>Aerobic and anaerobic degradation of particulate organic carbon (POC) and carbonate equilibria in deep-<span class="hlt">sea</span> surface sediments were studied at five stations located in the western (WAST), northern (NAST), eastern (EAST), central (CAST), and southern (SAST) Arabian <span class="hlt">Sea</span>. In situ oxygen fluxes, porewater profiles of dissolved oxygen, nitrate, and Mn, pH profiles and solid-phase profiles of particulate organic carbon, Mn, and Fe were measured at each station. An early diagenesis model was applied to simulate the degradation and dissolution <span class="hlt">processes</span> and to determine the benthic fluxes of POC, oxygen, nitrate, phosphate, CO 2, HCO 3-, and CO 32-. The benthic data sets were evaluated to constrain the POC input and the kinetics of organic matter degradation used in the model. The modeling showed that the POC rain rate to the seafloor is high at the western and northern stations, and decreases towards the southeast. At stations located in the vicinity of continental margins (WAST, NAST, EAST), 5-7% of the primary production sinks to the deep-<span class="hlt">sea</span> floor. This unusually high POC rain is either caused by dust particles that accelerate and amplify the particle export from the euphotic zone or by rapid lateral transport <span class="hlt">processes</span>. At the more remote stations (CAST, SAST) that receive lower dust inputs, the rain efficiency decreases to 1-4%. In the model, organic matter was separated into three fractions (3-G-model) that differ considerably in reactivity. At stations WAST, NAST, EAST, and CAST the bulk of organic matter is composed of extremely labile organic matter with a first order degradation constant ( k) of 15-30 yr -1. The moderately labile fraction with a kinetic constant of 0.2-0.6 yr -1 dominates the POC input at the oligotrophic station in the southern Arabian <span class="hlt">Sea</span> (SAST). The third fraction that has a very low reactivity ( k=2-5×10 -4 yr -1) is only a minor component of the POC rain at all investigated stations. More than 95% of the organic matter is consumed in aerobic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016Icar..270...37M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016Icar..270...37M"><span>The fate of ethane in Titan's hydrocarbon lakes and <span class="hlt">seas</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mousis, Olivier; Lunine, Jonathan I.; Hayes, Alexander G.; Hofgartner, Jason D.</p> <p>2016-05-01</p> <p>Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a <span class="hlt">process</span> that sequesters it from exposed surface reservoirs, a major constituent of its lakes and <span class="hlt">seas</span>. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar <span class="hlt">sea</span> is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that <span class="hlt">interacted</span> with an underlying clathrate layer and investigate the influence of this <span class="hlt">interaction</span> on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If <span class="hlt">interactions</span> between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated <span class="hlt">seas</span> or lakes.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26273851','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26273851"><span>Characterization of <span class="hlt">process</span> <span class="hlt">air</span> emissions in automotive production plants.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W</p> <p>2016-01-01</p> <p>During manufacturing, particles produced from industrial <span class="hlt">processes</span> become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing <span class="hlt">processes</span> found in the auto industry. <span class="hlt">Air</span> particulates were collected in five automotive plants covering ten manufacturing <span class="hlt">processes</span> in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on <span class="hlt">air</span> concentration, size distribution, and chemical composition of the airborne particulate matter for each <span class="hlt">process</span> and insight into the physical and chemical <span class="hlt">processes</span> that created those particles.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMS...148..122G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMS...148..122G"><span>Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.</p> <p>2015-08-01</p> <p>In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic <span class="hlt">Sea</span> model. Different <span class="hlt">processes</span> in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of <span class="hlt">processes</span> such as CO2 assimilation, mineralization, and <span class="hlt">air-sea</span> exchange. We demonstrate that phytoplankton production and respiration, and the related <span class="hlt">air-sea</span> CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two <span class="hlt">processes</span> - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic <span class="hlt">Sea</span> related to increased nutrient loads under the second half of the century.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A43B3262V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A43B3262V"><span>Land- and <span class="hlt">sea</span>-surface impacts on local coastal breezes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Veron, D. E.; Hughes, C.; Gilchrist, J.; Lodise, J.; Goldman, W.</p> <p>2014-12-01</p> <p>The state of Delaware has seen significant increases in population along the coastline in the past three decades. With this increase in population have come changes to the land surface, as forest and farmland has been converted to residential and commercial purposes, causing changes in the surface roughness, temperature, and land-atmosphere fluxes. There is also a semi-permanent upwelling center in the spring and summer outside the Delaware Bay mouth that significantly changes the structure of the <span class="hlt">sea</span> surface temperature both inside and outside the Bay. Through a series of high resolution modeling and observational studies, we have determined that in cases of strong synoptic forcing, the impact of the land-surface on the boundary layer properties can be advected offshore, creating a false coastline and modifying the location and timing of the <span class="hlt">sea</span> breeze circulation. In cases of weak synoptic forcing, the influence of the upwelling and the tidal circulation of the Delaware Bay waters can greatly change the location, strength, and penetration of the <span class="hlt">sea</span> breeze. Understanding the importance of local variability in the surface-atmosphere <span class="hlt">interactions</span> on the <span class="hlt">sea</span> breeze can lead to improved prediction of <span class="hlt">sea</span> breeze onset, penetration, and duration which is important for monitoring <span class="hlt">air</span> quality and developing offshore wind power production.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6812Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6812Z"><span>Subduction <span class="hlt">processes</span> related to the <span class="hlt">Sea</span> of Okhotsk</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zabarinskaya, Ludmila P.; Sergeyeva, Nataliya</p> <p>2017-04-01</p> <p>It is obviously important to study a role of subduction <span class="hlt">processes</span> in tectonic activity within the continental margins. They are marked by earthquakes, volcanic eruptions, tsunami and other natural disasters hazardous to the people,plants and animals that inhabit such regions. The northwest part of the <span class="hlt">Sea</span> of Okhotsk including the northern part of Sakhalin Island and the Deryugin Basin is the area of the recent intensive tectonic movements. The geological and geophysical data have made it possible to construct the geodynamic model of a deep structure of a lithosphere for this region. This geodynamic model has confirmed the existence of the ophiolite complex in the region under consideration. It located between the North Sakhalin sedimentary basin and the Deryugin basin. The Deryugin basin was formed on the side of an ancient deep trench after subducting the Okhotsk <span class="hlt">Sea</span> Plate under Sakhalin in the Late Cretaceous-Paleogene. The North Sakhalin Basin with oil and gas resources was formed on the side of back-arc basin at that time. Approximately in the Miocene period the subduction <span class="hlt">process</span>, apparently, has stopped. The remains of the subduction zone in the form of ophiolite complex have been identified according to geological and geophysical data. On a surface the subduction zone is shown as deep faults stretched along Sakhalin.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714877S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714877S"><span>Accounting for observational uncertainties in the evaluation of low latitude turbulent <span class="hlt">air-sea</span> fluxes simulated in a suite of IPSL model versions</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Servonnat, Jerome; Braconnot, Pascale; Gainusa-Bogdan, Alina</p> <p>2015-04-01</p> <p>Turbulent momentum and heat (sensible and latent) fluxes at the <span class="hlt">air-sea</span> interface are key components of the whole energetic of the Earth's climate and their good representation in climate models is of prime importance. In this work, we use the methodology developed by Braconnot & Frankignoul (1993) to perform a Hotelling T2 test on spatio-temporal fields (annual cycles). This statistic provides a quantitative measure accounting for an estimate of the observational uncertainty for the evaluation of low-latitude turbulent <span class="hlt">air-sea</span> fluxes in a suite of IPSL model versions. The spread within the observational ensemble of turbulent flux data products assembled by Gainusa-Bogdan et al (submitted) is used as an estimate of the observational uncertainty for the different turbulent fluxes. The methodology holds on a selection of a small number of dominating variability patterns (EOFs) that are common to both the model and the observations for the comparison. Consequently it focuses on the large-scale variability patterns and avoids the possibly noisy smaller scales. The results show that different versions of the IPSL couple model share common large scale model biases, but also that there the skill on <span class="hlt">sea</span> surface temperature is not necessarily directly related to the skill in the representation of the different turbulent fluxes. Despite the large error bars on the observations the test clearly distinguish the different merits of the different model version. The analyses of the common EOF patterns and related time series provide guidance on the major differences with the observations. This work is a first attempt to use such statistic on the evaluation of the spatio-temporal variability of the turbulent fluxes, accounting for an observational uncertainty, and represents an efficient tool for systematic evaluation of simulated <span class="hlt">air</span>-seafluxes, considering both the fluxes and the related atmospheric variables. References Braconnot, P., and C. Frankignoul (1993), Testing Model</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1710370B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1710370B"><span>Evidence for widespread tropospheric Cl chemistry in free tropospheric <span class="hlt">air</span> masses from the South China <span class="hlt">Sea</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan</p> <p>2015-04-01</p> <p>While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric <span class="hlt">air</span> masses (9-11 km) originating over the South China <span class="hlt">Sea</span> which had non-methane hydrocarbon (NMHC) signatures characteristic of <span class="hlt">processing</span> by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these <span class="hlt">air</span> masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during <span class="hlt">air</span> mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4868320','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4868320"><span><span class="hlt">Interaction</span> of Atmospheric-Pressure <span class="hlt">Air</span> Microplasmas with Amino Acids as Fundamental <span class="hlt">Processes</span> in Aqueous Solution</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya</p> <p>2016-01-01</p> <p>Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the <span class="hlt">interaction</span> of atmospheric-pressure <span class="hlt">air</span> microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29872142','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29872142"><span>Effect of small scale transport <span class="hlt">processes</span> on phytoplankton distribution in coastal <span class="hlt">seas</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hernández-Carrasco, Ismael; Orfila, Alejandro; Rossi, Vincent; Garçon, Veronique</p> <p>2018-06-05</p> <p>Coastal ocean ecosystems are major contributors to the global biogeochemical cycles and biological productivity. Physical factors induced by the turbulent flow play a crucial role in regulating marine ecosystems. However, while large-scale open-ocean dynamics is well described by geostrophy, the role of multiscale transport <span class="hlt">processes</span> in coastal regions is still poorly understood due to the lack of continuous high-resolution observations. Here, the influence of small-scale dynamics (O(3.5-25) km, i.e. spanning upper submesoscale and mesoscale <span class="hlt">processes</span>) on surface phytoplankton derived from satellite chlorophyll-a (Chl-a) is studied using Lagrangian metrics computed from High-Frequency Radar currents. The combination of complementary Lagrangian diagnostics, including the Lagrangian divergence along fluid trajectories, provides an improved description of the 3D flow geometry which facilitates the interpretation of two non-exclusive physical mechanisms affecting phytoplankton dynamics and patchiness. Attracting small-scale fronts, unveiled by backwards Lagrangian Coherent Structures, are associated to negative divergence where particles and Chl-a standing stocks cluster. Filaments of positive divergence, representing large accumulated upward vertical velocities and suggesting accrued injection of subsurface nutrients, match areas with large Chl-a concentrations. Our findings demonstrate that an accurate characterization of small-scale transport <span class="hlt">processes</span> is necessary to comprehend bio-physical <span class="hlt">interactions</span> in coastal <span class="hlt">seas</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70029569','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70029569"><span>Atmospheric dry deposition in the vicinity of the Salton <span class="hlt">Sea</span>, California - I: <span class="hlt">Air</span> pollution and deposition in a desert environment</span></a></p> <p><a target="_blank" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Alonso, R.; Bytnerowicz, A.; Boarman, W.I.</p> <p>2005-01-01</p> <p><span class="hlt">Air</span> pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton <span class="hlt">Sea</span>, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of <span class="hlt">sea</span> spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication <span class="hlt">processes</span> at the Salton <span class="hlt">Sea</span>. ?? 2005 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=218364&keyword=human+AND+evolution&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=218364&keyword=human+AND+evolution&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>Simulating Emission and Chemical Evolution of Coarse <span class="hlt">Sea</span>-Salt Particles in the Community Multiscale <span class="hlt">Air</span> Quality (CMAQ) Model</span></a></p> <p><a target="_blank" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>Chemical <span class="hlt">processing</span> of <span class="hlt">sea</span>-salt particles in coastal environments significantly impacts concentrations of particle components and gas-phase species and has implications for human exposure to particulate matter and nitrogen deposition to sensitive ecosystems. Emission of <span class="hlt">sea</span>-sal...</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910065831&hterms=Shiyuan&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DShiyuan','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910065831&hterms=Shiyuan&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DShiyuan"><span><span class="hlt">Interaction</span> of the <span class="hlt">sea</span> breeze with a river breeze in an area of complex coastal heating</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhong, Shiyuan; Takle, Eugene S.; Leone, John M., Jr.</p> <p>1991-01-01</p> <p>The <span class="hlt">interaction</span> of the <span class="hlt">sea</span>-breeze circulation with a river-breeze circulation in an area of complex coastal heating (east coast of Florida) was studied using a 3D finite-element mesoscale model. The model simulations are compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment. The results from numerical experiments designed to isolate the effect of the river breeze indicate that the convergence in the <span class="hlt">sea</span>-breeze front is suppressed when it passes over the cooler surface of the rivers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ClDy...46.2897H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ClDy...46.2897H"><span>Role of atmospheric heating over the South China <span class="hlt">Sea</span> and western Pacific regions in modulating Asian summer climate under the global warming background</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>He, Bian; Yang, Song; Li, Zhenning</p> <p>2016-05-01</p> <p>The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China <span class="hlt">Sea</span> (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased <span class="hlt">sea</span> level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When <span class="hlt">air-sea</span> <span class="hlt">interaction</span> is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of <span class="hlt">air-sea</span> <span class="hlt">interaction</span> in understanding the changes in Asian climate.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.8737O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.8737O"><span>Paleobathymetric Reconstruction of Ross <span class="hlt">Sea</span>: seismic data <span class="hlt">processing</span> and regional reflectors mapping</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Olivo, Elisabetta; De Santis, Laura; Wardell, Nigel; Geletti, Riccardo; Busetti, Martina; Sauli, Chiara; Bergamasco, Andrea; Colleoni, Florence; Vanzella, Walter; Sorlien, Christopher; Wilson, Doug; De Conto, Robert; Powell, Ross; Bart, Phil; Luyendyk, Bruce</p> <p>2017-04-01</p> <p>PURPOSE: New maps of some major unconformities of the Ross <span class="hlt">Sea</span> have been reconstructed, by using seismic data grids, combined with the acoustic velocities from previous works, from new and reprocessed seismic profiles. This work is carried out with the support of PNRA and in the frame of the bilateral Italy-USA project GLAISS (Global <span class="hlt">Sea</span> Level Rise & Antarctic Ice Sheet Stability predictions), funded by the Ministry of Foreign Affairs. Paleobathymetric maps of 30, 14 and 4 million years ago, three 'key moments' for the glacial history of the Antarctic Ice Sheet, coinciding with global climatic changes. The paleobathymetric maps will then be used for numeric simulations focused on the width and thickness of the Ross <span class="hlt">Sea</span> Ice Sheet. PRELIMINARY RESULTS: The first step was to create TWT maps of three main unconformity (RSU6, RSU4, and RSU2) of Ross <span class="hlt">Sea</span>, revisiting and updating the ANTOSTRAT maps, through the interpretation of sedimentary bodies and erosional features, used to infer active or old <span class="hlt">processes</span> along the slope, we identified the main seismic unconformities. We used the HIS Kingdom academic license. The different groups contribution was on the analysis of the Eastern Ross <span class="hlt">Sea</span> continental slope and rise (OGS), of the Central Basin (KOPRI) of the western and central Ross <span class="hlt">Sea</span> (Univ. of Santa Barbara and OGS), where new drill sites and seismic profiles were collected after the publication of the ANTOSTRAT maps. Than we joined our interpretation with previous interpretations. We examined previous <span class="hlt">processing</span> of several seismic lines and all the old acoustic velocity analysis. In addiction we reprocessed some lines in order to have a higher data coverage. Then, combining the TWT maps of the unconformity with the old and new speed data we created new depth maps of the study area. The new depth maps will then be used for reconstructing the paleobathymetry of the Ross <span class="hlt">Sea</span> by applying backstripping technique.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6571517-morphology-growth-pattern-amazon-deep-sea-fan-computer-processed-gloria-side-scan-mosaic','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6571517-morphology-growth-pattern-amazon-deep-sea-fan-computer-processed-gloria-side-scan-mosaic"><span>Morphology and growth pattern of Amazon deep-<span class="hlt">sea</span> fan: a computer-<span class="hlt">processed</span> GLORIA side-scan mosaic</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Flood, R.D.; Damuth, J.E.</p> <p>1984-04-01</p> <p>Deep-<span class="hlt">sea</span> fans have become increasingly important targets for exploration because of their favorable facies associations. A better understanding of deep-<span class="hlt">sea</span> fans is needed to successfully exploit these complex sediment bodies. Recent studies of the Amazon fan, using long-range side-scan sonar (GLORIA) and single-channel seismic data, provide an overall view of channel patterns of this fan and demonstrate the relationship between successive channel/levee systems. The digitally collected GLORIA data have been computer <span class="hlt">processed</span> to produce a mosaic of the fan. Computer <span class="hlt">processing</span> has corrected the records for slant range and ship navigation, and targets have been enhanced. Many features of themore » modern fan system are readily apparent on the sonar mosaic. The 1.5 to 0.5-km (5000 to 1600-ft) wide channels meander intensely across the fan with sinuosities up to 2.5. Because of these meanders, the channel gradients decrease regularly across the fan despite changes in regional slope. Other channel-related targets include cutoff meanders, overbank deposits (especially small debris flows), and channel branchings. Other debris flows cover large areas of the fan and override channel/levee systems. <span class="hlt">Air</span>-gun records show that this fan is built of a series of channel/levee systems that overlay one another. Channels from at least 6 of these systems are visible at the surface now, but apparently only one channel at a time has been active. The length of time needed to build a single channel/levee system is not known, but it appears to be rapid.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27393757','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27393757"><span><span class="hlt">Air</span> Medical Evacuations From the German North <span class="hlt">Sea</span> Wind Farm Bard Offshore 1: Traumatic Injuries, Acute Diseases, and Rescue <span class="hlt">Process</span> Times (2011-2013).</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dethleff, Dirk; Weinrich, Nils; Kowald, Birgitt; Hory, Dorothea; Franz, Rüdiger; Nielsen, Maja Verena; Seide, Klaus; Jürgens, Christian; Stuhr, Markus</p> <p>2016-01-01</p> <p>Our purpose was 2-fold: 1) to show emergency-related traumatic injury and acute disease patterns and 2) to evaluate <span class="hlt">air</span> rescue <span class="hlt">process</span> times in a remotely located German offshore wind farm. Optimally, this will support methodologies to reduce offshore help time (time from the incoming emergency call until offshore arrival of the helicopter). The type and severity of traumatic injuries and acute diseases were retrospectively analyzed for 39 <span class="hlt">air</span> medevacs from August 2011 to December 2013, and the <span class="hlt">process</span> times of <span class="hlt">air</span> rescue missions were evaluated in detail. Forty-nine percent of the medevacs were related to traumatic injuries, whereas 41% were associated with acute diseases and 10% remained unclear. Cardiovascular and gastrointestinal disorders accounted for 90% of internal medical cases. About 69% of the trauma was related to contusions, lacerations, and cuts. The main body regions injured were limbs (∼59%) and head (∼32%). The total rescue time until arrival at the destination facility averaged 175.3 minutes (standard deviation = 54.4 minutes). The mean helicopter offshore arrival time was 106.9 minutes (standard deviation = 57.4 minutes) after the incoming emergency call. In 64% of the medevacs, the helicopter arrived on scene within a help time of 90 minutes. A reduction of help time (≤ 60 minutes) for time-critical severe trauma and acute diseases may be anticipated through rapid and focused medical and logistic decision-making <span class="hlt">processes</span> by the onshore dispatch center combined with professional, qualified, and well-trained flight and rescue personnel. Copyright © 2016 <span class="hlt">Air</span> Medical Journal Associates. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..307a2022I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..307a2022I"><span>Performance of Control System Using Microcontroller for <span class="hlt">Sea</span> Water Circulation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.</p> <p>2018-02-01</p> <p>Now a day control system is very important rule for any <span class="hlt">process</span>. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of <span class="hlt">process</span> made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, <span class="hlt">air</span> conditioner and etc. Control system are used for control of temperature and circulation gas, <span class="hlt">air</span> and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of <span class="hlt">sea</span> water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the <span class="hlt">sea</span> water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate <span class="hlt">sea</span> water and maintain the temperature and clarity of seawater in a short time.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9749937','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9749937"><span>Flight crew fatigue III: North <span class="hlt">Sea</span> helicopter <span class="hlt">air</span> transport operations.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R</p> <p>1998-09-01</p> <p>We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North <span class="hlt">Sea</span> oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and <span class="hlt">air</span> traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5790801','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5790801"><span>Pollen from the Deep-<span class="hlt">Sea</span>: A Breakthrough in the Mystery of the Ice Ages</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Sánchez Goñi, María F.; Desprat, Stéphanie; Fletcher, William J.; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H.; Zorzi, Coralie</p> <p>2018-01-01</p> <p> occurred on the European margin superimposed to a long-term <span class="hlt">air-sea</span> decoupling trend. Strong <span class="hlt">air-sea</span> thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This <span class="hlt">interaction</span> between long-term and shorter time-scale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic <span class="hlt">processes</span> in Earth models of intermediate complexity. PMID:29434616</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29434616','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29434616"><span>Pollen from the Deep-<span class="hlt">Sea</span>: A Breakthrough in the Mystery of the Ice Ages.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sánchez Goñi, María F; Desprat, Stéphanie; Fletcher, William J; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H; Zorzi, Coralie</p> <p>2018-01-01</p> <p> occurred on the European margin superimposed to a long-term <span class="hlt">air-sea</span> decoupling trend. Strong <span class="hlt">air-sea</span> thermal contrasts promoted the production of water vapor that was then transported northward by the westerlies and fed ice sheets. This <span class="hlt">interaction</span> between long-term and shorter time-scale climatic variability may have amplified insolation decreases and thus explain the Ice Ages. This hypothesis should be tested by the integration of stochastic <span class="hlt">processes</span> in Earth models of intermediate complexity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3895025','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3895025"><span>The Dimethylsulfide Cycle in the Eutrophied Southern North <span class="hlt">Sea</span>: A Model Study Integrating Phytoplankton and Bacterial <span class="hlt">Processes</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gypens, Nathalie; Borges, Alberto V.; Speeckaert, Gaelle; Lancelot, Christiane</p> <p>2014-01-01</p> <p>We developed a module describing the dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) dynamics, including biological transformations by phytoplankton and bacteria, and physico-chemical <span class="hlt">processes</span> (including DMS <span class="hlt">air-sea</span> exchange). This module was integrated in the MIRO ecological model and applied in a 0D frame in the Southern North <span class="hlt">Sea</span> (SNS). The DMS(P) module is built on parameterizations derived from available knowledge on DMS(P) sources, transformations and sinks, and provides an explicit representation of bacterial activity in contrast to most of existing models that only include phytoplankton <span class="hlt">process</span> (and abiotic transformations). The model is tested in a highly productive coastal ecosystem (the Belgian coastal zone, BCZ) dominated by diatoms and the Haptophyceae Phaeocystis, respectively low and high DMSP producers. On an annual basis, the particulate DMSP (DMSPp) production simulated in 1989 is mainly related to Phaeocystis colonies (78%) rather than diatoms (13%) and nanoflagellates (9%). Accordingly, sensitivity analysis shows that the model responds more to changes in the sulfur:carbon (S:C) quota and lyase yield of Phaeocystis. DMS originates equally from phytoplankton and bacterial DMSP-lyase activity and only 3% of the DMS is emitted to the atmosphere. Model analysis demonstrates the sensitivity of DMS emission towards the atmosphere to the description and parameterization of biological <span class="hlt">processes</span> emphasizing the need of adequately representing in models both phytoplankton and bacterial <span class="hlt">processes</span> affecting DMS(P) dynamics. This is particularly important in eutrophied coastal environments such as the SNS dominated by high non-diatom blooms and where empirical models developed from data-sets biased towards open ocean conditions do not satisfactorily predict the timing and amplitude of the DMS seasonal cycle. In order to predict future feedbacks of DMS emissions on climate, it is needed to account for hotspots of DMS emissions from coastal</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.epa.gov/stationary-sources-air-pollution/clean-air-act-standards-and-guidelines-mineral-processing','PESTICIDES'); return false;" href="https://www.epa.gov/stationary-sources-air-pollution/clean-air-act-standards-and-guidelines-mineral-processing"><span>Clean <span class="hlt">Air</span> Act Standards and Guidelines for Mineral <span class="hlt">Processing</span></span></a></p> <p><a target="_blank" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This page contains the stationary sources of <span class="hlt">air</span> pollution for the mineral <span class="hlt">processing</span> industries, and their corresponding <span class="hlt">air</span> pollution regulations. To learn more about the regulations for each industry, just click on the links below.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003448&hterms=air+quality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dair%2Bquality','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003448&hterms=air+quality&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dair%2Bquality"><span>Impact of Transpacific Aerosol on <span class="hlt">Air</span> Quality over the United States: A Perspective from Aerosol-Cloud-Radiation <span class="hlt">Interactions</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tao, Zhining; Yu, Hongbin; Chin, Mian</p> <p>2015-01-01</p> <p>Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional <span class="hlt">air</span> pollution (e.g., direct input), but also can influence regional <span class="hlt">air</span> quality through the aerosol-cloud-radiation (ACR) <span class="hlt">interactions</span> that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on <span class="hlt">air</span> quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3- month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 micro-g/cu m over the west coast and about 0.5 micro-g/cu m over the east coast of the U.S. By influencing key meteorological <span class="hlt">processes</span> through the ACR <span class="hlt">interactions</span>, the transpacific aerosol exerted a significant effect on both surface PM2.5 (+/-6 micro-g/cu m3) and ozone (+/-12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local <span class="hlt">air</span> quality and complicate local effort toward the compliance with the U.S. National Ambient <span class="hlt">Air</span> Quality Standards.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT........24T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT........24T"><span>The application of chemical and isotopic tracers to characterize aerosol sources and <span class="hlt">processing</span> in marine <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Turekian, Vaughan Charles</p> <p>2000-12-01</p> <p>Aerosol production, transport, chemical and physical evolution and deposition impact the environment by influencing radiation budgets, altering the composition of the atmosphere, and delivering nutrients to marine and terrestrial ecosystems. The objective of this research was to combine high-resolution chemical measurements with stable isotopic analysis in order to characterize the sources and <span class="hlt">processing</span> of carbon, nitrogen and sulfur bearing compounds, associated with sized aerosols on Bermuda, during spring. Chemical tracers combined with forward and backward trajectories demonstrated the transport of biomass burning products from North America to Bermuda. The size distributions of NH4+ from 1998 differed from those during spring, 1997, a year without the large-scale burning. These results suggest that transport of biomass burning products altered the pH of the aerosols. Marine and continentally derived carbon was associated with all aerosol size fractions. Supermicron radius <span class="hlt">sea</span>- salt aerosol was enriched in marine derived carbon by 2 orders of magnitude compared to bulk surface seawater. Enrichments of oxalate relative to methanesulfonic acid (MSA) in supermicron radius aerosol suggested in situ formation of oxalate within the <span class="hlt">sea</span>-salt solution, or direct injection from the organic rich surface microlayer. Compound specific isotope analysis of oxalic acid, indicated a marine source for all aerosol size fractions, indicating formation from in the gas phase for the submicron radius aerosol. Stable sulfur isotopes indicated that the biogenic non- <span class="hlt">sea</span>-salt (nss) SO42-/MSA ratio varied with aerosol size indicating that MSA may not be a conservative tracer of biogenic nss SO4 2- in bulk aerosol sampling. The calculated biogenic nss SO 42-/MSA based on stable isotopes and sized aerosol sampling, was 3 times lower than previous estimates for Bermuda. Stable nitrogen isotope values for submicron and supermicron aerosol where significantly different, consistent with</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466263','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4466263"><span>Ageostrophic Frontal <span class="hlt">Processes</span> Controlling Phytoplankton Production in the Catalano-Balearic <span class="hlt">Sea</span> (Western Mediterranean)</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Oguz, Temel; Macias, Diego; Tintore, Joaquin</p> <p>2015-01-01</p> <p>Buoyancy-induced unstable boundary currents and the accompanying retrograde density fronts are often the sites of pronounced mesoscale activity, ageostrophic frontal <span class="hlt">processes</span>, and associated high biological production in marginal <span class="hlt">seas</span>. Biophysical model simulations of the Catalano-Balearic <span class="hlt">Sea</span> (Western Mediterranean) illustrated that the unstable and nonlinear southward frontal boundary current along the Spanish coast resulted in a strain-driven frontogenesis mechanism. High upwelling velocities of up to 80 m d-1 injected nutrients into the photic layer and promoted enhanced production on the less dense, onshore side of the front characterized by negative relative vorticity. Additional down-front wind stress and heat flux (cooling) intensified boundary current instabilities and thus ageostrophic cross-frontal circulation and augmented production. Specifically, entrainment of nutrients by relatively strong buoyancy-induced vertical mixing gave rise to a more widespread phytoplankton biomass distribution within the onshore side of the front. Mesoscale cyclonic eddies contributed to production through an eddy pumping mechanism, but it was less effective and more limited regionally than the frontal <span class="hlt">processes</span>. The model was configured for the Catalano-Balearic <span class="hlt">Sea</span>, but the mechanisms and model findings apply to other marginal <span class="hlt">seas</span> with similar unstable frontal boundary current systems. PMID:26065688</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009JGRC..114.1018Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009JGRC..114.1018Z"><span>On wind-wave-current <span class="hlt">interactions</span> during the Shoaling Waves Experiment</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.</p> <p>2009-01-01</p> <p>This paper presents a case study of wind-wave-current <span class="hlt">interaction</span> during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several <span class="hlt">Air</span> <span class="hlt">Sea</span> <span class="hlt">Interaction</span> Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-<span class="hlt">sea</span> spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The <span class="hlt">interactions</span> presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=GL-2002-002279&hterms=dragons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddragons','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=GL-2002-002279&hterms=dragons&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddragons"><span>Odd cloud in the Ross <span class="hlt">Sea</span>, Antarctica</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>On January 28, 2002, MODIS captured this image of an interesting cloud formation in the boundary waters between Antarctica's Ross <span class="hlt">Sea</span> and the Southern Ocean. A dragon? A snake? A fish? No, but it is an interesting example of the atmospheric physics of convection. The 'eye' of this dragon-looking cloud is likely a small spot of convection, the <span class="hlt">process</span> by which hot moist <span class="hlt">air</span> rises up into the atmosphere, often producing big, fluffy clouds as moisture in the <span class="hlt">air</span> condenses as rises into the colder parts of the atmosphere. A false color analysis that shows different kinds of clouds in different colors reveals that the eye is composed of ice crystals while the 'body' is a liquid water cloud. This suggests that the eye is higher up in the atmosphere than the body. The most likely explanation for the eye feature is that the warm, rising <span class="hlt">air</span> mass had enough buoyancy to punch through the liquid water cloud. As a convective parcel of <span class="hlt">air</span> rises into the atmosphere, it pushes the colder <span class="hlt">air</span> that is higher up out of its way. That cold <span class="hlt">air</span> spills down over the sides of the convective <span class="hlt">air</span> mass, and in this case has cleared away part of the liquid cloud layer below in the <span class="hlt">process</span>. This spilling over of cold <span class="hlt">air</span> from higher up in the atmosphere is the reason why thunderstorms are often accompanied by a cool breeze. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008cosp...37.2134M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008cosp...37.2134M"><span>A closed-loop <span class="hlt">air</span> revitalization <span class="hlt">process</span> technology demonstrator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark</p> <p></p> <p>Demonstrating a sustainable, reliable life support system <span class="hlt">process</span> design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop <span class="hlt">air</span> revitalization system <span class="hlt">process</span> technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, <span class="hlt">process</span> technologies for capturing metabolic CO2 from <span class="hlt">air</span>, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these <span class="hlt">processes</span> either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of <span class="hlt">process</span> technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a <span class="hlt">process</span> technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual <span class="hlt">air</span> revitalization system <span class="hlt">process</span> design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual <span class="hlt">process</span> design incorporates low power CO2 removal, <span class="hlt">process</span> gas drying, and advanced engineered adsorbents being developed by NASA and industry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25526649','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25526649"><span>Nest temperatures in a loggerhead nesting beach in Turkey is more determined by <span class="hlt">sea</span> surface than <span class="hlt">air</span> temperature.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Girondot, Marc; Kaska, Yakup</p> <p>2015-01-01</p> <p>While climate change is now fully recognised as a reality, its impact on biodiversity is still not completely understood. To predict its impact, proxies coherent with the studied ecosystem or species are thus required. Marine turtles are threatened worldwide (though some populations are recovering) as they are particularly sensitive to temperature throughout their entire life cycle. This is especially true at the embryo stage when temperature affects both growth rates and sex determination. Nest temperature is thus of prime importance to understand the persistence of populations in the context of climate change. We analysed the nest temperature of 21 loggerheads (Caretta caretta) originating from Dalyan Beach in Turkey using day-lagged generalised mixed models with autocorrelation. Surprisingly, the selected model for nest temperature includes an effect for <span class="hlt">sea</span> surface temperature 4-times higher than for <span class="hlt">air</span> temperature. We also detected a very significant effect of metabolic heating during development compatible with what is already known about marine turtle nests. Our new methodology allows the prediction of marine turtle nest temperatures with good precision based on a combination of <span class="hlt">air</span> temperature measured at beach level and <span class="hlt">sea</span> surface temperature in front of the beach. These data are available in public databases for most of the beaches worldwide. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JCHyd.210...42C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JCHyd.210...42C"><span>Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced <span class="hlt">air</span> sparging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D.</p> <p>2018-03-01</p> <p>The effect of groundwater viscosity control on the performance of surfactant-enhanced <span class="hlt">air</span> sparging (<span class="hlt">SEAS</span>) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the <span class="hlt">air</span> saturation for sand-packed columns achieved by <span class="hlt">air</span> sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum <span class="hlt">air</span> pressure necessary for <span class="hlt">air</span> sparging <span class="hlt">processes</span> increased, which is considered to be responsible for the increased <span class="hlt">air</span> saturation. The extent of the sparging influence zone achieved during the <span class="hlt">air</span> sparging <span class="hlt">process</span> using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to <span class="hlt">air</span> injection) were observed for the <span class="hlt">air</span> sparging <span class="hlt">processes</span> using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced <span class="hlt">air</span> saturations using SCMC for the 1-D <span class="hlt">air</span> sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during <span class="hlt">air</span> sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to <span class="hlt">air</span> sparging increased the degree of <span class="hlt">air</span> saturation and the sparging influence zone, and enhanced the remedial potential of <span class="hlt">SEAS</span> for contaminated aquifers.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29502850','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29502850"><span>Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced <span class="hlt">air</span> sparging.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choi, Jae-Kyeong; Kim, Heonki; Kwon, Hobin; Annable, Michael D</p> <p>2018-03-01</p> <p>The effect of groundwater viscosity control on the performance of surfactant-enhanced <span class="hlt">air</span> sparging (<span class="hlt">SEAS</span>) was investigated using 1- and 2-dimensional (1-D and 2-D) bench-scale physical models. The viscosity of groundwater was controlled by a thickener, sodium carboxymethylcellulose (SCMC), while an anionic surfactant, sodium dodecylbenzene sulfonate (SDBS), was used to control the surface tension of groundwater. When resident DI water was displaced with a SCMC solution (500 mg/L), a SDBS solution (200 mg/L), and a solution with both SCMC (500 mg/L) and SDBS (200 mg/L), the <span class="hlt">air</span> saturation for sand-packed columns achieved by <span class="hlt">air</span> sparging increased by 9.5%, 128%, and 154%, respectively, (compared to that of the DI water-saturated column). When the resident water contained SCMC, the minimum <span class="hlt">air</span> pressure necessary for <span class="hlt">air</span> sparging <span class="hlt">processes</span> increased, which is considered to be responsible for the increased <span class="hlt">air</span> saturation. The extent of the sparging influence zone achieved during the <span class="hlt">air</span> sparging <span class="hlt">process</span> using the 2-D model was also affected by viscosity control. Larger sparging influence zones (de-saturated zone due to <span class="hlt">air</span> injection) were observed for the <span class="hlt">air</span> sparging <span class="hlt">processes</span> using the 2-D model initially saturated with high-viscosity solutions, than those without a thickener in the aqueous solution. The enhanced <span class="hlt">air</span> saturations using SCMC for the 1-D <span class="hlt">air</span> sparging experiment improved the degradative performance of gaseous oxidation agent (ozone) during <span class="hlt">air</span> sparging, as measured by the disappearance of fluorescence (fluorescein sodium salt). Based on the experimental evidence generated in this study, the addition of a thickener in the aqueous solution prior to <span class="hlt">air</span> sparging increased the degree of <span class="hlt">air</span> saturation and the sparging influence zone, and enhanced the remedial potential of <span class="hlt">SEAS</span> for contaminated aquifers. Copyright © 2018 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120012821','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120012821"><span>Constraining Aerosol Optical Models Using Ground-Based, Collocated Particle Size and Mass Measurements in Variable <span class="hlt">Air</span> Mass Regimes During the 7-<span class="hlt">SEAS</span>/Dongsha Experiment</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bell, Shaun W.; Hansell, Richard A.; Chow, Judith C.; Tsay, Si-Chee; Wang, Sheng-Hsiang; Ji, Qiang; Li, Can; Watson, John G.; Khlystov, Andrey</p> <p>2012-01-01</p> <p>During the spring of 2010, NASA Goddard's COMMIT ground-based mobile laboratory was stationed on Dongsha Island off the southwest coast of Taiwan, in preparation for the upcoming 2012 7-<span class="hlt">SEAS</span> field campaign. The measurement period offered a unique opportunity for conducting detailed investigations of the optical properties of aerosols associated with different <span class="hlt">air</span> mass regimes including background maritime and those contaminated by anthropogenic <span class="hlt">air</span> pollution and mineral dust. What appears to be the first time for this region, a shortwave optical closure experiment for both scattering and absorption was attempted over a 12-day period during which aerosols exhibited the most change. Constraints to the optical model included combined SMPS and APS number concentration data for a continuum of fine and coarse-mode particle sizes up to PM2.5. We also take advantage of an IMPROVE chemical sampler to help constrain aerosol composition and mass partitioning of key elemental species including <span class="hlt">sea</span>-salt, particulate organic matter, soil, non <span class="hlt">sea</span>-salt sulphate, nitrate, and elemental carbon. Our results demonstrate that the observed aerosol scattering and absorption for these diverse <span class="hlt">air</span> masses are reasonably captured by the model, where peak aerosol events and transitions between key aerosols types are evident. Signatures of heavy polluted aerosol composed mostly of ammonium and non <span class="hlt">sea</span>-salt sulphate mixed with some dust with transitions to background <span class="hlt">sea</span>-salt conditions are apparent in the absorption data, which is particularly reassuring owing to the large variability in the imaginary component of the refractive indices. Extinctive features at significantly smaller time scales than the one-day sample period of IMPROVE are more difficult to reproduce, as this requires further knowledge concerning the source apportionment of major chemical components in the model. Consistency between the measured and modeled optical parameters serves as an important link for advancing remote</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910041568&hterms=experimental+results+premixed+combustion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dexperimental%2Bresults%2Bpremixed%2Bcombustion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910041568&hterms=experimental+results+premixed+combustion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dexperimental%2Bresults%2Bpremixed%2Bcombustion"><span>Numerical study of shock-wave/boundary layer <span class="hlt">interactions</span> in premixed hydrogen-<span class="hlt">air</span> hypersonic flows</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yungster, Shaye</p> <p>1991-01-01</p> <p>A computational study of shock wave/boundary layer <span class="hlt">interactions</span> involving premixed combustible gases, and the resulting combustion <span class="hlt">processes</span> is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium <span class="hlt">processes</span> are simulated by means of a finite-rate chemistry model for hydrogen-<span class="hlt">air</span> combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer <span class="hlt">interactions</span> in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910005246','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910005246"><span>Numerical study of shock-wave/boundary layer <span class="hlt">interactions</span> in premixed hydrogen-<span class="hlt">air</span> hypersonic flows</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Yungster, Shaye</p> <p>1990-01-01</p> <p>A computational study of shock wave/boundary layer <span class="hlt">interactions</span> involving premixed combustible gases, and the resulting combustion <span class="hlt">processes</span> is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium <span class="hlt">processes</span> are simulated by means of a finite-rate chemistry model for hydrogen-<span class="hlt">air</span> combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer <span class="hlt">interactions</span> in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000038142&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Banthropogenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000038142&hterms=climate+change+anthropogenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dclimate%2Bchange%2Banthropogenic"><span>Importance of <span class="hlt">Sea</span> Ice for Validating Global Climate Models</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Geiger, Cathleen A.</p> <p>1997-01-01</p> <p>Reproduction of current day large-scale physical features and <span class="hlt">processes</span> is a critical test of global climate model performance. Without this benchmark, prognoses of future climate conditions are at best speculation. A fundamental question relevant to this issue is, which <span class="hlt">processes</span> and observations are both robust and sensitive enough to be used for model validation and furthermore are they also indicators of the problem at hand? In the case of global climate, one of the problems at hand is to distinguish between anthropogenic and naturally occuring climate responses. The polar regions provide an excellent testing ground to examine this problem because few humans make their livelihood there, such that anthropogenic influences in the polar regions usually spawn from global redistribution of a source originating elsewhere. Concomitantly, polar regions are one of the few places where responses to climate are non-anthropogenic. Thus, if an anthropogenic effect has reached the polar regions (e.g. the case of upper atmospheric ozone sensitivity to CFCs), it has most likely had an impact globally but is more difficult to sort out from local effects in areas where anthropogenic activity is high. Within this context, <span class="hlt">sea</span> ice has served as both a monitoring platform and sensitivity parameter of polar climate response since the time of Fridtjof Nansen. <span class="hlt">Sea</span> ice resides in the polar regions at the <span class="hlt">air-sea</span> interface such that changes in either the global atmospheric or oceanic circulation set up complex non-linear responses in <span class="hlt">sea</span> ice which are uniquely determined. <span class="hlt">Sea</span> ice currently covers a maximum of about 7% of the earth's surface but was completely absent during the Jurassic Period and far more extensive during the various ice ages. It is also geophysically very thin (typically <10 m in Arctic, <3 m in Antarctic) compared to the troposphere (roughly 10 km) and deep ocean (roughly 3 to 4 km). Because of these unique conditions, polar researchers regard <span class="hlt">sea</span> ice as one of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4024236','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4024236"><span>Influence of stochastic <span class="hlt">sea</span> ice parametrization on climate and the role of atmosphere–<span class="hlt">sea</span> ice–ocean <span class="hlt">interaction</span></span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Juricke, Stephan; Jung, Thomas</p> <p>2014-01-01</p> <p>The influence of a stochastic <span class="hlt">sea</span> ice strength parametrization on the mean climate is investigated in a coupled atmosphere–<span class="hlt">sea</span> ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic <span class="hlt">sea</span> ice parametrization causes an effective weakening of the <span class="hlt">sea</span> ice. In the uncoupled model this leads to an Arctic <span class="hlt">sea</span> ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic <span class="hlt">sea</span> ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic <span class="hlt">sea</span> ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of <span class="hlt">sea</span> ice. However, stochastic <span class="hlt">sea</span> ice perturbations affect regional <span class="hlt">sea</span> ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic <span class="hlt">sea</span> ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22598958-brownian-relaxation-inelastic-sphere-air','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22598958-brownian-relaxation-inelastic-sphere-air"><span>Brownian relaxation of an inelastic sphere in <span class="hlt">air</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bird, G. A., E-mail: gab@gab.com.au</p> <p>2016-06-15</p> <p>The procedures that are used to calculate the forces and moments on an aerodynamic body in the rarefied gas of the upper atmosphere are applied to a small sphere of the size of an aerosol particle at <span class="hlt">sea</span> level. While the gas-surface <span class="hlt">interaction</span> model that provides accurate results for macroscopic bodies may not be appropriate for bodies that are comprised of only about a thousand atoms, it provides a limiting case that is more realistic than the elastic model. The paper concentrates on the transfer of energy from the <span class="hlt">air</span> to an initially stationary sphere as it acquires Brownian motion.more » Individual particle trajectories vary wildly, but a clear relaxation <span class="hlt">process</span> emerges from an ensemble average over tens of thousands of trajectories. The translational and rotational energies in equilibrium Brownian motion are determined. Empirical relationships are obtained for the mean translational and rotational relaxation times, the mean initial power input to the particle, the mean rates of energy transfer between the particle and <span class="hlt">air</span>, and the diffusivity. These relationships are functions of the ratio of the particle mass to an average <span class="hlt">air</span> molecule mass and the Knudsen number, which is the ratio of the mean free path in the <span class="hlt">air</span> to the particle diameter. The ratio of the molecular radius to the particle radius also enters as a correction factor. The implications of Brownian relaxation for the second law of thermodynamics are discussed.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>