Science.gov

Sample records for airborne betula pollen

  1. Betula Pollen Influx as an Indicator of Holocene Climate Change in Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Eddudóttir, S. D.; Erlendsson, E.; Gísladóttir, G.

    2014-12-01

    Downy birch (Betula pubescens Ehrh.) forest is the natural climax vegetation in Iceland and reconstructions of Holocene forest dynamics can potentially provide important information about climate and environmental change in the North Atlantic. Pollen and macrofossil analysis have been carried out on a lake sediment core from Northwest Iceland, covering the period from the end of Younger Dryas to ca. 3000 cal. yr. BP. Only the most recent Icelandic pollen studies have included Betula pollen influx (pollen grains deposited per cm2 per year). Comparison between the Betula pollen percentages and Betula pollen influx in the core show a different trend between the two methods of data presentation, particularly after birch forest has been established. Both methods show expansion of dwarf birch (Betula nana) dominated shrub heath during the early Holocene. The appearance of downy birch (Betula pubescens) woodland and subsequent decline is also represented by both methods and is supported by the macrofossil record. The expansion of birch forest during the Holocene Thermal Maximum (HTM) is seen from high influx values of more than 2400 Betula grains cm-2 year-1 and Betula percentages above 80%. The influx decreases significantly at ca. 6600 cal. yr. BP and drops to less than 2000 Betula grains cm-2 year-1, decreasing upwards in the core. Betula percentage values become more variable and drop slightly at the same time, but not as prominently as the influx values. The terrestrial response recorded in the Betula pollen influx corresponds to changes apparent in marine cores from Húnaflói bay, and signifies a sensitivity of the Holocene terrestrial ecosystem to climate fluctuations. Betula pollen influx is potentially a sensitive proxy for temperature changes in Iceland and should be included in future palynological studies in order to improve the interpretation of Holocene vegetation and climate changes. The study is funded by the Eimskip University fund, University of Iceland

  2. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G.

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %-248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.

  3. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.

    PubMed

    Zhang, Yong; Bielory, Leonard; Georgopoulos, Panos G

    2014-07-01

    Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994-2000 and 2001-2011 showed that birch and oak trees were observed to flower 1-2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6%-248%. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions. PMID:23793955

  4. Are the birch trees in Southern England a source of Betula pollen for North London?

    NASA Astrophysics Data System (ADS)

    Skjøth, C. A.; Smith, M.; Brandt, J.; Emberlin, J.

    2009-01-01

    Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts ( n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200-0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.

  5. A Simple Method for Collecting Airborne Pollen

    ERIC Educational Resources Information Center

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  6. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula

    NASA Astrophysics Data System (ADS)

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries.

  7. Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus, and Betula.

    PubMed

    Nowosad, Jakub

    2016-06-01

    Corylus, Alnus, and Betula trees are among the most important sources of allergic pollen in the temperate zone of the Northern Hemisphere and have a large impact on the quality of life and productivity of allergy sufferers. Therefore, it is important to predict high pollen concentrations, both in time and space. The aim of this study was to create and evaluate spatiotemporal models for predicting high Corylus, Alnus, and Betula pollen concentration levels, based on gridded meteorological data. Aerobiological monitoring was carried out in 11 cities in Poland and gathered, depending on the site, between 2 and 16 years of measurements. According to the first allergy symptoms during exposure, a high pollen count level was established for each taxon. An optimizing probability threshold technique was used for mitigation of the problem of imbalance in the pollen concentration levels. For each taxon, the model was built using a random forest method. The study revealed the possibility of moderately reliable prediction of Corylus and highly reliable prediction of Alnus and Betula high pollen concentration levels, using preprocessed gridded meteorological data. Cumulative growing degree days and potential evaporation proved to be two of the most important predictor variables in the models. The final models predicted not only for single locations but also for continuous areas. Furthermore, the proposed modeling framework could be used to predict high pollen concentrations of Corylus, Alnus, Betula, and other taxa, and in other countries. PMID:26487352

  8. Analysis of airborne pollen concentrations in Zagreb, Croatia, 2002.

    PubMed

    Peternel, Renata; Culig, Josip; Mitić, Bozena; Vukusić, Ivan; Sostar, Zvonimir

    2003-01-01

    Employing the volumetric method by use of a Hirst sampler, a total of 71,286 pollen grains, as many as 94.20% of them allergenic, were recorded in the air samples from the city of Zagreb during the 2002 pollen season. Among identified pollen of 35 plant species/genera/families, 23 were allergenic: Taxus/Juniperus, Alnus sp., Fraxinus sp., Betula sp., Corylus sp., Poaceae, Urticaceae, Artemisia sp., Ambrosia sp., Carpinus sp., Castanea sp., Chenopodiaceae, Salix sp., Populus sp., Ulmus sp., Juglans sp., Quercus sp., Platanus sp., Fagus sp., Plantago sp., Pinus sp., Picea sp. and Abies sp. The pollen of these plants also cause the majority of pollinosis in Europe. Study results and the pollen calendar designed for the 2002 pollen season for the City of Zagreb provide useful data for allergologists to reach an accurate diagnosis. The calendar also provides timely information on airborne pollen types and air concentrations for individuals with pollen hypersensitivity, thus allowing them to adjust their daily activities so as to minimize their contact with allergens and improve their quality of life both at home and at work. PMID:12852741

  9. Fifteen years' record of airborne allergenic pollen and meteorological parameters in Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Gioulekas, Dimitrios; Balafoutis, Christos; Damialis, Athanasios; Papakosta, Despoina; Gioulekas, George; Patakas, Dimitrios

    . A pollen calendar has been constructed for the area of Thessaloniki and relationships between pollen transport and meteorological parameters have been assessed. Daily airborne pollen records were collected over a 15-year period (1987-2001), using a Burkard continuous volumetric pollen trap, located in the centre of the city. Sixteen allergenic pollen types were identified. Simultaneously, daily records of five main meteorological parameters (mean air temperature, relative humidity, rainfall, sunshine, wind speed) were made, and then correlated with fluctuations of the airborne pollen concentrations. For the first time in Greece, a pollen calendar has been constructed for 16 pollen types, from which it appears that 24.9% of the total pollen recorded belong to Cupressaceae, 20.8% to Quercus spp., 13.6% to Urticaceae, 9.1% to Oleaceae, 8.9% to Pinaceae, 6.3% to Poaceae, 5.4% to Platanaceae, 3.0% to Corylus spp., 2.5% to Chenopodiaceae and 1.4% to Populus spp. The percentages of Betula spp., Asteraceae (Artemisia spp. and Ambrosia spp.), Salix spp., Ulmaceae and Alnus spp. were each lower than 1%. A positive correlation between pollen transport and both mean temperature and sunshine was observed, whereas usually no correlation was found between pollen and relative humidity or rainfall. Finally, wind speed was generally found to have a significant positive correlation with the concentrations of 8 pollen types. For the first time in the area of Thessaloniki, and more generally in Greece, 15-year allergenic pollen records have been collected and meteorological parameters have been recorded. The airborne pollen concentration is strongly influenced by mean air temperature and sunshine duration. The highest concentrations of pollen grains are observed during spring (May).

  10. Airborne pollen trends in the Iberian Peninsula.

    PubMed

    Galán, C; Alcázar, P; Oteros, J; García-Mozo, H; Aira, M J; Belmonte, J; Diaz de la Guardia, C; Fernández-González, D; Gutierrez-Bustillo, M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, J; Ruiz-Valenzuela, L; Tormo, R; Trigo, M M; Domínguez-Vilches, E

    2016-04-15

    Airborne pollen monitoring is an effective tool for studying the reproductive phenology of anemophilous plants, an important bioindicator of plant behavior. Recent decades have revealed a trend towards rising airborne pollen concentrations in Europe, attributing these trends to an increase in anthropogenic CO2 emissions and temperature. However, the lack of water availability in southern Europe may prompt a trend towards lower flowering intensity, especially in herbaceous plants. Here we show variations in flowering intensity by analyzing the Annual Pollen Index (API) of 12 anemophilous taxa across 12 locations in the Iberian Peninsula, over the last two decades, and detecting the influence of the North Atlantic Oscillation (NAO). Results revealed differences in the distribution and flowering intensity of anemophilous species. A negative correlation was observed between airborne pollen concentrations and winter averages of the NAO index. This study confirms that changes in rainfall in the Mediterranean region, attributed to climate change, have an important impact on the phenology of plants. PMID:26803684

  11. Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland)

    NASA Astrophysics Data System (ADS)

    Puc, Małgorzata

    2012-03-01

    Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.

  12. Diurnal variation in airborne pollen concentrations of the selected taxa in Zagreb, Croatia.

    PubMed

    Toth, Ivan; Peternel, Renata; Srnec, Lidija; Vojniković, Bozo

    2011-09-01

    The number of individuals allergic to plant pollen has recently been on a constant increase. The knowledge of diurnal distribution and abundance of allergenic pollen types, their patterns and response to source position and weather is useful to correlate hay fever symptoms with the presence of allergenic pollen in the atmosphere. The aim of this study was to determine diurnal distribution of total airborne pollen, pollen of particular allergenic taxa, possible variation in diurnal pollen distribution at measuring sites placed at different heights, and effect of some meteorological parameters on airborne pollen concentrations. A 7-day Hirst-type volumetric pollen trap was used for pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). Total pollen of all plant taxa (Ambrosia sp., Betula sp., Cupressaceae, Urticaceae, Poaceae, Quercus sp., Fraxinus sp., Alnus sp., Corylus sp., Populus sp., Pinus sp., Picea sp.) observed showed a regular diurnal distribution at both sampling sites in both study years, with a rise in the pollen concentration recorded after 4.00 a.m. and 6.00 a.m., respectively. The peak pollen concentration occurred between 12.00 a.m. and 4.00 p.m., and the lowest diurnal pollen concentrations were recorded overnight. About 50% of the 24-h pollen concentration were released to the atmosphere between 10.00 a.m. and 4.00 p.m. The timing and size of diurnal peaks were closely related to high temperature, low humidity and south-west maximum wind direction. PMID:22220402

  13. Seasonal variations of airborne pollen in Allahabad, India.

    PubMed

    Sahney, Manju; Chaurasia, Swati

    2008-01-01

    Using a Burkard 7-day volumetric sampler a survey of airborne pollen grains in Allahabad was carried out from December 2004--November 2005 to assess the qualitative and quantitative occurrence of pollen grains during different months of the year, and to characterize the pollen seasons of dominant pollen types in the atmosphere of Allahabad. 80 pollen types were identified out of the total pollen catch of 3,416.34 pollen grains/m(3). Bulk of the pollen originated from anemophilous trees and grasses. Thirteen pollen types recorded more than 1 % of the annual total pollen catch. Holoptelea integrifolia formed the major component of the pollen spectrum constituting 46.21 % of the total pollen catch followed by Poaceae, Azadirachta indica, Ailanthus excelsa, Putranjiva roxburghii, Parthenium hysterophorus, Ricinus communis, Brassica compestris, Amaranthaceae/Chenopodiaceae, Madhuca longifolia, Syzygium cumini, other Asteraceae and Aegle marmelos. Highest pollen counts were obtained in the month of March and lowest in July. The pollen types recorded marked the seasonal pattern of occurrence in the atmosphere. February-May was the principal pollen season with maximum number of pollen counts and pollen types. Chief sources of pollen during this period were arboreal taxa. September-October was the second pollen season with grasses being the main source of pollen. Airborne pollen spectrum reflected the vegetation of Allahabad, except for Alnus sp., which grows in the Himalayan region. A significant negative correlation was found of daily pollen counts with minimum temperature, relative humidity and rainfall. PMID:19061265

  14. Effects of atmospheric pollutants (CO, O3, SO2) on the allergenicity of Betula pendula, Ostrya carpinifolia, and Carpinus betulus pollen.

    PubMed

    Cuinica, Lázaro G; Cruz, Ana; Abreu, Ilda; da Silva, Joaquim C G Esteves

    2015-01-01

    Pollen of Betula pendula, Ostrya carpinifolia, and Carpinus betulus was exposed in vitro to relatively low levels of the air pollutants, namely carbon monoxide, ozone, and sulfur dioxide. The allergenicity of the exposed pollen was compared with that of non-exposed pollen samples to assess if air pollution exposition affects the allergenicity potential of pollen. The immunodetection assays indicated higher IgE recognition by all sera of allergic patients to the pollen protein extracts in all exposed samples in comparison to the non-exposed samples. These results show that the pollen exposition to low pollutants' levels induces increased allergic reaction to sensitized individuals. PMID:25055718

  15. Wavelet-based fractal analysis of airborne pollen

    NASA Astrophysics Data System (ADS)

    Degaudenzi, M. E.; Arizmendi, C. M.

    1999-06-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self-protection of a pollen allergy is possible through information about future pollen contents in the air. In spite of the importance of airborne pollen concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of daily pollen forecasts result in failures. Previous analyses of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply a wavelet transform to study the multifractal characteristics of an airborne pollen time series. The information and the correlation dimensions correspond to a chaotic system showing a loss of information with time evolution.

  16. Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air

    NASA Astrophysics Data System (ADS)

    Castellano-Méndez, M.; Aira, M. J.; Iglesias, I.; Jato, V.; González-Manteiga, W.

    2005-05-01

    An increasing percentage of the European population suffers from allergies to pollen. The study of the evolution of air pollen concentration supplies prior knowledge of the levels of pollen in the air, which can be useful for the prevention and treatment of allergic symptoms, and the management of medical resources. The symptoms of Betula pollinosis can be associated with certain levels of pollen in the air. The aim of this study was to predict the risk of the concentration of pollen exceeding a given level, using previous pollen and meteorological information, by applying neural network techniques. Neural networks are a widespread statistical tool useful for the study of problems associated with complex or poorly understood phenomena. The binary response variable associated with each level requires a careful selection of the neural network and the error function associated with the learning algorithm used during the training phase. The performance of the neural network with the validation set showed that the risk of the pollen level exceeding a certain threshold can be successfully forecasted using artificial neural networks. This prediction tool may be implemented to create an automatic system that forecasts the risk of suffering allergic symptoms.

  17. Predicting onset and duration of airborne allergenic pollen season in the United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2015-02-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5%-30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994-2010 are mostly within 0-6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations.

  18. Predicting Onset and Duration of Airborne Allergenic Pollen Season in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Cai, Ting; Mi, Zhongyuan; Georgopoulos, Panos

    2014-01-01

    Allergenic pollen is one of the main triggers of Allergic Airway Disease (AAD) affecting 5% to 30% of the population in industrialized countries. A modeling framework has been developed using correlation and collinearity analyses, simulated annealing, and stepwise regression based on nationwide observations of airborne pollen counts and climatic factors to predict the onsets and durations of allergenic pollen seasons of representative trees, weeds and grass in the contiguous United States. Main factors considered are monthly, seasonal and annual mean temperatures and accumulative precipitations, latitude, elevation, Growing Degree Day (GDD), Frost Free Day (FFD), Start Date (SD) and Season Length (SL) in the previous year. The estimated mean SD and SL for birch (Betula), oak (Quercus), ragweed (Ambrosia), mugwort (Artemisia) and grass (Poaceae) pollen season in 1994–2010 are mostly within 0 to 6 days of the corresponding observations for the majority of the National Allergy Bureau (NAB) monitoring stations across the contiguous US. The simulated spatially resolved maps for onset and duration of allergenic pollen season in the contiguous US are consistent with the long term observations. PMID:25620875

  19. Airborne pollen of allergenic herb species in Toledo (Spain).

    PubMed

    Vaquero, Consolación; Rodríguez-Torres, Alfonso; Rojo, Jesús; Pérez-Badia, Rosa

    2013-01-01

    This study analysed airborne pollen counts for allergenic herb taxa in Toledo (central Spain), a major tourist city receiving over 2 million visitors per year, located in the region of Castilla-La Mancha. The taxa selected were Chenopodiaceae-Amaranthaceae, Plantago, Poaceae and Urticaceae, all of which produce allergenic pollen giving rise to serious symptoms in pollen-allergy sufferers. Aerobiological data were recorded over a 6-year period (2005 to 2010) using the sampling and analysis procedures recommended by the Spanish Aerobiology Network. The abundance and the temporal (annual, daily and intradiurnal) distribution of these pollen types were analysed, and the influence of weather-related factors on airborne pollen counts was assessed. Pollen from herbaceous species accounted for 20.9% of total airborne pollen in Toledo, the largest contributor being Poaceae, with 8.5% of the total pollen count; this family was also the leading cause of respiratory allergies. Examination of intradiurnal variation revealed three distinct distribution patterns: (1) peak daily counts for Chenopodiaceae-Amaranthaceae and Plantago were recorded during the hottest part of the day, i.e. from 1400 to 1600 hours; (2) Urticaceae displayed two peaks (1400-1600 and 2200 hours); and (3) Poaceae counts remained fairly stable throughout the day. Two main risk periods were identified for allergies: spring, with allergies caused by Urticaceae, Plantago and Poaceae pollen, and summer, due to Chenopodiaceae-Amaranthaceae pollen. PMID:22331454

  20. Effect of air pollutant NO₂ on Betula pendula, Ostrya carpinifolia and Carpinus betulus pollen fertility and human allergenicity.

    PubMed

    Cuinica, Lázaro G; Abreu, Ilda; Esteves da Silva, Joaquim

    2014-03-01

    Pollen of Betula pendula, Ostrya carpinifolia and Carpinus betulus was exposed in vitro to two levels of NO2 (about 0.034 and 0.067 ppm) - both below current atmospheric hour-limit value acceptable for human health protection in Europe (0.11 ppm for NO2). Experiments were performed under artificial solar light with temperature and relative humidity continuously monitored. The viability, germination and total soluble proteins of all the pollen samples exposed to NO2 decreased significantly when compared with the non-exposed. The polypeptide profiles of all the pollen samples showed bands between 15 and 70 kDa and the exposure to NO2 did not produce any detectable changes in these profiles. However, the immunodetection assays indicated higher IgE recognition by patient sera sensitized to the pollen extracts from all exposed samples in comparison to the non-exposed samples. The common reactive bands to the three pollen samples correspond to 58 and 17 kDa proteins. PMID:24361564

  1. Models for forecasting airborne Cupressaceae pollen levels in central Spain

    NASA Astrophysics Data System (ADS)

    Sabariego, Silvia; Cuesta, Pedro; Fernández-González, Federico; Pérez-Badia, Rosa

    2012-03-01

    The influence of meteorological variables on airborne Cupressaceae pollen levels in central Spain was analyzed, and prediction models based on polynomial and multiple regressions were used to predict pollen counts throughout the pollen season. The Cupressaceae pollen type was selected in view of both its abundance in the atmosphere of the central Iberian Peninsula (particularly from January to March) and its allergenic importance. Sampling was performed uninterruptedly over a 5-year period, using a Hirst volumetric sampler and the sampling method established by the Spanish Aerobiology Network. Temperature displayed the strongest (positive) correlation with Cupressaceae pollen counts. Polynomial and multiple regression analysis showed that maximum temperature was the most influential variable included in prediction models. The prediction equations obtained for the study period were reasonably satisfactory, accounting for 48% and 59% of the variation in airborne pollen levels.

  2. Factors that determine the severity of Betula spp. pollen seasons in Poland (Poznań and Krakow) and the United Kingdom (Worcester and London)

    NASA Astrophysics Data System (ADS)

    Stach, A.; Emberlin, J.; Smith, M.; Adams-Groom, B.; Myszkowska, D.

    2008-03-01

    The aim of this paper is to analyse variations in the severity of Betula pollen seasons, particularly in relation to meteorological parameters at four sites, Poznań and Krakow in Poland, and Worcester and London in the United Kingdom. Results show that there is a significant relationship between Betula pollen season severity and weather conditions both in the year before pollination and in the same year that pollen is released from the plant. Furthermore, it is likely that the magnitude of birch pollen seasons in Poznań, Worcester and London is linked in some way to different phases of the North Atlantic Oscillation (NAO). Significant positive relationships exist between birch pollen counts at Poznań and temperatures, rainfall and averages of the NAO in the year before pollination. An opposite relationship is evident at the two sites studied in the United Kingdom. There were significant positive correlations between the severity of birch pollen seasons recorded at Worcester and temperatures and averages of the NAO during the winter and spring in the year of pollination, and negative correlations at both Worcester and London with similar variables from the previous year. In addition, Betula pollen seasons in Krakow do not appear to be influenced by the NAO, which is probably the result of Krakow having a more continental climate.

  3. Ambrosia airborne pollen concentration modelling and evaluation over Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Viovy, Nicolas; Khvorostyanov, Dmitry; Colette, Augustin

    2014-05-01

    Native from North America, Ambrosia artemisiifolia L. (Common Ragweed) is an invasive annual weed introduced in Europe in the mid-nineteenth century. It has a very high spreading potential throughout Europe and releases very allergenic pollen leading to health problems for sensitive persons. Because of its health effects, it is necessary to develop modelling tools to be able to forecast ambrosia air pollen concentration and to inform allergy populations of allergenic threshold exceedance. This study is realised within the framework of the ATOPICA project (https://www.atopica.eu/) which is designed to provide first steps in tools and estimations of the fate of allergies in Europe due to changes in climate, land use and air quality. To calculate and predict airborne concentrations of ambrosia pollen, a chain of models has been built. Models have been developed or adapted for simulating the phenology (PMP phonological modelling platform), inter-annual production (ORCHIDEE vegetation model), release and airborne processes (CHIMERE chemical transport model) of ragweed pollen. Airborne pollens follow processes similar to air quality pollutants in CHIMERE with some adaptations. The detailed methodology, formulations and input data will be presented. A set of simulations has been performed to simulate airborne concentrations of pollens over long time periods on a large European domain. Hindcast simulations (2000 - 2012) driven by ERA-Interim re-analyses are designed to best simulate past periods airborne pollens. The modelled pollen concentrations are calibrated with observations and validated against additional observations. Then, 20-year long historical simulations (1986 - 2005) are carried out using calibrated ambrosia density distribution and climate model-driven weather in order to serve as a control simulation for future scenarios. By comparison with multi-annual observed daily pollen counts we have shown that the model captures well the gross features of the pollen

  4. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe

    NASA Astrophysics Data System (ADS)

    Emberlin, J.; Detandt, M.; Gehrig, R.; Jaeger, S.; Nolard, N.; Rantio-Lehtimäki, A.

    2002-07-01

    A shift in the timing of birch pollen seasons is important because it is well known to be a significant aeroallergen, especially in NW Europe where it is a notable cause of hay fever and pollen-related asthma. The research reported in this paper aims to investigate temporal patterns in the start dates of Betula (birch) pollen seasons at selected sites across Europe. In particular it investigates relationships between the changes in start dates and changes in spring temperatures over approximately the last 20 years. Daily birch pollen counts were used from Kevo, Turku, London, Brussels, Zurich and Vienna, for the core period from 1982 to 1999 and, in some cases, from 1970 to 2000. The sites represent a range of biogeographical situations from just within the Arctic Circle through to North West Maritime and Continental Europe. Pollen samples were taken with Hirst-type volumetric spore traps. Weather data were obtained from the sites nearest to the pollen traps. The timing of birch pollen seasons is known to depend mostly on a non-linear balance between the winter chilling required to break dormancy, and spring temperatures. Pollen start dates and monthly mean temperatures for January through to May were compiled to 5-year running means to examine trends. The start dates for the next 10 years were calculated from regression equations for each site, on the speculative basis that the current trends would continue. The analyses show regional contrasts. Kevo shows a marked trend towards cooler springs and later starts. If this continues the mean start date will become about 6 days later over the next 10 years. Turku exhibits cyclic patterns in start dates. A current trend towards earlier starts is expected to continue until 2007, followed by another fluctuation. London, Brussels, Zurich and Vienna show very similar patterns in the trends towards earlier start dates. If the trend continues the mean start dates at these sites will advance by about 6 days over the next 10

  5. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe.

    PubMed

    Emberlin, J; Detandt, M; Gehrig, R; Jaeger, S; Nolard, N; Rantio-Lehtimäki, A

    2002-09-01

    A shift in the timing of birch pollen seasons is important because it is well known to be a significant aeroallergen, especially in NW Europe where it is a notable cause of hay fever and pollen-related asthma. The research reported in this paper aims to investigate temporal patterns in the start dates of Betula (birch) pollen seasons at selected sites across Europe. In particular it investigates relationships between the changes in start dates and changes in spring temperatures over approximately the last 20 years. Daily birch pollen counts were used from Kevo, Turku, London, Brussels, Zurich and Vienna, for the core period from 1982 to 1999 and, in some cases, from 1970 to 2000. The sites represent a range of biogeographical situations from just within the Arctic Circle through to North West Maritime and Continental Europe. Pollen samples were taken with Hirst-type volumetric spore traps. Weather data were obtained from the sites nearest to the pollen traps. The timing of birch pollen seasons is known to depend mostly on a non-linear balance between the winter chilling required to break dormancy, and spring temperatures. Pollen start dates and monthly mean temperatures for January through to May were compiled to 5-year running means to examine trends. The start dates for the next 10 years were calculated from regression equations for each site, on the speculative basis that the current trends would continue. The analyses show regional contrasts. Kevo shows a marked trend towards cooler springs and later starts. If this continues the mean start date will become about 6 days later over the next 10 years. Turku exhibits cyclic patterns in start dates. A current trend towards earlier starts is expected to continue until 2007, followed by another fluctuation. London, Brussels, Zurich and Vienna show very similar patterns in the trends towards earlier start dates. If the trend continues the mean start dates at these sites will advance by about 6 days over the next 10

  6. Characterisation of particulate matter on airborne pollen grains.

    PubMed

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-11-01

    A characterization of the physical-chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles' equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical-chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity. PMID:26141127

  7. Influence of wind on daily airborne pollen counts in Catalonia (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    tareq Majeed, Husam; Periago, Cristina; Alarcón, Marta; De Linares, Concepción; Belmonte, Jordina

    2016-04-01

    The aim of this study is to analize the influence of wind (speed and direction) on the daily airborne pollen counts recorded in Catalonia (NE Iberian Peninsula) of 21 pollen taxa recorded at 6 aerobiological stations: Barcelona, Bellaterra, Girona, Lleida Manresa, and Tarragona for the period 2004-2014. The taxa studied are Alnus, Betula, Castanea, Cupressaceae, Fagus, Fraxinus, Olea, Pinus, Platanus, total Quercus, Quercus deciduous type, Quercus evergreen type, Ulmus, Corylus, Pistacia, Artemisia, Chenopodiaceae/Amaranthaceae, Plantago, Poaceae, Polygonaceae, and Urticaceae. The mean daily wind direction was divided into 8 sectors: N, NE, E, SE, S, SW, W and NW. For each sector, the correlation between the daily pollen concentrations and wind speed using Spearman's rank correlation coefficient was computed and compared with the wind rose charts. The results showed that Tarragona was the station with more significant correlations followed by Bellaterra, Lleida and Manresa. On the other hand, Artemisia was the most correlated taxon with mainly negative values, and Fagus was the least. The W wind direction showed the largest number of significant correlations, mostly positive, while the N direction was the least and negatively correlated.

  8. Quantitative DNA Analyses for Airborne Birch Pollen

    PubMed Central

    Müller-Germann, Isabell; Vogel, Bernhard; Vogel, Heike; Pauling, Andreas; Fröhlich-Nowoisky, Janine; Pöschl, Ulrich; Després, Viviane R.

    2015-01-01

    Birch trees produce large amounts of highly allergenic pollen grains that are distributed by wind and impact human health by causing seasonal hay fever, pollen-related asthma, and other allergic diseases. Traditionally, pollen forecasts are based on conventional microscopic counting techniques that are labor-intensive and limited in the reliable identification of species. Molecular biological techniques provide an alternative approach that is less labor-intensive and enables identification of any species by its genetic fingerprint. A particularly promising method is quantitative Real-Time polymerase chain reaction (qPCR), which can be used to determine the number of DNA copies and thus pollen grains in air filter samples. During the birch pollination season in 2010 in Mainz, Germany, we collected air filter samples of fine (<3 μm) and coarse air particulate matter. These were analyzed by qPCR using two different primer pairs: one for a single-copy gene (BP8) and the other for a multi-copy gene (ITS). The BP8 gene was better suitable for reliable qPCR results, and the qPCR results obtained for coarse particulate matter were well correlated with the birch pollen forecasting results of the regional air quality model COSMO-ART. As expected due to the size of birch pollen grains (~23 μm), the concentration of DNA in fine particulate matter was lower than in the coarse particle fraction. For the ITS region the factor was 64, while for the single-copy gene BP8 only 51. The possible presence of so-called sub-pollen particles in the fine particle fraction is, however, interesting even in low concentrations. These particles are known to be highly allergenic, reach deep into airways and cause often severe health problems. In conclusion, the results of this exploratory study open up the possibility of predicting and quantifying the pollen concentration in the atmosphere more precisely in the future. PMID:26492534

  9. Airborne castanea pollen forecasting model for ecological and allergological implementation.

    PubMed

    Astray, G; Fernández-González, M; Rodríguez-Rajo, F J; López, D; Mejuto, J C

    2016-04-01

    Castanea sativa Miller belongs to the natural vegetation of many European deciduous forests prompting impacts in the forestry, ecology, allergological and chestnut food industry fields. The study of the Castanea flowering represents an important tool for evaluating the ecological conservation of North-Western Spain woodland and the possible changes in the chestnut distribution due to recent climatic change. The Castanea pollen production and dispersal capacity may cause hypersensitivity reactions in the sensitive human population due to the relationship between patients with chestnut pollen allergy and a potential cross reactivity risk with other pollens or plant foods. In addition to Castanea pollen's importance as a pollinosis agent, its study is also essential in North-Western Spain due to the economic impact of the industry around the chestnut tree cultivation and its beekeeping interest. The aim of this research is to develop an Artificial Neural Networks for predict the Castanea pollen concentration in the atmosphere of the North-West Spain area by means a 20years data set. It was detected an increasing trend of the total annual Castanea pollen concentrations in the atmosphere during the study period. The Artificial Neural Networks (ANNs) implemented in this study show a great ability to predict Castanea pollen concentration one, two and three days ahead. The model to predict the Castanea pollen concentration one day ahead shows a high linear correlation coefficient of 0.784 (individual ANN) and 0.738 (multiple ANN). The results obtained improved those obtained by the classical methodology used to predict the airborne pollen concentrations such as time series analysis or other models based on the correlation of pollen levels with meteorological variables. PMID:26802339

  10. Controlling the levels of airborne pollen: can heterogeneous photocatalysis help?

    PubMed

    Sapiña, M; Jimenez-Relinque, E; Castellote, M

    2013-10-15

    Airborne pollen is a worldwide problem because is a very important allergenic agent; it can be altered only by certain microorganisms and by some oxidizers, such as reactive oxygen species (ROS). On the other hand, heterogeneous photocatalysis (HPC) arose as a promising technology for reducing the level of contaminants in the air, based on their degradation by the production of ROS. In this paper, study of the feasibility of HPC to diminish the counts of pollen is undertaken. The research has been carried out at different levels, from solutions to mortar specimens with the evidence that HPC is able to reduce the amount of pollen grains. This is a major breakthrough that opens the door to a whole field of research, already full of gaps, whose implications could be quite controversial. PMID:24063577

  11. Effect of land uses and wind direction on the contribution of local sources to airborne pollen.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Fernández-González, Federico; Pérez-Badia, Rosa

    2015-12-15

    The interpretation of airborne pollen levels in cities based on the contribution of the surrounding flora and vegetation is a useful tool to estimate airborne allergen concentrations and, consequently, to determine the allergy risk for local residents. This study examined the pollen spectrum in a city in central Spain (Guadalajara) and analysed the vegetation landscape and land uses within a radius of 20km in an attempt to identify and locate the origin of airborne pollen and to determine the effect of meteorological variables on pollen emission and dispersal. The results showed that local wind direction was largely responsible for changes in the concentrations of different airborne pollen types. The land uses contributing most to airborne pollen counts were urban green spaces, though only 0.1% of the total surface area studied, and broadleaved forest which covered 5% of the study area. These two types of land use together accounted for 70% of the airborne pollen. Crops, scrubland and pastureland, though covering 80% of the total surface area, contributed only 18.6% to the total pollen count, and this contribution mainly consisted of pollen from Olea and herbaceous plants, including Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Pollen from ornamental species were mainly associated with easterly (Platanus), southerly (Cupressaceae) and westerly (Cupressaceae and Platanus) winds from the areas where the city's largest parks and gardens are located. Quercus pollen was mostly transported by winds blowing in from holm-oak stands on the eastern edge of the city. The highest Populus pollen counts were associated with easterly and westerly winds blowing in from areas containing rivers and streams. The airborne pollen counts generally rose with increasing temperature, solar radiation and hours of sunlight, all of which favour pollen release. In contrast, pollen counts declined with increased relative humidity and rainfall, which hinder airborne pollen transport

  12. Airborne pollen and spores of León (Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-González, Delia; Suarez-Cervera, María; Díaz-González, Tomás; Valencia-Barrera, Rosa María

    1993-06-01

    A qualitative and quantitative analysis of airborne pollen and spores was carried out over 2 years (from September 1987 to August 1989) in the city of León. Slides were prepared daily using a volumetric pollen trap, which was placed on the Faculty of Veterinary Science building (University of León) 12m above ground-level. Fifty-one pollen types were observed; the most important of these were: Cupressaceae during the winter, Pinus and Quercus in spring, and Poaceae, Leguminosae and Chenopodiaceae in the summer. The results also showed the existence of a rich mould spore assemblage in the atmosphere. The group of Amerospores ( Penicillium, Aspergillus and Cladosporium) as well as Dictyospores ( Alternaria) were the most abundant; Puccinia was common in the air in August. Fluctuations in the total pollen and spores m3 of air were compared with meteorological parameters (temperature, relative humidity and rainfall). From the daily sampling of the atmosphere of León, considering the maximum and minimum temperature and duration of rainfall, the start of the pollen grain season was observed generally to coincide with a rise in temperature in the absence of rain.

  13. Modelling airborne concentration and deposition rate of maize pollen

    NASA Astrophysics Data System (ADS)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  14. Enhanced airborne radioactivity during a pine pollen release episode.

    PubMed

    Tschiersch, J; Frank, G; Roth, P; Wagenpfeil, F; Watterson, F; Watterson, J

    1999-07-01

    A single episode of pine pollen release in the highly contaminated area of Novozybkov, Russian Federation, which led to enhanced atmospheric concentrations of 137Cs is discussed. The pollen grains were sampled by a rotating arm impactor and analysed by gamma-spectrometry for 137Cs activity and by image analysis for their size. In the vicinity of a forest, a maximum concentration of 4.5+/-0.4 mBq m(-3) was measured, and a mean activity per pollen grain of 260+/-80 nBq was determined. The emission rate of the Novozybkov mixed pine forest was estimated to be approximately 400 Bq m(-2) per year. Because of the large size of pine pollen grains (about 50 microm) and the short emission period of 5-8 days per year, the estimated potential annual inhalation doses are very low. Biological emissions including pollen release may be a source of increased airborne radionuclide concentrations at larger distances from the source areas as well. PMID:10461761

  15. Elemental characterization of the airborne pollen surface using Electron Probe Microanalysis (EPMA)

    NASA Astrophysics Data System (ADS)

    Duque, Laura; Guimarães, Fernanda; Ribeiro, Helena; Sousa, Raquel; Abreu, Ilda

    2013-08-01

    Recent worldwide increase in pollinoses has been attributed to the synergy between pollen and pollutants. We used EPMA for the elemental characterization of the airborne pollen surface in order to find out what occurs to the wall of pollen grains when they are together with other atmospheric pollutants. Analyses were performed both to airborne pollen and to pollen that was collected from Acer spp., Platanus spp. and Pinus spp. trees. Airborne samples were assembled using a Hirst-type volumetric spore sampler set in the coastal city of Porto, Portugal. Airborne pollen samples showed major elemental differences when compared to the control pollen sample of the same species, namely in the amounts of Cl, Na and Mg, which very significantly increased on airborne samples, revealing an important influence of the ocean. Mineral dust also contributed to modify the pollen surface, by increasing Si contents on Acer spp. and Platanus spp. airborne pollen. Our results revealed consistent positive effects of the relative humidity and the precipitation in the increase of Cl, Na and Mg relative amounts on the pollen surface. This study shows that pollen grains have the ability to adsorb and/or absorb other materials, which may contribute to enhance pollen's harmful effects on people's health.

  16. Variations of airborne winter pollen in southern Spain.

    PubMed

    Ruiz de Clavijo, E; Galán, C; Infante, F; Domínguez, E

    1988-01-01

    This work deals with the variation in the atmosphere of the airborne pollen produced by winter blooming plants and is aimed to establish correlations between the concentration of pollen grains in the atmosphere of Córdoba and meteorological parameters such as the temperature, humidity, rainfall, pressure, hours of sunlight and wind speed and direction. The work was conducted for two consecutive years (1981-82 and 1982-83). The sampling was carried out in Córdoba (Spain) with a BURKARD sporetrap. The data obtained in the aeropalinological study are correlated to the above-mentioned meterological parameters. Along the period investigated grains were found from Ulmus minor, Fraxinus sp., Populus sp., Alnus glutinosa and Cupressaceae, and less frequently, Artemisia sp., Pinaceae, Urticaceae, type Helianthus and Gramineae. Pollen grains from Cupressaceae were found at the highest absolute and relative concentrations in the atmosphere of Córdoba during the winter, where they occurred almost throughout. The correlation analysis applied showed that the parameters most markedly influencing the grain concentration of most taxa were the temperature and humidity. Alnus glutinosa was the least affected species, probably because of the scarcity of its pollen grains. PMID:3177155

  17. Physico-chemical characteristics of visibility impairment by airborne pollen in an urban area

    NASA Astrophysics Data System (ADS)

    Kim, Kyung W.

    The number of airborne pollen produced from plants is visible as a haze mixed with urban air pollution in an urban area when atmospheric conditions are proper for pollination of pollen from April to May in Korea. The big loading of airborne pollen can cause further visibility degradation in an urban area. In order to investigate physico-chemical characteristics of visibility impairment by airborne pollen, chemical aerosol measurements, optical aerosol monitoring, and scenic monitoring were performed during the intensive monitoring period from April 19 to May 2, 2005 in the urban area of Seoul, Korea. The particles collected on filters were examined with a scanning electron microscope (SEM) interfaced with an energy dispersive X-ray analysis to characterize size, elemental composition, and count of airborne pollen. During the airborne pollen period, the daily averaged number concentrations of airborne pollen; P and P were calculated to be 8.4±6.9 and 113.7±91.1 m -3, respectively. The daily averaged light extinction coefficient ( bext), light scattering coefficient for open path ( bscat), light scattering coefficient for dry particle in the fine regime ( bscat,fine), and light absorption coefficient in the fine regime ( babs,fine) were measured to be 459±267, 357±214, 263±165, and 44±30 Mm -1, respectively. And mass concentration of PM 2.5 and PM 10 were measured to be 46.5±29.1 and 97.0±41.7 μg m -3. The average light absorption coefficient by airborne pollen was estimated to be about 30 M m -1 and the average light scattering coefficient by airborne pollen was estimated to be 67±57 Mm -1. During the airborne pollen period the average contribution of airborne pollen to visibility impairment was roughly estimated to be 19-25%.

  18. The occurrence and allergising potential of airborne pollen in West Bengal, India.

    PubMed

    Boral, Dola; Chatterjee, Soma; Bhattacharya, Kashinath

    2004-01-01

    A continuous 2-year volumetric aerobiological survey was conducted in Berhampore town, a centrally located and representative part of West Bengal, India. The aim of the study was to assess the allergising potential of airborne pollen grains of West Bengal. A total of 31 pollen types were identified of which Poaceae (grasses) pollen showed maximum frequency, followed by Cyperaceae, Cassia sp., Acacia auriculiformis, etc. The seasonal periodicities of the pollen types and their relationship to meteorological conditions were investigated. It was found that the pollen concentration is positively correlated with temperature and negatively correlated with rainfall and relative humidity. Clinical investigations by skin prick test were carried out to detect allergenicity of pollen types. Eighteen common airborne pollen types induced positive responses of which pollen extracts of Saccharum officinarum (grass), Azadirachta indica, Cocos nucifera, Phoenix sylvestris, Cyperus rotundus and Eucalyptus citriodora showed strongest sensitising potential. This result is consistent with previous investigations in different parts of West Bengal. PMID:15236497

  19. Seasonal and intradiurnal variation of airborne pollen concentrations in Bodrum, SW Turkey.

    PubMed

    Tosunoglu, Aycan; Bicakci, Adem

    2015-04-01

    An aeropalynological study was performed in Bodrum, the famous tourism center in southwestern Turkey with a Hirst-type volumetric 7-day pollen and spore trap for 2 years (2007-2008). In Bodrum, 25,099 pollen grains as a mean value belonging to 41 taxa were recorded annually during the study period, and pollen grains from woody plant taxa had the largest atmospheric contribution of 86.99% and 24 taxa. However, 17 herbaceous plant taxa constituted 12.82% of the annual total pollen count, and 0.19% were unidentified. An average annual pollen index of 22.66% was recorded in March, despite differences from year to year. The highest pollen variability of 34 taxa was recorded in April and May. Predominant pollen types belonged to Cupressaceae/Taxaceae (42.73%), Quercus (15.95%), Pinus (9.78%), Olea europaea (9.04%), Poaceae (5.50%), Betula (1.82%), Pistacia (1.74%), Morus (1.72%), Urticaceae (1.46%), and Plantago (1.28%) and generated 91.03 of the annual total. In total, 32.59% of the mean annual total pollen index was recorded in the morning, and less pollen was recorded in the evening (18.71%). Maximum pollen concentration was recorded between 11:00 and 12:00 a.m. PMID:25750068

  20. Airborne pollen assemblages and weather regime in the central-eastern Loess Plateau, China

    NASA Astrophysics Data System (ADS)

    Li, Yuecong; Ge, Yawen; Xu, Qinghai; Bunting, Jane M.; Lv, Suqing; Wang, Junting; Li, Zetao

    2015-04-01

    This paper presents the results of pollen trapping studies designed to quantify the pollen assemblages carried in the winds of the Loess Plateau in Luochuan and Hunyuan. The one-year-collection samples analysis results show that pollen assemblages can be more sensitive to the change of climate than the vegetation composition, because of the change of pollen production. The analysis results of pollen traps in different weather regimes indicate that the pollen influx coming from dust weather contribute more to the total pollen influx than that coming from non-dust weather. The wind speed is the most important influenced factor to pollen assemblages, then the mean temperature and the mean relative humidity, the wind direction also contributes some. Strong wind coming from dust direction can make the percent and influx of Artemisia and Chenopodiaceae increase obviously with averagely higher than over 2.7 times in dust weather than in non-dust samples. The influences of wind speed and wind direction are not serious to some arboreal pollen such as Rosaceae, Quercus, Betula, Pinus and Ostryopsis, which are mainly influenced by temperature or the relative humidity such as Salix, Hippophae, Carpinus, Brassicaceae, Cupressaceae, Fabaceae.

  1. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Vautard, Robert; Liu, Li; Solmon, Fabien; Viovy, Nicolas; Khvorostyanov, Dmitry; Essl, Franz; Chuine, Isabelle; Colette, Augustin; Semenov, Mikhail A.; Schaffhauser, Alice; Storkey, Jonathan; Thibaudon, Michel; Epstein, Michelle M.

    2015-08-01

    Common ragweed (Ambrosia artemisiifolia) is an invasive alien species in Europe producing pollen that causes severe allergic disease in susceptible individuals. Ragweed plants could further invade European land with climate and land-use changes. However, airborne pollen evolution depends not only on plant invasion, but also on pollen production, release and atmospheric dispersion changes. To predict the effect of climate and land-use changes on airborne pollen concentrations, we used two comprehensive modelling frameworks accounting for all these factors under high-end and moderate climate and land-use change scenarios. We estimate that by 2050 airborne ragweed pollen concentrations will be about 4 times higher than they are now, with a range of uncertainty from 2 to 12 largely depending on the seed dispersal rate assumptions. About a third of the airborne pollen increase is due to on-going seed dispersal, irrespective of climate change. The remaining two-thirds are related to climate and land-use changes that will extend ragweed habitat suitability in northern and eastern Europe and increase pollen production in established ragweed areas owing to increasing CO2. Therefore, climate change and ragweed seed dispersal in current and future suitable areas will increase airborne pollen concentrations, which may consequently heighten the incidence and prevalence of ragweed allergy.

  2. Relationships among Indoor, Outdoor, and Personal Airborne Japanese Cedar Pollen Counts

    PubMed Central

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  3. Relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts.

    PubMed

    Yamamoto, Naomichi; Matsuki, Yuuki; Yokoyama, Hiromichi; Matsuki, Hideaki

    2015-01-01

    Japanese cedar pollinosis (JCP) is an important illness caused by the inhalation of airborne allergenic cedar pollens, which are dispersed in the early spring throughout the Japanese islands. However, associations between pollen exposures and the prevalence or severity of allergic symptoms are largely unknown, due to a lack of understanding regarding personal pollen exposures in relation to indoor and outdoor concentrations. This study aims to examine the relationships among indoor, outdoor, and personal airborne Japanese cedar pollen counts. We conducted a 4-year monitoring campaign to quantify indoor, outdoor, and personal airborne cedar pollen counts, where the personal passive settling sampler that has been previously validated against a volumetric sampler was used to count airborne pollen grains. A total of 256 sets of indoor, outdoor, and personal samples (768 samples) were collected from 9 subjects. Medians of the seasonally-integrated indoor-to-outdoor, personal-to-outdoor, and personal-to-indoor ratios of airborne pollen counts measured for 9 subjects were 0.08, 0.10, and 1.19, respectively. A greater correlation was observed between the personal and indoor counts (r = 0.89) than between the personal and outdoor counts (r = 0.71), suggesting a potential inaccuracy in the use of outdoor counts as a basis for estimating personal exposures. The personal pollen counts differed substantially among the human subjects (49% geometric coefficient of variation), in part due to the variability in the indoor counts that have been found as major determinants of the personal pollen counts. The findings of this study highlight the need for pollen monitoring in proximity to human subjects to better understand the relationships between pollen exposures and the prevalence or severity of pollen allergy. PMID:26110813

  4. The long range transport of birch (Betula) pollen from Poland and Germany causes significant pre-season concentrations in Denmark

    NASA Astrophysics Data System (ADS)

    Ambelas Skjoth, C.; Sommer, J.; Stach, A.; Smith, M.; Brandt, J.; Christensen, J. H.; Frohn, L. M.; Geels, C.; Hansen, K. M.; Hedegaard, G. B.

    2009-04-01

    In Denmark, where birch pollen is considered to be among the most important allergenic pollen, about one million people suffer from seasonal allergic rhinitis. In Denmark, the official reported pollen forecast is based on the daily weather forecast, the pollen calendar and local 24-h measurements. Birch pollen has the potential for long-range transport but the present Danish pollen forecast does not account for birch pollen being transported into the country from distant sources.. Long-range transport episodes are intermittent and often out of the main pollen season, where individuals in general will be medically unprotected. Here we use an integrated approach to investigate whether or not Denmark receives significant quantities of birch pollen from Poland and Germany before local trees start to flower. In 2006 we used a combination of phenological observations and pollen measurements in Poland (Poznań) and Denmark (Copenhagen). Seasonal and diurnal variations in birch pollen measurement from Copenhagen (2000-2006) were examined with the aim of identifying pre-seasonal episodes originating from long-range transport. The 2.5% accumulation method was used for identifying start of season. If daily pollen counts exceeded 30 grains/m3 either before the local flowering season began or on the actual start day, the episode was chosen for investigation with back trajectory analysis. A birch forest inventory for Northern Europe was produced and implemented in DEHM-Pollen along with a simple unified pollen release model SUPREME to investigate the 2006 campaign in detail. In 2006, full flowering took place in Poznan between 20th and 28th of April and daily concentrations varied between 739 and 2169 grains/m3. In Copenhagen phenological observations showed that local flowering was initiated the 2nd of May. In Copenhagen several episodes with pollen concentrations at 108, 244 and 41 grains/m3 were recorded the 23rd, 26th and 27th of April, respectively. Back-trajectory analysis

  5. [Seasonal Dynamics of Airborne Pollens and Its Relationship with Meteorological Factors in Beijing Urban Area].

    PubMed

    Meng, Ling; Wang, Xiao-ke; Ouyang, Zhi-yun; Ren, Yu-fen; Wang, Qiao-huan

    2016-02-15

    The seasonal dynamics of airborne pollens and their relationship with meteorological conditions, which are considered to be important factors for appropriate construction of urban green system and reliable prevention of tropic pollinosis, were investigated in Beijing urban area. The airborne pollens were monitored from December 31st 2011 to December 31st 2012 by Burkard volumetric trap, and the data were analyzed. The results revealed that: (1) In 2012 the pollen dispersion period lasted 238 days from March 17 to November 18th, accounting for 65% of the year. There were two peaks of pollen amount in air, which occurred from March to May and from August to October, respectively. In the spring peak, tree pollens such as Oleaceae, Populus and Salix pollens were the dominant, accounting for 53% of the total annual pollens, while in the autumn period, weed pollens such as Compositae, Chenopodiaceae and Amaranthaceae pollens made up about 40% of the annual total value; (2) The highly allergenic weeds pollens dominated in autumn, which caused a high incidence of tropic pollinosis; (3) The airborne pollen amount of Beijing urban area was significantly affected by meteorological condition like the wind speed, temperature, humidity, precipitation and so on; (4) When temperature ranged from OC to 15 degrees C, the pollen amount showed positive relation with temperature; while in the temperature range of 18 degrees C to 30 degrees C, it showed negative relation; (5) The average temperature of spring and autumn season in 2012 was 17 degrees C, and 79% of airborne pollens were detected in these two seasons. This temperature condition was conducive to the pollen dispersion. (6) The pollen amount showed negative relation with relative moisture between 20% and 50% and larger than 70%, while in the moisture range of 50% to 60%, it showed positive relation; (7) The wind speed smaller than 3 m x s(-1) was good to pollen distribution, when it was larger than 4 m x s(-1) or the wind

  6. On the causes of variability in amounts of airborne grass pollen in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    de Morton, Julian; Bye, John; Pezza, Alexandre; Newbigin, Edward

    2011-07-01

    In Melbourne, Australia, airborne grass pollen is the predominant cause of hay fever (seasonal rhinitis) during late spring and early summer, with levels of airborne grass pollen also influencing hospital admissions for asthma. In order to improve predictions of conditions that are potentially hazardous to susceptible individuals, we have sought to better understand the causes of diurnal, intra-seasonal and inter-seasonal variability of atmospheric grass pollen concentrations (APC) by analysing grass pollen count data for Melbourne for 16 grass pollen seasons from 1991 to 2008 (except 1994 and 1995). Some of notable features identified in this analysis were that on days when either extreme (>100 pollen grains m-3) or high (50-100 pollen grains m-3) levels of grass pollen were recorded the winds were of continental origin. In contrast, on days with a low (<20 pollen grains m-3) concentration of grass pollen, winds were of maritime origin. On extreme and high grass pollen days, a peak in APC occurred on average around 1730 hours, probably due to a reduction in surface boundary layer turbulence. The sum of daily APC for each grass pollen season was highly correlated ( r = 0.79) with spring rainfall in Melbourne for that year, with about 60% of a declining linear trend across the study period being attributable to a reduction of meat cattle and sheep (and hence grazing land) in rural areas around Melbourne. Finally, all of the ten extreme pollen events (3 days or more with APC > 100 pollen grains m-3) during the study period were characterised by an average downward vertical wind anomaly in the surface boundary layer over Melbourne. Together these findings form a basis for a fine resolution atmospheric general circulation model for grass pollen in Melbourne's air that can be used to predict daily (and hourly) APC. This information will be useful to those sectors of Melbourne's population that suffer from allergic problems.

  7. Characterisation of the airborne pollen spectrum in Guadalajara (central Spain) and estimation of the potential allergy risk.

    PubMed

    Rojo, Jesús; Rapp, Ana; Lara, Beatriz; Sabariego, Silvia; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-03-01

    Aerobiological research into airborne pollen diversity and seasonal variations in pollen counts has become increasingly important over recent decades due to the growing incidence of asthma, rhinitis and other pollen-related allergic conditions. Airborne pollen in Guadalajara (Castilla-La Mancha, Spain) was studied over a 6-year period (2008-2013) using a Hirst-type volumetric spore trap. The highest pollen concentrations were recorded from February to June, coinciding with the pollen season of the pollen types that most contribute to the local airborne pollen spectrum: Cupressaceae (32.2%), Quercus (15.1%), Platanus (13.2%), Olea (8.3%), Populus (7.8%) and Poaceae (7.2%). These are therefore critical months for allergy sufferers. The pollen calendar was typically Mediterranean and comprised 25 pollen types. Between January and March, Cupressaceae pollen concentrations exceeded allergy risk thresholds on 38 days. Other woody species such as Olea and Platanus have a shorter pollen season, and airborne concentrations exceeded allergy risk thresholds on around 13 days in each case. Poaceae pollen concentrations attained allergy risk levels on 26 days between May and July. Other highly allergenic pollen types included Urticaceae and Chenopodiaceae-Amaranthaceae, though these are less abundant than other pollen types in Guadalajara and did not exceed risk thresholds on more than 3 and 5 days, respectively. PMID:26832913

  8. Environmental Factors Affecting Asthma and Allergies: Predicting and Simulating Downwind Exposure to Airborne Pollen

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey; Estes, Sue; Sprigg, William A.; Nickovic, Slobodan; Huete, Alfredo; Solano, Ramon; Ratana, Piyachat; Jiang, Zhangyan; Flowers, Len; Zelicoff, Alan

    2009-01-01

    This slide presentation reviews the environmental factors that affect asthma and allergies and work to predict and simulate the downwind exposure to airborne pollen. Using a modification of Dust REgional Atmosphere Model (DREAM) that incorporates phenology (i.e. PREAM) the aim was to predict concentrations of pollen in time and space. The strategy for using the model to simulate downwind pollen dispersal, and evaluate the results. Using MODerate-resolution Imaging Spectroradiometer (MODIS), to get seasonal sampling of Juniper, the pollen chosen for the study, land cover on a near daily basis. The results of the model are reviewed.

  9. Meteorological variables connected with airborne ragweed pollen in Southern Hungary.

    PubMed

    Makra, L; Juhász, M; Borsos, E; Béczi, R

    2004-09-01

    About 30% of the Hungarian population has some type of allergy, 65% of them have pollen sensitivity, and at least 60% of this pollen sensitivity is caused by ragweed. The short (or common) ragweed (Ambrosia artemisiifolia = Ambrosia elatior) has the most aggressive pollen of all. Clinical investigations prove that its allergenic pollen is the main reason for the most massive, most serious and most long-lasting pollinosis. The air in the Carpathian Basin is the most polluted with ragweed pollen in Europe. The aim of the study is to analyse how ragweed pollen concentration is influenced by meteorological elements in a medium-sized city, Szeged, Southern Hungary. The data basis consists of daily ragweed pollen counts and averages of 11 meteorological parameters for the 5-year daily data set, between 1997 and 2001. The study considers some of the ragweed pollen characteristics for Szeged. Application of the Makra test indicates the same period for the highest pollen concentration as that established by the main pollination period. After performing factor analysis for the daily ragweed pollen counts and the 11 meteorological variables examined, four factors were retained that explain 84.4% of the total variance of the original 12 variables. Assessment of the daily pollen number was performed by multiple regression analysis and results based on deseasonalised and original data were compared. PMID:15103548

  10. Time series predictions with neural nets: Application to airborne pollen forecasting

    NASA Astrophysics Data System (ADS)

    Arizmendi, C. M.; Sanchez, J. R.; Ramos, N. E.; Ramos, G. I.

    1993-09-01

    Pollen allergy is a common disease causing rhinoconjunctivitis (hay fever) in 5 10% of the population. Medical studies have indicated that pollen related diseases could be highly reduced if future pollen contents in the air could be predicted. In this work we have developed a new forecasting method that applies the ability of neural nets to predict the future behaviour of chaotic systems in order to make accurate predictions of the airborne pollen concentration. The method requires that the neural net be fed with non-zero values, which restricts the method predictions to the period following the start of pollen flight. The operational method outlined here constitutes a different point of view with respect to the more generally used forecasts of time series analysis, which require input of many meteorological parameters. Excellent forecasts were obtained training a neural net by using only the time series pollen concentration values.

  11. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology.

  12. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.

    PubMed

    Silva-Palacios, Inmaculada; Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    Cupressaceae includes species cultivated as ornamentals in the urban environment. This study aims to investigate airborne pollen data for Cupressaceae on the southwestern Iberian Peninsula over a 21-year period and to analyse the trends in these data and their relationship with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1993 to 2013 in Badajoz (SW Spain). The main pollen season for Cupressaceae lasted, on average, 58 days, ranging from 55 to 112 days, from 24 January to 22 March. Furthermore, a short-term forecasting model has been developed for daily pollen concentrations. The model proposed to forecast the airborne pollen concentration is described by one equation. This expression is composed of two terms: the first term represents the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term is obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological parameters multiplied by a fitting coefficient. Temperature was the main meteorological factor by its influence over daily pollen forecast, being the rain the second most important factor. This model represents a good approach to a continuous balance model of Cupressaceae pollen concentration and is supported by a close agreement between the observed and predicted mean concentrations. The novelty of the proposed model is the analysis of meteorological parameters that are not frequently used in Aerobiology. PMID:26092133

  13. Allergenic airborne pollen and spores in Anchorage, Alaska

    SciTech Connect

    Anderson, J.H.

    1985-05-01

    Major aeroallergens in Anchorage are birch, alder, poplar, spruce, grass pollen, Cladosporium, and unspecified fungus spores. Lesser pollens are sorrel, willow, pine, juniper, sedge, lamb's-quarters, wormwood, plantain, and others. The aero-flora is discussed in terms of the frequency of allergenically significant events and within-season and year-to-year dynamics.

  14. Airborne birch and grass pollen allergens in street-level shops.

    PubMed

    Holmquist, L; Weiner, J; Vesterberg, O

    2001-12-01

    Polluted urban outdoor air may be enriched with large amounts of submicronic respirable pollen allergen particles that penetrate into street-level shops. The objectives of the study were to map concentrations of birch and grass pollen allergens in indoor air of street-level shops and to explore the effect of electrostatic air cleaning under authentic working conditions, indoor air samples were collected in May and July 1999 in two shops. Allergens were quantified by a direct on sampling filter in solution (DOSIS) luminescence immunoassay. The average concentration of airborne indoor birch pollen allergen in the shop with air cleaning was estimated to be 20 +/- 9 SQ/m3 (mean +/- SD) compared to 31 +/- 17 SQ/m3 (mean +/- SD) of that without. The air cleaner reduced the indoor air birch pollen allergen concentration by on average 26 to 48% (P < 0.05). Corresponding figures for airborne indoor grass pollen allergen concentrations were 14 +/- 7 SQ/m3 and 17 +/- 8 SQ/m3, indicating a statistically non-significant (t-test) average 18% reduction of allergen by air cleaning. Excluding two observations with poor fit to the statistical model a significant (P < 0.05) average 27% reduction was obtained. Substantial amounts of airborne birch and grass pollen allergens may occur in street-level shops during flowering seasons. PMID:11761599

  15. The Macroecology of Airborne Pollen in Australian and New Zealand Urban Areas

    PubMed Central

    Haberle, Simon G.; Bowman, David M. J. S.; Newnham, Rewi M.; Johnston, Fay H.; Beggs, Paul J.; Buters, Jeroen; Campbell, Bradley; Erbas, Bircan; Godwin, Ian; Green, Brett J.; Huete, Alfredo; Jaggard, Alison K.; Medek, Danielle; Murray, Frank; Newbigin, Ed; Thibaudon, Michel; Vicendese, Don; Williamson, Grant J.; Davies, Janet M.

    2014-01-01

    The composition and relative abundance of airborne pollen in urban areas of Australia and New Zealand are strongly influenced by geographical location, climate and land use. There is mounting evidence that the diversity and quality of airborne pollen is substantially modified by climate change and land-use yet there are insufficient data to project the future nature of these changes. Our study highlights the need for long-term aerobiological monitoring in Australian and New Zealand urban areas in a systematic, standardised, and sustained way, and provides a framework for targeting the most clinically significant taxa in terms of abundance, allergenic effects and public health burden. PMID:24874807

  16. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain.

    PubMed

    Alcázar, Purificación; Galán, Carmen; Torres, Carmen; Domínguez-Vilches, Eugenio

    2015-01-01

    Córdoba is one of the Spanish cities with the highest records of plane tree pollen grains in the air. Clinical studies have identified Platanus as a major cause of pollinosis. This fact provokes an important public health problem during early spring when these trees bloom. The objective of the study is to evaluate the correlation between airborne pollen counts and Pla a 1 aeroallergen concentrations in Córdoba, to elucidate if airborne pollen can be an accurate measure that helps to explain the prevalence of allergenic symptoms. Pollen sampling was performed during 2011-2012 using a Hirst-type sampler. Daily average concentration of pollen grains (pollen grains/m 3 ) was obtained following the methodology proposed by the Spanish Aerobiology Network. A multi-vial cyclone was used for the aeroallergen quantification. Allergenic particles were measured by ELISA using specific antibodies Pla a 1. The trend of Platanus pollen was characterized by a marked seasonality, reaching high concentrations in a short period of time. Airborne pollen and aeroallergen follow similar trends. The overlapping profile between both variables during both years shows that pollen and Pla a 1 are significantly correlated. The highest significant correlation coefficients were obtained during 2011 and for the post peak. Although some studies have found notable divergence between pollen and allergen concentrations in the air, in the case of Platanus in Córdoba, similar aerobiological dynamics between pollen and Pla a 1 have been found. Allergenic activity was found only during the plane tree pollen season, showing a close relationship with daily pollen concentrations. The obtained pollen potency was similar for both years of study. The results suggest that the allergenic response in sensitive patients to plane tree pollen coincide with the presence and magnitude of airborne pollen. PMID:25780836

  17. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.

    PubMed

    García-Mozo, Herminia; Oteros, Jose Antonio; Galán, Carmen

    2016-04-01

    Airborne pollen concentrations strongly correlate with flowering intensity of wind-pollinated species growing at and around monitoring sites. The pollen spectrum, and the variations in its composition and concentrations, is influenced by climatic features and by available nutritional resources but it is also determined by land use and its changes. The first factor influence is well known on aerobiological researches but the impact of land cover changes has been scarcely studied until now. This paper reports on a study carried out in Southern Spain (Córdoba city) examining airborne pollen trends over a 15-year period and it explores the possible links both to changes in land use and to climate variations. The Seasonal-Trend Decomposition procedure based on Loess (STL) which decomposes long-term data series into smaller seasonal component patterns was applied. Trends were compared with recorded changes in land use at varying distances from the city in order to determine their possible influence on pollen-count variations. The influence of climate-related factors was determined by means of non-parametric correlation analysis. The STL method proved highly effective for extracting trend components from pollen time series, because their features vary widely and can change quickly in a short term. Results revealed mixed trends depending on the taxa and reflecting fluctuations in land cover and/or climate. A significant rising trend in Olea pollen counts was observed, attributable both to the increasing olive-growing area but also to changes in temperature and rainfall. Poaceae pollen concentrations also increased, due largely to an expansion of heterogeneous agricultural areas and to an increase in pollen season length positively influenced by rainfall and temperature. By contrast, the significant declining trend observed for pollen from ruderal taxa, such as Amaranthaceae, Rumex, Plantago and Urticaceae, may be linked to changes in urban planning strategies with a

  18. Detection of airborne genetically modified maize pollen by real-time PCR.

    PubMed

    Folloni, Silvia; Kagkli, Dafni-Maria; Rajcevic, Bojan; Guimarães, Nilson C C; Van Droogenbroeck, Bart; Valicente, Fernando H; Van den Eede, Guy; Van den Bulcke, Marc

    2012-09-01

    The cultivation of genetically modified (GM) crops has raised numerous concerns in the European Union and other parts of the world about their environmental and economic impact. Especially outcrossing of genetically modified organisms (GMO) was from the beginning a critical issue as airborne pollen has been considered an important way of GMO dispersal. Here, we investigate the use of airborne pollen sampling combined with microscopic analysis and molecular PCR analysis as an approach to monitor GM maize cultivations in a specific area. Field trial experiments in the European Union and South America demonstrated the applicability of the approach under different climate conditions, in rural and semi-urban environment, even at very low levels of airborne pollen. The study documents in detail the sampling of GM pollen, sample DNA extraction and real-time PCR analysis. Our results suggest that this 'GM pollen monitoring by bioaerosol sampling and PCR screening' approach might represent an useful aid in the surveillance of GM-free areas, centres of origin and natural reserves. PMID:22805239

  19. Immunologic, spectrophotometric and nucleic acid based methods for the detection and quantification of airborne pollen

    PubMed Central

    Rittenour, William R.; Hamilton, Robert G.; Beezhold, Donald H.; Green, Brett J.

    2015-01-01

    Microscopic identification of pollen morphological phenotypes has been the traditional method used to identify and quantify pollen collected by air monitoring stations worldwide. Although this method has enabled a semi-standardized approach for the assessment of pollen exposure, limitations including labor intensiveness, required expertise, examiner bias, and the inability to differentiate species, genera, and in some cases families have limited data derived from the these stations. Recent advances in chemical, biochemical and molecular detection methods have provided standardized alternatives to this microscopic approach. In this review, we examine the applicability of alternative methodologies, in particular nucleic acid based assays involving the quantitative polymerase chain reaction, for the standardized detection of airborne pollen. PMID:22342607

  20. Pla a_1 aeroallergen immunodetection related to the airborne Platanus pollen content.

    PubMed

    Fernández-González, M; Guedes, A; Abreu, I; Rodríguez-Rajo, F J

    2013-10-01

    Platanus hispanica pollen is considered an important source of aeroallergens in many Southern European cities. This tree is frequently used in urban green spaces as ornamental specie. The flowering period is greatly influenced by the meteorological conditions, which directly affect its allergenic load in the atmosphere. The purpose of this study is to develop equations to predict the Platanus allergy risk periods as a function of the airborne pollen, the allergen concentration and the main meteorological parameters. The study was conducted by means two volumetric pollen samplers; a Lanzoni VPPS 2000 for the Platanus pollen sampling and a Burkard multivial Cyclone Sampler to collect the aeroallergen particles (Pla a_1). In addiction the Dot-Blot and the Raman spectroscopy methods were used to corroborate the results. The Pla a_1 protein is recorded in the atmosphere after the presence of the Platanus pollen, which extend the Platanus pollen allergy risk periods. The Platanus pollen and the Pla a 1 allergens concentration are associated with statistical significant variations of some meteorological variables: in a positive way with the mean and maximum temperature whereas the sign of the correlation coefficient is negative with the relative humidity. The lineal regression equation elaborated in order to forecast the Platanus pollen content in the air explain the 64.5% of variance of the pollen presence in the environment, whereas the lineal regression equation elaborated in order to forecast the aeroallergen a 54.1% of the Pla a_1 presence variance. The combination of pollen count and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases to prevent the allergy risk periods. PMID:23867849

  1. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, S.; Ambelas Skjøth, C.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Smith, M.

    2012-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (southwestern Spain) and Évora (southeastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  2. Models to predict the start of the airborne pollen season.

    PubMed

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees (Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species (Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models. PMID:25234751

  3. Models to predict the start of the airborne pollen season

    NASA Astrophysics Data System (ADS)

    Siniscalco, Consolata; Caramiello, Rosanna; Migliavacca, Mirco; Busetto, Lorenzo; Mercalli, Luca; Colombo, Roberto; Richardson, Andrew D.

    2015-07-01

    Aerobiological data can be used as indirect but reliable measures of flowering phenology to analyze the response of plant species to ongoing climate changes. The aims of this study are to evaluate the performance of several phenological models for predicting the pollen start of season (PSS) in seven spring-flowering trees ( Alnus glutinosa, Acer negundo, Carpinus betulus, Platanus occidentalis, Juglans nigra, Alnus viridis, and Castanea sativa) and in two summer-flowering herbaceous species ( Artemisia vulgaris and Ambrosia artemisiifolia) by using a 26-year aerobiological data set collected in Turin (Northern Italy). Data showed a reduced interannual variability of the PSS in the summer-flowering species compared to the spring-flowering ones. Spring warming models with photoperiod limitation performed best for the greater majority of the studied species, while chilling class models were selected only for the early spring flowering species. For Ambrosia and Artemisia, spring warming models were also selected as the best models, indicating that temperature sums are positively related to flowering. However, the poor variance explained by the models suggests that further analyses have to be carried out in order to develop better models for predicting the PSS in these two species. Modeling the pollen season start on a very wide data set provided a new opportunity to highlight the limits of models in elucidating the environmental factors driving the pollen season start when some factors are always fulfilled, as chilling or photoperiod or when the variance is very poor and is not explained by the models.

  4. Comparative studies on tree pollen allergens. X. Further purification and N-terminal amino acid sequence analyses of the major allergen of birch pollen (Betula verrucosa).

    PubMed

    Vik, H; Elsayed, S

    1986-01-01

    The previously isolated major allergen of birch pollen (fraction BV45), Int. Archs Allergy appl. Immun. 68: 70-78 (1982), was further purified by recycling chromatography. The purified preparation was run on a high-performance liquid chromatography (HPLC) TSK-G-2000 gel filtration chromatography column and, finally, on paper high-volt electrophoresis. The protein recovered met the homogeneity criteria required for performing the N-terminal sequence analysis. The allergenic and antigenic reactivities of the HPLC-purified protein, designated BV45B, was examined. A single homogeneous precipitation line in crossed immunoelectrophoresis (CIE) was shown. Specific IgE-inhibition tests and immuno-autoradiographic prints indicated that this allergen could bind reaginic IgE specificially and with good affinity. The homogeneity of BV45B was examined by isoelectric focusing (IEF). Several minor bands of pI differences of less than 0.1 units were visible, demonstrating the existence of some molecular variants of this protein. The N-terminal sequence analysis of the molecule was performed, and the following four amino acids were tentatively shown by sequential cleavage: NH2-Ala-Gly-Ile-Val-. The demonstration of one dominant N-terminal 1-dimethyl-amino-5-naphthalene sulphonyl (DNS)-amino acid by polyamide thin-layer chromatography at each sequence step confirmed that the N-terminal residue of the protein was not blocked; the heterogeneity shown by the IEF system was merely due to the presence of several homologous polymorphic proteins with identical N-terminal amino acid, the adequacy of the purification repertoire used. PMID:3957444

  5. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula.

    PubMed

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Angela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop. PMID:23334443

  6. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Skjøth, Carsten Ambelas; Tormo-Molina, Rafael; Brandao, Rui; Caeiro, Elsa; Silva-Palacios, Inmaculada; Gonzalo-Garijo, Ángela; Smith, Matt

    2014-04-01

    This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009-2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.

  7. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    NASA Astrophysics Data System (ADS)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-04-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  8. Masting in oaks: Disentangling the effect of flowering phenology, airborne pollen load and drought

    NASA Astrophysics Data System (ADS)

    Fernández-Martínez, Marcos; Belmonte, Jordina; Maria Espelta, Josep

    2012-08-01

    Quercus species exhibit an extreme inter-annual variability in seed production often synchronized over large geographical areas (masting). Since this reproductive behavior is mostly observed in anemophilous plants, pollination efficiency is suggested as one hypothesis to explain it, although resource-based hypotheses are also suggested as alternatives. We analyzed the effect of flowering phenology, airborne pollen presence and meteorological conditions in the pattern of acorn production in mixed evergreen-deciduous oak forests (Quercus ilex and Quercus pubescens) in NE Spain for twelve years (1998-2009). In both oaks, higher temperatures advanced the onset of flowering and increased the amount of airborne pollen. Nevertheless, inter-annual differences in pollen production did not influence acorn crop size. Acorn production was enhanced by a delay in flowering onset in Q. ilex but not in Q. pubescens. This suggests that in perennial oaks a larger number of photosynthates produced before flowering could benefit reproduction while the lack of effects on deciduous oaks could be because these species flush new leaves and flowers at the same time. Notwithstanding this effect, spring water deficit was the most relevant factor in explaining inter-annual variability in acorn production in both species. Considering that future climate scenarios predict progressive warmer and dryer spring seasons in the Mediterranean Basin, this might result in earlier onsets of flowering and higher water deficits that would constrain acorn production.

  9. Transport of airborne Picea schrenkiana pollen on the northern slope of Tianshan Mountains (Xinjiang, China) and its implication for paleoenvironmental reconstruction.

    PubMed

    Pan, Yanfang; Yan, Shun; Behling, Hermann; Mu, Guijin

    2013-06-01

    The understanding of airborne pollen transportation is crucial for the reconstruction of the paleoenvironment. Under favorable conditions, a considerable amount of long-distance-transported pollen can be deposited far from its place of origin. In extreme arid regions, in most cases, such situations occur and increase the difficulty to interpret fossil pollen records. In this study, three sets of Cour airborne pollen trap were installed on the northern slope of Tianshan Mountains to collect airborne Picea schrenkiana (spruce) pollen grains from July 2001 to July 2006. The results indicate that Picea pollen disperses extensively and transports widely in the lower atmosphere far away from spruce forest. The airborne Picea pollen dispersal period is mainly concentrated between mid-May and July. In desert area, weekly Picea pollen began to increase and peaked suddenly in concentration. Also, annual pollen indices do not decline even when the distance increased was probably related to the strong wind may pick up the deposited pollen grains from the topsoil into the air stream, leading to an increase of pollen concentration in the air that is irrelevant to the normal and natural course of pollen transport and deposition. This, in turn, may lead to erroneous interpretations of the pollen data in the arid region. This study provided insight into the shift in the Picea pollen season regarding climate change in arid areas. It is recorded that the pollen pollination period starts earlier and the duration became longer. The results also showed that the temperature of May and June was positively correlated with the Picea pollen production. Furthermore, the transport of airborne Picea pollen data is useful for interpreting fossil pollen records from extreme arid regions. PMID:23576840

  10. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    PubMed

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. PMID:26026414

  11. Long-term monitoring of airborne pollen in Alaska and the Yukon: Possible implications for global change

    SciTech Connect

    Anderson, J.H.

    1992-03-01

    Airborne pollen and spores have been sampled since 1978 in Fairbanks and 1982 Anchorage and other Alaska-Yukon locations for medical and ecological purposes. Comparative analyses of pre- and post-1986 data subsets reveal that after 1986 (1) pollen is in the air earlier, (2) the multiyear average of degree-days promoting pollen onset is little changed while (3) annual variation in degree-days at onset is greater, (4) pollen and spore annual productions are considerably higher, and (5) there is more year-to-year variation in pollen production. These changes probably reflect directional changes in certain weather variables, and there is some indication that they are of global change significance, i.e., related to increasing atmospheric greenhouse gases. Correlations with pollen data suggest that weather variables of high influence are temperatures during specific periods following pollen dispersal in the preceding year and the average temperature in April of the current year. Annual variations in pollen dispersal might be roughly linked to the 11 year sunspot cycle through air temperature mediators. Weather in 1990, apparent pollen production cycles under endogenous control, and the impending sunspot maximum portend a very severe pollen season in 199 existing but unfunded sampling projects.

  12. Airborne pollen in three European cities: Detection of atmospheric circulation pathways by applying three-dimensional clustering of backward trajectories

    NASA Astrophysics Data System (ADS)

    Makra, LáSzló; SáNta, TamáS.; Matyasovszky, IstváN.; Damialis, Athanasios; Karatzas, Kostas; Bergmann, Karl-Christian; Vokou, Despoina

    2010-12-01

    The long-range transport of particulates can substantially contribute to local air pollution. The importance of airborne pollen has grown due to the recent climate change; the lengthening of the pollen season and rising mean airborne pollen concentrations have increased health risks. Our aim is to identify atmospheric circulation pathways influencing pollen levels in three European cities, namely Thessaloniki, Szeged, and Hamburg. Trajectories were computed using the HYSPLIT model. The 4 day, 6 hourly three-dimensional (3-D) backward trajectories arriving at these locations at 1200 UT are produced for each day over a 5 year period. A k-means clustering algorithm using the Mahalanobis metric was applied in order to develop trajectory types. The delimitation of the clusters performed by the 3-D function "convhull" is a novel approach. The results of the cluster analysis reveal that the main pathways for Thessaloniki contributing substantially to the high mean Urticaceae pollen levels cover western Europe and the Mediterranean. The key pathway patterns for Ambrosia for Szeged are associated with backward trajectories coming from northwestern Europe, northeastern Europe, and northern Europe. A major pollen source identified is a cluster over central Europe, namely the Carpathian basin with peak values in Hungary. The principal patterns for Poaceae for Hamburg include western Europe and the mid-Atlantic region. Locations of the source areas coincide with the main habitat regions of the species in question. Critical daily pollen number exceedances conditioned on the clusters were also evaluated using two statistical indices. An attempt was made to separate medium- and long-range airborne pollen transport.

  13. Airborne Pollen Concentrations and Emergency Room Visits for Myocardial Infarction: A Multicity Case-Crossover Study in Ontario, Canada.

    PubMed

    Weichenthal, Scott; Lavigne, Eric; Villeneuve, Paul J; Reeves, François

    2016-04-01

    Few studies have examined the acute cardiovascular effects of airborne allergens. We conducted a case-crossover study to evaluate the relationship between airborne allergen concentrations and emergency room visits for myocardial infarction (MI) in Ontario, Canada. In total, 17,960 cases of MI were identified between the months of April and October during the years 2004-2011. Daily mean aeroallergen concentrations (pollen and mold spores) were assigned to case and control periods using central-site monitors in each city along with daily measurements of meteorological data and air pollution (nitrogen dioxide and ozone). Odds ratios and their 95% confidence intervals were estimated using conditional logistic regression models adjusting for time-varying covariates. Risk of MI was 5.5% higher (95% confidence interval (CI): 3.4, 7.6) on days in the highest tertile of total pollen concentrations compared with days in the lowest tertile, and a significant concentration-response trend was observed (P < 0.001). Higher MI risk was limited to same-day pollen concentrations, with the largest risks being observed during May (odds ratio = 1.16, 95% CI: 1.00, 1.35) and June (odds ratio = 1.10, 95% CI: 1.00, 1.22), when tree and grass pollen are most common. Mold spore concentrations were not associated with MI. Our findings suggest that airborne pollen might represent a previously unidentified environmental risk factor for myocardial infarction. PMID:26934896

  14. Influence of atmospheric ozone, PM 10 and meteorological factors on the concentration of airborne pollen and fungal spores

    NASA Astrophysics Data System (ADS)

    Sousa, S. I. V.; Martins, F. G.; Pereira, M. C.; Alvim-Ferraz, M. C. M.; Ribeiro, H.; Oliveira, M.; Abreu, I.

    The increase of allergenic symptoms has been associated with air contaminants such as ozone, particulate matter, pollen and fungal spores. Considering the potential relevance of crossed effects of non-biological pollutants and airborne pollens and fungal spores on allergy worsening, the aim of this work was to evaluate the influence of non-biological pollutants and meteorological parameters on the concentrations of pollen and fungal spores using linear correlations and multiple linear regressions. For that, the seasonal variation of ozone, particulate matter with an equivalent aerodynamic diameter smaller than 10 μm, pollen and fungal spores were assessed and statistical correlations were analysed between those parameters. The data were collected through 2003-2005 in Porto, Portugal. The linear correlations showed that ozone and particulate matter had no significant influence on the concentration of pollen and fungal spores. On the contrary, when using multiple linear regressions those parameters showed to have some influence on the biological pollutants, although results were different depending on the year analysed. Among the meteorological parameters analysed, temperature was the one that most influenced the pollen and fungal spores airborne concentrations, both when using linear and multiple linear correlations. Relative humidity also showed to have some influence on the fungal spore dispersion when multiple linear regressions were used. Nevertheless, the conclusions for each pollen and fungal spore were different depending on the analysed period, which means that the correlations identified as statistically significant may not be, even so, consistent enough. Furthermore, the comparison of the results here presented with those obtained by other authors for only one period should be made carefully.

  15. The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe

    NASA Astrophysics Data System (ADS)

    de Weger, Letty A.; Pashley, Catherine H.; Šikoparija, Branko; Skjøth, Carsten A.; Kasprzyk, Idalia; Grewling, Łukasz; Thibaudon, Michel; Magyar, Donat; Smith, Matt

    2016-04-01

    The invasive alien species Ambrosia artemisiifolia (common or short ragweed) is increasing its range in Europe. In the UK and the Netherlands, airborne concentrations of Ambrosia pollen are usually low. However, more than 30 Ambrosia pollen grains per cubic metre of air (above the level capable to trigger allergic symptoms) were recorded in Leicester (UK) and Leiden (NL) on 4 and 5 September 2014. The aims of this study were to determine whether the highly allergenic Ambrosia pollen recorded during the episode could be the result of long distance transport, to identify the potential sources of these pollen grains and to describe the conditions that facilitated this possible long distance transport. Airborne Ambrosia pollen data were collected at 10 sites in Europe. Back trajectory and atmospheric dispersion calculations were performed using HYSPLIT_4. Back trajectories calculated at Leicester and Leiden show that higher altitude air masses (1500 m) originated from source areas on the Pannonian Plain and Ukraine. During the episode, air masses veered to the west and passed over the Rhône Valley. Dispersion calculations showed that the atmospheric conditions were suitable for Ambrosia pollen released from the Pannonian Plain and the Rhône Valley to reach the higher levels and enter the airstream moving to northwest Europe where they were deposited at ground level and recorded by monitoring sites. The study indicates that the Ambrosia pollen grains recorded during the episode in Leicester and Leiden were probably not produced by local sources but transported long distances from potential source regions in east Europe, i.e. the Pannonian Plain and Ukraine, as well as the Rhône Valley in France.

  16. Airborne-pollen pool and mating pattern in a hybrid zone between Pinus pumila and P. parviflora var. pentaphylla.

    PubMed

    Ito, Megumi; Suyama, Yoshihisa; Ohsawa, Takeshi A; Watano, Yasuyuki

    2008-12-01

    The reproductive isolation barriers and the mating patterns among Pinus pumila, P. parviflora var. pentaphylla and their hybrids were examined by flowering phenology and genetic assays of three life stages: airborne-pollen grains, adults and seeds, in a hybrid zone on Mount Apoi, Hokkaido, Japan. Chloroplast DNA composition of the airborne-pollen was determined by single-pollen polymerase chain reaction. Mating patterns were analysed by estimating the molecular hybrid index of the seed parent, their seed embryos and pollen parents. The observation of flowering phenology showed that the flowering of P. pumila precedes that of P. parviflora var. pentaphylla by about 6 to 10 days within the same altitudinal ranges. Although this prezygotic isolation barrier is effective, the genetic assay of airborne-pollen showed that the two pine species, particularly P. pumila, still have chances to form F(1) hybrid seeds. Both parental species showed a strong assortative mating pattern; F(1) seeds were found in only 1.4% of seeds from P. pumila mother trees and not at all in P. parviflora var. pentaphylla. The assortative mating was concluded as the combined result of flowering time differentiation and cross-incompatibility. In contrast to the parental species, hybrids were fertilized evenly by the two parental species and themselves. The breakdown of prezygotic barriers (intermediate flowering phenology) and cross-incompatibility may account for the unselective mating. It is suggested that introgression is ongoing on Mount Apoi through backcrossing between hybrids and parental species, despite strong isolation barriers between the parental species. PMID:19120991

  17. Association between first airborne cedar pollen level peak and pollinosis symptom onset: a web-based survey.

    PubMed

    Bando, Harumi; Sugiura, Hiroaki; Ohkusa, Yasushi; Akahane, Manabu; Sano, Tomomi; Jojima, Noriko; Okabe, Nobuhiko; Imamura, Tomoaki

    2015-01-01

    Cedar pollinosis in Japan affects nearly 25 % of Japanese citizens. To develop a treatment for cedar pollinosis, it is necessary to understand the relationship between the time of its occurrence and the amount of airborne cedar pollen. In the spring of 2009, we conducted daily Internet-based epidemiologic surveys, which included 1453 individuals. We examined the relationship between initial date of onset of pollinosis symptoms and daily amount of airborne cedar pollen to which subjects were exposed. Approximately 35.2 % of the subjects experienced the onset of pollinosis during a one-week interval in which the middle day coincided with the peak pollen count. The odds ratio for this one-week time interval was 4.03 (95 % confidence interval: 3.34-4.86). The predicted date of the cedar pollen peak can be used to determine the appropriate date for initiation of self-medication with anti-allergy drugs and thus avoid development of sustained and severe pollinosis. PMID:24720339

  18. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile.

    PubMed

    Toro A, Richard; Córdova J, Alicia; Canales, Mauricio; Morales S, Raul G E; Mardones P, Pedro; Leiva G, Manuel A

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009-2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies. PMID:25946339

  19. Trends and threshold exceedances analysis of airborne pollen concentrations in Metropolitan Santiago Chile

    PubMed Central

    Toro A., Richard; Córdova J., Alicia; Canales, Mauricio; Morales S., Raul G. E.; Mardones P., Pedro; Leiva G., Manuel A.

    2015-01-01

    Pollen is one of the primary causes of allergic rhinoconjunctivitis in urban centers. In the present study, the concentrations of 39 different pollens in the Santiago de Chile metropolitan area over the period 2009–2013 are characterized. The pollen was monitored daily using Burkard volumetric equipment. The contribution of each type of pollen and the corresponding time trends are evaluated. The concentrations of the pollens are compared with the established threshold levels for the protection of human health. The results show that the total amount of pollen grains originating from trees, grasses, weeds and indeterminate sources throughout the period of the study was 258,496 grains m-3, with an annual average of 51,699 ± 3,906 grains m-3 year-1. The primary source of pollen is Platanus orientalis, which produces 61.8% of the analyzed pollen. Grass pollen is the third primary component of the analyzed pollen, with a contribution of 5.82%. Among the weeds, the presence of Urticacea (3.74%) is remarkable. The pollination pattern of the trees is monophasic, and the grasses have a biphasic pattern. The trends indicate that the total pollen and tree pollen do not present a time trend that is statistically significant throughout the period of the study, whereas the grass pollen and weed pollen concentrations in the environment present a statistically significant decreasing trend. The cause of this decrease is unclear. The pollen load has doubled over the past decade. When the observed concentrations of the pollens were compared with the corresponding threshold levels, the results indicated that over the period of the study, the pollen concentrations were at moderate, high and very high levels for an average of 293 days per year. Systematic counts of the pollen grains are an essential method for diagnosing and treating patients with pollinosis and for developing forestation and urban planning strategies. PMID:25946339

  20. Incidence of Betulaceae pollen and pollinosis in Zagreb, Croatia, 2002-2005.

    PubMed

    Peternel, Renata; Milanović, Sanja Musić; Hrga, Ivana; Mileta, Tatjana; Culig, Josip

    2007-01-01

    Pollen allergy is characterized by seasonal allergic manifestations affecting patients during the plant pollen season. The aim of this study was to analyze the Betulaceae pollen pattern in Zagreb (2002-2005) and to determine the incidence of sensitization to these pollen types in patients with seasonal respiratory allergy. Twenty-four-hour pollen counts were carried out using volumetric procedure. Skin prick test were performed on a total of 864 patients aged 18-80< in Zagreb between 2 January-31 December 2004. Pollen of the representatives of the family Betulaceae accounted for a significant proportion of total pollen (34% on an average), predominated by Betula pollen and considerably lower proportion of Alnus sp. and Corylus sp. pollen. Alder and hazel pollen first occurred in the air in February throughout the study period. The highest airborne pollen concentration of these taxa was recorded in February and March. The birch pollen season generally peaked in April. Only 2.67% of patients showed birch pollen monosensitization. The proportion of patients with polysensitization to Betulaceae pollen was considerably greater (12.88%), whereas polysensitization to Betulaceae, Poaceae and Ambrosia pollen was recorded in the highest proportion of patients (26.23%). According to age, the highest and lowest rate of allergy was recorded in the 31-50 and >51 age groups, respectively (46.22% vs 23.12%). Female predominance was observed across all age groups. The patients with monosensitization to birch pollen had the most severe symptoms in April. In the patients with poylsensitization to alder, hazel and birch pollen who developed cross-reaction, initial symptoms occurred as early as February, with abrupt exacerbation in March and April. The most severe condition was observed in the patients allergic to birch, hazel, alder, grass and ragweed pollen, with symptoms present throughout the year and exacerbation in spring and late summer months. PMID:17655183

  1. Bayesian analysis of climate change effects on observed and projected airborne levels of birch pollen

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Isukapalli, Sastry S.; Bielory, Leonard; Georgopoulos, Panos G.

    2013-04-01

    A Bayesian framework is presented for modeling effects of climate change on pollen indices such as annual birch pollen count, maximum daily birch pollen count, start date of birch pollen season and the date of maximum daily birch pollen count. Annual mean CO2 concentration, mean spring temperature and the corresponding pollen index of prior year were found to be statistically significant accounting for effects of climate change on four pollen indices. Results suggest that annual productions and peak values from 2020 to 2100 under different scenarios will be 1.3-8.0 and 1.1-7.3 times higher respectively than the mean values for 2000, and start and peak dates will occur around two to four weeks earlier. These results have been partly confirmed by the available historical data. As a demonstration, the emission profiles in future years were generated by incorporating the predicted pollen indices into an existing emission model.

  2. Bayesian Analysis of Climate Change Effects on Observed and Projected Airborne Levels of Birch Pollen

    PubMed Central

    Zhang, Yong; Isukapalli, Sastry; Bielory, Leonard; Georgopoulos, Panos

    2012-01-01

    A Bayesian framework is presented for modeling Effects of climate change on pollen indices such as annual birch pollen count, maximum daily birch pollen count, start date of birch pollen season and the date of maximum daily birch pollen count. Annual mean CO2 concentration, mean spring temperature and the corresponding pollen index of prior year were found to be statistically significant accounting for Effects of climate change on four pollen indices. Results suggest that annual productions and peak values from 2020 to 2100 under different scenarios will be 1.3-8.0 and 1.1-7.3 times higher respectively than the mean values for 2000, and start and peak dates will occur around two to four weeks earlier. These results have been partly confirmed by the available historical data. As a demonstration, the emission profiles in future years were generated by incorporating the predicted pollen indices into an existing emission model. PMID:23526049

  3. Bayesian Analysis of Climate Change Effects on Observed and Projected Airborne Levels of Birch Pollen.

    PubMed

    Zhang, Yong; Isukapalli, Sastry; Bielory, Leonard; Georgopoulos, Panos

    2013-04-01

    A Bayesian framework is presented for modeling Effects of climate change on pollen indices such as annual birch pollen count, maximum daily birch pollen count, start date of birch pollen season and the date of maximum daily birch pollen count. Annual mean CO2 concentration, mean spring temperature and the corresponding pollen index of prior year were found to be statistically significant accounting for Effects of climate change on four pollen indices. Results suggest that annual productions and peak values from 2020 to 2100 under different scenarios will be 1.3-8.0 and 1.1-7.3 times higher respectively than the mean values for 2000, and start and peak dates will occur around two to four weeks earlier. These results have been partly confirmed by the available historical data. As a demonstration, the emission profiles in future years were generated by incorporating the predicted pollen indices into an existing emission model. PMID:23526049

  4. Airborne pollen-climate relationship based on discriminant analysis in Nam Co, Central Tibet and its palaeoenvironmental significance

    NASA Astrophysics Data System (ADS)

    Lyu, X.; Zhu, L.; Ma, Q.; Li, Q.

    2014-12-01

    Based on the airborne pollen data collected using a Burkard pollen trap, discriminant analysis were conducted to evaluate the relationship between two different atmospheric circulation systems, the Asia summer monsoon (ASM) and the Westerlies, in Nam Co basin, central Tibet. The whole year's samples could be classified into two groups using cluster analysis: one group was from May to September, another group was from October to April of next year, corresponding to monsoon period and non-monsoon period, respectively. The classification represents two different atmospheric circulation systems, ASM in monsoon period and the Westerlies in non-monsoon period. Discriminant analysis was performed. First, the whole year samples were divided into two a priori groups, group A is monsoon period (May-Sep.) and group B is non-monsoon period (Oct.-Apr.). Then percentage data of major pollen taxa were used to establish the discriminant functions, and then the samples were classified into predicted groups. The results of discriminant analysis show that 78.6% of the samples were cross-validated grouped correctly. Thus, airborne pollen assemblages can distinguish two different climate systems: monsoon period and non-monsoon period. According to the discriminant score, the group centroids of group A and group B were negative and positive, respectively. Therefore, we created the discriminant score as a new monsoon index (PDI, Pollen Discriminant Index), small PDI values represented enhanced summer monsoon climate. Using above result, we calculated the PDI of Nam Co NCL core, the PDI values can be coincided with Dryness (moisture indicator) and A/Cy ratio (temperature indicator).

  5. The influence from synoptic weather on the variation of air pollution and pollen exposure

    NASA Astrophysics Data System (ADS)

    Grundström, Maria; Dahl, Åslög; Chen, Deliang; Pleijel, Håkan

    2014-05-01

    Exposure to elevated air pollution levels can make people more susceptible to allergies or result in more severe allergic reactions for people with an already pronounced sensitivity to pollen. The aim of this study was to investigate the relationships between urban air pollution (nitrogen oxides, ozone and particles) and airborne Betula pollen in Gothenburg, Sweden, during the pollen seasons for the years 2001-2012. Further, the influence from atmospheric weather pattern on pollen/pollution related risk, using Lamb Weather Types (LWT), was also considered. Daily LWTs were obtained by comparing the variation in atmospheric pressure from a 16 point grid over a given region on earth (scale ~1000km) and essentially describe the air mass movement for the region. They include two non-directional types, cyclonic (C) and anticyclonic (A) and eight directional types depending on the wind direction (N, NE, E... etc.). LWTs with dry and calm meteorological character e.g. limited precipitation and low to moderate wind speeds (A, NE, E, SE) were associated with strongly elevated air pollution and pollen levels where Betula was exceptionally high in LWTs NE and E. The co-variation between Betula pollen and ozone was strong and significant during situations with LWTs A, NE, E and SE. The most important conclusion from this study was that LWTs A, NE, E and SE were associated with high pollen and air pollution levels and can therefore be classified as high risk weather situations for combined air pollution and pollen exposure. Our study shows that LWTs have the potential to be developed into an objective tool for integrated air quality forecasting and a warning system for risk of high exposure situations.

  6. Seasonal appearance of grass pollen allergen in natural, pauci-micronic aerosol of various size fractions. Relationship with airborne grass pollen concentration.

    PubMed

    Spieksma, F T; Nikkels, B H; Dijkman, J H

    1995-03-01

    In a study during the 1993 grass pollen season at Leiden, the relationship between atmospheric pollen allergen carried by five size fractions of pauci-micronic (few microns) particles and the grass pollen count was investigated. Sampling was carried out on dry days, and atmospheric pollen allergen in the particle fractions was assessed by a RAST-inhibition assay while grass pollen quantities were measured with a volumetric pollen trap. It appears that the atmospheric presence of grass pollen allergen in all size fractions is restricted mainly to the period of presence of grass pollen grains. Before and after the grass pollen season atmospheric grass pollen allergen quantities are generally very low. It is concluded that a routinely performed grass pollen count is a reliable measurement for the estimation of the amount of atmospheric grass pollen allergen, also in the pauci-micronic particle fraction. PMID:7788570

  7. Particulate matter modifies the association between airborne pollen and daily medical consultations for pollinosis in Tokyo.

    PubMed

    Konishi, Shoko; Ng, Chris Fook Sheng; Stickley, Andrew; Nishihata, Shinichi; Shinsugi, Chisa; Ueda, Kayo; Takami, Akinori; Watanabe, Chiho

    2014-11-15

    Pollen from Japanese cedar (sugi) and cypress (hinoki) trees is responsible for the growing prevalence of allergic rhinitis, especially pollinosis in Japan. Previous studies have suggested that air pollutants enhance the allergic response to pollen in susceptible individuals. We conducted a time-stratified case-crossover study to examine the potential modifying effects of PM2.5 and suspended particulate matter (SPM) on the association between pollen concentration and daily consultations for pollinosis. A total of 11,713 daily pollinosis cases (International Classification of Diseases, ICD-10, J30.1) from January to May, 2001-2011, were obtained from a clinic in Chiyoda, Tokyo. Daily pollen counts and the daily mean values of air pollutants (PM2.5, SPM, SO2, NO2, CO, and O3) were collected from monitoring stations across Tokyo. The effects of pollen were stratified by the level of PM2.5 and SPM to examine the interaction effect of pollen and particulate pollutants. We found a statistically significant interaction between pollen concentration and PM2.5/SPM. On days with a high level of PM2.5 (>95th percentile), an interquartile increase in the mean cumulative pollen count (an average of 28 pollen grains per cm(2) during lag-days 0 to 5) corresponded to a 10.30% (95%CI: 8.48%-12.16%) increase in daily new pollinosis cases, compared to 8.04% (95%CI: 7.28%-8.81%) on days with a moderate level of PM2.5 (5th-95th percentile). This interaction persisted when different percentile cut-offs were used and was robust to the inclusion of other air pollutants. A similar interaction pattern was observed between SPM and pollen when a less extreme cut-off for SPM was used to stratify the effect of pollen. Our study showed the acute effect of pollen was greater when the concentration of air particulate pollutant, specifically PM2.5 and SPM, was higher. These findings are consistent with the notion that particulate air pollution may act as an adjuvant that promotes allergic disease (i

  8. Variations in mugwort (Artemisia spp.) airborne pollen concentrations at three sites in central Croatia, in period from 2002 to 2003.

    PubMed

    Peternel, Renata; Hrga, Ivana; Culig, Josip

    2006-12-01

    In spite of the low atmospheric pollen levels, Artemisia sensitisation and allergy has been reported widely. The aim of the study was to determine the length of pollen season, intradiurnal, daily and monthly pollen variation, and the effect of some meteorological parameters on atmospheric pollen concentrations in Central Croatia. Seven-day Hirst volumetric pollen and spore traps were used for pollen sampling. The Artemisia pollen season lasted from the end of July until the end of September with the highest concentrations in August. The percentage of the total pollen count ranged from 0.52% to 0.92%. The intradiurnal peak occurred between 10 a.m. and 12 a.m. Statistical analysis showed a significant correlations between higher air temperature and high pollen concentration as well as high precipitation and low pollen concentration. Results of this study are expected to help in preventing the symptoms of allergic reaction in individuals with Artemisia pollen hypersensitivity. PMID:17243566

  9. Airborne pollen sampling in Manoa Valley, Hawaii: effect of rain, humidity and wind.

    PubMed

    Massey, D G; Fournier-Massey, G

    1984-05-01

    Kramer-Collins pollen sampling was conducted over 24 hours for 25 consecutive months at two valley sites in Honolulu. Of 1,059 expected samples, 699 (66.0%) were collected. Only 25 were considered excellent, i.e., eight three-hour collection bands. Twenty eight were considered good, ie., two to six bands. The difficulties in the study were associated with the weather directly (17.5%), the power source (3.9%), inadequancy of the samplers (63.1%) and the inexperience of technicians (15.3%). Sampler problems were also indirectly attributable to the high humidity, rain and wind, which differed at the two sites. PMID:6721258

  10. Bee Pollen

    MedlinePlus

    ... Don’t confuse bee pollen with bee venom, honey, or royal jelly. People take bee pollen for ... Pollen, Extrait de Pollen d’Abeille, Honeybee Pollen, Honey Bee Pollen, Maize Pollen, Pine Pollen, Polen de ...

  11. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications

    NASA Astrophysics Data System (ADS)

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different.

  12. Weather elements, chemical air pollutants and airborne pollen influencing asthma emergency room visits in Szeged, Hungary: performance of two objective weather classifications.

    PubMed

    Makra, László; Puskás, János; Matyasovszky, István; Csépe, Zoltán; Lelovics, Enikő; Bálint, Beatrix; Tusnády, Gábor

    2015-09-01

    Weather classification approaches may be useful tools in modelling the occurrence of respiratory diseases. The aim of the study is to compare the performance of an objectively defined weather classification and the Spatial Synoptic Classification (SSC) in classifying emergency department (ED) visits for acute asthma depending from weather, air pollutants, and airborne pollen variables for Szeged, Hungary, for the 9-year period 1999-2007. The research is performed for three different pollen-related periods of the year and the annual data set. According to age and gender, nine patient categories, eight meteorological variables, seven chemical air pollutants, and two pollen categories were used. In general, partly dry and cold air and partly warm and humid air aggravate substantially the symptoms of asthmatics. Our major findings are consistent with this establishment. Namely, for the objectively defined weather types favourable conditions for asthma ER visits occur when an anticyclonic ridge weather situation happens with near extreme temperature and humidity parameters. Accordingly, the SSC weather types facilitate aggravating asthmatic conditions if warm or cool weather occur with high humidity in both cases. Favourable conditions for asthma attacks are confirmed in the extreme seasons when atmospheric stability contributes to enrichment of air pollutants. The total efficiency of the two classification approaches is similar in spite of the fact that the methodology for derivation of the individual types within the two classification approaches is completely different. PMID:25504051

  13. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City.

    PubMed

    Ríos, B; Torres-Jardón, R; Ramírez-Arriaga, E; Martínez-Bernal, A; Rosas, I

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  14. Diurnal variations of airborne pollen concentration and the effect of ambient temperature in three sites of Mexico City

    NASA Astrophysics Data System (ADS)

    Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.

    2016-05-01

    Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized

  15. Allergenic pollen and pollen allergy in Europe.

    PubMed

    D'Amato, G; Cecchi, L; Bonini, S; Nunes, C; Annesi-Maesano, I; Behrendt, H; Liccardi, G; Popov, T; van Cauwenberge, P

    2007-09-01

    The allergenic content of the atmosphere varies according to climate, geography and vegetation. Data on the presence and prevalence of allergenic airborne pollens, obtained from both aerobiological studies and allergological investigations, make it possible to design pollen calendars with the approximate flowering period of the plants in the sampling area. In this way, even though pollen production and dispersal from year to year depend on the patterns of preseason weather and on the conditions prevailing at the time of anthesis, it is usually possible to forecast the chances of encountering high atmospheric allergenic pollen concentrations in different areas. Aerobiological and allergological studies show that the pollen map of Europe is changing also as a result of cultural factors (for example, importation of plants such as birch and cypress for urban parklands), greater international travel (e.g. colonization by ragweed in France, northern Italy, Austria, Hungary etc.) and climate change. In this regard, the higher frequency of weather extremes, like thunderstorms, and increasing episodes of long range transport of allergenic pollen represent new challenges for researchers. Furthermore, in the last few years, experimental data on pollen and subpollen-particles structure, the pathogenetic role of pollen and the interaction between pollen and air pollutants, gave new insights into the mechanisms of respiratory allergic diseases. PMID:17521313

  16. Plant pollen content in the air of Lublin (central-eastern Poland) and risk of pollen allergy.

    PubMed

    Piotrowska-Weryszko, Krystyna; Weryszko-Chmielewska, Elżbieta

    2014-01-01

    Pollen monitoring was carried out in Lublin in 2001-2012 by the volumetric method using a Hirst-type spore trap (Lanzoni VPPS 2000). Daily pollen concentrations considerably differed in the particular years. The pollen counts with the biggest variability were observed in the first half of a year when woody plants flowering. The highest annual pollen index were noted for the following taxa: Betula, Urtica, Pinaceae, Poaceae and Alnus. Betula annual total showed the greatest diversity in the study years. The number of days on which the pollen concentration exceeded the threshold values, thereby inducing allergies, was determined for the taxa producing the most allergenic pollen. The above-mentioned taxa primarily included the following: Poaceae, in the case of which the highest number of days with the risk of occurrence of pollen allergy was found (35), Betula (18), and Artemisia (10). The following taxa: Alnus (14 days), Populus (11 days), Fraxinus (10 days), and Quercus (8 days), were also characterized by a large number of days on which their pollen concentrations exceeded the threshold values. The occurrence of periods of high concentration of particular pollen types were also noted. Risk of pollen allergy appeared the earliest at the beginning of February during Alnus and Corylus blooming. High concentrations of other woody plants were recorded from the last ten days of March to about 20 May, and of herbaceous plants from the first/last half of May-beginning of October. PMID:25528903

  17. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen

    PubMed Central

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  18. Pollen-Associated Microbiome Correlates with Pollution Parameters and the Allergenicity of Pollen.

    PubMed

    Obersteiner, Andrea; Gilles, Stefanie; Frank, Ulrike; Beck, Isabelle; Häring, Franziska; Ernst, Dietrich; Rothballer, Michael; Hartmann, Anton; Traidl-Hoffmann, Claudia; Schmid, Michael

    2016-01-01

    Pollen allergies have been rapidly increasing over the last decades. Many allergenic proteins and non-allergenic adjuvant compounds of pollen are involved in the plant defense against environmental or microbial stress. The first aim of this study was to analyze and compare the colonizing microbes on allergenic pollen. The second aim was to investigate detectable correlations between pollen microbiota and parameters of air pollution or pollen allergenicity. To reach these aims, bacterial and fungal DNA was isolated from pollen samples of timothy grass (Phleum pratense, n = 20) and birch trees (Betula pendula, n = 55). With this isolated DNA, a terminal restriction fragment length polymorphism analysis was performed. One result was that the microbial diversity on birch tree and timothy grass pollen samples (Shannon/Simpson diversity indices) was partly significantly correlated to allergenicity parameters (Bet v 1/Phl p 5, pollen-associated lipid mediators). Furthermore, the microbial diversity on birch pollen samples was correlated to on-site air pollution (nitrogen dioxide (NO2), ammonia (NH3), and ozone (O3)). What is more, a significant negative correlation was observed between the microbial diversity on birch pollen and the measured NO2 concentrations on the corresponding trees. Our results showed that the microbial composition of pollen was correlated to environmental exposure parameters alongside with a differential expression of allergen and pollen-associated lipid mediators. This might translate into altered allergenicity of pollen due to environmental and microbial stress. PMID:26910418

  19. Pollen spectrum and risk of pollen allergy in central Spain.

    PubMed

    Perez-Badia, Rosa; Rapp, Ana; Morales, Celia; Sardinero, Santiago; Galan, Carmen; Garcia-Mozo, Herminia

    2010-01-01

    The present work analyses the airborne pollen dynamic of the atmosphere of Toledo (central Spain), a World Heritage Site and an important tourist city receiving over 2 millions of visitors every year. The airborne pollen spectrum, the annual dynamics of the most important taxa, the influence of meteorological variables and the risk of suffering pollen allergy are analysed. Results of the present work are compared to those obtained by similar studies in nearby regions. The average annual Pollen Index is 44,632 grains, where 70-90 percent is recorded during February-May. The pollen calendar includes 29 pollen types, in order of importance; Cupressaceae (23.3 percent of the total amount of pollen grains), Quercus (21.2 percent), and Poaceae and Olea (11.5 and 11.2 percent, respectively), are the main pollen producer taxa. From an allergological viewpoint, Toledo is a high-risk locality for the residents and tourist who visit the area, with a great number of days exceeding the allergy thresholds proposed by the Spanish Aerobiological Network (REA). The types triggering most allergic processes in Toledo citizens and tourists are Cupressaceae, Platanus, Olea, Poaceae, Urticaceae and Chenopodiaceae-Amaranthaceae. Allergic risk increases in 3 main periods: winter (January-March), with the main presence of the Cupressaceae type; spring, characterized by Poaceae, Olea, Platanus and Urticaceae pollen types; and, finally, late summer (August-September), characterized by Chenopodiaceae- Amaranthaceae pollen type, which are the main cause of allergies during these months. PMID:20684492

  20. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic,Slobodan; Ponce-Campos, Guillermo; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Crimmins, Theresa; Weltzin, Jake

    2011-01-01

    This slide presentation reviews the study that used a model to forecast pollen to assist in warning for asthma populations. Using MODIS daily reflectances to input to a model, PREAM, adapted from the Dust REgional Atmospheric Modeling (DREAM) system, a product of predicted pollen is produced. Using the pollen from Juniper the PREAM model was shown to be an assist in alerting the public of pollen bursts, and reduce the health impact on asthma populations.

  1. A Six-Year Study on the Changes in Airborne Pollen Counts and Skin Positivity Rates in Korea: 2008–2013

    PubMed Central

    Park, Hye Jung; Lee, Jae-Hyun; Park, Kyung Hee; Kim, Kyu Rang; Han, Mae Ja; Choe, Hosoeng

    2016-01-01

    Purpose The occurrence of pollen allergy is subject to exposure to pollen, which shows regional and temporal variations. We evaluated the changes in pollen counts and skin positivity rates for 6 years, and explored the correlation between their annual rates of change. Materials and Methods We assessed the number of pollen grains collected in Seoul, and retrospectively reviewed the results of 4442 skin-prick tests conducted at the Severance Hospital Allergy-Asthma Clinic from January 1, 2008 to December 31, 2013. Results For 6 years, the mean monthly total pollen count showed two peaks, one in May and the other in September. Pollen count for grasses also showed the same trend. The pollen counts for trees, grasses, and weeds changed annually, but the changes were not significant. The annual skin positivity rates in response to pollen from grasses and weeds increased significantly over the 6 years. Among trees, the skin positivity rates in response to pollen from walnut, popular, elm, and alder significantly increased over the 6 years. Further, there was a significant correlation between the annual rate of change in pollen count and the rate of change in skin positivity rate for oak and hop Japanese. Conclusion The pollen counts and skin positivity rates should be monitored, as they have changed annually. Oak and hop Japanese, which showed a significant correlation with the annual rate of change in pollen count and the rate of change in skin positivity rate over the 6 years may be considered the major allergens in Korea. PMID:26996572

  2. Integration of Airborne Aerosol Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Huete, Alfredo; Pejanovic, Goran; Nickovic, Slobodan; Krapfl, Heide; Budge, Amy; Zelicoff, Alan; VandeWater, Peter K.; Levetin, Estelle; Losleben, Mark; Weltzin, Jake

    2009-01-01

    The residual signal indicates that the pollen event may influence the seasonal signal to an extent that would allow detection, given accurate QA filtering and BRDF corrections. MODIS daily reflectances increased during the pollen season. The DREAM model (PREAM) was successfully modified for use with pollen and may provide 24-36 hour running pollen forecasts. Publicly available pollen forecasts are linked to general weather patterns and roughly-known species phenologies. These are too coarse for timely health interventions. PREAM addresses this key data gap so that targeting intervention measures can be determined temporally and geospatially. The New Mexico Department of Health (NMDOH) as part of its Environmental Public Health Tracking Network (EPHTN) would use PREAM a tool for alerting the public in advance of pollen bursts to intervene and reduce the health impact on asthma populations at risk.

  3. Recent pollen spectra and zonal vegetation in the western USSR

    NASA Astrophysics Data System (ADS)

    Peterson, G. M.

    The relationship of modern pollen spectra to present-day vegetation is critical to the reconstruction of vegetation and climate from fossil pollen spectra. This study uses isopoll maps to illustrate the pollen-vegetation relationships in the Soviet Union west of 100°E and presents descriptive statistics for 544 modern samples of arboreal pollen and for 370 samples of herb pollen obtained from the Soviet palynological literature. Data are assembled from this large geographic region and presented in a standardized form on a scale which can be used to relate quantitative pollen data to zonal vegetation and climatic variables and to make comparisons with other regions. In order to show the relationship between pollen types and major ecotones in forested and non-forested areas, the pollen data are presented as percentages of a sum including both arboreal and non-arboreal pollen. Major pollen types which attain values of 10% or more in at least one vegetation zone include Betula (birch), Cyperaceae (sedges), Picea (spruce), Pinus (total pine), Pinus sibirica, Ericaceae (heath family), Gramineae (grasses), Artemisia (sage), and Chenopodiaceae (i.e., saltbush, Russian thistle, pigweed family). Samples from the tundra and forest-tundra have high values of Ericaceae (heath family), birch, alder, and sedge pollen. In the boreal forest, pine, spruce, and birch pollen predominate. In the mixed and deciduous forests, Tilia (linden), Quercus (oak), Ulmus (elm), and Corylus (hazel) pollen attain maximum values. In the forest-steppe and steppe zones, arboreal pollen decreases in importance and is replaced by non-arboreal pollen types. Pollen of Artemisia and Chenopodiaceae predominates in the semi-desert zones. In spite of variation in the pollen spectra arising from the use of different sediment types (soil, peat, and river sediments), and human disturbance of vegetation, the pollen spectra are clearly related to zonal vegetation. Pollen spectra from the western USSR show

  4. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  5. Pollen Primer

    MedlinePlus

    ... air filters (HEPA) or an electrostatic air filter. Tree Pollen Trees produce pollen earliest, as soon as January in ... distributed miles away. Fewer than 100 kinds of trees cause allergies. Some common ones are catalpa, elm, ...

  6. Predicting days of high allergenic risk during Betula pollination using weather types.

    PubMed

    Laaidi, K

    2001-09-01

    The aim of this study was to build up a picture of the influence of meteorological conditions on pollen and pollinosis, taking account of weather types, pollen concentrations in the air and pollinosis symptoms, with the aim of preventing allergic responses. The study took place in Burgundy from 1996 to 1998, during the pollination of the birch (Betula), which is the most important arborean allergen in this region. We used daily pollen data from four Hirst volumetric traps, identified weather types by Bénichou's classification, and obtained data on the occurrence of rhinitis, conjunctivitis, asthma and coughing from a sample of 100 patients. These data were analysed by multiple-component analysis. The results show that pollen dispersal is favoured by windy conditions, low relative humidity, precipitation below 2 mm and temperatures above 6 degrees C. Such weather also favours pollinosis, but other particular meteorological situations, even if they do not assist pollen dispersal, can act directly on the development of symptoms: a decrease of temperature (3 degrees C) led to the development of rhinitis and conjunctivitis, while strong winds were associated with many cases of conjunctivitis and asthma, owing to the irritant effect of cold or wind; asthma was favoured by temperature inversions with fog, probably because such weather corresponds to high levels of pollution, which act on bronchial hyperreactivity. Because the weather types favouring pollination and pollinosis are predicted by the meteorological office, this can constitute a tool for reducing the effect of high-risk allergenic days. PMID:11594632

  7. Predicting days of high allergenic risk during Betula pollination using weather types

    NASA Astrophysics Data System (ADS)

    Laaidi, K.

      The aim of this study was to build up a picture of the influence of meteorological conditions on pollen and pollinosis, taking account of weather types, pollen concentrations in the air and pollinosis symptoms, with the aim of preventing allergic responses. The study took place in Burgundy from 1996 to 1998, during the pollination of the birch (Betula), which is the most important arborean allergen in this region. We used daily pollen data from four Hirst volumetric traps, identified weather types by Bénichou's classification, and obtained data on the occurrence of rhinitis, conjunctivitis, asthma and coughing from a sample of 100 patients. These data were analysed by multiple-component analysis. The results show that pollen dispersal is favoured by windy conditions, low relative humidity, precipitation below 2 mm and temperatures above 6°C. Such weather also favours pollinosis, but other particular meteorological situations, even if they do not assist pollen dispersal, can act directly on the development of symptoms: a decrease of temperature (3°C) led to the development of rhinitis and conjunctivitis, while strong winds were associated with many cases of conjunctivitis and asthma, owing to the irritant effect of cold or wind; asthma was favoured by temperature inversions with fog, probably because such weather corresponds to high levels of pollution, which act on bronchial hyperreactivity. Because the weather types favouring pollination and pollinosis are predicted by the meteorological office, this can constitute a tool for reducing the effect of high-risk allergenic days.

  8. Pollen Allergy

    MedlinePlus

    ... pollen count, which is often reported by local weather broadcasts or allergy websites, is a measure of how much pollen is in the air. Pollen counts tend to be highest early in the morning on warm, dry, breezy days and lowest during chilly, wet periods. ...

  9. Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season.

    PubMed

    Jato, V; Rodríguez-Rajo, F J; Seijo, M C; Aira, M J

    2009-07-01

    Airborne Poaceae pollen counts are greatly influenced by weather-related parameters, but may also be governed by other factors. Poaceae pollen is responsible for most allergic reactions in the pollen-sensitive population of Galicia (Spain), and it is therefore essential to determine the risk posed by airborne pollen counts. The global climate change recorded over recent years may prompt changes in the atmospheric pollen season (APS). This survey used airborne Poaceae pollen data recorded for four Galician cities since 1993, in order to characterise the APS and note any trends in its onset, length and severity. Pollen sampling was performed using Hirst-type volumetric traps; data were subjected to Spearman's correlation test and regression models, in order to detect possible correlations between different parameters and trends. The APS was calculated using ten different methods, in order to assess the influence of each on survey results. Finally, trends detected for the major weather-related parameters influencing pollen counts over the study period were compared with those recorded over the last 30 years. All four cities displayed a trend towards lower annual total Poaceae pollen counts, lower peak values and a smaller number of days on which counts exceeded 30, 50 and 100 pollen grains/m(3). Moreover, the survey noted a trend towards delayed onset and shorter duration of the APS, although differences were observed depending on the criteria used to define the first and the last day of the APS. PMID:19347372

  10. Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season

    NASA Astrophysics Data System (ADS)

    Jato, V.; Rodríguez-Rajo, F. J.; Seijo, M. C.; Aira, M. J.

    2009-07-01

    Airborne Poaceae pollen counts are greatly influenced by weather-related parameters, but may also be governed by other factors. Poaceae pollen is responsible for most allergic reactions in the pollen-sensitive population of Galicia (Spain), and it is therefore essential to determine the risk posed by airborne pollen counts. The global climate change recorded over recent years may prompt changes in the atmospheric pollen season (APS). This survey used airborne Poaceae pollen data recorded for four Galician cities since 1993, in order to characterise the APS and note any trends in its onset, length and severity. Pollen sampling was performed using Hirst-type volumetric traps; data were subjected to Spearman’s correlation test and regression models, in order to detect possible correlations between different parameters and trends. The APS was calculated using ten different methods, in order to assess the influence of each on survey results. Finally, trends detected for the major weather-related parameters influencing pollen counts over the study period were compared with those recorded over the last 30 years. All four cities displayed a trend towards lower annual total Poaceae pollen counts, lower peak values and a smaller number of days on which counts exceeded 30, 50 and 100 pollen grains/m3. Moreover, the survey noted a trend towards delayed onset and shorter duration of the APS, although differences were observed depending on the criteria used to define the first and the last day of the APS.

  11. Modern pollen deposition in Long Island Sound

    USGS Publications Warehouse

    Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Bucholtz ten Brink, Marilyn R.

    2000-01-01

    Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.

  12. Essential Oil of Betula pendula Roth. Buds

    PubMed Central

    2004-01-01

    The essential oil of Betula pendula Roth. buds was obtained using both hydrodistillation and microdistillation techniques and their chemical compositions were analyzed using both gas chromatography (GC) and gas chromatography–mass spectrometry (GC-MS). Overall, more than 50 compounds were identified representing 80% and 92% for hydrodistillation and microdistillation, respectively. The main components (by hydrodistillation and microdistillation, respectively) found were α-copaene (12% and 10%), germacrene D (11% and 18%) and δ-cadinene (11% and 15%) in the analyzed essential oils. The microdistillation technique proved to be a useful tool and compliant alternative when compared to hydrodistillation. PMID:15841263

  13. Essential Oil of Betula pendula Roth. Buds.

    PubMed

    Demirci, Betül; Paper, Dietrich H; Demirci, Fatih; Can Başer, K Hüsnü; Franz, Gerhard

    2004-12-01

    The essential oil of Betula pendula Roth. buds was obtained using both hydrodistillation and microdistillation techniques and their chemical compositions were analyzed using both gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Overall, more than 50 compounds were identified representing 80% and 92% for hydrodistillation and microdistillation, respectively. The main components (by hydrodistillation and microdistillation, respectively) found were alpha-copaene (12% and 10%), germacrene D (11% and 18%) and delta-cadinene (11% and 15%) in the analyzed essential oils. The microdistillation technique proved to be a useful tool and compliant alternative when compared to hydrodistillation. PMID:15841263

  14. Suitability of different pollen as alternative food for the predatory mite Amblyseius swirskii (Acari, Phytoseiidae).

    PubMed

    Goleva, Irina; Zebitz, Claus P W

    2013-11-01

    , and A. hippocastanum and Betula pendula pollen is recommended to be used as dispersible pollen in greenhouses. PMID:23670826

  15. Hypersensitivity to common tree pollens in New York City patients.

    PubMed

    Lin, Robert Y; Clauss, Allison E; Bennett, Edward S

    2002-01-01

    Testing for tree pollen hypersensitivity typically requires the use of several tree pollens. Identifying patterns of cross-sensitivity to tree pollens could reduce the number of trees used for testing. The goal of this study was to relate reported tree pollen levels to hypersensitivity patterns. Three hundred seventy-one allergy patients were tested serologically for hypersensitivity toward prevalent tree pollens in the surrounding New York area over the years 1993-2000. Specific tree pollens that were examined included oak (Quercus alba), birch (Betula verrucosa), beech (Fagus grandifolia), poplar (Populus deltoides), maple (Acer negundo), ash (Fraxinus americana), hickory (Carya pecan), and elm (Ulmus americana). Statistical analysis of the levels of hypersensitivity was performed to identify correlations and grouping factors. Pollen levels, obtained from published annual pollen and spore reports, were characterized and related to the prevalence of hypersensitivity for the various trees. The highest prevalence of hypersensitivity (score > or = class 1) was for oak (34.3%), birch (32.9%), and maple (32.8%) tree pollens. Lower prevalences were observed for beech (29.6%), hickory (27.1%), ash (26%), elm (24.6%), and poplar (20.6%) trees. Significant correlations were observed between oak, birch, and beech radioallergosorbent test scores. Factor analysis identified two independent pollen groups with oak, birch, and beech consisting of one group and the other five tree pollens constituting the other group. Peak pollen counts clearly were highest for oak, birch, and maple trees. The peak pollen counts corresponded roughly to seropositivity prevalences for the tree pollens. When elm, poplar, and beech test scores were not used to identify patients who were allergic to tree pollens, only 1 of 106 patients with any positive tree radioallergosorbent test score was missed. It is concluded that in the New York City area, hypersensitivity to tree pollens most often is

  16. A Method of Recording and Predicting the Pollen Count.

    ERIC Educational Resources Information Center

    Buck, M.

    1985-01-01

    A hair dryer, plastic funnel, and microscope slide can be used for predicting pollen counts on a day-to-day basis. Materials, methods for assembly, collection technique, meteorological influences, and daily patterns are discussed. Data collected using the apparatus suggest that airborne grass products other than pollen also affect hay fever…

  17. PROJECTING POLLEN ALLERGENS AND THEIR HEALTH IMPLICATIONS IN A CHANGING WORLD

    EPA Science Inventory

    This project will increase our basic understanding of the links between climatic conditions and atmospheric concentrations of pollen and pollen-derived respirable allergenic material, and impacts of airborne pollen on human health. The work will result in new parameterization...

  18. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    NASA Astrophysics Data System (ADS)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  19. Pollen clumping and wind dispersal in an invasive angiosperm.

    PubMed

    Martin, Michael D; Chamecki, Marcelo; Brush, Grace S; Meneveau, Charles; Parlange, Marc B

    2009-09-01

    Pollen dispersal is a fundamental aspect of plant reproductive biology that maintains connectivity between spatially separated populations. Pollen clumping, a characteristic feature of insect-pollinated plants, is generally assumed to be a detriment to wind pollination because clumps disperse shorter distances than do solitary pollen grains. Yet pollen clumps have been observed in dispersion studies of some widely distributed wind-pollinated species. We used Ambrosia artemisiifolia (common ragweed; Asteraceae), a successful invasive angiosperm, to investigate the effect of clumping on wind dispersal of pollen under natural conditions in a large field. Results of simultaneous measurements of clump size both in pollen shedding from male flowers and airborne pollen being dispersed in the atmosphere are combined with a transport model to show that rather than being detrimental, clumps may actually be advantageous for wind pollination. Initial clumps can pollinate the parent population, while smaller clumps that arise from breakup of larger clumps can cross-pollinate distant populations. PMID:21622356

  20. Aerobiology of Juniperus Pollen in Oklahoma, Texas, and New Mexico

    NASA Technical Reports Server (NTRS)

    Levetin, Estelle; Bunderson, Landon; VandeWater, Pete; Luvall, Jeff

    2014-01-01

    Pollen from members of the Cupressaceae are major aeroallergens in many parts of the world. In the south central and southwest United States, Juniperus pollen is the most important member of this family with J. ashei (JA) responsible for severe winter allergy symptoms in Texas and Oklahoma. In New Mexico, pollen from J. monosperma (JM) and other Juniperus species are important contributors to spring allergies, while J. pinchotii (JP) pollinates in the fall affecting sensitive individuals in west Texas, southwest Oklahoma and eastern New Mexico. Throughout this region, JA, JM, and JP occur in dense woodland populations. Generally monitoring for airborne allergens is conducted in urban areas, although the source for tree pollen may be forested areas distant from the sampling sites. Improved pollen forecasts require a better understanding of pollen production at the source. The current study was undertaken to examine the aerobiology of several Juniperus species at their source areas for the development of new pollen forecasting initiatives.

  1. Influence of wind velocity on pollen concentration in urban canopy layer

    NASA Astrophysics Data System (ADS)

    Pospisil, J.; Jícha, M.

    2009-09-01

    POLLEN RELEASE Temperature is the basic parameter for prediction of the beginning of the pollen season and identification days with good potential for pollen release. Different approaches are used for determination of the start of the pollen season: i) the sum of daily pollen counts = x criterion (Arnold 2002), ii) the mean temperature method during pre-defined period (Sparks, 2000), iii) the temperature sum method (Jones 1992). Another parameters influencing pollen release are: day light length, morning temperature gradient, relative humidity. The mentioned parameters enable to create the "statistical” model for determination of timing of pollen potential release. But, the correct determination of pollen release timing is only the first step to correct prediction of pollen concentration in air. The above mentioned collection of parameters isn't complete for correct pollen production prediction without inclusion of the actual wind velocity. The wind velocity directly influences the pollen release rate from mother plant and subsequently transport of pollen grains. From this reason, influence of wind conditions has to be considered as exactly as possible in complex prediction models. WIND VELOCITY AND POLLEN CONCENTRATION Results of in-situ measurements were used for carried out analysis of the relation between wind velocity and pollen concentration in an urban canopy layer. The mean daily wind velocities and the mean daily pollen concentrations were used as the input data describing the pollen season 2005 in an inner part of the city of Brno (pop. 400 000). The mean daily pollen concentrations were matched to corresponding mean daily wind velocity and depicted in graphs. This procedure was done for all locally monitored aeroallergens, namely Alnus, Ambrosia, Betula, Artemis, Corylus, Fraxinus, Poaceae and Quercus. Only days with significant pollen concentration (above 10% of maximal pollen season concentration) were considered for detail analysis. Clear

  2. Pollen calendar of the city of Salamanca (Spain). Aeropalynological analysis for 1981-1982 and 1991-1992.

    PubMed

    Hernández Prieto, M; Lorente Toledano, F; Romo Cortina, A; Dávila González, I; Laffond Yges, E; Calvo Bullón, A

    1998-01-01

    We report a study on the contents of airborne pollen in the city of Salamanca (Spain) aimed at establishing a pollen calendar for the city for the yearly periods of maximum concentrations, relating these with quantifiable atmospheric variables over two two-year periods with an interval of 10 years between them: 1981-82 and 1991-92. The pollen was captured with Burkard spore-traps, based on Hirst's volumetric method. Determinations were made daily and were used to make preparations, previously stained with basic fuscin, for study under light microscopy at x 1,000 magnification. 946 preparations were analyzed, corresponding to the same number of days distributed over 150 weeks of the periods studied. The results afforded the identification of 48 different types of pollen grain: Grasses (Poaceae), Olea europea (olive), Quercus rotundifolia (Holm-oak), other Quercus spp. (Q. pyrenaica, Q. suber, Q. faginea, etc.), Cupressaceae (Cupressus sempervivens, C. arizonica, Juniperus communis etc.), Plantago (Plantago lanceolata, Plantago media, etc.), Pinaceae (Pinus communis, Abies alba, etc.), Rumex sp. (osier), Urtica dioica (nettle), Parietaria (Parietaria officinalis, P. judaica), Chenopodio-Amaranthaceae (Chenopodium sp., Amaranthus sp., Salsola kali, etc.), Artemisia vulgaris (Artemisia), other Compositae (Taraxacum officinalis, Hellianthus sp. etc.), Castanea sativa (Chestnut), Ligustrum sp. (privet), Betula sp. (birch), Alnus sp. (common alder), Fraxinus sp (ash), Populus sp. (poplar), Salix sp. (willow), Ulmus sp. (elm), Platanus sp. (plantain, plane), Carex sp. (sweet flag), Erica sp. (common heather), Leguminosae or Fabaceae:--Papillionaceae (Medicago sp.; Cercis sp., Robina sp.)--Cesalpinoideae Acacia sp. (Acacia),--Mimosoideae: Sophora japonica, Umbelliferae (Foeniculum sp., Cirsium sp., etc.), Centaurea sp., Cistus sp. (rock rose), Typha sp (bulrush), Mirtaceae (Myrtus communis), Juglans regia (Walnut), Galium verum, Filipendula sp. (spirea/drop wort), Rosaceae

  3. Variations and trends of Fagaceae pollen in Northern Sardinia, Italy

    NASA Astrophysics Data System (ADS)

    Canu, Annalisa; Pellizzaro, Grazia; Arca, Bachisio; Vargiu, Arnoldo

    2016-04-01

    The aim of this study is to analyze variations in the start and the end dates of pollen season, date of maximum concentration peak, pollen season duration, pollen concentration value and Seasonal Pollen Index of airborne Fagaceae pollen series recorded in Sassari, Northern Italy, and to evaluate their relation to meteorological data. Daily pollen concentration data were measured from 1986 to 2008 in a urban area of northern Sardinia (Italy) using a Burkard seven-day recording volumetric spore trap. The date of the peak occurrence was defined as the day when the cumulated daily pollen values reached the 50 % of the total annual pollen concentration. Meteorological data were recorded during the same period by an automatic weather station. Cumulative Degree days were calculated, for each year, from different starting dates using the daily averaging method. The correlation between meteorological variables and the different characteristics of pollen seasons was analyzed using Spearman's correlation tests. In the city of Sassari the Fagaceae airborne pollen content was mainly due to Quercus. The main pollen season took place from April to June. The longest pollen season appeared in the year 2002. The cumulative counts varied over the years, with a mean value of 5,336 pollen grains, a lowest total of 550 in 1986 and a highest total of 8,678 in 2001. Daily pollen concentrations presented positive correlation with temperature, and negative with relative humidity (p<0,0001) and with rainfall. In addition, Cumulative Degree days were significantly correlated with the dates of maximum concentration peak (p<0,0001).

  4. Polarization Analysis of Light Scattered by Pollen Grains of Cryptomeria japonica

    NASA Astrophysics Data System (ADS)

    Iwai, Toshiaki

    2013-06-01

    Pollinosis to airborne pollen grains is a severe problem that concerns the whole world. Almost spring allergies in Japan are caused by pollen grains of Japan cedar (Cryptomeria japonica) during the period of pollination from February to May. One of the key technologies in a pollen monitoring and forecast system is a pollen sensor. The pollen grain of Japan cedar is identified by introducing the degree of polarization to the optical sensor based on the scattered intensity. The detectability and discriminability in identifying the pollen grains of Japan cedar from the polystyrene spherical particles and the Kanto loam grains are achieved up to 95 and 86%, respectively.

  5. Allergies, asthma, and pollen

    MedlinePlus

    Allergic rhinitis - pollen ... them is your first step toward feeling better. Pollen is a trigger for many people who have allergies and asthma. The types of pollens that are triggers vary from person to person ...

  6. Effects of acidity on tree pollen germination and tube growth

    SciTech Connect

    Jacobson, J.S.; Van Rye, D.M.; Lassoie, J.P.

    1985-01-01

    Several studies have indicated that pollen germination and tube growth are adversely affected by air pollutants. Pollutants may inhibit the function of pollen by reducing the number of pollen grains which germinate, by reducing the maximum length to which the pollen tubes grow, or by interfering with the formation of the generative cell. The paper reports on studies that are attempting to determine the effects acid rain may have on these crucial stages in the life histories of northeastern tree species. The first stage of this work assessed the effects of acidity in the growth medium on in vitro pollen germination for four deciduous forest species common to central New York State, Betula lutea (yellow birch), B. lenta (black birch), Acer saccharum (sugar maple), and Cornus florida (flowering dogwood). Measurements were taken at the end of the growth period to determine the percentage of grains which had germinated, and to estimate the average tube length. To determine the effects of pollen on the growth medium, the pH of the germination drop was measured at the end of the growth period.

  7. Impact and correlation of environmental conditions on pollen counts in Karachi, Pakistan.

    PubMed

    Perveen, Anjum; Khan, Muneeba; Zeb, Shaista; Imam, Asif Ali

    2015-02-01

    A quantitative and qualitative survey of airborne pollen was performed in the city of Karachi, and the pollen counts were correlated with different climatic conditions. The aim of the study was to determine the possible effect of meteorological factors on airborne pollen distribution in the atmosphere of Karachi city. Pollen sampling was carried out by using Burkard spore Trap for the period of August 2009 to July 2010, and a total of 2,922 pollen grains/m(3) were recorded. In this survey, 22 pollen types were recognized. The highest pollen count was contributed by Poaceae pollen type (1,242 pollen grains/m(3)) followed by Amaranthaceae/Chenopodiaceae (948 pollen grains/m(3)), Cyperus rotundus (195 pollen grains/m(3)) and Prosopis juliflora (169 pollen grains/m(3)). Peak pollen season was in August showing a total of 709 pollen grains/m(3) and lowest pollen count was observed in January-2010. Pearson's chi-square test was performed for the possible correlation of pollen counts and climatic factors. The test revealed significant positive correlation of wind speed with pollen types of Amaranthaceae/Chenopodiaceae; Brassica campestris; Asteraceae; and Thuja orientalis. While the correlation of "average temperature" showed significant positive value with Asteraceae and Tamarix indica pollen types. Negative correlation was observed between humidity/ precipitation and pollen types of Brassica campestris; Daucus carota; Ephedra sp.; and Tamarix indica. In the light of above updated data one could identify various aeroallergens present in the air of Karachi city. PMID:25530143

  8. Pollen analyses for pollination research, unacetolyzed pollen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollinators can significantly increase the potential yield of crops, but little is known about which pollinators pollinate various crop species. Many pollinators feed on pollen, nectar and plant secretions associated with flowers, and consequently pollen attaches to the pollinators. Identification...

  9. Oogenesis and Reproduction of the Birch Cyst Nematode, Heterodera betulae

    PubMed Central

    Triantaphyllou, A. C.

    1970-01-01

    Cytological study revealed that maturation of oocytes of Heterodera betulae is by regular meiosis and reproduction is by parthenogenesis. Restoration of the somatic chromosome number occurs after telophase II and before egg pronucleus formation, in the absence of a mitotic apparatus through a type of endomitotic division. The haploid chromosome number is 12 (2n = 24) in 95% of the female nematodes studied and 13 in the remaining 5%. The phylogenetic relationship of H. betulae with most other Heterodera species having n = 9 is not clear. PMID:19322330

  10. Pollensomes as Natural Vehicles for Pollen Allergens.

    PubMed

    Prado, Noela; De Linares, Concepción; Sanz, María L; Gamboa, Pedro; Villalba, Mayte; Rodríguez, Rosalía; Batanero, Eva

    2015-07-15

    Olive (Olea europaea) pollen constitutes one of the most important allergen sources in the Mediterranean countries and some areas of the United States, South Africa, and Australia. Recently, we provided evidence that olive pollen releases nanovesicles of respirable size, named generically pollensomes, during in vitro germination. Olive pollensomes contain allergens, such as Ole e 1, Ole e 11, and Ole e 12, suggesting a possible role in allergy. The aim of this study was to assess the contribution of pollensomes to the allergic reaction. We show that pollensomes exhibit allergenic activity in terms of patients' IgE-binding capacity, human basophil activation, and positive skin reaction in sensitized patients. Furthermore, allergen-containing pollensomes have been isolated from three clinically relevant nonphylogenetically related species: birch (Betula verrucosa), pine (Pinus sylvestris), and ryegrass (Lolium perenne). Most interesting, pollensomes were isolated from aerobiological samples collected with an eight-stage cascade impactor collector, indicating that pollensomes secretion is a naturally occurring phenomenon. Our findings indicate that pollensomes may represent widespread vehicles for pollen allergens, with potential implications in the allergic reaction. PMID:26041541

  11. Role of Macrophage Migration Inhibitory Factor (MIF) in Pollen-Induced Allergic Conjunctivitis and Pollen Dermatitis in Mice

    PubMed Central

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis. PMID:25647395

  12. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation.

    PubMed

    Peternel, Renata; Srnec, Lidija; Culig, Josip; Zaninović, Ksenija; Mitić, Bozena; Vukusić, Ivan

    2004-05-01

    The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification x400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation. PMID:14770305

  13. Atmospheric pollen season in Zagreb (Croatia) and its relationship with temperature and precipitation

    NASA Astrophysics Data System (ADS)

    Peternel, Renata; Srnec, Lidija; Čulig, Josip; Zaninović, Ksenija; Mitić, Božena; Vukušić, Ivan

    . The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification ×400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.

  14. Can we improve pollen season definitions by using the symptom load index in addition to pollen counts?

    PubMed

    Bastl, Katharina; Kmenta, Maximilian; Geller-Bernstein, Carmi; Berger, Uwe; Jäger, Siegfried

    2015-09-01

    Airborne pollen measurements are the foundation of aerobiological research and provide essential raw data for various disciplines. Pollen itself should be considered a relevant factor in air quality. Symptom data shed light on the relationship of pollen allergy and pollination. The aim of this study is to assess the spatial variation of local, regional and national symptom datasets. Ten pollen season definitions are used to calculate the symptom load index for the birch and grass pollen seasons (2013-2014) in Austria. (1) Local, (2) regional and (3) national symptom datasets are used to examine spatial variations and a consistent pattern was found. In conclusion, national datasets are suitable for first insights where no sufficient local or regional dataset is available and season definitions based on percentages provide a practical solution, as they can be applied in regions with different pollen loads and produce more constant results. PMID:25935611

  15. Studies on the antiinflammatory activity of Betula alnoides bark.

    PubMed

    Sur, Tapas Kumar; Pandit, Srikanta; Battacharyya, Dipankar; Kumar, C K Ashok; Lakshmi, S Mohana; Chatttopadhyay, D; Mandal, Subhash C

    2002-11-01

    The antiinflammatory activity of Betula alnoides extract was evaluated in acute and subacute inflammation models. The extract was also evaluated for antiinflammatory activity in sheep RBC induced sensitivity and in membrane stabilization models. Except for the sheep RBC induced sensitivity model, the extract showed significant antiinflammatory activity. PMID:12410550

  16. Functional characterization of CCR in birch (Betula platyphylla × Betula pendula) through overexpression and suppression analysis.

    PubMed

    Zhang, Wenbo; Wei, Rui; Chen, Su; Jiang, Jing; Li, Huiyu; Huang, Haijiao; Yang, Guang; Wang, Shuo; Wei, Hairong; Liu, Guifeng

    2015-06-01

    We cloned a Cinnamoyl-CoA Reductase gene (BpCCR1) from an apical meristem and first internode of Betula platyphylla and characterized its functions in lignin biosynthesis, wood formation and tree growth through transgenic approaches. We generated overexpression and suppression transgenic lines and analyzed them in comparison with the wild-type in terms of lignin content, anatomical characteristics, height and biomass. We found that BpCCR1 overexpression could increase lignin content up to 14.6%, and its underexpression decreased lignin content by 6.3%. Surprisingly, modification of BpCCR1 expression led to conspicuous changes in wood characteristics, including xylem vessel number and arrangement, and secondary wall thickness. The growth of transgenic trees in terms of height was also significantly influenced by the modification of BpCCR1 genes. We discuss the functions of BpCCR1 in the context of a phylogenetic tree built with CCR genes from multiple species. PMID:25393559

  17. Estimates of common ragweed pollen emission and dispersion over Europe using RegCM-pollen model

    NASA Astrophysics Data System (ADS)

    Liu, L.; Solmon, F.; Vautard, R.; Hamaoui-Laguel, L.; Torma, Cs. Zs.; Giorgi, F.

    2015-11-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In the online model environment where climate is integrated with dispersion and vegetation production, pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to ragweed density distribution on pollen emission, a calibration based on airborne pollen observations is used. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger. From these simulations health risks associated common ragweed pollen spread are then evaluated through calculation of exposure time above health

  18. Aerobiology, allergenicity and biochemistry of Madhuca indica Gmel. pollen.

    PubMed

    Boral, D; Roy, I; Bhattacharya, K

    1999-01-01

    An ASTIR volumetric sampler was used for one year (May 1995-April 1996) for aerobiological survey at Beharampore town, a centrally located representative part of West Bengal, to record the occurrence and frequency of airborne Madhuca pollen. The highest frequency of Madhuca pollen was recorded in April when the weather was dry with low relative humidity (RH) and moderately high temperature. Clinical test (skin prick test) showed Madhuca pollen to be one of the major causes of respiratory allergy. 30-60% (NH(4))(2)SO(4) cut fraction showed maximum positivity in skin prick test. Biochemical analysis showed that Madhuca pollen was rich in lipid and protein. SDS-PAGE was performed with the total soluble pollen protein which showed a total of 6 major protein bands, while in isolated fraction (Fr. II) a total of 7 protein bands were obtained. PMID:10607988

  19. Intradiurnal variations of allergenic tree pollen in the atmosphere of Toledo (central Spain).

    PubMed

    Pérez-Badia, Rosa; Vaquero, Consolación; Sardinero, Santiago; Galán, Carmen; García-Mozo, Herminia

    2010-01-01

    To study the impact of inhaling airborne pollen on health, it is important to know not only their average daily concentrations but also the intradiurnal behaviour of these biological particles. This study reports the bi-hourly distribution of the arboreal airborne pollen types more abundant in the atmosphere of Toledo (central Spain), many of them triggering important allergic processes in Toledo citizens and tourist visitors. Knowledge of bi-hourly pattern atmospheric variation pollen may help pollinosis patients to adopt preventive measures and plan their outdoor activities accordingly. Intradiurnal variation has been studied for the arboreal pollen types: Cupressaceae, Fraxinus, Olea, Platanus, Populus, Quercus and Ulmus, during the period 2005-2008. The main hourly pollen concentrations were observed during sunlight hours and the maximum pollen values obtained at midday and in the afternoon, except for pollen types Quercus and Platanus, whose maximum pollen concentrations were obtained during the night. The statistical analyses performed to compare pollen concentration and main hourly meteorological variables proved to be significant for most of the taxa. The results show a significant and positive effect of temperature, solar radiation and wind speed on the daily variability undergone by atmospheric pollen. Relative humidity influenced in a negative way on the intradiurnal variation of pollen in the atmosphere of Toledo. PMID:21186770

  20. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources.

    PubMed

    Rojo, J; Orlandi, F; Pérez-Badia, R; Aguilera, F; Ben Dhiab, A; Bouziane, H; Díaz de la Guardia, C; Galán, C; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Msallem, M; Trigo, M M; Fornaciari, M

    2016-05-01

    Aerobiological monitoring of Olea europaea L. is of great interest in the Mediterranean basin because olive pollen is one of the most represented pollen types of the airborne spectrum for the Mediterranean region, and olive pollen is considered one of the major cause of pollinosis in this region. The main aim of this study was to develop an airborne-pollen map based on the Pollen Index across a 4-year period (2008-2011), to provide a continuous geographic map for pollen intensity that will have practical applications from the agronomical and allergological points of view. For this purpose, the main predictor variable was an index based on the distribution and abundance of potential sources of pollen emission, including intrinsic information about the general atmospheric patterns of pollen dispersal. In addition, meteorological variables were included in the modeling, together with spatial interpolation, to allow the definition of a spatial model of the Pollen Index from the main olive cultivation areas in the Mediterranean region. The results show marked differences with respect to the dispersal patterns associated to the altitudinal gradient. The findings indicate that areas located at an altitude above 300ma.s.l. receive greater amounts of olive pollen from shorter-distance pollen sources (maximum influence, 27km) with respect to areas lower than 300ma.s.l. (maximum influence, 59km). PMID:26874763

  1. Pollen (quick guide)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    What is pollen, and is it haploid or diploid? Pollen is a crucial stage of the plant life cycle — without pollen there will be no seed. When someone says “Think of a plant,” the plant you think of (whether it’s a tree, a tomato plant, or a geranium) is a sporophyte. Most land plants are sporophytes...

  2. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing

    NASA Astrophysics Data System (ADS)

    Rojo, Jesús; Rivero, Rosario; Romero-Morte, Jorge; Fernández-González, Federico; Pérez-Badia, Rosa

    2016-08-01

    Analysis of airborne pollen concentrations provides valuable information on plant phenology and is thus a useful tool in agriculture—for predicting harvests in crops such as the olive and for deciding when to apply phytosanitary treatments—as well as in medicine and the environmental sciences. Variations in airborne pollen concentrations, moreover, are indicators of changing plant life cycles. By modeling pollen time series, we can not only identify the variables influencing pollen levels but also predict future pollen concentrations. In this study, airborne pollen time series were modeled using a seasonal-trend decomposition procedure based on LOcally wEighted Scatterplot Smoothing (LOESS) smoothing (STL). The data series—daily Poaceae pollen concentrations over the period 2006-2014—was broken up into seasonal and residual (stochastic) components. The seasonal component was compared with data on Poaceae flowering phenology obtained by field sampling. Residuals were fitted to a model generated from daily temperature and rainfall values, and daily pollen concentrations, using partial least squares regression (PLSR). This method was then applied to predict daily pollen concentrations for 2014 (independent validation data) using results for the seasonal component of the time series and estimates of the residual component for the period 2006-2013. Correlation between predicted and observed values was r = 0.79 (correlation coefficient) for the pre-peak period (i.e., the period prior to the peak pollen concentration) and r = 0.63 for the post-peak period. Separate analysis of each of the components of the pollen data series enables the sources of variability to be identified more accurately than by analysis of the original non-decomposed data series, and for this reason, this procedure has proved to be a suitable technique for analyzing the main environmental factors influencing airborne pollen concentrations.

  3. Allergenic pollen season variations in the past two decades under changing climate in the United States

    PubMed Central

    Zhang, Yong; Bielory, Leonard; Mi, Zhongyuan; Cai, Ting; Robock, Alan; Georgopoulos, Panos

    2014-01-01

    Many diseases are linked with climate trends and variations. In particular, climate change is expected to alter the spatiotemporal dynamics of allergenic airborne pollen and potentially increase occurrence of allergic airway disease. Understanding the spatiotemporal patterns of changes in pollen season timing and levels is thus important in assessing climate impacts on aerobiology and allergy caused by allergenic airborne pollen. Here we describe the spatiotemporal patterns of changes in the seasonal timing and levels of allergenic airborne pollen for multiple taxa in different climate regions at a continental scale. The allergenic pollen seasons of representative trees, weeds and grass during the past decade (2001–2010) across the contiguous United States have been observed to start 3.0 (95% Confidence Interval (CI), 1.1–4.9) days earlier on average than in the 1990s (1994–2000). The average peak value and annual total of daily counted airborne pollen have increased by 42.4% (95% CI, 21.9%–62.9%) and 46.0% (95% CI, 21.5%–70.5%), respectively. Changes of pollen season timing and airborne levels depend on latitude, and are associated with changes of growing degree days, frost free days, and precipitation. These changes are likely due to recent climate change and particularly the enhanced warming and precipitation at higher latitudes in the contiguous United States. PMID:25266307

  4. Regional forecast model for the Olea pollen season in Extremadura (SW Spain)

    NASA Astrophysics Data System (ADS)

    Fernández-Rodríguez, Santiago; Durán-Barroso, Pablo; Silva-Palacios, Inmaculada; Tormo-Molina, Rafael; Maya-Manzano, José María; Gonzalo-Garijo, Ángela

    2016-02-01

    The olive tree (Olea europaea) is a predominantly Mediterranean anemophilous species. The pollen allergens from this tree are an important cause of allergic problems. Olea pollen may be relevant in relation to climate change, due to the fact that its flowering phenology is related to meteorological parameters. This study aims to investigate airborne Olea pollen data from a city on the SW Iberian Peninsula, to analyse the trends in these data and their relationships with meteorological parameters using time series analysis. Aerobiological sampling was conducted from 1994 to 2013 in Badajoz (SW Spain) using a 7-day Hirst-type volumetric sampler. The main Olea pollen season lasted an average of 34 days, from May 4th to June 7th. The model proposed to forecast airborne pollen concentrations, described by one equation. This expression is composed of two terms: the first term represents the resilience of the pollen concentration trend in the air according to the average concentration of the previous 10 days; the second term was obtained from considering the actual pollen concentration value, which is calculated based on the most representative meteorological variables multiplied by a fitting coefficient. Due to the allergenic characteristics of this pollen type, it should be necessary to forecast its short-term prevalence using a long record of data in a city with a Mediterranean climate. The model obtained provides a suitable level of confidence to forecast Olea airborne pollen concentration.

  5. Is long range transport of pollen in the NW Mediterranean basin influenced by Northern Hemisphere teleconnection patterns?

    PubMed

    Izquierdo, Rebeca; Alarcon, Marta; Periago, Cristina; Belmonte, Jordina

    2015-11-01

    Climatic oscillations triggered by the atmospheric modes of the Northern Hemisphere teleconnection patterns have an important influence on the atmospheric circulation at synoptic scale in Western Mediterranean Basin. Simultaneously, this climate variability could affect a variety of ecological processes. This work provides a first assessment of the effect of North Atlantic Oscillation (NAO), Arctic Oscillation (AO) and Western Mediterranean Oscillation (WeMO) on the atmospheric long-range pollen transport episodes in the North-Eastern Iberian Peninsula for the period 1994-2011. Alnus, Ambrosia, Betula, Corylus and Fagus have been selected as allergenic pollen taxa with potential long-range transport associated to the Northern Hemisphere teleconnection patterns in the Western Mediterranean Basin. The results showed an increase of long range pollen transport episodes of: (1) Alnus, Corylus and Fagus from Western and Central Europe during the negative phase of annual NAO and AO; (2) Ambrosia, Betula and Fagus from Europe during the negative phase of winter WeMO; (3) Corylus and Fagus from Mediterranean area during the positive phase of the annual AO; and (4) Ambrosia from France and Northern Europe during the positive phase of winter WeMO. Conversely, the positive phase of annual NAO and AO are linked with the regional transport of Alnus, Betula and Corylus from Western Iberian Peninsula. The positive phase of annual WeMO was also positively correlated with regional transport of Corylus from this area. PMID:26125408

  6. Large Eddy Simulation of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, Marcelo; Meneveau, Charles; Parlange, Marc B.

    2007-11-01

    The development of genetically modified crops and questions about cross-pollination and contamination of natural plant populations enhanced the importance of understanding wind dispersion of airborne pollen. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using large eddy simulation. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of great importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. The velocity field is discretized using a pseudospectral approach. However the application of the same discretization scheme to the pollen equation generates unphysical solutions (i.e. negative concentrations). The finite-volume bounded scheme SMART is used for the pollen equation. A conservative interpolation scheme to determine the velocity field on the finite volume surfaces was developed. The implementation is validated against field experiments of point source and area field releases of pollen.

  7. Definition of main pollen season using a logistic model.

    PubMed

    Ribeiro, Helena; Cunha, Mário; Abreu, Ilda

    2007-01-01

    This paper proposes a method to unify the definition of the main pollen season based on statistical analysis. For this, an aerobiological study was carried out in Porto region (Portugal), from 2003-2005 using a 7-day Hirst-type volumetric spore trap. To define the main pollen season, a non-linear logistic regression model was fitted to the values of the accumulated sum of the daily airborne pollen concentration from several allergological species. An important feature of this method is that the main pollen season will be characterized by the model parameters calculated. These parameters are identifiable aspects of the flowering phenology, and determine not only the beginning and end of the main pollen season, but are also influenced by the meteorological conditions. The results obtained with the proposed methodology were also compared with two of the most used percentage methods. The logistic model fitted well with the sum of accumulated pollen. The explained variance was always higher than 97%, and the exponential part of the predicted curve was well adjusted to the time when higher atmospheric pollen concentration was sampled. The comparison between the different methods tested showed large divergence in the duration and end dates of the main pollen season of the studied species. PMID:18247462

  8. Determination of allergenic load and pollen count of Cupressus arizonica pollen by flow cytometry using Cup a1 polyclonal antibody.

    PubMed

    Benítez, Francisco Moreno; Camacho, Antonio Letrán; Del Cuvillo Bernal, Alfonso; de Medina, Pedro Lobatón Sánchez; Cózar, Francisco J García; Romeu, Ma Luisa Espinazo

    2013-07-10

    Background: There is an increase in the incidence of pollen related allergy, thus information on pollen schedules would be a great asset for physicians to improve the clinical care of patients. Like cypress pollen sensitization shows a high prevalence among the causes of allergic rhinitis, and therefore it is of interest to use it like a model of study, distinguishing cypress pollen, pollen count and allergenic load level. In this work, we use a flow cytometry based technique to obtain both Cupressus arizonica pollen count and allergenic load, using specific rabbit polyclonal antibody Cup a1 and its comparison with optical microscopy technique measurement. Methods: Airborne samples were collected from Burkard Spore-Trap and Burkard Cyclone Cupressus arizonica pollen was studied using specific rabbit polyclonal antibody Cup a1, labelled with AlexaFluor(®) 488 or 750 and analysed by Flow Cytometry in both an EPICS XL and Cyan ADP cytometers (Beckman Coulter(®) ). Optical microscopy study was realized with a Leica optical microscope. Bland & Altman was used to determine agreement between both techniques measured. Results: We can identify three different populations based on rabbit polyclonal antibody Cup a1 staining. The main region (44.5%) had 97.3% recognition, a second region (25%) with 28% and a third region (30.5%) with 68% respectively. Immunofluorescence and confocal microscopy showed that main region corresponds to whole pollen grains, the second region are pollen without exine and the third region is constituted by smaller particles with allergenic properties. Pollen schedule shows a higher correlation measured by optical microscopy and flow cytometry in the pollen count with a p-value: 0.0008E(-2) and 0.0002 with regard to smaller particles, so the Bland & Altman measurement showed a good correlation between them, p-value: 0,0003. Conclusion: Determination of pollen count and allergenic load by flow cytometry represents an important tool in the

  9. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART.

    PubMed

    Zink, Katrin; Vogel, Heike; Vogel, Bernhard; Magyar, Donát; Kottmeier, Christoph

    2012-07-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m(-3) can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12-16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2 × 2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations. PMID:21744099

  10. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART

    NASA Astrophysics Data System (ADS)

    Zink, Katrin; Vogel, Heike; Vogel, Bernhard; Magyar, Donát; Kottmeier, Christoph

    2012-07-01

    Common ragweed ( Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m-3 can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12-16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2 × 2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations.

  11. A biology-driven receptor model for daily pollen allergy risk in Korea based on Weibull probability density function

    NASA Astrophysics Data System (ADS)

    Kim, Kyu Rang; Kim, Mijin; Choe, Ho-Seong; Han, Mae Ja; Lee, Hye-Rim; Oh, Jae-Won; Kim, Baek-Jo

    2016-07-01

    Pollen is an important cause of respiratory allergic reactions. As individual sanitation has improved, allergy risk has increased, and this trend is expected to continue due to climate change. Atmospheric pollen concentration is highly influenced by weather conditions. Regression analysis and modeling of the relationships between airborne pollen concentrations and weather conditions were performed to analyze and forecast pollen conditions. Traditionally, daily pollen concentration has been estimated using regression models that describe the relationships between observed pollen concentrations and weather conditions. These models were able to forecast daily concentrations at the sites of observation, but lacked broader spatial applicability beyond those sites. To overcome this limitation, an integrated modeling scheme was developed that is designed to represent the underlying processes of pollen production and distribution. A maximum potential for airborne pollen is first determined using the Weibull probability density function. Then, daily pollen concentration is estimated using multiple regression models. Daily risk grade levels are determined based on the risk criteria used in Korea. The mean percentages of agreement between the observed and estimated levels were 81.4-88.2 % and 92.5-98.5 % for oak and Japanese hop pollens, respectively. The new models estimated daily pollen risk more accurately than the original statistical models because of the newly integrated biological response curves. Although they overestimated seasonal mean concentration, they did not simulate all of the peak concentrations. This issue would be resolved by adding more variables that affect the prevalence and internal maturity of pollens.

  12. Two new phenylbutanoids from inner bark of Betula pendula.

    PubMed

    Liimatainen, Jaana; Sinkkonen, Jari; Karonen, Maarit; Pihlaja, Kalevi

    2008-02-01

    Two phenylbutanoids, 7-{3R-[(4-hydroxyphenyl)butyl] beta-glucopyranosid-O-6-yl} 4-O-beta-glucopyranosylvanillin and 3-beta-glucopyranosyloxy-1-(4-hydroxyphenyl)-butanone were isolated from an aqueous methanol extract of the inner bark of Betula pendula. Their structures were determined by NMR spectroscopy and mass spectrometry. The complete assignment of proton and carbon signals was achieved by 1D and 2D NMR experiments: selective 1D TOCSY, HSQC, HMBC and DQF-COSY. PMID:18098157

  13. Procyanidin xylosides from the bark of Betula pendula.

    PubMed

    Liimatainen, Jaana; Karonen, Maarit; Sinkkonen, Jari

    2012-04-01

    A procyanidin dimer xyloside, catechin-(4α→8)-7-O-β-xylopyranosyl-catechin, was isolated from the inner bark of Betula pendula and its structure was determined using 1D and 2D NMR, CD and high-resolution ESIMS. Interestingly, the 7-O-β-xylopyranose unit was found to be present in the lower terminal unit of the dimer. In addition to this procyanidin dimer xyloside, an entire series of oligomeric and polymeric procyanidin xylosides was detected. Their structures were investigated by hydrophilic interaction HPLC-HRESIMS. Procyanidin glycosides are still rarely found in nature. PMID:22273040

  14. Aerobiological studies and low allerginicity of date-palm pollen in the UAE.

    PubMed

    Almehdi, Ahmed M; Maraqa, Munjed; Abdulkhalik, Samar

    2005-06-01

    Date-Palm trees (Phoenix dactylifera L.) are the most abundant crop in the United Arab Emirates (UAE). The aim of this work was to conduct aerobiological studies on Date-Palm pollens and correlate that to allergenicity. An aerobiological survey was performed at three Date-Palm farms. Radioallergosorbent test (RAST) and total IgE were performed on 477 airborne allergic patients. Small mass bioactive constituents were fractionated and isolated by HPLC. Aerobiological studies demonstrate the short distance traveled by the Date-Palm pollens. Pollen counts were about 800 counts/m3 within the Date-Palm farms and decreased by about 80% just 100 meters away from the farm area and almost diminished beyond 200 meters. Scanning electron micrograph of the pollen grain showed a uniform smooth texture with an oval shape. Out of 477 airborne allergic patients having high total IgE counts, only 2.3% gave positive RAST for Date-Palm pollen. HPLC chromatogram separated the non-protein content of Date-Palm pollen into four distinct peak fractions. The present study revealed that Date-Palm pollens have a low allergic effect on airborne allergic people. The short distance traveled by the pollen, the smooth texture, the short pollination period and low molecular weight biomolecule content may be the main factors behind the low allergenicity. PMID:16134484

  15. Pollen, vegetation, and climate relationships along the Dalton Highway, Alaska, USA: a basis for holocene paleoecological and paleoclimatic studies

    SciTech Connect

    Short, S.K.; Andrews, J.T.; Webber, P.J.

    1986-01-01

    The Dalton Highway extends from Fairbanks, in the interior of Alaska, to Prudhoe Bay on the Arctic Coastal Plain. Over this 600-km transect, July temperatures vary from 17 to 5/sup 0/C. Studies of vegetation along the Dalton Highway identified nine major zones. During the vegetation survey moss polsters were collected within the survey quadrats. Two hundred and nineteen individual moss polsters document regional variations in the modern pollen spectra along this vegetation/climate transect. Treeline is distinguished by a change from dominance by spruce and shrub (especially alder) pollen to the south to herb and shrub (especially willow) pollen dominance to the north; a shift from high modern pollen concentration values to very low values is also noted. Discriminant analysis indicated that the vegetation zones are also defined by different pollen assemblages, suggesting that former changes in vegetation during the Holocene, as recorded in peat deposits, could be interpreted from pollen diagrams. Transfer functions were developed to examine the statistical association between the modern pollen rain and several climatic parameters. The correlation between pollen taxa and mean July temperature was r = 0.84. The most important taxa in the equation are Picea, Alnus, Pinus, Sphagnum, and Betula. 59 references, 7 figures, 4 tables.

  16. Dating Fossil Pollen: A Simulation.

    ERIC Educational Resources Information Center

    Sheridan, Philip

    1992-01-01

    Describes a hands-on simulation in which students determine the age of "fossil" pollen samples based on the pollen types present when examined microscopically. Provides instructions for the preparation of pollen slides. (MDH)

  17. Variability within the 10-Year Pollen Rain of a Seasonal Neotropical Forest and Its Implications for Paleoenvironmental and Phenological Research

    PubMed Central

    Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.

    2013-01-01

    Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen

  18. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels.

    PubMed

    Rozema, J; Broekman, R A; Blokker, P; Meijkamp, B B; de Bakker, N; van de Staaij, J; van Beem, A; Ariese, F; Kars, S M

    2001-09-01

    UV-B absorbance and UV-B absorbing compounds (UACs) of the pollen of Vicia faba, Betula pendula, Helleborus foetidus and Pinus sylvestris were studied. Sequential extraction demonstrated considerable UV-B absorbance both in the soluble (acid methanol) and insoluble sporopollenin (acetolysis resistant residue) fractions of UACs, while the wall-bound fraction of UACs was small. The UV-B absorbance of the soluble and sporopollenin fraction of pollen of Vicia faba plants exposed to enhanced UV-B (10 kJ m(-2) day(-1) UV-B(BE)) was higher than that of plants that received 0 kJ m(-2) day(-1) UV-B(BB). Pyrolysis gas chromatography-mass spectrometry (py-GC-MS) analysis of pollen demonstrated that p-coumaric acid and ferulic acid formed part of the sporopollenin fraction of the pollen. The amount of these aromatic monomers in the sporopollenin of Vicia faba appeared to increase in response to enhanced UV-B (10 kJ m(-2) day(-1) UV-B(BE)). The detection limit of pyGC-MS was sufficiently low to quantify these phenolic acids in ten pollen grains of Betula and Pinus. The experimental data presented provide evidence for the possibility that polyphenolic compounds in pollen of plants are indicators of solar UV-B and may be applied as a new proxy for the reconstruction of historic variation in solar UV-B levels. PMID:11693361

  19. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Li, Furong; Zhao, Yan; Sun, Jinghui; Zhao, Wenwei; Guo, Xiaoli; Zhang, Ke

    2011-09-01

    We use a data set of 23 surface pollen samples from moss polsters in the Zoige Basin to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen samples spanned four types of plant communities: Carex muliensis marsh, Stipa and Kobresia meadow, Carex-dominated forb meadow and Sibiraea angustata scrub. Principal-components analysis (PCA) was used to determine the relationships between modern pollen and vegetation and environmental variables. The results show that the pollen assemblages of surface moss samples generally reflect the features of the modern vegetation, basically similar in the vegetation types and the dominant genera; however, they don't show a very clear distinction between different communities. Our results also demonstrate that pollen representation of different families or genus varied. Some tree taxa, such as Pinus and Betula, and herb types, such as Artemisia are over-represented, while Asteraceae, Ranunculaceae and Cyperaceae are moderately represented, and Poaceae and Rosaceae are usually under-represented in our study region. PCA results indicate that the distribution of vegetation in the Zoige Basin is mainly controlled by precipitation and altitude.

  20. Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales.

    PubMed

    Katz, Daniel S W; Carey, Tiffany S

    2014-07-01

    Pollen allergies are one of the most common health problems in the United States and over 20% of Americans are sensitized to the pollen produced by common ragweed (Ambrosia artemisiifolia L.). Despite the importance of allergenic pollen to public health, no research has linked land use and plant populations to spatial heterogeneity in airborne pollen concentrations. In order to quantify these relationships and elucidate the processes which lead to pollen exposure, we surveyed ragweed stem density in Detroit (Michigan, USA) as a function of land use. We then deployed 34 pollen collectors throughout the city and recorded ragweed cover in the immediate vicinity of each pollen collector. We found that ragweed populations were highest in vacant lots, a common land cover type in Detroit. Because ragweed population density was so strongly correlated to vacant lots, for which spatially explicit data were available, we were able to investigate whether observed ragweed pollen concentrations were a function of land use at the spatial scales of 10 m and 1 km. Both relationships were significant, and the combination of these two variables predicts a large portion of airborne ragweed pollen concentrations (R(2)=0.48). These results emphasize the important role of pollen production within the urban environment and show that management of allergenic pollen producing plants must be considered at multiple spatial scales. Our findings also demonstrate that there is too much spatial heterogeneity for a pollen collector at any given site to portray the allergenic pollen load experienced by different individuals within the same city. Finally, we discuss how spatial correlations between socio-economic status, vacant lots, and ragweed could help to explain the disproportionate amount of allergies and ragweed sensitization experienced by low income and minority populations in Detroit. PMID:24742553

  1. In vitro pollen responses of two birch species to acidity and temperature

    SciTech Connect

    Hughes, R.N.; Cox, R.M.

    1993-10-01

    Paper birch (Betula papyrifera Marsh.) and mountain paper birch (Betula cordifolia Regel) near the Bay of Fundy coast frequently intercept acidic advection marine fogs. Chemical deposition by these fogs is thought to be a factor contributing to the observed foliar browning symptoms associated with a marked deterioration of these trees in the area. In vitro experiments were performed to test whether pollen germination in these two birch species would be affected by acidity at levels routinely found in the fog. The combined effect of temperature with acidity was also examined. Pollen germination in both species was inhibited below pH 5.6 (P < 0.0001) and the effect of incubation temperature was also significant (P < 0.01) in both species. There was no difference in in vitro pollen germination between species (P > 0.05) in response to acidity, based on combined data from 12 trees of each; the optimum germination temperature was 22{degrees}C for B. papyrifera and 21{degrees}C for B. cordifolia.

  2. Effects of CO₂ on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates.

    PubMed

    Silva, M; Ribeiro, H; Abreu, I; Cruz, A; Esteves da Silva, J C G

    2015-05-01

    Atmospheric gaseous pollutants can induce qualitative and quantitative changes in airborne pollen characteristics. In this work, it was investigated the effects of carbon dioxide (CO2) on Acer negundo pollen fertility, protein content, allergenic properties, and carbohydrates. Pollen was collected directly from the anthers and in vitro exposed to three CO2 levels (500, 1000, and 3000 ppm) for 6 and 24 h in an environmental chamber. Pollen fertility was determined using viability and germination assays, total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunological techniques using patients' sera. Also, pollen fructose, sucrose, and glucose values were determined. Carbon dioxide exposure affected negatively pollen fertility, total soluble protein content, and fructose content. The patient sera revealed increased IgE reactivity to proteins of A. negundo pollen exposed to increasing levels of the pollutant. No changes were detected in the SDS-PAGE protein profiles and in sucrose and glucose levels. Our results indicate that increase in atmospheric CO2 concentrations can have a negative influence of some features of A. negundo airborne pollen that can influence the reproductive processes as well as respiratory pollen allergies in the future. PMID:25471717

  3. The pollen complex from postglacial sediments of the Laptev Sea as a bioindicator

    NASA Astrophysics Data System (ADS)

    Naidina, O. D.

    2014-05-01

    The first results of comparison of palynological analysis (pollen of terrestrial plants), SEM analysis of pollen morphology, and radiocarbon age dating (AMS14C) of sediments of the eastern shelf of the Laptev Sea show that the diverse taxonomic composition of pollen spectra provides an integrated idea of the vegetation and climate of the region over 11.2 calendar kiloyears. It is found that phases of the tree and shrub vegetation development (maxima of pollen of Betula sect. Nanae and Pinus s/g Haploxylon) correspond to the warm epochs in the Holocene. It is obvious that birch phytocoenoses first settled in the southern tundra subzone with increasing temperature, and then coniferous communities of forest tundra. An occurrence of pollen of shrubby birches (Nanae) suggests compliance of permafrost landscapes with cold climate conditions, i.e., with an annual average temperature of -2°C and amount of precipitation of less than 500 mm. Owing to a progressive increase in summer temperatures, dwarf cedar and pine communities advanced toward the seashore. The SEM analysis results show that a significant proportion of regional coniferous pollen belongs to representatives of Pinus pumila (Pall.) and P. sylvestris L. In addition, the SEM study of the exine of Pinus sylvestris L. and P. pumila (Pall.) Regel pollen grains confirmed polymorphism in coniferous pollen. According to the inverse relationship between climate and vegetation, frequent climate fluctuations that are typical of progressive and differential postglacial transgression were revealed. An increase in arboreal pollen transfer onto the shelf later than 9.1 cal. ka coincides with the time of forest boundary migration to the north due to the warming of the Earth's climate. At that time, the tundra vegetation was replaced by forest-tundra vegetation, the maximum stage of sea transgression began, and there appeared a trend of increasing temperature and moisture.

  4. Allergies, asthma, and pollen

    MedlinePlus

    ... Some trees Some grasses Weeds Ragweed Watch the weather and the season The amount of pollen in the air can affect whether you or your child has hay fever and asthma symptoms. On hot, dry, windy days, more pollen is in the air. ...

  5. Pollen counts and their relationship to meteorological factors in Ankara, Turkey during 2005-2008

    NASA Astrophysics Data System (ADS)

    Kizilpinar, Ilginc; Civelek, Ersoy; Tuncer, Ayfer; Dogan, Cahit; Karabulut, Erdem; Sahiner, Umit M.; Yavuz, S. Tolga; Sackesen, Cansin

    2011-07-01

    Pollen plays an important role in the development and exacerbation of allergic diseases. We aimed to investigate the days with highest counts of the most allergenic pollens and to identify the meteorological factors affecting pollen counts in the atmosphere of Ankara, Turkey. Airborne pollen measurements were carried out from 2005 to 2008 with a Burkard volumetric 7-day spore trap. Microscope counts were converted into atmospheric concentrations and expressed as pollen grains/m3. Meteorological parameters were obtained from the State Meteorological Service. All statistical analyses were done with pollen counts obtained from March to October for each year. The percentages of tree, grass and weed pollens were 72.1% ( n = 24,923), 12.8% ( n = 4,433) and 15.1% ( n = 5,219), respectively. The Pinaceae family from tree taxa (39% to 57%) and the Chenopodiaceae/Amaranthaceae family from weed taxa, contributed the highest percentage of pollen (25% to 43%), while from the grass taxa, only the Poaceae family was detected from 2005 to 2008. Poaceae and Chenopodiaceae/Amaranthaceae families, which are the most allergenic pollens, were found in high numbers from May to August in Ankara. In multiple logistic regression analysis, wind speed (OR = 1.18, CI95% = 1.02-1.36, P = 0.023) for tree pollen, daily mean temperature (OR = 1.10, CI95% = 1.04-1.17, P = 0.001) and sunshine hours (OR = 1.15, CI95% = 1.01-1.30, P = 0.033) for grass pollen, and sunshine hours (OR = 3.79, CI95% = 1.03-13.92, P = 0.044) for weed pollen were found as significant risk factors for high pollen count. The pollen calendar and its association with meteorological factors depend mainly on daily temperature, sunshine hours and wind speed, which may help draw the attention of physicians and allergic patients to days with high pollen counts.

  6. [A relationship between birch pollen counts and meteorological factors in Sapporo].

    PubMed

    Shirasaki, Hideaki; Yamamoto, Tetsuo; Saikawa, Etsuko; Seki, Nobuhiko; Asakura, Kohji; Kataura, Akikatsu; Himi, Tetsuo

    2014-05-01

    Occurrence of airborne pollen in Sapporo has been studied for 19 years during the period between 1995 and 2013. There are wide year-to-year variations in the quantities of birch pollens. A simple linear regression with the least squares method was used for studying correlations between the annual quantities of birch pollens and the meteorological factors. A significant positive correlation was found between the hours of sunlight in June of the preceding year and the annual birch pollen concentrations with the correlation coefficient, R = 0.667. Also, we found the significant positive correlation between the hours of sunlight in March and the annual birch pollen concentrations with the correlation coefficient, R = 0.684. These results suggest that the atmospheric birch pollen counts can be predicted from meteorological factors. PMID:24956742

  7. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae)

    PubMed Central

    Wang, Nian; McAllister, Hugh A.; Bartlett, Paul R.; Buggs, Richard J. A.

    2016-01-01

    Background and Aims Betula L. (birch) is a genus of approx. 60 species, subspecies or varieties with a wide distribution in the northern hemisphere, of ecological and economic importance. A new classification of Betula has recently been proposed based on morphological characters. This classification differs somewhat from previously published molecular phylogenies, which may be due to factors such as convergent evolution, hybridization, incomplete taxon sampling or misidentification of samples. While chromosome counts have been made for many species, few have had their genome size measured. The aim of this study is to produce a new phylogenetic and genome size analysis of the genus. Methods Internal transcribed spacer (ITS) regions of nuclear ribosomal DNA were sequenced for 76 Betula samples verified by taxonomic experts, representing approx. 60 taxa, of which approx. 24 taxa have not been included in previous phylogenetic analyses. A further 49 samples from other collections were also sequenced, and 108 ITS sequences were downloaded from GenBank. Phylogenetic trees were built for these sequences. The genome sizes of 103 accessions representing nearly all described species were estimated using flow cytometry. Key Results As expected for a gene tree of a genus where hybridization and allopolyploidy occur, the ITS tree shows clustering, but not resolved monophyly, for the morphological subgenera recently proposed. Most sections show some clustering, but species of the dwarf section Apterocaryon are unusually scattered. Betula corylifolia (subgenus Nipponobetula) unexpectedly clusters with species of subgenus Aspera. Unexpected placements are also found for B. maximowicziana, B. bomiensis, B. nigra and B. grossa. Biogeographical disjunctions were found within Betula between Europe and North America, and also disjunctions between North-east and South-west Asia. The 2C-values for Betula ranged from 0·88 to 5·33 pg, and polyploids are scattered widely throughout the

  8. Transcriptomic Analysis of Phenotypic Changes in Birch (Betula platyphylla) Autotetraploids

    PubMed Central

    Mu, Huai-Zhi; Liu, Zi-Jia; Lin, Lin; Li, Hui-Yu; Jiang, Jing; Liu, Gui-Feng

    2012-01-01

    Plant breeders have focused much attention on polyploid trees because of their importance to forestry. To evaluate the impact of intraspecies genome duplication on the transcriptome, a series of Betula platyphylla autotetraploids and diploids were generated from four full-sib families. The phenotypes and transcriptomes of these autotetraploid individuals were compared with those of diploid trees. Autotetraploids were generally superior in breast-height diameter, volume, leaf, fruit and stoma and were generally inferior in height compared to diploids. Transcriptome data revealed numerous changes in gene expression attributable to autotetraploidization, which resulted in the upregulation of 7052 unigenes and the downregulation of 3658 unigenes. Pathway analysis revealed that the biosynthesis and signal transduction of indoleacetate (IAA) and ethylene were altered after genome duplication, which may have contributed to phenotypic changes. These results shed light on variations in birch autotetraploidization and help identify important genes for the genetic engineering of birch trees. PMID:23202935

  9. Seasonal variation of birch and grass pollen loads and allergen release at two sites in the German Alps

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Lüpke, Marvin; Laube, Julia; Weichenmeier, Ingrid; Pusch, Gudrun; Traidl-Hoffmann, Claudia; Schmidt-Weber, Carsten; Buters, Jeroen T. M.; Menzel, Annette

    2015-12-01

    Less vegetated mountainous areas may provide better conditions for allergy sufferers. However, atmospheric transport can result in medically relevant pollen loads in such regions. The majority of investigations has focused on the pollen load, expressed as daily averages of pollen per cubic meter of air (pollen grains/m³); however, the severity of allergic symptoms is also determined by the actual allergen content of this pollen, its pollen potency, which may differ between high and low altitudes. We analysed airborne birch and grass pollen concentrations along with allergen content (birch: Bet v 1, grass: Phl p 5) at two different altitudes (734 and 2650 m a.s.l.) in the Zugspitze region (2009-2010). Back-trajectories were calculated for the high altitude site and for specific days with abrupt increases in pollen potency. We observed several days with medically relevant pollen concentrations at the highest site. In addition, a few days with pollen were not associated with allergens and vice versa. The calculated seasonal mean allergen release per pollen grain was 1.8-3.3 pg Bet v 1 and 5.7 pg Phl p 5 in the valley and 1.1-3.7 pg Bet v 1 and 0.7-1.5 pg Phl p 5 at the high altitude site. Back-trajectories revealed that high pollen potency at the higher site was generally associated with south-westerly to south-easterly (birch), or northerly (grass) wind directions. By investigating days with sudden increases in pollen potency, however, it was difficult to draw definitive conclusions on long- or short-range transport. Our findings suggest that people allergic to pollen might suffer less at higher altitudes and further indicate that a risk assessment relying on the actual concentration of airborne pollen does not necessarily reflect the actual allergy exposure of individuals.

  10. Large-scale climate variability and its effects on mean temperature and flowering time of Prunus and Betula in Denmark

    NASA Astrophysics Data System (ADS)

    Gormsen, A. K.; Hense, A.; Toldam-Andersen, T. B.; Braun, P.

    2005-08-01

    Large-scale climate variability largely affects average climatic conditions and therefore is likely to influence the phenology of plants. In NW-Europe, the North Atlantic Oscillation (NAO) particularly influences winter climate and, through climate interactions on plants, flowering time of all tree species. In Denmark, like in many other NW-European countries, flowering of most tree species has become earlier since the end of the 1980’s. To quantify a possible relation between NAO and flowering time of tree species, two sources of phenological information from the Copenhagen area (Denmark) were analysed, i.e. pollen counts of the genus Betula and observed first bloom dates of Prunus avium. The Winter NAO explained 29 and 37% of the variation of monthly mean temperature for February and March, respectively. The influence of temperature on flowering time was up to 56% to 60% for the February April mean. A direct correlation of Winter NAO-index and flowering time also revealed a clear relation but the time of influence was earlier (December to February). This was shown to be the likely result of a combination of direct and time-lagged effects of the NAO on air and sea surface temperature. The NAO signal is apparently stored in the North Sea and then influences temperature east up to the Baltic States. It is shown that Denmark is right in the centre of direct and time-lagged effects of the NAO. This offers the possibility of using the NAO-index for predicting flowering time of Prunus avium. The beginning of pollen flow appears to be influenced too much by short-term perturbations of the climate system decreasing the value of the NAO-index for prediction. However, it indicates a close relationship between natural climate variability, measured by the NAO index, and flowering time of tree species for Denmark.

  11. Immunological Interactive Effects between Pollen Grains and Their Cytoplasmic Granules on Brown Norway Rats

    PubMed Central

    2009-01-01

    Background Grass pollen is one of the most important aeroallergen vectors in Europe. Under some meteorological factors, pollen grains can release pollen cytoplasmic granules (PCGs). PCGs induce allergic responses. Several studies have shown that during a period of thunderstorms the number of patients with asthma increases because of higher airborne concentrations of PCGs. Objective The aims of the study were to assess the allergenicity of interactive effects between pollen and PCGs and to compare it with allergenicity of Timothy grass pollen and PCGs in Brown Norway rats. Methods Rats were sensitized (day 0) and challenged (day 21) with pollen grains and/or PCGs. Four groups were studied: pollen-pollen (PP), PCGs-PCGs (GG), pollen-PCGs (PG), and PCGs-pollen (GP). Blood samples, bronchoalveolar lavage fluid, and bronchial lymph node were collected at day 25. IgE and IgG1 levels in sera were assessed by enzyme-linked immunosorbent assay. Alveolar cells, protein, and cytokine concentrations were quantified in bronchoalveolar lavage fluid. T-cell proliferation, in response to pollen or granules, was performed by lymph node assay. Results Interactive effects between pollen and PCGs increased IgE and IgG1 levels when compared with those of the negative control. These increases were lower than those of the PP group but similar to the levels obtained by the GG group. Whatever was used in the sensitization and/or challenge phase, PCGs increased lymphocyte and Rantes levels compared with those of the pollen group. The interactive effects increased IL-1α and IL-1β compared with those of the PP and GG groups. Conclusions Immunologic interactive effects have been shown between pollen and PCGs. For humoral and cellular allergic responses, interactive effects between the 2 aeroallergenic sources used in this study seem to be influenced mainly by PCGs. PMID:23283149

  12. Source areas and long-range transport of pollen from continental land to Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Izquierdo, Rebeca; Belmonte, Jordina; Avila, Anna; Alarcón, Marta; Cuevas, Emilio; Alonso-Pérez, Silvia

    2011-01-01

    The Canary Islands, due to their geographical position, constitute an adequate site for the study of long-range pollen transport from the surrounding land masses. In this study, we analyzed airborne pollen counts at two sites: Santa Cruz de Tenerife (SCO), at sea level corresponding to the marine boundary layer (MBL), and Izaña at 2,367 m.a.s.l. corresponding to the free troposphere (FT), for the years 2006 and 2007. We used three approaches to describe pollen transport: (1) a classification of provenances with an ANOVA test to describe pollen count differences between sectors; (2) a study of special events of high pollen concentrations, taking into consideration the corresponding meteorological synoptic pattern responsible for transport and back trajectories; and (3) a source-receptor model applied to a selection of the pollen taxa to show pollen source areas. Our results indicate several extra-regional pollen transport episodes to Tenerife. The main provenances were: (1) the Mediterranean region, especially the southern Iberian Peninsula and Morocco, through the trade winds in the MBL. These episodes were characterized by the presence of pollen from trees ( Casuarina, Olea, Quercus perennial and deciduous types) mixed with pollen from herbs ( Artemisia, Chenopodiaceae/Amaranthaceae and Poaceae wild type). (2) The Saharan sector, through transport at the MBL level carrying pollen principally from herbs (Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type) and, in one case, Casuarina pollen, uplifted to the free troposphere. And (3) the Sahel, characterized by low pollen concentrations of Arecaceae, Chenopodiaceae-Amaranthaceae, Cyperaceae and Poaceae wild type in sporadic episodes. This research shows that sporadic events of long-range pollen transport need to be taken into consideration in Tenerife as possible responsible agents in respiratory allergy episodes. In particular, it is estimated that 89-97% of annual counts of the highly allergenous Olea

  13. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo; Hialine Working Group

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different

  14. Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    NASA Astrophysics Data System (ADS)

    The HIALINE working Group; Buters, Jeroen T. M.; Thibaudon, Michel; Smith, Matt; Kennedy, Roy; Rantio-Lehtimäki, Auli; Albertini, Roberto; Reese, Gerald; Weber, Bernhard; Galan, Carmen; Brandao, Rui; Antunes, Celia M.; Jäger, Siegfried; Berger, Uwe; Celenk, Sevcan; Grewling, Łukasz; Jackowiak, Bogdan; Sauliene, Ingrida; Weichenmeier, Ingrid; Pusch, Gudrun; Sarioglu, Hakan; Ueffing, Marius; Behrendt, Heidrun; Prank, Marje; Sofiev, Mikhail; Cecchi, Lorenzo

    2012-08-01

    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network).Pollen count was assessed with Hirst type pollen traps at 10 l min-1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min-1 with a Chemvol® high-volume cascade impactor equipped with stages PM > 10 μm, 10 μm > PM > 2.5 μm, and in Germany also 2.5 μm > PM > 0.12 μm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an FcɛR1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient.Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 μm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration.Although Bet v 1 is a mixture of different

  15. Low molecular weight components of pollen alter bronchial epithelial barrier functions

    PubMed Central

    Blume, Cornelia; Swindle, Emily J; Gilles, Stefanie; Traidl-Hoffmann, Claudia; Davies, Donna E

    2015-01-01

    The bronchial epithelium plays a key role in providing a protective barrier against many environmental substances of anthropogenic or natural origin which enter the lungs during breathing. Appropriate responses to these agents are critical for regulation of tissue homeostasis, while inappropriate responses may contribute to disease pathogenesis. Here, we compared epithelial barrier responses to different pollen species, characterized the active pollen components and the signaling pathways leading to epithelial activation. Polarized bronchial cells were exposed to extracts of timothy grass (Phleum pratense), ragweed (Ambrosia artemisifolia), mugwort (Artemisia vulgaris), birch (Betula alba) and pine (Pinus sylvestris) pollens. All pollen species caused a decrease in ionic permeability as monitored trans-epithelial electrical resistance (TER) and induced polarized release of mediators analyzed by ELISA, with grass pollen showing the highest activity. Ultrafiltration showed that the responses were due to components <3kDa. However, lipid mediators, including phytoprostane E1, had no effect on TER, and caused only modest induction of mediator release. Reverse-phase chromatography separated 2 active fractions: the most hydrophilic maximally affected cytokine release whereas the other only affected TER. Inhibitor studies revealed that JNK played a more dominant role in regulation of barrier permeability in response to grass pollen exposure, whereas ERK and p38 controlled cytokine release. Adenosine and the flavonoid isorhamnetin present in grass pollen contributed to the overall effect on airway epithelial barrier responses. In conclusion, bronchial epithelial barrier functions are differentially affected by several low molecular weight components released by pollen. Furthermore, ionic permeability and innate cytokine production are differentially regulated. PMID:26451347

  16. All-optical automatic pollen identification: Towards an operational system

    NASA Astrophysics Data System (ADS)

    Crouzy, Benoît; Stella, Michelle; Konzelmann, Thomas; Calpini, Bertrand; Clot, Bernard

    2016-09-01

    We present results from the development and validation campaign of an optical pollen monitoring method based on time-resolved scattering and fluorescence. Focus is first set on supervised learning algorithms for pollen-taxa identification and on the determination of aerosol properties (particle size and shape). The identification capability provides a basis for a pre-operational automatic pollen season monitoring performed in parallel to manual reference measurements (Hirst-type volumetric samplers). Airborne concentrations obtained from the automatic system are compatible with those from the manual method regarding total pollen and the automatic device provides real-time data reliably (one week interruption over five months). In addition, although the calibration dataset still needs to be completed, we are able to follow the grass pollen season. The high sampling from the automatic device allows to go beyond the commonly-presented daily values and we obtain statistically significant hourly concentrations. Finally, we discuss remaining challenges for obtaining an operational automatic monitoring system and how the generic validation environment developed for the present campaign could be used for further tests of automatic pollen monitoring devices.

  17. Mapped plant macrofossil and pollen records of late Quaternary vegetation change in eastern North America

    SciTech Connect

    Jackson, S.T.; Overpeck, J.T.; Webb, T. III ||

    1995-06-01

    We compiled a plant macrofossil database for 12 eastern North American tree and shrub taxa (Picea sp., P. glauca, P. mariana, Larix laricina, Abies balsamea, Tsuga canadensis, Pinus strobus, P. banksiana, P. resinosa, Betula papyrifera, B. alleghaniensis, B. Series Humiles) at 264 late Quaternary sites. Presence/absence maps for these taxa at 18,000, 15,000, 12,000, 9000, 6000, 3000, and 0 {sup 14}C yr B.P. show changes in geographic ranges of these species in response to climatic change. Comparison of the macrofossil maps with isopoll maps for corresponding taxa corroborates inferences from the pollen data, and reveals species-level patterns not apparent in the pollen maps.

  18. Region-specific sensitivity of anemophilous pollen deposition to temperature and precipitation.

    PubMed

    Donders, Timme H; Hagemans, Kimberley; Dekker, Stefan C; de Weger, Letty A; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  19. Region-Specific Sensitivity of Anemophilous Pollen Deposition to Temperature and Precipitation

    PubMed Central

    Donders, Timme H.; Hagemans, Kimberley; Dekker, Stefan C.; de Weger, Letty A.; de Klerk, Pim; Wagner-Cremer, Friederike

    2014-01-01

    Understanding relations between climate and pollen production is important for several societal and ecological challenges, importantly pollen forecasting for pollinosis treatment, forensic studies, global change biology, and high-resolution palaeoecological studies of past vegetation and climate fluctuations. For these purposes, we investigate the role of climate variables on annual-scale variations in pollen influx, test the regional consistency of observed patterns, and evaluate the potential to reconstruct high-frequency signals from sediment archives. A 43-year pollen-trap record from the Netherlands is used to investigate relations between annual pollen influx, climate variables (monthly and seasonal temperature and precipitation values), and the North Atlantic Oscillation climate index. Spearman rank correlation analysis shows that specifically in Alnus, Betula, Corylus, Fraxinus, Quercus and Plantago both temperature in the year prior to (T-1), as well as in the growing season (T), are highly significant factors (TApril rs between 0.30 [P<0.05[ and 0.58 [P<0.0001]; TJuli-1 rs between 0.32 [P<0.05[ and 0.56 [P<0.0001]) in the annual pollen influx of wind-pollinated plants. Total annual pollen prediction models based on multiple climate variables yield R2 between 0.38 and 0.62 (P<0.0001). The effect of precipitation is minimal. A second trapping station in the SE Netherlands, shows consistent trends and annual variability, suggesting the climate factors are regionally relevant. Summer temperature is thought to influence the formation of reproductive structures, while temperature during the flowering season influences pollen release. This study provides a first predictive model for seasonal pollen forecasting, and also aides forensic studies. Furthermore, variations in pollen accumulation rates from a sub-fossil peat deposit are comparable with the pollen trap data. This suggests that high frequency variability pollen records from natural archives reflect

  20. Comparison of modern pollen distribution between the northern and southern parts of the South China Sea

    NASA Astrophysics Data System (ADS)

    Luo, Chuanxiu; Chen, Muhong; Xiang, Rong; Liu, Jianguo; Zhang, Lanlan; Lu, Jun

    2015-04-01

    The authors conducted a palynological analysis based on different number of air pollen samples for the northern and southern parts of the South China Sea, respectively, in order to give a reference to reconstruct the paleoclimate of the area. (1) Fifteen air pollen samples were collected from the northern part of the South China Sea from August to September 2011, and 13 air pollen samples were collected from the southern part of the South China Sea in December 2011. The pollen types were more abundant in the north than in the south. The total pollen number and concentration in the north was 10 times more than that in the south, which may be because of the sampling season. Airborne pollen types and concentrations have a close relationship with wind direction and distance from the sampling point to the continent. (2) Seventy-four samples were collected from surface sediments in the northern part of the South China Sea in the autumn. Thirty-three samples were collected from surface sediments in the southern part of the South China Sea in the winter. Pollen concentrations in the north were nearly 10 times higher than that in the south. This is because trilete spores are transported by rivers from Hainan Island to the sea and also by the summer monsoon-forced marine current. (3) Ten air pollen samples and 10 surface sediments samples were selected for comparison. The pollen and spores in the air were mainly herbaceous and woody pollen, excluding fern spores, having seasonal pollen characteristics. Pollen in the surface sediments were mainly trilete, Pinus, and herbaceous, and may also show a combination of annual pollen characteristics.

  1. Pollen Viability and Pollen Tube Attrition in Cranberry (Vaccinium macrocarpon)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The content of mature seed in a cranberry fruit increases with stigmatic pollen load. On average, however, only two seeds result for every tetrad of pollen deposited. What then is the fate of the two remaining pollen grains fused in each tetrad? Germination in vitro revealed that most of the grains ...

  2. Short-Term Effect of Pollen and Spore Exposure on Allergy Morbidity in the Brussels-Capital Region.

    PubMed

    Guilbert, Ariane; Simons, Koen; Hoebeke, Lucie; Packeu, Ann; Hendrickx, Marijke; De Cremer, Koen; Buyl, Ronald; Coomans, Danny; Van Nieuwenhuyse, An

    2016-06-01

    Belgium is among the European countries that are the most affected by allergic rhinitis. Pollen grains and fungal spores represent important triggers of symptoms. However, few studies have investigated their real link with disease morbidity over several years. Based on aeroallergen counts and health insurance datasets, the relationship between daily changes in pollen, fungal spore concentrations and daily changes in reimbursable systemic antihistamine sales has been investigated between 2005 and 2011 in the Brussels-Capital Region. A Generalized Linear Model was used and adjusted for air pollution, meteorological conditions, flu, seasonal component and day of the week. We observed an augmentation in drug sales despite no significant increase in allergen levels in the long term. The relative risk of buying allergy medications associated with an interquartile augmentation in pollen distributions increased significantly for Poaceae, Betula, Carpinus, Fraxinus and Quercus. Poaceae affected the widest age group and led to the highest increase of risk which reached 1.13 (95% CI [1.11-1.14]) among the 19- to 39-year-old men. Betula showed the second most consistent relationship across age groups. Clear identification of the provoking agents may improve disease management by customizing prevention programmes. This work also opens several research perspectives related to impact of climate modification or subpopulation sensitivity. PMID:27174430

  3. Characterization of Pollen Dispersion in the Neighborhood of Tokyo, Japan in the Spring of 2005 and 2006

    PubMed Central

    Ishibashi, Yoshinaga; Ohno, Hideki; Oh-ishi, Shuji; Matsuoka, Takeshi; Kizaki, Takako; Yoshizumi, Kunio

    2008-01-01

    The behavior of Japanese cedar (Cryptomeria japonica) and Japanese cypress (Chamaecyparis obtusa) pollens in an urban area was examined through the measurements of the dispersion characteristics at the various sampling locations in both outdoor and indoor environments. Airborne pollens were counted continuously for three months during the Japanese cedar pollen and Japanese cypress seasons in 2005 and 2006 by the use of Durham’s pollen trap method in and around Tokyo, Japan. The dispersion of pollens at the rooftop of Kyoritsu Women’s University was observed to be at extremely high levels in 2005 compared with previously reported results during the past two decades. As for Japanese cedar pollen, the maximum level was observed as 440 counts cm−2 day−1 on 18 March 2005. Japanese cypress pollen dispersed in that area in the latter period was compared with the Japanese cedar pollen dispersions. The maximum dispersion level was observed to be 351 counts cm−2 day−1 on 7 April 2005. Total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 5,552 and 1,552 counts cm−2 for the three months (Feb., Mar. and Apr.) in 2005, respectively. However, the dispersion of both pollens in 2006 was very low. The total accumulated dispersions of Japanese cedar and Japanese cypress pollens were 421 and 98 counts cm−2 for three months (Feb., Mar. and Apr.) in 2006, respectively. Moreover, the pollen deposition on a walking person in an urban area showed that the pollen counts on feet were observed to be extremely high compared with the ones on the shoulder, back and legs. These findings suggested that pollen fell on the surface of the paved road at first, rebounded to the ambient air and was deposited on the residents again. Furthermore, the regional distribution of the total pollen dispersion in the South Kanto area was characterized on 15–16 March 2005 and on 14–15 March 2006. Although the pollen levels in 2005 were much higher than in 2006, it

  4. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain

    NASA Astrophysics Data System (ADS)

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma.; Vega-Maray, Ana Ma.; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11 % (1997) to 3 % (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination.

  5. The weak effects of climatic change on Plantago pollen concentration: 17 years of monitoring in Northwestern Spain.

    PubMed

    González-Parrado, Zulima; Valencia-Barrera, Rosa Ma; Vega-Maray, Ana Ma; Fuertes-Rodríguez, Carmen Reyes; Fernández-González, Delia

    2014-09-01

    Plantago L. species are very common in nitrified areas such as roadsides and their pollen is a major cause of pollinosis in temperate regions. In this study, we sampled airborne pollen grains in the city of León (NW, Spain) from January 1995 to December 2011, by using a Burkard® 7-day-recording trap. The percentage of Plantago pollen compared to the total pollen count ranged from 11% (1997) to 3% (2006) in the period under study. Peak pollen concentrations were recorded in May and June. Our 17-year analysis failed to disclose significant changes in the seasonal trend of plantain pollen concentration. In addition, there were no important changes in the start dates of pollen release and the meteorological parameters analyzed did not show significant variations in their usual trends. We analyzed the influence of several meteorological parameters on Plantago pollen concentration to explain the differences in pollen concentration trends during the study. Our results show that temperature, sun hours, evaporation, and relative humidity are the meteorological parameters best correlated to the behavior of Plantago pollen grains. In general, the years with low pollen concentrations correspond to the years with less precipitation or higher temperatures. We calculated the approximate Plantago flowering dates using the cumulative sum of daily maximum temperatures and compared them with the real bloom dates. The differences obtained were 4 days in 2009, 3 days in 2010, and 1 day in 2011 considering the complete period of pollination. PMID:24337493

  6. Satellite Phenology Observations Inform Peak Season of Allergenic Grass Pollen Aerobiology across Two Continents

    NASA Astrophysics Data System (ADS)

    Huete, A. R.; Devadas, R.; Davies, J.

    2015-12-01

    Pollen exposure and prevalence of allergenic diseases have increased in many parts of the world during the last 30 years, with exposure to aeroallergen grass pollen expected to intensify with climate change, raising increased concerns for allergic diseases. The primary contributing factors to higher allergenic plant species presence are thought to be climate change, land conversion, and biotic mixing of species. Conventional methods for monitoring airborne pollen are hampered by a lack of sampling sites and heavily rely on meteorology with less attention to land cover updates and monitoring of key allergenic species phenology stages. Satellite remote sensing offers an alternative method to overcome the restrictive coverage afforded by in situ pollen networks by virtue of its synoptic coverage and repeatability of measurements that enable timely updates of land cover and land use information and monitoring landscape dynamics and interactions with human activity and climate. In this study, we assessed the potential of satellite observations of urban/peri-urban environments to directly inform landscape conditions conducive to pollen emissions. We found satellite measurements of grass cover phenological evolution to be highly correlated with in situ aerobiological grass pollen concentrations in five urban centres located across two hemispheres (Australia and France). Satellite greenness data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were found to be strongly synchronous with grass pollen aerobiology in both temperate grass dominated sites (France and Melbourne), as well as in Sydney, where multiple pollen peaks coincided with the presence of subtropical grasses. Employing general additive models (GAM), the satellite phenology data provided strong predictive capabilities to inform airborne pollen levels and forecast periods of grass pollen emissions at all five sites. Satellite phenology offer promising opportunities of improving public health risk

  7. Large Eddy Simulation and Field Experiments of Pollen Transport in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Chamecki, M.; Meneveau, C.; Parlange, M. B.; van Hout, R.

    2006-12-01

    Dispersion of airborne pollen by the wind has been a subject of interest for botanists and allergists for a long time. More recently, the development of genetically modified crops and questions about cross-pollination and subsequent contamination of natural plant populations has brought even more interest to this field. A critical question is how far from the source field pollen grains will be advected. Clearly the answer depends on the aerodynamic properties of the pollen, geometrical properties of the field, topography, local vegetation, wind conditions, atmospheric stability, etc. As a consequence, field experiments are well suited to provide some information on pollen transport mechanisms but are limited to specific field and weather conditions. Numerical simulations do not have this drawback and can be a useful tool to study pollen dispersal in a variety of configurations. It is well known that the dispersion of particles in turbulent fields is strongly affected by the large scale coherent structures. Large Eddy Simulation (LES) is a technique that allows us to study the typical distances reached by pollen grains and, at the same time, resolve the larger coherent structures present in the atmospheric boundary layer. The main objective of this work is to simulate the dispersal of pollen grains in the atmospheric surface layer using LES. Pollen concentrations are simulated by an advection-diffusion equation including gravitational settling. Of extreme importance is the specification of the bottom boundary conditions characterizing the pollen source over the canopy and the deposition process everywhere else. In both cases we make use of the theoretical profile for suspended particles derived by Kind (1992). Field experiments were performed to study the applicability of the theoretical profile to pollen grains and the results are encouraging. Airborne concentrations as well as ground deposition from the simulations are compared to experimental data to validate the

  8. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969-2006

    NASA Astrophysics Data System (ADS)

    Frei, Thomas; Gassner, Ewald

    2008-09-01

    As published by the Intergovernmental Panel on Climate Change (IPCC) global warming is a reality and its impact is huge like the increase of extreme weather events, glacier recession, sea level rise and also effects on human health. Among them allergies to airborne pollen might increase or change in pattern due to the invasion of new allergic plants or due to different behavior of plants like earlier flowering. In this study we used the longest Swiss airborne pollen data set to examine the influence of the temperature increase on the time of flowering. In the case of Basel, where pollen data for 38 years are available, it was shown that due to a temperature increase the start of flowering in the case of birch occurred about 15 days earlier. Apart from a shift of the start of the flowering there is also a trend towards higher annual birch pollen quantities and an increase of the highest daily mean pollen concentrations. Due to global warming and because symptoms may appear earlier in the year people suffering from a pollen allergy might face a new unaccustomed situation.

  9. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens

    NASA Astrophysics Data System (ADS)

    Efstathiou, Christos; Isukapalli, Sastry; Georgopoulos, Panos

    2011-04-01

    Allergic airway diseases represent a complex health problem which can be exacerbated by the synergistic action of pollen particles and air pollutants such as ozone. Understanding human exposures to aeroallergens requires accurate estimates of the spatial distribution of airborne pollen levels as well as of various air pollutants at different times. However, currently there are no established methods for estimating allergenic pollen emissions and concentrations over large geographic areas such as the United States. A mechanistic modeling system for describing pollen emissions and transport over extensive domains has been developed by adapting components of existing regional scale air quality models and vegetation databases. First, components of the Biogenic Emissions Inventory System (BEIS) were adapted to predict pollen emission patterns. Subsequently, the transport module of the Community Multiscale Air Quality (CMAQ) modeling system was modified to incorporate description of pollen transport. The combined model, CMAQ-pollen, allows for simultaneous prediction of multiple air pollutants and pollen levels in a single model simulation, and uses consistent assumptions related to the transport of multiple chemicals and pollen species. Application case studies for evaluating the combined modeling system included the simulation of birch and ragweed pollen levels for the year 2002, during their corresponding peak pollination periods (April for birch and September for ragweed). The model simulations were driven by previously evaluated meteorological model outputs and emissions inventories for the eastern United States for the simulation period. A semi-quantitative evaluation of CMAQ-pollen was performed using tree and ragweed pollen counts in Newark, NJ for the same time periods. The peak birch pollen concentrations were predicted to occur within two days of the peak measurements, while the temporal patterns closely followed the measured profiles of overall tree pollen

  10. Transport and radiative impacts of atmospheric pollen using online, observation-based emissions

    NASA Astrophysics Data System (ADS)

    Wozniak, M. C.; Steiner, A. L.; Solmon, F.; Li, Y.

    2015-12-01

    Atmospheric pollen emitted from trees and grasses exhibits both a high temporal variability and a highly localized spatial distribution that has been difficult to quantify in the atmosphere. Pollen's radiative impact is also not quantified because it is neglected in climate modeling studies. Here we couple an online, meteorological active pollen emissions model guided by observations of airborne pollen to understand the role of pollen in the atmosphere. We use existing pollen counts from 2003-2008 across the continental U.S. in conjunction with a tree database and historical meteorological data to create an observation-based phenological model that produces accurately scaled and timed emissions. These emissions are emitted and transported within the regional climate model (RegCM4) and the direct radiative effect is calculated. Additionally, we simulate the rupture of coarse pollen grains into finer particles by adding a second size mode for pollen emissions, which contributes to the shortwave radiative forcing and also has an indirect effect on climate.

  11. Fraxinus pollen and allergen concentrations in Ourense (South-western Europe).

    PubMed

    Vara, A; Fernández-González, M; Aira, M J; Rodríguez-Rajo, F J

    2016-05-01

    In temperate zones of North-Central Europe the sensitization to ash pollen is a recognized problem, also extended to the Northern areas of the Mediterranean basin. Some observations in Switzerland suggest that ash pollen season could be as important as birch pollen period. The allergenic significance of this pollen has been poorly studied in Southern Europe as the amounts of ash pollen are low. Due to the high degree of family relationship with the olive pollen major allergen (backed by a sequence identity of 88%), the Fraxinus pollen could be a significant cause of early respiratory allergy in sensitized people to olive pollen as consequence of cross-reactivity processes. Ash tree flowers in the Northwestern Spain during the winter months. The atmospheric presence of Ole e 1-like proteins (which could be related with the Fra a 1 presence) can be accurately detected using Ole e 1 antibodies. The correlation analysis showed high Spearman correlation coefficients between pollen content and rainfall (R(2)=-0.333, p<0.01) or allergen concentration and maximum temperature (R(2)=-0.271, p<0.01). In addiction CCA analysis showed not significant differences (p<0.05) between the component 1 and 2 variables. PCFA analysis plots showed that the allergen concentrations are related to the presence of the Fraxinus pollen in the air, facilitating the wind speed its submicronic allergen proteins dispersion. In order to forecast the Fraxinus allergy risk periods, two regression equations were developed with Adjusted R(2) values around 0.48-0.49. The t-test for dependent samples shows no significant differences between the observed data and the estimated by the equations. The combination of the airborne pollen content and the allergen quantification must be assessed in the epidemiologic study of allergic respiratory diseases. PMID:26901381

  12. Pollen Dispersion, Pollen Viability and Pistil Receptivity in Leymus chinensis

    PubMed Central

    HUANG, ZEHAO; ZHU, JINMAO; MU, XIJIN; LIN, JINXING

    2004-01-01

    • Background and Aims Leymus chinensis is an economically and ecologically important grass that is widely distributed across eastern areas of the Eurasian steppe. A major problem facing its propagation by man is its low sexual reproductivity. The causes of low fecundity are uncertain, largely because many aspects of the reproductive biology of this species remained unknown or incomplete. This study aims to address some of these issues. • Methods Pollen dispersion, pollen viability, pollen longevity and pistil receptivity were studied in a representative, natural population of L. chinensis growing in Inner Mongolia. • Key Results Flowering of L. chinensis occurred at the end of June and lasted for 5 d. Pollination peaked between 1600 h and 1700 h, and about 56·1 % of the total pollen grains were released at this time. Pollen density was highest towards the middle of flowering spikes and lowest at the bottom over the 5 d measurement period. Pollen viability (62·4 %) assessed using TTC was more accurate than using IKI (85·6 %); 50 % of pollen arriving on stigmas germinated. Pollen remained viable for only 3 h and the pollen : ovule ratio was 79 333 : 1. Pistil receptivity lasted for only 3 h and, overall, 86·7 % of pistils were pollinated. Within the spike, the relative fecundity of different positions was middle > lower > upper throughout the period of pollination; daily variation of fecundity was similar to that of the pollen flow. The spikes that opened on the day of highest pollen density exhibited the highest fecundity (36·0 %). No seeds were produced by self‐pollination. • Conclusions The data suggest that low pollen viability, short pollen longevity and short pistil receptivity all appear to contribute to the low seed production typical of this important forage crop. PMID:14744707

  13. Effect of repetitive mowing on common ragweed (Ambrosia artemisiifolia L.) pollen and seed production.

    PubMed

    Simard, Marie-Josée; Benoit, Diane Lyse

    2011-01-01

    Ambrosia artemisiifolia L (common ragweed) is a familiar roadside weed in southern Québec (Canada) that produces large amounts of airborne pollen responsible for multiple rhino-conjunctivitis (hay fever) cases. As roadside weeds are increasingly controlled by mowing alone, the effect of a mowing treatment on pollen production was evaluated. Ambrosia artemisiifolia plants were grown in a greenhouse at 4 densities (1, 3, 6 and 12 plants per 314 cm(2) pot) and either left intact or mowed (10 cm from the ground) when the plants reached 25 cm in height, i.e. twice during the life cycle of this annual plant. Pollen production per male inflorescence was collected in open-top bags and counted. Inflorescence mass, length, location on the plant and date of anthesis onset was noted. Above-ground plant biomass and seed production was also evaluated. Mowed plants produced less pollen per unit of inflorescence length than intact plants. Pollen production per plant was reduced by a factor of 8.84 by the double mowing treatment, while viable seed production per plant was reduced by a factor of 4.66, irrespective of density. Mowing twice has the potential to reduce airborne pollen loads but Ambrosia artemisiifolia seed banks are unlikely to be depleted by this management strategy. PMID:21736270

  14. Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia.

    PubMed

    Davies, Janet M; Beggs, Paul J; Medek, Danielle E; Newnham, Rewi M; Erbas, Bircan; Thibaudon, Michel; Katelaris, Connstance H; Haberle, Simon G; Newbigin, Edward J; Huete, Alfredo R

    2015-11-15

    Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology

  15. Fourth Airborne Geoscience Workshop

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The focus of the workshop was on how the airborne community can assist in achieving the goals of the Global Change Research Program. The many activities that employ airborne platforms and sensors were discussed: platforms and instrument development; airborne oceanography; lidar research; SAR measurements; Doppler radar; laser measurements; cloud physics; airborne experiments; airborne microwave measurements; and airborne data collection.

  16. The correlation of the maximum intensity of fluorescence with pigment characteristics of leaves of Betula pendula

    NASA Astrophysics Data System (ADS)

    Zavoruev, V. V.; Zavorueva, E. N.

    2015-11-01

    Using fluorimeter Junior PAM (Heinz Walz GmbH, Germany) the fluorescence parameters of leaves of Betula pendula are investigated. A linear dependence of the maximum fluorescence (Fm) of leaves from the ratio of total chlorophylls concentration to concentration of carotenoids is obtained. Such dependence is found for samples collected during the period of vegetation and for simultaneous selection of colored leaves.

  17. Airborne laser

    NASA Astrophysics Data System (ADS)

    Lamberson, Steven E.

    2002-06-01

    The US Air Force Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the risk reduction approach being utilized to ensure program success.

  18. Comparative Carbon and Water Relations of Betula nana and Poa pratensis in West Greenland

    NASA Astrophysics Data System (ADS)

    Cahoon, S. M. P.; Sullivan, P. F.; Welker, J. M.; Post, E.

    2014-12-01

    The expansion of woody shrubs throughout much of the Arctic in recent decades is a common observation in response to climate change. However, we lack a complete understanding of how woody shrubs differ physiologically from neighboring species and how these differences may confer competitive advantages to woody shrubs as the climate continues to change. At a site in West Greenland, we combined detailed leaf physiological measurements with stable isotope analysis of plant leaf material, xylem water and soil water to elucidate the processes governing seasonal carbon (C) gain in the two dominant plant species at our study site: Betula nana and Poa pratensis. We hypothesized that cooler, drier soils beneath the Betula canopy would result in greater drought sensitivity during times of high atmospheric demand (i.e. greater water vapor pressure deficit; VPD), which would manifest in reduced leaf carbon isotope discrimination (Δ13C), reduced stomatal conductance (gs) and a negative relationship between leaf Δ13C and Δ18O in accordance with the dual-isotope conceptual model. Data collected over two consecutive growing seasons, however, revealed greater drought sensitivity in Poa, which displayed a dramatic reduction in Amax and gs during periods of high VPD, along with reduced leaf Δ13C. Additionally, leaf Δ13C and Δ18O were negatively correlated in Poa, suggesting strong stomatal influence on Δ13C. Conversely, we found no relationship between leaf Δ13C and Δ18O in Betula, indicating that seasonal variation in Δ13C may have been driven primarily by changes in photosynthesis. Our results suggest that, although Poa maintains greater average leaf-level photosynthesis, this species is more susceptible to drought than Betula. Meanwhile, it may be that Betula employs a strategy to avoid drought stress and maintain steady, yet conservative, C gain. This strategy may enable growth to continue during warm and dry conditions, conferring a competitive advantage for Betula in

  19. Fungal spores and pollen in particulate matter collected during agricultural activities in the Po Valley (Italy).

    PubMed

    Telloli, Chiara; Chicca, Milvia; Leis, Marilena; Vaccaro, Carmela

    2016-08-01

    Airborne particulate matter (PM) containing fungal spores and pollen grains was sampled within a monitoring campaign of wheat threshing, plowing and sowing agricultural operations. Fungal spores and pollen grains were detected and identified on morphological basis. No studies were previously available about fungal spore and pollen content in agricultural PM in the Po Valley. Sampling was conducted in a Po Valley farmland in Mezzano (Ferrara, Italy). The organic particles collected were examined by scanning electron microscopy with energy dispersive X-ray spectrometer. Fungal spores and pollen grains were identified when possible at the level of species. The most frequent components of the organic particles sampled were spores of Aspergillus sp., which could represent a risk of developing allergies and aspergillosis for crop farmers. PMID:27521955

  20. Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5-year record, 1994-1999

    NASA Astrophysics Data System (ADS)

    Green, Brett James; Dettmann, Mary; Yli-Panula, Eija; Rutherford, Shannon; Simpson, Rod

    Grass pollen is an important risk factor for allergic rhinitis and asthma in Australia and is the most prevalent pollen component of the aerospora of Brisbane, accounting for 71.6% of the annual airborne pollen load. A 5-year (June 1994-May 1999) monitoring program shows the grass pollen season to occur during the summer and autumn months (December-April), however the timing of onset and intensity of the season vary from year to year. During the pollen season, Poaceae counts exceeding 30 grains m-3 were recorded on 244 days and coincided with maximum temperatures of 28.1 +/- 2.0 °C. In this study, statistical associations between atmospheric grass pollen loads and several weather parameters, including maximum temperature, minimum temperature and precipitation, were investigated. Spearman's correlation analysis demonstrated that daily grass pollen counts were positively associated (P < 0.0001) with maximum and minimum temperature during each sampling year. Precipitation, although considered a less important daily factor (P < 0.05), was observed to remove pollen grains from the atmosphere during significant periods of rainfall. This study provides the first insight into the influence of meteorological variables, in particular temperature, on atmospheric Poaceae pollen counts in Brisbane. An awareness of these associations is critical for the prevention and management of allergy and asthma for atopic individuals within this region.

  1. Vegetation and climate in the Western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia

    NASA Astrophysics Data System (ADS)

    Blyakharchuk, Tatiana A.; Chernova, Natalia A.

    2013-09-01

    On the basis of pollen and spore analyses and radiocarbon dating of peat deposits of Lugovoe Mire in southern Middle Siberia, changes of vegetation and climate of the Western Sayan Mts and the Khakasia Republic (Russia) since 6000 yr 14C BP (5000 cal yr BC) are found to correspond with the development of archaeological cultures and with the pollen-based palaeoclimatic reconstruction of Levina and Orlova (1993) constructed for the forest-steppe zone of the south of West Siberia. Three phases in the development of the regional vegetation (Abies, Betula, and Pinus) are distinguished in the pollen diagram of Lugovoe Mire, which form the environmental background for the archaeological cultures developed in this region. The first penetration of ancient hunting-fishing tribes into this area occurred during the ‘Abies stage' of the vegetation. Bronze Age cultures practiced agriculture and animal husbandry mostly during the ‘Betula stage'. Beginning in the Iron Age, archaeological cultures bloomed in the study area on the background of expanding Pinus sylvestris forests. The origin of all these cultures was connected with migrations of people from the southwest or southeast. An important reason for these migrations was dry climatic phases at millennial intervals, which influenced especially strongly the more southerly homelands of the migrating ancient tribes.

  2. Aerobiological study in east-central Iberian Peninsula: pollen diversity and dynamics for major taxa.

    PubMed

    Pérez-Badia, Rosa; Rapp, Ana; Vaquero, Consolación; Fernández-González, Federico

    2011-01-01

    A study was made of airborne pollen counts in Cuenca (east-central Iberian Peninsula, Spain), using data obtained over a 3-year period (2008-2010). This is the first such study carried out in the World Heritage city of Cuenca, situated in the large region of Castilla-La Mancha. Air monitoring was performed using the sampling and analysis procedures recommended by the Spanish Aerobiology Network. Sampling commenced in mid- 2007, and provided the first recorded pollen-spectrum for the area. The greatest pollen-type diversity was recorded in spring, whilst the highest pollen counts (over 80 percent of the annual total) were observed between February and June. The lowest counts were found in September, November and December. The 10 leading taxa, in order of abundance, were: Cupressaceae, Quercus, Urticaceae, Pinus, Olea, Poaceae, Populus, Platanus, Chenopodiaceae-Amaranthaceae and Plantago. The pollen calendar was thus typically Mediterrean, and comprised the 27 pollen types reaching 10-day mean counts of over 1 grain/m(3) of air. Maximum concentration values during the day were recorded between 12:00-20:00, coinciding with the highest temperatures and lowest humidity levels. The pollen types responsible for most allergies in the city of Cuenca, ordered by the number of days on which risk levels were reached, were: Poaceae, Urticaceae, Cupressaceae, Olea, Platanus and Chenopodiaceae-Amaranthaceae. PMID:21736275

  3. Grass pollen hypersensitivity in mice

    PubMed Central

    McCaskill, A. C.; Hosking, C. S.; Hill, D. J.

    1982-01-01

    Mice were sensitized by intranasal administration of ryegrass pollen. Subsequent nasal challenge with pollen extract led to a `shock' response peaking in severity 4 hr after challenge. Histological examination of lungs revealed the development of a pneumonitis which was most severe 3 days after challenge. ImagesFigure 2 PMID:7106842

  4. A late Pleistocene long pollen record from Lake Urmia, NW Iran

    NASA Astrophysics Data System (ADS)

    Djamali, Morteza; de Beaulieu, Jacques-Louis; Shah-hosseini, Madjid; Andrieu-Ponel, Valérie; Ponel, Philippe; Amini, Abdolhossein; Akhani, Hossein; Leroy, Suzanne A. G.; Stevens, Lora; Lahijani, Hamid; Brewer, Simon

    2008-05-01

    A palynological study based on two 100-m long cores from Lake Urmia in northwestern Iran provides a vegetation record spanning 200 ka, the longest pollen record for the continental interior of the Near East. During both penultimate and last glaciations, a steppe of Artemisia and Poaceae dominated the upland vegetation with a high proportion of Chenopodiaceae in both upland and lowland saline ecosystems. While Juniperus and deciduous Quercus trees were extremely rare and restricted to some refugia, Hippophaë rhamnoides constituted an important phanerophyte, particularly during the late last glacial period. A pronounced expansion in Ephedra shrub-steppe occurred at the end of the penultimate late-glacial period but was followed by extreme aridity that favoured an Artemisia steppe. Very high lake levels, registered by both pollen and sedimentary markers, occurred during the middle of the last glaciation and late part of the penultimate glaciation. The late-glacial to early Holocene transition is represented by a succession of Hippophaë, Ephedra, Betula, Pistacia and finally Juniperus and Quercus. The last interglacial period (Eemian), slightly warmer and moister than the Holocene, was followed by two interstadial phases similar in pattern to those recorded in the marine isotope record and southern European pollen sequences.

  5. Ambrosia artemisiifolia L. pollen simulations over the Euro-CORDEX domain: model description and emission calibration

    NASA Astrophysics Data System (ADS)

    liu, li; Solmon, Fabien; Giorgi, Filippo; Vautard, Robert

    2014-05-01

    Ragweed Ambrosia artemisiifolia L. is a highly allergenic invasive plant. Its pollen can be transported over large distances and has been recognized as a significant cause of hayfever and asthma (D'Amato et al., 2007). In the context of the ATOPICA EU program we are studying the links between climate, land use and ecological changes on the ragweed pollen emissions and concentrations. For this purpose, we implemented a pollen emission/transport module in the RegCM4 regional climate model in collaboration with ATOPICA partners. The Abdus Salam International Centre for Theoretical Physics (ICTP) regional climate model, i.e. RegCM4 was adapted to incorporate the pollen emissions from (ORCHIDEE French) Global Land Surface Model and a pollen tracer model for describing pollen convective transport, turbulent mixing, dry and wet deposition over extensive domains, using consistent assumption regarding the transport of multiple species (Fabien et al., 2008). We performed two families of recent-past simulations on the Euro-Cordex domain (simulation for future condition is been considering). Hindcast simulations (2000~2011) were driven by the ERA-Interim re-analyses and designed to best simulate past periods airborne pollens, which were calibrated with parts of observations and verified by comparison with the additional observations. Historical simulations (1985~2004) were driven by HadGEM CMPI5 and designed to serve as a baseline for comparison with future airborne concentrations as obtained from climate and land-use scenarios. To reduce the uncertainties on the ragweed pollen emission, an assimilation-like method (Rouǐl et al., 2009) was used to calibrate release based on airborne pollen observations. The observations were divided into two groups and used for calibration and validation separately. A wide range of possible calibration coefficients were tested for each calibration station, making the bias between observations and simulations within an admissible value then

  6. Glutathione-S-Transferase: A Minor Allergen in Birch Pollen due to Limited Release from Hydrated Pollen

    PubMed Central

    Vejvar, Eva; Kitzmüller, Claudia; Gadermaier, Gabriele; Nagl, Birgit; Vrtala, Susanne; Briza, Peter; Zlabinger, Gerhard J.; Jahn-Schmid, Beatrice; Ferreira, Fatima; Bohle, Barbara

    2014-01-01

    Background Recently, a protein homologous to glutathione-S-transferases (GST) was detected in prominent amounts in birch pollen by proteomic profiling. As members of the GST family are relevant allergens in mites, cockroach and fungi we investigated the allergenic relevance of GST from birch (bGST). Methodology bGST was expressed in Escherichia coli, purified and characterized by mass spectrometry. Sera from 217 birch pollen-allergic patients were tested for IgE-reactivity to bGST by ELISA. The mediator-releasing activity of bGST was analysed with IgE-loaded rat basophil leukaemia cells (RBL) expressing human FcεRI. BALB/c mice were immunized with bGST or Bet v 1. Antibody and T cell responses to either protein were assessed. IgE-cross-reactivity between bGST with GST from house dust mite, Der p 8, was studied with murine and human sera in ELISA. The release kinetics of bGST and Bet v 1 from birch pollen were assessed in water, simulated lung fluid, 0.9% NaCl and PBS. Eluted proteins were quantified by ELISA and analysed by immunoblotting. Principle findings Only 13% of 217 birch pollen-allergic patients showed IgE-reactivity to bGST. In RBL assays bGST induced mediator release. Immunization of mice with bGST induced specific IgE and a Th2-dominated cellular immune response comparably to immunization with Bet v 1. bGST did not cross-react with Der p 8. In contrast to Bet v 1, only low amounts of bGST were released from pollen grains upon incubation in water and the different physiological solutions. Conclusion/Significance Although bGST is abundant in birch pollen, immunogenic in mice and able to induce mediator release from effector cells passively loaded with specific IgE, it is a minor allergen for birch pollen-allergic patients. We refer this discrepancy to its limited release from hydrated pollen. Hence, bGST is an example demonstrating that allergenicity depends mainly on rapid elution from airborne particles. PMID:25275548

  7. CHARACTERIZATION OF THE MAIZE POLLEN TRANSCRIPTOME

    EPA Science Inventory

    Pollen is a primary vehicle for transgene flow from engineered plants to their non-transgenic, native or weedy relatives. Hence, gene flow will be affected by pollen fitness (e.g., how well a particular pollen grain can outcompete other pollen present on the stigma and complete ...

  8. Heterodera betulae n. sp. (Heteroderidae), a Cyst-forming Nematode from River Birch

    PubMed Central

    Hirschmann, H.; Riggs, R. D.

    1969-01-01

    A new species of the genus Heterodera A. Schmidt, 1871 parasitic on river birch, Betula nigra L., is described and illustrated. Females and cysts are lemon-shaped to almost spherical with slight vulval protrusion. Female cuticles have a thick subcrystalline layer. The average cyst size is 763 by 616 [mu]. They are circumfenestrate with small anal opening and lack a yellow phase. The cyst wall pattern is typically network-like. All eggs are retained in the cyst, although a well-developed matrix is formed. The egg shell is without markings. The second-stage larvae average 462 [mu] in length and have 3 incisures in the lateral field. The tail terminal is shorter than the stylet. Males are rare. They have 4 incisures in the lateral field and bifid spicules. The relationship of H. betulae n. sp. to other Heterodera species is obscure. PMID:19325672

  9. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain

    NASA Astrophysics Data System (ADS)

    Hernández-Ceballos, M. A.; García-Mozo, H.; Galán, C.

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak ( Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises.

  10. Cluster analysis of intradiurnal holm oak pollen cycles at peri-urban and rural sampling sites in southwestern Spain.

    PubMed

    Hernández-Ceballos, M A; García-Mozo, H; Galán, C

    2015-08-01

    The impact of regional and local weather and of local topography on intradiurnal variations in airborne pollen levels was assessed by analysing bi-hourly holm oak (Quercus ilex subsp. ballota (Desf.) Samp.) pollen counts at two sampling stations located 40 km apart, in southwestern Spain (Cordoba city and El Cabril nature reserve) over the period 2010-2011. Pollen grains were captured using Hirst-type volumetric spore traps. Analysis of regional weather conditions was based on the computation of backward trajectories using the HYSPLIT model. Sampling days were selected on the basis of phenological data; rainy days were eliminated, as were days lying outside a given range of percentiles (P95-P5). Analysis of cycles for the study period, as a whole, revealed differences between sampling sites, with peak bi-hourly pollen counts at night in Cordoba and at midday in El Cabril. Differences were also noted in the influence of surface weather conditions (temperature, relative humidity and wind). Cluster analysis of diurnal holm oak pollen cycles revealed the existence of five clusters at each sampling site. Analysis of backward trajectories highlighted specific regional air-flow patterns associated with each site. Findings indicated the contribution of both nearby and distant pollen sources to diurnal cycles. The combined use of cluster analysis and meteorological analysis proved highly suitable for charting the impact of local weather conditions on airborne pollen-count patterns. This method, and the specific tools used here, could be used not only to study diurnal variations in counts for other pollen types and in other biogeographical settings, but also in a number of other research fields involving airborne particle transport modelling, e.g. radionuclide transport in emergency preparedness exercises. PMID:25315264

  11. City scale pollen concentration variability

    NASA Astrophysics Data System (ADS)

    van der Molen, Michiel; van Vliet, Arnold; Krol, Maarten

    2016-04-01

    Pollen are emitted in the atmosphere both in the country-side and in cities. Yet the majority of the population is exposed to pollen in cities. Allergic reactions may be induced by short-term exposure to pollen. This raises the question how variable pollen concentration in cities are in temporally and spatially, and how much of the pollen in cities are actually produced in the urban region itself. We built a high resolution (1 × 1 km) pollen dispersion model based on WRF-Chem to study a city's pollen budget and the spatial and temporal variability in concentration. It shows that the concentrations are highly variable, as a result of source distribution, wind direction and boundary layer mixing, as well as the release rate as a function of temperature, turbulence intensity and humidity. Hay Fever Forecasts based on such high resolution emission and physical dispersion modelling surpass traditional hay fever warning methods based on temperature sum methods. The model gives new insights in concentration variability, personal and community level exposure and prevention. The model will be developped into a new forecast tool to serve allergic people to minimize their exposure and reduce nuisance, coast of medication and sick leave. This is an innovative approach in hay fever warning systems.

  12. Projected Carbon Dioxide to Increase Grass Pollen and Allergen Exposure Despite Higher Ozone Levels

    PubMed Central

    Albertine, Jennifer M.; Manning, William J.; DaCosta, Michelle; Stinson, Kristina A.; Muilenberg, Michael L.; Rogers, Christine A.

    2014-01-01

    One expected effect of climate change on human health is increasing allergic and asthmatic symptoms through changes in pollen biology. Allergic diseases have a large impact on human health globally, with 10–30% of the population affected by allergic rhinitis and more than 300 million affected by asthma. Pollen from grass species, which are highly allergenic and occur worldwide, elicits allergic responses in 20% of the general population and 40% of atopic individuals. Here we examine the effects of elevated levels of two greenhouse gases, carbon dioxide (CO2), a growth and reproductive stimulator of plants, and ozone (O3), a repressor, on pollen and allergen production in Timothy grass (Phleum pratense L.). We conducted a fully factorial experiment in which plants were grown at ambient and/or elevated levels of O3 and CO2, to simulate present and projected levels of both gases and their potential interactive effects. We captured and counted pollen from flowers in each treatment and assayed for concentrations of the allergen protein, Phl p 5. We found that elevated levels of CO2 increased the amount of grass pollen produced by ∼50% per flower, regardless of O3 levels. Elevated O3 significantly reduced the Phl p 5 content of the pollen but the net effect of rising pollen numbers with elevated CO2 indicate increased allergen exposure under elevated levels of both greenhouse gases. Using quantitative estimates of increased pollen production and number of flowering plants per treatment, we estimated that airborne grass pollen concentrations will increase in the future up to ∼200%. Due to the widespread existence of grasses and the particular importance of P. pratense in eliciting allergic responses, our findings provide evidence for significant impacts on human health worldwide as a result of future climate change. PMID:25372614

  13. Grass Pollen Allergens

    PubMed Central

    Augustin, Rosa; Hayward, Barbara J.

    1962-01-01

    Cocksfoot and Timothy pollen extracts are each found to contain at least fifteen components antigenic in rabbits. Most of these can also be allergens for man, but only a few are regularly so. These `principal' allergens have now been isolated in highly purified form. Procedures are given for a simple method of preparing extracts for clinical purposes and for the partial separation, concentration and purification of the allergens by means of differential extractions of the pollens and by means of ultrafiltration, isoelectric precipitation and salt fractionations (at acid and neutral pH) of the extracts. Isoelectric precipitations gave highly pigmented acid complexes, two of which moved as single sharp peaks at pH 7.4 in free electrophoresis, but proved to be hardly active by skin tests. Acid NaCl fractionation of the remainder resulted for Cocksfoot and Timothy in the isolation of a nearly white powder (T21.111121112 = T21B) which was weight for weight 1000–10,000 times as active as the pollen from which it had been derived. The powders have retained their activity for 7 years. By gel diffusion tests, they were found to contain two antigens (one in each preparation) which were immunologically partially related, but the Timothy preparation contained in addition the `innermost' `twin' antigens specific for Timothy that we had discovered previously in the crude extracts by gel diffusion methods. Skin reactions could be elicited in hay-fever subjects by prick tests with concentrations of 10-9–10-8 g./ml., which is equivalent to intradermal injections of 10-11–10-10 mg. and represents a 300-fold purification with respect to the concentrates of crude pollen extracts prepared by ultrafiltration and dialysis. Fractionation on DEAE-cellulose of one of the highly purified Timothy preparations (T21.11112112 = T21A) and other, crude Timothy and Cocksfoot extracts resulted in considerable and reproducible separation of the various antigens, with no indication of the

  14. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Solmon, Fabien; Vautard, Robert; Hamaoui-Laguel, Lynda; Zsolt Torma, Csaba; Giorgi, Filippo

    2016-05-01

    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic and invasive plant in Europe. Its pollen can be transported over large distances and has been recognized as a significant cause of hay fever and asthma (D'Amato et al., 2007; Burbach et al., 2009). To simulate production and dispersion of common ragweed pollen, we implement a pollen emission and transport module in the Regional Climate Model (RegCM) version 4 using the framework of the Community Land Model (CLM) version 4.5. In this online approach pollen emissions are calculated based on the modelling of plant distribution, pollen production, species-specific phenology, flowering probability, and flux response to meteorological conditions. A pollen tracer model is used to describe pollen advective transport, turbulent mixing, dry and wet deposition. The model is then applied and evaluated on a European domain for the period 2000-2010. To reduce the large uncertainties notably due to the lack of information on ragweed density distribution, a calibration based on airborne pollen observations is used. Accordingly a cross validation is conducted and shows reasonable error and sensitivity of the calibration. Resulting simulations show that the model captures the gross features of the pollen concentrations found in Europe, and reproduce reasonably both the spatial and temporal patterns of flowering season and associated pollen concentrations measured over Europe. The model can explain 68.6, 39.2, and 34.3 % of the observed variance in starting, central, and ending dates of the pollen season with associated root mean square error (RMSE) equal to 4.7, 3.9, and 7.0 days, respectively. The correlation between simulated and observed daily concentrations time series reaches 0.69. Statistical scores show that the model performs better over the central Europe source region where pollen loads are larger and the model is better constrained. From these simulations health risks associated to common ragweed pollen

  15. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease.

    PubMed

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T; House, James M; Flagan, Richard C; Avol, Edward L; Gilliland, Frank D; Guenther, Alex; Chung, Serena H; Lamb, Brian K; VanReken, Timothy M

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  16. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    PubMed Central

    Zhang, Rui; Duhl, Tiffany; Salam, Muhammad T.; House, James M.; Flagan, Richard C.; Avol, Edward L.; Gilliland, Frank D.; Guenther, Alex; Chung, Serena H.; Lamb, Brian K.; VanReken, Timothy M.

    2014-01-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends

  17. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2014-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF/CMAQ) modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation of vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California (USA) for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to

  18. Development of a regional-scale pollen emission and transport modeling framework for investigating the impact of climate change on allergic airway disease

    NASA Astrophysics Data System (ADS)

    Zhang, R.; Duhl, T.; Salam, M. T.; House, J. M.; Flagan, R. C.; Avol, E. L.; Gilliland, F. D.; Guenther, A.; Chung, S. H.; Lamb, B. K.; VanReken, T. M.

    2013-03-01

    Exposure to bioaerosol allergens such as pollen can cause exacerbations of allergenic airway disease (AAD) in sensitive populations, and thus cause serious public health problems. Assessing these health impacts by linking the airborne pollen levels, concentrations of respirable allergenic material, and human allergenic response under current and future climate conditions is a key step toward developing preventive and adaptive actions. To that end, a regional-scale pollen emission and transport modeling framework was developed that treats allergenic pollens as non-reactive tracers within the WRF/CMAQ air-quality modeling system. The Simulator of the Timing and Magnitude of Pollen Season (STaMPS) model was used to generate a daily pollen pool that can then be emitted into the atmosphere by wind. The STaMPS is driven by species-specific meteorological (temperature and/or precipitation) threshold conditions and is designed to be flexible with respect to its representation vegetation species and plant functional types (PFTs). The hourly pollen emission flux was parameterized by considering the pollen pool, friction velocity, and wind threshold values. The dry deposition velocity of each species of pollen was estimated based on pollen grain size and density. An evaluation of the pollen modeling framework was conducted for southern California for the period from March to June 2010. This period coincided with observations by the University of Southern California's Children's Health Study (CHS), which included O3, PM2.5, and pollen count, as well as measurements of exhaled nitric oxide in study participants. Two nesting domains with horizontal resolutions of 12 km and 4 km were constructed, and six representative allergenic pollen genera were included: birch tree, walnut tree, mulberry tree, olive tree, oak tree, and brome grasses. Under the current parameterization scheme, the modeling framework tends to underestimate walnut and peak oak pollen concentrations, and tends to

  19. The patterns of Corylus and Alnus pollen seasons and pollination periods in two Polish cities located in different climatic regions.

    PubMed

    Puc, Małgorzata; Kasprzyk, Idalia

    2013-01-01

    This study compares phenological observations of Corylus (hazel) and Alnus (alder) flowering with airborne pollen counts of these taxa recorded using volumetric spore traps (2009-2011). The work was carried out in the Polish cities of Szczecin and Rzeszów that are located in different climatic regions. Correlations between pollen concentrations and meteorological data were investigated using Spearman's rank correlation analysis. The timings of hazel and alder pollination and the occurrence of airborne pollen varied greatly and were significantly influenced by meteorological conditions (p < 0.05). The flowering synchronization of hazel and alder pollination in Szczecin and Rzeszów varied over the study period. Hazel and alder trees flowered notably earlier in stands located in places that were exposed to sunlight (insolated) and sheltered from the wind. On the other hand, a delay in the timing of pollination was observed in quite sunny but very windy sites. In Rzeszów, maximum hazel pollen concentrations did not coincide with the period of full pollination (defined as between 25 % hazel and alder and 75 % of flowers open). Conversely, in Szczecin, the highest hazel pollen concentrations were recorded during phenophases of the full pollination period. The period when the highest alder pollen concentrations were recorded varied between sites, with Rzeszów recording the highest concentrations at the beginning of pollination and Szczecin recording alder pollen throughout the full pollination period. Substantial amounts of hazel and alder pollen grains were recorded in the air of Rzeszów (but not Szczecin) before the onset of the respective pollen seasons. PMID:24098067

  20. AIRBORNE-CONTACT DERMATITIS OF NON-PLANT ORIGIN: AN OVERVIEW

    PubMed Central

    Ghosh, Sanjay

    2011-01-01

    Airborne-contact dermatitis (ABCD) represents a unique type of contact dermatitis originating from dust, sprays, pollens or volatile chemicals by airborne fumes or particles without directly touching the allergen. ABCD in Indian patients has been attributed exclusively by pollens of the plants like Parthenium hysterophorus, etc., but in recent years the above scenario has been changing rapidly in urban and semiurban perspective especially in developing countries. ABCD has been reported worldwide due to various type of nonplant allergens and their clinical feature are sometimes distinctive. Preventive aspect has been attempted by introduction of different chemicals of less allergic potential. PMID:22345776

  1. Variations in Quercus sp. pollen seasons (1996-2011) in Poznań, Poland, in relation to meteorological parameters.

    PubMed

    Grewling, Lukasz; Jackowiak, Bogdan; Smith, Matt

    2014-01-01

    The aim of this study is to supply detailed information about oak (Quercus sp.) pollen seasons in Poznań, Poland, based on a 16-year aerobiological data series (1996-2011). The pollen data were collected using a volumetric spore trap of the Hirst design located in Poznań city center. The limits of the pollen seasons were calculated using the 95 % method. The influence of meteorological parameters on temporal variations in airborne pollen was examined using correlation analysis. Start and end dates of oak pollen seasons in Poznań varied markedly from year-to-year (14 and 17 days, respectively). Most of the pollen grains (around 75 % of the seasonal pollen index) were recorded within the first 2 weeks of the pollen season. The tenfold variation was observed between the least and the most intensive pollen seasons. These fluctuations were significantly related to the variation in the sum of rain during the period second fortnight of March to first fortnight of April the year before pollination (r = 0.799; p < 0.001). During the analyzing period, a significant advance in oak pollen season start dates was observed (-0.55 day/year; p = 0.021), which was linked with an increase in the mean temperature during the second half of March and first half of April (+0.2 °C; p = 0.014). Daily average oak pollen counts correlated positively with mean and maximum daily temperatures, and negatively with daily rainfall and daily mean relative humidity. PMID:24817783

  2. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland)

    NASA Astrophysics Data System (ADS)

    Bogawski, Paweł; Grewling, Łukasz; Nowak, Małgorzata; Smith, Matt; Jackowiak, Bogdan

    2014-10-01

    A significant increase in summer temperatures has been observed for the period 1996-2011 in Poznań, Poland. The phenological response of four weed taxa, widely represented by anemophilous species ( Artemisia spp., Rumex spp. and Poaceae and Urticaceae species) to this recent climate warming has been analysed in Poznań by examining the variations in the course of airborne pollen seasons. Pollen data were collected by 7-day Hirst-type volumetric trap. Trends in pollen seasons were determined using Mann-Kendall test and Sen's slope estimator, whereas the relationships between meteorological and aerobiological data were established by Spearman's rank correlation coefficient. Significant trends in pollen data were detected. The duration of pollen seasons of all analysed taxa increased (from +2.0 days/year for Urticaceae to +3.8 days/year for Rumex), which can be attributed to a delay in pollen season end dates rather than earlier start dates. In addition, the intensity of Artemisia pollen seasons significantly decreased and correlates with mean July-September daily minimum temperatures ( r = -0.644, p < 0.01). In contrast, no significant correlations were found between temperature and characteristics of Rumex pollen seasons. The results of this study show that observed shifts in weed pollen seasons in Poznań, i.e. longer duration and later end dates, might be caused by the recorded increase in summer temperature. This influence was the strongest in relation to Artemisia, which is the taxon that flowers latest in the year. The general lack of significant correlations between Rumex and Urticaceae pollen seasons and spring and/or summer temperature suggests that other factors, e.g. land use practices, could also be partially responsible for the observed shifts in pollen seasons.

  3. Vegetation and climate history in the Laptev Sea region (Arctic Siberia) during Late Quaternary inferred from pollen records

    NASA Astrophysics Data System (ADS)

    Andreev, Andrei A.; Schirrmeister, Lutz; Tarasov, Pavel E.; Ganopolski, Andrey; Brovkin, Viktor; Siegert, Christine; Wetterich, Sebastian; Hubberten, Hans-Wolfgang

    2011-08-01

    Paleoenvironmental records from a number of permafrost sections and lacustrine cores from the Laptev Sea region dated by several methods ( 14C-AMS, TL, IRSL, OSL and 230Th/U) were analyzed for pollen and palynomorphs. The records reveal the environmental history for the last ca 200 kyr. For interglacial pollen spectra, quantitative temperature values were estimated using the best modern analogue method. Sparse grass-sedge vegetation indicating arctic desert environmental conditions existed prior to 200 kyr ago. Dense, wet grass-sedge tundra habitats dominated during an interstadial ca 200-190 kyr ago, reflecting warmer and wetter summers than before. Sparser vegetation communities point to much more severe stadial conditions ca 190-130 kyr ago. Open grass and Artemisia communities with shrub stands ( Alnus fruticosa, Salix, Betula nana) in more protected and moister places characterized the beginning of the Last Interglacial indicate climate conditions similar to present. Shrub tundra ( Alnus fruticosa and Betula nana) dominated during the middle Eemian climatic optimum, when summer temperatures were 4-5 °C higher than today. Early-Weichselian sparse grass-sedge dominated vegetation indicates climate conditions colder and dryer than in the previous interval. Middle Weichselian Interstadial records indicate moister and warmer climate conditions, for example, in the interval 40-32 kyr BP Salix was present within dense, grass-sedge dominated vegetation. Sedge-grass- Artemisia-communities indicate that climate became cooler and drier after 30 kyr BP, and cold, dry conditions characterized the Late Weichselian, ca 26-16 kyr BP, when grass-dominated communities with Caryophyllaceae, Asteraceae, Cichoriaceae, Selaginella rupestris were present. From 16 to 12 kyr BP, grass-sedge communities with Caryophyllaceae, Asteraceae, and Cichoriaceae indicate climate was significantly warmer and moister than during the previous interval. The presence of Salix and Betula reflect

  4. A new method for determining the sources of airborne particles.

    PubMed

    Oteros, J; García-Mozo, H; Alcázar, P; Belmonte, J; Bermejo, D; Boi, M; Cariñanos, P; Díaz de la Guardia, C; Fernández-González, D; González-Minero, F; Gutiérrez-Bustillo, A M; Moreno-Grau, S; Pérez-Badía, R; Rodríguez-Rajo, F J; Ruíz-Valenzuela, L; Suárez-Pérez, J; Trigo, M M; Domínguez-Vilches, E; Galán, C

    2015-05-15

    Air quality is a major issue for humans owing to the fact that the content of particles in the atmosphere has multiple implications for life quality, ecosystem dynamics and environment. Scientists are therefore particularly interested in discovering the origin of airborne particles. A new method has been developed to model the relationship between the emission surface and the total amount of airborne particles at a given distance, employing olive pollen and olive groves as examples. A third-degree polynomial relationship between the air particles at a particular point and the distance from the source was observed, signifying that the nearest area to a point is not that which is most correlated with its air features. This work allows the origin of airborne particles to be discovered and could be implemented in different disciplines related to atmospheric aerosol, thus providing a new approach with which to discover the dynamics of airborne particles. PMID:25837296

  5. Pollen Forecast and Dispersion Modelling

    NASA Astrophysics Data System (ADS)

    Costantini, Monica; Di Giuseppe, Fabio; Medaglia, Carlo Maria; Travaglini, Alessandro; Tocci, Raffaella; Brighetti, M. Antonia; Petitta, Marcello

    2014-05-01

    The aim of this study is monitoring, mapping and forecast of pollen distribution for the city of Rome using in-situ measurements of 10 species of common allergenic pollens and measurements of PM10. The production of daily concentration maps, associated to a mobile phone app, are innovative compared to existing dedicated services to people who suffer from respiratory allergies. The dispersal pollen is one of the most well-known causes of allergic disease that is manifested by disorders of the respiratory functions. Allergies are the third leading cause of chronic disease and it is estimated that tens millions of people in Italy suffer from it. Recent works reveal that during the last few years there was a progressive increase of affected subjects, especially in urban areas. This situation may depend: on the ability to transport of pollutants, on the ability to react between pollutants and pollen and from a combination of other irritants, existing in densely populated and polluted urban areas. The methodology used to produce maps is based on in-situ measurements time series relative to 2012, obtained from networks of air quality and pollen stations in the metropolitan area of Rome. The monitoring station aerobiological of University of Rome "Tor Vergata" is located at the Department of Biology. The instrument used to pollen monitoring is a volumetric sampler type Hirst (Hirst 1952), Model 2000 VPPS Lanzoni; the data acquisition is carried out as reported in Standard UNI 11008:2004 - "Qualità dell'aria - Metodo di campionamento e conteggio dei granuli pollinici e delle spore fungine aerodisperse" - the protocol that describes the procedure for measuring of the concentration of pollen grains and fungal spores dispersed into the atmosphere, and reported in the "Manuale di gestione e qualità della R.I.M.A" (Travaglini et. al. 2009). All 10 allergenic pollen are monitored since 1996. At Tor Vergata university is also operating a meteorological station (SP2000, CAE

  6. Pollen taphonomy in a canyon stream

    NASA Astrophysics Data System (ADS)

    Fall, Patricia L.

    1987-11-01

    Surface soil samples from the forested Chuska Mountains to the arid steppe of the Chinle Valley, Northeastern Arizona, show close correlation between modern pollen rain and vegetation. In contrast, modern alluvium is dominated by Pinus pollen throughout the canyon; it reflects neither the surrounding floodplain nor plateau vegetation. Pollen in surface soils is deposited by wind; pollen grains in alluvium are deposited by a stream as sedimentary particles. Clay-size particles correlate significantly with Pinus, Quercus, and Populus pollen. These pollen types settle, as clay does, in slack water. Chenopodiaceae- Amaranthus, Artemisia, other Tubuliflorae, and indeterminate pollen types correlate with sand-size particles, and are deposited by more turbulent water. Fluctuating pollen frequencies in alluvial deposits are related to sedimentology and do not reflect the local or regional vegetation where the sediments were deposited. Alluvial pollen is unreliable for reconstruction of paleoenvironments.

  7. Late Quaternary vegetation and environments in the Verkhoyansk Mountains region (NE Asia) reconstructed from a 50-kyr fossil pollen record from Lake Billyakh

    NASA Astrophysics Data System (ADS)

    Müller, Stefanie; Tarasov, Pavel E.; Andreev, Andrei A.; Tütken, Thomas; Gartz, Steffi; Diekmann, Bernhard

    2010-08-01

    Here we present a detailed radiocarbon-dated 936 cm long pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) situated in the western part of the Verkhoyansk Mountains, about 140 km south of the Arctic Circle. A set of 53 surface pollen samples representing tundra, cold deciduous forest and taiga was collected in northern and central Yakutia communities to verify the accuracy of the quantitative biome reconstruction method and to obtain a more precise attribution of the identified pollen taxa to the main regional biomes. The adjusted method is then applied to the pollen record from Lake Billyakh to gain a reconstruction of vegetation and environments since about 50.7 kyr BP. The results of the pollen analysis and pollen-based biome reconstruction suggest that herbaceous tundra and steppe communities dominated the area from 50.7 to 13.5 kyr BP. Relatively low pollen concentrations and high percentages of herbaceous pollen taxa (mainly Cyperaceae, Poaceae and Artemisia) likely indicate a reduced vegetation cover and/or lower pollen production. On the other hand, extremely low percentages of drought-tolerant taxa, such as Chenopodiaceae and Ephedra, and the constant presence of various mesophyllous herbaceous ( Thalictrum, Rosaceae, Asteraceae) and shrubby taxa ( Betula sect. Nanae/Fruticosae, Duschekia fruticosa, Salix) in the pollen assemblages prevent an interpretation of the last glacial environments around Lake Billyakh as extremely arid. The lowest pollen percentages of woody taxa and the highest values of Artemisia pollen attest that the 31-15 kyr BP period as the driest and coldest interval of the entire record. A relative high content of taxa representing shrub tundra communities and the presence of larch pollen recorded prior to 31 kyr and after 13.5 kyr BP likely indicate interstadial climate amelioration associated with the middle and latest parts of the last glacial. An increase in pollen percentages of herbaceous taxa around 12 kyr BP

  8. Pollen mixing in pollen generalist solitary bees: a possible strategy to complement or mitigate unfavourable pollen properties?

    PubMed

    Eckhardt, Michael; Haider, Mare; Dorn, Silvia; Müller, Andreas

    2014-05-01

    Generalist herbivorous insects, which feed on plant tissue that is nutritionally heterogeneous or varies in its content of secondary metabolites, often benefit from dietary mixing through more balanced nutrient intake or reduced exposure to harmful secondary metabolites. Pollen is similarly heterogeneous as other plant tissue in its content of primary and secondary metabolites, suggesting that providing their offspring with mixed pollen diets might be a promising strategy for pollen generalist bees to complement nutrient imbalances or to mitigate harmful secondary metabolites of unfavourable pollen. In the present study, we compared larval performance of the pollen generalist solitary bee species Osmia cornuta (Megachilidae) on five experimental pollen diets that consisted of different proportions of unfavourable pollen diet of Ranunculus acris (Ranunculaceae) and favourable pollen diet of Sinapis arvensis (Brassicaceae). In addition, we microscopically analysed the pollen contained in the scopal brushes of field-collected females of O. cornuta and three closely related species to elucidate to what degree these pollen generalist bees mix pollen of different hosts in their brood cells. In striking contrast to a pure Ranunculus pollen diet, which had a lethal effect on most developing larvae of O. cornuta, larval survival, larval development time and adult body mass of both males and females remained nearly unaffected by the admixture of up to 50% of Ranunculus pollen diet to the larval food. Between 42% and 66% of all female scopal pollen loads analysed contained mixtures of pollen from two to six plant families, indicating that pollen mixing is a common behaviour in O. cornuta and the three related bee species. The present study provides the first evidence that the larvae of pollen generalist bees can benefit from the nutrient content of unfavourable pollen without being negatively affected by its unfavourable chemical properties if such pollen is mixed with

  9. Knockin' on pollen's door: live cell imaging of early polarization events in germinating Arabidopsis pollen

    PubMed Central

    Vogler, Frank; Konrad, Sebastian S. A.; Sprunck, Stefanie

    2015-01-01

    Pollen tubes are an excellent system for studying the cellular dynamics and complex signaling pathways that coordinate polarized tip growth. Although several signaling mechanisms acting in the tip-growing pollen tube have been described, our knowledge on the subcellular and molecular events during pollen germination and growth site selection at the pollen plasma membrane is rather scarce. To simultaneously track germinating pollen from up to 12 genetically different plants we developed an inexpensive and easy mounting technique, suitable for every standard microscope setup. We performed high magnification live-cell imaging during Arabidopsis pollen activation, germination, and the establishment of pollen tube tip growth by using fluorescent marker lines labeling either the pollen cytoplasm, vesicles, the actin cytoskeleton or the sperm cell nuclei and membranes. Our studies revealed distinctive vesicle and F-actin polarization during pollen activation and characteristic growth kinetics during pollen germination and pollen tube formation. Initially, the germinating Arabidopsis pollen tube grows slowly and forms a uniform roundish bulge, followed by a transition phase with vesicles heavily accumulating at the growth site before switching to rapid tip growth. Furthermore, we found the two sperm cells to be transported into the pollen tube after the phase of rapid tip growth has been initiated. The method presented here is suitable to quantitatively study subcellular events during Arabidopsis pollen germination and growth, and for the detailed analysis of pollen mutants with respect to pollen polarization, bulging, or growth site selection at the pollen plasma membrane. PMID:25954283

  10. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into

  11. Waterlogging in late dormancy and the early growth phase affected root and leaf morphology in Betula pendula and Betula pubescens seedlings.

    PubMed

    Wang, Ai-Fang; Roitto, Marja; Sutinen, Sirkka; Lehto, Tarja; Heinonen, Jaakko; Zhang, Gang; Repo, Tapani

    2016-01-01

    The warmer winters of the future will increase snow-melt frequency and rainfall, thereby increasing the risk of soil waterlogging and its effects on trees in winter and spring at northern latitudes. We studied the morphology of roots and leaves of 1-year-old silver birch (Betula pendula Roth) and pubescent birch (Betula pubescens Ehrh.) seedlings exposed to waterlogging during dormancy or at the beginning of the growing season in a growth-chamber experiment. The experiment included 4-week dormancy (Weeks 1-4), a 4-week early growing season (Weeks 5-8) and a 4-week late growing season (Weeks 9-12). The treatments were: (i) no waterlogging, throughout the experiment ('NW'); (ii) 4-week waterlogging during dormancy (dormancy waterlogging 'DW'); (iii) 4-week waterlogging during the early growing season (growth waterlogging 'GW'); and (iv) 4-week DW followed by 4-week GW during the early growing season ('DWGW'). Dormancy waterlogging affected the roots of silver birch and GW the roots and leaf characteristics of both species. Leaf area was reduced in both species by GW and DWGW. In pubescent birch, temporarily increased formation of thin roots was seen in root systems of GW seedlings, which suggests an adaptive mechanism with respect to excess soil water. Additionally, the high density of non-glandular trichomes and their increase in DWGW leaves were considered possible morphological adaptations to excess water in the soil, as was the constant density of stem lenticels during stem-diameter growth. The higher density in glandular trichomes of DWGW silver birch suggests morphological acclimation in that species. The naturally low density of non-glandular trichomes, low density of stem lenticels in waterlogged seedlings and decrease in root growth seen in DWGW and DW silver birch seedlings explain, at least partly, why silver birch grows more poorly relative to pubescent birch in wet soils. PMID:26420790

  12. Near-surface and columnar measurements with a micro pulse lidar of atmospheric pollen in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Izquierdo, Rebeca; Alarcón, Marta; Belmonte, Jordina; Comerón, Adolfo; Baldasano, José Maria

    2016-06-01

    We present for the first time continuous hourly measurements of pollen near-surface concentration and lidar-derived profiles of particle backscatter coefficients and of volume and particle depolarization ratios during a 5-day pollination event observed in Barcelona, Spain, between 27 and 31 March 2015. Daily average concentrations ranged from 1082 to 2830 pollen m-3. Platanus and Pinus pollen types represented together more than 80 % of the total pollen. Maximum hourly pollen concentrations of 4700 and 1200 m-3 were found for Platanus and Pinus, respectively. Every day a clear diurnal cycle caused by the vertical transport of the airborne pollen was visible on the lidar-derived profiles with maxima usually reached between 12:00 and 15:00 UT. A method based on the lidar polarization capabilities was used to retrieve the contribution of the pollen to the total aerosol optical depth (AOD). On average the diurnal (09:00-17:00 UT) pollen AOD was 0.05, which represented 29 % of the total AOD. Maximum values of the pollen AOD and its contribution to the total AOD reached 0.12 and 78 %, respectively. The diurnal means of the volume and particle depolarization ratios in the pollen plume were 0.08 and 0.14, with hourly maxima of 0.18 and 0.33, respectively. The diurnal mean of the height of the pollen plume was found at 1.24 km with maxima varying in the range of 1.47-1.78 km. A correlation study is performed (1) between the depolarization ratios and the pollen near-surface concentration to evaluate the ability of the former parameter to monitor pollen release and (2) between the depolarization ratios as well as pollen AOD and surface downward solar fluxes, which cause the atmospheric turbulences responsible for the particle vertical motion, to examine the dependency of the depolarization ratios and the pollen AOD upon solar fluxes. For the volume depolarization ratio the first correlation study yields to correlation coefficients ranging 0.00-0.81 and the second to

  13. Vegetation and climate history in the Laptev Sea region (arctic Siberia) during Late Quaternary inferred from pollen records

    NASA Astrophysics Data System (ADS)

    Andreev, A.; Schirrmeister, L.; Tarasov, P.

    2009-04-01

    A number of permafrost sections dated by 14C, TL, IRSL, and 230U/Th were analysed for pollen. Pollen spectra suggest that wet grass-sedge tundra habitats dominated during an interstadial c. 200-170 ka ago. The climate was rather wet and cold. The pollen spectra reflect sparser grass-sedge vegetation cover during the Late Saalian stadial, c. 170-130 ka BP. Environmental conditions were much more severe compared with the previous interstadial. Open Poaceae and Artemisia communities dominated at the beginning of the Last Interglacial. Some shrubs (Alnus fruticosa, Salix, Betula nana) grew in more protected and wetter places. Climate was rather warm (similar to modern conditions)during this time. Shrub tundra with Alnus fruticosa and Betula nana s.l. dominated in the area during the Eemian climatic optimum, when summer temperatures were 4-5°C higher than today. Early Weichselian pollen records reflect harsh environmental conditions; sparser vegetation (mostly grass and sedge communities) during this time. Middle Weichselian (Karginsky) Interstadial records with dominance of Cyperaceae and Poaceae with some Artemisia and Salix reflects tundra- and steppe-like associations with willow shrubs dominated the area. The climate was relatively moist and warm. A rather high content of algae colonies in the sediments indicates shallow water habitats (e.g. centres of ice wedge polygons). Dominance of Poaceae, Cyperaceae, Artemisia, and Caryophyllaceae pollen with some other herbs is typical for the 40-32 ka BP (climatic optimum) old sediments when open herb dominated the area. High pollen concentrations reflect that dense grass-sedge dominated vegetation; presence of Salix is also characteristic. The records point to climate amelioration during the Middle Weichselian compared to the Early Weichselian. Climate conditions became colder and drier c. 30-26 ka BP. Pollen spectra reflect that sedge-grass-Artemisia with some Caryophyllaceae and Asteraceae dominated the vegetation

  14. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark

    PubMed Central

    Joshi, Pushpa; Pal, Mahesh; Meena, Baleshwar; Upreti, D. K.; Rana, T. S.; Datta, Dipak

    2016-01-01

    Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer. PMID:27453990

  15. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark.

    PubMed

    Mishra, Tripti; Arya, Rakesh Kumar; Meena, Sanjeev; Joshi, Pushpa; Pal, Mahesh; Meena, Baleshwar; Upreti, D K; Rana, T S; Datta, Dipak

    2016-01-01

    Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB), in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA), oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A). Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer. PMID:27453990

  16. Bioassaying for ozone with pollen systems

    SciTech Connect

    Feder, W.A.

    1981-01-01

    Sensitivity to ozone of pollen germinating in vitro is closely correlated with ozone sensitivity of the pollen parent. Ozone-sensitive and tolerant pollen populations have been identified in tobacco, petunia, and tomato cultivars. The rate of tube elongation can be reversibly slowed or stopped by exposure to low concentrations of ozone. The performance of selected pollen populations can then be used to bioassay ozone in ambient air by introducing the air sample into a growth chamber where ozone-sensitive pollen in growing. Year-round pollen producion can be achieved in the greenhouse. Harvested pollen can be tested, packaged, and transported to user facilities without loss of vigor. Pollen populations are inexpensive to produce, respond reliably, and are simple to use as a bioassay for air quality.

  17. Variations in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L.

    PubMed

    Kull, O; Niinemets, U

    1993-04-01

    Relations between leaf dry weight to leaf area (LWA), leaf nitrogen concentration and irradiance inside a natural canopy were studied in Betula pendula Roth., Corylus avellana L. and Lonicera xylosteum L. In all species, LWA increased with increasing irradiance. Relative variability in LWA was smaller in Betula pendula than in the other two species. In Corylus avellana, LWA also depended on total plant height. Foliar nitrogen concentration (on a dry weight basis) increased with increasing irradiance and LWA in Betula pendula, but decreased in the other two species. The interspecific variation in response to light availability and in nitrogen partitioning may be caused by different light demands or different life forms (trees versus shrubs), or both, of the species examined, and must be considered in contemporary canopy models. PMID:14969921

  18. Final Pleistocene and Holocene pollen stratigraphic sequence from the Cloquet River area, St. Louis Co. , NE Minnesota

    SciTech Connect

    Hill, C.L.; Rapp, G.R. Jr.; Huber, J.K.

    1985-01-01

    A five-meter pollen sequence from a bog has been studied as part of a project concerned with the late-Quaternary paleoenvironmental setting and prehistory of northeastern Minnesota. The stratigraphic sequence is situated on an outwash plain derived from the Automba phase of glaciation (ca. 15,000 B.P.) and is located near a series of surface archaeological localities containing possible late Paleoindian lithic assemblages. Loss-on-ignition and particle size analyses reveal that the top section of the core, to a depth of about 350 cm, is composed predominantly of organics, the remaining 150 cm is dominated by mud. Radicarbon ages of 9270 +/- 190 B.P. (UCR-1825) for the 350-355 cm interval, and 9420 +/- 180 (UCR-1826) for the 350-364 cm interval, were obtained. Data derived from pollen counts made at 20 cm intervals throughout the sequence indicate the core can be divided into several pollen-stratigraphic zones. The lowest zone, from the base of the core to about 440 cm, contains Cyperaceae (initially at about 60% total pollen) and is also characterized by Picea and Salix. (ca5%). Above this, there is a zone which ends at about 360 cm and contains a Betula peak (>65%). These two zones are considered to reflect the presence of tundra-like and dwarf-birch tundra vegetational regimes in the area during the late Pleistocene. Several pollen stratigraphic zones above 360 cm provide an indication of the Holocene vegetational setting, and show the increasing dominance of Pinus. The paleoenvironmental record obtained from this core, along with studies of the geologic setting, late Quaternary glacial sequence, and physiographic situation of archaeological localities, may help to elucidate the conditions prevalent during this time and provide a basis for a clearer understanding of the prehistoric ecology of northeastern Minnesota.

  19. Pollen loads of eucalypt and other pollen types in birds in NW Spain

    PubMed Central

    Calviño-Cancela, María; Neumann, Max

    2015-01-01

    Here we present the amount of pollen of eucalypt and pollen of other types for birds captured in two bird ringing stations for 14 months (March 2014 to April 2015) in NW Spain. Common and latin names of all birds species captured, together with the number of captured individuals (N), prevalence of eucalypt pollen (percentage of individuals with eucalypt pollen) and of pollen of other types and average pollen loads per individual for eucalypt and other pollen types is presented. See [1] for further information and discussion. PMID:26568978

  20. Pollen loads of eucalypt and other pollen types in birds in NW Spain.

    PubMed

    Calviño-Cancela, María; Neumann, Max

    2015-12-01

    Here we present the amount of pollen of eucalypt and pollen of other types for birds captured in two bird ringing stations for 14 months (March 2014 to April 2015) in NW Spain. Common and latin names of all birds species captured, together with the number of captured individuals (N), prevalence of eucalypt pollen (percentage of individuals with eucalypt pollen) and of pollen of other types and average pollen loads per individual for eucalypt and other pollen types is presented. See [1] for further information and discussion. PMID:26568978

  1. Pollen Allergens for Molecular Diagnosis.

    PubMed

    Pablos, Isabel; Wildner, Sabrina; Asam, Claudia; Wallner, Michael; Gadermaier, Gabriele

    2016-04-01

    Pollen allergens are one of the main causes of type I allergies affecting up to 30 % of the population in industrialized countries. Climatic changes affect the duration and intensity of pollen seasons and may together with pollution contribute to increased incidences of respiratory allergy and asthma. Allergenic grasses, trees, and weeds often present similar habitats and flowering periods compromising clinical anamnesis. Molecule-based approaches enable distinction between genuine sensitization and clinically mostly irrelevant IgE cross-reactivity due to, e. g., panallergens or carbohydrate determinants. In addition, sensitivity as well as specificity can be improved and lead to identification of the primary sensitizing source which is particularly beneficial regarding polysensitized patients. This review gives an overview on relevant pollen allergens and their usefulness in daily practice. Appropriate allergy diagnosis is directly influencing decisions for therapeutic interventions, and thus, reliable biomarkers are pivotal when considering allergen immunotherapy in the context of precision medicine. PMID:27002515

  2. [The epidemiology of pollen allergy].

    PubMed

    Charpin, D; Caillaud, D

    2014-04-01

    The prevalence of seasonal allergic rhinitis can be established through surveys performed in a sample of the general population. These surveys are based on a questionnaire, which could lead to an overestimate of prevalence rates, and on measurements of specific IgE, which need to be interpreted in the light of the responses to the questionnaire. Such surveys are few in France and need to be updated. Risk factors for seasonal allergic rhinitis are genetic, epigenetic and environmental. Relationships between exposure to pollen and health can be documented through ecological and panel surveys. Panel surveys may give information on threshold levels and dose-response relationships. In addition to pollen exposure, global warming and air pollutants act as cofactors. Monitoring of both pollen exposure and its health effects should be encouraged and strengthened. PMID:24750956

  3. Pollen Recovery from Insects: Light Microscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Numerous insect species feed on the pollen, nectar, and other plant exudates that are associated with flowers. As a result of this feeding activity, pollen becomes attached to the insects. Analysis of the pollen attached to these insects can reveal what insects eat, their dispersal patterns in and...

  4. BURSTING POLLEN is required to organize the pollen germination plaque and pollen tube tip in Arabidopsis thaliana.

    PubMed

    Hoedemaekers, Karin; Derksen, Jan; Hoogstrate, Suzanne W; Wolters-Arts, Mieke; Oh, Sung-Aeong; Twell, David; Mariani, Celestina; Rieu, Ivo

    2015-04-01

    Pollen germination may occur via the so-called germination pores or directly through the pollen wall at the site of contact with the stigma. In this study, we addressed what processes take place during pollen hydration (i.e. before tube emergence), in a species with extra-poral pollen germination, Arabidopsis thaliana. A T-DNA mutant population was screened by segregation distortion analysis. Histological and electron microscopy techniques were applied to examine the wild-type and mutant phenotypes. Within 1 h of the start of pollen hydration, an intine-like structure consisting of cellulose, callose and at least partly de-esterified pectin was formed at the pollen wall. Subsequently, this 'germination plaque' gradually extended and opened up to provide passage for the cytoplasm into the emerging pollen tube. BURSTING POLLEN (BUP) was identified as a gene essential for the correct organization of this plaque and the tip of the pollen tube. BUP encodes a novel Golgi-located glycosyltransferase related to the glycosyltransferase 4 (GT4) subfamily which is conserved throughout the plant kingdom. Extra-poral pollen germination involves the development of a germination plaque and BUP defines the correct plastic-elastic properties of this plaque and the pollen tube tip by affecting pectin synthesis or delivery. PMID:25442716

  5. Use of Remote Sensing and Dust Modelling to Evaluate Ecosystem Phenology and Pollen Dispersal

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, William A.; Watts, Carol; Shaw, Patrick

    2007-01-01

    The impact of pollen release and downwind concentrations can be evaluated utilizing remote sensing. Previous NASA studies have addressed airborne dust prediction systems PHAiRS (Public Health Applications in Remote Sensing) which have determined that pollen forecasts and simulations are possible. By adapting the deterministic dust model (as an in-line system with the National Weather Service operational forecast model) used in PHAiRS to simulate downwind dispersal of pollen, initializing the model with pollen source regions from MODIS, assessing the results a rapid prototype concept can be produced. We will present the results of our effort to develop a deterministic model for predicting and simulating pollen emission and downwind concentration to study details or phenology and meteorology and their dependencies, and the promise of a credible real time forecast system to support public health and agricultural science and service. Previous studies have been done with PHAiRS research, the use of NASA data, the dust model and the PHAiRS potential to improve public health and environmental services long into the future.

  6. Characterization of Profilin Polymorphism in Pollen with a Focus on Multifunctionality

    PubMed Central

    Jimenez-Lopez, Jose C.; Morales, Sonia; Castro, Antonio J.; Volkmann, Dieter; Rodríguez-García, María I.; Alché, Juan de D.

    2012-01-01

    Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future. PMID

  7. Cytochemical localization of some hydrolases in the pollen and pollen tubes of Amaryllis vittata Ait.

    PubMed

    Sharma, D

    1982-01-01

    Some hydrolases are localized cytochemically in the pollen and pollen tubes of Amaryllis vittata Ait. The function of different enzymes is discussed in relation to pollen tubes morphogenesis. Activity of most of the enzymes was confined to colpus region, pollen wall and general cytoplasm of pollen and pollen tube. The activity of hydrolytic enzymes like acid monophosphoesterase and lipase and was nil in the exine of both germinated and ungerminated pollen, whereas intense reaction for esterase was observed in exine. Enzyme activity increased after germination which suggest the hydrolysis of stored metabolites and synthesis of proteins and other metabolites for the active growth of pollen tube. Intense reaction for enzymes like alkaline phosphomonoesterase, ATP-ase, 5-nucleotidase etc. at the tip region of pollen tube suggest their role in physiological processes associated with exchange of materials through intercellular transport during tube wall polysaccharide biogenesis. PMID:6298081

  8. [Development of allergic reactivity to Artemesia pollen during combined sensitization to pollen and microbes].

    PubMed

    Ermekova, R K

    1978-08-01

    Some regularities of formation of hypersensitivity of the immediate type to the pollen of Artemisia absinthium were studied under conditions of combined hypersensitivity to pollen and Brucella abortus 19-BA vaccine strain; the latter was administered 3, 12, and 28 days after the pollen. The degree of specific allergic reconstruction to the pollen was studied by passive skin anaphylaxis after Ovary, indirect degranulation of mast cells of healthy rats, and by general anaphylaxis in response to intravenous injection of the Artemisia absinthium pollen water-salt extract. Early formation of allergy to the pollen was observed in the groups of animals with combined hypersensitivity to the pollen and brucellae. The degree of allergic reactivity to the pollen allergen was more expressed in the groups with combined allergy than in those with pure pollen hypersensitivity at all the stages of this experiment. PMID:99195

  9. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements.

    PubMed

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season. PMID:25376632

  10. A new approach used to explore associations of current Ambrosia pollen levels with current and past meteorological elements

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Csépe, Zoltán; Deák, Áron József; Pál-Molnár, Elemér; Fülöp, Andrea; Tusnády, Gábor

    2015-09-01

    The paper examines the sensitivity of daily airborne Ambrosia (ragweed) pollen levels of a current pollen season not only on daily values of meteorological variables during this season but also on the past meteorological conditions. The results obtained from a 19-year data set including daily ragweed pollen counts and ten daily meteorological variables are evaluated with special focus on the interactions between the phyto-physiological processes and the meteorological elements. Instead of a Pearson correlation measuring the strength of the linear relationship between two random variables, a generalised correlation that measures every kind of relationship between random vectors was used. These latter correlations between arrays of daily values of the ten meteorological elements and the array of daily ragweed pollen concentrations during the current pollen season were calculated. For the current pollen season, the six most important variables are two temperature variables (mean and minimum temperatures), two humidity variables (dew point depression and rainfall) and two variables characterising the mixing of the air (wind speed and the height of the planetary boundary layer). The six most important meteorological variables before the current pollen season contain four temperature variables (mean, maximum, minimum temperatures and soil temperature) and two variables that characterise large-scale weather patterns (sea level pressure and the height of the planetary boundary layer). Key periods of the past meteorological variables before the current pollen season have been identified. The importance of this kind of analysis is that a knowledge of the past meteorological conditions may contribute to a better prediction of the upcoming pollen season.